xhci: Add a global command queue
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62                       u32 mask, u32 done, int usec)
63 {
64         u32     result;
65
66         do {
67                 result = readl(ptr);
68                 if (result == ~(u32)0)          /* card removed */
69                         return -ENODEV;
70                 result &= mask;
71                 if (result == done)
72                         return 0;
73                 udelay(1);
74                 usec--;
75         } while (usec > 0);
76         return -ETIMEDOUT;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(xhci, &xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(xhci, &xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149         return ret;
150 }
151
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161         u32 command;
162         u32 state;
163         int ret, i;
164
165         state = readl(&xhci->op_regs->status);
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         ret = xhci_handshake(xhci, &xhci->op_regs->command,
177                         CMD_RESET, 0, 10 * 1000 * 1000);
178         if (ret)
179                 return ret;
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182                          "Wait for controller to be ready for doorbell rings");
183         /*
184          * xHCI cannot write to any doorbells or operational registers other
185          * than status until the "Controller Not Ready" flag is cleared.
186          */
187         ret = xhci_handshake(xhci, &xhci->op_regs->status,
188                         STS_CNR, 0, 10 * 1000 * 1000);
189
190         for (i = 0; i < 2; ++i) {
191                 xhci->bus_state[i].port_c_suspend = 0;
192                 xhci->bus_state[i].suspended_ports = 0;
193                 xhci->bus_state[i].resuming_ports = 0;
194         }
195
196         return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202         int i;
203
204         if (!xhci->msix_entries)
205                 return -EINVAL;
206
207         for (i = 0; i < xhci->msix_count; i++)
208                 if (xhci->msix_entries[i].vector)
209                         free_irq(xhci->msix_entries[i].vector,
210                                         xhci_to_hcd(xhci));
211         return 0;
212 }
213
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222         ret = pci_enable_msi(pdev);
223         if (ret) {
224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225                                 "failed to allocate MSI entry");
226                 return ret;
227         }
228
229         ret = request_irq(pdev->irq, xhci_msi_irq,
230                                 0, "xhci_hcd", xhci_to_hcd(xhci));
231         if (ret) {
232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233                                 "disable MSI interrupt");
234                 pci_disable_msi(pdev);
235         }
236
237         return ret;
238 }
239
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247         int ret;
248
249         /* return if using legacy interrupt */
250         if (xhci_to_hcd(xhci)->irq > 0)
251                 return;
252
253         ret = xhci_free_msi(xhci);
254         if (!ret)
255                 return;
256         if (pdev->irq > 0)
257                 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259         return;
260 }
261
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267         int i, ret = 0;
268         struct usb_hcd *hcd = xhci_to_hcd(xhci);
269         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271         /*
272          * calculate number of msi-x vectors supported.
273          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274          *   with max number of interrupters based on the xhci HCSPARAMS1.
275          * - num_online_cpus: maximum msi-x vectors per CPUs core.
276          *   Add additional 1 vector to ensure always available interrupt.
277          */
278         xhci->msix_count = min(num_online_cpus() + 1,
279                                 HCS_MAX_INTRS(xhci->hcs_params1));
280
281         xhci->msix_entries =
282                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283                                 GFP_KERNEL);
284         if (!xhci->msix_entries) {
285                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286                 return -ENOMEM;
287         }
288
289         for (i = 0; i < xhci->msix_count; i++) {
290                 xhci->msix_entries[i].entry = i;
291                 xhci->msix_entries[i].vector = 0;
292         }
293
294         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295         if (ret) {
296                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297                                 "Failed to enable MSI-X");
298                 goto free_entries;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 ret = request_irq(xhci->msix_entries[i].vector,
303                                 xhci_msi_irq,
304                                 0, "xhci_hcd", xhci_to_hcd(xhci));
305                 if (ret)
306                         goto disable_msix;
307         }
308
309         hcd->msix_enabled = 1;
310         return ret;
311
312 disable_msix:
313         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314         xhci_free_irq(xhci);
315         pci_disable_msix(pdev);
316 free_entries:
317         kfree(xhci->msix_entries);
318         xhci->msix_entries = NULL;
319         return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         if (xhci->quirks & XHCI_PLAT)
329                 return;
330
331         xhci_free_irq(xhci);
332
333         if (xhci->msix_entries) {
334                 pci_disable_msix(pdev);
335                 kfree(xhci->msix_entries);
336                 xhci->msix_entries = NULL;
337         } else {
338                 pci_disable_msi(pdev);
339         }
340
341         hcd->msix_enabled = 0;
342         return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347         int i;
348
349         if (xhci->msix_entries) {
350                 for (i = 0; i < xhci->msix_count; i++)
351                         synchronize_irq(xhci->msix_entries[i].vector);
352         }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358         struct pci_dev  *pdev;
359         int ret;
360
361         /* The xhci platform device has set up IRQs through usb_add_hcd. */
362         if (xhci->quirks & XHCI_PLAT)
363                 return 0;
364
365         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366         /*
367          * Some Fresco Logic host controllers advertise MSI, but fail to
368          * generate interrupts.  Don't even try to enable MSI.
369          */
370         if (xhci->quirks & XHCI_BROKEN_MSI)
371                 goto legacy_irq;
372
373         /* unregister the legacy interrupt */
374         if (hcd->irq)
375                 free_irq(hcd->irq, hcd);
376         hcd->irq = 0;
377
378         ret = xhci_setup_msix(xhci);
379         if (ret)
380                 /* fall back to msi*/
381                 ret = xhci_setup_msi(xhci);
382
383         if (!ret)
384                 /* hcd->irq is 0, we have MSI */
385                 return 0;
386
387         if (!pdev->irq) {
388                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389                 return -EINVAL;
390         }
391
392  legacy_irq:
393         if (!strlen(hcd->irq_descr))
394                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395                          hcd->driver->description, hcd->self.busnum);
396
397         /* fall back to legacy interrupt*/
398         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399                         hcd->irq_descr, hcd);
400         if (ret) {
401                 xhci_err(xhci, "request interrupt %d failed\n",
402                                 pdev->irq);
403                 return ret;
404         }
405         hcd->irq = pdev->irq;
406         return 0;
407 }
408
409 #else
410
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413         return 0;
414 }
415
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423
424 #endif
425
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428         struct xhci_hcd *xhci;
429         struct usb_hcd *hcd;
430         u32 temp;
431         int i;
432
433         xhci = (struct xhci_hcd *)arg;
434
435         for (i = 0; i < xhci->num_usb3_ports; i++) {
436                 temp = readl(xhci->usb3_ports[i]);
437                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438                         /*
439                          * Compliance Mode Detected. Letting USB Core
440                          * handle the Warm Reset
441                          */
442                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443                                         "Compliance mode detected->port %d",
444                                         i + 1);
445                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446                                         "Attempting compliance mode recovery");
447                         hcd = xhci->shared_hcd;
448
449                         if (hcd->state == HC_STATE_SUSPENDED)
450                                 usb_hcd_resume_root_hub(hcd);
451
452                         usb_hcd_poll_rh_status(hcd);
453                 }
454         }
455
456         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457                 mod_timer(&xhci->comp_mode_recovery_timer,
458                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473         xhci->port_status_u0 = 0;
474         init_timer(&xhci->comp_mode_recovery_timer);
475
476         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478         xhci->comp_mode_recovery_timer.expires = jiffies +
479                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481         set_timer_slack(&xhci->comp_mode_recovery_timer,
482                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483         add_timer(&xhci->comp_mode_recovery_timer);
484         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485                         "Compliance mode recovery timer initialized");
486 }
487
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496         const char *dmi_product_name, *dmi_sys_vendor;
497
498         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500         if (!dmi_product_name || !dmi_sys_vendor)
501                 return false;
502
503         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504                 return false;
505
506         if (strstr(dmi_product_name, "Z420") ||
507                         strstr(dmi_product_name, "Z620") ||
508                         strstr(dmi_product_name, "Z820") ||
509                         strstr(dmi_product_name, "Z1 Workstation"))
510                 return true;
511
512         return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531         int retval = 0;
532
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534         spin_lock_init(&xhci->lock);
535         if (xhci->hci_version == 0x95 && link_quirk) {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537                                 "QUIRK: Not clearing Link TRB chain bits.");
538                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539         } else {
540                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541                                 "xHCI doesn't need link TRB QUIRK");
542         }
543         retval = xhci_mem_init(xhci, GFP_KERNEL);
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546         /* Initializing Compliance Mode Recovery Data If Needed */
547         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549                 compliance_mode_recovery_timer_init(xhci);
550         }
551
552         return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560         if (xhci_start(xhci)) {
561                 xhci_halt(xhci);
562                 return -ENODEV;
563         }
564         xhci->shared_hcd->state = HC_STATE_RUNNING;
565         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567         if (xhci->quirks & XHCI_NEC_HOST)
568                 xhci_ring_cmd_db(xhci);
569
570         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571                         "Finished xhci_run for USB3 roothub");
572         return 0;
573 }
574
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589         u32 temp;
590         u64 temp_64;
591         int ret;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         /* Start the xHCI host controller running only after the USB 2.0 roothub
595          * is setup.
596          */
597
598         hcd->uses_new_polling = 1;
599         if (!usb_hcd_is_primary_hcd(hcd))
600                 return xhci_run_finished(xhci);
601
602         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604         ret = xhci_try_enable_msi(hcd);
605         if (ret)
606                 return ret;
607
608         xhci_dbg(xhci, "Command ring memory map follows:\n");
609         xhci_debug_ring(xhci, xhci->cmd_ring);
610         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611         xhci_dbg_cmd_ptrs(xhci);
612
613         xhci_dbg(xhci, "ERST memory map follows:\n");
614         xhci_dbg_erst(xhci, &xhci->erst);
615         xhci_dbg(xhci, "Event ring:\n");
616         xhci_debug_ring(xhci, xhci->event_ring);
617         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619         temp_64 &= ~ERST_PTR_MASK;
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Set the interrupt modulation register");
625         temp = readl(&xhci->ir_set->irq_control);
626         temp &= ~ER_IRQ_INTERVAL_MASK;
627         temp |= (u32) 160;
628         writel(temp, &xhci->ir_set->irq_control);
629
630         /* Set the HCD state before we enable the irqs */
631         temp = readl(&xhci->op_regs->command);
632         temp |= (CMD_EIE);
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Enable interrupts, cmd = 0x%x.", temp);
635         writel(temp, &xhci->op_regs->command);
636
637         temp = readl(&xhci->ir_set->irq_pending);
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642         xhci_print_ir_set(xhci, 0);
643
644         if (xhci->quirks & XHCI_NEC_HOST) {
645                 struct xhci_command *command;
646                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647                 if (!command)
648                         return -ENOMEM;
649                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650                                 TRB_TYPE(TRB_NEC_GET_FW));
651         }
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653                         "Finished xhci_run for USB2 roothub");
654         return 0;
655 }
656
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660
661         spin_lock_irq(&xhci->lock);
662         xhci_halt(xhci);
663
664         /* The shared_hcd is going to be deallocated shortly (the USB core only
665          * calls this function when allocation fails in usb_add_hcd(), or
666          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
667          */
668         xhci->shared_hcd = NULL;
669         spin_unlock_irq(&xhci->lock);
670 }
671
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683         u32 temp;
684         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686         if (!usb_hcd_is_primary_hcd(hcd)) {
687                 xhci_only_stop_hcd(xhci->shared_hcd);
688                 return;
689         }
690
691         spin_lock_irq(&xhci->lock);
692         /* Make sure the xHC is halted for a USB3 roothub
693          * (xhci_stop() could be called as part of failed init).
694          */
695         xhci_halt(xhci);
696         xhci_reset(xhci);
697         spin_unlock_irq(&xhci->lock);
698
699         xhci_cleanup_msix(xhci);
700
701         /* Deleting Compliance Mode Recovery Timer */
702         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703                         (!(xhci_all_ports_seen_u0(xhci)))) {
704                 del_timer_sync(&xhci->comp_mode_recovery_timer);
705                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706                                 "%s: compliance mode recovery timer deleted",
707                                 __func__);
708         }
709
710         if (xhci->quirks & XHCI_AMD_PLL_FIX)
711                 usb_amd_dev_put();
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714                         "// Disabling event ring interrupts");
715         temp = readl(&xhci->op_regs->status);
716         writel(temp & ~STS_EINT, &xhci->op_regs->status);
717         temp = readl(&xhci->ir_set->irq_pending);
718         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719         xhci_print_ir_set(xhci, 0);
720
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722         xhci_mem_cleanup(xhci);
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724                         "xhci_stop completed - status = %x",
725                         readl(&xhci->op_regs->status));
726 }
727
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740
741         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743
744         spin_lock_irq(&xhci->lock);
745         xhci_halt(xhci);
746         /* Workaround for spurious wakeups at shutdown with HSW */
747         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748                 xhci_reset(xhci);
749         spin_unlock_irq(&xhci->lock);
750
751         xhci_cleanup_msix(xhci);
752
753         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754                         "xhci_shutdown completed - status = %x",
755                         readl(&xhci->op_regs->status));
756
757         /* Yet another workaround for spurious wakeups at shutdown with HSW */
758         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765         xhci->s3.command = readl(&xhci->op_regs->command);
766         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778         writel(xhci->s3.command, &xhci->op_regs->command);
779         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791         u64     val_64;
792
793         /* step 2: initialize command ring buffer */
794         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797                                       xhci->cmd_ring->dequeue) &
798                  (u64) ~CMD_RING_RSVD_BITS) |
799                 xhci->cmd_ring->cycle_state;
800         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801                         "// Setting command ring address to 0x%llx",
802                         (long unsigned long) val_64);
803         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817         struct xhci_ring *ring;
818         struct xhci_segment *seg;
819
820         ring = xhci->cmd_ring;
821         seg = ring->deq_seg;
822         do {
823                 memset(seg->trbs, 0,
824                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826                         cpu_to_le32(~TRB_CYCLE);
827                 seg = seg->next;
828         } while (seg != ring->deq_seg);
829
830         /* Reset the software enqueue and dequeue pointers */
831         ring->deq_seg = ring->first_seg;
832         ring->dequeue = ring->first_seg->trbs;
833         ring->enq_seg = ring->deq_seg;
834         ring->enqueue = ring->dequeue;
835
836         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837         /*
838          * Ring is now zeroed, so the HW should look for change of ownership
839          * when the cycle bit is set to 1.
840          */
841         ring->cycle_state = 1;
842
843         /*
844          * Reset the hardware dequeue pointer.
845          * Yes, this will need to be re-written after resume, but we're paranoid
846          * and want to make sure the hardware doesn't access bogus memory
847          * because, say, the BIOS or an SMI started the host without changing
848          * the command ring pointers.
849          */
850         xhci_set_cmd_ring_deq(xhci);
851 }
852
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861         int                     rc = 0;
862         unsigned int            delay = XHCI_MAX_HALT_USEC;
863         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
864         u32                     command;
865
866         if (hcd->state != HC_STATE_SUSPENDED ||
867                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868                 return -EINVAL;
869
870         /* Don't poll the roothubs on bus suspend. */
871         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873         del_timer_sync(&hcd->rh_timer);
874
875         spin_lock_irq(&xhci->lock);
876         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878         /* step 1: stop endpoint */
879         /* skipped assuming that port suspend has done */
880
881         /* step 2: clear Run/Stop bit */
882         command = readl(&xhci->op_regs->command);
883         command &= ~CMD_RUN;
884         writel(command, &xhci->op_regs->command);
885
886         /* Some chips from Fresco Logic need an extraordinary delay */
887         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888
889         if (xhci_handshake(xhci, &xhci->op_regs->status,
890                       STS_HALT, STS_HALT, delay)) {
891                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892                 spin_unlock_irq(&xhci->lock);
893                 return -ETIMEDOUT;
894         }
895         xhci_clear_command_ring(xhci);
896
897         /* step 3: save registers */
898         xhci_save_registers(xhci);
899
900         /* step 4: set CSS flag */
901         command = readl(&xhci->op_regs->command);
902         command |= CMD_CSS;
903         writel(command, &xhci->op_regs->command);
904         if (xhci_handshake(xhci, &xhci->op_regs->status,
905                                 STS_SAVE, 0, 10 * 1000)) {
906                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
907                 spin_unlock_irq(&xhci->lock);
908                 return -ETIMEDOUT;
909         }
910         spin_unlock_irq(&xhci->lock);
911
912         /*
913          * Deleting Compliance Mode Recovery Timer because the xHCI Host
914          * is about to be suspended.
915          */
916         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917                         (!(xhci_all_ports_seen_u0(xhci)))) {
918                 del_timer_sync(&xhci->comp_mode_recovery_timer);
919                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920                                 "%s: compliance mode recovery timer deleted",
921                                 __func__);
922         }
923
924         /* step 5: remove core well power */
925         /* synchronize irq when using MSI-X */
926         xhci_msix_sync_irqs(xhci);
927
928         return rc;
929 }
930
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939         u32                     command, temp = 0;
940         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
941         struct usb_hcd          *secondary_hcd;
942         int                     retval = 0;
943         bool                    comp_timer_running = false;
944
945         /* Wait a bit if either of the roothubs need to settle from the
946          * transition into bus suspend.
947          */
948         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949                         time_before(jiffies,
950                                 xhci->bus_state[1].next_statechange))
951                 msleep(100);
952
953         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955
956         spin_lock_irq(&xhci->lock);
957         if (xhci->quirks & XHCI_RESET_ON_RESUME)
958                 hibernated = true;
959
960         if (!hibernated) {
961                 /* step 1: restore register */
962                 xhci_restore_registers(xhci);
963                 /* step 2: initialize command ring buffer */
964                 xhci_set_cmd_ring_deq(xhci);
965                 /* step 3: restore state and start state*/
966                 /* step 3: set CRS flag */
967                 command = readl(&xhci->op_regs->command);
968                 command |= CMD_CRS;
969                 writel(command, &xhci->op_regs->command);
970                 if (xhci_handshake(xhci, &xhci->op_regs->status,
971                               STS_RESTORE, 0, 10 * 1000)) {
972                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973                         spin_unlock_irq(&xhci->lock);
974                         return -ETIMEDOUT;
975                 }
976                 temp = readl(&xhci->op_regs->status);
977         }
978
979         /* If restore operation fails, re-initialize the HC during resume */
980         if ((temp & STS_SRE) || hibernated) {
981
982                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983                                 !(xhci_all_ports_seen_u0(xhci))) {
984                         del_timer_sync(&xhci->comp_mode_recovery_timer);
985                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986                                 "Compliance Mode Recovery Timer deleted!");
987                 }
988
989                 /* Let the USB core know _both_ roothubs lost power. */
990                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992
993                 xhci_dbg(xhci, "Stop HCD\n");
994                 xhci_halt(xhci);
995                 xhci_reset(xhci);
996                 spin_unlock_irq(&xhci->lock);
997                 xhci_cleanup_msix(xhci);
998
999                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000                 temp = readl(&xhci->op_regs->status);
1001                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002                 temp = readl(&xhci->ir_set->irq_pending);
1003                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004                 xhci_print_ir_set(xhci, 0);
1005
1006                 xhci_dbg(xhci, "cleaning up memory\n");
1007                 xhci_mem_cleanup(xhci);
1008                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009                             readl(&xhci->op_regs->status));
1010
1011                 /* USB core calls the PCI reinit and start functions twice:
1012                  * first with the primary HCD, and then with the secondary HCD.
1013                  * If we don't do the same, the host will never be started.
1014                  */
1015                 if (!usb_hcd_is_primary_hcd(hcd))
1016                         secondary_hcd = hcd;
1017                 else
1018                         secondary_hcd = xhci->shared_hcd;
1019
1020                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021                 retval = xhci_init(hcd->primary_hcd);
1022                 if (retval)
1023                         return retval;
1024                 comp_timer_running = true;
1025
1026                 xhci_dbg(xhci, "Start the primary HCD\n");
1027                 retval = xhci_run(hcd->primary_hcd);
1028                 if (!retval) {
1029                         xhci_dbg(xhci, "Start the secondary HCD\n");
1030                         retval = xhci_run(secondary_hcd);
1031                 }
1032                 hcd->state = HC_STATE_SUSPENDED;
1033                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034                 goto done;
1035         }
1036
1037         /* step 4: set Run/Stop bit */
1038         command = readl(&xhci->op_regs->command);
1039         command |= CMD_RUN;
1040         writel(command, &xhci->op_regs->command);
1041         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042                   0, 250 * 1000);
1043
1044         /* step 5: walk topology and initialize portsc,
1045          * portpmsc and portli
1046          */
1047         /* this is done in bus_resume */
1048
1049         /* step 6: restart each of the previously
1050          * Running endpoints by ringing their doorbells
1051          */
1052
1053         spin_unlock_irq(&xhci->lock);
1054
1055  done:
1056         if (retval == 0) {
1057                 usb_hcd_resume_root_hub(hcd);
1058                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1059         }
1060
1061         /*
1062          * If system is subject to the Quirk, Compliance Mode Timer needs to
1063          * be re-initialized Always after a system resume. Ports are subject
1064          * to suffer the Compliance Mode issue again. It doesn't matter if
1065          * ports have entered previously to U0 before system's suspension.
1066          */
1067         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1068                 compliance_mode_recovery_timer_init(xhci);
1069
1070         /* Re-enable port polling. */
1071         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1072         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1073         usb_hcd_poll_rh_status(hcd);
1074
1075         return retval;
1076 }
1077 #endif  /* CONFIG_PM */
1078
1079 /*-------------------------------------------------------------------------*/
1080
1081 /**
1082  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1083  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1084  * value to right shift 1 for the bitmask.
1085  *
1086  * Index  = (epnum * 2) + direction - 1,
1087  * where direction = 0 for OUT, 1 for IN.
1088  * For control endpoints, the IN index is used (OUT index is unused), so
1089  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1090  */
1091 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1092 {
1093         unsigned int index;
1094         if (usb_endpoint_xfer_control(desc))
1095                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1096         else
1097                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1098                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1099         return index;
1100 }
1101
1102 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1103  * address from the XHCI endpoint index.
1104  */
1105 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1106 {
1107         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1108         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1109         return direction | number;
1110 }
1111
1112 /* Find the flag for this endpoint (for use in the control context).  Use the
1113  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1114  * bit 1, etc.
1115  */
1116 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1117 {
1118         return 1 << (xhci_get_endpoint_index(desc) + 1);
1119 }
1120
1121 /* Find the flag for this endpoint (for use in the control context).  Use the
1122  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1123  * bit 1, etc.
1124  */
1125 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1126 {
1127         return 1 << (ep_index + 1);
1128 }
1129
1130 /* Compute the last valid endpoint context index.  Basically, this is the
1131  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1132  * we find the most significant bit set in the added contexts flags.
1133  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1134  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1135  */
1136 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1137 {
1138         return fls(added_ctxs) - 1;
1139 }
1140
1141 /* Returns 1 if the arguments are OK;
1142  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1143  */
1144 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1145                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1146                 const char *func) {
1147         struct xhci_hcd *xhci;
1148         struct xhci_virt_device *virt_dev;
1149
1150         if (!hcd || (check_ep && !ep) || !udev) {
1151                 pr_debug("xHCI %s called with invalid args\n", func);
1152                 return -EINVAL;
1153         }
1154         if (!udev->parent) {
1155                 pr_debug("xHCI %s called for root hub\n", func);
1156                 return 0;
1157         }
1158
1159         xhci = hcd_to_xhci(hcd);
1160         if (check_virt_dev) {
1161                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1162                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1163                                         func);
1164                         return -EINVAL;
1165                 }
1166
1167                 virt_dev = xhci->devs[udev->slot_id];
1168                 if (virt_dev->udev != udev) {
1169                         xhci_dbg(xhci, "xHCI %s called with udev and "
1170                                           "virt_dev does not match\n", func);
1171                         return -EINVAL;
1172                 }
1173         }
1174
1175         if (xhci->xhc_state & XHCI_STATE_HALTED)
1176                 return -ENODEV;
1177
1178         return 1;
1179 }
1180
1181 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1182                 struct usb_device *udev, struct xhci_command *command,
1183                 bool ctx_change, bool must_succeed);
1184
1185 /*
1186  * Full speed devices may have a max packet size greater than 8 bytes, but the
1187  * USB core doesn't know that until it reads the first 8 bytes of the
1188  * descriptor.  If the usb_device's max packet size changes after that point,
1189  * we need to issue an evaluate context command and wait on it.
1190  */
1191 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1192                 unsigned int ep_index, struct urb *urb)
1193 {
1194         struct xhci_container_ctx *out_ctx;
1195         struct xhci_input_control_ctx *ctrl_ctx;
1196         struct xhci_ep_ctx *ep_ctx;
1197         struct xhci_command *command;
1198         int max_packet_size;
1199         int hw_max_packet_size;
1200         int ret = 0;
1201
1202         out_ctx = xhci->devs[slot_id]->out_ctx;
1203         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1204         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1205         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1206         if (hw_max_packet_size != max_packet_size) {
1207                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1208                                 "Max Packet Size for ep 0 changed.");
1209                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1210                                 "Max packet size in usb_device = %d",
1211                                 max_packet_size);
1212                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1213                                 "Max packet size in xHCI HW = %d",
1214                                 hw_max_packet_size);
1215                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1216                                 "Issuing evaluate context command.");
1217
1218                 /* Set up the input context flags for the command */
1219                 /* FIXME: This won't work if a non-default control endpoint
1220                  * changes max packet sizes.
1221                  */
1222
1223                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1224                 if (!command)
1225                         return -ENOMEM;
1226
1227                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1228                 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1229                 if (!ctrl_ctx) {
1230                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1231                                         __func__);
1232                         ret = -ENOMEM;
1233                         goto command_cleanup;
1234                 }
1235                 /* Set up the modified control endpoint 0 */
1236                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1237                                 xhci->devs[slot_id]->out_ctx, ep_index);
1238
1239                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1240                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1241                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1242
1243                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1244                 ctrl_ctx->drop_flags = 0;
1245
1246                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1247                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1248                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1249                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1250
1251                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1252                                 true, false);
1253
1254                 /* Clean up the input context for later use by bandwidth
1255                  * functions.
1256                  */
1257                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1258 command_cleanup:
1259                 kfree(command->completion);
1260                 kfree(command);
1261         }
1262         return ret;
1263 }
1264
1265 /*
1266  * non-error returns are a promise to giveback() the urb later
1267  * we drop ownership so next owner (or urb unlink) can get it
1268  */
1269 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1270 {
1271         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1272         struct xhci_td *buffer;
1273         unsigned long flags;
1274         int ret = 0;
1275         unsigned int slot_id, ep_index;
1276         struct urb_priv *urb_priv;
1277         int size, i;
1278
1279         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1280                                         true, true, __func__) <= 0)
1281                 return -EINVAL;
1282
1283         slot_id = urb->dev->slot_id;
1284         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1285
1286         if (!HCD_HW_ACCESSIBLE(hcd)) {
1287                 if (!in_interrupt())
1288                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1289                 ret = -ESHUTDOWN;
1290                 goto exit;
1291         }
1292
1293         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1294                 size = urb->number_of_packets;
1295         else
1296                 size = 1;
1297
1298         urb_priv = kzalloc(sizeof(struct urb_priv) +
1299                                   size * sizeof(struct xhci_td *), mem_flags);
1300         if (!urb_priv)
1301                 return -ENOMEM;
1302
1303         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1304         if (!buffer) {
1305                 kfree(urb_priv);
1306                 return -ENOMEM;
1307         }
1308
1309         for (i = 0; i < size; i++) {
1310                 urb_priv->td[i] = buffer;
1311                 buffer++;
1312         }
1313
1314         urb_priv->length = size;
1315         urb_priv->td_cnt = 0;
1316         urb->hcpriv = urb_priv;
1317
1318         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1319                 /* Check to see if the max packet size for the default control
1320                  * endpoint changed during FS device enumeration
1321                  */
1322                 if (urb->dev->speed == USB_SPEED_FULL) {
1323                         ret = xhci_check_maxpacket(xhci, slot_id,
1324                                         ep_index, urb);
1325                         if (ret < 0) {
1326                                 xhci_urb_free_priv(xhci, urb_priv);
1327                                 urb->hcpriv = NULL;
1328                                 return ret;
1329                         }
1330                 }
1331
1332                 /* We have a spinlock and interrupts disabled, so we must pass
1333                  * atomic context to this function, which may allocate memory.
1334                  */
1335                 spin_lock_irqsave(&xhci->lock, flags);
1336                 if (xhci->xhc_state & XHCI_STATE_DYING)
1337                         goto dying;
1338                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1339                                 slot_id, ep_index);
1340                 if (ret)
1341                         goto free_priv;
1342                 spin_unlock_irqrestore(&xhci->lock, flags);
1343         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1344                 spin_lock_irqsave(&xhci->lock, flags);
1345                 if (xhci->xhc_state & XHCI_STATE_DYING)
1346                         goto dying;
1347                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1348                                 EP_GETTING_STREAMS) {
1349                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1350                                         "is transitioning to using streams.\n");
1351                         ret = -EINVAL;
1352                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1353                                 EP_GETTING_NO_STREAMS) {
1354                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1355                                         "is transitioning to "
1356                                         "not having streams.\n");
1357                         ret = -EINVAL;
1358                 } else {
1359                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1360                                         slot_id, ep_index);
1361                 }
1362                 if (ret)
1363                         goto free_priv;
1364                 spin_unlock_irqrestore(&xhci->lock, flags);
1365         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1366                 spin_lock_irqsave(&xhci->lock, flags);
1367                 if (xhci->xhc_state & XHCI_STATE_DYING)
1368                         goto dying;
1369                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1370                                 slot_id, ep_index);
1371                 if (ret)
1372                         goto free_priv;
1373                 spin_unlock_irqrestore(&xhci->lock, flags);
1374         } else {
1375                 spin_lock_irqsave(&xhci->lock, flags);
1376                 if (xhci->xhc_state & XHCI_STATE_DYING)
1377                         goto dying;
1378                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1379                                 slot_id, ep_index);
1380                 if (ret)
1381                         goto free_priv;
1382                 spin_unlock_irqrestore(&xhci->lock, flags);
1383         }
1384 exit:
1385         return ret;
1386 dying:
1387         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1388                         "non-responsive xHCI host.\n",
1389                         urb->ep->desc.bEndpointAddress, urb);
1390         ret = -ESHUTDOWN;
1391 free_priv:
1392         xhci_urb_free_priv(xhci, urb_priv);
1393         urb->hcpriv = NULL;
1394         spin_unlock_irqrestore(&xhci->lock, flags);
1395         return ret;
1396 }
1397
1398 /* Get the right ring for the given URB.
1399  * If the endpoint supports streams, boundary check the URB's stream ID.
1400  * If the endpoint doesn't support streams, return the singular endpoint ring.
1401  */
1402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1403                 struct urb *urb)
1404 {
1405         unsigned int slot_id;
1406         unsigned int ep_index;
1407         unsigned int stream_id;
1408         struct xhci_virt_ep *ep;
1409
1410         slot_id = urb->dev->slot_id;
1411         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1412         stream_id = urb->stream_id;
1413         ep = &xhci->devs[slot_id]->eps[ep_index];
1414         /* Common case: no streams */
1415         if (!(ep->ep_state & EP_HAS_STREAMS))
1416                 return ep->ring;
1417
1418         if (stream_id == 0) {
1419                 xhci_warn(xhci,
1420                                 "WARN: Slot ID %u, ep index %u has streams, "
1421                                 "but URB has no stream ID.\n",
1422                                 slot_id, ep_index);
1423                 return NULL;
1424         }
1425
1426         if (stream_id < ep->stream_info->num_streams)
1427                 return ep->stream_info->stream_rings[stream_id];
1428
1429         xhci_warn(xhci,
1430                         "WARN: Slot ID %u, ep index %u has "
1431                         "stream IDs 1 to %u allocated, "
1432                         "but stream ID %u is requested.\n",
1433                         slot_id, ep_index,
1434                         ep->stream_info->num_streams - 1,
1435                         stream_id);
1436         return NULL;
1437 }
1438
1439 /*
1440  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1441  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1442  * should pick up where it left off in the TD, unless a Set Transfer Ring
1443  * Dequeue Pointer is issued.
1444  *
1445  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1446  * the ring.  Since the ring is a contiguous structure, they can't be physically
1447  * removed.  Instead, there are two options:
1448  *
1449  *  1) If the HC is in the middle of processing the URB to be canceled, we
1450  *     simply move the ring's dequeue pointer past those TRBs using the Set
1451  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1452  *     when drivers timeout on the last submitted URB and attempt to cancel.
1453  *
1454  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1455  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1456  *     HC will need to invalidate the any TRBs it has cached after the stop
1457  *     endpoint command, as noted in the xHCI 0.95 errata.
1458  *
1459  *  3) The TD may have completed by the time the Stop Endpoint Command
1460  *     completes, so software needs to handle that case too.
1461  *
1462  * This function should protect against the TD enqueueing code ringing the
1463  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1464  * It also needs to account for multiple cancellations on happening at the same
1465  * time for the same endpoint.
1466  *
1467  * Note that this function can be called in any context, or so says
1468  * usb_hcd_unlink_urb()
1469  */
1470 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1471 {
1472         unsigned long flags;
1473         int ret, i;
1474         u32 temp;
1475         struct xhci_hcd *xhci;
1476         struct urb_priv *urb_priv;
1477         struct xhci_td *td;
1478         unsigned int ep_index;
1479         struct xhci_ring *ep_ring;
1480         struct xhci_virt_ep *ep;
1481         struct xhci_command *command;
1482
1483         xhci = hcd_to_xhci(hcd);
1484         spin_lock_irqsave(&xhci->lock, flags);
1485         /* Make sure the URB hasn't completed or been unlinked already */
1486         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1487         if (ret || !urb->hcpriv)
1488                 goto done;
1489         temp = readl(&xhci->op_regs->status);
1490         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1491                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1492                                 "HW died, freeing TD.");
1493                 urb_priv = urb->hcpriv;
1494                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1495                         td = urb_priv->td[i];
1496                         if (!list_empty(&td->td_list))
1497                                 list_del_init(&td->td_list);
1498                         if (!list_empty(&td->cancelled_td_list))
1499                                 list_del_init(&td->cancelled_td_list);
1500                 }
1501
1502                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1503                 spin_unlock_irqrestore(&xhci->lock, flags);
1504                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1505                 xhci_urb_free_priv(xhci, urb_priv);
1506                 return ret;
1507         }
1508         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1509                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1510                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1511                                 "Ep 0x%x: URB %p to be canceled on "
1512                                 "non-responsive xHCI host.",
1513                                 urb->ep->desc.bEndpointAddress, urb);
1514                 /* Let the stop endpoint command watchdog timer (which set this
1515                  * state) finish cleaning up the endpoint TD lists.  We must
1516                  * have caught it in the middle of dropping a lock and giving
1517                  * back an URB.
1518                  */
1519                 goto done;
1520         }
1521
1522         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1524         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1525         if (!ep_ring) {
1526                 ret = -EINVAL;
1527                 goto done;
1528         }
1529
1530         urb_priv = urb->hcpriv;
1531         i = urb_priv->td_cnt;
1532         if (i < urb_priv->length)
1533                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1534                                 "Cancel URB %p, dev %s, ep 0x%x, "
1535                                 "starting at offset 0x%llx",
1536                                 urb, urb->dev->devpath,
1537                                 urb->ep->desc.bEndpointAddress,
1538                                 (unsigned long long) xhci_trb_virt_to_dma(
1539                                         urb_priv->td[i]->start_seg,
1540                                         urb_priv->td[i]->first_trb));
1541
1542         for (; i < urb_priv->length; i++) {
1543                 td = urb_priv->td[i];
1544                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1545         }
1546
1547         /* Queue a stop endpoint command, but only if this is
1548          * the first cancellation to be handled.
1549          */
1550         if (!(ep->ep_state & EP_HALT_PENDING)) {
1551                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1552                 ep->ep_state |= EP_HALT_PENDING;
1553                 ep->stop_cmds_pending++;
1554                 ep->stop_cmd_timer.expires = jiffies +
1555                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1556                 add_timer(&ep->stop_cmd_timer);
1557                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1558                                          ep_index, 0);
1559                 xhci_ring_cmd_db(xhci);
1560         }
1561 done:
1562         spin_unlock_irqrestore(&xhci->lock, flags);
1563         return ret;
1564 }
1565
1566 /* Drop an endpoint from a new bandwidth configuration for this device.
1567  * Only one call to this function is allowed per endpoint before
1568  * check_bandwidth() or reset_bandwidth() must be called.
1569  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1570  * add the endpoint to the schedule with possibly new parameters denoted by a
1571  * different endpoint descriptor in usb_host_endpoint.
1572  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1573  * not allowed.
1574  *
1575  * The USB core will not allow URBs to be queued to an endpoint that is being
1576  * disabled, so there's no need for mutual exclusion to protect
1577  * the xhci->devs[slot_id] structure.
1578  */
1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1580                 struct usb_host_endpoint *ep)
1581 {
1582         struct xhci_hcd *xhci;
1583         struct xhci_container_ctx *in_ctx, *out_ctx;
1584         struct xhci_input_control_ctx *ctrl_ctx;
1585         struct xhci_slot_ctx *slot_ctx;
1586         unsigned int last_ctx;
1587         unsigned int ep_index;
1588         struct xhci_ep_ctx *ep_ctx;
1589         u32 drop_flag;
1590         u32 new_add_flags, new_drop_flags, new_slot_info;
1591         int ret;
1592
1593         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1594         if (ret <= 0)
1595                 return ret;
1596         xhci = hcd_to_xhci(hcd);
1597         if (xhci->xhc_state & XHCI_STATE_DYING)
1598                 return -ENODEV;
1599
1600         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1601         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1602         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1603                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1604                                 __func__, drop_flag);
1605                 return 0;
1606         }
1607
1608         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1609         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1610         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1611         if (!ctrl_ctx) {
1612                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1613                                 __func__);
1614                 return 0;
1615         }
1616
1617         ep_index = xhci_get_endpoint_index(&ep->desc);
1618         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1619         /* If the HC already knows the endpoint is disabled,
1620          * or the HCD has noted it is disabled, ignore this request
1621          */
1622         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1623              cpu_to_le32(EP_STATE_DISABLED)) ||
1624             le32_to_cpu(ctrl_ctx->drop_flags) &
1625             xhci_get_endpoint_flag(&ep->desc)) {
1626                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1627                                 __func__, ep);
1628                 return 0;
1629         }
1630
1631         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1632         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1633
1634         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1635         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1636
1637         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1638         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1639         /* Update the last valid endpoint context, if we deleted the last one */
1640         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1641             LAST_CTX(last_ctx)) {
1642                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1643                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1644         }
1645         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1646
1647         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1648
1649         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1650                         (unsigned int) ep->desc.bEndpointAddress,
1651                         udev->slot_id,
1652                         (unsigned int) new_drop_flags,
1653                         (unsigned int) new_add_flags,
1654                         (unsigned int) new_slot_info);
1655         return 0;
1656 }
1657
1658 /* Add an endpoint to a new possible bandwidth configuration for this device.
1659  * Only one call to this function is allowed per endpoint before
1660  * check_bandwidth() or reset_bandwidth() must be called.
1661  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1662  * add the endpoint to the schedule with possibly new parameters denoted by a
1663  * different endpoint descriptor in usb_host_endpoint.
1664  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1665  * not allowed.
1666  *
1667  * The USB core will not allow URBs to be queued to an endpoint until the
1668  * configuration or alt setting is installed in the device, so there's no need
1669  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1670  */
1671 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1672                 struct usb_host_endpoint *ep)
1673 {
1674         struct xhci_hcd *xhci;
1675         struct xhci_container_ctx *in_ctx, *out_ctx;
1676         unsigned int ep_index;
1677         struct xhci_slot_ctx *slot_ctx;
1678         struct xhci_input_control_ctx *ctrl_ctx;
1679         u32 added_ctxs;
1680         unsigned int last_ctx;
1681         u32 new_add_flags, new_drop_flags, new_slot_info;
1682         struct xhci_virt_device *virt_dev;
1683         int ret = 0;
1684
1685         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1686         if (ret <= 0) {
1687                 /* So we won't queue a reset ep command for a root hub */
1688                 ep->hcpriv = NULL;
1689                 return ret;
1690         }
1691         xhci = hcd_to_xhci(hcd);
1692         if (xhci->xhc_state & XHCI_STATE_DYING)
1693                 return -ENODEV;
1694
1695         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1696         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1697         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1698                 /* FIXME when we have to issue an evaluate endpoint command to
1699                  * deal with ep0 max packet size changing once we get the
1700                  * descriptors
1701                  */
1702                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1703                                 __func__, added_ctxs);
1704                 return 0;
1705         }
1706
1707         virt_dev = xhci->devs[udev->slot_id];
1708         in_ctx = virt_dev->in_ctx;
1709         out_ctx = virt_dev->out_ctx;
1710         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1711         if (!ctrl_ctx) {
1712                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1713                                 __func__);
1714                 return 0;
1715         }
1716
1717         ep_index = xhci_get_endpoint_index(&ep->desc);
1718         /* If this endpoint is already in use, and the upper layers are trying
1719          * to add it again without dropping it, reject the addition.
1720          */
1721         if (virt_dev->eps[ep_index].ring &&
1722                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1723                                 xhci_get_endpoint_flag(&ep->desc))) {
1724                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1725                                 "without dropping it.\n",
1726                                 (unsigned int) ep->desc.bEndpointAddress);
1727                 return -EINVAL;
1728         }
1729
1730         /* If the HCD has already noted the endpoint is enabled,
1731          * ignore this request.
1732          */
1733         if (le32_to_cpu(ctrl_ctx->add_flags) &
1734             xhci_get_endpoint_flag(&ep->desc)) {
1735                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1736                                 __func__, ep);
1737                 return 0;
1738         }
1739
1740         /*
1741          * Configuration and alternate setting changes must be done in
1742          * process context, not interrupt context (or so documenation
1743          * for usb_set_interface() and usb_set_configuration() claim).
1744          */
1745         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1746                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1747                                 __func__, ep->desc.bEndpointAddress);
1748                 return -ENOMEM;
1749         }
1750
1751         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1752         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1753
1754         /* If xhci_endpoint_disable() was called for this endpoint, but the
1755          * xHC hasn't been notified yet through the check_bandwidth() call,
1756          * this re-adds a new state for the endpoint from the new endpoint
1757          * descriptors.  We must drop and re-add this endpoint, so we leave the
1758          * drop flags alone.
1759          */
1760         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1761
1762         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1763         /* Update the last valid endpoint context, if we just added one past */
1764         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1765             LAST_CTX(last_ctx)) {
1766                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1767                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1768         }
1769         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1770
1771         /* Store the usb_device pointer for later use */
1772         ep->hcpriv = udev;
1773
1774         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1775                         (unsigned int) ep->desc.bEndpointAddress,
1776                         udev->slot_id,
1777                         (unsigned int) new_drop_flags,
1778                         (unsigned int) new_add_flags,
1779                         (unsigned int) new_slot_info);
1780         return 0;
1781 }
1782
1783 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1784 {
1785         struct xhci_input_control_ctx *ctrl_ctx;
1786         struct xhci_ep_ctx *ep_ctx;
1787         struct xhci_slot_ctx *slot_ctx;
1788         int i;
1789
1790         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1791         if (!ctrl_ctx) {
1792                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1793                                 __func__);
1794                 return;
1795         }
1796
1797         /* When a device's add flag and drop flag are zero, any subsequent
1798          * configure endpoint command will leave that endpoint's state
1799          * untouched.  Make sure we don't leave any old state in the input
1800          * endpoint contexts.
1801          */
1802         ctrl_ctx->drop_flags = 0;
1803         ctrl_ctx->add_flags = 0;
1804         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1805         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1806         /* Endpoint 0 is always valid */
1807         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1808         for (i = 1; i < 31; ++i) {
1809                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1810                 ep_ctx->ep_info = 0;
1811                 ep_ctx->ep_info2 = 0;
1812                 ep_ctx->deq = 0;
1813                 ep_ctx->tx_info = 0;
1814         }
1815 }
1816
1817 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1818                 struct usb_device *udev, u32 *cmd_status)
1819 {
1820         int ret;
1821
1822         switch (*cmd_status) {
1823         case COMP_ENOMEM:
1824                 dev_warn(&udev->dev, "Not enough host controller resources "
1825                                 "for new device state.\n");
1826                 ret = -ENOMEM;
1827                 /* FIXME: can we allocate more resources for the HC? */
1828                 break;
1829         case COMP_BW_ERR:
1830         case COMP_2ND_BW_ERR:
1831                 dev_warn(&udev->dev, "Not enough bandwidth "
1832                                 "for new device state.\n");
1833                 ret = -ENOSPC;
1834                 /* FIXME: can we go back to the old state? */
1835                 break;
1836         case COMP_TRB_ERR:
1837                 /* the HCD set up something wrong */
1838                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1839                                 "add flag = 1, "
1840                                 "and endpoint is not disabled.\n");
1841                 ret = -EINVAL;
1842                 break;
1843         case COMP_DEV_ERR:
1844                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1845                                 "configure command.\n");
1846                 ret = -ENODEV;
1847                 break;
1848         case COMP_SUCCESS:
1849                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1850                                 "Successful Endpoint Configure command");
1851                 ret = 0;
1852                 break;
1853         default:
1854                 xhci_err(xhci, "ERROR: unexpected command completion "
1855                                 "code 0x%x.\n", *cmd_status);
1856                 ret = -EINVAL;
1857                 break;
1858         }
1859         return ret;
1860 }
1861
1862 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1863                 struct usb_device *udev, u32 *cmd_status)
1864 {
1865         int ret;
1866         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1867
1868         switch (*cmd_status) {
1869         case COMP_EINVAL:
1870                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1871                                 "context command.\n");
1872                 ret = -EINVAL;
1873                 break;
1874         case COMP_EBADSLT:
1875                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1876                                 "evaluate context command.\n");
1877                 ret = -EINVAL;
1878                 break;
1879         case COMP_CTX_STATE:
1880                 dev_warn(&udev->dev, "WARN: invalid context state for "
1881                                 "evaluate context command.\n");
1882                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1883                 ret = -EINVAL;
1884                 break;
1885         case COMP_DEV_ERR:
1886                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1887                                 "context command.\n");
1888                 ret = -ENODEV;
1889                 break;
1890         case COMP_MEL_ERR:
1891                 /* Max Exit Latency too large error */
1892                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1893                 ret = -EINVAL;
1894                 break;
1895         case COMP_SUCCESS:
1896                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1897                                 "Successful evaluate context command");
1898                 ret = 0;
1899                 break;
1900         default:
1901                 xhci_err(xhci, "ERROR: unexpected command completion "
1902                                 "code 0x%x.\n", *cmd_status);
1903                 ret = -EINVAL;
1904                 break;
1905         }
1906         return ret;
1907 }
1908
1909 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1910                 struct xhci_input_control_ctx *ctrl_ctx)
1911 {
1912         u32 valid_add_flags;
1913         u32 valid_drop_flags;
1914
1915         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1916          * (bit 1).  The default control endpoint is added during the Address
1917          * Device command and is never removed until the slot is disabled.
1918          */
1919         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1920         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1921
1922         /* Use hweight32 to count the number of ones in the add flags, or
1923          * number of endpoints added.  Don't count endpoints that are changed
1924          * (both added and dropped).
1925          */
1926         return hweight32(valid_add_flags) -
1927                 hweight32(valid_add_flags & valid_drop_flags);
1928 }
1929
1930 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1931                 struct xhci_input_control_ctx *ctrl_ctx)
1932 {
1933         u32 valid_add_flags;
1934         u32 valid_drop_flags;
1935
1936         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1937         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1938
1939         return hweight32(valid_drop_flags) -
1940                 hweight32(valid_add_flags & valid_drop_flags);
1941 }
1942
1943 /*
1944  * We need to reserve the new number of endpoints before the configure endpoint
1945  * command completes.  We can't subtract the dropped endpoints from the number
1946  * of active endpoints until the command completes because we can oversubscribe
1947  * the host in this case:
1948  *
1949  *  - the first configure endpoint command drops more endpoints than it adds
1950  *  - a second configure endpoint command that adds more endpoints is queued
1951  *  - the first configure endpoint command fails, so the config is unchanged
1952  *  - the second command may succeed, even though there isn't enough resources
1953  *
1954  * Must be called with xhci->lock held.
1955  */
1956 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1957                 struct xhci_input_control_ctx *ctrl_ctx)
1958 {
1959         u32 added_eps;
1960
1961         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1962         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1963                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1964                                 "Not enough ep ctxs: "
1965                                 "%u active, need to add %u, limit is %u.",
1966                                 xhci->num_active_eps, added_eps,
1967                                 xhci->limit_active_eps);
1968                 return -ENOMEM;
1969         }
1970         xhci->num_active_eps += added_eps;
1971         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972                         "Adding %u ep ctxs, %u now active.", added_eps,
1973                         xhci->num_active_eps);
1974         return 0;
1975 }
1976
1977 /*
1978  * The configure endpoint was failed by the xHC for some other reason, so we
1979  * need to revert the resources that failed configuration would have used.
1980  *
1981  * Must be called with xhci->lock held.
1982  */
1983 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1984                 struct xhci_input_control_ctx *ctrl_ctx)
1985 {
1986         u32 num_failed_eps;
1987
1988         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1989         xhci->num_active_eps -= num_failed_eps;
1990         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1991                         "Removing %u failed ep ctxs, %u now active.",
1992                         num_failed_eps,
1993                         xhci->num_active_eps);
1994 }
1995
1996 /*
1997  * Now that the command has completed, clean up the active endpoint count by
1998  * subtracting out the endpoints that were dropped (but not changed).
1999  *
2000  * Must be called with xhci->lock held.
2001  */
2002 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2003                 struct xhci_input_control_ctx *ctrl_ctx)
2004 {
2005         u32 num_dropped_eps;
2006
2007         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2008         xhci->num_active_eps -= num_dropped_eps;
2009         if (num_dropped_eps)
2010                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2011                                 "Removing %u dropped ep ctxs, %u now active.",
2012                                 num_dropped_eps,
2013                                 xhci->num_active_eps);
2014 }
2015
2016 static unsigned int xhci_get_block_size(struct usb_device *udev)
2017 {
2018         switch (udev->speed) {
2019         case USB_SPEED_LOW:
2020         case USB_SPEED_FULL:
2021                 return FS_BLOCK;
2022         case USB_SPEED_HIGH:
2023                 return HS_BLOCK;
2024         case USB_SPEED_SUPER:
2025                 return SS_BLOCK;
2026         case USB_SPEED_UNKNOWN:
2027         case USB_SPEED_WIRELESS:
2028         default:
2029                 /* Should never happen */
2030                 return 1;
2031         }
2032 }
2033
2034 static unsigned int
2035 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2036 {
2037         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2038                 return LS_OVERHEAD;
2039         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2040                 return FS_OVERHEAD;
2041         return HS_OVERHEAD;
2042 }
2043
2044 /* If we are changing a LS/FS device under a HS hub,
2045  * make sure (if we are activating a new TT) that the HS bus has enough
2046  * bandwidth for this new TT.
2047  */
2048 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2049                 struct xhci_virt_device *virt_dev,
2050                 int old_active_eps)
2051 {
2052         struct xhci_interval_bw_table *bw_table;
2053         struct xhci_tt_bw_info *tt_info;
2054
2055         /* Find the bandwidth table for the root port this TT is attached to. */
2056         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2057         tt_info = virt_dev->tt_info;
2058         /* If this TT already had active endpoints, the bandwidth for this TT
2059          * has already been added.  Removing all periodic endpoints (and thus
2060          * making the TT enactive) will only decrease the bandwidth used.
2061          */
2062         if (old_active_eps)
2063                 return 0;
2064         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2065                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2066                         return -ENOMEM;
2067                 return 0;
2068         }
2069         /* Not sure why we would have no new active endpoints...
2070          *
2071          * Maybe because of an Evaluate Context change for a hub update or a
2072          * control endpoint 0 max packet size change?
2073          * FIXME: skip the bandwidth calculation in that case.
2074          */
2075         return 0;
2076 }
2077
2078 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2079                 struct xhci_virt_device *virt_dev)
2080 {
2081         unsigned int bw_reserved;
2082
2083         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2084         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2085                 return -ENOMEM;
2086
2087         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2088         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2089                 return -ENOMEM;
2090
2091         return 0;
2092 }
2093
2094 /*
2095  * This algorithm is a very conservative estimate of the worst-case scheduling
2096  * scenario for any one interval.  The hardware dynamically schedules the
2097  * packets, so we can't tell which microframe could be the limiting factor in
2098  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2099  *
2100  * Obviously, we can't solve an NP complete problem to find the minimum worst
2101  * case scenario.  Instead, we come up with an estimate that is no less than
2102  * the worst case bandwidth used for any one microframe, but may be an
2103  * over-estimate.
2104  *
2105  * We walk the requirements for each endpoint by interval, starting with the
2106  * smallest interval, and place packets in the schedule where there is only one
2107  * possible way to schedule packets for that interval.  In order to simplify
2108  * this algorithm, we record the largest max packet size for each interval, and
2109  * assume all packets will be that size.
2110  *
2111  * For interval 0, we obviously must schedule all packets for each interval.
2112  * The bandwidth for interval 0 is just the amount of data to be transmitted
2113  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2114  * the number of packets).
2115  *
2116  * For interval 1, we have two possible microframes to schedule those packets
2117  * in.  For this algorithm, if we can schedule the same number of packets for
2118  * each possible scheduling opportunity (each microframe), we will do so.  The
2119  * remaining number of packets will be saved to be transmitted in the gaps in
2120  * the next interval's scheduling sequence.
2121  *
2122  * As we move those remaining packets to be scheduled with interval 2 packets,
2123  * we have to double the number of remaining packets to transmit.  This is
2124  * because the intervals are actually powers of 2, and we would be transmitting
2125  * the previous interval's packets twice in this interval.  We also have to be
2126  * sure that when we look at the largest max packet size for this interval, we
2127  * also look at the largest max packet size for the remaining packets and take
2128  * the greater of the two.
2129  *
2130  * The algorithm continues to evenly distribute packets in each scheduling
2131  * opportunity, and push the remaining packets out, until we get to the last
2132  * interval.  Then those packets and their associated overhead are just added
2133  * to the bandwidth used.
2134  */
2135 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2136                 struct xhci_virt_device *virt_dev,
2137                 int old_active_eps)
2138 {
2139         unsigned int bw_reserved;
2140         unsigned int max_bandwidth;
2141         unsigned int bw_used;
2142         unsigned int block_size;
2143         struct xhci_interval_bw_table *bw_table;
2144         unsigned int packet_size = 0;
2145         unsigned int overhead = 0;
2146         unsigned int packets_transmitted = 0;
2147         unsigned int packets_remaining = 0;
2148         unsigned int i;
2149
2150         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2151                 return xhci_check_ss_bw(xhci, virt_dev);
2152
2153         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2154                 max_bandwidth = HS_BW_LIMIT;
2155                 /* Convert percent of bus BW reserved to blocks reserved */
2156                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2157         } else {
2158                 max_bandwidth = FS_BW_LIMIT;
2159                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2160         }
2161
2162         bw_table = virt_dev->bw_table;
2163         /* We need to translate the max packet size and max ESIT payloads into
2164          * the units the hardware uses.
2165          */
2166         block_size = xhci_get_block_size(virt_dev->udev);
2167
2168         /* If we are manipulating a LS/FS device under a HS hub, double check
2169          * that the HS bus has enough bandwidth if we are activing a new TT.
2170          */
2171         if (virt_dev->tt_info) {
2172                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2173                                 "Recalculating BW for rootport %u",
2174                                 virt_dev->real_port);
2175                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2176                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2177                                         "newly activated TT.\n");
2178                         return -ENOMEM;
2179                 }
2180                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2181                                 "Recalculating BW for TT slot %u port %u",
2182                                 virt_dev->tt_info->slot_id,
2183                                 virt_dev->tt_info->ttport);
2184         } else {
2185                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2186                                 "Recalculating BW for rootport %u",
2187                                 virt_dev->real_port);
2188         }
2189
2190         /* Add in how much bandwidth will be used for interval zero, or the
2191          * rounded max ESIT payload + number of packets * largest overhead.
2192          */
2193         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2194                 bw_table->interval_bw[0].num_packets *
2195                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2196
2197         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2198                 unsigned int bw_added;
2199                 unsigned int largest_mps;
2200                 unsigned int interval_overhead;
2201
2202                 /*
2203                  * How many packets could we transmit in this interval?
2204                  * If packets didn't fit in the previous interval, we will need
2205                  * to transmit that many packets twice within this interval.
2206                  */
2207                 packets_remaining = 2 * packets_remaining +
2208                         bw_table->interval_bw[i].num_packets;
2209
2210                 /* Find the largest max packet size of this or the previous
2211                  * interval.
2212                  */
2213                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2214                         largest_mps = 0;
2215                 else {
2216                         struct xhci_virt_ep *virt_ep;
2217                         struct list_head *ep_entry;
2218
2219                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2220                         virt_ep = list_entry(ep_entry,
2221                                         struct xhci_virt_ep, bw_endpoint_list);
2222                         /* Convert to blocks, rounding up */
2223                         largest_mps = DIV_ROUND_UP(
2224                                         virt_ep->bw_info.max_packet_size,
2225                                         block_size);
2226                 }
2227                 if (largest_mps > packet_size)
2228                         packet_size = largest_mps;
2229
2230                 /* Use the larger overhead of this or the previous interval. */
2231                 interval_overhead = xhci_get_largest_overhead(
2232                                 &bw_table->interval_bw[i]);
2233                 if (interval_overhead > overhead)
2234                         overhead = interval_overhead;
2235
2236                 /* How many packets can we evenly distribute across
2237                  * (1 << (i + 1)) possible scheduling opportunities?
2238                  */
2239                 packets_transmitted = packets_remaining >> (i + 1);
2240
2241                 /* Add in the bandwidth used for those scheduled packets */
2242                 bw_added = packets_transmitted * (overhead + packet_size);
2243
2244                 /* How many packets do we have remaining to transmit? */
2245                 packets_remaining = packets_remaining % (1 << (i + 1));
2246
2247                 /* What largest max packet size should those packets have? */
2248                 /* If we've transmitted all packets, don't carry over the
2249                  * largest packet size.
2250                  */
2251                 if (packets_remaining == 0) {
2252                         packet_size = 0;
2253                         overhead = 0;
2254                 } else if (packets_transmitted > 0) {
2255                         /* Otherwise if we do have remaining packets, and we've
2256                          * scheduled some packets in this interval, take the
2257                          * largest max packet size from endpoints with this
2258                          * interval.
2259                          */
2260                         packet_size = largest_mps;
2261                         overhead = interval_overhead;
2262                 }
2263                 /* Otherwise carry over packet_size and overhead from the last
2264                  * time we had a remainder.
2265                  */
2266                 bw_used += bw_added;
2267                 if (bw_used > max_bandwidth) {
2268                         xhci_warn(xhci, "Not enough bandwidth. "
2269                                         "Proposed: %u, Max: %u\n",
2270                                 bw_used, max_bandwidth);
2271                         return -ENOMEM;
2272                 }
2273         }
2274         /*
2275          * Ok, we know we have some packets left over after even-handedly
2276          * scheduling interval 15.  We don't know which microframes they will
2277          * fit into, so we over-schedule and say they will be scheduled every
2278          * microframe.
2279          */
2280         if (packets_remaining > 0)
2281                 bw_used += overhead + packet_size;
2282
2283         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2284                 unsigned int port_index = virt_dev->real_port - 1;
2285
2286                 /* OK, we're manipulating a HS device attached to a
2287                  * root port bandwidth domain.  Include the number of active TTs
2288                  * in the bandwidth used.
2289                  */
2290                 bw_used += TT_HS_OVERHEAD *
2291                         xhci->rh_bw[port_index].num_active_tts;
2292         }
2293
2294         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2296                 "Available: %u " "percent",
2297                 bw_used, max_bandwidth, bw_reserved,
2298                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2299                 max_bandwidth);
2300
2301         bw_used += bw_reserved;
2302         if (bw_used > max_bandwidth) {
2303                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2304                                 bw_used, max_bandwidth);
2305                 return -ENOMEM;
2306         }
2307
2308         bw_table->bw_used = bw_used;
2309         return 0;
2310 }
2311
2312 static bool xhci_is_async_ep(unsigned int ep_type)
2313 {
2314         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2315                                         ep_type != ISOC_IN_EP &&
2316                                         ep_type != INT_IN_EP);
2317 }
2318
2319 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2320 {
2321         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2322 }
2323
2324 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2325 {
2326         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2327
2328         if (ep_bw->ep_interval == 0)
2329                 return SS_OVERHEAD_BURST +
2330                         (ep_bw->mult * ep_bw->num_packets *
2331                                         (SS_OVERHEAD + mps));
2332         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2333                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2334                                 1 << ep_bw->ep_interval);
2335
2336 }
2337
2338 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2339                 struct xhci_bw_info *ep_bw,
2340                 struct xhci_interval_bw_table *bw_table,
2341                 struct usb_device *udev,
2342                 struct xhci_virt_ep *virt_ep,
2343                 struct xhci_tt_bw_info *tt_info)
2344 {
2345         struct xhci_interval_bw *interval_bw;
2346         int normalized_interval;
2347
2348         if (xhci_is_async_ep(ep_bw->type))
2349                 return;
2350
2351         if (udev->speed == USB_SPEED_SUPER) {
2352                 if (xhci_is_sync_in_ep(ep_bw->type))
2353                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2354                                 xhci_get_ss_bw_consumed(ep_bw);
2355                 else
2356                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2357                                 xhci_get_ss_bw_consumed(ep_bw);
2358                 return;
2359         }
2360
2361         /* SuperSpeed endpoints never get added to intervals in the table, so
2362          * this check is only valid for HS/FS/LS devices.
2363          */
2364         if (list_empty(&virt_ep->bw_endpoint_list))
2365                 return;
2366         /* For LS/FS devices, we need to translate the interval expressed in
2367          * microframes to frames.
2368          */
2369         if (udev->speed == USB_SPEED_HIGH)
2370                 normalized_interval = ep_bw->ep_interval;
2371         else
2372                 normalized_interval = ep_bw->ep_interval - 3;
2373
2374         if (normalized_interval == 0)
2375                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2376         interval_bw = &bw_table->interval_bw[normalized_interval];
2377         interval_bw->num_packets -= ep_bw->num_packets;
2378         switch (udev->speed) {
2379         case USB_SPEED_LOW:
2380                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2381                 break;
2382         case USB_SPEED_FULL:
2383                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2384                 break;
2385         case USB_SPEED_HIGH:
2386                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2387                 break;
2388         case USB_SPEED_SUPER:
2389         case USB_SPEED_UNKNOWN:
2390         case USB_SPEED_WIRELESS:
2391                 /* Should never happen because only LS/FS/HS endpoints will get
2392                  * added to the endpoint list.
2393                  */
2394                 return;
2395         }
2396         if (tt_info)
2397                 tt_info->active_eps -= 1;
2398         list_del_init(&virt_ep->bw_endpoint_list);
2399 }
2400
2401 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2402                 struct xhci_bw_info *ep_bw,
2403                 struct xhci_interval_bw_table *bw_table,
2404                 struct usb_device *udev,
2405                 struct xhci_virt_ep *virt_ep,
2406                 struct xhci_tt_bw_info *tt_info)
2407 {
2408         struct xhci_interval_bw *interval_bw;
2409         struct xhci_virt_ep *smaller_ep;
2410         int normalized_interval;
2411
2412         if (xhci_is_async_ep(ep_bw->type))
2413                 return;
2414
2415         if (udev->speed == USB_SPEED_SUPER) {
2416                 if (xhci_is_sync_in_ep(ep_bw->type))
2417                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2418                                 xhci_get_ss_bw_consumed(ep_bw);
2419                 else
2420                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2421                                 xhci_get_ss_bw_consumed(ep_bw);
2422                 return;
2423         }
2424
2425         /* For LS/FS devices, we need to translate the interval expressed in
2426          * microframes to frames.
2427          */
2428         if (udev->speed == USB_SPEED_HIGH)
2429                 normalized_interval = ep_bw->ep_interval;
2430         else
2431                 normalized_interval = ep_bw->ep_interval - 3;
2432
2433         if (normalized_interval == 0)
2434                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2435         interval_bw = &bw_table->interval_bw[normalized_interval];
2436         interval_bw->num_packets += ep_bw->num_packets;
2437         switch (udev->speed) {
2438         case USB_SPEED_LOW:
2439                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2440                 break;
2441         case USB_SPEED_FULL:
2442                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2443                 break;
2444         case USB_SPEED_HIGH:
2445                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2446                 break;
2447         case USB_SPEED_SUPER:
2448         case USB_SPEED_UNKNOWN:
2449         case USB_SPEED_WIRELESS:
2450                 /* Should never happen because only LS/FS/HS endpoints will get
2451                  * added to the endpoint list.
2452                  */
2453                 return;
2454         }
2455
2456         if (tt_info)
2457                 tt_info->active_eps += 1;
2458         /* Insert the endpoint into the list, largest max packet size first. */
2459         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2460                         bw_endpoint_list) {
2461                 if (ep_bw->max_packet_size >=
2462                                 smaller_ep->bw_info.max_packet_size) {
2463                         /* Add the new ep before the smaller endpoint */
2464                         list_add_tail(&virt_ep->bw_endpoint_list,
2465                                         &smaller_ep->bw_endpoint_list);
2466                         return;
2467                 }
2468         }
2469         /* Add the new endpoint at the end of the list. */
2470         list_add_tail(&virt_ep->bw_endpoint_list,
2471                         &interval_bw->endpoints);
2472 }
2473
2474 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2475                 struct xhci_virt_device *virt_dev,
2476                 int old_active_eps)
2477 {
2478         struct xhci_root_port_bw_info *rh_bw_info;
2479         if (!virt_dev->tt_info)
2480                 return;
2481
2482         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2483         if (old_active_eps == 0 &&
2484                                 virt_dev->tt_info->active_eps != 0) {
2485                 rh_bw_info->num_active_tts += 1;
2486                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2487         } else if (old_active_eps != 0 &&
2488                                 virt_dev->tt_info->active_eps == 0) {
2489                 rh_bw_info->num_active_tts -= 1;
2490                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2491         }
2492 }
2493
2494 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2495                 struct xhci_virt_device *virt_dev,
2496                 struct xhci_container_ctx *in_ctx)
2497 {
2498         struct xhci_bw_info ep_bw_info[31];
2499         int i;
2500         struct xhci_input_control_ctx *ctrl_ctx;
2501         int old_active_eps = 0;
2502
2503         if (virt_dev->tt_info)
2504                 old_active_eps = virt_dev->tt_info->active_eps;
2505
2506         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2507         if (!ctrl_ctx) {
2508                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2509                                 __func__);
2510                 return -ENOMEM;
2511         }
2512
2513         for (i = 0; i < 31; i++) {
2514                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2515                         continue;
2516
2517                 /* Make a copy of the BW info in case we need to revert this */
2518                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2519                                 sizeof(ep_bw_info[i]));
2520                 /* Drop the endpoint from the interval table if the endpoint is
2521                  * being dropped or changed.
2522                  */
2523                 if (EP_IS_DROPPED(ctrl_ctx, i))
2524                         xhci_drop_ep_from_interval_table(xhci,
2525                                         &virt_dev->eps[i].bw_info,
2526                                         virt_dev->bw_table,
2527                                         virt_dev->udev,
2528                                         &virt_dev->eps[i],
2529                                         virt_dev->tt_info);
2530         }
2531         /* Overwrite the information stored in the endpoints' bw_info */
2532         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2533         for (i = 0; i < 31; i++) {
2534                 /* Add any changed or added endpoints to the interval table */
2535                 if (EP_IS_ADDED(ctrl_ctx, i))
2536                         xhci_add_ep_to_interval_table(xhci,
2537                                         &virt_dev->eps[i].bw_info,
2538                                         virt_dev->bw_table,
2539                                         virt_dev->udev,
2540                                         &virt_dev->eps[i],
2541                                         virt_dev->tt_info);
2542         }
2543
2544         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2545                 /* Ok, this fits in the bandwidth we have.
2546                  * Update the number of active TTs.
2547                  */
2548                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2549                 return 0;
2550         }
2551
2552         /* We don't have enough bandwidth for this, revert the stored info. */
2553         for (i = 0; i < 31; i++) {
2554                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2555                         continue;
2556
2557                 /* Drop the new copies of any added or changed endpoints from
2558                  * the interval table.
2559                  */
2560                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2561                         xhci_drop_ep_from_interval_table(xhci,
2562                                         &virt_dev->eps[i].bw_info,
2563                                         virt_dev->bw_table,
2564                                         virt_dev->udev,
2565                                         &virt_dev->eps[i],
2566                                         virt_dev->tt_info);
2567                 }
2568                 /* Revert the endpoint back to its old information */
2569                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2570                                 sizeof(ep_bw_info[i]));
2571                 /* Add any changed or dropped endpoints back into the table */
2572                 if (EP_IS_DROPPED(ctrl_ctx, i))
2573                         xhci_add_ep_to_interval_table(xhci,
2574                                         &virt_dev->eps[i].bw_info,
2575                                         virt_dev->bw_table,
2576                                         virt_dev->udev,
2577                                         &virt_dev->eps[i],
2578                                         virt_dev->tt_info);
2579         }
2580         return -ENOMEM;
2581 }
2582
2583
2584 /* Issue a configure endpoint command or evaluate context command
2585  * and wait for it to finish.
2586  */
2587 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2588                 struct usb_device *udev,
2589                 struct xhci_command *command,
2590                 bool ctx_change, bool must_succeed)
2591 {
2592         int ret;
2593         int timeleft;
2594         unsigned long flags;
2595         struct xhci_input_control_ctx *ctrl_ctx;
2596         struct xhci_virt_device *virt_dev;
2597
2598         if (!command)
2599                 return -EINVAL;
2600
2601         spin_lock_irqsave(&xhci->lock, flags);
2602         virt_dev = xhci->devs[udev->slot_id];
2603
2604         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2605         if (!ctrl_ctx) {
2606                 spin_unlock_irqrestore(&xhci->lock, flags);
2607                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2608                                 __func__);
2609                 return -ENOMEM;
2610         }
2611
2612         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2613                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2614                 spin_unlock_irqrestore(&xhci->lock, flags);
2615                 xhci_warn(xhci, "Not enough host resources, "
2616                                 "active endpoint contexts = %u\n",
2617                                 xhci->num_active_eps);
2618                 return -ENOMEM;
2619         }
2620         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2621             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2622                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2623                         xhci_free_host_resources(xhci, ctrl_ctx);
2624                 spin_unlock_irqrestore(&xhci->lock, flags);
2625                 xhci_warn(xhci, "Not enough bandwidth\n");
2626                 return -ENOMEM;
2627         }
2628
2629         list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2630
2631         if (!ctx_change)
2632                 ret = xhci_queue_configure_endpoint(xhci, command,
2633                                 command->in_ctx->dma,
2634                                 udev->slot_id, must_succeed);
2635         else
2636                 ret = xhci_queue_evaluate_context(xhci, command,
2637                                 command->in_ctx->dma,
2638                                 udev->slot_id, must_succeed);
2639         if (ret < 0) {
2640                 list_del(&command->cmd_list);
2641                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2642                         xhci_free_host_resources(xhci, ctrl_ctx);
2643                 spin_unlock_irqrestore(&xhci->lock, flags);
2644                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2645                                 "FIXME allocate a new ring segment");
2646                 return -ENOMEM;
2647         }
2648         xhci_ring_cmd_db(xhci);
2649         spin_unlock_irqrestore(&xhci->lock, flags);
2650
2651         /* Wait for the configure endpoint command to complete */
2652         timeleft = wait_for_completion_interruptible_timeout(
2653                         command->completion,
2654                         XHCI_CMD_DEFAULT_TIMEOUT);
2655         if (timeleft <= 0) {
2656                 xhci_warn(xhci, "%s while waiting for %s command\n",
2657                                 timeleft == 0 ? "Timeout" : "Signal",
2658                                 ctx_change == 0 ?
2659                                         "configure endpoint" :
2660                                         "evaluate context");
2661                 /* cancel the configure endpoint command */
2662                 ret = xhci_cancel_cmd(xhci, command, command->command_trb);
2663                 if (ret < 0)
2664                         return ret;
2665                 return -ETIME;
2666         }
2667
2668         if (!ctx_change)
2669                 ret = xhci_configure_endpoint_result(xhci, udev,
2670                                                      &command->status);
2671         else
2672                 ret = xhci_evaluate_context_result(xhci, udev,
2673                                                    &command->status);
2674
2675         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2676                 spin_lock_irqsave(&xhci->lock, flags);
2677                 /* If the command failed, remove the reserved resources.
2678                  * Otherwise, clean up the estimate to include dropped eps.
2679                  */
2680                 if (ret)
2681                         xhci_free_host_resources(xhci, ctrl_ctx);
2682                 else
2683                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2684                 spin_unlock_irqrestore(&xhci->lock, flags);
2685         }
2686         return ret;
2687 }
2688
2689 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2690         struct xhci_virt_device *vdev, int i)
2691 {
2692         struct xhci_virt_ep *ep = &vdev->eps[i];
2693
2694         if (ep->ep_state & EP_HAS_STREAMS) {
2695                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2696                                 xhci_get_endpoint_address(i));
2697                 xhci_free_stream_info(xhci, ep->stream_info);
2698                 ep->stream_info = NULL;
2699                 ep->ep_state &= ~EP_HAS_STREAMS;
2700         }
2701 }
2702
2703 /* Called after one or more calls to xhci_add_endpoint() or
2704  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2705  * to call xhci_reset_bandwidth().
2706  *
2707  * Since we are in the middle of changing either configuration or
2708  * installing a new alt setting, the USB core won't allow URBs to be
2709  * enqueued for any endpoint on the old config or interface.  Nothing
2710  * else should be touching the xhci->devs[slot_id] structure, so we
2711  * don't need to take the xhci->lock for manipulating that.
2712  */
2713 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2714 {
2715         int i;
2716         int ret = 0;
2717         struct xhci_hcd *xhci;
2718         struct xhci_virt_device *virt_dev;
2719         struct xhci_input_control_ctx *ctrl_ctx;
2720         struct xhci_slot_ctx *slot_ctx;
2721         struct xhci_command *command;
2722
2723         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2724         if (ret <= 0)
2725                 return ret;
2726         xhci = hcd_to_xhci(hcd);
2727         if (xhci->xhc_state & XHCI_STATE_DYING)
2728                 return -ENODEV;
2729
2730         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731         virt_dev = xhci->devs[udev->slot_id];
2732
2733         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2734         if (!command)
2735                 return -ENOMEM;
2736
2737         command->in_ctx = virt_dev->in_ctx;
2738
2739         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2740         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2741         if (!ctrl_ctx) {
2742                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2743                                 __func__);
2744                 ret = -ENOMEM;
2745                 goto command_cleanup;
2746         }
2747         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2749         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2750
2751         /* Don't issue the command if there's no endpoints to update. */
2752         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2753             ctrl_ctx->drop_flags == 0) {
2754                 ret = 0;
2755                 goto command_cleanup;
2756         }
2757         xhci_dbg(xhci, "New Input Control Context:\n");
2758         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2759         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2760                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2761
2762         ret = xhci_configure_endpoint(xhci, udev, command,
2763                         false, false);
2764         if (ret)
2765                 /* Callee should call reset_bandwidth() */
2766                 goto command_cleanup;
2767
2768         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2769         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2770                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2771
2772         /* Free any rings that were dropped, but not changed. */
2773         for (i = 1; i < 31; ++i) {
2774                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2775                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2776                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2777                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2778                 }
2779         }
2780         xhci_zero_in_ctx(xhci, virt_dev);
2781         /*
2782          * Install any rings for completely new endpoints or changed endpoints,
2783          * and free or cache any old rings from changed endpoints.
2784          */
2785         for (i = 1; i < 31; ++i) {
2786                 if (!virt_dev->eps[i].new_ring)
2787                         continue;
2788                 /* Only cache or free the old ring if it exists.
2789                  * It may not if this is the first add of an endpoint.
2790                  */
2791                 if (virt_dev->eps[i].ring) {
2792                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2793                 }
2794                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2795                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2796                 virt_dev->eps[i].new_ring = NULL;
2797         }
2798 command_cleanup:
2799         kfree(command->completion);
2800         kfree(command);
2801
2802         return ret;
2803 }
2804
2805 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2806 {
2807         struct xhci_hcd *xhci;
2808         struct xhci_virt_device *virt_dev;
2809         int i, ret;
2810
2811         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2812         if (ret <= 0)
2813                 return;
2814         xhci = hcd_to_xhci(hcd);
2815
2816         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2817         virt_dev = xhci->devs[udev->slot_id];
2818         /* Free any rings allocated for added endpoints */
2819         for (i = 0; i < 31; ++i) {
2820                 if (virt_dev->eps[i].new_ring) {
2821                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2822                         virt_dev->eps[i].new_ring = NULL;
2823                 }
2824         }
2825         xhci_zero_in_ctx(xhci, virt_dev);
2826 }
2827
2828 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2829                 struct xhci_container_ctx *in_ctx,
2830                 struct xhci_container_ctx *out_ctx,
2831                 struct xhci_input_control_ctx *ctrl_ctx,
2832                 u32 add_flags, u32 drop_flags)
2833 {
2834         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2835         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2836         xhci_slot_copy(xhci, in_ctx, out_ctx);
2837         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2838
2839         xhci_dbg(xhci, "Input Context:\n");
2840         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2841 }
2842
2843 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2844                 unsigned int slot_id, unsigned int ep_index,
2845                 struct xhci_dequeue_state *deq_state)
2846 {
2847         struct xhci_input_control_ctx *ctrl_ctx;
2848         struct xhci_container_ctx *in_ctx;
2849         struct xhci_ep_ctx *ep_ctx;
2850         u32 added_ctxs;
2851         dma_addr_t addr;
2852
2853         in_ctx = xhci->devs[slot_id]->in_ctx;
2854         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2855         if (!ctrl_ctx) {
2856                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2857                                 __func__);
2858                 return;
2859         }
2860
2861         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2862                         xhci->devs[slot_id]->out_ctx, ep_index);
2863         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2864         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2865                         deq_state->new_deq_ptr);
2866         if (addr == 0) {
2867                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2868                                 "reset ep command\n");
2869                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2870                                 deq_state->new_deq_seg,
2871                                 deq_state->new_deq_ptr);
2872                 return;
2873         }
2874         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2875
2876         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2877         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2878                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2879                         added_ctxs, added_ctxs);
2880 }
2881
2882 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2883                 struct usb_device *udev, unsigned int ep_index)
2884 {
2885         struct xhci_dequeue_state deq_state;
2886         struct xhci_virt_ep *ep;
2887
2888         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2889                         "Cleaning up stalled endpoint ring");
2890         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2891         /* We need to move the HW's dequeue pointer past this TD,
2892          * or it will attempt to resend it on the next doorbell ring.
2893          */
2894         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2895                         ep_index, ep->stopped_stream, ep->stopped_td,
2896                         &deq_state);
2897
2898         /* HW with the reset endpoint quirk will use the saved dequeue state to
2899          * issue a configure endpoint command later.
2900          */
2901         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2902                 struct xhci_command *command;
2903                 /* Can't sleep if we're called from cleanup_halted_endpoint() */
2904                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2905                 if (!command)
2906                         return;
2907                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2908                                 "Queueing new dequeue state");
2909                 xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2910                                 ep_index, ep->stopped_stream, &deq_state);
2911         } else {
2912                 /* Better hope no one uses the input context between now and the
2913                  * reset endpoint completion!
2914                  * XXX: No idea how this hardware will react when stream rings
2915                  * are enabled.
2916                  */
2917                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2918                                 "Setting up input context for "
2919                                 "configure endpoint command");
2920                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2921                                 ep_index, &deq_state);
2922         }
2923 }
2924
2925 /* Deal with stalled endpoints.  The core should have sent the control message
2926  * to clear the halt condition.  However, we need to make the xHCI hardware
2927  * reset its sequence number, since a device will expect a sequence number of
2928  * zero after the halt condition is cleared.
2929  * Context: in_interrupt
2930  */
2931 void xhci_endpoint_reset(struct usb_hcd *hcd,
2932                 struct usb_host_endpoint *ep)
2933 {
2934         struct xhci_hcd *xhci;
2935         struct usb_device *udev;
2936         unsigned int ep_index;
2937         unsigned long flags;
2938         int ret;
2939         struct xhci_virt_ep *virt_ep;
2940         struct xhci_command *command;
2941
2942         xhci = hcd_to_xhci(hcd);
2943         udev = (struct usb_device *) ep->hcpriv;
2944         /* Called with a root hub endpoint (or an endpoint that wasn't added
2945          * with xhci_add_endpoint()
2946          */
2947         if (!ep->hcpriv)
2948                 return;
2949         ep_index = xhci_get_endpoint_index(&ep->desc);
2950         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2951         if (!virt_ep->stopped_td) {
2952                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2953                         "Endpoint 0x%x not halted, refusing to reset.",
2954                         ep->desc.bEndpointAddress);
2955                 return;
2956         }
2957         if (usb_endpoint_xfer_control(&ep->desc)) {
2958                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2959                                 "Control endpoint stall already handled.");
2960                 return;
2961         }
2962
2963         command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2964         if (!command)
2965                 return;
2966
2967         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2968                         "Queueing reset endpoint command");
2969         spin_lock_irqsave(&xhci->lock, flags);
2970         ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2971         /*
2972          * Can't change the ring dequeue pointer until it's transitioned to the
2973          * stopped state, which is only upon a successful reset endpoint
2974          * command.  Better hope that last command worked!
2975          */
2976         if (!ret) {
2977                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2978                 kfree(virt_ep->stopped_td);
2979                 xhci_ring_cmd_db(xhci);
2980         }
2981         virt_ep->stopped_td = NULL;
2982         virt_ep->stopped_stream = 0;
2983         spin_unlock_irqrestore(&xhci->lock, flags);
2984
2985         if (ret)
2986                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2987 }
2988
2989 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2990                 struct usb_device *udev, struct usb_host_endpoint *ep,
2991                 unsigned int slot_id)
2992 {
2993         int ret;
2994         unsigned int ep_index;
2995         unsigned int ep_state;
2996
2997         if (!ep)
2998                 return -EINVAL;
2999         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3000         if (ret <= 0)
3001                 return -EINVAL;
3002         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3003                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3004                                 " descriptor for ep 0x%x does not support streams\n",
3005                                 ep->desc.bEndpointAddress);
3006                 return -EINVAL;
3007         }
3008
3009         ep_index = xhci_get_endpoint_index(&ep->desc);
3010         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3011         if (ep_state & EP_HAS_STREAMS ||
3012                         ep_state & EP_GETTING_STREAMS) {
3013                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3014                                 "already has streams set up.\n",
3015                                 ep->desc.bEndpointAddress);
3016                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3017                                 "dynamic stream context array reallocation.\n");
3018                 return -EINVAL;
3019         }
3020         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3021                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3022                                 "endpoint 0x%x; URBs are pending.\n",
3023                                 ep->desc.bEndpointAddress);
3024                 return -EINVAL;
3025         }
3026         return 0;
3027 }
3028
3029 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3030                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3031 {
3032         unsigned int max_streams;
3033
3034         /* The stream context array size must be a power of two */
3035         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3036         /*
3037          * Find out how many primary stream array entries the host controller
3038          * supports.  Later we may use secondary stream arrays (similar to 2nd
3039          * level page entries), but that's an optional feature for xHCI host
3040          * controllers. xHCs must support at least 4 stream IDs.
3041          */
3042         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3043         if (*num_stream_ctxs > max_streams) {
3044                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3045                                 max_streams);
3046                 *num_stream_ctxs = max_streams;
3047                 *num_streams = max_streams;
3048         }
3049 }
3050
3051 /* Returns an error code if one of the endpoint already has streams.
3052  * This does not change any data structures, it only checks and gathers
3053  * information.
3054  */
3055 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3056                 struct usb_device *udev,
3057                 struct usb_host_endpoint **eps, unsigned int num_eps,
3058                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3059 {
3060         unsigned int max_streams;
3061         unsigned int endpoint_flag;
3062         int i;
3063         int ret;
3064
3065         for (i = 0; i < num_eps; i++) {
3066                 ret = xhci_check_streams_endpoint(xhci, udev,
3067                                 eps[i], udev->slot_id);
3068                 if (ret < 0)
3069                         return ret;
3070
3071                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3072                 if (max_streams < (*num_streams - 1)) {
3073                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3074                                         eps[i]->desc.bEndpointAddress,
3075                                         max_streams);
3076                         *num_streams = max_streams+1;
3077                 }
3078
3079                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3080                 if (*changed_ep_bitmask & endpoint_flag)
3081                         return -EINVAL;
3082                 *changed_ep_bitmask |= endpoint_flag;
3083         }
3084         return 0;
3085 }
3086
3087 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3088                 struct usb_device *udev,
3089                 struct usb_host_endpoint **eps, unsigned int num_eps)
3090 {
3091         u32 changed_ep_bitmask = 0;
3092         unsigned int slot_id;
3093         unsigned int ep_index;
3094         unsigned int ep_state;
3095         int i;
3096
3097         slot_id = udev->slot_id;
3098         if (!xhci->devs[slot_id])
3099                 return 0;
3100
3101         for (i = 0; i < num_eps; i++) {
3102                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3103                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3104                 /* Are streams already being freed for the endpoint? */
3105                 if (ep_state & EP_GETTING_NO_STREAMS) {
3106                         xhci_warn(xhci, "WARN Can't disable streams for "
3107                                         "endpoint 0x%x, "
3108                                         "streams are being disabled already\n",
3109                                         eps[i]->desc.bEndpointAddress);
3110                         return 0;
3111                 }
3112                 /* Are there actually any streams to free? */
3113                 if (!(ep_state & EP_HAS_STREAMS) &&
3114                                 !(ep_state & EP_GETTING_STREAMS)) {
3115                         xhci_warn(xhci, "WARN Can't disable streams for "
3116                                         "endpoint 0x%x, "
3117                                         "streams are already disabled!\n",
3118                                         eps[i]->desc.bEndpointAddress);
3119                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3120                                         "with non-streams endpoint\n");
3121                         return 0;
3122                 }
3123                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3124         }
3125         return changed_ep_bitmask;
3126 }
3127
3128 /*
3129  * The USB device drivers use this function (though the HCD interface in USB
3130  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3131  * coordinate mass storage command queueing across multiple endpoints (basically
3132  * a stream ID == a task ID).
3133  *
3134  * Setting up streams involves allocating the same size stream context array
3135  * for each endpoint and issuing a configure endpoint command for all endpoints.
3136  *
3137  * Don't allow the call to succeed if one endpoint only supports one stream
3138  * (which means it doesn't support streams at all).
3139  *
3140  * Drivers may get less stream IDs than they asked for, if the host controller
3141  * hardware or endpoints claim they can't support the number of requested
3142  * stream IDs.
3143  */
3144 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3145                 struct usb_host_endpoint **eps, unsigned int num_eps,
3146                 unsigned int num_streams, gfp_t mem_flags)
3147 {
3148         int i, ret;
3149         struct xhci_hcd *xhci;
3150         struct xhci_virt_device *vdev;
3151         struct xhci_command *config_cmd;
3152         struct xhci_input_control_ctx *ctrl_ctx;
3153         unsigned int ep_index;
3154         unsigned int num_stream_ctxs;
3155         unsigned long flags;
3156         u32 changed_ep_bitmask = 0;
3157
3158         if (!eps)
3159                 return -EINVAL;
3160
3161         /* Add one to the number of streams requested to account for
3162          * stream 0 that is reserved for xHCI usage.
3163          */
3164         num_streams += 1;
3165         xhci = hcd_to_xhci(hcd);
3166         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3167                         num_streams);
3168
3169         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3170         if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3171                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3172                 return -ENOSYS;
3173         }
3174
3175         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3176         if (!config_cmd) {
3177                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3178                 return -ENOMEM;
3179         }
3180         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3181         if (!ctrl_ctx) {
3182                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3183                                 __func__);
3184                 xhci_free_command(xhci, config_cmd);
3185                 return -ENOMEM;
3186         }
3187
3188         /* Check to make sure all endpoints are not already configured for
3189          * streams.  While we're at it, find the maximum number of streams that
3190          * all the endpoints will support and check for duplicate endpoints.
3191          */
3192         spin_lock_irqsave(&xhci->lock, flags);
3193         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3194                         num_eps, &num_streams, &changed_ep_bitmask);
3195         if (ret < 0) {
3196                 xhci_free_command(xhci, config_cmd);
3197                 spin_unlock_irqrestore(&xhci->lock, flags);
3198                 return ret;
3199         }
3200         if (num_streams <= 1) {
3201                 xhci_warn(xhci, "WARN: endpoints can't handle "
3202                                 "more than one stream.\n");
3203                 xhci_free_command(xhci, config_cmd);
3204                 spin_unlock_irqrestore(&xhci->lock, flags);
3205                 return -EINVAL;
3206         }
3207         vdev = xhci->devs[udev->slot_id];
3208         /* Mark each endpoint as being in transition, so
3209          * xhci_urb_enqueue() will reject all URBs.
3210          */
3211         for (i = 0; i < num_eps; i++) {
3212                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3213                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3214         }
3215         spin_unlock_irqrestore(&xhci->lock, flags);
3216
3217         /* Setup internal data structures and allocate HW data structures for
3218          * streams (but don't install the HW structures in the input context
3219          * until we're sure all memory allocation succeeded).
3220          */
3221         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3222         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3223                         num_stream_ctxs, num_streams);
3224
3225         for (i = 0; i < num_eps; i++) {
3226                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3227                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3228                                 num_stream_ctxs,
3229                                 num_streams, mem_flags);
3230                 if (!vdev->eps[ep_index].stream_info)
3231                         goto cleanup;
3232                 /* Set maxPstreams in endpoint context and update deq ptr to
3233                  * point to stream context array. FIXME
3234                  */
3235         }
3236
3237         /* Set up the input context for a configure endpoint command. */
3238         for (i = 0; i < num_eps; i++) {
3239                 struct xhci_ep_ctx *ep_ctx;
3240
3241                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3242                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3243
3244                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3245                                 vdev->out_ctx, ep_index);
3246                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3247                                 vdev->eps[ep_index].stream_info);
3248         }
3249         /* Tell the HW to drop its old copy of the endpoint context info
3250          * and add the updated copy from the input context.
3251          */
3252         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3253                         vdev->out_ctx, ctrl_ctx,
3254                         changed_ep_bitmask, changed_ep_bitmask);
3255
3256         /* Issue and wait for the configure endpoint command */
3257         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3258                         false, false);
3259
3260         /* xHC rejected the configure endpoint command for some reason, so we
3261          * leave the old ring intact and free our internal streams data
3262          * structure.
3263          */
3264         if (ret < 0)
3265                 goto cleanup;
3266
3267         spin_lock_irqsave(&xhci->lock, flags);
3268         for (i = 0; i < num_eps; i++) {
3269                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3270                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3271                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3272                          udev->slot_id, ep_index);
3273                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3274         }
3275         xhci_free_command(xhci, config_cmd);
3276         spin_unlock_irqrestore(&xhci->lock, flags);
3277
3278         /* Subtract 1 for stream 0, which drivers can't use */
3279         return num_streams - 1;
3280
3281 cleanup:
3282         /* If it didn't work, free the streams! */
3283         for (i = 0; i < num_eps; i++) {
3284                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3285                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3286                 vdev->eps[ep_index].stream_info = NULL;
3287                 /* FIXME Unset maxPstreams in endpoint context and
3288                  * update deq ptr to point to normal string ring.
3289                  */
3290                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3291                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3292                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3293         }
3294         xhci_free_command(xhci, config_cmd);
3295         return -ENOMEM;
3296 }
3297
3298 /* Transition the endpoint from using streams to being a "normal" endpoint
3299  * without streams.
3300  *
3301  * Modify the endpoint context state, submit a configure endpoint command,
3302  * and free all endpoint rings for streams if that completes successfully.
3303  */
3304 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3305                 struct usb_host_endpoint **eps, unsigned int num_eps,
3306                 gfp_t mem_flags)
3307 {
3308         int i, ret;
3309         struct xhci_hcd *xhci;
3310         struct xhci_virt_device *vdev;
3311         struct xhci_command *command;
3312         struct xhci_input_control_ctx *ctrl_ctx;
3313         unsigned int ep_index;
3314         unsigned long flags;
3315         u32 changed_ep_bitmask;
3316
3317         xhci = hcd_to_xhci(hcd);
3318         vdev = xhci->devs[udev->slot_id];
3319
3320         /* Set up a configure endpoint command to remove the streams rings */
3321         spin_lock_irqsave(&xhci->lock, flags);
3322         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3323                         udev, eps, num_eps);
3324         if (changed_ep_bitmask == 0) {
3325                 spin_unlock_irqrestore(&xhci->lock, flags);
3326                 return -EINVAL;
3327         }
3328
3329         /* Use the xhci_command structure from the first endpoint.  We may have
3330          * allocated too many, but the driver may call xhci_free_streams() for
3331          * each endpoint it grouped into one call to xhci_alloc_streams().
3332          */
3333         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3334         command = vdev->eps[ep_index].stream_info->free_streams_command;
3335         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3336         if (!ctrl_ctx) {
3337                 spin_unlock_irqrestore(&xhci->lock, flags);
3338                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3339                                 __func__);
3340                 return -EINVAL;
3341         }
3342
3343         for (i = 0; i < num_eps; i++) {
3344                 struct xhci_ep_ctx *ep_ctx;
3345
3346                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3347                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3348                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3349                         EP_GETTING_NO_STREAMS;
3350
3351                 xhci_endpoint_copy(xhci, command->in_ctx,
3352                                 vdev->out_ctx, ep_index);
3353                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3354                                 &vdev->eps[ep_index]);
3355         }
3356         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3357                         vdev->out_ctx, ctrl_ctx,
3358                         changed_ep_bitmask, changed_ep_bitmask);
3359         spin_unlock_irqrestore(&xhci->lock, flags);
3360
3361         /* Issue and wait for the configure endpoint command,
3362          * which must succeed.
3363          */
3364         ret = xhci_configure_endpoint(xhci, udev, command,
3365                         false, true);
3366
3367         /* xHC rejected the configure endpoint command for some reason, so we
3368          * leave the streams rings intact.
3369          */
3370         if (ret < 0)
3371                 return ret;
3372
3373         spin_lock_irqsave(&xhci->lock, flags);
3374         for (i = 0; i < num_eps; i++) {
3375                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3376                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3377                 vdev->eps[ep_index].stream_info = NULL;
3378                 /* FIXME Unset maxPstreams in endpoint context and
3379                  * update deq ptr to point to normal string ring.
3380                  */
3381                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3382                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3383         }
3384         spin_unlock_irqrestore(&xhci->lock, flags);
3385
3386         return 0;
3387 }
3388
3389 /*
3390  * Deletes endpoint resources for endpoints that were active before a Reset
3391  * Device command, or a Disable Slot command.  The Reset Device command leaves
3392  * the control endpoint intact, whereas the Disable Slot command deletes it.
3393  *
3394  * Must be called with xhci->lock held.
3395  */
3396 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3397         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3398 {
3399         int i;
3400         unsigned int num_dropped_eps = 0;
3401         unsigned int drop_flags = 0;
3402
3403         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3404                 if (virt_dev->eps[i].ring) {
3405                         drop_flags |= 1 << i;
3406                         num_dropped_eps++;
3407                 }
3408         }
3409         xhci->num_active_eps -= num_dropped_eps;
3410         if (num_dropped_eps)
3411                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3412                                 "Dropped %u ep ctxs, flags = 0x%x, "
3413                                 "%u now active.",
3414                                 num_dropped_eps, drop_flags,
3415                                 xhci->num_active_eps);
3416 }
3417
3418 /*
3419  * This submits a Reset Device Command, which will set the device state to 0,
3420  * set the device address to 0, and disable all the endpoints except the default
3421  * control endpoint.  The USB core should come back and call
3422  * xhci_address_device(), and then re-set up the configuration.  If this is
3423  * called because of a usb_reset_and_verify_device(), then the old alternate
3424  * settings will be re-installed through the normal bandwidth allocation
3425  * functions.
3426  *
3427  * Wait for the Reset Device command to finish.  Remove all structures
3428  * associated with the endpoints that were disabled.  Clear the input device
3429  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3430  *
3431  * If the virt_dev to be reset does not exist or does not match the udev,
3432  * it means the device is lost, possibly due to the xHC restore error and
3433  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3434  * re-allocate the device.
3435  */
3436 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3437 {
3438         int ret, i;
3439         unsigned long flags;
3440         struct xhci_hcd *xhci;
3441         unsigned int slot_id;
3442         struct xhci_virt_device *virt_dev;
3443         struct xhci_command *reset_device_cmd;
3444         int timeleft;
3445         int last_freed_endpoint;
3446         struct xhci_slot_ctx *slot_ctx;
3447         int old_active_eps = 0;
3448
3449         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3450         if (ret <= 0)
3451                 return ret;
3452         xhci = hcd_to_xhci(hcd);
3453         slot_id = udev->slot_id;
3454         virt_dev = xhci->devs[slot_id];
3455         if (!virt_dev) {
3456                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3457                                 "not exist. Re-allocate the device\n", slot_id);
3458                 ret = xhci_alloc_dev(hcd, udev);
3459                 if (ret == 1)
3460                         return 0;
3461                 else
3462                         return -EINVAL;
3463         }
3464
3465         if (virt_dev->udev != udev) {
3466                 /* If the virt_dev and the udev does not match, this virt_dev
3467                  * may belong to another udev.
3468                  * Re-allocate the device.
3469                  */
3470                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3471                                 "not match the udev. Re-allocate the device\n",
3472                                 slot_id);
3473                 ret = xhci_alloc_dev(hcd, udev);
3474                 if (ret == 1)
3475                         return 0;
3476                 else
3477                         return -EINVAL;
3478         }
3479
3480         /* If device is not setup, there is no point in resetting it */
3481         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3482         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3483                                                 SLOT_STATE_DISABLED)
3484                 return 0;
3485
3486         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3487         /* Allocate the command structure that holds the struct completion.
3488          * Assume we're in process context, since the normal device reset
3489          * process has to wait for the device anyway.  Storage devices are
3490          * reset as part of error handling, so use GFP_NOIO instead of
3491          * GFP_KERNEL.
3492          */
3493         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3494         if (!reset_device_cmd) {
3495                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3496                 return -ENOMEM;
3497         }
3498
3499         /* Attempt to submit the Reset Device command to the command ring */
3500         spin_lock_irqsave(&xhci->lock, flags);
3501
3502         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3503         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3504         if (ret) {
3505                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3506                 list_del(&reset_device_cmd->cmd_list);
3507                 spin_unlock_irqrestore(&xhci->lock, flags);
3508                 goto command_cleanup;
3509         }
3510         xhci_ring_cmd_db(xhci);
3511         spin_unlock_irqrestore(&xhci->lock, flags);
3512
3513         /* Wait for the Reset Device command to finish */
3514         timeleft = wait_for_completion_interruptible_timeout(
3515                         reset_device_cmd->completion,
3516                         XHCI_CMD_DEFAULT_TIMEOUT);
3517         if (timeleft <= 0) {
3518                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3519                                 timeleft == 0 ? "Timeout" : "Signal");
3520                 spin_lock_irqsave(&xhci->lock, flags);
3521                 /* The timeout might have raced with the event ring handler, so
3522                  * only delete from the list if the item isn't poisoned.
3523                  */
3524                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3525                         list_del(&reset_device_cmd->cmd_list);
3526                 spin_unlock_irqrestore(&xhci->lock, flags);
3527                 ret = -ETIME;
3528                 goto command_cleanup;
3529         }
3530
3531         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3532          * unless we tried to reset a slot ID that wasn't enabled,
3533          * or the device wasn't in the addressed or configured state.
3534          */
3535         ret = reset_device_cmd->status;
3536         switch (ret) {
3537         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3538         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3539                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3540                                 slot_id,
3541                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3542                 xhci_dbg(xhci, "Not freeing device rings.\n");
3543                 /* Don't treat this as an error.  May change my mind later. */
3544                 ret = 0;
3545                 goto command_cleanup;
3546         case COMP_SUCCESS:
3547                 xhci_dbg(xhci, "Successful reset device command.\n");
3548                 break;
3549         default:
3550                 if (xhci_is_vendor_info_code(xhci, ret))
3551                         break;
3552                 xhci_warn(xhci, "Unknown completion code %u for "
3553                                 "reset device command.\n", ret);
3554                 ret = -EINVAL;
3555                 goto command_cleanup;
3556         }
3557
3558         /* Free up host controller endpoint resources */
3559         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3560                 spin_lock_irqsave(&xhci->lock, flags);
3561                 /* Don't delete the default control endpoint resources */
3562                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3563                 spin_unlock_irqrestore(&xhci->lock, flags);
3564         }
3565
3566         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3567         last_freed_endpoint = 1;
3568         for (i = 1; i < 31; ++i) {
3569                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3570
3571                 if (ep->ep_state & EP_HAS_STREAMS) {
3572                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3573                                         xhci_get_endpoint_address(i));
3574                         xhci_free_stream_info(xhci, ep->stream_info);
3575                         ep->stream_info = NULL;
3576                         ep->ep_state &= ~EP_HAS_STREAMS;
3577                 }
3578
3579                 if (ep->ring) {
3580                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3581                         last_freed_endpoint = i;
3582                 }
3583                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3584                         xhci_drop_ep_from_interval_table(xhci,
3585                                         &virt_dev->eps[i].bw_info,
3586                                         virt_dev->bw_table,
3587                                         udev,
3588                                         &virt_dev->eps[i],
3589                                         virt_dev->tt_info);
3590                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3591         }
3592         /* If necessary, update the number of active TTs on this root port */
3593         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3594
3595         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3596         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3597         ret = 0;
3598
3599 command_cleanup:
3600         xhci_free_command(xhci, reset_device_cmd);
3601         return ret;
3602 }
3603
3604 /*
3605  * At this point, the struct usb_device is about to go away, the device has
3606  * disconnected, and all traffic has been stopped and the endpoints have been
3607  * disabled.  Free any HC data structures associated with that device.
3608  */
3609 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3610 {
3611         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3612         struct xhci_virt_device *virt_dev;
3613         unsigned long flags;
3614         u32 state;
3615         int i, ret;
3616         struct xhci_command *command;
3617
3618         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3619         if (!command)
3620                 return;
3621
3622 #ifndef CONFIG_USB_DEFAULT_PERSIST
3623         /*
3624          * We called pm_runtime_get_noresume when the device was attached.
3625          * Decrement the counter here to allow controller to runtime suspend
3626          * if no devices remain.
3627          */
3628         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3629                 pm_runtime_put_noidle(hcd->self.controller);
3630 #endif
3631
3632         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3633         /* If the host is halted due to driver unload, we still need to free the
3634          * device.
3635          */
3636         if (ret <= 0 && ret != -ENODEV) {
3637                 kfree(command);
3638                 return;
3639         }
3640
3641         virt_dev = xhci->devs[udev->slot_id];
3642
3643         /* Stop any wayward timer functions (which may grab the lock) */
3644         for (i = 0; i < 31; ++i) {
3645                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3646                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3647         }
3648
3649         spin_lock_irqsave(&xhci->lock, flags);
3650         /* Don't disable the slot if the host controller is dead. */
3651         state = readl(&xhci->op_regs->status);
3652         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3653                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3654                 xhci_free_virt_device(xhci, udev->slot_id);
3655                 spin_unlock_irqrestore(&xhci->lock, flags);
3656                 kfree(command);
3657                 return;
3658         }
3659
3660         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3661                                     udev->slot_id)) {
3662                 spin_unlock_irqrestore(&xhci->lock, flags);
3663                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3664                 return;
3665         }
3666         xhci_ring_cmd_db(xhci);
3667         spin_unlock_irqrestore(&xhci->lock, flags);
3668
3669         /*
3670          * Event command completion handler will free any data structures
3671          * associated with the slot.  XXX Can free sleep?
3672          */
3673 }
3674
3675 /*
3676  * Checks if we have enough host controller resources for the default control
3677  * endpoint.
3678  *
3679  * Must be called with xhci->lock held.
3680  */
3681 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3682 {
3683         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3684                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3685                                 "Not enough ep ctxs: "
3686                                 "%u active, need to add 1, limit is %u.",
3687                                 xhci->num_active_eps, xhci->limit_active_eps);
3688                 return -ENOMEM;
3689         }
3690         xhci->num_active_eps += 1;
3691         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3692                         "Adding 1 ep ctx, %u now active.",
3693                         xhci->num_active_eps);
3694         return 0;
3695 }
3696
3697
3698 /*
3699  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3700  * timed out, or allocating memory failed.  Returns 1 on success.
3701  */
3702 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3703 {
3704         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3705         unsigned long flags;
3706         int timeleft;
3707         int ret;
3708         struct xhci_command *command;
3709
3710         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3711         if (!command)
3712                 return 0;
3713
3714         spin_lock_irqsave(&xhci->lock, flags);
3715         command->completion = &xhci->addr_dev;
3716         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3717         if (ret) {
3718                 spin_unlock_irqrestore(&xhci->lock, flags);
3719                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3720                 kfree(command);
3721                 return 0;
3722         }
3723         xhci_ring_cmd_db(xhci);
3724         spin_unlock_irqrestore(&xhci->lock, flags);
3725
3726         /* XXX: how much time for xHC slot assignment? */
3727         timeleft = wait_for_completion_interruptible_timeout(
3728                         command->completion,
3729                         XHCI_CMD_DEFAULT_TIMEOUT);
3730         if (timeleft <= 0) {
3731                 xhci_warn(xhci, "%s while waiting for a slot\n",
3732                                 timeleft == 0 ? "Timeout" : "Signal");
3733                 /* cancel the enable slot request */
3734                 ret = xhci_cancel_cmd(xhci, NULL, command->command_trb);
3735                 return ret;
3736         }
3737
3738         if (!xhci->slot_id) {
3739                 xhci_err(xhci, "Error while assigning device slot ID\n");
3740                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3741                                 HCS_MAX_SLOTS(
3742                                         readl(&xhci->cap_regs->hcs_params1)));
3743                 kfree(command);
3744                 return 0;
3745         }
3746
3747         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3748                 spin_lock_irqsave(&xhci->lock, flags);
3749                 ret = xhci_reserve_host_control_ep_resources(xhci);
3750                 if (ret) {
3751                         spin_unlock_irqrestore(&xhci->lock, flags);
3752                         xhci_warn(xhci, "Not enough host resources, "
3753                                         "active endpoint contexts = %u\n",
3754                                         xhci->num_active_eps);
3755                         goto disable_slot;
3756                 }
3757                 spin_unlock_irqrestore(&xhci->lock, flags);
3758         }
3759         /* Use GFP_NOIO, since this function can be called from
3760          * xhci_discover_or_reset_device(), which may be called as part of
3761          * mass storage driver error handling.
3762          */
3763         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3764                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3765                 goto disable_slot;
3766         }
3767         udev->slot_id = xhci->slot_id;
3768
3769 #ifndef CONFIG_USB_DEFAULT_PERSIST
3770         /*
3771          * If resetting upon resume, we can't put the controller into runtime
3772          * suspend if there is a device attached.
3773          */
3774         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3775                 pm_runtime_get_noresume(hcd->self.controller);
3776 #endif
3777
3778
3779         kfree(command);
3780         /* Is this a LS or FS device under a HS hub? */
3781         /* Hub or peripherial? */
3782         return 1;
3783
3784 disable_slot:
3785         /* Disable slot, if we can do it without mem alloc */
3786         spin_lock_irqsave(&xhci->lock, flags);
3787         command->completion = NULL;
3788         command->status = 0;
3789         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3790                                      udev->slot_id))
3791                 xhci_ring_cmd_db(xhci);
3792         spin_unlock_irqrestore(&xhci->lock, flags);
3793         return 0;
3794 }
3795
3796 /*
3797  * Issue an Address Device command and optionally send a corresponding
3798  * SetAddress request to the device.
3799  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3800  * we should only issue and wait on one address command at the same time.
3801  */
3802 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3803                              enum xhci_setup_dev setup)
3804 {
3805         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3806         unsigned long flags;
3807         int timeleft;
3808         struct xhci_virt_device *virt_dev;
3809         int ret = 0;
3810         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3811         struct xhci_slot_ctx *slot_ctx;
3812         struct xhci_input_control_ctx *ctrl_ctx;
3813         u64 temp_64;
3814         struct xhci_command *command;
3815
3816         if (!udev->slot_id) {
3817                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3818                                 "Bad Slot ID %d", udev->slot_id);
3819                 return -EINVAL;
3820         }
3821
3822         virt_dev = xhci->devs[udev->slot_id];
3823
3824         if (WARN_ON(!virt_dev)) {
3825                 /*
3826                  * In plug/unplug torture test with an NEC controller,
3827                  * a zero-dereference was observed once due to virt_dev = 0.
3828                  * Print useful debug rather than crash if it is observed again!
3829                  */
3830                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3831                         udev->slot_id);
3832                 return -EINVAL;
3833         }
3834
3835         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3836         if (!command)
3837                 return -ENOMEM;
3838
3839         command->in_ctx = virt_dev->in_ctx;
3840         command->completion = &xhci->addr_dev;
3841
3842         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3843         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3844         if (!ctrl_ctx) {
3845                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3846                                 __func__);
3847                 kfree(command);
3848                 return -EINVAL;
3849         }
3850         /*
3851          * If this is the first Set Address since device plug-in or
3852          * virt_device realloaction after a resume with an xHCI power loss,
3853          * then set up the slot context.
3854          */
3855         if (!slot_ctx->dev_info)
3856                 xhci_setup_addressable_virt_dev(xhci, udev);
3857         /* Otherwise, update the control endpoint ring enqueue pointer. */
3858         else
3859                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3860         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3861         ctrl_ctx->drop_flags = 0;
3862
3863         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3864         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3865         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3866                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3867
3868         spin_lock_irqsave(&xhci->lock, flags);
3869         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3870                                         udev->slot_id, setup);
3871         if (ret) {
3872                 spin_unlock_irqrestore(&xhci->lock, flags);
3873                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3874                                 "FIXME: allocate a command ring segment");
3875                 kfree(command);
3876                 return ret;
3877         }
3878         xhci_ring_cmd_db(xhci);
3879         spin_unlock_irqrestore(&xhci->lock, flags);
3880
3881         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3882         timeleft = wait_for_completion_interruptible_timeout(
3883                         command->completion, XHCI_CMD_DEFAULT_TIMEOUT);
3884         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3885          * the SetAddress() "recovery interval" required by USB and aborting the
3886          * command on a timeout.
3887          */
3888         if (timeleft <= 0) {
3889                 xhci_warn(xhci, "%s while waiting for setup %s command\n",
3890                           timeleft == 0 ? "Timeout" : "Signal", act);
3891                 /* cancel the address device command */
3892                 ret = xhci_cancel_cmd(xhci, NULL, command->command_trb);
3893                 if (ret < 0)
3894                         return ret;
3895                 return -ETIME;
3896         }
3897
3898         switch (virt_dev->cmd_status) {
3899         case COMP_CTX_STATE:
3900         case COMP_EBADSLT:
3901                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3902                          act, udev->slot_id);
3903                 ret = -EINVAL;
3904                 break;
3905         case COMP_TX_ERR:
3906                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3907                 ret = -EPROTO;
3908                 break;
3909         case COMP_DEV_ERR:
3910                 dev_warn(&udev->dev,
3911                          "ERROR: Incompatible device for setup %s command\n", act);
3912                 ret = -ENODEV;
3913                 break;
3914         case COMP_SUCCESS:
3915                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3916                                "Successful setup %s command", act);
3917                 break;
3918         default:
3919                 xhci_err(xhci,
3920                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3921                          act, virt_dev->cmd_status);
3922                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3923                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3924                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3925                 ret = -EINVAL;
3926                 break;
3927         }
3928         if (ret) {
3929                 kfree(command);
3930                 return ret;
3931         }
3932         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3933         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934                         "Op regs DCBAA ptr = %#016llx", temp_64);
3935         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3936                 "Slot ID %d dcbaa entry @%p = %#016llx",
3937                 udev->slot_id,
3938                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3939                 (unsigned long long)
3940                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3941         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3942                         "Output Context DMA address = %#08llx",
3943                         (unsigned long long)virt_dev->out_ctx->dma);
3944         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3945         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3946         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3947                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3948         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3949         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3950         /*
3951          * USB core uses address 1 for the roothubs, so we add one to the
3952          * address given back to us by the HC.
3953          */
3954         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3956                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3957         /* Zero the input context control for later use */
3958         ctrl_ctx->add_flags = 0;
3959         ctrl_ctx->drop_flags = 0;
3960
3961         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3962                        "Internal device address = %d",
3963                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3964         kfree(command);
3965         return 0;
3966 }
3967
3968 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3969 {
3970         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3971 }
3972
3973 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3974 {
3975         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3976 }
3977
3978 /*
3979  * Transfer the port index into real index in the HW port status
3980  * registers. Caculate offset between the port's PORTSC register
3981  * and port status base. Divide the number of per port register
3982  * to get the real index. The raw port number bases 1.
3983  */
3984 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3985 {
3986         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3987         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3988         __le32 __iomem *addr;
3989         int raw_port;
3990
3991         if (hcd->speed != HCD_USB3)
3992                 addr = xhci->usb2_ports[port1 - 1];
3993         else
3994                 addr = xhci->usb3_ports[port1 - 1];
3995
3996         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3997         return raw_port;
3998 }
3999
4000 /*
4001  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4002  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4003  */
4004 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4005                         struct usb_device *udev, u16 max_exit_latency)
4006 {
4007         struct xhci_virt_device *virt_dev;
4008         struct xhci_command *command;
4009         struct xhci_input_control_ctx *ctrl_ctx;
4010         struct xhci_slot_ctx *slot_ctx;
4011         unsigned long flags;
4012         int ret;
4013
4014         spin_lock_irqsave(&xhci->lock, flags);
4015         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4016                 spin_unlock_irqrestore(&xhci->lock, flags);
4017                 return 0;
4018         }
4019
4020         /* Attempt to issue an Evaluate Context command to change the MEL. */
4021         virt_dev = xhci->devs[udev->slot_id];
4022         command = xhci->lpm_command;
4023         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4024         if (!ctrl_ctx) {
4025                 spin_unlock_irqrestore(&xhci->lock, flags);
4026                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4027                                 __func__);
4028                 return -ENOMEM;
4029         }
4030
4031         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4032         spin_unlock_irqrestore(&xhci->lock, flags);
4033
4034         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4035         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4036         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4037         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4038
4039         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4040                         "Set up evaluate context for LPM MEL change.");
4041         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4042         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4043
4044         /* Issue and wait for the evaluate context command. */
4045         ret = xhci_configure_endpoint(xhci, udev, command,
4046                         true, true);
4047         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4048         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4049
4050         if (!ret) {
4051                 spin_lock_irqsave(&xhci->lock, flags);
4052                 virt_dev->current_mel = max_exit_latency;
4053                 spin_unlock_irqrestore(&xhci->lock, flags);
4054         }
4055         return ret;
4056 }
4057
4058 #ifdef CONFIG_PM_RUNTIME
4059
4060 /* BESL to HIRD Encoding array for USB2 LPM */
4061 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4062         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4063
4064 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4065 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4066                                         struct usb_device *udev)
4067 {
4068         int u2del, besl, besl_host;
4069         int besl_device = 0;
4070         u32 field;
4071
4072         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4073         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4074
4075         if (field & USB_BESL_SUPPORT) {
4076                 for (besl_host = 0; besl_host < 16; besl_host++) {
4077                         if (xhci_besl_encoding[besl_host] >= u2del)
4078                                 break;
4079                 }
4080                 /* Use baseline BESL value as default */
4081                 if (field & USB_BESL_BASELINE_VALID)
4082                         besl_device = USB_GET_BESL_BASELINE(field);
4083                 else if (field & USB_BESL_DEEP_VALID)
4084                         besl_device = USB_GET_BESL_DEEP(field);
4085         } else {
4086                 if (u2del <= 50)
4087                         besl_host = 0;
4088                 else
4089                         besl_host = (u2del - 51) / 75 + 1;
4090         }
4091
4092         besl = besl_host + besl_device;
4093         if (besl > 15)
4094                 besl = 15;
4095
4096         return besl;
4097 }
4098
4099 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4100 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4101 {
4102         u32 field;
4103         int l1;
4104         int besld = 0;
4105         int hirdm = 0;
4106
4107         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4108
4109         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4110         l1 = udev->l1_params.timeout / 256;
4111
4112         /* device has preferred BESLD */
4113         if (field & USB_BESL_DEEP_VALID) {
4114                 besld = USB_GET_BESL_DEEP(field);
4115                 hirdm = 1;
4116         }
4117
4118         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4119 }
4120
4121 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4122                         struct usb_device *udev, int enable)
4123 {
4124         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4125         __le32 __iomem  **port_array;
4126         __le32 __iomem  *pm_addr, *hlpm_addr;
4127         u32             pm_val, hlpm_val, field;
4128         unsigned int    port_num;
4129         unsigned long   flags;
4130         int             hird, exit_latency;
4131         int             ret;
4132
4133         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4134                         !udev->lpm_capable)
4135                 return -EPERM;
4136
4137         if (!udev->parent || udev->parent->parent ||
4138                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4139                 return -EPERM;
4140
4141         if (udev->usb2_hw_lpm_capable != 1)
4142                 return -EPERM;
4143
4144         spin_lock_irqsave(&xhci->lock, flags);
4145
4146         port_array = xhci->usb2_ports;
4147         port_num = udev->portnum - 1;
4148         pm_addr = port_array[port_num] + PORTPMSC;
4149         pm_val = readl(pm_addr);
4150         hlpm_addr = port_array[port_num] + PORTHLPMC;
4151         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4152
4153         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4154                         enable ? "enable" : "disable", port_num + 1);
4155
4156         if (enable) {
4157                 /* Host supports BESL timeout instead of HIRD */
4158                 if (udev->usb2_hw_lpm_besl_capable) {
4159                         /* if device doesn't have a preferred BESL value use a
4160                          * default one which works with mixed HIRD and BESL
4161                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4162                          */
4163                         if ((field & USB_BESL_SUPPORT) &&
4164                             (field & USB_BESL_BASELINE_VALID))
4165                                 hird = USB_GET_BESL_BASELINE(field);
4166                         else
4167                                 hird = udev->l1_params.besl;
4168
4169                         exit_latency = xhci_besl_encoding[hird];
4170                         spin_unlock_irqrestore(&xhci->lock, flags);
4171
4172                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4173                          * input context for link powermanagement evaluate
4174                          * context commands. It is protected by hcd->bandwidth
4175                          * mutex and is shared by all devices. We need to set
4176                          * the max ext latency in USB 2 BESL LPM as well, so
4177                          * use the same mutex and xhci_change_max_exit_latency()
4178                          */
4179                         mutex_lock(hcd->bandwidth_mutex);
4180                         ret = xhci_change_max_exit_latency(xhci, udev,
4181                                                            exit_latency);
4182                         mutex_unlock(hcd->bandwidth_mutex);
4183
4184                         if (ret < 0)
4185                                 return ret;
4186                         spin_lock_irqsave(&xhci->lock, flags);
4187
4188                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4189                         writel(hlpm_val, hlpm_addr);
4190                         /* flush write */
4191                         readl(hlpm_addr);
4192                 } else {
4193                         hird = xhci_calculate_hird_besl(xhci, udev);
4194                 }
4195
4196                 pm_val &= ~PORT_HIRD_MASK;
4197                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4198                 writel(pm_val, pm_addr);
4199                 pm_val = readl(pm_addr);
4200                 pm_val |= PORT_HLE;
4201                 writel(pm_val, pm_addr);
4202                 /* flush write */
4203                 readl(pm_addr);
4204         } else {
4205                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4206                 writel(pm_val, pm_addr);
4207                 /* flush write */
4208                 readl(pm_addr);
4209                 if (udev->usb2_hw_lpm_besl_capable) {
4210                         spin_unlock_irqrestore(&xhci->lock, flags);
4211                         mutex_lock(hcd->bandwidth_mutex);
4212                         xhci_change_max_exit_latency(xhci, udev, 0);
4213                         mutex_unlock(hcd->bandwidth_mutex);
4214                         return 0;
4215                 }
4216         }
4217
4218         spin_unlock_irqrestore(&xhci->lock, flags);
4219         return 0;
4220 }
4221
4222 /* check if a usb2 port supports a given extened capability protocol
4223  * only USB2 ports extended protocol capability values are cached.
4224  * Return 1 if capability is supported
4225  */
4226 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4227                                            unsigned capability)
4228 {
4229         u32 port_offset, port_count;
4230         int i;
4231
4232         for (i = 0; i < xhci->num_ext_caps; i++) {
4233                 if (xhci->ext_caps[i] & capability) {
4234                         /* port offsets starts at 1 */
4235                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4236                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4237                         if (port >= port_offset &&
4238                             port < port_offset + port_count)
4239                                 return 1;
4240                 }
4241         }
4242         return 0;
4243 }
4244
4245 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4246 {
4247         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4248         int             portnum = udev->portnum - 1;
4249
4250         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4251                         !udev->lpm_capable)
4252                 return 0;
4253
4254         /* we only support lpm for non-hub device connected to root hub yet */
4255         if (!udev->parent || udev->parent->parent ||
4256                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4257                 return 0;
4258
4259         if (xhci->hw_lpm_support == 1 &&
4260                         xhci_check_usb2_port_capability(
4261                                 xhci, portnum, XHCI_HLC)) {
4262                 udev->usb2_hw_lpm_capable = 1;
4263                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4264                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4265                 if (xhci_check_usb2_port_capability(xhci, portnum,
4266                                         XHCI_BLC))
4267                         udev->usb2_hw_lpm_besl_capable = 1;
4268         }
4269
4270         return 0;
4271 }
4272
4273 #else
4274
4275 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4276                                 struct usb_device *udev, int enable)
4277 {
4278         return 0;
4279 }
4280
4281 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4282 {
4283         return 0;
4284 }
4285
4286 #endif /* CONFIG_PM_RUNTIME */
4287
4288 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4289
4290 #ifdef CONFIG_PM
4291 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4292 static unsigned long long xhci_service_interval_to_ns(
4293                 struct usb_endpoint_descriptor *desc)
4294 {
4295         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4296 }
4297
4298 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4299                 enum usb3_link_state state)
4300 {
4301         unsigned long long sel;
4302         unsigned long long pel;
4303         unsigned int max_sel_pel;
4304         char *state_name;
4305
4306         switch (state) {
4307         case USB3_LPM_U1:
4308                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4309                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4310                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4311                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4312                 state_name = "U1";
4313                 break;
4314         case USB3_LPM_U2:
4315                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4316                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4317                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4318                 state_name = "U2";
4319                 break;
4320         default:
4321                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4322                                 __func__);
4323                 return USB3_LPM_DISABLED;
4324         }
4325
4326         if (sel <= max_sel_pel && pel <= max_sel_pel)
4327                 return USB3_LPM_DEVICE_INITIATED;
4328
4329         if (sel > max_sel_pel)
4330                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4331                                 "due to long SEL %llu ms\n",
4332                                 state_name, sel);
4333         else
4334                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4335                                 "due to long PEL %llu ms\n",
4336                                 state_name, pel);
4337         return USB3_LPM_DISABLED;
4338 }
4339
4340 /* Returns the hub-encoded U1 timeout value.
4341  * The U1 timeout should be the maximum of the following values:
4342  *  - For control endpoints, U1 system exit latency (SEL) * 3
4343  *  - For bulk endpoints, U1 SEL * 5
4344  *  - For interrupt endpoints:
4345  *    - Notification EPs, U1 SEL * 3
4346  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4347  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4348  */
4349 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4350                 struct usb_endpoint_descriptor *desc)
4351 {
4352         unsigned long long timeout_ns;
4353         int ep_type;
4354         int intr_type;
4355
4356         ep_type = usb_endpoint_type(desc);
4357         switch (ep_type) {
4358         case USB_ENDPOINT_XFER_CONTROL:
4359                 timeout_ns = udev->u1_params.sel * 3;
4360                 break;
4361         case USB_ENDPOINT_XFER_BULK:
4362                 timeout_ns = udev->u1_params.sel * 5;
4363                 break;
4364         case USB_ENDPOINT_XFER_INT:
4365                 intr_type = usb_endpoint_interrupt_type(desc);
4366                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4367                         timeout_ns = udev->u1_params.sel * 3;
4368                         break;
4369                 }
4370                 /* Otherwise the calculation is the same as isoc eps */
4371         case USB_ENDPOINT_XFER_ISOC:
4372                 timeout_ns = xhci_service_interval_to_ns(desc);
4373                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4374                 if (timeout_ns < udev->u1_params.sel * 2)
4375                         timeout_ns = udev->u1_params.sel * 2;
4376                 break;
4377         default:
4378                 return 0;
4379         }
4380
4381         /* The U1 timeout is encoded in 1us intervals. */
4382         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4383         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4384         if (timeout_ns == USB3_LPM_DISABLED)
4385                 timeout_ns++;
4386
4387         /* If the necessary timeout value is bigger than what we can set in the
4388          * USB 3.0 hub, we have to disable hub-initiated U1.
4389          */
4390         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4391                 return timeout_ns;
4392         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4393                         "due to long timeout %llu ms\n", timeout_ns);
4394         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4395 }
4396
4397 /* Returns the hub-encoded U2 timeout value.
4398  * The U2 timeout should be the maximum of:
4399  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4400  *  - largest bInterval of any active periodic endpoint (to avoid going
4401  *    into lower power link states between intervals).
4402  *  - the U2 Exit Latency of the device
4403  */
4404 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4405                 struct usb_endpoint_descriptor *desc)
4406 {
4407         unsigned long long timeout_ns;
4408         unsigned long long u2_del_ns;
4409
4410         timeout_ns = 10 * 1000 * 1000;
4411
4412         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4413                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4414                 timeout_ns = xhci_service_interval_to_ns(desc);
4415
4416         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4417         if (u2_del_ns > timeout_ns)
4418                 timeout_ns = u2_del_ns;
4419
4420         /* The U2 timeout is encoded in 256us intervals */
4421         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422         /* If the necessary timeout value is bigger than what we can set in the
4423          * USB 3.0 hub, we have to disable hub-initiated U2.
4424          */
4425         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426                 return timeout_ns;
4427         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428                         "due to long timeout %llu ms\n", timeout_ns);
4429         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430 }
4431
4432 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433                 struct usb_device *udev,
4434                 struct usb_endpoint_descriptor *desc,
4435                 enum usb3_link_state state,
4436                 u16 *timeout)
4437 {
4438         if (state == USB3_LPM_U1) {
4439                 if (xhci->quirks & XHCI_INTEL_HOST)
4440                         return xhci_calculate_intel_u1_timeout(udev, desc);
4441         } else {
4442                 if (xhci->quirks & XHCI_INTEL_HOST)
4443                         return xhci_calculate_intel_u2_timeout(udev, desc);
4444         }
4445
4446         return USB3_LPM_DISABLED;
4447 }
4448
4449 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4450                 struct usb_device *udev,
4451                 struct usb_endpoint_descriptor *desc,
4452                 enum usb3_link_state state,
4453                 u16 *timeout)
4454 {
4455         u16 alt_timeout;
4456
4457         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4458                 desc, state, timeout);
4459
4460         /* If we found we can't enable hub-initiated LPM, or
4461          * the U1 or U2 exit latency was too high to allow
4462          * device-initiated LPM as well, just stop searching.
4463          */
4464         if (alt_timeout == USB3_LPM_DISABLED ||
4465                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4466                 *timeout = alt_timeout;
4467                 return -E2BIG;
4468         }
4469         if (alt_timeout > *timeout)
4470                 *timeout = alt_timeout;
4471         return 0;
4472 }
4473
4474 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4475                 struct usb_device *udev,
4476                 struct usb_host_interface *alt,
4477                 enum usb3_link_state state,
4478                 u16 *timeout)
4479 {
4480         int j;
4481
4482         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4483                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4484                                         &alt->endpoint[j].desc, state, timeout))
4485                         return -E2BIG;
4486                 continue;
4487         }
4488         return 0;
4489 }
4490
4491 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4492                 enum usb3_link_state state)
4493 {
4494         struct usb_device *parent;
4495         unsigned int num_hubs;
4496
4497         if (state == USB3_LPM_U2)
4498                 return 0;
4499
4500         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4501         for (parent = udev->parent, num_hubs = 0; parent->parent;
4502                         parent = parent->parent)
4503                 num_hubs++;
4504
4505         if (num_hubs < 2)
4506                 return 0;
4507
4508         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4509                         " below second-tier hub.\n");
4510         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4511                         "to decrease power consumption.\n");
4512         return -E2BIG;
4513 }
4514
4515 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4516                 struct usb_device *udev,
4517                 enum usb3_link_state state)
4518 {
4519         if (xhci->quirks & XHCI_INTEL_HOST)
4520                 return xhci_check_intel_tier_policy(udev, state);
4521         return -EINVAL;
4522 }
4523
4524 /* Returns the U1 or U2 timeout that should be enabled.
4525  * If the tier check or timeout setting functions return with a non-zero exit
4526  * code, that means the timeout value has been finalized and we shouldn't look
4527  * at any more endpoints.
4528  */
4529 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4530                         struct usb_device *udev, enum usb3_link_state state)
4531 {
4532         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4533         struct usb_host_config *config;
4534         char *state_name;
4535         int i;
4536         u16 timeout = USB3_LPM_DISABLED;
4537
4538         if (state == USB3_LPM_U1)
4539                 state_name = "U1";
4540         else if (state == USB3_LPM_U2)
4541                 state_name = "U2";
4542         else {
4543                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4544                                 state);
4545                 return timeout;
4546         }
4547
4548         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4549                 return timeout;
4550
4551         /* Gather some information about the currently installed configuration
4552          * and alternate interface settings.
4553          */
4554         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4555                         state, &timeout))
4556                 return timeout;
4557
4558         config = udev->actconfig;
4559         if (!config)
4560                 return timeout;
4561
4562         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4563                 struct usb_driver *driver;
4564                 struct usb_interface *intf = config->interface[i];
4565
4566                 if (!intf)
4567                         continue;
4568
4569                 /* Check if any currently bound drivers want hub-initiated LPM
4570                  * disabled.
4571                  */
4572                 if (intf->dev.driver) {
4573                         driver = to_usb_driver(intf->dev.driver);
4574                         if (driver && driver->disable_hub_initiated_lpm) {
4575                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4576                                                 "at request of driver %s\n",
4577                                                 state_name, driver->name);
4578                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4579                         }
4580                 }
4581
4582                 /* Not sure how this could happen... */
4583                 if (!intf->cur_altsetting)
4584                         continue;
4585
4586                 if (xhci_update_timeout_for_interface(xhci, udev,
4587                                         intf->cur_altsetting,
4588                                         state, &timeout))
4589                         return timeout;
4590         }
4591         return timeout;
4592 }
4593
4594 static int calculate_max_exit_latency(struct usb_device *udev,
4595                 enum usb3_link_state state_changed,
4596                 u16 hub_encoded_timeout)
4597 {
4598         unsigned long long u1_mel_us = 0;
4599         unsigned long long u2_mel_us = 0;
4600         unsigned long long mel_us = 0;
4601         bool disabling_u1;
4602         bool disabling_u2;
4603         bool enabling_u1;
4604         bool enabling_u2;
4605
4606         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4607                         hub_encoded_timeout == USB3_LPM_DISABLED);
4608         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4609                         hub_encoded_timeout == USB3_LPM_DISABLED);
4610
4611         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4612                         hub_encoded_timeout != USB3_LPM_DISABLED);
4613         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4614                         hub_encoded_timeout != USB3_LPM_DISABLED);
4615
4616         /* If U1 was already enabled and we're not disabling it,
4617          * or we're going to enable U1, account for the U1 max exit latency.
4618          */
4619         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4620                         enabling_u1)
4621                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4622         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4623                         enabling_u2)
4624                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4625
4626         if (u1_mel_us > u2_mel_us)
4627                 mel_us = u1_mel_us;
4628         else
4629                 mel_us = u2_mel_us;
4630         /* xHCI host controller max exit latency field is only 16 bits wide. */
4631         if (mel_us > MAX_EXIT) {
4632                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4633                                 "is too big.\n", mel_us);
4634                 return -E2BIG;
4635         }
4636         return mel_us;
4637 }
4638
4639 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4640 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4641                         struct usb_device *udev, enum usb3_link_state state)
4642 {
4643         struct xhci_hcd *xhci;
4644         u16 hub_encoded_timeout;
4645         int mel;
4646         int ret;
4647
4648         xhci = hcd_to_xhci(hcd);
4649         /* The LPM timeout values are pretty host-controller specific, so don't
4650          * enable hub-initiated timeouts unless the vendor has provided
4651          * information about their timeout algorithm.
4652          */
4653         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4654                         !xhci->devs[udev->slot_id])
4655                 return USB3_LPM_DISABLED;
4656
4657         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4658         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4659         if (mel < 0) {
4660                 /* Max Exit Latency is too big, disable LPM. */
4661                 hub_encoded_timeout = USB3_LPM_DISABLED;
4662                 mel = 0;
4663         }
4664
4665         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4666         if (ret)
4667                 return ret;
4668         return hub_encoded_timeout;
4669 }
4670
4671 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4672                         struct usb_device *udev, enum usb3_link_state state)
4673 {
4674         struct xhci_hcd *xhci;
4675         u16 mel;
4676         int ret;
4677
4678         xhci = hcd_to_xhci(hcd);
4679         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4680                         !xhci->devs[udev->slot_id])
4681                 return 0;
4682
4683         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4684         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4685         if (ret)
4686                 return ret;
4687         return 0;
4688 }
4689 #else /* CONFIG_PM */
4690
4691 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4692                         struct usb_device *udev, enum usb3_link_state state)
4693 {
4694         return USB3_LPM_DISABLED;
4695 }
4696
4697 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4698                         struct usb_device *udev, enum usb3_link_state state)
4699 {
4700         return 0;
4701 }
4702 #endif  /* CONFIG_PM */
4703
4704 /*-------------------------------------------------------------------------*/
4705
4706 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4707  * internal data structures for the device.
4708  */
4709 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4710                         struct usb_tt *tt, gfp_t mem_flags)
4711 {
4712         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4713         struct xhci_virt_device *vdev;
4714         struct xhci_command *config_cmd;
4715         struct xhci_input_control_ctx *ctrl_ctx;
4716         struct xhci_slot_ctx *slot_ctx;
4717         unsigned long flags;
4718         unsigned think_time;
4719         int ret;
4720
4721         /* Ignore root hubs */
4722         if (!hdev->parent)
4723                 return 0;
4724
4725         vdev = xhci->devs[hdev->slot_id];
4726         if (!vdev) {
4727                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4728                 return -EINVAL;
4729         }
4730         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4731         if (!config_cmd) {
4732                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4733                 return -ENOMEM;
4734         }
4735         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4736         if (!ctrl_ctx) {
4737                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4738                                 __func__);
4739                 xhci_free_command(xhci, config_cmd);
4740                 return -ENOMEM;
4741         }
4742
4743         spin_lock_irqsave(&xhci->lock, flags);
4744         if (hdev->speed == USB_SPEED_HIGH &&
4745                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4746                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4747                 xhci_free_command(xhci, config_cmd);
4748                 spin_unlock_irqrestore(&xhci->lock, flags);
4749                 return -ENOMEM;
4750         }
4751
4752         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4753         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4754         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4755         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4756         if (tt->multi)
4757                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4758         if (xhci->hci_version > 0x95) {
4759                 xhci_dbg(xhci, "xHCI version %x needs hub "
4760                                 "TT think time and number of ports\n",
4761                                 (unsigned int) xhci->hci_version);
4762                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4763                 /* Set TT think time - convert from ns to FS bit times.
4764                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4765                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4766                  *
4767                  * xHCI 1.0: this field shall be 0 if the device is not a
4768                  * High-spped hub.
4769                  */
4770                 think_time = tt->think_time;
4771                 if (think_time != 0)
4772                         think_time = (think_time / 666) - 1;
4773                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4774                         slot_ctx->tt_info |=
4775                                 cpu_to_le32(TT_THINK_TIME(think_time));
4776         } else {
4777                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4778                                 "TT think time or number of ports\n",
4779                                 (unsigned int) xhci->hci_version);
4780         }
4781         slot_ctx->dev_state = 0;
4782         spin_unlock_irqrestore(&xhci->lock, flags);
4783
4784         xhci_dbg(xhci, "Set up %s for hub device.\n",
4785                         (xhci->hci_version > 0x95) ?
4786                         "configure endpoint" : "evaluate context");
4787         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4788         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4789
4790         /* Issue and wait for the configure endpoint or
4791          * evaluate context command.
4792          */
4793         if (xhci->hci_version > 0x95)
4794                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4795                                 false, false);
4796         else
4797                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4798                                 true, false);
4799
4800         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4801         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4802
4803         xhci_free_command(xhci, config_cmd);
4804         return ret;
4805 }
4806
4807 int xhci_get_frame(struct usb_hcd *hcd)
4808 {
4809         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4810         /* EHCI mods by the periodic size.  Why? */
4811         return readl(&xhci->run_regs->microframe_index) >> 3;
4812 }
4813
4814 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4815 {
4816         struct xhci_hcd         *xhci;
4817         struct device           *dev = hcd->self.controller;
4818         int                     retval;
4819
4820         /* Accept arbitrarily long scatter-gather lists */
4821         hcd->self.sg_tablesize = ~0;
4822
4823         /* support to build packet from discontinuous buffers */
4824         hcd->self.no_sg_constraint = 1;
4825
4826         /* XHCI controllers don't stop the ep queue on short packets :| */
4827         hcd->self.no_stop_on_short = 1;
4828
4829         if (usb_hcd_is_primary_hcd(hcd)) {
4830                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4831                 if (!xhci)
4832                         return -ENOMEM;
4833                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4834                 xhci->main_hcd = hcd;
4835                 /* Mark the first roothub as being USB 2.0.
4836                  * The xHCI driver will register the USB 3.0 roothub.
4837                  */
4838                 hcd->speed = HCD_USB2;
4839                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4840                 /*
4841                  * USB 2.0 roothub under xHCI has an integrated TT,
4842                  * (rate matching hub) as opposed to having an OHCI/UHCI
4843                  * companion controller.
4844                  */
4845                 hcd->has_tt = 1;
4846         } else {
4847                 /* xHCI private pointer was set in xhci_pci_probe for the second
4848                  * registered roothub.
4849                  */
4850                 return 0;
4851         }
4852
4853         xhci->cap_regs = hcd->regs;
4854         xhci->op_regs = hcd->regs +
4855                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4856         xhci->run_regs = hcd->regs +
4857                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4858         /* Cache read-only capability registers */
4859         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4860         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4861         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4862         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4863         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4864         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4865         xhci_print_registers(xhci);
4866
4867         xhci->quirks = quirks;
4868
4869         get_quirks(dev, xhci);
4870
4871         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4872          * success event after a short transfer. This quirk will ignore such
4873          * spurious event.
4874          */
4875         if (xhci->hci_version > 0x96)
4876                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4877
4878         /* Make sure the HC is halted. */
4879         retval = xhci_halt(xhci);
4880         if (retval)
4881                 goto error;
4882
4883         xhci_dbg(xhci, "Resetting HCD\n");
4884         /* Reset the internal HC memory state and registers. */
4885         retval = xhci_reset(xhci);
4886         if (retval)
4887                 goto error;
4888         xhci_dbg(xhci, "Reset complete\n");
4889
4890         /* Set dma_mask and coherent_dma_mask to 64-bits,
4891          * if xHC supports 64-bit addressing */
4892         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4893                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4894                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4895                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4896         }
4897
4898         xhci_dbg(xhci, "Calling HCD init\n");
4899         /* Initialize HCD and host controller data structures. */
4900         retval = xhci_init(hcd);
4901         if (retval)
4902                 goto error;
4903         xhci_dbg(xhci, "Called HCD init\n");
4904         return 0;
4905 error:
4906         kfree(xhci);
4907         return retval;
4908 }
4909
4910 MODULE_DESCRIPTION(DRIVER_DESC);
4911 MODULE_AUTHOR(DRIVER_AUTHOR);
4912 MODULE_LICENSE("GPL");
4913
4914 static int __init xhci_hcd_init(void)
4915 {
4916         int retval;
4917
4918         retval = xhci_register_pci();
4919         if (retval < 0) {
4920                 pr_debug("Problem registering PCI driver.\n");
4921                 return retval;
4922         }
4923         retval = xhci_register_plat();
4924         if (retval < 0) {
4925                 pr_debug("Problem registering platform driver.\n");
4926                 goto unreg_pci;
4927         }
4928         /*
4929          * Check the compiler generated sizes of structures that must be laid
4930          * out in specific ways for hardware access.
4931          */
4932         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4933         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4934         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4935         /* xhci_device_control has eight fields, and also
4936          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4937          */
4938         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4939         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4940         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4941         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4942         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4943         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4944         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4945         return 0;
4946 unreg_pci:
4947         xhci_unregister_pci();
4948         return retval;
4949 }
4950 module_init(xhci_hcd_init);
4951
4952 static void __exit xhci_hcd_cleanup(void)
4953 {
4954         xhci_unregister_pci();
4955         xhci_unregister_plat();
4956 }
4957 module_exit(xhci_hcd_cleanup);