Add Wangle README.md
[folly.git] / folly / wangle / README.md
1 # Wangle
2 Wangle is a framework for expressing asynchronous code in C++ using the Future pattern.
3
4 **wan•gle** |ˈwaNGgəl| informal  
5 *verb*  
6 Obtain (something that is desired) by persuading others to comply or by manipulating events.
7
8 *noun*  
9 A framework for expressing asynchronous control flow in C++, that is composable and easily translated to/from synchronous code.
10
11 *synonyms*  
12 [Finagle](http://twitter.github.io/finagle/)
13
14 Wangle is a futures-based async framework inspired by [Twitter's Finagle](http://twitter.github.io/finagle/) (which is in scala), and (loosely) building upon the existing (but anemic) Futures code found in the C++11 standard ([`std::future`](http://en.cppreference.com/w/cpp/thread/future)) and [`boost::future`](http://www.boost.org/doc/libs/1_53_0/boost/thread/future.hpp) (especially >= 1.53.0). Although inspired by the std::future interface, it is not syntactically drop-in compatible because some ideas didn't translate well enough and we decided to break from the API. But semantically, it should be straightforward to translate from existing std::future code to Wangle.
15
16 The primary semantic differences are that Wangle Futures and Promises are not threadsafe; and as does `boost::future`, Wangle supports continuations (`then()`) and there are helper methods `whenAll()` and `whenAny()` which are important compositional building blocks.
17
18 ## Brief Synopsis
19
20 ```C++
21 #include <folly/wangle/Future.h>
22 using namespace folly::wangle;
23 using namespace std;
24
25 void foo(int x) {
26   // do something with x
27   cout << "foo(" << x << ")" << endl;
28 }
29
30 // ...
31
32   cout << "making Promise" << endl;
33   Promise<int> p;
34   Future<int> f = p.getFuture();
35   f.then(
36     [](Try<int>&& t) {
37       foo(t.value());
38     });
39   cout << "Future chain made" << endl;
40
41 // ... now perhaps in another event callback
42
43   cout << "fulfilling Promise" << endl;
44   p.setValue(42);
45   cout << "Promise fulfilled" << endl;
46 ```
47
48 This would print:
49   
50 ```
51 making Promise
52 Future chain made
53 fulfilling Promise
54 foo(42)
55 Promise fulfilled
56 ```
57
58 ## User Guide
59
60 Let's begin with an example. Consider a simplified Memcache client class with this interface:
61
62 ```C++
63 class MemcacheClient {
64  public:
65   struct GetReply {
66     enum class Result {
67       FOUND,
68       NOT_FOUND,
69       SERVER_ERROR,
70     };
71
72     Result result;
73     // The value when result is FOUND,
74     // The error message when result is SERVER_ERROR or CLIENT_ERROR
75     // undefined otherwise
76     std::string value;
77   };
78
79   GetReply get(std::string key);
80 };
81 ```
82
83 This API is synchronous, i.e. when you call `get()` you have to wait for the result. This is very simple, but unfortunately it is also very easy to write very slow code using synchronous APIs.
84
85 Now, consider this traditional asynchronous signature for `get()`:
86
87 ```C++
88 int get(std::string key, std::function<void(GetReply)> callback);
89 ```
90
91 When you call `get()`, your asynchronous operation begins and when it finishes your callback will be called with the result. (Unless something goes drastically wrong and you get an error code from `get()`.) Very performant code can be written with an API like this, but for nontrivial applications the code descends into a special kind of spaghetti code affectionately referred to as "callback hell".
92
93 The Future-based API looks like this:
94
95 ```C++
96 Future<GetReply> get(std::string key);
97 ```
98
99 A `Future<GetReply>` is a placeholder for the `GetReply` that we will eventually get. A Future usually starts life out "unfulfilled", or incomplete, i.e.:
100
101 ```C++
102 fut.isReady() == false
103 fut.value()  // will throw an exception because the Future is not ready
104 ```
105
106 At some point in the future, the Future will have been fulfilled, and we can access its value.
107
108 ```C++
109 fut.isReady() == true
110 GetReply& reply = fut.value();
111 ```
112
113 Futures support exceptions. If something exceptional happened, your Future may represent an exception instead of a value. In that case:
114
115 ```C++
116 fut.isReady() == true
117 fut.value() // will rethrow the exception
118 ```
119
120 Just what is exceptional depends on the API. In our example we have chosen not to raise exceptions for `SERVER_ERROR`, but represent this explicitly in the `GetReply` object. On the other hand, an astute Memcache veteran would notice that we left `CLIENT_ERROR` out of `GetReply::Result`, and perhaps a `CLIENT_ERROR` would have been raised as an exception, because `CLIENT_ERROR` means there's a bug in the library and this would be truly exceptional. These decisions are judgement calls by the API designer. The important thing is that exceptional conditions (including and especially spurious exceptions that nobody expects) get captured and can be handled higher up the "stack".
121
122 So far we have described a way to initiate an asynchronous operation via an API that returns a Future, and then sometime later after it is fulfilled, we get its value. This is slightly more useful than a synchronous API, but it's not yet ideal. There are two more very important pieces to the puzzle.
123
124 First, we can aggregate Futures, to define a new Future that completes after some or all of the aggregated Futures complete.  Consider two examples: fetching a batch of requests and waiting for all of them, and fetching a group of requests and waiting for only one of them.
125
126 ```C++
127 vector<Future<GetReply>> futs;
128 for (auto& key : keys) {
129   futs.push_back(mc.get(key));
130 }
131 auto all = whenAll(futs.begin(), futs.end());
132
133 vector<Future<GetReply>> futs;
134 for (auto& key : keys) {
135   futs.push_back(mc.get(key));
136 }
137 auto any = whenAny(futs.begin(), futs.end());
138 ```
139
140 `all` and `any` are Futures (for the exact type and usage see the header files).  They will be complete when all/one of `futs` are complete, respectively. (There is also `whenN()` for when you need *some*.)
141
142 Second, we can attach continuations (aka callbacks) to a Future, and chain them together monadically. An example will clarify:
143
144 ```C++
145 Future<GetReply> fut1 = mc.get("foo");
146
147 Future<string> fut2 = fut1.then(
148   [](Try<GetReply>&& t) {
149     if (t.value().result == MemcacheClient::GetReply::Result::FOUND)
150       return t.value().value;
151     throw SomeException("No value");
152   });
153
154 Future<void> fut3 = fut2.then(
155   [](Try<string>&& t) {
156     try {
157       cout << t.value() << endl;
158     } catch (std::exception const& e) {
159       cerr << e.what() << endl;
160     }
161   });
162 ```
163
164 That example is a little contrived but the idea is that you can transform a result from one type to another, potentially in a chain, and unhandled errors propagate. Of course, the intermediate variables are optional. `Try<T>` is the object wrapper that supports both value and exception.
165
166 Using `then` to add continuations is idiomatic. It brings all the code into one place, which avoids callback hell.
167
168 Up to this point we have skirted around the matter of waiting for Futures. You may never need to wait for a Future, because your code is event-driven and all follow-up action happens in a then-block. But if want to have a batch workflow, where you initiate a batch of asynchronous operations and then wait for them all to finish at a synchronization point, then you will want to wait for a Future.
169
170 Other future frameworks like Finagle and std::future/boost::future, give you the ability to wait directly on a Future, by calling `fut.wait()` (naturally enough). Wangle has diverged from this pattern for performance reasons. It turns out, making things threadsafe slows them down.  Whodathunkit? So Wangle Futures (and Promises, for you API developers) are not threadsafe. Yes, you heard right, and it should give you pause—what good is an *asynchronous* framework that isn't threadsafe? Well, actually, in an event-driven architecture there's still quite a bit of value, but that doesn't really answer the question. Wangle is, indeed, meant to be used in multithreaded environments. It's just that we move synchronization out of the Future/Promise pair and instead require explicit synchronization or (preferably) crossing thread boundaries with a form of message passing. It turns out that `then()` chaining is really handy and there are often many Futures chained together. But there is often only one thread boundary to cross.  We choose to pay the threadsafety overhead only at that thread boundary.
171
172 Wangle provides a mechanism to make this easy, called a `ThreadGate`. ThreadGates stand between two threads and pass messages (actually, functors) back and forth in a threadsafe manner. Let's work an example. Assume that `MemcacheClient::get()` is not thread-aware. It registers with libevent and tries to send a request, and then later in your event loop when it has successfully sent and received a reply it will complete the Future. But it doesn't even consider that there might be other threads in your program.  Now consider that `get()` calls should happen in an IO thread (the *east* thread) and user code is happening in a user thread (the *west* thread).  A ThreadGate will allow us to do this:
173
174 ```C++
175 Future<GetReply> threadsafeGet(std::string key) {
176   std::function<Future<GetReply>()> doEast = [=]() {
177     return mc_->get(key);
178   };
179   auto westFuture = gate_.add(doEast);
180   return westFuture;
181 }
182 ```
183
184 Think of the ThreadGate as a pair of queues: from west to east we queue some functor that returns a Future, and then the ThreadGate conveys the result back from east to west and eventually fulfils the west Future. But when? The ThreadGate has to be *driven* from both sides—the IO thread has to pull work off the west-to-east queue, and the user thread has to drive the east-to-west queue. Sometimes this happens in the course of an event loop, as it would in a libevent architecture. Other times it has to be explicit, in which case you would call the gate's `makeProgress()` method. Or, if you know which Future you want to wait for you can use:
185
186 ```C++
187 gate_.waitFor(fut);
188 ```
189
190 The ThreadGate interface is simple, so any kind of threadsafe functor conveyance you can dream up that is perfect for your application can be implemented. Or, you can use `GenericThreadGate` and `Executor`s to make one out of existing pieces. The `ManualThreadGate` is worth a look as well, especially for unit tests.
191
192 In practice, the API will probably do the gating for you, e.g. `MemcacheClient::get()` would return an already-gated Future and provide a `waitFor()` proxy that lets you wait for Futures it has returned. Then as a user you never have to worry about it. But this exposition was to explain the probably-surprising design decision to make Futures not threadsafe and not support direct waiting.
193
194 `Later` is another approach to crossing thread boundaries that can be more flexible than ThreadGates.
195 (TODO document `Later` here.)
196
197 ## You make me Promises, Promises
198
199 If you are wrapping an asynchronous operation, or providing an asynchronous API to users, then you will want to make Promises. Every Future has a corresponding Promise (except Futures that spring into existence already completed, with `makeFuture()`). Promises are simple, you make one, you extract the Future, and you fulfil it with a value or an exception. Example:
200
201 ```C++
202 Promise<int> p;
203 Future<int> f = p.getFuture();
204
205 f.isReady() == false
206
207 p.setValue(42);
208
209 f.isReady() == true
210 f.value() == 42
211 ```
212
213 and an exception example:
214
215 ```C++
216 Promise<int> p;
217 Future<int> f = p.getFuture();
218
219 f.isReady() == false
220
221 p.setException(std::runtime_error("Fail"));
222
223 f.isReady() == true
224 f.value() // throws the exception
225 ```
226
227 It's good practice to use fulfil which takes a function and automatically captures exceptions, e.g.
228
229 ```C++
230 Promise<int> p;
231 p.fulfil([]{
232   try {
233     // do stuff that may throw
234     return 42;
235   } catch (MySpecialException const& e) {
236     // handle it
237     return 7;
238   }
239   // Any exceptions that we didn't catch, will be caught for us
240 });
241 ```
242
243 ## FAQ
244
245 ### Why not use std::future?
246 No callback or continuation support.
247 See also http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3428.pdf
248
249 ### Why not use boost::future?
250 - 1.53 is brand new, and not in fbcode
251 - It's still a bit buggy/bleeding-edge
252 - They haven't fleshed out the threading model very well yet, e.g. every single `then` currently spawns a new thread unless you explicitly ask it to work on this thread only, and there is no support for executors yet.
253 - boost::future has locking which isn't necessary in our cooperative-multithreaded use case, and assumed to be very expensive.
254
255 ### Why use heap-allocated shared state? Why is Promise not a subclass of Future?
256 C++. It boils down to wanting to return a Future by value for performance (move semantics and compiler optimizations), and programmer sanity, and needing a reference to the shared state by both the user (which holds the Future) and the asynchronous operation (which holds the Promise), and allowing either to go out of scope.
257
258 ### What about proper continuations? Futures suck.
259 People mean two things here, they either mean using continuations or they mean using generators which require continuations. It's important to know those are two distinct questions, but in our context the answer is the same because continuations are a prerequisite for generators.
260
261 C++ doesn't directly support continuations very well. But there are some ways to do them in C/C++ that rely on some rather low-level facilities like `setjmp` and `longjmp` (among others). So yes, they are possible (cf. [Mordor](https://github.com/ccutrer/mordor)).
262
263 The tradeoff is memory. Each continuation has a stack, and that stack is usually fixed-size and has to be big enough to support whatever ordinary computation you might want to do on it. So each living continuation requires a relatively large amount of memory. If you know the number of continuations will be small, this might be a good fit. In particular, it might be faster and the code might read cleaner.
264
265 Wangle takes the middle road between callback hell and continuations, one which has been trodden and proved useful in other languages. It doesn't claim to be the best model for all situations. Use your tools wisely.
266
267 ### It's so @!#?'n hard to get the thread safety right
268 That's not a question.
269
270 Yes, it is hard and so you should use a ThreadGate or Later if you need to do any crossing of thread boundaries. Otherwise you need to be very careful. Especially because in most cases the naïve approach is not threadsafe and naïve testing doesn't expose the race condition.
271
272 The careful reader will note that we have only assumed locks to be a terrible performance penalty. We are planning on thoroughly benchmarking locks (and the alternative code patterns that having locks would enable), and if we find locks are Not That Bad™ we might reverse this decision (and fold ThreadGate and Later into Future/Promise).