2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
33 #include <trace/events/block.h>
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
39 #define BIO_INLINE_VECS 4
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
60 * Our slab pool management
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
80 mutex_lock(&bio_slab_lock);
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
86 if (!bslab->slab && entry == -1)
88 else if (bslab->slab_size == sz) {
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
110 entry = bio_slab_nr++;
112 bslab = &bio_slabs[entry];
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
119 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 bslab->slab_size = sz;
124 mutex_unlock(&bio_slab_lock);
128 static void bio_put_slab(struct bio_set *bs)
130 struct bio_slab *bslab = NULL;
133 mutex_lock(&bio_slab_lock);
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 WARN_ON(!bslab->slab_ref);
147 if (--bslab->slab_ref)
150 kmem_cache_destroy(bslab->slab);
154 mutex_unlock(&bio_slab_lock);
157 unsigned int bvec_nr_vecs(unsigned short idx)
159 return bvec_slabs[idx].nr_vecs;
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
164 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
166 if (idx == BIOVEC_MAX_IDX)
167 mempool_free(bv, pool);
169 struct biovec_slab *bvs = bvec_slabs + idx;
171 kmem_cache_free(bvs->slab, bv);
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
181 * see comment near bvec_array define!
199 case 129 ... BIO_MAX_PAGES:
207 * idx now points to the pool we want to allocate from. only the
208 * 1-vec entry pool is mempool backed.
210 if (*idx == BIOVEC_MAX_IDX) {
212 bvl = mempool_alloc(pool, gfp_mask);
214 struct biovec_slab *bvs = bvec_slabs + *idx;
215 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218 * Make this allocation restricted and don't dump info on
219 * allocation failures, since we'll fallback to the mempool
220 * in case of failure.
222 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225 * Try a slab allocation. If this fails and __GFP_WAIT
226 * is set, retry with the 1-entry mempool
228 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230 *idx = BIOVEC_MAX_IDX;
238 static void __bio_free(struct bio *bio)
240 bio_disassociate_task(bio);
242 if (bio_integrity(bio))
243 bio_integrity_free(bio);
246 static void bio_free(struct bio *bio)
248 struct bio_set *bs = bio->bi_pool;
254 if (bio_flagged(bio, BIO_OWNS_VEC))
255 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258 * If we have front padding, adjust the bio pointer before freeing
263 mempool_free(p, bs->bio_pool);
265 /* Bio was allocated by bio_kmalloc() */
270 void bio_init(struct bio *bio)
272 memset(bio, 0, sizeof(*bio));
273 bio->bi_flags = 1 << BIO_UPTODATE;
274 atomic_set(&bio->bi_remaining, 1);
275 atomic_set(&bio->bi_cnt, 1);
277 EXPORT_SYMBOL(bio_init);
280 * bio_reset - reinitialize a bio
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
289 void bio_reset(struct bio *bio)
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 atomic_set(&bio->bi_remaining, 1);
299 EXPORT_SYMBOL(bio_reset);
301 static void bio_chain_endio(struct bio *bio, int error)
303 bio_endio(bio->bi_private, error);
308 * bio_chain - chain bio completions
310 * The caller won't have a bi_end_io called when @bio completes - instead,
311 * @parent's bi_end_io won't be called until both @parent and @bio have
312 * completed; the chained bio will also be freed when it completes.
314 * The caller must not set bi_private or bi_end_io in @bio.
316 void bio_chain(struct bio *bio, struct bio *parent)
318 BUG_ON(bio->bi_private || bio->bi_end_io);
320 bio->bi_private = parent;
321 bio->bi_end_io = bio_chain_endio;
322 atomic_inc(&parent->bi_remaining);
324 EXPORT_SYMBOL(bio_chain);
326 static void bio_alloc_rescue(struct work_struct *work)
328 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
332 spin_lock(&bs->rescue_lock);
333 bio = bio_list_pop(&bs->rescue_list);
334 spin_unlock(&bs->rescue_lock);
339 generic_make_request(bio);
343 static void punt_bios_to_rescuer(struct bio_set *bs)
345 struct bio_list punt, nopunt;
349 * In order to guarantee forward progress we must punt only bios that
350 * were allocated from this bio_set; otherwise, if there was a bio on
351 * there for a stacking driver higher up in the stack, processing it
352 * could require allocating bios from this bio_set, and doing that from
353 * our own rescuer would be bad.
355 * Since bio lists are singly linked, pop them all instead of trying to
356 * remove from the middle of the list:
359 bio_list_init(&punt);
360 bio_list_init(&nopunt);
362 while ((bio = bio_list_pop(current->bio_list)))
363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365 *current->bio_list = nopunt;
367 spin_lock(&bs->rescue_lock);
368 bio_list_merge(&bs->rescue_list, &punt);
369 spin_unlock(&bs->rescue_lock);
371 queue_work(bs->rescue_workqueue, &bs->rescue_work);
375 * bio_alloc_bioset - allocate a bio for I/O
376 * @gfp_mask: the GFP_ mask given to the slab allocator
377 * @nr_iovecs: number of iovecs to pre-allocate
378 * @bs: the bio_set to allocate from.
381 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
382 * backed by the @bs's mempool.
384 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
385 * able to allocate a bio. This is due to the mempool guarantees. To make this
386 * work, callers must never allocate more than 1 bio at a time from this pool.
387 * Callers that need to allocate more than 1 bio must always submit the
388 * previously allocated bio for IO before attempting to allocate a new one.
389 * Failure to do so can cause deadlocks under memory pressure.
391 * Note that when running under generic_make_request() (i.e. any block
392 * driver), bios are not submitted until after you return - see the code in
393 * generic_make_request() that converts recursion into iteration, to prevent
396 * This would normally mean allocating multiple bios under
397 * generic_make_request() would be susceptible to deadlocks, but we have
398 * deadlock avoidance code that resubmits any blocked bios from a rescuer
401 * However, we do not guarantee forward progress for allocations from other
402 * mempools. Doing multiple allocations from the same mempool under
403 * generic_make_request() should be avoided - instead, use bio_set's front_pad
404 * for per bio allocations.
407 * Pointer to new bio on success, NULL on failure.
409 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411 gfp_t saved_gfp = gfp_mask;
413 unsigned inline_vecs;
414 unsigned long idx = BIO_POOL_NONE;
415 struct bio_vec *bvl = NULL;
420 if (nr_iovecs > UIO_MAXIOV)
423 p = kmalloc(sizeof(struct bio) +
424 nr_iovecs * sizeof(struct bio_vec),
427 inline_vecs = nr_iovecs;
430 * generic_make_request() converts recursion to iteration; this
431 * means if we're running beneath it, any bios we allocate and
432 * submit will not be submitted (and thus freed) until after we
435 * This exposes us to a potential deadlock if we allocate
436 * multiple bios from the same bio_set() while running
437 * underneath generic_make_request(). If we were to allocate
438 * multiple bios (say a stacking block driver that was splitting
439 * bios), we would deadlock if we exhausted the mempool's
442 * We solve this, and guarantee forward progress, with a rescuer
443 * workqueue per bio_set. If we go to allocate and there are
444 * bios on current->bio_list, we first try the allocation
445 * without __GFP_WAIT; if that fails, we punt those bios we
446 * would be blocking to the rescuer workqueue before we retry
447 * with the original gfp_flags.
450 if (current->bio_list && !bio_list_empty(current->bio_list))
451 gfp_mask &= ~__GFP_WAIT;
453 p = mempool_alloc(bs->bio_pool, gfp_mask);
454 if (!p && gfp_mask != saved_gfp) {
455 punt_bios_to_rescuer(bs);
456 gfp_mask = saved_gfp;
457 p = mempool_alloc(bs->bio_pool, gfp_mask);
460 front_pad = bs->front_pad;
461 inline_vecs = BIO_INLINE_VECS;
470 if (nr_iovecs > inline_vecs) {
471 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
472 if (!bvl && gfp_mask != saved_gfp) {
473 punt_bios_to_rescuer(bs);
474 gfp_mask = saved_gfp;
475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
481 bio->bi_flags |= 1 << BIO_OWNS_VEC;
482 } else if (nr_iovecs) {
483 bvl = bio->bi_inline_vecs;
487 bio->bi_flags |= idx << BIO_POOL_OFFSET;
488 bio->bi_max_vecs = nr_iovecs;
489 bio->bi_io_vec = bvl;
493 mempool_free(p, bs->bio_pool);
496 EXPORT_SYMBOL(bio_alloc_bioset);
498 void zero_fill_bio(struct bio *bio)
502 struct bvec_iter iter;
504 bio_for_each_segment(bv, bio, iter) {
505 char *data = bvec_kmap_irq(&bv, &flags);
506 memset(data, 0, bv.bv_len);
507 flush_dcache_page(bv.bv_page);
508 bvec_kunmap_irq(data, &flags);
511 EXPORT_SYMBOL(zero_fill_bio);
514 * bio_put - release a reference to a bio
515 * @bio: bio to release reference to
518 * Put a reference to a &struct bio, either one you have gotten with
519 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
521 void bio_put(struct bio *bio)
523 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
528 if (atomic_dec_and_test(&bio->bi_cnt))
531 EXPORT_SYMBOL(bio_put);
533 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
535 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
536 blk_recount_segments(q, bio);
538 return bio->bi_phys_segments;
540 EXPORT_SYMBOL(bio_phys_segments);
543 * __bio_clone_fast - clone a bio that shares the original bio's biovec
544 * @bio: destination bio
545 * @bio_src: bio to clone
547 * Clone a &bio. Caller will own the returned bio, but not
548 * the actual data it points to. Reference count of returned
551 * Caller must ensure that @bio_src is not freed before @bio.
553 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
555 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
558 * most users will be overriding ->bi_bdev with a new target,
559 * so we don't set nor calculate new physical/hw segment counts here
561 bio->bi_bdev = bio_src->bi_bdev;
562 bio->bi_flags |= 1 << BIO_CLONED;
563 bio->bi_rw = bio_src->bi_rw;
564 bio->bi_iter = bio_src->bi_iter;
565 bio->bi_io_vec = bio_src->bi_io_vec;
567 EXPORT_SYMBOL(__bio_clone_fast);
570 * bio_clone_fast - clone a bio that shares the original bio's biovec
572 * @gfp_mask: allocation priority
573 * @bs: bio_set to allocate from
575 * Like __bio_clone_fast, only also allocates the returned bio
577 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
581 b = bio_alloc_bioset(gfp_mask, 0, bs);
585 __bio_clone_fast(b, bio);
587 if (bio_integrity(bio)) {
590 ret = bio_integrity_clone(b, bio, gfp_mask);
600 EXPORT_SYMBOL(bio_clone_fast);
603 * bio_clone_bioset - clone a bio
604 * @bio_src: bio to clone
605 * @gfp_mask: allocation priority
606 * @bs: bio_set to allocate from
608 * Clone bio. Caller will own the returned bio, but not the actual data it
609 * points to. Reference count of returned bio will be one.
611 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
614 unsigned nr_iovecs = 0;
615 struct bvec_iter iter;
620 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
621 * bio_src->bi_io_vec to bio->bi_io_vec.
623 * We can't do that anymore, because:
625 * - The point of cloning the biovec is to produce a bio with a biovec
626 * the caller can modify: bi_idx and bi_bvec_done should be 0.
628 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
629 * we tried to clone the whole thing bio_alloc_bioset() would fail.
630 * But the clone should succeed as long as the number of biovecs we
631 * actually need to allocate is fewer than BIO_MAX_PAGES.
633 * - Lastly, bi_vcnt should not be looked at or relied upon by code
634 * that does not own the bio - reason being drivers don't use it for
635 * iterating over the biovec anymore, so expecting it to be kept up
636 * to date (i.e. for clones that share the parent biovec) is just
637 * asking for trouble and would force extra work on
638 * __bio_clone_fast() anyways.
641 bio_for_each_segment(bv, bio_src, iter)
644 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
648 bio->bi_bdev = bio_src->bi_bdev;
649 bio->bi_rw = bio_src->bi_rw;
650 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
651 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
653 bio_for_each_segment(bv, bio_src, iter)
654 bio->bi_io_vec[bio->bi_vcnt++] = bv;
656 if (bio_integrity(bio_src)) {
659 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
668 EXPORT_SYMBOL(bio_clone_bioset);
671 * bio_get_nr_vecs - return approx number of vecs
674 * Return the approximate number of pages we can send to this target.
675 * There's no guarantee that you will be able to fit this number of pages
676 * into a bio, it does not account for dynamic restrictions that vary
679 int bio_get_nr_vecs(struct block_device *bdev)
681 struct request_queue *q = bdev_get_queue(bdev);
684 nr_pages = min_t(unsigned,
685 queue_max_segments(q),
686 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
688 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
691 EXPORT_SYMBOL(bio_get_nr_vecs);
693 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
694 *page, unsigned int len, unsigned int offset,
695 unsigned int max_sectors)
697 int retried_segments = 0;
698 struct bio_vec *bvec;
701 * cloned bio must not modify vec list
703 if (unlikely(bio_flagged(bio, BIO_CLONED)))
706 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
710 * For filesystems with a blocksize smaller than the pagesize
711 * we will often be called with the same page as last time and
712 * a consecutive offset. Optimize this special case.
714 if (bio->bi_vcnt > 0) {
715 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
717 if (page == prev->bv_page &&
718 offset == prev->bv_offset + prev->bv_len) {
719 unsigned int prev_bv_len = prev->bv_len;
722 if (q->merge_bvec_fn) {
723 struct bvec_merge_data bvm = {
724 /* prev_bvec is already charged in
725 bi_size, discharge it in order to
726 simulate merging updated prev_bvec
728 .bi_bdev = bio->bi_bdev,
729 .bi_sector = bio->bi_iter.bi_sector,
730 .bi_size = bio->bi_iter.bi_size -
735 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
745 if (bio->bi_vcnt >= bio->bi_max_vecs)
749 * we might lose a segment or two here, but rather that than
750 * make this too complex.
753 while (bio->bi_phys_segments >= queue_max_segments(q)) {
755 if (retried_segments)
758 retried_segments = 1;
759 blk_recount_segments(q, bio);
763 * setup the new entry, we might clear it again later if we
764 * cannot add the page
766 bvec = &bio->bi_io_vec[bio->bi_vcnt];
767 bvec->bv_page = page;
769 bvec->bv_offset = offset;
772 * if queue has other restrictions (eg varying max sector size
773 * depending on offset), it can specify a merge_bvec_fn in the
774 * queue to get further control
776 if (q->merge_bvec_fn) {
777 struct bvec_merge_data bvm = {
778 .bi_bdev = bio->bi_bdev,
779 .bi_sector = bio->bi_iter.bi_sector,
780 .bi_size = bio->bi_iter.bi_size,
785 * merge_bvec_fn() returns number of bytes it can accept
788 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
789 bvec->bv_page = NULL;
796 /* If we may be able to merge these biovecs, force a recount */
797 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
798 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
801 bio->bi_phys_segments++;
803 bio->bi_iter.bi_size += len;
808 * bio_add_pc_page - attempt to add page to bio
809 * @q: the target queue
810 * @bio: destination bio
812 * @len: vec entry length
813 * @offset: vec entry offset
815 * Attempt to add a page to the bio_vec maplist. This can fail for a
816 * number of reasons, such as the bio being full or target block device
817 * limitations. The target block device must allow bio's up to PAGE_SIZE,
818 * so it is always possible to add a single page to an empty bio.
820 * This should only be used by REQ_PC bios.
822 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
823 unsigned int len, unsigned int offset)
825 return __bio_add_page(q, bio, page, len, offset,
826 queue_max_hw_sectors(q));
828 EXPORT_SYMBOL(bio_add_pc_page);
831 * bio_add_page - attempt to add page to bio
832 * @bio: destination bio
834 * @len: vec entry length
835 * @offset: vec entry offset
837 * Attempt to add a page to the bio_vec maplist. This can fail for a
838 * number of reasons, such as the bio being full or target block device
839 * limitations. The target block device must allow bio's up to PAGE_SIZE,
840 * so it is always possible to add a single page to an empty bio.
842 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
845 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
846 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
848 EXPORT_SYMBOL(bio_add_page);
850 struct submit_bio_ret {
851 struct completion event;
855 static void submit_bio_wait_endio(struct bio *bio, int error)
857 struct submit_bio_ret *ret = bio->bi_private;
860 complete(&ret->event);
864 * submit_bio_wait - submit a bio, and wait until it completes
865 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
866 * @bio: The &struct bio which describes the I/O
868 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
869 * bio_endio() on failure.
871 int submit_bio_wait(int rw, struct bio *bio)
873 struct submit_bio_ret ret;
876 init_completion(&ret.event);
877 bio->bi_private = &ret;
878 bio->bi_end_io = submit_bio_wait_endio;
880 wait_for_completion(&ret.event);
884 EXPORT_SYMBOL(submit_bio_wait);
887 * bio_advance - increment/complete a bio by some number of bytes
888 * @bio: bio to advance
889 * @bytes: number of bytes to complete
891 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
892 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
893 * be updated on the last bvec as well.
895 * @bio will then represent the remaining, uncompleted portion of the io.
897 void bio_advance(struct bio *bio, unsigned bytes)
899 if (bio_integrity(bio))
900 bio_integrity_advance(bio, bytes);
902 bio_advance_iter(bio, &bio->bi_iter, bytes);
904 EXPORT_SYMBOL(bio_advance);
907 * bio_alloc_pages - allocates a single page for each bvec in a bio
908 * @bio: bio to allocate pages for
909 * @gfp_mask: flags for allocation
911 * Allocates pages up to @bio->bi_vcnt.
913 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
916 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
921 bio_for_each_segment_all(bv, bio, i) {
922 bv->bv_page = alloc_page(gfp_mask);
924 while (--bv >= bio->bi_io_vec)
925 __free_page(bv->bv_page);
932 EXPORT_SYMBOL(bio_alloc_pages);
935 * bio_copy_data - copy contents of data buffers from one chain of bios to
937 * @src: source bio list
938 * @dst: destination bio list
940 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
941 * @src and @dst as linked lists of bios.
943 * Stops when it reaches the end of either @src or @dst - that is, copies
944 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
946 void bio_copy_data(struct bio *dst, struct bio *src)
948 struct bvec_iter src_iter, dst_iter;
949 struct bio_vec src_bv, dst_bv;
953 src_iter = src->bi_iter;
954 dst_iter = dst->bi_iter;
957 if (!src_iter.bi_size) {
962 src_iter = src->bi_iter;
965 if (!dst_iter.bi_size) {
970 dst_iter = dst->bi_iter;
973 src_bv = bio_iter_iovec(src, src_iter);
974 dst_bv = bio_iter_iovec(dst, dst_iter);
976 bytes = min(src_bv.bv_len, dst_bv.bv_len);
978 src_p = kmap_atomic(src_bv.bv_page);
979 dst_p = kmap_atomic(dst_bv.bv_page);
981 memcpy(dst_p + dst_bv.bv_offset,
982 src_p + src_bv.bv_offset,
985 kunmap_atomic(dst_p);
986 kunmap_atomic(src_p);
988 bio_advance_iter(src, &src_iter, bytes);
989 bio_advance_iter(dst, &dst_iter, bytes);
992 EXPORT_SYMBOL(bio_copy_data);
994 struct bio_map_data {
997 struct sg_iovec sgvecs[];
1000 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1001 struct sg_iovec *iov, int iov_count,
1004 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1005 bmd->nr_sgvecs = iov_count;
1006 bmd->is_our_pages = is_our_pages;
1007 bio->bi_private = bmd;
1010 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
1011 unsigned int iov_count,
1014 if (iov_count > UIO_MAXIOV)
1017 return kmalloc(sizeof(struct bio_map_data) +
1018 sizeof(struct sg_iovec) * iov_count, gfp_mask);
1021 static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
1022 int to_user, int from_user, int do_free_page)
1025 struct bio_vec *bvec;
1027 unsigned int iov_off = 0;
1029 bio_for_each_segment_all(bvec, bio, i) {
1030 char *bv_addr = page_address(bvec->bv_page);
1031 unsigned int bv_len = bvec->bv_len;
1033 while (bv_len && iov_idx < iov_count) {
1035 char __user *iov_addr;
1037 bytes = min_t(unsigned int,
1038 iov[iov_idx].iov_len - iov_off, bv_len);
1039 iov_addr = iov[iov_idx].iov_base + iov_off;
1043 ret = copy_to_user(iov_addr, bv_addr,
1047 ret = copy_from_user(bv_addr, iov_addr,
1059 if (iov[iov_idx].iov_len == iov_off) {
1066 __free_page(bvec->bv_page);
1073 * bio_uncopy_user - finish previously mapped bio
1074 * @bio: bio being terminated
1076 * Free pages allocated from bio_copy_user() and write back data
1077 * to user space in case of a read.
1079 int bio_uncopy_user(struct bio *bio)
1081 struct bio_map_data *bmd = bio->bi_private;
1082 struct bio_vec *bvec;
1085 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1087 * if we're in a workqueue, the request is orphaned, so
1088 * don't copy into a random user address space, just free.
1091 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1092 bio_data_dir(bio) == READ,
1093 0, bmd->is_our_pages);
1094 else if (bmd->is_our_pages)
1095 bio_for_each_segment_all(bvec, bio, i)
1096 __free_page(bvec->bv_page);
1102 EXPORT_SYMBOL(bio_uncopy_user);
1105 * bio_copy_user_iov - copy user data to bio
1106 * @q: destination block queue
1107 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1109 * @iov_count: number of elements in the iovec
1110 * @write_to_vm: bool indicating writing to pages or not
1111 * @gfp_mask: memory allocation flags
1113 * Prepares and returns a bio for indirect user io, bouncing data
1114 * to/from kernel pages as necessary. Must be paired with
1115 * call bio_uncopy_user() on io completion.
1117 struct bio *bio_copy_user_iov(struct request_queue *q,
1118 struct rq_map_data *map_data,
1119 struct sg_iovec *iov, int iov_count,
1120 int write_to_vm, gfp_t gfp_mask)
1122 struct bio_map_data *bmd;
1123 struct bio_vec *bvec;
1128 unsigned int len = 0;
1129 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1131 for (i = 0; i < iov_count; i++) {
1132 unsigned long uaddr;
1134 unsigned long start;
1136 uaddr = (unsigned long)iov[i].iov_base;
1137 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138 start = uaddr >> PAGE_SHIFT;
1144 return ERR_PTR(-EINVAL);
1146 nr_pages += end - start;
1147 len += iov[i].iov_len;
1153 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1155 return ERR_PTR(-ENOMEM);
1158 bio = bio_kmalloc(gfp_mask, nr_pages);
1163 bio->bi_rw |= REQ_WRITE;
1168 nr_pages = 1 << map_data->page_order;
1169 i = map_data->offset / PAGE_SIZE;
1172 unsigned int bytes = PAGE_SIZE;
1180 if (i == map_data->nr_entries * nr_pages) {
1185 page = map_data->pages[i / nr_pages];
1186 page += (i % nr_pages);
1190 page = alloc_page(q->bounce_gfp | gfp_mask);
1197 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1210 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1211 (map_data && map_data->from_user)) {
1212 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1217 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1221 bio_for_each_segment_all(bvec, bio, i)
1222 __free_page(bvec->bv_page);
1227 return ERR_PTR(ret);
1231 * bio_copy_user - copy user data to bio
1232 * @q: destination block queue
1233 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1234 * @uaddr: start of user address
1235 * @len: length in bytes
1236 * @write_to_vm: bool indicating writing to pages or not
1237 * @gfp_mask: memory allocation flags
1239 * Prepares and returns a bio for indirect user io, bouncing data
1240 * to/from kernel pages as necessary. Must be paired with
1241 * call bio_uncopy_user() on io completion.
1243 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1244 unsigned long uaddr, unsigned int len,
1245 int write_to_vm, gfp_t gfp_mask)
1247 struct sg_iovec iov;
1249 iov.iov_base = (void __user *)uaddr;
1252 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1254 EXPORT_SYMBOL(bio_copy_user);
1256 static struct bio *__bio_map_user_iov(struct request_queue *q,
1257 struct block_device *bdev,
1258 struct sg_iovec *iov, int iov_count,
1259 int write_to_vm, gfp_t gfp_mask)
1263 struct page **pages;
1268 for (i = 0; i < iov_count; i++) {
1269 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1270 unsigned long len = iov[i].iov_len;
1271 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 unsigned long start = uaddr >> PAGE_SHIFT;
1278 return ERR_PTR(-EINVAL);
1280 nr_pages += end - start;
1282 * buffer must be aligned to at least hardsector size for now
1284 if (uaddr & queue_dma_alignment(q))
1285 return ERR_PTR(-EINVAL);
1289 return ERR_PTR(-EINVAL);
1291 bio = bio_kmalloc(gfp_mask, nr_pages);
1293 return ERR_PTR(-ENOMEM);
1296 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1300 for (i = 0; i < iov_count; i++) {
1301 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1302 unsigned long len = iov[i].iov_len;
1303 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 unsigned long start = uaddr >> PAGE_SHIFT;
1305 const int local_nr_pages = end - start;
1306 const int page_limit = cur_page + local_nr_pages;
1308 ret = get_user_pages_fast(uaddr, local_nr_pages,
1309 write_to_vm, &pages[cur_page]);
1310 if (ret < local_nr_pages) {
1315 offset = uaddr & ~PAGE_MASK;
1316 for (j = cur_page; j < page_limit; j++) {
1317 unsigned int bytes = PAGE_SIZE - offset;
1328 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1338 * release the pages we didn't map into the bio, if any
1340 while (j < page_limit)
1341 page_cache_release(pages[j++]);
1347 * set data direction, and check if mapped pages need bouncing
1350 bio->bi_rw |= REQ_WRITE;
1352 bio->bi_bdev = bdev;
1353 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1357 for (i = 0; i < nr_pages; i++) {
1360 page_cache_release(pages[i]);
1365 return ERR_PTR(ret);
1369 * bio_map_user - map user address into bio
1370 * @q: the struct request_queue for the bio
1371 * @bdev: destination block device
1372 * @uaddr: start of user address
1373 * @len: length in bytes
1374 * @write_to_vm: bool indicating writing to pages or not
1375 * @gfp_mask: memory allocation flags
1377 * Map the user space address into a bio suitable for io to a block
1378 * device. Returns an error pointer in case of error.
1380 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1381 unsigned long uaddr, unsigned int len, int write_to_vm,
1384 struct sg_iovec iov;
1386 iov.iov_base = (void __user *)uaddr;
1389 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1391 EXPORT_SYMBOL(bio_map_user);
1394 * bio_map_user_iov - map user sg_iovec table into bio
1395 * @q: the struct request_queue for the bio
1396 * @bdev: destination block device
1398 * @iov_count: number of elements in the iovec
1399 * @write_to_vm: bool indicating writing to pages or not
1400 * @gfp_mask: memory allocation flags
1402 * Map the user space address into a bio suitable for io to a block
1403 * device. Returns an error pointer in case of error.
1405 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1406 struct sg_iovec *iov, int iov_count,
1407 int write_to_vm, gfp_t gfp_mask)
1411 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1417 * subtle -- if __bio_map_user() ended up bouncing a bio,
1418 * it would normally disappear when its bi_end_io is run.
1419 * however, we need it for the unmap, so grab an extra
1427 static void __bio_unmap_user(struct bio *bio)
1429 struct bio_vec *bvec;
1433 * make sure we dirty pages we wrote to
1435 bio_for_each_segment_all(bvec, bio, i) {
1436 if (bio_data_dir(bio) == READ)
1437 set_page_dirty_lock(bvec->bv_page);
1439 page_cache_release(bvec->bv_page);
1446 * bio_unmap_user - unmap a bio
1447 * @bio: the bio being unmapped
1449 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1450 * a process context.
1452 * bio_unmap_user() may sleep.
1454 void bio_unmap_user(struct bio *bio)
1456 __bio_unmap_user(bio);
1459 EXPORT_SYMBOL(bio_unmap_user);
1461 static void bio_map_kern_endio(struct bio *bio, int err)
1466 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1467 unsigned int len, gfp_t gfp_mask)
1469 unsigned long kaddr = (unsigned long)data;
1470 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 unsigned long start = kaddr >> PAGE_SHIFT;
1472 const int nr_pages = end - start;
1476 bio = bio_kmalloc(gfp_mask, nr_pages);
1478 return ERR_PTR(-ENOMEM);
1480 offset = offset_in_page(kaddr);
1481 for (i = 0; i < nr_pages; i++) {
1482 unsigned int bytes = PAGE_SIZE - offset;
1490 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1499 bio->bi_end_io = bio_map_kern_endio;
1504 * bio_map_kern - map kernel address into bio
1505 * @q: the struct request_queue for the bio
1506 * @data: pointer to buffer to map
1507 * @len: length in bytes
1508 * @gfp_mask: allocation flags for bio allocation
1510 * Map the kernel address into a bio suitable for io to a block
1511 * device. Returns an error pointer in case of error.
1513 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1518 bio = __bio_map_kern(q, data, len, gfp_mask);
1522 if (bio->bi_iter.bi_size == len)
1526 * Don't support partial mappings.
1529 return ERR_PTR(-EINVAL);
1531 EXPORT_SYMBOL(bio_map_kern);
1533 static void bio_copy_kern_endio(struct bio *bio, int err)
1535 struct bio_vec *bvec;
1536 const int read = bio_data_dir(bio) == READ;
1537 struct bio_map_data *bmd = bio->bi_private;
1539 char *p = bmd->sgvecs[0].iov_base;
1541 bio_for_each_segment_all(bvec, bio, i) {
1542 char *addr = page_address(bvec->bv_page);
1545 memcpy(p, addr, bvec->bv_len);
1547 __free_page(bvec->bv_page);
1556 * bio_copy_kern - copy kernel address into bio
1557 * @q: the struct request_queue for the bio
1558 * @data: pointer to buffer to copy
1559 * @len: length in bytes
1560 * @gfp_mask: allocation flags for bio and page allocation
1561 * @reading: data direction is READ
1563 * copy the kernel address into a bio suitable for io to a block
1564 * device. Returns an error pointer in case of error.
1566 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1567 gfp_t gfp_mask, int reading)
1570 struct bio_vec *bvec;
1573 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1580 bio_for_each_segment_all(bvec, bio, i) {
1581 char *addr = page_address(bvec->bv_page);
1583 memcpy(addr, p, bvec->bv_len);
1588 bio->bi_end_io = bio_copy_kern_endio;
1592 EXPORT_SYMBOL(bio_copy_kern);
1595 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1596 * for performing direct-IO in BIOs.
1598 * The problem is that we cannot run set_page_dirty() from interrupt context
1599 * because the required locks are not interrupt-safe. So what we can do is to
1600 * mark the pages dirty _before_ performing IO. And in interrupt context,
1601 * check that the pages are still dirty. If so, fine. If not, redirty them
1602 * in process context.
1604 * We special-case compound pages here: normally this means reads into hugetlb
1605 * pages. The logic in here doesn't really work right for compound pages
1606 * because the VM does not uniformly chase down the head page in all cases.
1607 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1608 * handle them at all. So we skip compound pages here at an early stage.
1610 * Note that this code is very hard to test under normal circumstances because
1611 * direct-io pins the pages with get_user_pages(). This makes
1612 * is_page_cache_freeable return false, and the VM will not clean the pages.
1613 * But other code (eg, flusher threads) could clean the pages if they are mapped
1616 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1617 * deferred bio dirtying paths.
1621 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1623 void bio_set_pages_dirty(struct bio *bio)
1625 struct bio_vec *bvec;
1628 bio_for_each_segment_all(bvec, bio, i) {
1629 struct page *page = bvec->bv_page;
1631 if (page && !PageCompound(page))
1632 set_page_dirty_lock(page);
1636 static void bio_release_pages(struct bio *bio)
1638 struct bio_vec *bvec;
1641 bio_for_each_segment_all(bvec, bio, i) {
1642 struct page *page = bvec->bv_page;
1650 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1651 * If they are, then fine. If, however, some pages are clean then they must
1652 * have been written out during the direct-IO read. So we take another ref on
1653 * the BIO and the offending pages and re-dirty the pages in process context.
1655 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1656 * here on. It will run one page_cache_release() against each page and will
1657 * run one bio_put() against the BIO.
1660 static void bio_dirty_fn(struct work_struct *work);
1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1663 static DEFINE_SPINLOCK(bio_dirty_lock);
1664 static struct bio *bio_dirty_list;
1667 * This runs in process context
1669 static void bio_dirty_fn(struct work_struct *work)
1671 unsigned long flags;
1674 spin_lock_irqsave(&bio_dirty_lock, flags);
1675 bio = bio_dirty_list;
1676 bio_dirty_list = NULL;
1677 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1680 struct bio *next = bio->bi_private;
1682 bio_set_pages_dirty(bio);
1683 bio_release_pages(bio);
1689 void bio_check_pages_dirty(struct bio *bio)
1691 struct bio_vec *bvec;
1692 int nr_clean_pages = 0;
1695 bio_for_each_segment_all(bvec, bio, i) {
1696 struct page *page = bvec->bv_page;
1698 if (PageDirty(page) || PageCompound(page)) {
1699 page_cache_release(page);
1700 bvec->bv_page = NULL;
1706 if (nr_clean_pages) {
1707 unsigned long flags;
1709 spin_lock_irqsave(&bio_dirty_lock, flags);
1710 bio->bi_private = bio_dirty_list;
1711 bio_dirty_list = bio;
1712 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713 schedule_work(&bio_dirty_work);
1719 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1720 void bio_flush_dcache_pages(struct bio *bi)
1722 struct bio_vec bvec;
1723 struct bvec_iter iter;
1725 bio_for_each_segment(bvec, bi, iter)
1726 flush_dcache_page(bvec.bv_page);
1728 EXPORT_SYMBOL(bio_flush_dcache_pages);
1732 * bio_endio - end I/O on a bio
1734 * @error: error, if any
1737 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1738 * preferred way to end I/O on a bio, it takes care of clearing
1739 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1740 * established -Exxxx (-EIO, for instance) error values in case
1741 * something went wrong. No one should call bi_end_io() directly on a
1742 * bio unless they own it and thus know that it has an end_io
1745 void bio_endio(struct bio *bio, int error)
1748 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1751 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1752 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1755 if (!atomic_dec_and_test(&bio->bi_remaining))
1759 * Need to have a real endio function for chained bios,
1760 * otherwise various corner cases will break (like stacking
1761 * block devices that save/restore bi_end_io) - however, we want
1762 * to avoid unbounded recursion and blowing the stack. Tail call
1763 * optimization would handle this, but compiling with frame
1764 * pointers also disables gcc's sibling call optimization.
1766 if (bio->bi_end_io == bio_chain_endio) {
1767 struct bio *parent = bio->bi_private;
1772 bio->bi_end_io(bio, error);
1777 EXPORT_SYMBOL(bio_endio);
1780 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1782 * @error: error, if any
1784 * For code that has saved and restored bi_end_io; thing hard before using this
1785 * function, probably you should've cloned the entire bio.
1787 void bio_endio_nodec(struct bio *bio, int error)
1789 atomic_inc(&bio->bi_remaining);
1790 bio_endio(bio, error);
1792 EXPORT_SYMBOL(bio_endio_nodec);
1795 * bio_split - split a bio
1796 * @bio: bio to split
1797 * @sectors: number of sectors to split from the front of @bio
1799 * @bs: bio set to allocate from
1801 * Allocates and returns a new bio which represents @sectors from the start of
1802 * @bio, and updates @bio to represent the remaining sectors.
1804 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1805 * responsibility to ensure that @bio is not freed before the split.
1807 struct bio *bio_split(struct bio *bio, int sectors,
1808 gfp_t gfp, struct bio_set *bs)
1810 struct bio *split = NULL;
1812 BUG_ON(sectors <= 0);
1813 BUG_ON(sectors >= bio_sectors(bio));
1815 split = bio_clone_fast(bio, gfp, bs);
1819 split->bi_iter.bi_size = sectors << 9;
1821 if (bio_integrity(split))
1822 bio_integrity_trim(split, 0, sectors);
1824 bio_advance(bio, split->bi_iter.bi_size);
1828 EXPORT_SYMBOL(bio_split);
1831 * bio_trim - trim a bio
1833 * @offset: number of sectors to trim from the front of @bio
1834 * @size: size we want to trim @bio to, in sectors
1836 void bio_trim(struct bio *bio, int offset, int size)
1838 /* 'bio' is a cloned bio which we need to trim to match
1839 * the given offset and size.
1843 if (offset == 0 && size == bio->bi_iter.bi_size)
1846 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1848 bio_advance(bio, offset << 9);
1850 bio->bi_iter.bi_size = size;
1852 EXPORT_SYMBOL_GPL(bio_trim);
1855 * create memory pools for biovec's in a bio_set.
1856 * use the global biovec slabs created for general use.
1858 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1860 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1862 return mempool_create_slab_pool(pool_entries, bp->slab);
1865 void bioset_free(struct bio_set *bs)
1867 if (bs->rescue_workqueue)
1868 destroy_workqueue(bs->rescue_workqueue);
1871 mempool_destroy(bs->bio_pool);
1874 mempool_destroy(bs->bvec_pool);
1876 bioset_integrity_free(bs);
1881 EXPORT_SYMBOL(bioset_free);
1884 * bioset_create - Create a bio_set
1885 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1886 * @front_pad: Number of bytes to allocate in front of the returned bio
1889 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1890 * to ask for a number of bytes to be allocated in front of the bio.
1891 * Front pad allocation is useful for embedding the bio inside
1892 * another structure, to avoid allocating extra data to go with the bio.
1893 * Note that the bio must be embedded at the END of that structure always,
1894 * or things will break badly.
1896 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1898 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1901 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1905 bs->front_pad = front_pad;
1907 spin_lock_init(&bs->rescue_lock);
1908 bio_list_init(&bs->rescue_list);
1909 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1911 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1912 if (!bs->bio_slab) {
1917 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1921 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1925 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1926 if (!bs->rescue_workqueue)
1934 EXPORT_SYMBOL(bioset_create);
1936 #ifdef CONFIG_BLK_CGROUP
1938 * bio_associate_current - associate a bio with %current
1941 * Associate @bio with %current if it hasn't been associated yet. Block
1942 * layer will treat @bio as if it were issued by %current no matter which
1943 * task actually issues it.
1945 * This function takes an extra reference of @task's io_context and blkcg
1946 * which will be put when @bio is released. The caller must own @bio,
1947 * ensure %current->io_context exists, and is responsible for synchronizing
1948 * calls to this function.
1950 int bio_associate_current(struct bio *bio)
1952 struct io_context *ioc;
1953 struct cgroup_subsys_state *css;
1958 ioc = current->io_context;
1962 /* acquire active ref on @ioc and associate */
1963 get_io_context_active(ioc);
1966 /* associate blkcg if exists */
1968 css = task_css(current, blkio_subsys_id);
1969 if (css && css_tryget(css))
1977 * bio_disassociate_task - undo bio_associate_current()
1980 void bio_disassociate_task(struct bio *bio)
1983 put_io_context(bio->bi_ioc);
1987 css_put(bio->bi_css);
1992 #endif /* CONFIG_BLK_CGROUP */
1994 static void __init biovec_init_slabs(void)
1998 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2000 struct biovec_slab *bvs = bvec_slabs + i;
2002 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2007 size = bvs->nr_vecs * sizeof(struct bio_vec);
2008 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2009 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2013 static int __init init_bio(void)
2017 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2019 panic("bio: can't allocate bios\n");
2021 bio_integrity_init();
2022 biovec_init_slabs();
2024 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2026 panic("bio: can't allocate bios\n");
2028 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2029 panic("bio: can't create integrity pool\n");
2033 subsys_initcall(init_bio);