rk3368: io-domain: add io domain volt sel
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         /* some functions below drop BTM, so we need this bit */
633         set_bit(TTY_HUPPING, &tty->flags);
634
635         /* inuse_filps is protected by the single tty lock,
636            this really needs to change if we want to flush the
637            workqueue with the lock held */
638         check_tty_count(tty, "tty_hangup");
639
640         spin_lock(&tty_files_lock);
641         /* This breaks for file handles being sent over AF_UNIX sockets ? */
642         list_for_each_entry(priv, &tty->tty_files, list) {
643                 filp = priv->file;
644                 if (filp->f_op->write == redirected_tty_write)
645                         cons_filp = filp;
646                 if (filp->f_op->write != tty_write)
647                         continue;
648                 closecount++;
649                 __tty_fasync(-1, filp, 0);      /* can't block */
650                 filp->f_op = &hung_up_tty_fops;
651         }
652         spin_unlock(&tty_files_lock);
653
654         refs = tty_signal_session_leader(tty, exit_session);
655         /* Account for the p->signal references we killed */
656         while (refs--)
657                 tty_kref_put(tty);
658
659         /*
660          * it drops BTM and thus races with reopen
661          * we protect the race by TTY_HUPPING
662          */
663         tty_ldisc_hangup(tty);
664
665         spin_lock_irq(&tty->ctrl_lock);
666         clear_bit(TTY_THROTTLED, &tty->flags);
667         clear_bit(TTY_PUSH, &tty->flags);
668         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669         put_pid(tty->session);
670         put_pid(tty->pgrp);
671         tty->session = NULL;
672         tty->pgrp = NULL;
673         tty->ctrl_status = 0;
674         spin_unlock_irq(&tty->ctrl_lock);
675
676         /*
677          * If one of the devices matches a console pointer, we
678          * cannot just call hangup() because that will cause
679          * tty->count and state->count to go out of sync.
680          * So we just call close() the right number of times.
681          */
682         if (cons_filp) {
683                 if (tty->ops->close)
684                         for (n = 0; n < closecount; n++)
685                                 tty->ops->close(tty, cons_filp);
686         } else if (tty->ops->hangup)
687                 (tty->ops->hangup)(tty);
688         /*
689          * We don't want to have driver/ldisc interactions beyond
690          * the ones we did here. The driver layer expects no
691          * calls after ->hangup() from the ldisc side. However we
692          * can't yet guarantee all that.
693          */
694         set_bit(TTY_HUPPED, &tty->flags);
695         clear_bit(TTY_HUPPING, &tty->flags);
696
697         tty_unlock(tty);
698
699         if (f)
700                 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705         struct tty_struct *tty =
706                 container_of(work, struct tty_struct, hangup_work);
707
708         __tty_hangup(tty, 0);
709 }
710
711 /**
712  *      tty_hangup              -       trigger a hangup event
713  *      @tty: tty to hangup
714  *
715  *      A carrier loss (virtual or otherwise) has occurred on this like
716  *      schedule a hangup sequence to run after this event.
717  */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722         char    buf[64];
723         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725         schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731  *      tty_vhangup             -       process vhangup
732  *      @tty: tty to hangup
733  *
734  *      The user has asked via system call for the terminal to be hung up.
735  *      We do this synchronously so that when the syscall returns the process
736  *      is complete. That guarantee is necessary for security reasons.
737  */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742         char    buf[64];
743
744         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746         __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753  *      tty_vhangup_self        -       process vhangup for own ctty
754  *
755  *      Perform a vhangup on the current controlling tty
756  */
757
758 void tty_vhangup_self(void)
759 {
760         struct tty_struct *tty;
761
762         tty = get_current_tty();
763         if (tty) {
764                 tty_vhangup(tty);
765                 tty_kref_put(tty);
766         }
767 }
768
769 /**
770  *      tty_vhangup_session             -       hangup session leader exit
771  *      @tty: tty to hangup
772  *
773  *      The session leader is exiting and hanging up its controlling terminal.
774  *      Every process in the foreground process group is signalled SIGHUP.
775  *
776  *      We do this synchronously so that when the syscall returns the process
777  *      is complete. That guarantee is necessary for security reasons.
778  */
779
780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783         char    buf[64];
784
785         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787         __tty_hangup(tty, 1);
788 }
789
790 /**
791  *      tty_hung_up_p           -       was tty hung up
792  *      @filp: file pointer of tty
793  *
794  *      Return true if the tty has been subject to a vhangup or a carrier
795  *      loss
796  */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800         return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807         struct task_struct *p;
808         do_each_pid_task(session, PIDTYPE_SID, p) {
809                 proc_clear_tty(p);
810         } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814  *      disassociate_ctty       -       disconnect controlling tty
815  *      @on_exit: true if exiting so need to "hang up" the session
816  *
817  *      This function is typically called only by the session leader, when
818  *      it wants to disassociate itself from its controlling tty.
819  *
820  *      It performs the following functions:
821  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  *      (2)  Clears the tty from being controlling the session
823  *      (3)  Clears the controlling tty for all processes in the
824  *              session group.
825  *
826  *      The argument on_exit is set to 1 if called when a process is
827  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *      Locking:
830  *              BTM is taken for hysterical raisins, and held when
831  *                called from no_tty().
832  *                tty_mutex is taken to protect tty
833  *                ->siglock is taken to protect ->signal/->sighand
834  *                tasklist_lock is taken to walk process list for sessions
835  *                  ->siglock is taken to protect ->signal/->sighand
836  */
837
838 void disassociate_ctty(int on_exit)
839 {
840         struct tty_struct *tty;
841
842         if (!current->signal->leader)
843                 return;
844
845         tty = get_current_tty();
846         if (tty) {
847                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848                         tty_vhangup_session(tty);
849                 } else {
850                         struct pid *tty_pgrp = tty_get_pgrp(tty);
851                         if (tty_pgrp) {
852                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853                                 if (!on_exit)
854                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
855                                 put_pid(tty_pgrp);
856                         }
857                 }
858                 tty_kref_put(tty);
859
860         } else if (on_exit) {
861                 struct pid *old_pgrp;
862                 spin_lock_irq(&current->sighand->siglock);
863                 old_pgrp = current->signal->tty_old_pgrp;
864                 current->signal->tty_old_pgrp = NULL;
865                 spin_unlock_irq(&current->sighand->siglock);
866                 if (old_pgrp) {
867                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
868                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
869                         put_pid(old_pgrp);
870                 }
871                 return;
872         }
873
874         spin_lock_irq(&current->sighand->siglock);
875         put_pid(current->signal->tty_old_pgrp);
876         current->signal->tty_old_pgrp = NULL;
877         spin_unlock_irq(&current->sighand->siglock);
878
879         tty = get_current_tty();
880         if (tty) {
881                 unsigned long flags;
882                 spin_lock_irqsave(&tty->ctrl_lock, flags);
883                 put_pid(tty->session);
884                 put_pid(tty->pgrp);
885                 tty->session = NULL;
886                 tty->pgrp = NULL;
887                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
888                 tty_kref_put(tty);
889         } else {
890 #ifdef TTY_DEBUG_HANGUP
891                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
892                        " = NULL", tty);
893 #endif
894         }
895
896         /* Now clear signal->tty under the lock */
897         read_lock(&tasklist_lock);
898         session_clear_tty(task_session(current));
899         read_unlock(&tasklist_lock);
900 }
901
902 /**
903  *
904  *      no_tty  - Ensure the current process does not have a controlling tty
905  */
906 void no_tty(void)
907 {
908         /* FIXME: Review locking here. The tty_lock never covered any race
909            between a new association and proc_clear_tty but possible we need
910            to protect against this anyway */
911         struct task_struct *tsk = current;
912         disassociate_ctty(0);
913         proc_clear_tty(tsk);
914 }
915
916
917 /**
918  *      stop_tty        -       propagate flow control
919  *      @tty: tty to stop
920  *
921  *      Perform flow control to the driver. For PTY/TTY pairs we
922  *      must also propagate the TIOCKPKT status. May be called
923  *      on an already stopped device and will not re-call the driver
924  *      method.
925  *
926  *      This functionality is used by both the line disciplines for
927  *      halting incoming flow and by the driver. It may therefore be
928  *      called from any context, may be under the tty atomic_write_lock
929  *      but not always.
930  *
931  *      Locking:
932  *              Uses the tty control lock internally
933  */
934
935 void stop_tty(struct tty_struct *tty)
936 {
937         unsigned long flags;
938         spin_lock_irqsave(&tty->ctrl_lock, flags);
939         if (tty->stopped) {
940                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
941                 return;
942         }
943         tty->stopped = 1;
944         if (tty->link && tty->link->packet) {
945                 tty->ctrl_status &= ~TIOCPKT_START;
946                 tty->ctrl_status |= TIOCPKT_STOP;
947                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
948         }
949         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
950         if (tty->ops->stop)
951                 (tty->ops->stop)(tty);
952 }
953
954 EXPORT_SYMBOL(stop_tty);
955
956 /**
957  *      start_tty       -       propagate flow control
958  *      @tty: tty to start
959  *
960  *      Start a tty that has been stopped if at all possible. Perform
961  *      any necessary wakeups and propagate the TIOCPKT status. If this
962  *      is the tty was previous stopped and is being started then the
963  *      driver start method is invoked and the line discipline woken.
964  *
965  *      Locking:
966  *              ctrl_lock
967  */
968
969 void start_tty(struct tty_struct *tty)
970 {
971         unsigned long flags;
972         spin_lock_irqsave(&tty->ctrl_lock, flags);
973         if (!tty->stopped || tty->flow_stopped) {
974                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
975                 return;
976         }
977         tty->stopped = 0;
978         if (tty->link && tty->link->packet) {
979                 tty->ctrl_status &= ~TIOCPKT_STOP;
980                 tty->ctrl_status |= TIOCPKT_START;
981                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
982         }
983         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
984         if (tty->ops->start)
985                 (tty->ops->start)(tty);
986         /* If we have a running line discipline it may need kicking */
987         tty_wakeup(tty);
988 }
989
990 EXPORT_SYMBOL(start_tty);
991
992 /* We limit tty time update visibility to every 8 seconds or so. */
993 static void tty_update_time(struct timespec *time)
994 {
995         unsigned long sec = get_seconds() & ~7;
996         if ((long)(sec - time->tv_sec) > 0)
997                 time->tv_sec = sec;
998 }
999
1000 /**
1001  *      tty_read        -       read method for tty device files
1002  *      @file: pointer to tty file
1003  *      @buf: user buffer
1004  *      @count: size of user buffer
1005  *      @ppos: unused
1006  *
1007  *      Perform the read system call function on this terminal device. Checks
1008  *      for hung up devices before calling the line discipline method.
1009  *
1010  *      Locking:
1011  *              Locks the line discipline internally while needed. Multiple
1012  *      read calls may be outstanding in parallel.
1013  */
1014
1015 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1016                         loff_t *ppos)
1017 {
1018         int i;
1019         struct inode *inode = file_inode(file);
1020         struct tty_struct *tty = file_tty(file);
1021         struct tty_ldisc *ld;
1022
1023         if (tty_paranoia_check(tty, inode, "tty_read"))
1024                 return -EIO;
1025         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1026                 return -EIO;
1027
1028         /* We want to wait for the line discipline to sort out in this
1029            situation */
1030         ld = tty_ldisc_ref_wait(tty);
1031         if (ld->ops->read)
1032                 i = (ld->ops->read)(tty, file, buf, count);
1033         else
1034                 i = -EIO;
1035         tty_ldisc_deref(ld);
1036
1037         if (i > 0)
1038                 tty_update_time(&inode->i_atime);
1039
1040         return i;
1041 }
1042
1043 void tty_write_unlock(struct tty_struct *tty)
1044         __releases(&tty->atomic_write_lock)
1045 {
1046         mutex_unlock(&tty->atomic_write_lock);
1047         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1048 }
1049
1050 int tty_write_lock(struct tty_struct *tty, int ndelay)
1051         __acquires(&tty->atomic_write_lock)
1052 {
1053         if (!mutex_trylock(&tty->atomic_write_lock)) {
1054                 if (ndelay)
1055                         return -EAGAIN;
1056                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1057                         return -ERESTARTSYS;
1058         }
1059         return 0;
1060 }
1061
1062 /*
1063  * Split writes up in sane blocksizes to avoid
1064  * denial-of-service type attacks
1065  */
1066 static inline ssize_t do_tty_write(
1067         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1068         struct tty_struct *tty,
1069         struct file *file,
1070         const char __user *buf,
1071         size_t count)
1072 {
1073         ssize_t ret, written = 0;
1074         unsigned int chunk;
1075
1076         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1077         if (ret < 0)
1078                 return ret;
1079
1080         /*
1081          * We chunk up writes into a temporary buffer. This
1082          * simplifies low-level drivers immensely, since they
1083          * don't have locking issues and user mode accesses.
1084          *
1085          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1086          * big chunk-size..
1087          *
1088          * The default chunk-size is 2kB, because the NTTY
1089          * layer has problems with bigger chunks. It will
1090          * claim to be able to handle more characters than
1091          * it actually does.
1092          *
1093          * FIXME: This can probably go away now except that 64K chunks
1094          * are too likely to fail unless switched to vmalloc...
1095          */
1096         chunk = 2048;
1097         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1098                 chunk = 65536;
1099         if (count < chunk)
1100                 chunk = count;
1101
1102         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1103         if (tty->write_cnt < chunk) {
1104                 unsigned char *buf_chunk;
1105
1106                 if (chunk < 1024)
1107                         chunk = 1024;
1108
1109                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1110                 if (!buf_chunk) {
1111                         ret = -ENOMEM;
1112                         goto out;
1113                 }
1114                 kfree(tty->write_buf);
1115                 tty->write_cnt = chunk;
1116                 tty->write_buf = buf_chunk;
1117         }
1118
1119         /* Do the write .. */
1120         for (;;) {
1121                 size_t size = count;
1122                 if (size > chunk)
1123                         size = chunk;
1124                 ret = -EFAULT;
1125                 if (copy_from_user(tty->write_buf, buf, size))
1126                         break;
1127                 ret = write(tty, file, tty->write_buf, size);
1128                 if (ret <= 0)
1129                         break;
1130                 written += ret;
1131                 buf += ret;
1132                 count -= ret;
1133                 if (!count)
1134                         break;
1135                 ret = -ERESTARTSYS;
1136                 if (signal_pending(current))
1137                         break;
1138                 cond_resched();
1139         }
1140         if (written) {
1141                 tty_update_time(&file_inode(file)->i_mtime);
1142                 ret = written;
1143         }
1144 out:
1145         tty_write_unlock(tty);
1146         return ret;
1147 }
1148
1149 /**
1150  * tty_write_message - write a message to a certain tty, not just the console.
1151  * @tty: the destination tty_struct
1152  * @msg: the message to write
1153  *
1154  * This is used for messages that need to be redirected to a specific tty.
1155  * We don't put it into the syslog queue right now maybe in the future if
1156  * really needed.
1157  *
1158  * We must still hold the BTM and test the CLOSING flag for the moment.
1159  */
1160
1161 void tty_write_message(struct tty_struct *tty, char *msg)
1162 {
1163         if (tty) {
1164                 mutex_lock(&tty->atomic_write_lock);
1165                 tty_lock(tty);
1166                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1167                         tty_unlock(tty);
1168                         tty->ops->write(tty, msg, strlen(msg));
1169                 } else
1170                         tty_unlock(tty);
1171                 tty_write_unlock(tty);
1172         }
1173         return;
1174 }
1175
1176
1177 /**
1178  *      tty_write               -       write method for tty device file
1179  *      @file: tty file pointer
1180  *      @buf: user data to write
1181  *      @count: bytes to write
1182  *      @ppos: unused
1183  *
1184  *      Write data to a tty device via the line discipline.
1185  *
1186  *      Locking:
1187  *              Locks the line discipline as required
1188  *              Writes to the tty driver are serialized by the atomic_write_lock
1189  *      and are then processed in chunks to the device. The line discipline
1190  *      write method will not be invoked in parallel for each device.
1191  */
1192
1193 static ssize_t tty_write(struct file *file, const char __user *buf,
1194                                                 size_t count, loff_t *ppos)
1195 {
1196         struct tty_struct *tty = file_tty(file);
1197         struct tty_ldisc *ld;
1198         ssize_t ret;
1199
1200         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1201                 return -EIO;
1202         if (!tty || !tty->ops->write ||
1203                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1204                         return -EIO;
1205         /* Short term debug to catch buggy drivers */
1206         if (tty->ops->write_room == NULL)
1207                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1208                         tty->driver->name);
1209         ld = tty_ldisc_ref_wait(tty);
1210         if (!ld->ops->write)
1211                 ret = -EIO;
1212         else
1213                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1214         tty_ldisc_deref(ld);
1215         return ret;
1216 }
1217
1218 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1219                                                 size_t count, loff_t *ppos)
1220 {
1221         struct file *p = NULL;
1222
1223         spin_lock(&redirect_lock);
1224         if (redirect)
1225                 p = get_file(redirect);
1226         spin_unlock(&redirect_lock);
1227
1228         if (p) {
1229                 ssize_t res;
1230                 res = vfs_write(p, buf, count, &p->f_pos);
1231                 fput(p);
1232                 return res;
1233         }
1234         return tty_write(file, buf, count, ppos);
1235 }
1236
1237 static char ptychar[] = "pqrstuvwxyzabcde";
1238
1239 /**
1240  *      pty_line_name   -       generate name for a pty
1241  *      @driver: the tty driver in use
1242  *      @index: the minor number
1243  *      @p: output buffer of at least 6 bytes
1244  *
1245  *      Generate a name from a driver reference and write it to the output
1246  *      buffer.
1247  *
1248  *      Locking: None
1249  */
1250 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1251 {
1252         int i = index + driver->name_base;
1253         /* ->name is initialized to "ttyp", but "tty" is expected */
1254         sprintf(p, "%s%c%x",
1255                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1256                 ptychar[i >> 4 & 0xf], i & 0xf);
1257 }
1258
1259 /**
1260  *      tty_line_name   -       generate name for a tty
1261  *      @driver: the tty driver in use
1262  *      @index: the minor number
1263  *      @p: output buffer of at least 7 bytes
1264  *
1265  *      Generate a name from a driver reference and write it to the output
1266  *      buffer.
1267  *
1268  *      Locking: None
1269  */
1270 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1271 {
1272         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1273                 return sprintf(p, "%s", driver->name);
1274         else
1275                 return sprintf(p, "%s%d", driver->name,
1276                                index + driver->name_base);
1277 }
1278
1279 /**
1280  *      tty_driver_lookup_tty() - find an existing tty, if any
1281  *      @driver: the driver for the tty
1282  *      @idx:    the minor number
1283  *
1284  *      Return the tty, if found or ERR_PTR() otherwise.
1285  *
1286  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1287  *      be held until the 'fast-open' is also done. Will change once we
1288  *      have refcounting in the driver and per driver locking
1289  */
1290 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1291                 struct inode *inode, int idx)
1292 {
1293         if (driver->ops->lookup)
1294                 return driver->ops->lookup(driver, inode, idx);
1295
1296         return driver->ttys[idx];
1297 }
1298
1299 /**
1300  *      tty_init_termios        -  helper for termios setup
1301  *      @tty: the tty to set up
1302  *
1303  *      Initialise the termios structures for this tty. Thus runs under
1304  *      the tty_mutex currently so we can be relaxed about ordering.
1305  */
1306
1307 int tty_init_termios(struct tty_struct *tty)
1308 {
1309         struct ktermios *tp;
1310         int idx = tty->index;
1311
1312         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1313                 tty->termios = tty->driver->init_termios;
1314         else {
1315                 /* Check for lazy saved data */
1316                 tp = tty->driver->termios[idx];
1317                 if (tp != NULL)
1318                         tty->termios = *tp;
1319                 else
1320                         tty->termios = tty->driver->init_termios;
1321         }
1322         /* Compatibility until drivers always set this */
1323         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1324         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1325         return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(tty_init_termios);
1328
1329 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1330 {
1331         int ret = tty_init_termios(tty);
1332         if (ret)
1333                 return ret;
1334
1335         tty_driver_kref_get(driver);
1336         tty->count++;
1337         driver->ttys[tty->index] = tty;
1338         return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(tty_standard_install);
1341
1342 /**
1343  *      tty_driver_install_tty() - install a tty entry in the driver
1344  *      @driver: the driver for the tty
1345  *      @tty: the tty
1346  *
1347  *      Install a tty object into the driver tables. The tty->index field
1348  *      will be set by the time this is called. This method is responsible
1349  *      for ensuring any need additional structures are allocated and
1350  *      configured.
1351  *
1352  *      Locking: tty_mutex for now
1353  */
1354 static int tty_driver_install_tty(struct tty_driver *driver,
1355                                                 struct tty_struct *tty)
1356 {
1357         return driver->ops->install ? driver->ops->install(driver, tty) :
1358                 tty_standard_install(driver, tty);
1359 }
1360
1361 /**
1362  *      tty_driver_remove_tty() - remove a tty from the driver tables
1363  *      @driver: the driver for the tty
1364  *      @idx:    the minor number
1365  *
1366  *      Remvoe a tty object from the driver tables. The tty->index field
1367  *      will be set by the time this is called.
1368  *
1369  *      Locking: tty_mutex for now
1370  */
1371 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1372 {
1373         if (driver->ops->remove)
1374                 driver->ops->remove(driver, tty);
1375         else
1376                 driver->ttys[tty->index] = NULL;
1377 }
1378
1379 /*
1380  *      tty_reopen()    - fast re-open of an open tty
1381  *      @tty    - the tty to open
1382  *
1383  *      Return 0 on success, -errno on error.
1384  *
1385  *      Locking: tty_mutex must be held from the time the tty was found
1386  *               till this open completes.
1387  */
1388 static int tty_reopen(struct tty_struct *tty)
1389 {
1390         struct tty_driver *driver = tty->driver;
1391
1392         if (test_bit(TTY_CLOSING, &tty->flags) ||
1393                         test_bit(TTY_HUPPING, &tty->flags) ||
1394                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1395                 return -EIO;
1396
1397         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1398             driver->subtype == PTY_TYPE_MASTER) {
1399                 /*
1400                  * special case for PTY masters: only one open permitted,
1401                  * and the slave side open count is incremented as well.
1402                  */
1403                 if (tty->count)
1404                         return -EIO;
1405
1406                 tty->link->count++;
1407         }
1408         tty->count++;
1409
1410         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1411
1412         return 0;
1413 }
1414
1415 /**
1416  *      tty_init_dev            -       initialise a tty device
1417  *      @driver: tty driver we are opening a device on
1418  *      @idx: device index
1419  *      @ret_tty: returned tty structure
1420  *
1421  *      Prepare a tty device. This may not be a "new" clean device but
1422  *      could also be an active device. The pty drivers require special
1423  *      handling because of this.
1424  *
1425  *      Locking:
1426  *              The function is called under the tty_mutex, which
1427  *      protects us from the tty struct or driver itself going away.
1428  *
1429  *      On exit the tty device has the line discipline attached and
1430  *      a reference count of 1. If a pair was created for pty/tty use
1431  *      and the other was a pty master then it too has a reference count of 1.
1432  *
1433  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1434  * failed open.  The new code protects the open with a mutex, so it's
1435  * really quite straightforward.  The mutex locking can probably be
1436  * relaxed for the (most common) case of reopening a tty.
1437  */
1438
1439 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1440 {
1441         struct tty_struct *tty;
1442         int retval;
1443
1444         /*
1445          * First time open is complex, especially for PTY devices.
1446          * This code guarantees that either everything succeeds and the
1447          * TTY is ready for operation, or else the table slots are vacated
1448          * and the allocated memory released.  (Except that the termios
1449          * and locked termios may be retained.)
1450          */
1451
1452         if (!try_module_get(driver->owner))
1453                 return ERR_PTR(-ENODEV);
1454
1455         tty = alloc_tty_struct();
1456         if (!tty) {
1457                 retval = -ENOMEM;
1458                 goto err_module_put;
1459         }
1460         initialize_tty_struct(tty, driver, idx);
1461
1462         tty_lock(tty);
1463         retval = tty_driver_install_tty(driver, tty);
1464         if (retval < 0)
1465                 goto err_deinit_tty;
1466
1467         if (!tty->port)
1468                 tty->port = driver->ports[idx];
1469
1470         WARN_RATELIMIT(!tty->port,
1471                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1472                         __func__, tty->driver->name);
1473
1474         tty->port->itty = tty;
1475
1476         /*
1477          * Structures all installed ... call the ldisc open routines.
1478          * If we fail here just call release_tty to clean up.  No need
1479          * to decrement the use counts, as release_tty doesn't care.
1480          */
1481         retval = tty_ldisc_setup(tty, tty->link);
1482         if (retval)
1483                 goto err_release_tty;
1484         /* Return the tty locked so that it cannot vanish under the caller */
1485         return tty;
1486
1487 err_deinit_tty:
1488         tty_unlock(tty);
1489         deinitialize_tty_struct(tty);
1490         free_tty_struct(tty);
1491 err_module_put:
1492         module_put(driver->owner);
1493         return ERR_PTR(retval);
1494
1495         /* call the tty release_tty routine to clean out this slot */
1496 err_release_tty:
1497         tty_unlock(tty);
1498         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1499                                  "clearing slot %d\n", idx);
1500         release_tty(tty, idx);
1501         return ERR_PTR(retval);
1502 }
1503
1504 void tty_free_termios(struct tty_struct *tty)
1505 {
1506         struct ktermios *tp;
1507         int idx = tty->index;
1508
1509         /* If the port is going to reset then it has no termios to save */
1510         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1511                 return;
1512
1513         /* Stash the termios data */
1514         tp = tty->driver->termios[idx];
1515         if (tp == NULL) {
1516                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1517                 if (tp == NULL) {
1518                         pr_warn("tty: no memory to save termios state.\n");
1519                         return;
1520                 }
1521                 tty->driver->termios[idx] = tp;
1522         }
1523         *tp = tty->termios;
1524 }
1525 EXPORT_SYMBOL(tty_free_termios);
1526
1527 /**
1528  *      tty_flush_works         -       flush all works of a tty
1529  *      @tty: tty device to flush works for
1530  *
1531  *      Sync flush all works belonging to @tty.
1532  */
1533 static void tty_flush_works(struct tty_struct *tty)
1534 {
1535         flush_work(&tty->SAK_work);
1536         flush_work(&tty->hangup_work);
1537 }
1538
1539 /**
1540  *      release_one_tty         -       release tty structure memory
1541  *      @kref: kref of tty we are obliterating
1542  *
1543  *      Releases memory associated with a tty structure, and clears out the
1544  *      driver table slots. This function is called when a device is no longer
1545  *      in use. It also gets called when setup of a device fails.
1546  *
1547  *      Locking:
1548  *              takes the file list lock internally when working on the list
1549  *      of ttys that the driver keeps.
1550  *
1551  *      This method gets called from a work queue so that the driver private
1552  *      cleanup ops can sleep (needed for USB at least)
1553  */
1554 static void release_one_tty(struct work_struct *work)
1555 {
1556         struct tty_struct *tty =
1557                 container_of(work, struct tty_struct, hangup_work);
1558         struct tty_driver *driver = tty->driver;
1559
1560         if (tty->ops->cleanup)
1561                 tty->ops->cleanup(tty);
1562
1563         tty->magic = 0;
1564         tty_driver_kref_put(driver);
1565         module_put(driver->owner);
1566
1567         spin_lock(&tty_files_lock);
1568         list_del_init(&tty->tty_files);
1569         spin_unlock(&tty_files_lock);
1570
1571         put_pid(tty->pgrp);
1572         put_pid(tty->session);
1573         free_tty_struct(tty);
1574 }
1575
1576 static void queue_release_one_tty(struct kref *kref)
1577 {
1578         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1579
1580         /* The hangup queue is now free so we can reuse it rather than
1581            waste a chunk of memory for each port */
1582         INIT_WORK(&tty->hangup_work, release_one_tty);
1583         schedule_work(&tty->hangup_work);
1584 }
1585
1586 /**
1587  *      tty_kref_put            -       release a tty kref
1588  *      @tty: tty device
1589  *
1590  *      Release a reference to a tty device and if need be let the kref
1591  *      layer destruct the object for us
1592  */
1593
1594 void tty_kref_put(struct tty_struct *tty)
1595 {
1596         if (tty)
1597                 kref_put(&tty->kref, queue_release_one_tty);
1598 }
1599 EXPORT_SYMBOL(tty_kref_put);
1600
1601 /**
1602  *      release_tty             -       release tty structure memory
1603  *
1604  *      Release both @tty and a possible linked partner (think pty pair),
1605  *      and decrement the refcount of the backing module.
1606  *
1607  *      Locking:
1608  *              tty_mutex
1609  *              takes the file list lock internally when working on the list
1610  *      of ttys that the driver keeps.
1611  *
1612  */
1613 static void release_tty(struct tty_struct *tty, int idx)
1614 {
1615         /* This should always be true but check for the moment */
1616         WARN_ON(tty->index != idx);
1617         WARN_ON(!mutex_is_locked(&tty_mutex));
1618         if (tty->ops->shutdown)
1619                 tty->ops->shutdown(tty);
1620         tty_free_termios(tty);
1621         tty_driver_remove_tty(tty->driver, tty);
1622         tty->port->itty = NULL;
1623         if (tty->link)
1624                 tty->link->port->itty = NULL;
1625         cancel_work_sync(&tty->port->buf.work);
1626
1627         if (tty->link)
1628                 tty_kref_put(tty->link);
1629         tty_kref_put(tty);
1630 }
1631
1632 /**
1633  *      tty_release_checks - check a tty before real release
1634  *      @tty: tty to check
1635  *      @o_tty: link of @tty (if any)
1636  *      @idx: index of the tty
1637  *
1638  *      Performs some paranoid checking before true release of the @tty.
1639  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1640  */
1641 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1642                 int idx)
1643 {
1644 #ifdef TTY_PARANOIA_CHECK
1645         if (idx < 0 || idx >= tty->driver->num) {
1646                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1647                                 __func__, tty->name);
1648                 return -1;
1649         }
1650
1651         /* not much to check for devpts */
1652         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1653                 return 0;
1654
1655         if (tty != tty->driver->ttys[idx]) {
1656                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1657                                 __func__, idx, tty->name);
1658                 return -1;
1659         }
1660         if (tty->driver->other) {
1661                 if (o_tty != tty->driver->other->ttys[idx]) {
1662                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1663                                         __func__, idx, tty->name);
1664                         return -1;
1665                 }
1666                 if (o_tty->link != tty) {
1667                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1668                         return -1;
1669                 }
1670         }
1671 #endif
1672         return 0;
1673 }
1674
1675 /**
1676  *      tty_release             -       vfs callback for close
1677  *      @inode: inode of tty
1678  *      @filp: file pointer for handle to tty
1679  *
1680  *      Called the last time each file handle is closed that references
1681  *      this tty. There may however be several such references.
1682  *
1683  *      Locking:
1684  *              Takes bkl. See tty_release_dev
1685  *
1686  * Even releasing the tty structures is a tricky business.. We have
1687  * to be very careful that the structures are all released at the
1688  * same time, as interrupts might otherwise get the wrong pointers.
1689  *
1690  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1691  * lead to double frees or releasing memory still in use.
1692  */
1693
1694 int tty_release(struct inode *inode, struct file *filp)
1695 {
1696         struct tty_struct *tty = file_tty(filp);
1697         struct tty_struct *o_tty;
1698         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1699         int     idx;
1700         char    buf[64];
1701         long    timeout = 0;
1702
1703         if (tty_paranoia_check(tty, inode, __func__))
1704                 return 0;
1705
1706         tty_lock(tty);
1707         check_tty_count(tty, __func__);
1708
1709         __tty_fasync(-1, filp, 0);
1710
1711         idx = tty->index;
1712         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1713                       tty->driver->subtype == PTY_TYPE_MASTER);
1714         /* Review: parallel close */
1715         o_tty = tty->link;
1716
1717         if (tty_release_checks(tty, o_tty, idx)) {
1718                 tty_unlock(tty);
1719                 return 0;
1720         }
1721
1722 #ifdef TTY_DEBUG_HANGUP
1723         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1724                         tty_name(tty, buf), tty->count);
1725 #endif
1726
1727         if (tty->ops->close)
1728                 tty->ops->close(tty, filp);
1729
1730         tty_unlock(tty);
1731         /*
1732          * Sanity check: if tty->count is going to zero, there shouldn't be
1733          * any waiters on tty->read_wait or tty->write_wait.  We test the
1734          * wait queues and kick everyone out _before_ actually starting to
1735          * close.  This ensures that we won't block while releasing the tty
1736          * structure.
1737          *
1738          * The test for the o_tty closing is necessary, since the master and
1739          * slave sides may close in any order.  If the slave side closes out
1740          * first, its count will be one, since the master side holds an open.
1741          * Thus this test wouldn't be triggered at the time the slave closes,
1742          * so we do it now.
1743          *
1744          * Note that it's possible for the tty to be opened again while we're
1745          * flushing out waiters.  By recalculating the closing flags before
1746          * each iteration we avoid any problems.
1747          */
1748         while (1) {
1749                 /* Guard against races with tty->count changes elsewhere and
1750                    opens on /dev/tty */
1751
1752                 mutex_lock(&tty_mutex);
1753                 tty_lock_pair(tty, o_tty);
1754                 tty_closing = tty->count <= 1;
1755                 o_tty_closing = o_tty &&
1756                         (o_tty->count <= (pty_master ? 1 : 0));
1757                 do_sleep = 0;
1758
1759                 if (tty_closing) {
1760                         if (waitqueue_active(&tty->read_wait)) {
1761                                 wake_up_poll(&tty->read_wait, POLLIN);
1762                                 do_sleep++;
1763                         }
1764                         if (waitqueue_active(&tty->write_wait)) {
1765                                 wake_up_poll(&tty->write_wait, POLLOUT);
1766                                 do_sleep++;
1767                         }
1768                 }
1769                 if (o_tty_closing) {
1770                         if (waitqueue_active(&o_tty->read_wait)) {
1771                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1772                                 do_sleep++;
1773                         }
1774                         if (waitqueue_active(&o_tty->write_wait)) {
1775                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1776                                 do_sleep++;
1777                         }
1778                 }
1779                 if (!do_sleep)
1780                         break;
1781
1782                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1783                                 __func__, tty_name(tty, buf));
1784                 tty_unlock_pair(tty, o_tty);
1785                 mutex_unlock(&tty_mutex);
1786                 schedule_timeout_killable(timeout);
1787                 if (timeout < 120 * HZ)
1788                         timeout = 2 * timeout + 1;
1789                 else
1790                         timeout = MAX_SCHEDULE_TIMEOUT;
1791         }
1792
1793         /*
1794          * The closing flags are now consistent with the open counts on
1795          * both sides, and we've completed the last operation that could
1796          * block, so it's safe to proceed with closing.
1797          *
1798          * We must *not* drop the tty_mutex until we ensure that a further
1799          * entry into tty_open can not pick up this tty.
1800          */
1801         if (pty_master) {
1802                 if (--o_tty->count < 0) {
1803                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1804                                 __func__, o_tty->count, tty_name(o_tty, buf));
1805                         o_tty->count = 0;
1806                 }
1807         }
1808         if (--tty->count < 0) {
1809                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1810                                 __func__, tty->count, tty_name(tty, buf));
1811                 tty->count = 0;
1812         }
1813
1814         /*
1815          * We've decremented tty->count, so we need to remove this file
1816          * descriptor off the tty->tty_files list; this serves two
1817          * purposes:
1818          *  - check_tty_count sees the correct number of file descriptors
1819          *    associated with this tty.
1820          *  - do_tty_hangup no longer sees this file descriptor as
1821          *    something that needs to be handled for hangups.
1822          */
1823         tty_del_file(filp);
1824
1825         /*
1826          * Perform some housekeeping before deciding whether to return.
1827          *
1828          * Set the TTY_CLOSING flag if this was the last open.  In the
1829          * case of a pty we may have to wait around for the other side
1830          * to close, and TTY_CLOSING makes sure we can't be reopened.
1831          */
1832         if (tty_closing)
1833                 set_bit(TTY_CLOSING, &tty->flags);
1834         if (o_tty_closing)
1835                 set_bit(TTY_CLOSING, &o_tty->flags);
1836
1837         /*
1838          * If _either_ side is closing, make sure there aren't any
1839          * processes that still think tty or o_tty is their controlling
1840          * tty.
1841          */
1842         if (tty_closing || o_tty_closing) {
1843                 read_lock(&tasklist_lock);
1844                 session_clear_tty(tty->session);
1845                 if (o_tty)
1846                         session_clear_tty(o_tty->session);
1847                 read_unlock(&tasklist_lock);
1848         }
1849
1850         mutex_unlock(&tty_mutex);
1851         tty_unlock_pair(tty, o_tty);
1852         /* At this point the TTY_CLOSING flag should ensure a dead tty
1853            cannot be re-opened by a racing opener */
1854
1855         /* check whether both sides are closing ... */
1856         if (!tty_closing || (o_tty && !o_tty_closing))
1857                 return 0;
1858
1859 #ifdef TTY_DEBUG_HANGUP
1860         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1861 #endif
1862         /*
1863          * Ask the line discipline code to release its structures
1864          */
1865         tty_ldisc_release(tty, o_tty);
1866
1867         /* Wait for pending work before tty destruction commmences */
1868         tty_flush_works(tty);
1869         if (o_tty)
1870                 tty_flush_works(o_tty);
1871
1872 #ifdef TTY_DEBUG_HANGUP
1873         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1874 #endif
1875         /*
1876          * The release_tty function takes care of the details of clearing
1877          * the slots and preserving the termios structure. The tty_unlock_pair
1878          * should be safe as we keep a kref while the tty is locked (so the
1879          * unlock never unlocks a freed tty).
1880          */
1881         mutex_lock(&tty_mutex);
1882         release_tty(tty, idx);
1883         mutex_unlock(&tty_mutex);
1884
1885         return 0;
1886 }
1887
1888 /**
1889  *      tty_open_current_tty - get tty of current task for open
1890  *      @device: device number
1891  *      @filp: file pointer to tty
1892  *      @return: tty of the current task iff @device is /dev/tty
1893  *
1894  *      We cannot return driver and index like for the other nodes because
1895  *      devpts will not work then. It expects inodes to be from devpts FS.
1896  *
1897  *      We need to move to returning a refcounted object from all the lookup
1898  *      paths including this one.
1899  */
1900 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1901 {
1902         struct tty_struct *tty;
1903
1904         if (device != MKDEV(TTYAUX_MAJOR, 0))
1905                 return NULL;
1906
1907         tty = get_current_tty();
1908         if (!tty)
1909                 return ERR_PTR(-ENXIO);
1910
1911         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1912         /* noctty = 1; */
1913         tty_kref_put(tty);
1914         /* FIXME: we put a reference and return a TTY! */
1915         /* This is only safe because the caller holds tty_mutex */
1916         return tty;
1917 }
1918
1919 /**
1920  *      tty_lookup_driver - lookup a tty driver for a given device file
1921  *      @device: device number
1922  *      @filp: file pointer to tty
1923  *      @noctty: set if the device should not become a controlling tty
1924  *      @index: index for the device in the @return driver
1925  *      @return: driver for this inode (with increased refcount)
1926  *
1927  *      If @return is not erroneous, the caller is responsible to decrement the
1928  *      refcount by tty_driver_kref_put.
1929  *
1930  *      Locking: tty_mutex protects get_tty_driver
1931  */
1932 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1933                 int *noctty, int *index)
1934 {
1935         struct tty_driver *driver;
1936
1937         switch (device) {
1938 #ifdef CONFIG_VT
1939         case MKDEV(TTY_MAJOR, 0): {
1940                 extern struct tty_driver *console_driver;
1941                 driver = tty_driver_kref_get(console_driver);
1942                 *index = fg_console;
1943                 *noctty = 1;
1944                 break;
1945         }
1946 #endif
1947         case MKDEV(TTYAUX_MAJOR, 1): {
1948                 struct tty_driver *console_driver = console_device(index);
1949                 if (console_driver) {
1950                         driver = tty_driver_kref_get(console_driver);
1951                         if (driver) {
1952                                 /* Don't let /dev/console block */
1953                                 filp->f_flags |= O_NONBLOCK;
1954                                 *noctty = 1;
1955                                 break;
1956                         }
1957                 }
1958                 return ERR_PTR(-ENODEV);
1959         }
1960         default:
1961                 driver = get_tty_driver(device, index);
1962                 if (!driver)
1963                         return ERR_PTR(-ENODEV);
1964                 break;
1965         }
1966         return driver;
1967 }
1968
1969 /**
1970  *      tty_open                -       open a tty device
1971  *      @inode: inode of device file
1972  *      @filp: file pointer to tty
1973  *
1974  *      tty_open and tty_release keep up the tty count that contains the
1975  *      number of opens done on a tty. We cannot use the inode-count, as
1976  *      different inodes might point to the same tty.
1977  *
1978  *      Open-counting is needed for pty masters, as well as for keeping
1979  *      track of serial lines: DTR is dropped when the last close happens.
1980  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1981  *
1982  *      The termios state of a pty is reset on first open so that
1983  *      settings don't persist across reuse.
1984  *
1985  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1986  *               tty->count should protect the rest.
1987  *               ->siglock protects ->signal/->sighand
1988  *
1989  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1990  *      tty_mutex
1991  */
1992
1993 static int tty_open(struct inode *inode, struct file *filp)
1994 {
1995         struct tty_struct *tty;
1996         int noctty, retval;
1997         struct tty_driver *driver = NULL;
1998         int index;
1999         dev_t device = inode->i_rdev;
2000         unsigned saved_flags = filp->f_flags;
2001
2002         nonseekable_open(inode, filp);
2003
2004 retry_open:
2005         retval = tty_alloc_file(filp);
2006         if (retval)
2007                 return -ENOMEM;
2008
2009         noctty = filp->f_flags & O_NOCTTY;
2010         index  = -1;
2011         retval = 0;
2012
2013         mutex_lock(&tty_mutex);
2014         /* This is protected by the tty_mutex */
2015         tty = tty_open_current_tty(device, filp);
2016         if (IS_ERR(tty)) {
2017                 retval = PTR_ERR(tty);
2018                 goto err_unlock;
2019         } else if (!tty) {
2020                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2021                 if (IS_ERR(driver)) {
2022                         retval = PTR_ERR(driver);
2023                         goto err_unlock;
2024                 }
2025
2026                 /* check whether we're reopening an existing tty */
2027                 tty = tty_driver_lookup_tty(driver, inode, index);
2028                 if (IS_ERR(tty)) {
2029                         retval = PTR_ERR(tty);
2030                         goto err_unlock;
2031                 }
2032         }
2033
2034         if (tty) {
2035                 tty_lock(tty);
2036                 retval = tty_reopen(tty);
2037                 if (retval < 0) {
2038                         tty_unlock(tty);
2039                         tty = ERR_PTR(retval);
2040                 }
2041         } else  /* Returns with the tty_lock held for now */
2042                 tty = tty_init_dev(driver, index);
2043
2044         mutex_unlock(&tty_mutex);
2045         if (driver)
2046                 tty_driver_kref_put(driver);
2047         if (IS_ERR(tty)) {
2048                 retval = PTR_ERR(tty);
2049                 goto err_file;
2050         }
2051
2052         tty_add_file(tty, filp);
2053
2054         check_tty_count(tty, __func__);
2055         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2056             tty->driver->subtype == PTY_TYPE_MASTER)
2057                 noctty = 1;
2058 #ifdef TTY_DEBUG_HANGUP
2059         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2060 #endif
2061         if (tty->ops->open)
2062                 retval = tty->ops->open(tty, filp);
2063         else
2064                 retval = -ENODEV;
2065         filp->f_flags = saved_flags;
2066
2067         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2068                                                 !capable(CAP_SYS_ADMIN))
2069                 retval = -EBUSY;
2070
2071         if (retval) {
2072 #ifdef TTY_DEBUG_HANGUP
2073                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2074                                 retval, tty->name);
2075 #endif
2076                 tty_unlock(tty); /* need to call tty_release without BTM */
2077                 tty_release(inode, filp);
2078                 if (retval != -ERESTARTSYS)
2079                         return retval;
2080
2081                 if (signal_pending(current))
2082                         return retval;
2083
2084                 schedule();
2085                 /*
2086                  * Need to reset f_op in case a hangup happened.
2087                  */
2088                 if (filp->f_op == &hung_up_tty_fops)
2089                         filp->f_op = &tty_fops;
2090                 goto retry_open;
2091         }
2092         tty_unlock(tty);
2093
2094
2095         mutex_lock(&tty_mutex);
2096         tty_lock(tty);
2097         spin_lock_irq(&current->sighand->siglock);
2098         if (!noctty &&
2099             current->signal->leader &&
2100             !current->signal->tty &&
2101             tty->session == NULL)
2102                 __proc_set_tty(current, tty);
2103         spin_unlock_irq(&current->sighand->siglock);
2104         tty_unlock(tty);
2105         mutex_unlock(&tty_mutex);
2106         return 0;
2107 err_unlock:
2108         mutex_unlock(&tty_mutex);
2109         /* after locks to avoid deadlock */
2110         if (!IS_ERR_OR_NULL(driver))
2111                 tty_driver_kref_put(driver);
2112 err_file:
2113         tty_free_file(filp);
2114         return retval;
2115 }
2116
2117
2118
2119 /**
2120  *      tty_poll        -       check tty status
2121  *      @filp: file being polled
2122  *      @wait: poll wait structures to update
2123  *
2124  *      Call the line discipline polling method to obtain the poll
2125  *      status of the device.
2126  *
2127  *      Locking: locks called line discipline but ldisc poll method
2128  *      may be re-entered freely by other callers.
2129  */
2130
2131 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2132 {
2133         struct tty_struct *tty = file_tty(filp);
2134         struct tty_ldisc *ld;
2135         int ret = 0;
2136
2137         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2138                 return 0;
2139
2140         ld = tty_ldisc_ref_wait(tty);
2141         if (ld->ops->poll)
2142                 ret = (ld->ops->poll)(tty, filp, wait);
2143         tty_ldisc_deref(ld);
2144         return ret;
2145 }
2146
2147 static int __tty_fasync(int fd, struct file *filp, int on)
2148 {
2149         struct tty_struct *tty = file_tty(filp);
2150         unsigned long flags;
2151         int retval = 0;
2152
2153         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154                 goto out;
2155
2156         retval = fasync_helper(fd, filp, on, &tty->fasync);
2157         if (retval <= 0)
2158                 goto out;
2159
2160         if (on) {
2161                 enum pid_type type;
2162                 struct pid *pid;
2163                 if (!waitqueue_active(&tty->read_wait))
2164                         tty->minimum_to_wake = 1;
2165                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2166                 if (tty->pgrp) {
2167                         pid = tty->pgrp;
2168                         type = PIDTYPE_PGID;
2169                 } else {
2170                         pid = task_pid(current);
2171                         type = PIDTYPE_PID;
2172                 }
2173                 get_pid(pid);
2174                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2175                 retval = __f_setown(filp, pid, type, 0);
2176                 put_pid(pid);
2177                 if (retval)
2178                         goto out;
2179         } else {
2180                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2181                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2182         }
2183         retval = 0;
2184 out:
2185         return retval;
2186 }
2187
2188 static int tty_fasync(int fd, struct file *filp, int on)
2189 {
2190         struct tty_struct *tty = file_tty(filp);
2191         int retval;
2192
2193         tty_lock(tty);
2194         retval = __tty_fasync(fd, filp, on);
2195         tty_unlock(tty);
2196
2197         return retval;
2198 }
2199
2200 /**
2201  *      tiocsti                 -       fake input character
2202  *      @tty: tty to fake input into
2203  *      @p: pointer to character
2204  *
2205  *      Fake input to a tty device. Does the necessary locking and
2206  *      input management.
2207  *
2208  *      FIXME: does not honour flow control ??
2209  *
2210  *      Locking:
2211  *              Called functions take tty_ldisc_lock
2212  *              current->signal->tty check is safe without locks
2213  *
2214  *      FIXME: may race normal receive processing
2215  */
2216
2217 static int tiocsti(struct tty_struct *tty, char __user *p)
2218 {
2219         char ch, mbz = 0;
2220         struct tty_ldisc *ld;
2221
2222         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223                 return -EPERM;
2224         if (get_user(ch, p))
2225                 return -EFAULT;
2226         tty_audit_tiocsti(tty, ch);
2227         ld = tty_ldisc_ref_wait(tty);
2228         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229         tty_ldisc_deref(ld);
2230         return 0;
2231 }
2232
2233 /**
2234  *      tiocgwinsz              -       implement window query ioctl
2235  *      @tty; tty
2236  *      @arg: user buffer for result
2237  *
2238  *      Copies the kernel idea of the window size into the user buffer.
2239  *
2240  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2241  *              is consistent.
2242  */
2243
2244 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245 {
2246         int err;
2247
2248         mutex_lock(&tty->termios_mutex);
2249         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250         mutex_unlock(&tty->termios_mutex);
2251
2252         return err ? -EFAULT: 0;
2253 }
2254
2255 /**
2256  *      tty_do_resize           -       resize event
2257  *      @tty: tty being resized
2258  *      @rows: rows (character)
2259  *      @cols: cols (character)
2260  *
2261  *      Update the termios variables and send the necessary signals to
2262  *      peform a terminal resize correctly
2263  */
2264
2265 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266 {
2267         struct pid *pgrp;
2268         unsigned long flags;
2269
2270         /* Lock the tty */
2271         mutex_lock(&tty->termios_mutex);
2272         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273                 goto done;
2274         /* Get the PID values and reference them so we can
2275            avoid holding the tty ctrl lock while sending signals */
2276         spin_lock_irqsave(&tty->ctrl_lock, flags);
2277         pgrp = get_pid(tty->pgrp);
2278         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
2280         if (pgrp)
2281                 kill_pgrp(pgrp, SIGWINCH, 1);
2282         put_pid(pgrp);
2283
2284         tty->winsize = *ws;
2285 done:
2286         mutex_unlock(&tty->termios_mutex);
2287         return 0;
2288 }
2289 EXPORT_SYMBOL(tty_do_resize);
2290
2291 /**
2292  *      tiocswinsz              -       implement window size set ioctl
2293  *      @tty; tty side of tty
2294  *      @arg: user buffer for result
2295  *
2296  *      Copies the user idea of the window size to the kernel. Traditionally
2297  *      this is just advisory information but for the Linux console it
2298  *      actually has driver level meaning and triggers a VC resize.
2299  *
2300  *      Locking:
2301  *              Driver dependent. The default do_resize method takes the
2302  *      tty termios mutex and ctrl_lock. The console takes its own lock
2303  *      then calls into the default method.
2304  */
2305
2306 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307 {
2308         struct winsize tmp_ws;
2309         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310                 return -EFAULT;
2311
2312         if (tty->ops->resize)
2313                 return tty->ops->resize(tty, &tmp_ws);
2314         else
2315                 return tty_do_resize(tty, &tmp_ws);
2316 }
2317
2318 /**
2319  *      tioccons        -       allow admin to move logical console
2320  *      @file: the file to become console
2321  *
2322  *      Allow the administrator to move the redirected console device
2323  *
2324  *      Locking: uses redirect_lock to guard the redirect information
2325  */
2326
2327 static int tioccons(struct file *file)
2328 {
2329         if (!capable(CAP_SYS_ADMIN))
2330                 return -EPERM;
2331         if (file->f_op->write == redirected_tty_write) {
2332                 struct file *f;
2333                 spin_lock(&redirect_lock);
2334                 f = redirect;
2335                 redirect = NULL;
2336                 spin_unlock(&redirect_lock);
2337                 if (f)
2338                         fput(f);
2339                 return 0;
2340         }
2341         spin_lock(&redirect_lock);
2342         if (redirect) {
2343                 spin_unlock(&redirect_lock);
2344                 return -EBUSY;
2345         }
2346         redirect = get_file(file);
2347         spin_unlock(&redirect_lock);
2348         return 0;
2349 }
2350
2351 /**
2352  *      fionbio         -       non blocking ioctl
2353  *      @file: file to set blocking value
2354  *      @p: user parameter
2355  *
2356  *      Historical tty interfaces had a blocking control ioctl before
2357  *      the generic functionality existed. This piece of history is preserved
2358  *      in the expected tty API of posix OS's.
2359  *
2360  *      Locking: none, the open file handle ensures it won't go away.
2361  */
2362
2363 static int fionbio(struct file *file, int __user *p)
2364 {
2365         int nonblock;
2366
2367         if (get_user(nonblock, p))
2368                 return -EFAULT;
2369
2370         spin_lock(&file->f_lock);
2371         if (nonblock)
2372                 file->f_flags |= O_NONBLOCK;
2373         else
2374                 file->f_flags &= ~O_NONBLOCK;
2375         spin_unlock(&file->f_lock);
2376         return 0;
2377 }
2378
2379 /**
2380  *      tiocsctty       -       set controlling tty
2381  *      @tty: tty structure
2382  *      @arg: user argument
2383  *
2384  *      This ioctl is used to manage job control. It permits a session
2385  *      leader to set this tty as the controlling tty for the session.
2386  *
2387  *      Locking:
2388  *              Takes tty_mutex() to protect tty instance
2389  *              Takes tasklist_lock internally to walk sessions
2390  *              Takes ->siglock() when updating signal->tty
2391  */
2392
2393 static int tiocsctty(struct tty_struct *tty, int arg)
2394 {
2395         int ret = 0;
2396         if (current->signal->leader && (task_session(current) == tty->session))
2397                 return ret;
2398
2399         mutex_lock(&tty_mutex);
2400         /*
2401          * The process must be a session leader and
2402          * not have a controlling tty already.
2403          */
2404         if (!current->signal->leader || current->signal->tty) {
2405                 ret = -EPERM;
2406                 goto unlock;
2407         }
2408
2409         if (tty->session) {
2410                 /*
2411                  * This tty is already the controlling
2412                  * tty for another session group!
2413                  */
2414                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415                         /*
2416                          * Steal it away
2417                          */
2418                         read_lock(&tasklist_lock);
2419                         session_clear_tty(tty->session);
2420                         read_unlock(&tasklist_lock);
2421                 } else {
2422                         ret = -EPERM;
2423                         goto unlock;
2424                 }
2425         }
2426         proc_set_tty(current, tty);
2427 unlock:
2428         mutex_unlock(&tty_mutex);
2429         return ret;
2430 }
2431
2432 /**
2433  *      tty_get_pgrp    -       return a ref counted pgrp pid
2434  *      @tty: tty to read
2435  *
2436  *      Returns a refcounted instance of the pid struct for the process
2437  *      group controlling the tty.
2438  */
2439
2440 struct pid *tty_get_pgrp(struct tty_struct *tty)
2441 {
2442         unsigned long flags;
2443         struct pid *pgrp;
2444
2445         spin_lock_irqsave(&tty->ctrl_lock, flags);
2446         pgrp = get_pid(tty->pgrp);
2447         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449         return pgrp;
2450 }
2451 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
2453 /**
2454  *      tiocgpgrp               -       get process group
2455  *      @tty: tty passed by user
2456  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2457  *      @p: returned pid
2458  *
2459  *      Obtain the process group of the tty. If there is no process group
2460  *      return an error.
2461  *
2462  *      Locking: none. Reference to current->signal->tty is safe.
2463  */
2464
2465 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466 {
2467         struct pid *pid;
2468         int ret;
2469         /*
2470          * (tty == real_tty) is a cheap way of
2471          * testing if the tty is NOT a master pty.
2472          */
2473         if (tty == real_tty && current->signal->tty != real_tty)
2474                 return -ENOTTY;
2475         pid = tty_get_pgrp(real_tty);
2476         ret =  put_user(pid_vnr(pid), p);
2477         put_pid(pid);
2478         return ret;
2479 }
2480
2481 /**
2482  *      tiocspgrp               -       attempt to set process group
2483  *      @tty: tty passed by user
2484  *      @real_tty: tty side device matching tty passed by user
2485  *      @p: pid pointer
2486  *
2487  *      Set the process group of the tty to the session passed. Only
2488  *      permitted where the tty session is our session.
2489  *
2490  *      Locking: RCU, ctrl lock
2491  */
2492
2493 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494 {
2495         struct pid *pgrp;
2496         pid_t pgrp_nr;
2497         int retval = tty_check_change(real_tty);
2498         unsigned long flags;
2499
2500         if (retval == -EIO)
2501                 return -ENOTTY;
2502         if (retval)
2503                 return retval;
2504         if (!current->signal->tty ||
2505             (current->signal->tty != real_tty) ||
2506             (real_tty->session != task_session(current)))
2507                 return -ENOTTY;
2508         if (get_user(pgrp_nr, p))
2509                 return -EFAULT;
2510         if (pgrp_nr < 0)
2511                 return -EINVAL;
2512         rcu_read_lock();
2513         pgrp = find_vpid(pgrp_nr);
2514         retval = -ESRCH;
2515         if (!pgrp)
2516                 goto out_unlock;
2517         retval = -EPERM;
2518         if (session_of_pgrp(pgrp) != task_session(current))
2519                 goto out_unlock;
2520         retval = 0;
2521         spin_lock_irqsave(&tty->ctrl_lock, flags);
2522         put_pid(real_tty->pgrp);
2523         real_tty->pgrp = get_pid(pgrp);
2524         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525 out_unlock:
2526         rcu_read_unlock();
2527         return retval;
2528 }
2529
2530 /**
2531  *      tiocgsid                -       get session id
2532  *      @tty: tty passed by user
2533  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2534  *      @p: pointer to returned session id
2535  *
2536  *      Obtain the session id of the tty. If there is no session
2537  *      return an error.
2538  *
2539  *      Locking: none. Reference to current->signal->tty is safe.
2540  */
2541
2542 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543 {
2544         /*
2545          * (tty == real_tty) is a cheap way of
2546          * testing if the tty is NOT a master pty.
2547         */
2548         if (tty == real_tty && current->signal->tty != real_tty)
2549                 return -ENOTTY;
2550         if (!real_tty->session)
2551                 return -ENOTTY;
2552         return put_user(pid_vnr(real_tty->session), p);
2553 }
2554
2555 /**
2556  *      tiocsetd        -       set line discipline
2557  *      @tty: tty device
2558  *      @p: pointer to user data
2559  *
2560  *      Set the line discipline according to user request.
2561  *
2562  *      Locking: see tty_set_ldisc, this function is just a helper
2563  */
2564
2565 static int tiocsetd(struct tty_struct *tty, int __user *p)
2566 {
2567         int ldisc;
2568         int ret;
2569
2570         if (get_user(ldisc, p))
2571                 return -EFAULT;
2572
2573         ret = tty_set_ldisc(tty, ldisc);
2574
2575         return ret;
2576 }
2577
2578 /**
2579  *      send_break      -       performed time break
2580  *      @tty: device to break on
2581  *      @duration: timeout in mS
2582  *
2583  *      Perform a timed break on hardware that lacks its own driver level
2584  *      timed break functionality.
2585  *
2586  *      Locking:
2587  *              atomic_write_lock serializes
2588  *
2589  */
2590
2591 static int send_break(struct tty_struct *tty, unsigned int duration)
2592 {
2593         int retval;
2594
2595         if (tty->ops->break_ctl == NULL)
2596                 return 0;
2597
2598         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599                 retval = tty->ops->break_ctl(tty, duration);
2600         else {
2601                 /* Do the work ourselves */
2602                 if (tty_write_lock(tty, 0) < 0)
2603                         return -EINTR;
2604                 retval = tty->ops->break_ctl(tty, -1);
2605                 if (retval)
2606                         goto out;
2607                 if (!signal_pending(current))
2608                         msleep_interruptible(duration);
2609                 retval = tty->ops->break_ctl(tty, 0);
2610 out:
2611                 tty_write_unlock(tty);
2612                 if (signal_pending(current))
2613                         retval = -EINTR;
2614         }
2615         return retval;
2616 }
2617
2618 /**
2619  *      tty_tiocmget            -       get modem status
2620  *      @tty: tty device
2621  *      @file: user file pointer
2622  *      @p: pointer to result
2623  *
2624  *      Obtain the modem status bits from the tty driver if the feature
2625  *      is supported. Return -EINVAL if it is not available.
2626  *
2627  *      Locking: none (up to the driver)
2628  */
2629
2630 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631 {
2632         int retval = -EINVAL;
2633
2634         if (tty->ops->tiocmget) {
2635                 retval = tty->ops->tiocmget(tty);
2636
2637                 if (retval >= 0)
2638                         retval = put_user(retval, p);
2639         }
2640         return retval;
2641 }
2642
2643 /**
2644  *      tty_tiocmset            -       set modem status
2645  *      @tty: tty device
2646  *      @cmd: command - clear bits, set bits or set all
2647  *      @p: pointer to desired bits
2648  *
2649  *      Set the modem status bits from the tty driver if the feature
2650  *      is supported. Return -EINVAL if it is not available.
2651  *
2652  *      Locking: none (up to the driver)
2653  */
2654
2655 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656              unsigned __user *p)
2657 {
2658         int retval;
2659         unsigned int set, clear, val;
2660
2661         if (tty->ops->tiocmset == NULL)
2662                 return -EINVAL;
2663
2664         retval = get_user(val, p);
2665         if (retval)
2666                 return retval;
2667         set = clear = 0;
2668         switch (cmd) {
2669         case TIOCMBIS:
2670                 set = val;
2671                 break;
2672         case TIOCMBIC:
2673                 clear = val;
2674                 break;
2675         case TIOCMSET:
2676                 set = val;
2677                 clear = ~val;
2678                 break;
2679         }
2680         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682         return tty->ops->tiocmset(tty, set, clear);
2683 }
2684
2685 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686 {
2687         int retval = -EINVAL;
2688         struct serial_icounter_struct icount;
2689         memset(&icount, 0, sizeof(icount));
2690         if (tty->ops->get_icount)
2691                 retval = tty->ops->get_icount(tty, &icount);
2692         if (retval != 0)
2693                 return retval;
2694         if (copy_to_user(arg, &icount, sizeof(icount)))
2695                 return -EFAULT;
2696         return 0;
2697 }
2698
2699 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700 {
2701         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702             tty->driver->subtype == PTY_TYPE_MASTER)
2703                 tty = tty->link;
2704         return tty;
2705 }
2706 EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2709 {
2710         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711             tty->driver->subtype == PTY_TYPE_MASTER)
2712             return tty;
2713         return tty->link;
2714 }
2715 EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717 /*
2718  * Split this up, as gcc can choke on it otherwise..
2719  */
2720 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721 {
2722         struct tty_struct *tty = file_tty(file);
2723         struct tty_struct *real_tty;
2724         void __user *p = (void __user *)arg;
2725         int retval;
2726         struct tty_ldisc *ld;
2727
2728         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729                 return -EINVAL;
2730
2731         real_tty = tty_pair_get_tty(tty);
2732
2733         /*
2734          * Factor out some common prep work
2735          */
2736         switch (cmd) {
2737         case TIOCSETD:
2738         case TIOCSBRK:
2739         case TIOCCBRK:
2740         case TCSBRK:
2741         case TCSBRKP:
2742                 retval = tty_check_change(tty);
2743                 if (retval)
2744                         return retval;
2745                 if (cmd != TIOCCBRK) {
2746                         tty_wait_until_sent(tty, 0);
2747                         if (signal_pending(current))
2748                                 return -EINTR;
2749                 }
2750                 break;
2751         }
2752
2753         /*
2754          *      Now do the stuff.
2755          */
2756         switch (cmd) {
2757         case TIOCSTI:
2758                 return tiocsti(tty, p);
2759         case TIOCGWINSZ:
2760                 return tiocgwinsz(real_tty, p);
2761         case TIOCSWINSZ:
2762                 return tiocswinsz(real_tty, p);
2763         case TIOCCONS:
2764                 return real_tty != tty ? -EINVAL : tioccons(file);
2765         case FIONBIO:
2766                 return fionbio(file, p);
2767         case TIOCEXCL:
2768                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2769                 return 0;
2770         case TIOCNXCL:
2771                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772                 return 0;
2773         case TIOCGEXCL:
2774         {
2775                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776                 return put_user(excl, (int __user *)p);
2777         }
2778         case TIOCNOTTY:
2779                 if (current->signal->tty != tty)
2780                         return -ENOTTY;
2781                 no_tty();
2782                 return 0;
2783         case TIOCSCTTY:
2784                 return tiocsctty(tty, arg);
2785         case TIOCGPGRP:
2786                 return tiocgpgrp(tty, real_tty, p);
2787         case TIOCSPGRP:
2788                 return tiocspgrp(tty, real_tty, p);
2789         case TIOCGSID:
2790                 return tiocgsid(tty, real_tty, p);
2791         case TIOCGETD:
2792                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2793         case TIOCSETD:
2794                 return tiocsetd(tty, p);
2795         case TIOCVHANGUP:
2796                 if (!capable(CAP_SYS_ADMIN))
2797                         return -EPERM;
2798                 tty_vhangup(tty);
2799                 return 0;
2800         case TIOCGDEV:
2801         {
2802                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803                 return put_user(ret, (unsigned int __user *)p);
2804         }
2805         /*
2806          * Break handling
2807          */
2808         case TIOCSBRK:  /* Turn break on, unconditionally */
2809                 if (tty->ops->break_ctl)
2810                         return tty->ops->break_ctl(tty, -1);
2811                 return 0;
2812         case TIOCCBRK:  /* Turn break off, unconditionally */
2813                 if (tty->ops->break_ctl)
2814                         return tty->ops->break_ctl(tty, 0);
2815                 return 0;
2816         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817                 /* non-zero arg means wait for all output data
2818                  * to be sent (performed above) but don't send break.
2819                  * This is used by the tcdrain() termios function.
2820                  */
2821                 if (!arg)
2822                         return send_break(tty, 250);
2823                 return 0;
2824         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2825                 return send_break(tty, arg ? arg*100 : 250);
2826
2827         case TIOCMGET:
2828                 return tty_tiocmget(tty, p);
2829         case TIOCMSET:
2830         case TIOCMBIC:
2831         case TIOCMBIS:
2832                 return tty_tiocmset(tty, cmd, p);
2833         case TIOCGICOUNT:
2834                 retval = tty_tiocgicount(tty, p);
2835                 /* For the moment allow fall through to the old method */
2836                 if (retval != -EINVAL)
2837                         return retval;
2838                 break;
2839         case TCFLSH:
2840                 switch (arg) {
2841                 case TCIFLUSH:
2842                 case TCIOFLUSH:
2843                 /* flush tty buffer and allow ldisc to process ioctl */
2844                         tty_buffer_flush(tty);
2845                         break;
2846                 }
2847                 break;
2848         }
2849         if (tty->ops->ioctl) {
2850                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2851                 if (retval != -ENOIOCTLCMD)
2852                         return retval;
2853         }
2854         ld = tty_ldisc_ref_wait(tty);
2855         retval = -EINVAL;
2856         if (ld->ops->ioctl) {
2857                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2858                 if (retval == -ENOIOCTLCMD)
2859                         retval = -ENOTTY;
2860         }
2861         tty_ldisc_deref(ld);
2862         return retval;
2863 }
2864
2865 #ifdef CONFIG_COMPAT
2866 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867                                 unsigned long arg)
2868 {
2869         struct tty_struct *tty = file_tty(file);
2870         struct tty_ldisc *ld;
2871         int retval = -ENOIOCTLCMD;
2872
2873         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874                 return -EINVAL;
2875
2876         if (tty->ops->compat_ioctl) {
2877                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878                 if (retval != -ENOIOCTLCMD)
2879                         return retval;
2880         }
2881
2882         ld = tty_ldisc_ref_wait(tty);
2883         if (ld->ops->compat_ioctl)
2884                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885         else
2886                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887         tty_ldisc_deref(ld);
2888
2889         return retval;
2890 }
2891 #endif
2892
2893 static int this_tty(const void *t, struct file *file, unsigned fd)
2894 {
2895         if (likely(file->f_op->read != tty_read))
2896                 return 0;
2897         return file_tty(file) != t ? 0 : fd + 1;
2898 }
2899         
2900 /*
2901  * This implements the "Secure Attention Key" ---  the idea is to
2902  * prevent trojan horses by killing all processes associated with this
2903  * tty when the user hits the "Secure Attention Key".  Required for
2904  * super-paranoid applications --- see the Orange Book for more details.
2905  *
2906  * This code could be nicer; ideally it should send a HUP, wait a few
2907  * seconds, then send a INT, and then a KILL signal.  But you then
2908  * have to coordinate with the init process, since all processes associated
2909  * with the current tty must be dead before the new getty is allowed
2910  * to spawn.
2911  *
2912  * Now, if it would be correct ;-/ The current code has a nasty hole -
2913  * it doesn't catch files in flight. We may send the descriptor to ourselves
2914  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915  *
2916  * Nasty bug: do_SAK is being called in interrupt context.  This can
2917  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918  */
2919 void __do_SAK(struct tty_struct *tty)
2920 {
2921 #ifdef TTY_SOFT_SAK
2922         tty_hangup(tty);
2923 #else
2924         struct task_struct *g, *p;
2925         struct pid *session;
2926         int             i;
2927
2928         if (!tty)
2929                 return;
2930         session = tty->session;
2931
2932         tty_ldisc_flush(tty);
2933
2934         tty_driver_flush_buffer(tty);
2935
2936         read_lock(&tasklist_lock);
2937         /* Kill the entire session */
2938         do_each_pid_task(session, PIDTYPE_SID, p) {
2939                 printk(KERN_NOTICE "SAK: killed process %d"
2940                         " (%s): task_session(p)==tty->session\n",
2941                         task_pid_nr(p), p->comm);
2942                 send_sig(SIGKILL, p, 1);
2943         } while_each_pid_task(session, PIDTYPE_SID, p);
2944         /* Now kill any processes that happen to have the
2945          * tty open.
2946          */
2947         do_each_thread(g, p) {
2948                 if (p->signal->tty == tty) {
2949                         printk(KERN_NOTICE "SAK: killed process %d"
2950                             " (%s): task_session(p)==tty->session\n",
2951                             task_pid_nr(p), p->comm);
2952                         send_sig(SIGKILL, p, 1);
2953                         continue;
2954                 }
2955                 task_lock(p);
2956                 i = iterate_fd(p->files, 0, this_tty, tty);
2957                 if (i != 0) {
2958                         printk(KERN_NOTICE "SAK: killed process %d"
2959                             " (%s): fd#%d opened to the tty\n",
2960                                     task_pid_nr(p), p->comm, i - 1);
2961                         force_sig(SIGKILL, p);
2962                 }
2963                 task_unlock(p);
2964         } while_each_thread(g, p);
2965         read_unlock(&tasklist_lock);
2966 #endif
2967 }
2968
2969 static void do_SAK_work(struct work_struct *work)
2970 {
2971         struct tty_struct *tty =
2972                 container_of(work, struct tty_struct, SAK_work);
2973         __do_SAK(tty);
2974 }
2975
2976 /*
2977  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979  * the values which we write to it will be identical to the values which it
2980  * already has. --akpm
2981  */
2982 void do_SAK(struct tty_struct *tty)
2983 {
2984         if (!tty)
2985                 return;
2986         schedule_work(&tty->SAK_work);
2987 }
2988
2989 EXPORT_SYMBOL(do_SAK);
2990
2991 static int dev_match_devt(struct device *dev, const void *data)
2992 {
2993         const dev_t *devt = data;
2994         return dev->devt == *devt;
2995 }
2996
2997 /* Must put_device() after it's unused! */
2998 static struct device *tty_get_device(struct tty_struct *tty)
2999 {
3000         dev_t devt = tty_devnum(tty);
3001         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002 }
3003
3004
3005 /**
3006  *      initialize_tty_struct
3007  *      @tty: tty to initialize
3008  *
3009  *      This subroutine initializes a tty structure that has been newly
3010  *      allocated.
3011  *
3012  *      Locking: none - tty in question must not be exposed at this point
3013  */
3014
3015 void initialize_tty_struct(struct tty_struct *tty,
3016                 struct tty_driver *driver, int idx)
3017 {
3018         memset(tty, 0, sizeof(struct tty_struct));
3019         kref_init(&tty->kref);
3020         tty->magic = TTY_MAGIC;
3021         tty_ldisc_init(tty);
3022         tty->session = NULL;
3023         tty->pgrp = NULL;
3024         mutex_init(&tty->legacy_mutex);
3025         mutex_init(&tty->termios_mutex);
3026         mutex_init(&tty->ldisc_mutex);
3027         init_waitqueue_head(&tty->write_wait);
3028         init_waitqueue_head(&tty->read_wait);
3029         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3030         mutex_init(&tty->atomic_write_lock);
3031         spin_lock_init(&tty->ctrl_lock);
3032         INIT_LIST_HEAD(&tty->tty_files);
3033         INIT_WORK(&tty->SAK_work, do_SAK_work);
3034
3035         tty->driver = driver;
3036         tty->ops = driver->ops;
3037         tty->index = idx;
3038         tty_line_name(driver, idx, tty->name);
3039         tty->dev = tty_get_device(tty);
3040 }
3041
3042 /**
3043  *      deinitialize_tty_struct
3044  *      @tty: tty to deinitialize
3045  *
3046  *      This subroutine deinitializes a tty structure that has been newly
3047  *      allocated but tty_release cannot be called on that yet.
3048  *
3049  *      Locking: none - tty in question must not be exposed at this point
3050  */
3051 void deinitialize_tty_struct(struct tty_struct *tty)
3052 {
3053         tty_ldisc_deinit(tty);
3054 }
3055
3056 /**
3057  *      tty_put_char    -       write one character to a tty
3058  *      @tty: tty
3059  *      @ch: character
3060  *
3061  *      Write one byte to the tty using the provided put_char method
3062  *      if present. Returns the number of characters successfully output.
3063  *
3064  *      Note: the specific put_char operation in the driver layer may go
3065  *      away soon. Don't call it directly, use this method
3066  */
3067
3068 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3069 {
3070         if (tty->ops->put_char)
3071                 return tty->ops->put_char(tty, ch);
3072         return tty->ops->write(tty, &ch, 1);
3073 }
3074 EXPORT_SYMBOL_GPL(tty_put_char);
3075
3076 struct class *tty_class;
3077
3078 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3079                 unsigned int index, unsigned int count)
3080 {
3081         /* init here, since reused cdevs cause crashes */
3082         cdev_init(&driver->cdevs[index], &tty_fops);
3083         driver->cdevs[index].owner = driver->owner;
3084         return cdev_add(&driver->cdevs[index], dev, count);
3085 }
3086
3087 /**
3088  *      tty_register_device - register a tty device
3089  *      @driver: the tty driver that describes the tty device
3090  *      @index: the index in the tty driver for this tty device
3091  *      @device: a struct device that is associated with this tty device.
3092  *              This field is optional, if there is no known struct device
3093  *              for this tty device it can be set to NULL safely.
3094  *
3095  *      Returns a pointer to the struct device for this tty device
3096  *      (or ERR_PTR(-EFOO) on error).
3097  *
3098  *      This call is required to be made to register an individual tty device
3099  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3100  *      that bit is not set, this function should not be called by a tty
3101  *      driver.
3102  *
3103  *      Locking: ??
3104  */
3105
3106 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3107                                    struct device *device)
3108 {
3109         return tty_register_device_attr(driver, index, device, NULL, NULL);
3110 }
3111 EXPORT_SYMBOL(tty_register_device);
3112
3113 static void tty_device_create_release(struct device *dev)
3114 {
3115         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3116         kfree(dev);
3117 }
3118
3119 /**
3120  *      tty_register_device_attr - register a tty device
3121  *      @driver: the tty driver that describes the tty device
3122  *      @index: the index in the tty driver for this tty device
3123  *      @device: a struct device that is associated with this tty device.
3124  *              This field is optional, if there is no known struct device
3125  *              for this tty device it can be set to NULL safely.
3126  *      @drvdata: Driver data to be set to device.
3127  *      @attr_grp: Attribute group to be set on device.
3128  *
3129  *      Returns a pointer to the struct device for this tty device
3130  *      (or ERR_PTR(-EFOO) on error).
3131  *
3132  *      This call is required to be made to register an individual tty device
3133  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3134  *      that bit is not set, this function should not be called by a tty
3135  *      driver.
3136  *
3137  *      Locking: ??
3138  */
3139 struct device *tty_register_device_attr(struct tty_driver *driver,
3140                                    unsigned index, struct device *device,
3141                                    void *drvdata,
3142                                    const struct attribute_group **attr_grp)
3143 {
3144         char name[64];
3145         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3146         struct device *dev = NULL;
3147         int retval = -ENODEV;
3148         bool cdev = false;
3149
3150         if (index >= driver->num) {
3151                 printk(KERN_ERR "Attempt to register invalid tty line number "
3152                        " (%d).\n", index);
3153                 return ERR_PTR(-EINVAL);
3154         }
3155
3156         if (driver->type == TTY_DRIVER_TYPE_PTY)
3157                 pty_line_name(driver, index, name);
3158         else
3159                 tty_line_name(driver, index, name);
3160
3161         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3162                 retval = tty_cdev_add(driver, devt, index, 1);
3163                 if (retval)
3164                         goto error;
3165                 cdev = true;
3166         }
3167
3168         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3169         if (!dev) {
3170                 retval = -ENOMEM;
3171                 goto error;
3172         }
3173
3174         dev->devt = devt;
3175         dev->class = tty_class;
3176         dev->parent = device;
3177         dev->release = tty_device_create_release;
3178         dev_set_name(dev, "%s", name);
3179         dev->groups = attr_grp;
3180         dev_set_drvdata(dev, drvdata);
3181
3182         retval = device_register(dev);
3183         if (retval)
3184                 goto error;
3185
3186         return dev;
3187
3188 error:
3189         put_device(dev);
3190         if (cdev)
3191                 cdev_del(&driver->cdevs[index]);
3192         return ERR_PTR(retval);
3193 }
3194 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3195
3196 /**
3197  *      tty_unregister_device - unregister a tty device
3198  *      @driver: the tty driver that describes the tty device
3199  *      @index: the index in the tty driver for this tty device
3200  *
3201  *      If a tty device is registered with a call to tty_register_device() then
3202  *      this function must be called when the tty device is gone.
3203  *
3204  *      Locking: ??
3205  */
3206
3207 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3208 {
3209         device_destroy(tty_class,
3210                 MKDEV(driver->major, driver->minor_start) + index);
3211         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3212                 cdev_del(&driver->cdevs[index]);
3213 }
3214 EXPORT_SYMBOL(tty_unregister_device);
3215
3216 /**
3217  * __tty_alloc_driver -- allocate tty driver
3218  * @lines: count of lines this driver can handle at most
3219  * @owner: module which is repsonsible for this driver
3220  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3221  *
3222  * This should not be called directly, some of the provided macros should be
3223  * used instead. Use IS_ERR and friends on @retval.
3224  */
3225 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3226                 unsigned long flags)
3227 {
3228         struct tty_driver *driver;
3229         unsigned int cdevs = 1;
3230         int err;
3231
3232         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3233                 return ERR_PTR(-EINVAL);
3234
3235         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3236         if (!driver)
3237                 return ERR_PTR(-ENOMEM);
3238
3239         kref_init(&driver->kref);
3240         driver->magic = TTY_DRIVER_MAGIC;
3241         driver->num = lines;
3242         driver->owner = owner;
3243         driver->flags = flags;
3244
3245         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3246                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3247                                 GFP_KERNEL);
3248                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3249                                 GFP_KERNEL);
3250                 if (!driver->ttys || !driver->termios) {
3251                         err = -ENOMEM;
3252                         goto err_free_all;
3253                 }
3254         }
3255
3256         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3257                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3258                                 GFP_KERNEL);
3259                 if (!driver->ports) {
3260                         err = -ENOMEM;
3261                         goto err_free_all;
3262                 }
3263                 cdevs = lines;
3264         }
3265
3266         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3267         if (!driver->cdevs) {
3268                 err = -ENOMEM;
3269                 goto err_free_all;
3270         }
3271
3272         return driver;
3273 err_free_all:
3274         kfree(driver->ports);
3275         kfree(driver->ttys);
3276         kfree(driver->termios);
3277         kfree(driver);
3278         return ERR_PTR(err);
3279 }
3280 EXPORT_SYMBOL(__tty_alloc_driver);
3281
3282 static void destruct_tty_driver(struct kref *kref)
3283 {
3284         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3285         int i;
3286         struct ktermios *tp;
3287
3288         if (driver->flags & TTY_DRIVER_INSTALLED) {
3289                 /*
3290                  * Free the termios and termios_locked structures because
3291                  * we don't want to get memory leaks when modular tty
3292                  * drivers are removed from the kernel.
3293                  */
3294                 for (i = 0; i < driver->num; i++) {
3295                         tp = driver->termios[i];
3296                         if (tp) {
3297                                 driver->termios[i] = NULL;
3298                                 kfree(tp);
3299                         }
3300                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3301                                 tty_unregister_device(driver, i);
3302                 }
3303                 proc_tty_unregister_driver(driver);
3304                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3305                         cdev_del(&driver->cdevs[0]);
3306         }
3307         kfree(driver->cdevs);
3308         kfree(driver->ports);
3309         kfree(driver->termios);
3310         kfree(driver->ttys);
3311         kfree(driver);
3312 }
3313
3314 void tty_driver_kref_put(struct tty_driver *driver)
3315 {
3316         kref_put(&driver->kref, destruct_tty_driver);
3317 }
3318 EXPORT_SYMBOL(tty_driver_kref_put);
3319
3320 void tty_set_operations(struct tty_driver *driver,
3321                         const struct tty_operations *op)
3322 {
3323         driver->ops = op;
3324 };
3325 EXPORT_SYMBOL(tty_set_operations);
3326
3327 void put_tty_driver(struct tty_driver *d)
3328 {
3329         tty_driver_kref_put(d);
3330 }
3331 EXPORT_SYMBOL(put_tty_driver);
3332
3333 /*
3334  * Called by a tty driver to register itself.
3335  */
3336 int tty_register_driver(struct tty_driver *driver)
3337 {
3338         int error;
3339         int i;
3340         dev_t dev;
3341         struct device *d;
3342
3343         if (!driver->major) {
3344                 error = alloc_chrdev_region(&dev, driver->minor_start,
3345                                                 driver->num, driver->name);
3346                 if (!error) {
3347                         driver->major = MAJOR(dev);
3348                         driver->minor_start = MINOR(dev);
3349                 }
3350         } else {
3351                 dev = MKDEV(driver->major, driver->minor_start);
3352                 error = register_chrdev_region(dev, driver->num, driver->name);
3353         }
3354         if (error < 0)
3355                 goto err;
3356
3357         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3358                 error = tty_cdev_add(driver, dev, 0, driver->num);
3359                 if (error)
3360                         goto err_unreg_char;
3361         }
3362
3363         mutex_lock(&tty_mutex);
3364         list_add(&driver->tty_drivers, &tty_drivers);
3365         mutex_unlock(&tty_mutex);
3366
3367         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3368                 for (i = 0; i < driver->num; i++) {
3369                         d = tty_register_device(driver, i, NULL);
3370                         if (IS_ERR(d)) {
3371                                 error = PTR_ERR(d);
3372                                 goto err_unreg_devs;
3373                         }
3374                 }
3375         }
3376         proc_tty_register_driver(driver);
3377         driver->flags |= TTY_DRIVER_INSTALLED;
3378         return 0;
3379
3380 err_unreg_devs:
3381         for (i--; i >= 0; i--)
3382                 tty_unregister_device(driver, i);
3383
3384         mutex_lock(&tty_mutex);
3385         list_del(&driver->tty_drivers);
3386         mutex_unlock(&tty_mutex);
3387
3388 err_unreg_char:
3389         unregister_chrdev_region(dev, driver->num);
3390 err:
3391         return error;
3392 }
3393 EXPORT_SYMBOL(tty_register_driver);
3394
3395 /*
3396  * Called by a tty driver to unregister itself.
3397  */
3398 int tty_unregister_driver(struct tty_driver *driver)
3399 {
3400 #if 0
3401         /* FIXME */
3402         if (driver->refcount)
3403                 return -EBUSY;
3404 #endif
3405         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3406                                 driver->num);
3407         mutex_lock(&tty_mutex);
3408         list_del(&driver->tty_drivers);
3409         mutex_unlock(&tty_mutex);
3410         return 0;
3411 }
3412
3413 EXPORT_SYMBOL(tty_unregister_driver);
3414
3415 dev_t tty_devnum(struct tty_struct *tty)
3416 {
3417         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3418 }
3419 EXPORT_SYMBOL(tty_devnum);
3420
3421 void proc_clear_tty(struct task_struct *p)
3422 {
3423         unsigned long flags;
3424         struct tty_struct *tty;
3425         spin_lock_irqsave(&p->sighand->siglock, flags);
3426         tty = p->signal->tty;
3427         p->signal->tty = NULL;
3428         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3429         tty_kref_put(tty);
3430 }
3431
3432 /* Called under the sighand lock */
3433
3434 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3435 {
3436         if (tty) {
3437                 unsigned long flags;
3438                 /* We should not have a session or pgrp to put here but.... */
3439                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3440                 put_pid(tty->session);
3441                 put_pid(tty->pgrp);
3442                 tty->pgrp = get_pid(task_pgrp(tsk));
3443                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3444                 tty->session = get_pid(task_session(tsk));
3445                 if (tsk->signal->tty) {
3446                         printk(KERN_DEBUG "tty not NULL!!\n");
3447                         tty_kref_put(tsk->signal->tty);
3448                 }
3449         }
3450         put_pid(tsk->signal->tty_old_pgrp);
3451         tsk->signal->tty = tty_kref_get(tty);
3452         tsk->signal->tty_old_pgrp = NULL;
3453 }
3454
3455 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3456 {
3457         spin_lock_irq(&tsk->sighand->siglock);
3458         __proc_set_tty(tsk, tty);
3459         spin_unlock_irq(&tsk->sighand->siglock);
3460 }
3461
3462 struct tty_struct *get_current_tty(void)
3463 {
3464         struct tty_struct *tty;
3465         unsigned long flags;
3466
3467         spin_lock_irqsave(&current->sighand->siglock, flags);
3468         tty = tty_kref_get(current->signal->tty);
3469         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3470         return tty;
3471 }
3472 EXPORT_SYMBOL_GPL(get_current_tty);
3473
3474 void tty_default_fops(struct file_operations *fops)
3475 {
3476         *fops = tty_fops;
3477 }
3478
3479 /*
3480  * Initialize the console device. This is called *early*, so
3481  * we can't necessarily depend on lots of kernel help here.
3482  * Just do some early initializations, and do the complex setup
3483  * later.
3484  */
3485 void __init console_init(void)
3486 {
3487         initcall_t *call;
3488
3489         /* Setup the default TTY line discipline. */
3490         tty_ldisc_begin();
3491
3492         /*
3493          * set up the console device so that later boot sequences can
3494          * inform about problems etc..
3495          */
3496         call = __con_initcall_start;
3497         while (call < __con_initcall_end) {
3498                 (*call)();
3499                 call++;
3500         }
3501 }
3502
3503 static char *tty_devnode(struct device *dev, umode_t *mode)
3504 {
3505         if (!mode)
3506                 return NULL;
3507         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3508             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3509                 *mode = 0666;
3510         return NULL;
3511 }
3512
3513 static int __init tty_class_init(void)
3514 {
3515         tty_class = class_create(THIS_MODULE, "tty");
3516         if (IS_ERR(tty_class))
3517                 return PTR_ERR(tty_class);
3518         tty_class->devnode = tty_devnode;
3519         return 0;
3520 }
3521
3522 postcore_initcall(tty_class_init);
3523
3524 /* 3/2004 jmc: why do these devices exist? */
3525 static struct cdev tty_cdev, console_cdev;
3526
3527 static ssize_t show_cons_active(struct device *dev,
3528                                 struct device_attribute *attr, char *buf)
3529 {
3530         struct console *cs[16];
3531         int i = 0;
3532         struct console *c;
3533         ssize_t count = 0;
3534
3535         console_lock();
3536         for_each_console(c) {
3537                 if (!c->device)
3538                         continue;
3539                 if (!c->write)
3540                         continue;
3541                 if ((c->flags & CON_ENABLED) == 0)
3542                         continue;
3543                 cs[i++] = c;
3544                 if (i >= ARRAY_SIZE(cs))
3545                         break;
3546         }
3547         while (i--) {
3548                 int index = cs[i]->index;
3549                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3550
3551                 /* don't resolve tty0 as some programs depend on it */
3552                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3553                         count += tty_line_name(drv, index, buf + count);
3554                 else
3555                         count += sprintf(buf + count, "%s%d",
3556                                          cs[i]->name, cs[i]->index);
3557
3558                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3559         }
3560         console_unlock();
3561
3562         return count;
3563 }
3564 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3565
3566 static struct device *consdev;
3567
3568 void console_sysfs_notify(void)
3569 {
3570         if (consdev)
3571                 sysfs_notify(&consdev->kobj, NULL, "active");
3572 }
3573
3574 /*
3575  * Ok, now we can initialize the rest of the tty devices and can count
3576  * on memory allocations, interrupts etc..
3577  */
3578 int __init tty_init(void)
3579 {
3580         cdev_init(&tty_cdev, &tty_fops);
3581         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3582             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3583                 panic("Couldn't register /dev/tty driver\n");
3584         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3585
3586         cdev_init(&console_cdev, &console_fops);
3587         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3588             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3589                 panic("Couldn't register /dev/console driver\n");
3590         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3591                               "console");
3592         if (IS_ERR(consdev))
3593                 consdev = NULL;
3594         else
3595                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3596
3597 #ifdef CONFIG_VT
3598         vty_init(&console_fops);
3599 #endif
3600         return 0;
3601 }
3602