f4a49c45299cf4335b20fe425b44c3f84b7f3c4b
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = xhci_handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = xhci_handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = xhci_handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         ret = xhci_handshake(xhci, &xhci->op_regs->status,
181                         STS_CNR, 0, 10 * 1000 * 1000);
182
183         for (i = 0; i < 2; ++i) {
184                 xhci->bus_state[i].port_c_suspend = 0;
185                 xhci->bus_state[i].suspended_ports = 0;
186                 xhci->bus_state[i].resuming_ports = 0;
187         }
188
189         return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195         int i;
196
197         if (!xhci->msix_entries)
198                 return -EINVAL;
199
200         for (i = 0; i < xhci->msix_count; i++)
201                 if (xhci->msix_entries[i].vector)
202                         free_irq(xhci->msix_entries[i].vector,
203                                         xhci_to_hcd(xhci));
204         return 0;
205 }
206
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212         int ret;
213         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215         ret = pci_enable_msi(pdev);
216         if (ret) {
217                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218                 return ret;
219         }
220
221         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222                                 0, "xhci_hcd", xhci_to_hcd(xhci));
223         if (ret) {
224                 xhci_dbg(xhci, "disable MSI interrupt\n");
225                 pci_disable_msi(pdev);
226         }
227
228         return ret;
229 }
230
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238         int ret;
239
240         /* return if using legacy interrupt */
241         if (xhci_to_hcd(xhci)->irq > 0)
242                 return;
243
244         ret = xhci_free_msi(xhci);
245         if (!ret)
246                 return;
247         if (pdev->irq > 0)
248                 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250         return;
251 }
252
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258         int i, ret = 0;
259         struct usb_hcd *hcd = xhci_to_hcd(xhci);
260         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262         /*
263          * calculate number of msi-x vectors supported.
264          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265          *   with max number of interrupters based on the xhci HCSPARAMS1.
266          * - num_online_cpus: maximum msi-x vectors per CPUs core.
267          *   Add additional 1 vector to ensure always available interrupt.
268          */
269         xhci->msix_count = min(num_online_cpus() + 1,
270                                 HCS_MAX_INTRS(xhci->hcs_params1));
271
272         xhci->msix_entries =
273                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274                                 GFP_KERNEL);
275         if (!xhci->msix_entries) {
276                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277                 return -ENOMEM;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 xhci->msix_entries[i].entry = i;
282                 xhci->msix_entries[i].vector = 0;
283         }
284
285         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286         if (ret) {
287                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288                 goto free_entries;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 ret = request_irq(xhci->msix_entries[i].vector,
293                                 (irq_handler_t)xhci_msi_irq,
294                                 0, "xhci_hcd", xhci_to_hcd(xhci));
295                 if (ret)
296                         goto disable_msix;
297         }
298
299         hcd->msix_enabled = 1;
300         return ret;
301
302 disable_msix:
303         xhci_dbg(xhci, "disable MSI-X interrupt\n");
304         xhci_free_irq(xhci);
305         pci_disable_msix(pdev);
306 free_entries:
307         kfree(xhci->msix_entries);
308         xhci->msix_entries = NULL;
309         return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315         struct usb_hcd *hcd = xhci_to_hcd(xhci);
316         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318         xhci_free_irq(xhci);
319
320         if (xhci->msix_entries) {
321                 pci_disable_msix(pdev);
322                 kfree(xhci->msix_entries);
323                 xhci->msix_entries = NULL;
324         } else {
325                 pci_disable_msi(pdev);
326         }
327
328         hcd->msix_enabled = 0;
329         return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334         int i;
335
336         if (xhci->msix_entries) {
337                 for (i = 0; i < xhci->msix_count; i++)
338                         synchronize_irq(xhci->msix_entries[i].vector);
339         }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345         struct pci_dev  *pdev;
346         int ret;
347
348         /* The xhci platform device has set up IRQs through usb_add_hcd. */
349         if (xhci->quirks & XHCI_PLAT)
350                 return 0;
351
352         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
353         /*
354          * Some Fresco Logic host controllers advertise MSI, but fail to
355          * generate interrupts.  Don't even try to enable MSI.
356          */
357         if (xhci->quirks & XHCI_BROKEN_MSI)
358                 goto legacy_irq;
359
360         /* unregister the legacy interrupt */
361         if (hcd->irq)
362                 free_irq(hcd->irq, hcd);
363         hcd->irq = 0;
364
365         ret = xhci_setup_msix(xhci);
366         if (ret)
367                 /* fall back to msi*/
368                 ret = xhci_setup_msi(xhci);
369
370         if (!ret)
371                 /* hcd->irq is 0, we have MSI */
372                 return 0;
373
374         if (!pdev->irq) {
375                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
376                 return -EINVAL;
377         }
378
379  legacy_irq:
380         /* fall back to legacy interrupt*/
381         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382                         hcd->irq_descr, hcd);
383         if (ret) {
384                 xhci_err(xhci, "request interrupt %d failed\n",
385                                 pdev->irq);
386                 return ret;
387         }
388         hcd->irq = pdev->irq;
389         return 0;
390 }
391
392 #else
393
394 static int xhci_try_enable_msi(struct usb_hcd *hcd)
395 {
396         return 0;
397 }
398
399 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
400 {
401 }
402
403 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
404 {
405 }
406
407 #endif
408
409 static void compliance_mode_recovery(unsigned long arg)
410 {
411         struct xhci_hcd *xhci;
412         struct usb_hcd *hcd;
413         u32 temp;
414         int i;
415
416         xhci = (struct xhci_hcd *)arg;
417
418         for (i = 0; i < xhci->num_usb3_ports; i++) {
419                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
420                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
421                         /*
422                          * Compliance Mode Detected. Letting USB Core
423                          * handle the Warm Reset
424                          */
425                         xhci_dbg(xhci, "Compliance mode detected->port %d\n",
426                                         i + 1);
427                         xhci_dbg(xhci, "Attempting compliance mode recovery\n");
428                         hcd = xhci->shared_hcd;
429
430                         if (hcd->state == HC_STATE_SUSPENDED)
431                                 usb_hcd_resume_root_hub(hcd);
432
433                         usb_hcd_poll_rh_status(hcd);
434                 }
435         }
436
437         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
438                 mod_timer(&xhci->comp_mode_recovery_timer,
439                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
440 }
441
442 /*
443  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
444  * that causes ports behind that hardware to enter compliance mode sometimes.
445  * The quirk creates a timer that polls every 2 seconds the link state of
446  * each host controller's port and recovers it by issuing a Warm reset
447  * if Compliance mode is detected, otherwise the port will become "dead" (no
448  * device connections or disconnections will be detected anymore). Becasue no
449  * status event is generated when entering compliance mode (per xhci spec),
450  * this quirk is needed on systems that have the failing hardware installed.
451  */
452 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
453 {
454         xhci->port_status_u0 = 0;
455         init_timer(&xhci->comp_mode_recovery_timer);
456
457         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
458         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
459         xhci->comp_mode_recovery_timer.expires = jiffies +
460                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
461
462         set_timer_slack(&xhci->comp_mode_recovery_timer,
463                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
464         add_timer(&xhci->comp_mode_recovery_timer);
465         xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
466 }
467
468 /*
469  * This function identifies the systems that have installed the SN65LVPE502CP
470  * USB3.0 re-driver and that need the Compliance Mode Quirk.
471  * Systems:
472  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
473  */
474 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
475 {
476         const char *dmi_product_name, *dmi_sys_vendor;
477
478         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
479         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
480         if (!dmi_product_name || !dmi_sys_vendor)
481                 return false;
482
483         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
484                 return false;
485
486         if (strstr(dmi_product_name, "Z420") ||
487                         strstr(dmi_product_name, "Z620") ||
488                         strstr(dmi_product_name, "Z820") ||
489                         strstr(dmi_product_name, "Z1 Workstation"))
490                 return true;
491
492         return false;
493 }
494
495 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
496 {
497         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
498 }
499
500
501 /*
502  * Initialize memory for HCD and xHC (one-time init).
503  *
504  * Program the PAGESIZE register, initialize the device context array, create
505  * device contexts (?), set up a command ring segment (or two?), create event
506  * ring (one for now).
507  */
508 int xhci_init(struct usb_hcd *hcd)
509 {
510         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511         int retval = 0;
512
513         xhci_dbg(xhci, "xhci_init\n");
514         spin_lock_init(&xhci->lock);
515         if (xhci->hci_version == 0x95 && link_quirk) {
516                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
517                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518         } else {
519                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
520         }
521         retval = xhci_mem_init(xhci, GFP_KERNEL);
522         xhci_dbg(xhci, "Finished xhci_init\n");
523
524         /* Initializing Compliance Mode Recovery Data If Needed */
525         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
526                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
527                 compliance_mode_recovery_timer_init(xhci);
528         }
529
530         return retval;
531 }
532
533 /*-------------------------------------------------------------------------*/
534
535
536 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
537 static void xhci_event_ring_work(unsigned long arg)
538 {
539         unsigned long flags;
540         int temp;
541         u64 temp_64;
542         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
543         int i, j;
544
545         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
546
547         spin_lock_irqsave(&xhci->lock, flags);
548         temp = xhci_readl(xhci, &xhci->op_regs->status);
549         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
550         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
551                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
552                 xhci_dbg(xhci, "HW died, polling stopped.\n");
553                 spin_unlock_irqrestore(&xhci->lock, flags);
554                 return;
555         }
556
557         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
558         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
559         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
560         xhci->error_bitmask = 0;
561         xhci_dbg(xhci, "Event ring:\n");
562         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
563         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
564         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
565         temp_64 &= ~ERST_PTR_MASK;
566         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
567         xhci_dbg(xhci, "Command ring:\n");
568         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
569         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
570         xhci_dbg_cmd_ptrs(xhci);
571         for (i = 0; i < MAX_HC_SLOTS; ++i) {
572                 if (!xhci->devs[i])
573                         continue;
574                 for (j = 0; j < 31; ++j) {
575                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
576                 }
577         }
578         spin_unlock_irqrestore(&xhci->lock, flags);
579
580         if (!xhci->zombie)
581                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
582         else
583                 xhci_dbg(xhci, "Quit polling the event ring.\n");
584 }
585 #endif
586
587 static int xhci_run_finished(struct xhci_hcd *xhci)
588 {
589         if (xhci_start(xhci)) {
590                 xhci_halt(xhci);
591                 return -ENODEV;
592         }
593         xhci->shared_hcd->state = HC_STATE_RUNNING;
594         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
595
596         if (xhci->quirks & XHCI_NEC_HOST)
597                 xhci_ring_cmd_db(xhci);
598
599         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
600         return 0;
601 }
602
603 /*
604  * Start the HC after it was halted.
605  *
606  * This function is called by the USB core when the HC driver is added.
607  * Its opposite is xhci_stop().
608  *
609  * xhci_init() must be called once before this function can be called.
610  * Reset the HC, enable device slot contexts, program DCBAAP, and
611  * set command ring pointer and event ring pointer.
612  *
613  * Setup MSI-X vectors and enable interrupts.
614  */
615 int xhci_run(struct usb_hcd *hcd)
616 {
617         u32 temp;
618         u64 temp_64;
619         int ret;
620         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
621
622         /* Start the xHCI host controller running only after the USB 2.0 roothub
623          * is setup.
624          */
625
626         hcd->uses_new_polling = 1;
627         if (!usb_hcd_is_primary_hcd(hcd))
628                 return xhci_run_finished(xhci);
629
630         xhci_dbg(xhci, "xhci_run\n");
631
632         ret = xhci_try_enable_msi(hcd);
633         if (ret)
634                 return ret;
635
636 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
637         init_timer(&xhci->event_ring_timer);
638         xhci->event_ring_timer.data = (unsigned long) xhci;
639         xhci->event_ring_timer.function = xhci_event_ring_work;
640         /* Poll the event ring */
641         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
642         xhci->zombie = 0;
643         xhci_dbg(xhci, "Setting event ring polling timer\n");
644         add_timer(&xhci->event_ring_timer);
645 #endif
646
647         xhci_dbg(xhci, "Command ring memory map follows:\n");
648         xhci_debug_ring(xhci, xhci->cmd_ring);
649         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
650         xhci_dbg_cmd_ptrs(xhci);
651
652         xhci_dbg(xhci, "ERST memory map follows:\n");
653         xhci_dbg_erst(xhci, &xhci->erst);
654         xhci_dbg(xhci, "Event ring:\n");
655         xhci_debug_ring(xhci, xhci->event_ring);
656         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
657         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658         temp_64 &= ~ERST_PTR_MASK;
659         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
660
661         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
662         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (u32) 160;
665         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = xhci_readl(xhci, &xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
671                         temp);
672         xhci_writel(xhci, temp, &xhci->op_regs->command);
673
674         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
675         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
676                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
677         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
678                         &xhci->ir_set->irq_pending);
679         xhci_print_ir_set(xhci, 0);
680
681         if (xhci->quirks & XHCI_NEC_HOST)
682                 xhci_queue_vendor_command(xhci, 0, 0, 0,
683                                 TRB_TYPE(TRB_NEC_GET_FW));
684
685         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
686         return 0;
687 }
688
689 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
690 {
691         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
692
693         spin_lock_irq(&xhci->lock);
694         xhci_halt(xhci);
695
696         /* The shared_hcd is going to be deallocated shortly (the USB core only
697          * calls this function when allocation fails in usb_add_hcd(), or
698          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
699          */
700         xhci->shared_hcd = NULL;
701         spin_unlock_irq(&xhci->lock);
702 }
703
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 void xhci_stop(struct usb_hcd *hcd)
714 {
715         u32 temp;
716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718         if (!usb_hcd_is_primary_hcd(hcd)) {
719                 xhci_only_stop_hcd(xhci->shared_hcd);
720                 return;
721         }
722
723         spin_lock_irq(&xhci->lock);
724         /* Make sure the xHC is halted for a USB3 roothub
725          * (xhci_stop() could be called as part of failed init).
726          */
727         xhci_halt(xhci);
728         xhci_reset(xhci);
729         spin_unlock_irq(&xhci->lock);
730
731         xhci_cleanup_msix(xhci);
732
733 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
734         /* Tell the event ring poll function not to reschedule */
735         xhci->zombie = 1;
736         del_timer_sync(&xhci->event_ring_timer);
737 #endif
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
744                                 __func__);
745         }
746
747         if (xhci->quirks & XHCI_AMD_PLL_FIX)
748                 usb_amd_dev_put();
749
750         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
751         temp = xhci_readl(xhci, &xhci->op_regs->status);
752         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
753         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
754         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
755                         &xhci->ir_set->irq_pending);
756         xhci_print_ir_set(xhci, 0);
757
758         xhci_dbg(xhci, "cleaning up memory\n");
759         xhci_mem_cleanup(xhci);
760         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
761                     xhci_readl(xhci, &xhci->op_regs->status));
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         spin_unlock_irq(&xhci->lock);
783
784         xhci_cleanup_msix(xhci);
785
786         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
787                     xhci_readl(xhci, &xhci->op_regs->status));
788 }
789
790 #ifdef CONFIG_PM
791 static void xhci_save_registers(struct xhci_hcd *xhci)
792 {
793         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
794         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
795         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
796         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
797         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
798         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
799         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
800         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
801         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
802 }
803
804 static void xhci_restore_registers(struct xhci_hcd *xhci)
805 {
806         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
807         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
808         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
809         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
810         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
811         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
812         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
813         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
814         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
815 }
816
817 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
818 {
819         u64     val_64;
820
821         /* step 2: initialize command ring buffer */
822         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
823         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
824                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
825                                       xhci->cmd_ring->dequeue) &
826                  (u64) ~CMD_RING_RSVD_BITS) |
827                 xhci->cmd_ring->cycle_state;
828         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
829                         (long unsigned long) val_64);
830         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
831 }
832
833 /*
834  * The whole command ring must be cleared to zero when we suspend the host.
835  *
836  * The host doesn't save the command ring pointer in the suspend well, so we
837  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
838  * aligned, because of the reserved bits in the command ring dequeue pointer
839  * register.  Therefore, we can't just set the dequeue pointer back in the
840  * middle of the ring (TRBs are 16-byte aligned).
841  */
842 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
843 {
844         struct xhci_ring *ring;
845         struct xhci_segment *seg;
846
847         ring = xhci->cmd_ring;
848         seg = ring->deq_seg;
849         do {
850                 memset(seg->trbs, 0,
851                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
852                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
853                         cpu_to_le32(~TRB_CYCLE);
854                 seg = seg->next;
855         } while (seg != ring->deq_seg);
856
857         /* Reset the software enqueue and dequeue pointers */
858         ring->deq_seg = ring->first_seg;
859         ring->dequeue = ring->first_seg->trbs;
860         ring->enq_seg = ring->deq_seg;
861         ring->enqueue = ring->dequeue;
862
863         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
864         /*
865          * Ring is now zeroed, so the HW should look for change of ownership
866          * when the cycle bit is set to 1.
867          */
868         ring->cycle_state = 1;
869
870         /*
871          * Reset the hardware dequeue pointer.
872          * Yes, this will need to be re-written after resume, but we're paranoid
873          * and want to make sure the hardware doesn't access bogus memory
874          * because, say, the BIOS or an SMI started the host without changing
875          * the command ring pointers.
876          */
877         xhci_set_cmd_ring_deq(xhci);
878 }
879
880 /*
881  * Stop HC (not bus-specific)
882  *
883  * This is called when the machine transition into S3/S4 mode.
884  *
885  */
886 int xhci_suspend(struct xhci_hcd *xhci)
887 {
888         int                     rc = 0;
889         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
890         u32                     command;
891
892         if (hcd->state != HC_STATE_SUSPENDED ||
893                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
894                 return -EINVAL;
895
896         /* Don't poll the roothubs on bus suspend. */
897         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
898         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
899         del_timer_sync(&hcd->rh_timer);
900
901         spin_lock_irq(&xhci->lock);
902         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
903         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
904         /* step 1: stop endpoint */
905         /* skipped assuming that port suspend has done */
906
907         /* step 2: clear Run/Stop bit */
908         command = xhci_readl(xhci, &xhci->op_regs->command);
909         command &= ~CMD_RUN;
910         xhci_writel(xhci, command, &xhci->op_regs->command);
911         if (xhci_handshake(xhci, &xhci->op_regs->status,
912                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
913                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
914                 spin_unlock_irq(&xhci->lock);
915                 return -ETIMEDOUT;
916         }
917         xhci_clear_command_ring(xhci);
918
919         /* step 3: save registers */
920         xhci_save_registers(xhci);
921
922         /* step 4: set CSS flag */
923         command = xhci_readl(xhci, &xhci->op_regs->command);
924         command |= CMD_CSS;
925         xhci_writel(xhci, command, &xhci->op_regs->command);
926         if (xhci_handshake(xhci, &xhci->op_regs->status,
927                                 STS_SAVE, 0, 10 * 1000)) {
928                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
929                 spin_unlock_irq(&xhci->lock);
930                 return -ETIMEDOUT;
931         }
932         spin_unlock_irq(&xhci->lock);
933
934         /*
935          * Deleting Compliance Mode Recovery Timer because the xHCI Host
936          * is about to be suspended.
937          */
938         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
939                         (!(xhci_all_ports_seen_u0(xhci)))) {
940                 del_timer_sync(&xhci->comp_mode_recovery_timer);
941                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
942                                 __func__);
943         }
944
945         /* step 5: remove core well power */
946         /* synchronize irq when using MSI-X */
947         xhci_msix_sync_irqs(xhci);
948
949         return rc;
950 }
951
952 /*
953  * start xHC (not bus-specific)
954  *
955  * This is called when the machine transition from S3/S4 mode.
956  *
957  */
958 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
959 {
960         u32                     command, temp = 0;
961         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
962         struct usb_hcd          *secondary_hcd;
963         int                     retval = 0;
964         bool                    comp_timer_running = false;
965
966         /* Wait a bit if either of the roothubs need to settle from the
967          * transition into bus suspend.
968          */
969         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
970                         time_before(jiffies,
971                                 xhci->bus_state[1].next_statechange))
972                 msleep(100);
973
974         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
975         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
976
977         spin_lock_irq(&xhci->lock);
978         if (xhci->quirks & XHCI_RESET_ON_RESUME)
979                 hibernated = true;
980
981         if (!hibernated) {
982                 /* step 1: restore register */
983                 xhci_restore_registers(xhci);
984                 /* step 2: initialize command ring buffer */
985                 xhci_set_cmd_ring_deq(xhci);
986                 /* step 3: restore state and start state*/
987                 /* step 3: set CRS flag */
988                 command = xhci_readl(xhci, &xhci->op_regs->command);
989                 command |= CMD_CRS;
990                 xhci_writel(xhci, command, &xhci->op_regs->command);
991                 if (xhci_handshake(xhci, &xhci->op_regs->status,
992                               STS_RESTORE, 0, 10 * 1000)) {
993                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
994                         spin_unlock_irq(&xhci->lock);
995                         return -ETIMEDOUT;
996                 }
997                 temp = xhci_readl(xhci, &xhci->op_regs->status);
998         }
999
1000         /* If restore operation fails, re-initialize the HC during resume */
1001         if ((temp & STS_SRE) || hibernated) {
1002
1003                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1004                                 !(xhci_all_ports_seen_u0(xhci))) {
1005                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1006                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1007                 }
1008
1009                 /* Let the USB core know _both_ roothubs lost power. */
1010                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1011                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1012
1013                 xhci_dbg(xhci, "Stop HCD\n");
1014                 xhci_halt(xhci);
1015                 xhci_reset(xhci);
1016                 spin_unlock_irq(&xhci->lock);
1017                 xhci_cleanup_msix(xhci);
1018
1019 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1020                 /* Tell the event ring poll function not to reschedule */
1021                 xhci->zombie = 1;
1022                 del_timer_sync(&xhci->event_ring_timer);
1023 #endif
1024
1025                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1026                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1027                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1028                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1029                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1030                                 &xhci->ir_set->irq_pending);
1031                 xhci_print_ir_set(xhci, 0);
1032
1033                 xhci_dbg(xhci, "cleaning up memory\n");
1034                 xhci_mem_cleanup(xhci);
1035                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1036                             xhci_readl(xhci, &xhci->op_regs->status));
1037
1038                 /* USB core calls the PCI reinit and start functions twice:
1039                  * first with the primary HCD, and then with the secondary HCD.
1040                  * If we don't do the same, the host will never be started.
1041                  */
1042                 if (!usb_hcd_is_primary_hcd(hcd))
1043                         secondary_hcd = hcd;
1044                 else
1045                         secondary_hcd = xhci->shared_hcd;
1046
1047                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1048                 retval = xhci_init(hcd->primary_hcd);
1049                 if (retval)
1050                         return retval;
1051                 comp_timer_running = true;
1052
1053                 xhci_dbg(xhci, "Start the primary HCD\n");
1054                 retval = xhci_run(hcd->primary_hcd);
1055                 if (!retval) {
1056                         xhci_dbg(xhci, "Start the secondary HCD\n");
1057                         retval = xhci_run(secondary_hcd);
1058                 }
1059                 hcd->state = HC_STATE_SUSPENDED;
1060                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1061                 goto done;
1062         }
1063
1064         /* step 4: set Run/Stop bit */
1065         command = xhci_readl(xhci, &xhci->op_regs->command);
1066         command |= CMD_RUN;
1067         xhci_writel(xhci, command, &xhci->op_regs->command);
1068         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1069                   0, 250 * 1000);
1070
1071         /* step 5: walk topology and initialize portsc,
1072          * portpmsc and portli
1073          */
1074         /* this is done in bus_resume */
1075
1076         /* step 6: restart each of the previously
1077          * Running endpoints by ringing their doorbells
1078          */
1079
1080         spin_unlock_irq(&xhci->lock);
1081
1082  done:
1083         if (retval == 0) {
1084                 usb_hcd_resume_root_hub(hcd);
1085                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1086         }
1087
1088         /*
1089          * If system is subject to the Quirk, Compliance Mode Timer needs to
1090          * be re-initialized Always after a system resume. Ports are subject
1091          * to suffer the Compliance Mode issue again. It doesn't matter if
1092          * ports have entered previously to U0 before system's suspension.
1093          */
1094         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1095                 compliance_mode_recovery_timer_init(xhci);
1096
1097         /* Re-enable port polling. */
1098         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1099         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1100         usb_hcd_poll_rh_status(hcd);
1101
1102         return retval;
1103 }
1104 #endif  /* CONFIG_PM */
1105
1106 /*-------------------------------------------------------------------------*/
1107
1108 /**
1109  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1110  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1111  * value to right shift 1 for the bitmask.
1112  *
1113  * Index  = (epnum * 2) + direction - 1,
1114  * where direction = 0 for OUT, 1 for IN.
1115  * For control endpoints, the IN index is used (OUT index is unused), so
1116  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1117  */
1118 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1119 {
1120         unsigned int index;
1121         if (usb_endpoint_xfer_control(desc))
1122                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1123         else
1124                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1125                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1126         return index;
1127 }
1128
1129 /* Find the flag for this endpoint (for use in the control context).  Use the
1130  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1131  * bit 1, etc.
1132  */
1133 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1134 {
1135         return 1 << (xhci_get_endpoint_index(desc) + 1);
1136 }
1137
1138 /* Find the flag for this endpoint (for use in the control context).  Use the
1139  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1140  * bit 1, etc.
1141  */
1142 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1143 {
1144         return 1 << (ep_index + 1);
1145 }
1146
1147 /* Compute the last valid endpoint context index.  Basically, this is the
1148  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1149  * we find the most significant bit set in the added contexts flags.
1150  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1151  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1152  */
1153 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1154 {
1155         return fls(added_ctxs) - 1;
1156 }
1157
1158 /* Returns 1 if the arguments are OK;
1159  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1160  */
1161 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1162                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1163                 const char *func) {
1164         struct xhci_hcd *xhci;
1165         struct xhci_virt_device *virt_dev;
1166
1167         if (!hcd || (check_ep && !ep) || !udev) {
1168                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1169                                 func);
1170                 return -EINVAL;
1171         }
1172         if (!udev->parent) {
1173                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1174                                 func);
1175                 return 0;
1176         }
1177
1178         xhci = hcd_to_xhci(hcd);
1179         if (check_virt_dev) {
1180                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1181                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1182                                                 "device\n", func);
1183                         return -EINVAL;
1184                 }
1185
1186                 virt_dev = xhci->devs[udev->slot_id];
1187                 if (virt_dev->udev != udev) {
1188                         printk(KERN_DEBUG "xHCI %s called with udev and "
1189                                           "virt_dev does not match\n", func);
1190                         return -EINVAL;
1191                 }
1192         }
1193
1194         if (xhci->xhc_state & XHCI_STATE_HALTED)
1195                 return -ENODEV;
1196
1197         return 1;
1198 }
1199
1200 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1201                 struct usb_device *udev, struct xhci_command *command,
1202                 bool ctx_change, bool must_succeed);
1203
1204 /*
1205  * Full speed devices may have a max packet size greater than 8 bytes, but the
1206  * USB core doesn't know that until it reads the first 8 bytes of the
1207  * descriptor.  If the usb_device's max packet size changes after that point,
1208  * we need to issue an evaluate context command and wait on it.
1209  */
1210 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1211                 unsigned int ep_index, struct urb *urb)
1212 {
1213         struct xhci_container_ctx *in_ctx;
1214         struct xhci_container_ctx *out_ctx;
1215         struct xhci_input_control_ctx *ctrl_ctx;
1216         struct xhci_ep_ctx *ep_ctx;
1217         int max_packet_size;
1218         int hw_max_packet_size;
1219         int ret = 0;
1220
1221         out_ctx = xhci->devs[slot_id]->out_ctx;
1222         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1223         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1224         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1225         if (hw_max_packet_size != max_packet_size) {
1226                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1227                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1228                                 max_packet_size);
1229                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1230                                 hw_max_packet_size);
1231                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1232
1233                 /* Set up the modified control endpoint 0 */
1234                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1235                                 xhci->devs[slot_id]->out_ctx, ep_index);
1236                 in_ctx = xhci->devs[slot_id]->in_ctx;
1237                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1238                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1239                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1240
1241                 /* Set up the input context flags for the command */
1242                 /* FIXME: This won't work if a non-default control endpoint
1243                  * changes max packet sizes.
1244                  */
1245                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1246                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1247                 ctrl_ctx->drop_flags = 0;
1248
1249                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1250                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1251                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1252                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1253
1254                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1255                                 true, false);
1256
1257                 /* Clean up the input context for later use by bandwidth
1258                  * functions.
1259                  */
1260                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1261         }
1262         return ret;
1263 }
1264
1265 /*
1266  * non-error returns are a promise to giveback() the urb later
1267  * we drop ownership so next owner (or urb unlink) can get it
1268  */
1269 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1270 {
1271         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1272         struct xhci_td *buffer;
1273         unsigned long flags;
1274         int ret = 0;
1275         unsigned int slot_id, ep_index;
1276         struct urb_priv *urb_priv;
1277         int size, i;
1278
1279         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1280                                         true, true, __func__) <= 0)
1281                 return -EINVAL;
1282
1283         slot_id = urb->dev->slot_id;
1284         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1285
1286         if (!HCD_HW_ACCESSIBLE(hcd)) {
1287                 if (!in_interrupt())
1288                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1289                 ret = -ESHUTDOWN;
1290                 goto exit;
1291         }
1292
1293         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1294                 size = urb->number_of_packets;
1295         else
1296                 size = 1;
1297
1298         urb_priv = kzalloc(sizeof(struct urb_priv) +
1299                                   size * sizeof(struct xhci_td *), mem_flags);
1300         if (!urb_priv)
1301                 return -ENOMEM;
1302
1303         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1304         if (!buffer) {
1305                 kfree(urb_priv);
1306                 return -ENOMEM;
1307         }
1308
1309         for (i = 0; i < size; i++) {
1310                 urb_priv->td[i] = buffer;
1311                 buffer++;
1312         }
1313
1314         urb_priv->length = size;
1315         urb_priv->td_cnt = 0;
1316         urb->hcpriv = urb_priv;
1317
1318         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1319                 /* Check to see if the max packet size for the default control
1320                  * endpoint changed during FS device enumeration
1321                  */
1322                 if (urb->dev->speed == USB_SPEED_FULL) {
1323                         ret = xhci_check_maxpacket(xhci, slot_id,
1324                                         ep_index, urb);
1325                         if (ret < 0) {
1326                                 xhci_urb_free_priv(xhci, urb_priv);
1327                                 urb->hcpriv = NULL;
1328                                 return ret;
1329                         }
1330                 }
1331
1332                 /* We have a spinlock and interrupts disabled, so we must pass
1333                  * atomic context to this function, which may allocate memory.
1334                  */
1335                 spin_lock_irqsave(&xhci->lock, flags);
1336                 if (xhci->xhc_state & XHCI_STATE_DYING)
1337                         goto dying;
1338                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1339                                 slot_id, ep_index);
1340                 if (ret)
1341                         goto free_priv;
1342                 spin_unlock_irqrestore(&xhci->lock, flags);
1343         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1344                 spin_lock_irqsave(&xhci->lock, flags);
1345                 if (xhci->xhc_state & XHCI_STATE_DYING)
1346                         goto dying;
1347                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1348                                 EP_GETTING_STREAMS) {
1349                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1350                                         "is transitioning to using streams.\n");
1351                         ret = -EINVAL;
1352                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1353                                 EP_GETTING_NO_STREAMS) {
1354                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1355                                         "is transitioning to "
1356                                         "not having streams.\n");
1357                         ret = -EINVAL;
1358                 } else {
1359                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1360                                         slot_id, ep_index);
1361                 }
1362                 if (ret)
1363                         goto free_priv;
1364                 spin_unlock_irqrestore(&xhci->lock, flags);
1365         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1366                 spin_lock_irqsave(&xhci->lock, flags);
1367                 if (xhci->xhc_state & XHCI_STATE_DYING)
1368                         goto dying;
1369                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1370                                 slot_id, ep_index);
1371                 if (ret)
1372                         goto free_priv;
1373                 spin_unlock_irqrestore(&xhci->lock, flags);
1374         } else {
1375                 spin_lock_irqsave(&xhci->lock, flags);
1376                 if (xhci->xhc_state & XHCI_STATE_DYING)
1377                         goto dying;
1378                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1379                                 slot_id, ep_index);
1380                 if (ret)
1381                         goto free_priv;
1382                 spin_unlock_irqrestore(&xhci->lock, flags);
1383         }
1384 exit:
1385         return ret;
1386 dying:
1387         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1388                         "non-responsive xHCI host.\n",
1389                         urb->ep->desc.bEndpointAddress, urb);
1390         ret = -ESHUTDOWN;
1391 free_priv:
1392         xhci_urb_free_priv(xhci, urb_priv);
1393         urb->hcpriv = NULL;
1394         spin_unlock_irqrestore(&xhci->lock, flags);
1395         return ret;
1396 }
1397
1398 /* Get the right ring for the given URB.
1399  * If the endpoint supports streams, boundary check the URB's stream ID.
1400  * If the endpoint doesn't support streams, return the singular endpoint ring.
1401  */
1402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1403                 struct urb *urb)
1404 {
1405         unsigned int slot_id;
1406         unsigned int ep_index;
1407         unsigned int stream_id;
1408         struct xhci_virt_ep *ep;
1409
1410         slot_id = urb->dev->slot_id;
1411         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1412         stream_id = urb->stream_id;
1413         ep = &xhci->devs[slot_id]->eps[ep_index];
1414         /* Common case: no streams */
1415         if (!(ep->ep_state & EP_HAS_STREAMS))
1416                 return ep->ring;
1417
1418         if (stream_id == 0) {
1419                 xhci_warn(xhci,
1420                                 "WARN: Slot ID %u, ep index %u has streams, "
1421                                 "but URB has no stream ID.\n",
1422                                 slot_id, ep_index);
1423                 return NULL;
1424         }
1425
1426         if (stream_id < ep->stream_info->num_streams)
1427                 return ep->stream_info->stream_rings[stream_id];
1428
1429         xhci_warn(xhci,
1430                         "WARN: Slot ID %u, ep index %u has "
1431                         "stream IDs 1 to %u allocated, "
1432                         "but stream ID %u is requested.\n",
1433                         slot_id, ep_index,
1434                         ep->stream_info->num_streams - 1,
1435                         stream_id);
1436         return NULL;
1437 }
1438
1439 /*
1440  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1441  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1442  * should pick up where it left off in the TD, unless a Set Transfer Ring
1443  * Dequeue Pointer is issued.
1444  *
1445  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1446  * the ring.  Since the ring is a contiguous structure, they can't be physically
1447  * removed.  Instead, there are two options:
1448  *
1449  *  1) If the HC is in the middle of processing the URB to be canceled, we
1450  *     simply move the ring's dequeue pointer past those TRBs using the Set
1451  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1452  *     when drivers timeout on the last submitted URB and attempt to cancel.
1453  *
1454  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1455  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1456  *     HC will need to invalidate the any TRBs it has cached after the stop
1457  *     endpoint command, as noted in the xHCI 0.95 errata.
1458  *
1459  *  3) The TD may have completed by the time the Stop Endpoint Command
1460  *     completes, so software needs to handle that case too.
1461  *
1462  * This function should protect against the TD enqueueing code ringing the
1463  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1464  * It also needs to account for multiple cancellations on happening at the same
1465  * time for the same endpoint.
1466  *
1467  * Note that this function can be called in any context, or so says
1468  * usb_hcd_unlink_urb()
1469  */
1470 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1471 {
1472         unsigned long flags;
1473         int ret, i;
1474         u32 temp;
1475         struct xhci_hcd *xhci;
1476         struct urb_priv *urb_priv;
1477         struct xhci_td *td;
1478         unsigned int ep_index;
1479         struct xhci_ring *ep_ring;
1480         struct xhci_virt_ep *ep;
1481
1482         xhci = hcd_to_xhci(hcd);
1483         spin_lock_irqsave(&xhci->lock, flags);
1484         /* Make sure the URB hasn't completed or been unlinked already */
1485         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1486         if (ret || !urb->hcpriv)
1487                 goto done;
1488         temp = xhci_readl(xhci, &xhci->op_regs->status);
1489         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1490                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1491                 urb_priv = urb->hcpriv;
1492                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1493                         td = urb_priv->td[i];
1494                         if (!list_empty(&td->td_list))
1495                                 list_del_init(&td->td_list);
1496                         if (!list_empty(&td->cancelled_td_list))
1497                                 list_del_init(&td->cancelled_td_list);
1498                 }
1499
1500                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1501                 spin_unlock_irqrestore(&xhci->lock, flags);
1502                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1503                 xhci_urb_free_priv(xhci, urb_priv);
1504                 return ret;
1505         }
1506         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1507                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1508                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1509                                 "non-responsive xHCI host.\n",
1510                                 urb->ep->desc.bEndpointAddress, urb);
1511                 /* Let the stop endpoint command watchdog timer (which set this
1512                  * state) finish cleaning up the endpoint TD lists.  We must
1513                  * have caught it in the middle of dropping a lock and giving
1514                  * back an URB.
1515                  */
1516                 goto done;
1517         }
1518
1519         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1520         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1521         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1522         if (!ep_ring) {
1523                 ret = -EINVAL;
1524                 goto done;
1525         }
1526
1527         urb_priv = urb->hcpriv;
1528         i = urb_priv->td_cnt;
1529         if (i < urb_priv->length)
1530                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1531                                 "starting at offset 0x%llx\n",
1532                                 urb, urb->dev->devpath,
1533                                 urb->ep->desc.bEndpointAddress,
1534                                 (unsigned long long) xhci_trb_virt_to_dma(
1535                                         urb_priv->td[i]->start_seg,
1536                                         urb_priv->td[i]->first_trb));
1537
1538         for (; i < urb_priv->length; i++) {
1539                 td = urb_priv->td[i];
1540                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1541         }
1542
1543         /* Queue a stop endpoint command, but only if this is
1544          * the first cancellation to be handled.
1545          */
1546         if (!(ep->ep_state & EP_HALT_PENDING)) {
1547                 ep->ep_state |= EP_HALT_PENDING;
1548                 ep->stop_cmds_pending++;
1549                 ep->stop_cmd_timer.expires = jiffies +
1550                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1551                 add_timer(&ep->stop_cmd_timer);
1552                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1553                 xhci_ring_cmd_db(xhci);
1554         }
1555 done:
1556         spin_unlock_irqrestore(&xhci->lock, flags);
1557         return ret;
1558 }
1559
1560 /* Drop an endpoint from a new bandwidth configuration for this device.
1561  * Only one call to this function is allowed per endpoint before
1562  * check_bandwidth() or reset_bandwidth() must be called.
1563  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1564  * add the endpoint to the schedule with possibly new parameters denoted by a
1565  * different endpoint descriptor in usb_host_endpoint.
1566  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1567  * not allowed.
1568  *
1569  * The USB core will not allow URBs to be queued to an endpoint that is being
1570  * disabled, so there's no need for mutual exclusion to protect
1571  * the xhci->devs[slot_id] structure.
1572  */
1573 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1574                 struct usb_host_endpoint *ep)
1575 {
1576         struct xhci_hcd *xhci;
1577         struct xhci_container_ctx *in_ctx, *out_ctx;
1578         struct xhci_input_control_ctx *ctrl_ctx;
1579         struct xhci_slot_ctx *slot_ctx;
1580         unsigned int last_ctx;
1581         unsigned int ep_index;
1582         struct xhci_ep_ctx *ep_ctx;
1583         u32 drop_flag;
1584         u32 new_add_flags, new_drop_flags, new_slot_info;
1585         int ret;
1586
1587         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1588         if (ret <= 0)
1589                 return ret;
1590         xhci = hcd_to_xhci(hcd);
1591         if (xhci->xhc_state & XHCI_STATE_DYING)
1592                 return -ENODEV;
1593
1594         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1595         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1596         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1597                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1598                                 __func__, drop_flag);
1599                 return 0;
1600         }
1601
1602         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1603         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1604         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1605         ep_index = xhci_get_endpoint_index(&ep->desc);
1606         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1607         /* If the HC already knows the endpoint is disabled,
1608          * or the HCD has noted it is disabled, ignore this request
1609          */
1610         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1611              cpu_to_le32(EP_STATE_DISABLED)) ||
1612             le32_to_cpu(ctrl_ctx->drop_flags) &
1613             xhci_get_endpoint_flag(&ep->desc)) {
1614                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1615                                 __func__, ep);
1616                 return 0;
1617         }
1618
1619         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1620         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1621
1622         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1623         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1624
1625         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1626         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1627         /* Update the last valid endpoint context, if we deleted the last one */
1628         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1629             LAST_CTX(last_ctx)) {
1630                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1631                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1632         }
1633         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1634
1635         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1636
1637         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1638                         (unsigned int) ep->desc.bEndpointAddress,
1639                         udev->slot_id,
1640                         (unsigned int) new_drop_flags,
1641                         (unsigned int) new_add_flags,
1642                         (unsigned int) new_slot_info);
1643         return 0;
1644 }
1645
1646 /* Add an endpoint to a new possible bandwidth configuration for this device.
1647  * Only one call to this function is allowed per endpoint before
1648  * check_bandwidth() or reset_bandwidth() must be called.
1649  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1650  * add the endpoint to the schedule with possibly new parameters denoted by a
1651  * different endpoint descriptor in usb_host_endpoint.
1652  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1653  * not allowed.
1654  *
1655  * The USB core will not allow URBs to be queued to an endpoint until the
1656  * configuration or alt setting is installed in the device, so there's no need
1657  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1658  */
1659 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1660                 struct usb_host_endpoint *ep)
1661 {
1662         struct xhci_hcd *xhci;
1663         struct xhci_container_ctx *in_ctx, *out_ctx;
1664         unsigned int ep_index;
1665         struct xhci_slot_ctx *slot_ctx;
1666         struct xhci_input_control_ctx *ctrl_ctx;
1667         u32 added_ctxs;
1668         unsigned int last_ctx;
1669         u32 new_add_flags, new_drop_flags, new_slot_info;
1670         struct xhci_virt_device *virt_dev;
1671         int ret = 0;
1672
1673         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1674         if (ret <= 0) {
1675                 /* So we won't queue a reset ep command for a root hub */
1676                 ep->hcpriv = NULL;
1677                 return ret;
1678         }
1679         xhci = hcd_to_xhci(hcd);
1680         if (xhci->xhc_state & XHCI_STATE_DYING)
1681                 return -ENODEV;
1682
1683         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1684         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1685         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1686                 /* FIXME when we have to issue an evaluate endpoint command to
1687                  * deal with ep0 max packet size changing once we get the
1688                  * descriptors
1689                  */
1690                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1691                                 __func__, added_ctxs);
1692                 return 0;
1693         }
1694
1695         virt_dev = xhci->devs[udev->slot_id];
1696         in_ctx = virt_dev->in_ctx;
1697         out_ctx = virt_dev->out_ctx;
1698         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1699         ep_index = xhci_get_endpoint_index(&ep->desc);
1700
1701         /* If this endpoint is already in use, and the upper layers are trying
1702          * to add it again without dropping it, reject the addition.
1703          */
1704         if (virt_dev->eps[ep_index].ring &&
1705                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1706                                 xhci_get_endpoint_flag(&ep->desc))) {
1707                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1708                                 "without dropping it.\n",
1709                                 (unsigned int) ep->desc.bEndpointAddress);
1710                 return -EINVAL;
1711         }
1712
1713         /* If the HCD has already noted the endpoint is enabled,
1714          * ignore this request.
1715          */
1716         if (le32_to_cpu(ctrl_ctx->add_flags) &
1717             xhci_get_endpoint_flag(&ep->desc)) {
1718                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1719                                 __func__, ep);
1720                 return 0;
1721         }
1722
1723         /*
1724          * Configuration and alternate setting changes must be done in
1725          * process context, not interrupt context (or so documenation
1726          * for usb_set_interface() and usb_set_configuration() claim).
1727          */
1728         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1729                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1730                                 __func__, ep->desc.bEndpointAddress);
1731                 return -ENOMEM;
1732         }
1733
1734         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1735         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1736
1737         /* If xhci_endpoint_disable() was called for this endpoint, but the
1738          * xHC hasn't been notified yet through the check_bandwidth() call,
1739          * this re-adds a new state for the endpoint from the new endpoint
1740          * descriptors.  We must drop and re-add this endpoint, so we leave the
1741          * drop flags alone.
1742          */
1743         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1744
1745         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1746         /* Update the last valid endpoint context, if we just added one past */
1747         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1748             LAST_CTX(last_ctx)) {
1749                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1750                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1751         }
1752         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1753
1754         /* Store the usb_device pointer for later use */
1755         ep->hcpriv = udev;
1756
1757         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1758                         (unsigned int) ep->desc.bEndpointAddress,
1759                         udev->slot_id,
1760                         (unsigned int) new_drop_flags,
1761                         (unsigned int) new_add_flags,
1762                         (unsigned int) new_slot_info);
1763         return 0;
1764 }
1765
1766 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1767 {
1768         struct xhci_input_control_ctx *ctrl_ctx;
1769         struct xhci_ep_ctx *ep_ctx;
1770         struct xhci_slot_ctx *slot_ctx;
1771         int i;
1772
1773         /* When a device's add flag and drop flag are zero, any subsequent
1774          * configure endpoint command will leave that endpoint's state
1775          * untouched.  Make sure we don't leave any old state in the input
1776          * endpoint contexts.
1777          */
1778         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1779         ctrl_ctx->drop_flags = 0;
1780         ctrl_ctx->add_flags = 0;
1781         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1782         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1783         /* Endpoint 0 is always valid */
1784         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1785         for (i = 1; i < 31; ++i) {
1786                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1787                 ep_ctx->ep_info = 0;
1788                 ep_ctx->ep_info2 = 0;
1789                 ep_ctx->deq = 0;
1790                 ep_ctx->tx_info = 0;
1791         }
1792 }
1793
1794 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1795                 struct usb_device *udev, u32 *cmd_status)
1796 {
1797         int ret;
1798
1799         switch (*cmd_status) {
1800         case COMP_ENOMEM:
1801                 dev_warn(&udev->dev, "Not enough host controller resources "
1802                                 "for new device state.\n");
1803                 ret = -ENOMEM;
1804                 /* FIXME: can we allocate more resources for the HC? */
1805                 break;
1806         case COMP_BW_ERR:
1807         case COMP_2ND_BW_ERR:
1808                 dev_warn(&udev->dev, "Not enough bandwidth "
1809                                 "for new device state.\n");
1810                 ret = -ENOSPC;
1811                 /* FIXME: can we go back to the old state? */
1812                 break;
1813         case COMP_TRB_ERR:
1814                 /* the HCD set up something wrong */
1815                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1816                                 "add flag = 1, "
1817                                 "and endpoint is not disabled.\n");
1818                 ret = -EINVAL;
1819                 break;
1820         case COMP_DEV_ERR:
1821                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1822                                 "configure command.\n");
1823                 ret = -ENODEV;
1824                 break;
1825         case COMP_SUCCESS:
1826                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1827                 ret = 0;
1828                 break;
1829         default:
1830                 xhci_err(xhci, "ERROR: unexpected command completion "
1831                                 "code 0x%x.\n", *cmd_status);
1832                 ret = -EINVAL;
1833                 break;
1834         }
1835         return ret;
1836 }
1837
1838 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1839                 struct usb_device *udev, u32 *cmd_status)
1840 {
1841         int ret;
1842         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1843
1844         switch (*cmd_status) {
1845         case COMP_EINVAL:
1846                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1847                                 "context command.\n");
1848                 ret = -EINVAL;
1849                 break;
1850         case COMP_EBADSLT:
1851                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1852                                 "evaluate context command.\n");
1853                 ret = -EINVAL;
1854                 break;
1855         case COMP_CTX_STATE:
1856                 dev_warn(&udev->dev, "WARN: invalid context state for "
1857                                 "evaluate context command.\n");
1858                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1859                 ret = -EINVAL;
1860                 break;
1861         case COMP_DEV_ERR:
1862                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1863                                 "context command.\n");
1864                 ret = -ENODEV;
1865                 break;
1866         case COMP_MEL_ERR:
1867                 /* Max Exit Latency too large error */
1868                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1869                 ret = -EINVAL;
1870                 break;
1871         case COMP_SUCCESS:
1872                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1873                 ret = 0;
1874                 break;
1875         default:
1876                 xhci_err(xhci, "ERROR: unexpected command completion "
1877                                 "code 0x%x.\n", *cmd_status);
1878                 ret = -EINVAL;
1879                 break;
1880         }
1881         return ret;
1882 }
1883
1884 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1885                 struct xhci_container_ctx *in_ctx)
1886 {
1887         struct xhci_input_control_ctx *ctrl_ctx;
1888         u32 valid_add_flags;
1889         u32 valid_drop_flags;
1890
1891         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1892         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1893          * (bit 1).  The default control endpoint is added during the Address
1894          * Device command and is never removed until the slot is disabled.
1895          */
1896         valid_add_flags = ctrl_ctx->add_flags >> 2;
1897         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1898
1899         /* Use hweight32 to count the number of ones in the add flags, or
1900          * number of endpoints added.  Don't count endpoints that are changed
1901          * (both added and dropped).
1902          */
1903         return hweight32(valid_add_flags) -
1904                 hweight32(valid_add_flags & valid_drop_flags);
1905 }
1906
1907 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1908                 struct xhci_container_ctx *in_ctx)
1909 {
1910         struct xhci_input_control_ctx *ctrl_ctx;
1911         u32 valid_add_flags;
1912         u32 valid_drop_flags;
1913
1914         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1915         valid_add_flags = ctrl_ctx->add_flags >> 2;
1916         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1917
1918         return hweight32(valid_drop_flags) -
1919                 hweight32(valid_add_flags & valid_drop_flags);
1920 }
1921
1922 /*
1923  * We need to reserve the new number of endpoints before the configure endpoint
1924  * command completes.  We can't subtract the dropped endpoints from the number
1925  * of active endpoints until the command completes because we can oversubscribe
1926  * the host in this case:
1927  *
1928  *  - the first configure endpoint command drops more endpoints than it adds
1929  *  - a second configure endpoint command that adds more endpoints is queued
1930  *  - the first configure endpoint command fails, so the config is unchanged
1931  *  - the second command may succeed, even though there isn't enough resources
1932  *
1933  * Must be called with xhci->lock held.
1934  */
1935 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1936                 struct xhci_container_ctx *in_ctx)
1937 {
1938         u32 added_eps;
1939
1940         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1941         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1942                 xhci_dbg(xhci, "Not enough ep ctxs: "
1943                                 "%u active, need to add %u, limit is %u.\n",
1944                                 xhci->num_active_eps, added_eps,
1945                                 xhci->limit_active_eps);
1946                 return -ENOMEM;
1947         }
1948         xhci->num_active_eps += added_eps;
1949         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1950                         xhci->num_active_eps);
1951         return 0;
1952 }
1953
1954 /*
1955  * The configure endpoint was failed by the xHC for some other reason, so we
1956  * need to revert the resources that failed configuration would have used.
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1961                 struct xhci_container_ctx *in_ctx)
1962 {
1963         u32 num_failed_eps;
1964
1965         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1966         xhci->num_active_eps -= num_failed_eps;
1967         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1968                         num_failed_eps,
1969                         xhci->num_active_eps);
1970 }
1971
1972 /*
1973  * Now that the command has completed, clean up the active endpoint count by
1974  * subtracting out the endpoints that were dropped (but not changed).
1975  *
1976  * Must be called with xhci->lock held.
1977  */
1978 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1979                 struct xhci_container_ctx *in_ctx)
1980 {
1981         u32 num_dropped_eps;
1982
1983         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1984         xhci->num_active_eps -= num_dropped_eps;
1985         if (num_dropped_eps)
1986                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1987                                 num_dropped_eps,
1988                                 xhci->num_active_eps);
1989 }
1990
1991 static unsigned int xhci_get_block_size(struct usb_device *udev)
1992 {
1993         switch (udev->speed) {
1994         case USB_SPEED_LOW:
1995         case USB_SPEED_FULL:
1996                 return FS_BLOCK;
1997         case USB_SPEED_HIGH:
1998                 return HS_BLOCK;
1999         case USB_SPEED_SUPER:
2000                 return SS_BLOCK;
2001         case USB_SPEED_UNKNOWN:
2002         case USB_SPEED_WIRELESS:
2003         default:
2004                 /* Should never happen */
2005                 return 1;
2006         }
2007 }
2008
2009 static unsigned int
2010 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2011 {
2012         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2013                 return LS_OVERHEAD;
2014         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2015                 return FS_OVERHEAD;
2016         return HS_OVERHEAD;
2017 }
2018
2019 /* If we are changing a LS/FS device under a HS hub,
2020  * make sure (if we are activating a new TT) that the HS bus has enough
2021  * bandwidth for this new TT.
2022  */
2023 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2024                 struct xhci_virt_device *virt_dev,
2025                 int old_active_eps)
2026 {
2027         struct xhci_interval_bw_table *bw_table;
2028         struct xhci_tt_bw_info *tt_info;
2029
2030         /* Find the bandwidth table for the root port this TT is attached to. */
2031         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2032         tt_info = virt_dev->tt_info;
2033         /* If this TT already had active endpoints, the bandwidth for this TT
2034          * has already been added.  Removing all periodic endpoints (and thus
2035          * making the TT enactive) will only decrease the bandwidth used.
2036          */
2037         if (old_active_eps)
2038                 return 0;
2039         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2040                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2041                         return -ENOMEM;
2042                 return 0;
2043         }
2044         /* Not sure why we would have no new active endpoints...
2045          *
2046          * Maybe because of an Evaluate Context change for a hub update or a
2047          * control endpoint 0 max packet size change?
2048          * FIXME: skip the bandwidth calculation in that case.
2049          */
2050         return 0;
2051 }
2052
2053 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2054                 struct xhci_virt_device *virt_dev)
2055 {
2056         unsigned int bw_reserved;
2057
2058         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2059         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2060                 return -ENOMEM;
2061
2062         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2063         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2064                 return -ENOMEM;
2065
2066         return 0;
2067 }
2068
2069 /*
2070  * This algorithm is a very conservative estimate of the worst-case scheduling
2071  * scenario for any one interval.  The hardware dynamically schedules the
2072  * packets, so we can't tell which microframe could be the limiting factor in
2073  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2074  *
2075  * Obviously, we can't solve an NP complete problem to find the minimum worst
2076  * case scenario.  Instead, we come up with an estimate that is no less than
2077  * the worst case bandwidth used for any one microframe, but may be an
2078  * over-estimate.
2079  *
2080  * We walk the requirements for each endpoint by interval, starting with the
2081  * smallest interval, and place packets in the schedule where there is only one
2082  * possible way to schedule packets for that interval.  In order to simplify
2083  * this algorithm, we record the largest max packet size for each interval, and
2084  * assume all packets will be that size.
2085  *
2086  * For interval 0, we obviously must schedule all packets for each interval.
2087  * The bandwidth for interval 0 is just the amount of data to be transmitted
2088  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2089  * the number of packets).
2090  *
2091  * For interval 1, we have two possible microframes to schedule those packets
2092  * in.  For this algorithm, if we can schedule the same number of packets for
2093  * each possible scheduling opportunity (each microframe), we will do so.  The
2094  * remaining number of packets will be saved to be transmitted in the gaps in
2095  * the next interval's scheduling sequence.
2096  *
2097  * As we move those remaining packets to be scheduled with interval 2 packets,
2098  * we have to double the number of remaining packets to transmit.  This is
2099  * because the intervals are actually powers of 2, and we would be transmitting
2100  * the previous interval's packets twice in this interval.  We also have to be
2101  * sure that when we look at the largest max packet size for this interval, we
2102  * also look at the largest max packet size for the remaining packets and take
2103  * the greater of the two.
2104  *
2105  * The algorithm continues to evenly distribute packets in each scheduling
2106  * opportunity, and push the remaining packets out, until we get to the last
2107  * interval.  Then those packets and their associated overhead are just added
2108  * to the bandwidth used.
2109  */
2110 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2111                 struct xhci_virt_device *virt_dev,
2112                 int old_active_eps)
2113 {
2114         unsigned int bw_reserved;
2115         unsigned int max_bandwidth;
2116         unsigned int bw_used;
2117         unsigned int block_size;
2118         struct xhci_interval_bw_table *bw_table;
2119         unsigned int packet_size = 0;
2120         unsigned int overhead = 0;
2121         unsigned int packets_transmitted = 0;
2122         unsigned int packets_remaining = 0;
2123         unsigned int i;
2124
2125         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2126                 return xhci_check_ss_bw(xhci, virt_dev);
2127
2128         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2129                 max_bandwidth = HS_BW_LIMIT;
2130                 /* Convert percent of bus BW reserved to blocks reserved */
2131                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2132         } else {
2133                 max_bandwidth = FS_BW_LIMIT;
2134                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2135         }
2136
2137         bw_table = virt_dev->bw_table;
2138         /* We need to translate the max packet size and max ESIT payloads into
2139          * the units the hardware uses.
2140          */
2141         block_size = xhci_get_block_size(virt_dev->udev);
2142
2143         /* If we are manipulating a LS/FS device under a HS hub, double check
2144          * that the HS bus has enough bandwidth if we are activing a new TT.
2145          */
2146         if (virt_dev->tt_info) {
2147                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2148                                 virt_dev->real_port);
2149                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2150                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2151                                         "newly activated TT.\n");
2152                         return -ENOMEM;
2153                 }
2154                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2155                                 virt_dev->tt_info->slot_id,
2156                                 virt_dev->tt_info->ttport);
2157         } else {
2158                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2159                                 virt_dev->real_port);
2160         }
2161
2162         /* Add in how much bandwidth will be used for interval zero, or the
2163          * rounded max ESIT payload + number of packets * largest overhead.
2164          */
2165         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2166                 bw_table->interval_bw[0].num_packets *
2167                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2168
2169         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2170                 unsigned int bw_added;
2171                 unsigned int largest_mps;
2172                 unsigned int interval_overhead;
2173
2174                 /*
2175                  * How many packets could we transmit in this interval?
2176                  * If packets didn't fit in the previous interval, we will need
2177                  * to transmit that many packets twice within this interval.
2178                  */
2179                 packets_remaining = 2 * packets_remaining +
2180                         bw_table->interval_bw[i].num_packets;
2181
2182                 /* Find the largest max packet size of this or the previous
2183                  * interval.
2184                  */
2185                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2186                         largest_mps = 0;
2187                 else {
2188                         struct xhci_virt_ep *virt_ep;
2189                         struct list_head *ep_entry;
2190
2191                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2192                         virt_ep = list_entry(ep_entry,
2193                                         struct xhci_virt_ep, bw_endpoint_list);
2194                         /* Convert to blocks, rounding up */
2195                         largest_mps = DIV_ROUND_UP(
2196                                         virt_ep->bw_info.max_packet_size,
2197                                         block_size);
2198                 }
2199                 if (largest_mps > packet_size)
2200                         packet_size = largest_mps;
2201
2202                 /* Use the larger overhead of this or the previous interval. */
2203                 interval_overhead = xhci_get_largest_overhead(
2204                                 &bw_table->interval_bw[i]);
2205                 if (interval_overhead > overhead)
2206                         overhead = interval_overhead;
2207
2208                 /* How many packets can we evenly distribute across
2209                  * (1 << (i + 1)) possible scheduling opportunities?
2210                  */
2211                 packets_transmitted = packets_remaining >> (i + 1);
2212
2213                 /* Add in the bandwidth used for those scheduled packets */
2214                 bw_added = packets_transmitted * (overhead + packet_size);
2215
2216                 /* How many packets do we have remaining to transmit? */
2217                 packets_remaining = packets_remaining % (1 << (i + 1));
2218
2219                 /* What largest max packet size should those packets have? */
2220                 /* If we've transmitted all packets, don't carry over the
2221                  * largest packet size.
2222                  */
2223                 if (packets_remaining == 0) {
2224                         packet_size = 0;
2225                         overhead = 0;
2226                 } else if (packets_transmitted > 0) {
2227                         /* Otherwise if we do have remaining packets, and we've
2228                          * scheduled some packets in this interval, take the
2229                          * largest max packet size from endpoints with this
2230                          * interval.
2231                          */
2232                         packet_size = largest_mps;
2233                         overhead = interval_overhead;
2234                 }
2235                 /* Otherwise carry over packet_size and overhead from the last
2236                  * time we had a remainder.
2237                  */
2238                 bw_used += bw_added;
2239                 if (bw_used > max_bandwidth) {
2240                         xhci_warn(xhci, "Not enough bandwidth. "
2241                                         "Proposed: %u, Max: %u\n",
2242                                 bw_used, max_bandwidth);
2243                         return -ENOMEM;
2244                 }
2245         }
2246         /*
2247          * Ok, we know we have some packets left over after even-handedly
2248          * scheduling interval 15.  We don't know which microframes they will
2249          * fit into, so we over-schedule and say they will be scheduled every
2250          * microframe.
2251          */
2252         if (packets_remaining > 0)
2253                 bw_used += overhead + packet_size;
2254
2255         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2256                 unsigned int port_index = virt_dev->real_port - 1;
2257
2258                 /* OK, we're manipulating a HS device attached to a
2259                  * root port bandwidth domain.  Include the number of active TTs
2260                  * in the bandwidth used.
2261                  */
2262                 bw_used += TT_HS_OVERHEAD *
2263                         xhci->rh_bw[port_index].num_active_tts;
2264         }
2265
2266         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2267                 "Available: %u " "percent\n",
2268                 bw_used, max_bandwidth, bw_reserved,
2269                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2270                 max_bandwidth);
2271
2272         bw_used += bw_reserved;
2273         if (bw_used > max_bandwidth) {
2274                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2275                                 bw_used, max_bandwidth);
2276                 return -ENOMEM;
2277         }
2278
2279         bw_table->bw_used = bw_used;
2280         return 0;
2281 }
2282
2283 static bool xhci_is_async_ep(unsigned int ep_type)
2284 {
2285         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2286                                         ep_type != ISOC_IN_EP &&
2287                                         ep_type != INT_IN_EP);
2288 }
2289
2290 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2291 {
2292         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2293 }
2294
2295 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2296 {
2297         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2298
2299         if (ep_bw->ep_interval == 0)
2300                 return SS_OVERHEAD_BURST +
2301                         (ep_bw->mult * ep_bw->num_packets *
2302                                         (SS_OVERHEAD + mps));
2303         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2304                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2305                                 1 << ep_bw->ep_interval);
2306
2307 }
2308
2309 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2310                 struct xhci_bw_info *ep_bw,
2311                 struct xhci_interval_bw_table *bw_table,
2312                 struct usb_device *udev,
2313                 struct xhci_virt_ep *virt_ep,
2314                 struct xhci_tt_bw_info *tt_info)
2315 {
2316         struct xhci_interval_bw *interval_bw;
2317         int normalized_interval;
2318
2319         if (xhci_is_async_ep(ep_bw->type))
2320                 return;
2321
2322         if (udev->speed == USB_SPEED_SUPER) {
2323                 if (xhci_is_sync_in_ep(ep_bw->type))
2324                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2325                                 xhci_get_ss_bw_consumed(ep_bw);
2326                 else
2327                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2328                                 xhci_get_ss_bw_consumed(ep_bw);
2329                 return;
2330         }
2331
2332         /* SuperSpeed endpoints never get added to intervals in the table, so
2333          * this check is only valid for HS/FS/LS devices.
2334          */
2335         if (list_empty(&virt_ep->bw_endpoint_list))
2336                 return;
2337         /* For LS/FS devices, we need to translate the interval expressed in
2338          * microframes to frames.
2339          */
2340         if (udev->speed == USB_SPEED_HIGH)
2341                 normalized_interval = ep_bw->ep_interval;
2342         else
2343                 normalized_interval = ep_bw->ep_interval - 3;
2344
2345         if (normalized_interval == 0)
2346                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2347         interval_bw = &bw_table->interval_bw[normalized_interval];
2348         interval_bw->num_packets -= ep_bw->num_packets;
2349         switch (udev->speed) {
2350         case USB_SPEED_LOW:
2351                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2352                 break;
2353         case USB_SPEED_FULL:
2354                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2355                 break;
2356         case USB_SPEED_HIGH:
2357                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2358                 break;
2359         case USB_SPEED_SUPER:
2360         case USB_SPEED_UNKNOWN:
2361         case USB_SPEED_WIRELESS:
2362                 /* Should never happen because only LS/FS/HS endpoints will get
2363                  * added to the endpoint list.
2364                  */
2365                 return;
2366         }
2367         if (tt_info)
2368                 tt_info->active_eps -= 1;
2369         list_del_init(&virt_ep->bw_endpoint_list);
2370 }
2371
2372 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2373                 struct xhci_bw_info *ep_bw,
2374                 struct xhci_interval_bw_table *bw_table,
2375                 struct usb_device *udev,
2376                 struct xhci_virt_ep *virt_ep,
2377                 struct xhci_tt_bw_info *tt_info)
2378 {
2379         struct xhci_interval_bw *interval_bw;
2380         struct xhci_virt_ep *smaller_ep;
2381         int normalized_interval;
2382
2383         if (xhci_is_async_ep(ep_bw->type))
2384                 return;
2385
2386         if (udev->speed == USB_SPEED_SUPER) {
2387                 if (xhci_is_sync_in_ep(ep_bw->type))
2388                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2389                                 xhci_get_ss_bw_consumed(ep_bw);
2390                 else
2391                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2392                                 xhci_get_ss_bw_consumed(ep_bw);
2393                 return;
2394         }
2395
2396         /* For LS/FS devices, we need to translate the interval expressed in
2397          * microframes to frames.
2398          */
2399         if (udev->speed == USB_SPEED_HIGH)
2400                 normalized_interval = ep_bw->ep_interval;
2401         else
2402                 normalized_interval = ep_bw->ep_interval - 3;
2403
2404         if (normalized_interval == 0)
2405                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2406         interval_bw = &bw_table->interval_bw[normalized_interval];
2407         interval_bw->num_packets += ep_bw->num_packets;
2408         switch (udev->speed) {
2409         case USB_SPEED_LOW:
2410                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2411                 break;
2412         case USB_SPEED_FULL:
2413                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2414                 break;
2415         case USB_SPEED_HIGH:
2416                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2417                 break;
2418         case USB_SPEED_SUPER:
2419         case USB_SPEED_UNKNOWN:
2420         case USB_SPEED_WIRELESS:
2421                 /* Should never happen because only LS/FS/HS endpoints will get
2422                  * added to the endpoint list.
2423                  */
2424                 return;
2425         }
2426
2427         if (tt_info)
2428                 tt_info->active_eps += 1;
2429         /* Insert the endpoint into the list, largest max packet size first. */
2430         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2431                         bw_endpoint_list) {
2432                 if (ep_bw->max_packet_size >=
2433                                 smaller_ep->bw_info.max_packet_size) {
2434                         /* Add the new ep before the smaller endpoint */
2435                         list_add_tail(&virt_ep->bw_endpoint_list,
2436                                         &smaller_ep->bw_endpoint_list);
2437                         return;
2438                 }
2439         }
2440         /* Add the new endpoint at the end of the list. */
2441         list_add_tail(&virt_ep->bw_endpoint_list,
2442                         &interval_bw->endpoints);
2443 }
2444
2445 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2446                 struct xhci_virt_device *virt_dev,
2447                 int old_active_eps)
2448 {
2449         struct xhci_root_port_bw_info *rh_bw_info;
2450         if (!virt_dev->tt_info)
2451                 return;
2452
2453         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2454         if (old_active_eps == 0 &&
2455                                 virt_dev->tt_info->active_eps != 0) {
2456                 rh_bw_info->num_active_tts += 1;
2457                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2458         } else if (old_active_eps != 0 &&
2459                                 virt_dev->tt_info->active_eps == 0) {
2460                 rh_bw_info->num_active_tts -= 1;
2461                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2462         }
2463 }
2464
2465 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2466                 struct xhci_virt_device *virt_dev,
2467                 struct xhci_container_ctx *in_ctx)
2468 {
2469         struct xhci_bw_info ep_bw_info[31];
2470         int i;
2471         struct xhci_input_control_ctx *ctrl_ctx;
2472         int old_active_eps = 0;
2473
2474         if (virt_dev->tt_info)
2475                 old_active_eps = virt_dev->tt_info->active_eps;
2476
2477         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2478
2479         for (i = 0; i < 31; i++) {
2480                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2481                         continue;
2482
2483                 /* Make a copy of the BW info in case we need to revert this */
2484                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2485                                 sizeof(ep_bw_info[i]));
2486                 /* Drop the endpoint from the interval table if the endpoint is
2487                  * being dropped or changed.
2488                  */
2489                 if (EP_IS_DROPPED(ctrl_ctx, i))
2490                         xhci_drop_ep_from_interval_table(xhci,
2491                                         &virt_dev->eps[i].bw_info,
2492                                         virt_dev->bw_table,
2493                                         virt_dev->udev,
2494                                         &virt_dev->eps[i],
2495                                         virt_dev->tt_info);
2496         }
2497         /* Overwrite the information stored in the endpoints' bw_info */
2498         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2499         for (i = 0; i < 31; i++) {
2500                 /* Add any changed or added endpoints to the interval table */
2501                 if (EP_IS_ADDED(ctrl_ctx, i))
2502                         xhci_add_ep_to_interval_table(xhci,
2503                                         &virt_dev->eps[i].bw_info,
2504                                         virt_dev->bw_table,
2505                                         virt_dev->udev,
2506                                         &virt_dev->eps[i],
2507                                         virt_dev->tt_info);
2508         }
2509
2510         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2511                 /* Ok, this fits in the bandwidth we have.
2512                  * Update the number of active TTs.
2513                  */
2514                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2515                 return 0;
2516         }
2517
2518         /* We don't have enough bandwidth for this, revert the stored info. */
2519         for (i = 0; i < 31; i++) {
2520                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2521                         continue;
2522
2523                 /* Drop the new copies of any added or changed endpoints from
2524                  * the interval table.
2525                  */
2526                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2527                         xhci_drop_ep_from_interval_table(xhci,
2528                                         &virt_dev->eps[i].bw_info,
2529                                         virt_dev->bw_table,
2530                                         virt_dev->udev,
2531                                         &virt_dev->eps[i],
2532                                         virt_dev->tt_info);
2533                 }
2534                 /* Revert the endpoint back to its old information */
2535                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2536                                 sizeof(ep_bw_info[i]));
2537                 /* Add any changed or dropped endpoints back into the table */
2538                 if (EP_IS_DROPPED(ctrl_ctx, i))
2539                         xhci_add_ep_to_interval_table(xhci,
2540                                         &virt_dev->eps[i].bw_info,
2541                                         virt_dev->bw_table,
2542                                         virt_dev->udev,
2543                                         &virt_dev->eps[i],
2544                                         virt_dev->tt_info);
2545         }
2546         return -ENOMEM;
2547 }
2548
2549
2550 /* Issue a configure endpoint command or evaluate context command
2551  * and wait for it to finish.
2552  */
2553 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2554                 struct usb_device *udev,
2555                 struct xhci_command *command,
2556                 bool ctx_change, bool must_succeed)
2557 {
2558         int ret;
2559         int timeleft;
2560         unsigned long flags;
2561         struct xhci_container_ctx *in_ctx;
2562         struct completion *cmd_completion;
2563         u32 *cmd_status;
2564         struct xhci_virt_device *virt_dev;
2565         union xhci_trb *cmd_trb;
2566
2567         spin_lock_irqsave(&xhci->lock, flags);
2568         virt_dev = xhci->devs[udev->slot_id];
2569
2570         if (command)
2571                 in_ctx = command->in_ctx;
2572         else
2573                 in_ctx = virt_dev->in_ctx;
2574
2575         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2576                         xhci_reserve_host_resources(xhci, in_ctx)) {
2577                 spin_unlock_irqrestore(&xhci->lock, flags);
2578                 xhci_warn(xhci, "Not enough host resources, "
2579                                 "active endpoint contexts = %u\n",
2580                                 xhci->num_active_eps);
2581                 return -ENOMEM;
2582         }
2583         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2584                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2585                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2586                         xhci_free_host_resources(xhci, in_ctx);
2587                 spin_unlock_irqrestore(&xhci->lock, flags);
2588                 xhci_warn(xhci, "Not enough bandwidth\n");
2589                 return -ENOMEM;
2590         }
2591
2592         if (command) {
2593                 cmd_completion = command->completion;
2594                 cmd_status = &command->status;
2595                 command->command_trb = xhci->cmd_ring->enqueue;
2596
2597                 /* Enqueue pointer can be left pointing to the link TRB,
2598                  * we must handle that
2599                  */
2600                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2601                         command->command_trb =
2602                                 xhci->cmd_ring->enq_seg->next->trbs;
2603
2604                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2605         } else {
2606                 cmd_completion = &virt_dev->cmd_completion;
2607                 cmd_status = &virt_dev->cmd_status;
2608         }
2609         init_completion(cmd_completion);
2610
2611         cmd_trb = xhci->cmd_ring->dequeue;
2612         if (!ctx_change)
2613                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2614                                 udev->slot_id, must_succeed);
2615         else
2616                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2617                                 udev->slot_id, must_succeed);
2618         if (ret < 0) {
2619                 if (command)
2620                         list_del(&command->cmd_list);
2621                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2622                         xhci_free_host_resources(xhci, in_ctx);
2623                 spin_unlock_irqrestore(&xhci->lock, flags);
2624                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2625                 return -ENOMEM;
2626         }
2627         xhci_ring_cmd_db(xhci);
2628         spin_unlock_irqrestore(&xhci->lock, flags);
2629
2630         /* Wait for the configure endpoint command to complete */
2631         timeleft = wait_for_completion_interruptible_timeout(
2632                         cmd_completion,
2633                         XHCI_CMD_DEFAULT_TIMEOUT);
2634         if (timeleft <= 0) {
2635                 xhci_warn(xhci, "%s while waiting for %s command\n",
2636                                 timeleft == 0 ? "Timeout" : "Signal",
2637                                 ctx_change == 0 ?
2638                                         "configure endpoint" :
2639                                         "evaluate context");
2640                 /* cancel the configure endpoint command */
2641                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2642                 if (ret < 0)
2643                         return ret;
2644                 return -ETIME;
2645         }
2646
2647         if (!ctx_change)
2648                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2649         else
2650                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2651
2652         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2653                 spin_lock_irqsave(&xhci->lock, flags);
2654                 /* If the command failed, remove the reserved resources.
2655                  * Otherwise, clean up the estimate to include dropped eps.
2656                  */
2657                 if (ret)
2658                         xhci_free_host_resources(xhci, in_ctx);
2659                 else
2660                         xhci_finish_resource_reservation(xhci, in_ctx);
2661                 spin_unlock_irqrestore(&xhci->lock, flags);
2662         }
2663         return ret;
2664 }
2665
2666 /* Called after one or more calls to xhci_add_endpoint() or
2667  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2668  * to call xhci_reset_bandwidth().
2669  *
2670  * Since we are in the middle of changing either configuration or
2671  * installing a new alt setting, the USB core won't allow URBs to be
2672  * enqueued for any endpoint on the old config or interface.  Nothing
2673  * else should be touching the xhci->devs[slot_id] structure, so we
2674  * don't need to take the xhci->lock for manipulating that.
2675  */
2676 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2677 {
2678         int i;
2679         int ret = 0;
2680         struct xhci_hcd *xhci;
2681         struct xhci_virt_device *virt_dev;
2682         struct xhci_input_control_ctx *ctrl_ctx;
2683         struct xhci_slot_ctx *slot_ctx;
2684
2685         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2686         if (ret <= 0)
2687                 return ret;
2688         xhci = hcd_to_xhci(hcd);
2689         if (xhci->xhc_state & XHCI_STATE_DYING)
2690                 return -ENODEV;
2691
2692         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2693         virt_dev = xhci->devs[udev->slot_id];
2694
2695         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2696         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2697         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2698         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2699         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2700
2701         /* Don't issue the command if there's no endpoints to update. */
2702         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2703                         ctrl_ctx->drop_flags == 0)
2704                 return 0;
2705
2706         xhci_dbg(xhci, "New Input Control Context:\n");
2707         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2708         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2709                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2710
2711         ret = xhci_configure_endpoint(xhci, udev, NULL,
2712                         false, false);
2713         if (ret) {
2714                 /* Callee should call reset_bandwidth() */
2715                 return ret;
2716         }
2717
2718         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2719         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2720                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2721
2722         /* Free any rings that were dropped, but not changed. */
2723         for (i = 1; i < 31; ++i) {
2724                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2725                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2726                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2727         }
2728         xhci_zero_in_ctx(xhci, virt_dev);
2729         /*
2730          * Install any rings for completely new endpoints or changed endpoints,
2731          * and free or cache any old rings from changed endpoints.
2732          */
2733         for (i = 1; i < 31; ++i) {
2734                 if (!virt_dev->eps[i].new_ring)
2735                         continue;
2736                 /* Only cache or free the old ring if it exists.
2737                  * It may not if this is the first add of an endpoint.
2738                  */
2739                 if (virt_dev->eps[i].ring) {
2740                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2741                 }
2742                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2743                 virt_dev->eps[i].new_ring = NULL;
2744         }
2745
2746         return ret;
2747 }
2748
2749 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2750 {
2751         struct xhci_hcd *xhci;
2752         struct xhci_virt_device *virt_dev;
2753         int i, ret;
2754
2755         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2756         if (ret <= 0)
2757                 return;
2758         xhci = hcd_to_xhci(hcd);
2759
2760         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2761         virt_dev = xhci->devs[udev->slot_id];
2762         /* Free any rings allocated for added endpoints */
2763         for (i = 0; i < 31; ++i) {
2764                 if (virt_dev->eps[i].new_ring) {
2765                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2766                         virt_dev->eps[i].new_ring = NULL;
2767                 }
2768         }
2769         xhci_zero_in_ctx(xhci, virt_dev);
2770 }
2771
2772 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2773                 struct xhci_container_ctx *in_ctx,
2774                 struct xhci_container_ctx *out_ctx,
2775                 u32 add_flags, u32 drop_flags)
2776 {
2777         struct xhci_input_control_ctx *ctrl_ctx;
2778         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2779         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2780         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2781         xhci_slot_copy(xhci, in_ctx, out_ctx);
2782         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2783
2784         xhci_dbg(xhci, "Input Context:\n");
2785         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2786 }
2787
2788 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2789                 unsigned int slot_id, unsigned int ep_index,
2790                 struct xhci_dequeue_state *deq_state)
2791 {
2792         struct xhci_container_ctx *in_ctx;
2793         struct xhci_ep_ctx *ep_ctx;
2794         u32 added_ctxs;
2795         dma_addr_t addr;
2796
2797         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2798                         xhci->devs[slot_id]->out_ctx, ep_index);
2799         in_ctx = xhci->devs[slot_id]->in_ctx;
2800         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2801         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2802                         deq_state->new_deq_ptr);
2803         if (addr == 0) {
2804                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2805                                 "reset ep command\n");
2806                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2807                                 deq_state->new_deq_seg,
2808                                 deq_state->new_deq_ptr);
2809                 return;
2810         }
2811         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2812
2813         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2814         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2815                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2816 }
2817
2818 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2819                 struct usb_device *udev, unsigned int ep_index)
2820 {
2821         struct xhci_dequeue_state deq_state;
2822         struct xhci_virt_ep *ep;
2823
2824         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2825         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2826         /* We need to move the HW's dequeue pointer past this TD,
2827          * or it will attempt to resend it on the next doorbell ring.
2828          */
2829         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2830                         ep_index, ep->stopped_stream, ep->stopped_td,
2831                         &deq_state);
2832
2833         /* HW with the reset endpoint quirk will use the saved dequeue state to
2834          * issue a configure endpoint command later.
2835          */
2836         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2837                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2838                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2839                                 ep_index, ep->stopped_stream, &deq_state);
2840         } else {
2841                 /* Better hope no one uses the input context between now and the
2842                  * reset endpoint completion!
2843                  * XXX: No idea how this hardware will react when stream rings
2844                  * are enabled.
2845                  */
2846                 xhci_dbg(xhci, "Setting up input context for "
2847                                 "configure endpoint command\n");
2848                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2849                                 ep_index, &deq_state);
2850         }
2851 }
2852
2853 /* Deal with stalled endpoints.  The core should have sent the control message
2854  * to clear the halt condition.  However, we need to make the xHCI hardware
2855  * reset its sequence number, since a device will expect a sequence number of
2856  * zero after the halt condition is cleared.
2857  * Context: in_interrupt
2858  */
2859 void xhci_endpoint_reset(struct usb_hcd *hcd,
2860                 struct usb_host_endpoint *ep)
2861 {
2862         struct xhci_hcd *xhci;
2863         struct usb_device *udev;
2864         unsigned int ep_index;
2865         unsigned long flags;
2866         int ret;
2867         struct xhci_virt_ep *virt_ep;
2868
2869         xhci = hcd_to_xhci(hcd);
2870         udev = (struct usb_device *) ep->hcpriv;
2871         /* Called with a root hub endpoint (or an endpoint that wasn't added
2872          * with xhci_add_endpoint()
2873          */
2874         if (!ep->hcpriv)
2875                 return;
2876         ep_index = xhci_get_endpoint_index(&ep->desc);
2877         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2878         if (!virt_ep->stopped_td) {
2879                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2880                                 ep->desc.bEndpointAddress);
2881                 return;
2882         }
2883         if (usb_endpoint_xfer_control(&ep->desc)) {
2884                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2885                 return;
2886         }
2887
2888         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2889         spin_lock_irqsave(&xhci->lock, flags);
2890         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2891         /*
2892          * Can't change the ring dequeue pointer until it's transitioned to the
2893          * stopped state, which is only upon a successful reset endpoint
2894          * command.  Better hope that last command worked!
2895          */
2896         if (!ret) {
2897                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2898                 kfree(virt_ep->stopped_td);
2899                 xhci_ring_cmd_db(xhci);
2900         }
2901         virt_ep->stopped_td = NULL;
2902         virt_ep->stopped_trb = NULL;
2903         virt_ep->stopped_stream = 0;
2904         spin_unlock_irqrestore(&xhci->lock, flags);
2905
2906         if (ret)
2907                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2908 }
2909
2910 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2911                 struct usb_device *udev, struct usb_host_endpoint *ep,
2912                 unsigned int slot_id)
2913 {
2914         int ret;
2915         unsigned int ep_index;
2916         unsigned int ep_state;
2917
2918         if (!ep)
2919                 return -EINVAL;
2920         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2921         if (ret <= 0)
2922                 return -EINVAL;
2923         if (ep->ss_ep_comp.bmAttributes == 0) {
2924                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2925                                 " descriptor for ep 0x%x does not support streams\n",
2926                                 ep->desc.bEndpointAddress);
2927                 return -EINVAL;
2928         }
2929
2930         ep_index = xhci_get_endpoint_index(&ep->desc);
2931         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2932         if (ep_state & EP_HAS_STREAMS ||
2933                         ep_state & EP_GETTING_STREAMS) {
2934                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2935                                 "already has streams set up.\n",
2936                                 ep->desc.bEndpointAddress);
2937                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2938                                 "dynamic stream context array reallocation.\n");
2939                 return -EINVAL;
2940         }
2941         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2942                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2943                                 "endpoint 0x%x; URBs are pending.\n",
2944                                 ep->desc.bEndpointAddress);
2945                 return -EINVAL;
2946         }
2947         return 0;
2948 }
2949
2950 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2951                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2952 {
2953         unsigned int max_streams;
2954
2955         /* The stream context array size must be a power of two */
2956         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2957         /*
2958          * Find out how many primary stream array entries the host controller
2959          * supports.  Later we may use secondary stream arrays (similar to 2nd
2960          * level page entries), but that's an optional feature for xHCI host
2961          * controllers. xHCs must support at least 4 stream IDs.
2962          */
2963         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2964         if (*num_stream_ctxs > max_streams) {
2965                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2966                                 max_streams);
2967                 *num_stream_ctxs = max_streams;
2968                 *num_streams = max_streams;
2969         }
2970 }
2971
2972 /* Returns an error code if one of the endpoint already has streams.
2973  * This does not change any data structures, it only checks and gathers
2974  * information.
2975  */
2976 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2977                 struct usb_device *udev,
2978                 struct usb_host_endpoint **eps, unsigned int num_eps,
2979                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2980 {
2981         unsigned int max_streams;
2982         unsigned int endpoint_flag;
2983         int i;
2984         int ret;
2985
2986         for (i = 0; i < num_eps; i++) {
2987                 ret = xhci_check_streams_endpoint(xhci, udev,
2988                                 eps[i], udev->slot_id);
2989                 if (ret < 0)
2990                         return ret;
2991
2992                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2993                 if (max_streams < (*num_streams - 1)) {
2994                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2995                                         eps[i]->desc.bEndpointAddress,
2996                                         max_streams);
2997                         *num_streams = max_streams+1;
2998                 }
2999
3000                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3001                 if (*changed_ep_bitmask & endpoint_flag)
3002                         return -EINVAL;
3003                 *changed_ep_bitmask |= endpoint_flag;
3004         }
3005         return 0;
3006 }
3007
3008 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3009                 struct usb_device *udev,
3010                 struct usb_host_endpoint **eps, unsigned int num_eps)
3011 {
3012         u32 changed_ep_bitmask = 0;
3013         unsigned int slot_id;
3014         unsigned int ep_index;
3015         unsigned int ep_state;
3016         int i;
3017
3018         slot_id = udev->slot_id;
3019         if (!xhci->devs[slot_id])
3020                 return 0;
3021
3022         for (i = 0; i < num_eps; i++) {
3023                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3024                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3025                 /* Are streams already being freed for the endpoint? */
3026                 if (ep_state & EP_GETTING_NO_STREAMS) {
3027                         xhci_warn(xhci, "WARN Can't disable streams for "
3028                                         "endpoint 0x%x\n, "
3029                                         "streams are being disabled already.",
3030                                         eps[i]->desc.bEndpointAddress);
3031                         return 0;
3032                 }
3033                 /* Are there actually any streams to free? */
3034                 if (!(ep_state & EP_HAS_STREAMS) &&
3035                                 !(ep_state & EP_GETTING_STREAMS)) {
3036                         xhci_warn(xhci, "WARN Can't disable streams for "
3037                                         "endpoint 0x%x\n, "
3038                                         "streams are already disabled!",
3039                                         eps[i]->desc.bEndpointAddress);
3040                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3041                                         "with non-streams endpoint\n");
3042                         return 0;
3043                 }
3044                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3045         }
3046         return changed_ep_bitmask;
3047 }
3048
3049 /*
3050  * The USB device drivers use this function (though the HCD interface in USB
3051  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3052  * coordinate mass storage command queueing across multiple endpoints (basically
3053  * a stream ID == a task ID).
3054  *
3055  * Setting up streams involves allocating the same size stream context array
3056  * for each endpoint and issuing a configure endpoint command for all endpoints.
3057  *
3058  * Don't allow the call to succeed if one endpoint only supports one stream
3059  * (which means it doesn't support streams at all).
3060  *
3061  * Drivers may get less stream IDs than they asked for, if the host controller
3062  * hardware or endpoints claim they can't support the number of requested
3063  * stream IDs.
3064  */
3065 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3066                 struct usb_host_endpoint **eps, unsigned int num_eps,
3067                 unsigned int num_streams, gfp_t mem_flags)
3068 {
3069         int i, ret;
3070         struct xhci_hcd *xhci;
3071         struct xhci_virt_device *vdev;
3072         struct xhci_command *config_cmd;
3073         unsigned int ep_index;
3074         unsigned int num_stream_ctxs;
3075         unsigned long flags;
3076         u32 changed_ep_bitmask = 0;
3077
3078         if (!eps)
3079                 return -EINVAL;
3080
3081         /* Add one to the number of streams requested to account for
3082          * stream 0 that is reserved for xHCI usage.
3083          */
3084         num_streams += 1;
3085         xhci = hcd_to_xhci(hcd);
3086         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3087                         num_streams);
3088
3089         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3090         if (!config_cmd) {
3091                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3092                 return -ENOMEM;
3093         }
3094
3095         /* Check to make sure all endpoints are not already configured for
3096          * streams.  While we're at it, find the maximum number of streams that
3097          * all the endpoints will support and check for duplicate endpoints.
3098          */
3099         spin_lock_irqsave(&xhci->lock, flags);
3100         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3101                         num_eps, &num_streams, &changed_ep_bitmask);
3102         if (ret < 0) {
3103                 xhci_free_command(xhci, config_cmd);
3104                 spin_unlock_irqrestore(&xhci->lock, flags);
3105                 return ret;
3106         }
3107         if (num_streams <= 1) {
3108                 xhci_warn(xhci, "WARN: endpoints can't handle "
3109                                 "more than one stream.\n");
3110                 xhci_free_command(xhci, config_cmd);
3111                 spin_unlock_irqrestore(&xhci->lock, flags);
3112                 return -EINVAL;
3113         }
3114         vdev = xhci->devs[udev->slot_id];
3115         /* Mark each endpoint as being in transition, so
3116          * xhci_urb_enqueue() will reject all URBs.
3117          */
3118         for (i = 0; i < num_eps; i++) {
3119                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3120                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3121         }
3122         spin_unlock_irqrestore(&xhci->lock, flags);
3123
3124         /* Setup internal data structures and allocate HW data structures for
3125          * streams (but don't install the HW structures in the input context
3126          * until we're sure all memory allocation succeeded).
3127          */
3128         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3129         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3130                         num_stream_ctxs, num_streams);
3131
3132         for (i = 0; i < num_eps; i++) {
3133                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3134                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3135                                 num_stream_ctxs,
3136                                 num_streams, mem_flags);
3137                 if (!vdev->eps[ep_index].stream_info)
3138                         goto cleanup;
3139                 /* Set maxPstreams in endpoint context and update deq ptr to
3140                  * point to stream context array. FIXME
3141                  */
3142         }
3143
3144         /* Set up the input context for a configure endpoint command. */
3145         for (i = 0; i < num_eps; i++) {
3146                 struct xhci_ep_ctx *ep_ctx;
3147
3148                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3149                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3150
3151                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3152                                 vdev->out_ctx, ep_index);
3153                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3154                                 vdev->eps[ep_index].stream_info);
3155         }
3156         /* Tell the HW to drop its old copy of the endpoint context info
3157          * and add the updated copy from the input context.
3158          */
3159         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3160                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3161
3162         /* Issue and wait for the configure endpoint command */
3163         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3164                         false, false);
3165
3166         /* xHC rejected the configure endpoint command for some reason, so we
3167          * leave the old ring intact and free our internal streams data
3168          * structure.
3169          */
3170         if (ret < 0)
3171                 goto cleanup;
3172
3173         spin_lock_irqsave(&xhci->lock, flags);
3174         for (i = 0; i < num_eps; i++) {
3175                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3177                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3178                          udev->slot_id, ep_index);
3179                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3180         }
3181         xhci_free_command(xhci, config_cmd);
3182         spin_unlock_irqrestore(&xhci->lock, flags);
3183
3184         /* Subtract 1 for stream 0, which drivers can't use */
3185         return num_streams - 1;
3186
3187 cleanup:
3188         /* If it didn't work, free the streams! */
3189         for (i = 0; i < num_eps; i++) {
3190                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3192                 vdev->eps[ep_index].stream_info = NULL;
3193                 /* FIXME Unset maxPstreams in endpoint context and
3194                  * update deq ptr to point to normal string ring.
3195                  */
3196                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3197                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3198                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3199         }
3200         xhci_free_command(xhci, config_cmd);
3201         return -ENOMEM;
3202 }
3203
3204 /* Transition the endpoint from using streams to being a "normal" endpoint
3205  * without streams.
3206  *
3207  * Modify the endpoint context state, submit a configure endpoint command,
3208  * and free all endpoint rings for streams if that completes successfully.
3209  */
3210 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3211                 struct usb_host_endpoint **eps, unsigned int num_eps,
3212                 gfp_t mem_flags)
3213 {
3214         int i, ret;
3215         struct xhci_hcd *xhci;
3216         struct xhci_virt_device *vdev;
3217         struct xhci_command *command;
3218         unsigned int ep_index;
3219         unsigned long flags;
3220         u32 changed_ep_bitmask;
3221
3222         xhci = hcd_to_xhci(hcd);
3223         vdev = xhci->devs[udev->slot_id];
3224
3225         /* Set up a configure endpoint command to remove the streams rings */
3226         spin_lock_irqsave(&xhci->lock, flags);
3227         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3228                         udev, eps, num_eps);
3229         if (changed_ep_bitmask == 0) {
3230                 spin_unlock_irqrestore(&xhci->lock, flags);
3231                 return -EINVAL;
3232         }
3233
3234         /* Use the xhci_command structure from the first endpoint.  We may have
3235          * allocated too many, but the driver may call xhci_free_streams() for
3236          * each endpoint it grouped into one call to xhci_alloc_streams().
3237          */
3238         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3239         command = vdev->eps[ep_index].stream_info->free_streams_command;
3240         for (i = 0; i < num_eps; i++) {
3241                 struct xhci_ep_ctx *ep_ctx;
3242
3243                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3245                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3246                         EP_GETTING_NO_STREAMS;
3247
3248                 xhci_endpoint_copy(xhci, command->in_ctx,
3249                                 vdev->out_ctx, ep_index);
3250                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3251                                 &vdev->eps[ep_index]);
3252         }
3253         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3254                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3255         spin_unlock_irqrestore(&xhci->lock, flags);
3256
3257         /* Issue and wait for the configure endpoint command,
3258          * which must succeed.
3259          */
3260         ret = xhci_configure_endpoint(xhci, udev, command,
3261                         false, true);
3262
3263         /* xHC rejected the configure endpoint command for some reason, so we
3264          * leave the streams rings intact.
3265          */
3266         if (ret < 0)
3267                 return ret;
3268
3269         spin_lock_irqsave(&xhci->lock, flags);
3270         for (i = 0; i < num_eps; i++) {
3271                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3273                 vdev->eps[ep_index].stream_info = NULL;
3274                 /* FIXME Unset maxPstreams in endpoint context and
3275                  * update deq ptr to point to normal string ring.
3276                  */
3277                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3278                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3279         }
3280         spin_unlock_irqrestore(&xhci->lock, flags);
3281
3282         return 0;
3283 }
3284
3285 /*
3286  * Deletes endpoint resources for endpoints that were active before a Reset
3287  * Device command, or a Disable Slot command.  The Reset Device command leaves
3288  * the control endpoint intact, whereas the Disable Slot command deletes it.
3289  *
3290  * Must be called with xhci->lock held.
3291  */
3292 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3293         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3294 {
3295         int i;
3296         unsigned int num_dropped_eps = 0;
3297         unsigned int drop_flags = 0;
3298
3299         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3300                 if (virt_dev->eps[i].ring) {
3301                         drop_flags |= 1 << i;
3302                         num_dropped_eps++;
3303                 }
3304         }
3305         xhci->num_active_eps -= num_dropped_eps;
3306         if (num_dropped_eps)
3307                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3308                                 "%u now active.\n",
3309                                 num_dropped_eps, drop_flags,
3310                                 xhci->num_active_eps);
3311 }
3312
3313 /*
3314  * This submits a Reset Device Command, which will set the device state to 0,
3315  * set the device address to 0, and disable all the endpoints except the default
3316  * control endpoint.  The USB core should come back and call
3317  * xhci_address_device(), and then re-set up the configuration.  If this is
3318  * called because of a usb_reset_and_verify_device(), then the old alternate
3319  * settings will be re-installed through the normal bandwidth allocation
3320  * functions.
3321  *
3322  * Wait for the Reset Device command to finish.  Remove all structures
3323  * associated with the endpoints that were disabled.  Clear the input device
3324  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3325  *
3326  * If the virt_dev to be reset does not exist or does not match the udev,
3327  * it means the device is lost, possibly due to the xHC restore error and
3328  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3329  * re-allocate the device.
3330  */
3331 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3332 {
3333         int ret, i;
3334         unsigned long flags;
3335         struct xhci_hcd *xhci;
3336         unsigned int slot_id;
3337         struct xhci_virt_device *virt_dev;
3338         struct xhci_command *reset_device_cmd;
3339         int timeleft;
3340         int last_freed_endpoint;
3341         struct xhci_slot_ctx *slot_ctx;
3342         int old_active_eps = 0;
3343
3344         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3345         if (ret <= 0)
3346                 return ret;
3347         xhci = hcd_to_xhci(hcd);
3348         slot_id = udev->slot_id;
3349         virt_dev = xhci->devs[slot_id];
3350         if (!virt_dev) {
3351                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3352                                 "not exist. Re-allocate the device\n", slot_id);
3353                 ret = xhci_alloc_dev(hcd, udev);
3354                 if (ret == 1)
3355                         return 0;
3356                 else
3357                         return -EINVAL;
3358         }
3359
3360         if (virt_dev->udev != udev) {
3361                 /* If the virt_dev and the udev does not match, this virt_dev
3362                  * may belong to another udev.
3363                  * Re-allocate the device.
3364                  */
3365                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3366                                 "not match the udev. Re-allocate the device\n",
3367                                 slot_id);
3368                 ret = xhci_alloc_dev(hcd, udev);
3369                 if (ret == 1)
3370                         return 0;
3371                 else
3372                         return -EINVAL;
3373         }
3374
3375         /* If device is not setup, there is no point in resetting it */
3376         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3377         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3378                                                 SLOT_STATE_DISABLED)
3379                 return 0;
3380
3381         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3382         /* Allocate the command structure that holds the struct completion.
3383          * Assume we're in process context, since the normal device reset
3384          * process has to wait for the device anyway.  Storage devices are
3385          * reset as part of error handling, so use GFP_NOIO instead of
3386          * GFP_KERNEL.
3387          */
3388         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3389         if (!reset_device_cmd) {
3390                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3391                 return -ENOMEM;
3392         }
3393
3394         /* Attempt to submit the Reset Device command to the command ring */
3395         spin_lock_irqsave(&xhci->lock, flags);
3396         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3397
3398         /* Enqueue pointer can be left pointing to the link TRB,
3399          * we must handle that
3400          */
3401         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3402                 reset_device_cmd->command_trb =
3403                         xhci->cmd_ring->enq_seg->next->trbs;
3404
3405         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3406         ret = xhci_queue_reset_device(xhci, slot_id);
3407         if (ret) {
3408                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3409                 list_del(&reset_device_cmd->cmd_list);
3410                 spin_unlock_irqrestore(&xhci->lock, flags);
3411                 goto command_cleanup;
3412         }
3413         xhci_ring_cmd_db(xhci);
3414         spin_unlock_irqrestore(&xhci->lock, flags);
3415
3416         /* Wait for the Reset Device command to finish */
3417         timeleft = wait_for_completion_interruptible_timeout(
3418                         reset_device_cmd->completion,
3419                         USB_CTRL_SET_TIMEOUT);
3420         if (timeleft <= 0) {
3421                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3422                                 timeleft == 0 ? "Timeout" : "Signal");
3423                 spin_lock_irqsave(&xhci->lock, flags);
3424                 /* The timeout might have raced with the event ring handler, so
3425                  * only delete from the list if the item isn't poisoned.
3426                  */
3427                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3428                         list_del(&reset_device_cmd->cmd_list);
3429                 spin_unlock_irqrestore(&xhci->lock, flags);
3430                 ret = -ETIME;
3431                 goto command_cleanup;
3432         }
3433
3434         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3435          * unless we tried to reset a slot ID that wasn't enabled,
3436          * or the device wasn't in the addressed or configured state.
3437          */
3438         ret = reset_device_cmd->status;
3439         switch (ret) {
3440         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3441         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3442                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3443                                 slot_id,
3444                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3445                 xhci_info(xhci, "Not freeing device rings.\n");
3446                 /* Don't treat this as an error.  May change my mind later. */
3447                 ret = 0;
3448                 goto command_cleanup;
3449         case COMP_SUCCESS:
3450                 xhci_dbg(xhci, "Successful reset device command.\n");
3451                 break;
3452         default:
3453                 if (xhci_is_vendor_info_code(xhci, ret))
3454                         break;
3455                 xhci_warn(xhci, "Unknown completion code %u for "
3456                                 "reset device command.\n", ret);
3457                 ret = -EINVAL;
3458                 goto command_cleanup;
3459         }
3460
3461         /* Free up host controller endpoint resources */
3462         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3463                 spin_lock_irqsave(&xhci->lock, flags);
3464                 /* Don't delete the default control endpoint resources */
3465                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3466                 spin_unlock_irqrestore(&xhci->lock, flags);
3467         }
3468
3469         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3470         last_freed_endpoint = 1;
3471         for (i = 1; i < 31; ++i) {
3472                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3473
3474                 if (ep->ep_state & EP_HAS_STREAMS) {
3475                         xhci_free_stream_info(xhci, ep->stream_info);
3476                         ep->stream_info = NULL;
3477                         ep->ep_state &= ~EP_HAS_STREAMS;
3478                 }
3479
3480                 if (ep->ring) {
3481                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3482                         last_freed_endpoint = i;
3483                 }
3484                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3485                         xhci_drop_ep_from_interval_table(xhci,
3486                                         &virt_dev->eps[i].bw_info,
3487                                         virt_dev->bw_table,
3488                                         udev,
3489                                         &virt_dev->eps[i],
3490                                         virt_dev->tt_info);
3491                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3492         }
3493         /* If necessary, update the number of active TTs on this root port */
3494         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3495
3496         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3497         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3498         ret = 0;
3499
3500 command_cleanup:
3501         xhci_free_command(xhci, reset_device_cmd);
3502         return ret;
3503 }
3504
3505 /*
3506  * At this point, the struct usb_device is about to go away, the device has
3507  * disconnected, and all traffic has been stopped and the endpoints have been
3508  * disabled.  Free any HC data structures associated with that device.
3509  */
3510 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3511 {
3512         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3513         struct xhci_virt_device *virt_dev;
3514         struct device *dev = hcd->self.controller;
3515         unsigned long flags;
3516         u32 state;
3517         int i, ret;
3518
3519 #ifndef CONFIG_USB_DEFAULT_PERSIST
3520         /*
3521          * We called pm_runtime_get_noresume when the device was attached.
3522          * Decrement the counter here to allow controller to runtime suspend
3523          * if no devices remain.
3524          */
3525         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3526                 pm_runtime_put_noidle(dev);
3527 #endif
3528
3529         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3530         /* If the host is halted due to driver unload, we still need to free the
3531          * device.
3532          */
3533         if (ret <= 0 && ret != -ENODEV)
3534                 return;
3535
3536         virt_dev = xhci->devs[udev->slot_id];
3537
3538         /* Stop any wayward timer functions (which may grab the lock) */
3539         for (i = 0; i < 31; ++i) {
3540                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3541                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3542         }
3543
3544         if (udev->usb2_hw_lpm_enabled) {
3545                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3546                 udev->usb2_hw_lpm_enabled = 0;
3547         }
3548
3549         spin_lock_irqsave(&xhci->lock, flags);
3550         /* Don't disable the slot if the host controller is dead. */
3551         state = xhci_readl(xhci, &xhci->op_regs->status);
3552         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3553                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3554                 xhci_free_virt_device(xhci, udev->slot_id);
3555                 spin_unlock_irqrestore(&xhci->lock, flags);
3556                 return;
3557         }
3558
3559         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3560                 spin_unlock_irqrestore(&xhci->lock, flags);
3561                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3562                 return;
3563         }
3564         xhci_ring_cmd_db(xhci);
3565         spin_unlock_irqrestore(&xhci->lock, flags);
3566         /*
3567          * Event command completion handler will free any data structures
3568          * associated with the slot.  XXX Can free sleep?
3569          */
3570 }
3571
3572 /*
3573  * Checks if we have enough host controller resources for the default control
3574  * endpoint.
3575  *
3576  * Must be called with xhci->lock held.
3577  */
3578 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3579 {
3580         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3581                 xhci_dbg(xhci, "Not enough ep ctxs: "
3582                                 "%u active, need to add 1, limit is %u.\n",
3583                                 xhci->num_active_eps, xhci->limit_active_eps);
3584                 return -ENOMEM;
3585         }
3586         xhci->num_active_eps += 1;
3587         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3588                         xhci->num_active_eps);
3589         return 0;
3590 }
3591
3592
3593 /*
3594  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3595  * timed out, or allocating memory failed.  Returns 1 on success.
3596  */
3597 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3598 {
3599         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3600         struct device *dev = hcd->self.controller;
3601         unsigned long flags;
3602         int timeleft;
3603         int ret;
3604         union xhci_trb *cmd_trb;
3605
3606         spin_lock_irqsave(&xhci->lock, flags);
3607         cmd_trb = xhci->cmd_ring->dequeue;
3608         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3609         if (ret) {
3610                 spin_unlock_irqrestore(&xhci->lock, flags);
3611                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3612                 return 0;
3613         }
3614         xhci_ring_cmd_db(xhci);
3615         spin_unlock_irqrestore(&xhci->lock, flags);
3616
3617         /* XXX: how much time for xHC slot assignment? */
3618         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3619                         XHCI_CMD_DEFAULT_TIMEOUT);
3620         if (timeleft <= 0) {
3621                 xhci_warn(xhci, "%s while waiting for a slot\n",
3622                                 timeleft == 0 ? "Timeout" : "Signal");
3623                 /* cancel the enable slot request */
3624                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3625         }
3626
3627         if (!xhci->slot_id) {
3628                 xhci_err(xhci, "Error while assigning device slot ID\n");
3629                 return 0;
3630         }
3631
3632         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3633                 spin_lock_irqsave(&xhci->lock, flags);
3634                 ret = xhci_reserve_host_control_ep_resources(xhci);
3635                 if (ret) {
3636                         spin_unlock_irqrestore(&xhci->lock, flags);
3637                         xhci_warn(xhci, "Not enough host resources, "
3638                                         "active endpoint contexts = %u\n",
3639                                         xhci->num_active_eps);
3640                         goto disable_slot;
3641                 }
3642                 spin_unlock_irqrestore(&xhci->lock, flags);
3643         }
3644         /* Use GFP_NOIO, since this function can be called from
3645          * xhci_discover_or_reset_device(), which may be called as part of
3646          * mass storage driver error handling.
3647          */
3648         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3649                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3650                 goto disable_slot;
3651         }
3652         udev->slot_id = xhci->slot_id;
3653
3654 #ifndef CONFIG_USB_DEFAULT_PERSIST
3655         /*
3656          * If resetting upon resume, we can't put the controller into runtime
3657          * suspend if there is a device attached.
3658          */
3659         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3660                 pm_runtime_get_noresume(dev);
3661 #endif
3662
3663         /* Is this a LS or FS device under a HS hub? */
3664         /* Hub or peripherial? */
3665         return 1;
3666
3667 disable_slot:
3668         /* Disable slot, if we can do it without mem alloc */
3669         spin_lock_irqsave(&xhci->lock, flags);
3670         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3671                 xhci_ring_cmd_db(xhci);
3672         spin_unlock_irqrestore(&xhci->lock, flags);
3673         return 0;
3674 }
3675
3676 /*
3677  * Issue an Address Device command (which will issue a SetAddress request to
3678  * the device).
3679  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3680  * we should only issue and wait on one address command at the same time.
3681  *
3682  * We add one to the device address issued by the hardware because the USB core
3683  * uses address 1 for the root hubs (even though they're not really devices).
3684  */
3685 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3686 {
3687         unsigned long flags;
3688         int timeleft;
3689         struct xhci_virt_device *virt_dev;
3690         int ret = 0;
3691         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3692         struct xhci_slot_ctx *slot_ctx;
3693         struct xhci_input_control_ctx *ctrl_ctx;
3694         u64 temp_64;
3695         union xhci_trb *cmd_trb;
3696
3697         if (!udev->slot_id) {
3698                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3699                 return -EINVAL;
3700         }
3701
3702         virt_dev = xhci->devs[udev->slot_id];
3703
3704         if (WARN_ON(!virt_dev)) {
3705                 /*
3706                  * In plug/unplug torture test with an NEC controller,
3707                  * a zero-dereference was observed once due to virt_dev = 0.
3708                  * Print useful debug rather than crash if it is observed again!
3709                  */
3710                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3711                         udev->slot_id);
3712                 return -EINVAL;
3713         }
3714
3715         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3716         /*
3717          * If this is the first Set Address since device plug-in or
3718          * virt_device realloaction after a resume with an xHCI power loss,
3719          * then set up the slot context.
3720          */
3721         if (!slot_ctx->dev_info)
3722                 xhci_setup_addressable_virt_dev(xhci, udev);
3723         /* Otherwise, update the control endpoint ring enqueue pointer. */
3724         else
3725                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3726         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3727         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3728         ctrl_ctx->drop_flags = 0;
3729
3730         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3731         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3732
3733         spin_lock_irqsave(&xhci->lock, flags);
3734         cmd_trb = xhci->cmd_ring->dequeue;
3735         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3736                                         udev->slot_id);
3737         if (ret) {
3738                 spin_unlock_irqrestore(&xhci->lock, flags);
3739                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3740                 return ret;
3741         }
3742         xhci_ring_cmd_db(xhci);
3743         spin_unlock_irqrestore(&xhci->lock, flags);
3744
3745         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3746         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3747                         XHCI_CMD_DEFAULT_TIMEOUT);
3748         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3749          * the SetAddress() "recovery interval" required by USB and aborting the
3750          * command on a timeout.
3751          */
3752         if (timeleft <= 0) {
3753                 xhci_warn(xhci, "%s while waiting for address device command\n",
3754                                 timeleft == 0 ? "Timeout" : "Signal");
3755                 /* cancel the address device command */
3756                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3757                 if (ret < 0)
3758                         return ret;
3759                 return -ETIME;
3760         }
3761
3762         switch (virt_dev->cmd_status) {
3763         case COMP_CTX_STATE:
3764         case COMP_EBADSLT:
3765                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3766                                 udev->slot_id);
3767                 ret = -EINVAL;
3768                 break;
3769         case COMP_TX_ERR:
3770                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3771                 ret = -EPROTO;
3772                 break;
3773         case COMP_DEV_ERR:
3774                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3775                                 "device command.\n");
3776                 ret = -ENODEV;
3777                 break;
3778         case COMP_SUCCESS:
3779                 xhci_dbg(xhci, "Successful Address Device command\n");
3780                 break;
3781         default:
3782                 xhci_err(xhci, "ERROR: unexpected command completion "
3783                                 "code 0x%x.\n", virt_dev->cmd_status);
3784                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3785                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3786                 ret = -EINVAL;
3787                 break;
3788         }
3789         if (ret) {
3790                 return ret;
3791         }
3792         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3793         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3794         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3795                  udev->slot_id,
3796                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3797                  (unsigned long long)
3798                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3799         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3800                         (unsigned long long)virt_dev->out_ctx->dma);
3801         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3802         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3803         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3804         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3805         /*
3806          * USB core uses address 1 for the roothubs, so we add one to the
3807          * address given back to us by the HC.
3808          */
3809         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3810         /* Use kernel assigned address for devices; store xHC assigned
3811          * address locally. */
3812         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3813                 + 1;
3814         /* Zero the input context control for later use */
3815         ctrl_ctx->add_flags = 0;
3816         ctrl_ctx->drop_flags = 0;
3817
3818         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3819
3820         return 0;
3821 }
3822
3823 /*
3824  * Transfer the port index into real index in the HW port status
3825  * registers. Caculate offset between the port's PORTSC register
3826  * and port status base. Divide the number of per port register
3827  * to get the real index. The raw port number bases 1.
3828  */
3829 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3830 {
3831         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3832         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3833         __le32 __iomem *addr;
3834         int raw_port;
3835
3836         if (hcd->speed != HCD_USB3)
3837                 addr = xhci->usb2_ports[port1 - 1];
3838         else
3839                 addr = xhci->usb3_ports[port1 - 1];
3840
3841         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3842         return raw_port;
3843 }
3844
3845 #ifdef CONFIG_PM_RUNTIME
3846
3847 /* BESL to HIRD Encoding array for USB2 LPM */
3848 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3849         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3850
3851 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3852 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3853                                         struct usb_device *udev)
3854 {
3855         int u2del, besl, besl_host;
3856         int besl_device = 0;
3857         u32 field;
3858
3859         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3860         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3861
3862         if (field & USB_BESL_SUPPORT) {
3863                 for (besl_host = 0; besl_host < 16; besl_host++) {
3864                         if (xhci_besl_encoding[besl_host] >= u2del)
3865                                 break;
3866                 }
3867                 /* Use baseline BESL value as default */
3868                 if (field & USB_BESL_BASELINE_VALID)
3869                         besl_device = USB_GET_BESL_BASELINE(field);
3870                 else if (field & USB_BESL_DEEP_VALID)
3871                         besl_device = USB_GET_BESL_DEEP(field);
3872         } else {
3873                 if (u2del <= 50)
3874                         besl_host = 0;
3875                 else
3876                         besl_host = (u2del - 51) / 75 + 1;
3877         }
3878
3879         besl = besl_host + besl_device;
3880         if (besl > 15)
3881                 besl = 15;
3882
3883         return besl;
3884 }
3885
3886 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3887                                         struct usb_device *udev)
3888 {
3889         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3890         struct dev_info *dev_info;
3891         __le32 __iomem  **port_array;
3892         __le32 __iomem  *addr, *pm_addr;
3893         u32             temp, dev_id;
3894         unsigned int    port_num;
3895         unsigned long   flags;
3896         int             hird;
3897         int             ret;
3898
3899         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3900                         !udev->lpm_capable)
3901                 return -EINVAL;
3902
3903         /* we only support lpm for non-hub device connected to root hub yet */
3904         if (!udev->parent || udev->parent->parent ||
3905                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3906                 return -EINVAL;
3907
3908         spin_lock_irqsave(&xhci->lock, flags);
3909
3910         /* Look for devices in lpm_failed_devs list */
3911         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3912                         le16_to_cpu(udev->descriptor.idProduct);
3913         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3914                 if (dev_info->dev_id == dev_id) {
3915                         ret = -EINVAL;
3916                         goto finish;
3917                 }
3918         }
3919
3920         port_array = xhci->usb2_ports;
3921         port_num = udev->portnum - 1;
3922
3923         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3924                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3925                 ret = -EINVAL;
3926                 goto finish;
3927         }
3928
3929         /*
3930          * Test USB 2.0 software LPM.
3931          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3932          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3933          * in the June 2011 errata release.
3934          */
3935         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3936         /*
3937          * Set L1 Device Slot and HIRD/BESL.
3938          * Check device's USB 2.0 extension descriptor to determine whether
3939          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3940          */
3941         pm_addr = port_array[port_num] + 1;
3942         hird = xhci_calculate_hird_besl(xhci, udev);
3943         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3944         xhci_writel(xhci, temp, pm_addr);
3945
3946         /* Set port link state to U2(L1) */
3947         addr = port_array[port_num];
3948         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3949
3950         /* wait for ACK */
3951         spin_unlock_irqrestore(&xhci->lock, flags);
3952         msleep(10);
3953         spin_lock_irqsave(&xhci->lock, flags);
3954
3955         /* Check L1 Status */
3956         ret = xhci_handshake(xhci, pm_addr,
3957                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3958         if (ret != -ETIMEDOUT) {
3959                 /* enter L1 successfully */
3960                 temp = xhci_readl(xhci, addr);
3961                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3962                                 port_num, temp);
3963                 ret = 0;
3964         } else {
3965                 temp = xhci_readl(xhci, pm_addr);
3966                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3967                                 port_num, temp & PORT_L1S_MASK);
3968                 ret = -EINVAL;
3969         }
3970
3971         /* Resume the port */
3972         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3973
3974         spin_unlock_irqrestore(&xhci->lock, flags);
3975         msleep(10);
3976         spin_lock_irqsave(&xhci->lock, flags);
3977
3978         /* Clear PLC */
3979         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3980
3981         /* Check PORTSC to make sure the device is in the right state */
3982         if (!ret) {
3983                 temp = xhci_readl(xhci, addr);
3984                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3985                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3986                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3987                         xhci_dbg(xhci, "port L1 resume fail\n");
3988                         ret = -EINVAL;
3989                 }
3990         }
3991
3992         if (ret) {
3993                 /* Insert dev to lpm_failed_devs list */
3994                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3995                                 "re-enumerate\n");
3996                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3997                 if (!dev_info) {
3998                         ret = -ENOMEM;
3999                         goto finish;
4000                 }
4001                 dev_info->dev_id = dev_id;
4002                 INIT_LIST_HEAD(&dev_info->list);
4003                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4004         } else {
4005                 xhci_ring_device(xhci, udev->slot_id);
4006         }
4007
4008 finish:
4009         spin_unlock_irqrestore(&xhci->lock, flags);
4010         return ret;
4011 }
4012
4013 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4014                         struct usb_device *udev, int enable)
4015 {
4016         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4017         __le32 __iomem  **port_array;
4018         __le32 __iomem  *pm_addr;
4019         u32             temp;
4020         unsigned int    port_num;
4021         unsigned long   flags;
4022         int             hird;
4023
4024         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4025                         !udev->lpm_capable)
4026                 return -EPERM;
4027
4028         if (!udev->parent || udev->parent->parent ||
4029                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4030                 return -EPERM;
4031
4032         if (udev->usb2_hw_lpm_capable != 1)
4033                 return -EPERM;
4034
4035         spin_lock_irqsave(&xhci->lock, flags);
4036
4037         port_array = xhci->usb2_ports;
4038         port_num = udev->portnum - 1;
4039         pm_addr = port_array[port_num] + 1;
4040         temp = xhci_readl(xhci, pm_addr);
4041
4042         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4043                         enable ? "enable" : "disable", port_num);
4044
4045         hird = xhci_calculate_hird_besl(xhci, udev);
4046
4047         if (enable) {
4048                 temp &= ~PORT_HIRD_MASK;
4049                 temp |= PORT_HIRD(hird) | PORT_RWE;
4050                 xhci_writel(xhci, temp, pm_addr);
4051                 temp = xhci_readl(xhci, pm_addr);
4052                 temp |= PORT_HLE;
4053                 xhci_writel(xhci, temp, pm_addr);
4054         } else {
4055                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4056                 xhci_writel(xhci, temp, pm_addr);
4057         }
4058
4059         spin_unlock_irqrestore(&xhci->lock, flags);
4060         return 0;
4061 }
4062
4063 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4064 {
4065         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4066         int             ret;
4067
4068         ret = xhci_usb2_software_lpm_test(hcd, udev);
4069         if (!ret) {
4070                 xhci_dbg(xhci, "software LPM test succeed\n");
4071                 if (xhci->hw_lpm_support == 1) {
4072                         udev->usb2_hw_lpm_capable = 1;
4073                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4074                         if (!ret)
4075                                 udev->usb2_hw_lpm_enabled = 1;
4076                 }
4077         }
4078
4079         return 0;
4080 }
4081
4082 #else
4083
4084 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4085                                 struct usb_device *udev, int enable)
4086 {
4087         return 0;
4088 }
4089
4090 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4091 {
4092         return 0;
4093 }
4094
4095 #endif /* CONFIG_PM_RUNTIME */
4096
4097 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4098
4099 #ifdef CONFIG_PM
4100 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4101 static unsigned long long xhci_service_interval_to_ns(
4102                 struct usb_endpoint_descriptor *desc)
4103 {
4104         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4105 }
4106
4107 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4108                 enum usb3_link_state state)
4109 {
4110         unsigned long long sel;
4111         unsigned long long pel;
4112         unsigned int max_sel_pel;
4113         char *state_name;
4114
4115         switch (state) {
4116         case USB3_LPM_U1:
4117                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4118                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4119                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4120                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4121                 state_name = "U1";
4122                 break;
4123         case USB3_LPM_U2:
4124                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4125                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4126                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4127                 state_name = "U2";
4128                 break;
4129         default:
4130                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4131                                 __func__);
4132                 return USB3_LPM_DISABLED;
4133         }
4134
4135         if (sel <= max_sel_pel && pel <= max_sel_pel)
4136                 return USB3_LPM_DEVICE_INITIATED;
4137
4138         if (sel > max_sel_pel)
4139                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4140                                 "due to long SEL %llu ms\n",
4141                                 state_name, sel);
4142         else
4143                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4144                                 "due to long PEL %llu\n ms",
4145                                 state_name, pel);
4146         return USB3_LPM_DISABLED;
4147 }
4148
4149 /* Returns the hub-encoded U1 timeout value.
4150  * The U1 timeout should be the maximum of the following values:
4151  *  - For control endpoints, U1 system exit latency (SEL) * 3
4152  *  - For bulk endpoints, U1 SEL * 5
4153  *  - For interrupt endpoints:
4154  *    - Notification EPs, U1 SEL * 3
4155  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4156  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4157  */
4158 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4159                 struct usb_endpoint_descriptor *desc)
4160 {
4161         unsigned long long timeout_ns;
4162         int ep_type;
4163         int intr_type;
4164
4165         ep_type = usb_endpoint_type(desc);
4166         switch (ep_type) {
4167         case USB_ENDPOINT_XFER_CONTROL:
4168                 timeout_ns = udev->u1_params.sel * 3;
4169                 break;
4170         case USB_ENDPOINT_XFER_BULK:
4171                 timeout_ns = udev->u1_params.sel * 5;
4172                 break;
4173         case USB_ENDPOINT_XFER_INT:
4174                 intr_type = usb_endpoint_interrupt_type(desc);
4175                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4176                         timeout_ns = udev->u1_params.sel * 3;
4177                         break;
4178                 }
4179                 /* Otherwise the calculation is the same as isoc eps */
4180         case USB_ENDPOINT_XFER_ISOC:
4181                 timeout_ns = xhci_service_interval_to_ns(desc);
4182                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4183                 if (timeout_ns < udev->u1_params.sel * 2)
4184                         timeout_ns = udev->u1_params.sel * 2;
4185                 break;
4186         default:
4187                 return 0;
4188         }
4189
4190         /* The U1 timeout is encoded in 1us intervals. */
4191         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4192         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4193         if (timeout_ns == USB3_LPM_DISABLED)
4194                 timeout_ns++;
4195
4196         /* If the necessary timeout value is bigger than what we can set in the
4197          * USB 3.0 hub, we have to disable hub-initiated U1.
4198          */
4199         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4200                 return timeout_ns;
4201         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4202                         "due to long timeout %llu ms\n", timeout_ns);
4203         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4204 }
4205
4206 /* Returns the hub-encoded U2 timeout value.
4207  * The U2 timeout should be the maximum of:
4208  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4209  *  - largest bInterval of any active periodic endpoint (to avoid going
4210  *    into lower power link states between intervals).
4211  *  - the U2 Exit Latency of the device
4212  */
4213 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4214                 struct usb_endpoint_descriptor *desc)
4215 {
4216         unsigned long long timeout_ns;
4217         unsigned long long u2_del_ns;
4218
4219         timeout_ns = 10 * 1000 * 1000;
4220
4221         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4222                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4223                 timeout_ns = xhci_service_interval_to_ns(desc);
4224
4225         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4226         if (u2_del_ns > timeout_ns)
4227                 timeout_ns = u2_del_ns;
4228
4229         /* The U2 timeout is encoded in 256us intervals */
4230         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4231         /* If the necessary timeout value is bigger than what we can set in the
4232          * USB 3.0 hub, we have to disable hub-initiated U2.
4233          */
4234         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4235                 return timeout_ns;
4236         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4237                         "due to long timeout %llu ms\n", timeout_ns);
4238         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4239 }
4240
4241 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4242                 struct usb_device *udev,
4243                 struct usb_endpoint_descriptor *desc,
4244                 enum usb3_link_state state,
4245                 u16 *timeout)
4246 {
4247         if (state == USB3_LPM_U1) {
4248                 if (xhci->quirks & XHCI_INTEL_HOST)
4249                         return xhci_calculate_intel_u1_timeout(udev, desc);
4250         } else {
4251                 if (xhci->quirks & XHCI_INTEL_HOST)
4252                         return xhci_calculate_intel_u2_timeout(udev, desc);
4253         }
4254
4255         return USB3_LPM_DISABLED;
4256 }
4257
4258 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4259                 struct usb_device *udev,
4260                 struct usb_endpoint_descriptor *desc,
4261                 enum usb3_link_state state,
4262                 u16 *timeout)
4263 {
4264         u16 alt_timeout;
4265
4266         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4267                 desc, state, timeout);
4268
4269         /* If we found we can't enable hub-initiated LPM, or
4270          * the U1 or U2 exit latency was too high to allow
4271          * device-initiated LPM as well, just stop searching.
4272          */
4273         if (alt_timeout == USB3_LPM_DISABLED ||
4274                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4275                 *timeout = alt_timeout;
4276                 return -E2BIG;
4277         }
4278         if (alt_timeout > *timeout)
4279                 *timeout = alt_timeout;
4280         return 0;
4281 }
4282
4283 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4284                 struct usb_device *udev,
4285                 struct usb_host_interface *alt,
4286                 enum usb3_link_state state,
4287                 u16 *timeout)
4288 {
4289         int j;
4290
4291         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4292                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4293                                         &alt->endpoint[j].desc, state, timeout))
4294                         return -E2BIG;
4295                 continue;
4296         }
4297         return 0;
4298 }
4299
4300 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4301                 enum usb3_link_state state)
4302 {
4303         struct usb_device *parent;
4304         unsigned int num_hubs;
4305
4306         if (state == USB3_LPM_U2)
4307                 return 0;
4308
4309         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4310         for (parent = udev->parent, num_hubs = 0; parent->parent;
4311                         parent = parent->parent)
4312                 num_hubs++;
4313
4314         if (num_hubs < 2)
4315                 return 0;
4316
4317         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4318                         " below second-tier hub.\n");
4319         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4320                         "to decrease power consumption.\n");
4321         return -E2BIG;
4322 }
4323
4324 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4325                 struct usb_device *udev,
4326                 enum usb3_link_state state)
4327 {
4328         if (xhci->quirks & XHCI_INTEL_HOST)
4329                 return xhci_check_intel_tier_policy(udev, state);
4330         return -EINVAL;
4331 }
4332
4333 /* Returns the U1 or U2 timeout that should be enabled.
4334  * If the tier check or timeout setting functions return with a non-zero exit
4335  * code, that means the timeout value has been finalized and we shouldn't look
4336  * at any more endpoints.
4337  */
4338 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4339                         struct usb_device *udev, enum usb3_link_state state)
4340 {
4341         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4342         struct usb_host_config *config;
4343         char *state_name;
4344         int i;
4345         u16 timeout = USB3_LPM_DISABLED;
4346
4347         if (state == USB3_LPM_U1)
4348                 state_name = "U1";
4349         else if (state == USB3_LPM_U2)
4350                 state_name = "U2";
4351         else {
4352                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4353                                 state);
4354                 return timeout;
4355         }
4356
4357         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4358                 return timeout;
4359
4360         /* Gather some information about the currently installed configuration
4361          * and alternate interface settings.
4362          */
4363         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4364                         state, &timeout))
4365                 return timeout;
4366
4367         config = udev->actconfig;
4368         if (!config)
4369                 return timeout;
4370
4371         for (i = 0; i < USB_MAXINTERFACES; i++) {
4372                 struct usb_driver *driver;
4373                 struct usb_interface *intf = config->interface[i];
4374
4375                 if (!intf)
4376                         continue;
4377
4378                 /* Check if any currently bound drivers want hub-initiated LPM
4379                  * disabled.
4380                  */
4381                 if (intf->dev.driver) {
4382                         driver = to_usb_driver(intf->dev.driver);
4383                         if (driver && driver->disable_hub_initiated_lpm) {
4384                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4385                                                 "at request of driver %s\n",
4386                                                 state_name, driver->name);
4387                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4388                         }
4389                 }
4390
4391                 /* Not sure how this could happen... */
4392                 if (!intf->cur_altsetting)
4393                         continue;
4394
4395                 if (xhci_update_timeout_for_interface(xhci, udev,
4396                                         intf->cur_altsetting,
4397                                         state, &timeout))
4398                         return timeout;
4399         }
4400         return timeout;
4401 }
4402
4403 /*
4404  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4405  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4406  */
4407 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4408                         struct usb_device *udev, u16 max_exit_latency)
4409 {
4410         struct xhci_virt_device *virt_dev;
4411         struct xhci_command *command;
4412         struct xhci_input_control_ctx *ctrl_ctx;
4413         struct xhci_slot_ctx *slot_ctx;
4414         unsigned long flags;
4415         int ret;
4416
4417         spin_lock_irqsave(&xhci->lock, flags);
4418         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4419                 spin_unlock_irqrestore(&xhci->lock, flags);
4420                 return 0;
4421         }
4422
4423         /* Attempt to issue an Evaluate Context command to change the MEL. */
4424         virt_dev = xhci->devs[udev->slot_id];
4425         command = xhci->lpm_command;
4426         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4427         spin_unlock_irqrestore(&xhci->lock, flags);
4428
4429         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4430         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4431         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4432         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4433         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4434
4435         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4436         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4437         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4438
4439         /* Issue and wait for the evaluate context command. */
4440         ret = xhci_configure_endpoint(xhci, udev, command,
4441                         true, true);
4442         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4443         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4444
4445         if (!ret) {
4446                 spin_lock_irqsave(&xhci->lock, flags);
4447                 virt_dev->current_mel = max_exit_latency;
4448                 spin_unlock_irqrestore(&xhci->lock, flags);
4449         }
4450         return ret;
4451 }
4452
4453 static int calculate_max_exit_latency(struct usb_device *udev,
4454                 enum usb3_link_state state_changed,
4455                 u16 hub_encoded_timeout)
4456 {
4457         unsigned long long u1_mel_us = 0;
4458         unsigned long long u2_mel_us = 0;
4459         unsigned long long mel_us = 0;
4460         bool disabling_u1;
4461         bool disabling_u2;
4462         bool enabling_u1;
4463         bool enabling_u2;
4464
4465         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4466                         hub_encoded_timeout == USB3_LPM_DISABLED);
4467         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4468                         hub_encoded_timeout == USB3_LPM_DISABLED);
4469
4470         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4471                         hub_encoded_timeout != USB3_LPM_DISABLED);
4472         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4473                         hub_encoded_timeout != USB3_LPM_DISABLED);
4474
4475         /* If U1 was already enabled and we're not disabling it,
4476          * or we're going to enable U1, account for the U1 max exit latency.
4477          */
4478         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4479                         enabling_u1)
4480                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4481         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4482                         enabling_u2)
4483                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4484
4485         if (u1_mel_us > u2_mel_us)
4486                 mel_us = u1_mel_us;
4487         else
4488                 mel_us = u2_mel_us;
4489         /* xHCI host controller max exit latency field is only 16 bits wide. */
4490         if (mel_us > MAX_EXIT) {
4491                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4492                                 "is too big.\n", mel_us);
4493                 return -E2BIG;
4494         }
4495         return mel_us;
4496 }
4497
4498 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4499 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4500                         struct usb_device *udev, enum usb3_link_state state)
4501 {
4502         struct xhci_hcd *xhci;
4503         u16 hub_encoded_timeout;
4504         int mel;
4505         int ret;
4506
4507         xhci = hcd_to_xhci(hcd);
4508         /* The LPM timeout values are pretty host-controller specific, so don't
4509          * enable hub-initiated timeouts unless the vendor has provided
4510          * information about their timeout algorithm.
4511          */
4512         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4513                         !xhci->devs[udev->slot_id])
4514                 return USB3_LPM_DISABLED;
4515
4516         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4517         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4518         if (mel < 0) {
4519                 /* Max Exit Latency is too big, disable LPM. */
4520                 hub_encoded_timeout = USB3_LPM_DISABLED;
4521                 mel = 0;
4522         }
4523
4524         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4525         if (ret)
4526                 return ret;
4527         return hub_encoded_timeout;
4528 }
4529
4530 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4531                         struct usb_device *udev, enum usb3_link_state state)
4532 {
4533         struct xhci_hcd *xhci;
4534         u16 mel;
4535         int ret;
4536
4537         xhci = hcd_to_xhci(hcd);
4538         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4539                         !xhci->devs[udev->slot_id])
4540                 return 0;
4541
4542         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4543         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4544         if (ret)
4545                 return ret;
4546         return 0;
4547 }
4548 #else /* CONFIG_PM */
4549
4550 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4551                         struct usb_device *udev, enum usb3_link_state state)
4552 {
4553         return USB3_LPM_DISABLED;
4554 }
4555
4556 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4557                         struct usb_device *udev, enum usb3_link_state state)
4558 {
4559         return 0;
4560 }
4561 #endif  /* CONFIG_PM */
4562
4563 /*-------------------------------------------------------------------------*/
4564
4565 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4566  * internal data structures for the device.
4567  */
4568 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4569                         struct usb_tt *tt, gfp_t mem_flags)
4570 {
4571         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4572         struct xhci_virt_device *vdev;
4573         struct xhci_command *config_cmd;
4574         struct xhci_input_control_ctx *ctrl_ctx;
4575         struct xhci_slot_ctx *slot_ctx;
4576         unsigned long flags;
4577         unsigned think_time;
4578         int ret;
4579
4580         /* Ignore root hubs */
4581         if (!hdev->parent)
4582                 return 0;
4583
4584         vdev = xhci->devs[hdev->slot_id];
4585         if (!vdev) {
4586                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4587                 return -EINVAL;
4588         }
4589         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4590         if (!config_cmd) {
4591                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4592                 return -ENOMEM;
4593         }
4594
4595         spin_lock_irqsave(&xhci->lock, flags);
4596         if (hdev->speed == USB_SPEED_HIGH &&
4597                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4598                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4599                 xhci_free_command(xhci, config_cmd);
4600                 spin_unlock_irqrestore(&xhci->lock, flags);
4601                 return -ENOMEM;
4602         }
4603
4604         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4605         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4606         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4607         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4608         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4609         if (tt->multi)
4610                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4611         if (xhci->hci_version > 0x95) {
4612                 xhci_dbg(xhci, "xHCI version %x needs hub "
4613                                 "TT think time and number of ports\n",
4614                                 (unsigned int) xhci->hci_version);
4615                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4616                 /* Set TT think time - convert from ns to FS bit times.
4617                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4618                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4619                  *
4620                  * xHCI 1.0: this field shall be 0 if the device is not a
4621                  * High-spped hub.
4622                  */
4623                 think_time = tt->think_time;
4624                 if (think_time != 0)
4625                         think_time = (think_time / 666) - 1;
4626                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4627                         slot_ctx->tt_info |=
4628                                 cpu_to_le32(TT_THINK_TIME(think_time));
4629         } else {
4630                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4631                                 "TT think time or number of ports\n",
4632                                 (unsigned int) xhci->hci_version);
4633         }
4634         slot_ctx->dev_state = 0;
4635         spin_unlock_irqrestore(&xhci->lock, flags);
4636
4637         xhci_dbg(xhci, "Set up %s for hub device.\n",
4638                         (xhci->hci_version > 0x95) ?
4639                         "configure endpoint" : "evaluate context");
4640         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4641         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4642
4643         /* Issue and wait for the configure endpoint or
4644          * evaluate context command.
4645          */
4646         if (xhci->hci_version > 0x95)
4647                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4648                                 false, false);
4649         else
4650                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4651                                 true, false);
4652
4653         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4654         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4655
4656         xhci_free_command(xhci, config_cmd);
4657         return ret;
4658 }
4659
4660 int xhci_get_frame(struct usb_hcd *hcd)
4661 {
4662         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4663         /* EHCI mods by the periodic size.  Why? */
4664         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4665 }
4666
4667 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4668 {
4669         struct xhci_hcd         *xhci;
4670         struct device           *dev = hcd->self.controller;
4671         int                     retval;
4672         u32                     temp;
4673
4674         /* Accept arbitrarily long scatter-gather lists */
4675         hcd->self.sg_tablesize = ~0;
4676         /* XHCI controllers don't stop the ep queue on short packets :| */
4677         hcd->self.no_stop_on_short = 1;
4678
4679         if (usb_hcd_is_primary_hcd(hcd)) {
4680                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4681                 if (!xhci)
4682                         return -ENOMEM;
4683                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4684                 xhci->main_hcd = hcd;
4685                 /* Mark the first roothub as being USB 2.0.
4686                  * The xHCI driver will register the USB 3.0 roothub.
4687                  */
4688                 hcd->speed = HCD_USB2;
4689                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4690                 /*
4691                  * USB 2.0 roothub under xHCI has an integrated TT,
4692                  * (rate matching hub) as opposed to having an OHCI/UHCI
4693                  * companion controller.
4694                  */
4695                 hcd->has_tt = 1;
4696         } else {
4697                 /* xHCI private pointer was set in xhci_pci_probe for the second
4698                  * registered roothub.
4699                  */
4700                 xhci = hcd_to_xhci(hcd);
4701                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4702                 if (HCC_64BIT_ADDR(temp)) {
4703                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4704                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4705                 } else {
4706                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4707                 }
4708                 return 0;
4709         }
4710
4711         xhci->cap_regs = hcd->regs;
4712         xhci->op_regs = hcd->regs +
4713                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4714         xhci->run_regs = hcd->regs +
4715                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4716         /* Cache read-only capability registers */
4717         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4718         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4719         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4720         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4721         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4722         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4723         xhci_print_registers(xhci);
4724
4725         get_quirks(dev, xhci);
4726
4727         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4728          * success event after a short transfer. This quirk will ignore such
4729          * spurious event.
4730          */
4731         if (xhci->hci_version > 0x96)
4732                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4733
4734         /* Make sure the HC is halted. */
4735         retval = xhci_halt(xhci);
4736         if (retval)
4737                 goto error;
4738
4739         xhci_dbg(xhci, "Resetting HCD\n");
4740         /* Reset the internal HC memory state and registers. */
4741         retval = xhci_reset(xhci);
4742         if (retval)
4743                 goto error;
4744         xhci_dbg(xhci, "Reset complete\n");
4745
4746         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4747         if (HCC_64BIT_ADDR(temp)) {
4748                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4749                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4750         } else {
4751                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4752         }
4753
4754         xhci_dbg(xhci, "Calling HCD init\n");
4755         /* Initialize HCD and host controller data structures. */
4756         retval = xhci_init(hcd);
4757         if (retval)
4758                 goto error;
4759         xhci_dbg(xhci, "Called HCD init\n");
4760         return 0;
4761 error:
4762         kfree(xhci);
4763         return retval;
4764 }
4765
4766 MODULE_DESCRIPTION(DRIVER_DESC);
4767 MODULE_AUTHOR(DRIVER_AUTHOR);
4768 MODULE_LICENSE("GPL");
4769
4770 static int __init xhci_hcd_init(void)
4771 {
4772         int retval;
4773
4774         retval = xhci_register_pci();
4775         if (retval < 0) {
4776                 printk(KERN_DEBUG "Problem registering PCI driver.");
4777                 return retval;
4778         }
4779         retval = xhci_register_plat();
4780         if (retval < 0) {
4781                 printk(KERN_DEBUG "Problem registering platform driver.");
4782                 goto unreg_pci;
4783         }
4784         /*
4785          * Check the compiler generated sizes of structures that must be laid
4786          * out in specific ways for hardware access.
4787          */
4788         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4789         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4790         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4791         /* xhci_device_control has eight fields, and also
4792          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4793          */
4794         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4795         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4796         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4797         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4798         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4799         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4800         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4801         return 0;
4802 unreg_pci:
4803         xhci_unregister_pci();
4804         return retval;
4805 }
4806 module_init(xhci_hcd_init);
4807
4808 static void __exit xhci_hcd_cleanup(void)
4809 {
4810         xhci_unregister_pci();
4811         xhci_unregister_plat();
4812 }
4813 module_exit(xhci_hcd_cleanup);