Merge remote-tracking branch 'origin/develop-3.0' into develop-3.0-jb
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97
98 #include <linux/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (tty->dev)
185                 put_device(tty->dev);
186         kfree(tty->write_buf);
187         tty_buffer_free_all(tty);
188         kfree(tty);
189 }
190
191 static inline struct tty_struct *file_tty(struct file *file)
192 {
193         return ((struct tty_file_private *)file->private_data)->tty;
194 }
195
196 int tty_alloc_file(struct file *file)
197 {
198         struct tty_file_private *priv;
199
200         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201         if (!priv)
202                 return -ENOMEM;
203
204         file->private_data = priv;
205
206         return 0;
207 }
208
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
211 {
212         struct tty_file_private *priv = file->private_data;
213
214         priv->tty = tty;
215         priv->file = file;
216
217         spin_lock(&tty_files_lock);
218         list_add(&priv->list, &tty->tty_files);
219         spin_unlock(&tty_files_lock);
220 }
221
222 /**
223  * tty_free_file - free file->private_data
224  *
225  * This shall be used only for fail path handling when tty_add_file was not
226  * called yet.
227  */
228 void tty_free_file(struct file *file)
229 {
230         struct tty_file_private *priv = file->private_data;
231
232         file->private_data = NULL;
233         kfree(priv);
234 }
235
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
238 {
239         struct tty_file_private *priv = file->private_data;
240
241         spin_lock(&tty_files_lock);
242         list_del(&priv->list);
243         spin_unlock(&tty_files_lock);
244         tty_free_file(file);
245 }
246
247
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249
250 /**
251  *      tty_name        -       return tty naming
252  *      @tty: tty structure
253  *      @buf: buffer for output
254  *
255  *      Convert a tty structure into a name. The name reflects the kernel
256  *      naming policy and if udev is in use may not reflect user space
257  *
258  *      Locking: none
259  */
260
261 char *tty_name(struct tty_struct *tty, char *buf)
262 {
263         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
264                 strcpy(buf, "NULL tty");
265         else
266                 strcpy(buf, tty->name);
267         return buf;
268 }
269
270 EXPORT_SYMBOL(tty_name);
271
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273                               const char *routine)
274 {
275 #ifdef TTY_PARANOIA_CHECK
276         if (!tty) {
277                 printk(KERN_WARNING
278                         "null TTY for (%d:%d) in %s\n",
279                         imajor(inode), iminor(inode), routine);
280                 return 1;
281         }
282         if (tty->magic != TTY_MAGIC) {
283                 printk(KERN_WARNING
284                         "bad magic number for tty struct (%d:%d) in %s\n",
285                         imajor(inode), iminor(inode), routine);
286                 return 1;
287         }
288 #endif
289         return 0;
290 }
291
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
293 {
294 #ifdef CHECK_TTY_COUNT
295         struct list_head *p;
296         int count = 0;
297
298         spin_lock(&tty_files_lock);
299         list_for_each(p, &tty->tty_files) {
300                 count++;
301         }
302         spin_unlock(&tty_files_lock);
303         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304             tty->driver->subtype == PTY_TYPE_SLAVE &&
305             tty->link && tty->link->count)
306                 count++;
307         if (tty->count != count) {
308                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309                                     "!= #fd's(%d) in %s\n",
310                        tty->name, tty->count, count, routine);
311                 return count;
312         }
313 #endif
314         return 0;
315 }
316
317 /**
318  *      get_tty_driver          -       find device of a tty
319  *      @dev_t: device identifier
320  *      @index: returns the index of the tty
321  *
322  *      This routine returns a tty driver structure, given a device number
323  *      and also passes back the index number.
324  *
325  *      Locking: caller must hold tty_mutex
326  */
327
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
329 {
330         struct tty_driver *p;
331
332         list_for_each_entry(p, &tty_drivers, tty_drivers) {
333                 dev_t base = MKDEV(p->major, p->minor_start);
334                 if (device < base || device >= base + p->num)
335                         continue;
336                 *index = device - base;
337                 return tty_driver_kref_get(p);
338         }
339         return NULL;
340 }
341
342 #ifdef CONFIG_CONSOLE_POLL
343
344 /**
345  *      tty_find_polling_driver -       find device of a polled tty
346  *      @name: name string to match
347  *      @line: pointer to resulting tty line nr
348  *
349  *      This routine returns a tty driver structure, given a name
350  *      and the condition that the tty driver is capable of polled
351  *      operation.
352  */
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
354 {
355         struct tty_driver *p, *res = NULL;
356         int tty_line = 0;
357         int len;
358         char *str, *stp;
359
360         for (str = name; *str; str++)
361                 if ((*str >= '0' && *str <= '9') || *str == ',')
362                         break;
363         if (!*str)
364                 return NULL;
365
366         len = str - name;
367         tty_line = simple_strtoul(str, &str, 10);
368
369         mutex_lock(&tty_mutex);
370         /* Search through the tty devices to look for a match */
371         list_for_each_entry(p, &tty_drivers, tty_drivers) {
372                 if (strncmp(name, p->name, len) != 0)
373                         continue;
374                 stp = str;
375                 if (*stp == ',')
376                         stp++;
377                 if (*stp == '\0')
378                         stp = NULL;
379
380                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
381                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382                         res = tty_driver_kref_get(p);
383                         *line = tty_line;
384                         break;
385                 }
386         }
387         mutex_unlock(&tty_mutex);
388
389         return res;
390 }
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392 #endif
393
394 /**
395  *      tty_check_change        -       check for POSIX terminal changes
396  *      @tty: tty to check
397  *
398  *      If we try to write to, or set the state of, a terminal and we're
399  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
400  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
401  *
402  *      Locking: ctrl_lock
403  */
404
405 int tty_check_change(struct tty_struct *tty)
406 {
407         unsigned long flags;
408         int ret = 0;
409
410         if (current->signal->tty != tty)
411                 return 0;
412
413         spin_lock_irqsave(&tty->ctrl_lock, flags);
414
415         if (!tty->pgrp) {
416                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417                 goto out_unlock;
418         }
419         if (task_pgrp(current) == tty->pgrp)
420                 goto out_unlock;
421         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422         if (is_ignored(SIGTTOU))
423                 goto out;
424         if (is_current_pgrp_orphaned()) {
425                 ret = -EIO;
426                 goto out;
427         }
428         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429         set_thread_flag(TIF_SIGPENDING);
430         ret = -ERESTARTSYS;
431 out:
432         return ret;
433 out_unlock:
434         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435         return ret;
436 }
437
438 EXPORT_SYMBOL(tty_check_change);
439
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441                                 size_t count, loff_t *ppos)
442 {
443         return 0;
444 }
445
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447                                  size_t count, loff_t *ppos)
448 {
449         return -EIO;
450 }
451
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454 {
455         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456 }
457
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459                 unsigned long arg)
460 {
461         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462 }
463
464 static long hung_up_tty_compat_ioctl(struct file *file,
465                                      unsigned int cmd, unsigned long arg)
466 {
467         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468 }
469
470 static const struct file_operations tty_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations console_fops = {
483         .llseek         = no_llseek,
484         .read           = tty_read,
485         .write          = redirected_tty_write,
486         .poll           = tty_poll,
487         .unlocked_ioctl = tty_ioctl,
488         .compat_ioctl   = tty_compat_ioctl,
489         .open           = tty_open,
490         .release        = tty_release,
491         .fasync         = tty_fasync,
492 };
493
494 static const struct file_operations hung_up_tty_fops = {
495         .llseek         = no_llseek,
496         .read           = hung_up_tty_read,
497         .write          = hung_up_tty_write,
498         .poll           = hung_up_tty_poll,
499         .unlocked_ioctl = hung_up_tty_ioctl,
500         .compat_ioctl   = hung_up_tty_compat_ioctl,
501         .release        = tty_release,
502 };
503
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506
507 /**
508  *      tty_wakeup      -       request more data
509  *      @tty: terminal
510  *
511  *      Internal and external helper for wakeups of tty. This function
512  *      informs the line discipline if present that the driver is ready
513  *      to receive more output data.
514  */
515
516 void tty_wakeup(struct tty_struct *tty)
517 {
518         struct tty_ldisc *ld;
519
520         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521                 ld = tty_ldisc_ref(tty);
522                 if (ld) {
523                         if (ld->ops->write_wakeup)
524                                 ld->ops->write_wakeup(tty);
525                         tty_ldisc_deref(ld);
526                 }
527         }
528         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529 }
530
531 EXPORT_SYMBOL_GPL(tty_wakeup);
532
533 /**
534  *      __tty_hangup            -       actual handler for hangup events
535  *      @work: tty device
536  *
537  *      This can be called by the "eventd" kernel thread.  That is process
538  *      synchronous but doesn't hold any locks, so we need to make sure we
539  *      have the appropriate locks for what we're doing.
540  *
541  *      The hangup event clears any pending redirections onto the hung up
542  *      device. It ensures future writes will error and it does the needed
543  *      line discipline hangup and signal delivery. The tty object itself
544  *      remains intact.
545  *
546  *      Locking:
547  *              BTM
548  *                redirect lock for undoing redirection
549  *                file list lock for manipulating list of ttys
550  *                tty_ldisc_lock from called functions
551  *                termios_mutex resetting termios data
552  *                tasklist_lock to walk task list for hangup event
553  *                  ->siglock to protect ->signal/->sighand
554  */
555 void __tty_hangup(struct tty_struct *tty)
556 {
557         struct file *cons_filp = NULL;
558         struct file *filp, *f = NULL;
559         struct task_struct *p;
560         struct tty_file_private *priv;
561         int    closecount = 0, n;
562         unsigned long flags;
563         int refs = 0;
564
565         if (!tty)
566                 return;
567
568
569         spin_lock(&redirect_lock);
570         if (redirect && file_tty(redirect) == tty) {
571                 f = redirect;
572                 redirect = NULL;
573         }
574         spin_unlock(&redirect_lock);
575
576         tty_lock();
577
578         /* some functions below drop BTM, so we need this bit */
579         set_bit(TTY_HUPPING, &tty->flags);
580
581         /* inuse_filps is protected by the single tty lock,
582            this really needs to change if we want to flush the
583            workqueue with the lock held */
584         check_tty_count(tty, "tty_hangup");
585
586         spin_lock(&tty_files_lock);
587         /* This breaks for file handles being sent over AF_UNIX sockets ? */
588         list_for_each_entry(priv, &tty->tty_files, list) {
589                 filp = priv->file;
590                 if (filp->f_op->write == redirected_tty_write)
591                         cons_filp = filp;
592                 if (filp->f_op->write != tty_write)
593                         continue;
594                 closecount++;
595                 __tty_fasync(-1, filp, 0);      /* can't block */
596                 filp->f_op = &hung_up_tty_fops;
597         }
598         spin_unlock(&tty_files_lock);
599
600         /*
601          * it drops BTM and thus races with reopen
602          * we protect the race by TTY_HUPPING
603          */
604         tty_ldisc_hangup(tty);
605
606         read_lock(&tasklist_lock);
607         if (tty->session) {
608                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609                         spin_lock_irq(&p->sighand->siglock);
610                         if (p->signal->tty == tty) {
611                                 p->signal->tty = NULL;
612                                 /* We defer the dereferences outside fo
613                                    the tasklist lock */
614                                 refs++;
615                         }
616                         if (!p->signal->leader) {
617                                 spin_unlock_irq(&p->sighand->siglock);
618                                 continue;
619                         }
620                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
623                         spin_lock_irqsave(&tty->ctrl_lock, flags);
624                         if (tty->pgrp)
625                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627                         spin_unlock_irq(&p->sighand->siglock);
628                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629         }
630         read_unlock(&tasklist_lock);
631
632         spin_lock_irqsave(&tty->ctrl_lock, flags);
633         clear_bit(TTY_THROTTLED, &tty->flags);
634         clear_bit(TTY_PUSH, &tty->flags);
635         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636         put_pid(tty->session);
637         put_pid(tty->pgrp);
638         tty->session = NULL;
639         tty->pgrp = NULL;
640         tty->ctrl_status = 0;
641         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642
643         /* Account for the p->signal references we killed */
644         while (refs--)
645                 tty_kref_put(tty);
646
647         /*
648          * If one of the devices matches a console pointer, we
649          * cannot just call hangup() because that will cause
650          * tty->count and state->count to go out of sync.
651          * So we just call close() the right number of times.
652          */
653         if (cons_filp) {
654                 if (tty->ops->close)
655                         for (n = 0; n < closecount; n++)
656                                 tty->ops->close(tty, cons_filp);
657         } else if (tty->ops->hangup)
658                 (tty->ops->hangup)(tty);
659         /*
660          * We don't want to have driver/ldisc interactions beyond
661          * the ones we did here. The driver layer expects no
662          * calls after ->hangup() from the ldisc side. However we
663          * can't yet guarantee all that.
664          */
665         set_bit(TTY_HUPPED, &tty->flags);
666         clear_bit(TTY_HUPPING, &tty->flags);
667         tty_ldisc_enable(tty);
668
669         tty_unlock();
670
671         if (f)
672                 fput(f);
673 }
674
675 static void do_tty_hangup(struct work_struct *work)
676 {
677         struct tty_struct *tty =
678                 container_of(work, struct tty_struct, hangup_work);
679
680         __tty_hangup(tty);
681 }
682
683 /**
684  *      tty_hangup              -       trigger a hangup event
685  *      @tty: tty to hangup
686  *
687  *      A carrier loss (virtual or otherwise) has occurred on this like
688  *      schedule a hangup sequence to run after this event.
689  */
690
691 void tty_hangup(struct tty_struct *tty)
692 {
693 #ifdef TTY_DEBUG_HANGUP
694         char    buf[64];
695         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696 #endif
697         schedule_work(&tty->hangup_work);
698 }
699
700 EXPORT_SYMBOL(tty_hangup);
701
702 /**
703  *      tty_vhangup             -       process vhangup
704  *      @tty: tty to hangup
705  *
706  *      The user has asked via system call for the terminal to be hung up.
707  *      We do this synchronously so that when the syscall returns the process
708  *      is complete. That guarantee is necessary for security reasons.
709  */
710
711 void tty_vhangup(struct tty_struct *tty)
712 {
713 #ifdef TTY_DEBUG_HANGUP
714         char    buf[64];
715
716         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717 #endif
718         __tty_hangup(tty);
719 }
720
721 EXPORT_SYMBOL(tty_vhangup);
722
723
724 /**
725  *      tty_vhangup_self        -       process vhangup for own ctty
726  *
727  *      Perform a vhangup on the current controlling tty
728  */
729
730 void tty_vhangup_self(void)
731 {
732         struct tty_struct *tty;
733
734         tty = get_current_tty();
735         if (tty) {
736                 tty_vhangup(tty);
737                 tty_kref_put(tty);
738         }
739 }
740
741 /**
742  *      tty_hung_up_p           -       was tty hung up
743  *      @filp: file pointer of tty
744  *
745  *      Return true if the tty has been subject to a vhangup or a carrier
746  *      loss
747  */
748
749 int tty_hung_up_p(struct file *filp)
750 {
751         return (filp->f_op == &hung_up_tty_fops);
752 }
753
754 EXPORT_SYMBOL(tty_hung_up_p);
755
756 static void session_clear_tty(struct pid *session)
757 {
758         struct task_struct *p;
759         do_each_pid_task(session, PIDTYPE_SID, p) {
760                 proc_clear_tty(p);
761         } while_each_pid_task(session, PIDTYPE_SID, p);
762 }
763
764 /**
765  *      disassociate_ctty       -       disconnect controlling tty
766  *      @on_exit: true if exiting so need to "hang up" the session
767  *
768  *      This function is typically called only by the session leader, when
769  *      it wants to disassociate itself from its controlling tty.
770  *
771  *      It performs the following functions:
772  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
773  *      (2)  Clears the tty from being controlling the session
774  *      (3)  Clears the controlling tty for all processes in the
775  *              session group.
776  *
777  *      The argument on_exit is set to 1 if called when a process is
778  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
779  *
780  *      Locking:
781  *              BTM is taken for hysterical raisins, and held when
782  *                called from no_tty().
783  *                tty_mutex is taken to protect tty
784  *                ->siglock is taken to protect ->signal/->sighand
785  *                tasklist_lock is taken to walk process list for sessions
786  *                  ->siglock is taken to protect ->signal/->sighand
787  */
788
789 void disassociate_ctty(int on_exit)
790 {
791         struct tty_struct *tty;
792         struct pid *tty_pgrp = NULL;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805         } else if (on_exit) {
806                 struct pid *old_pgrp;
807                 spin_lock_irq(&current->sighand->siglock);
808                 old_pgrp = current->signal->tty_old_pgrp;
809                 current->signal->tty_old_pgrp = NULL;
810                 spin_unlock_irq(&current->sighand->siglock);
811                 if (old_pgrp) {
812                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
813                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
814                         put_pid(old_pgrp);
815                 }
816                 return;
817         }
818         if (tty_pgrp) {
819                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
820                 if (!on_exit)
821                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
822                 put_pid(tty_pgrp);
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         struct task_struct *tsk = current;
860         tty_lock();
861         disassociate_ctty(0);
862         tty_unlock();
863         proc_clear_tty(tsk);
864 }
865
866
867 /**
868  *      stop_tty        -       propagate flow control
869  *      @tty: tty to stop
870  *
871  *      Perform flow control to the driver. For PTY/TTY pairs we
872  *      must also propagate the TIOCKPKT status. May be called
873  *      on an already stopped device and will not re-call the driver
874  *      method.
875  *
876  *      This functionality is used by both the line disciplines for
877  *      halting incoming flow and by the driver. It may therefore be
878  *      called from any context, may be under the tty atomic_write_lock
879  *      but not always.
880  *
881  *      Locking:
882  *              Uses the tty control lock internally
883  */
884
885 void stop_tty(struct tty_struct *tty)
886 {
887         unsigned long flags;
888         spin_lock_irqsave(&tty->ctrl_lock, flags);
889         if (tty->stopped) {
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 return;
892         }
893         tty->stopped = 1;
894         if (tty->link && tty->link->packet) {
895                 tty->ctrl_status &= ~TIOCPKT_START;
896                 tty->ctrl_status |= TIOCPKT_STOP;
897                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898         }
899         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900         if (tty->ops->stop)
901                 (tty->ops->stop)(tty);
902 }
903
904 EXPORT_SYMBOL(stop_tty);
905
906 /**
907  *      start_tty       -       propagate flow control
908  *      @tty: tty to start
909  *
910  *      Start a tty that has been stopped if at all possible. Perform
911  *      any necessary wakeups and propagate the TIOCPKT status. If this
912  *      is the tty was previous stopped and is being started then the
913  *      driver start method is invoked and the line discipline woken.
914  *
915  *      Locking:
916  *              ctrl_lock
917  */
918
919 void start_tty(struct tty_struct *tty)
920 {
921         unsigned long flags;
922         spin_lock_irqsave(&tty->ctrl_lock, flags);
923         if (!tty->stopped || tty->flow_stopped) {
924                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925                 return;
926         }
927         tty->stopped = 0;
928         if (tty->link && tty->link->packet) {
929                 tty->ctrl_status &= ~TIOCPKT_STOP;
930                 tty->ctrl_status |= TIOCPKT_START;
931                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932         }
933         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934         if (tty->ops->start)
935                 (tty->ops->start)(tty);
936         /* If we have a running line discipline it may need kicking */
937         tty_wakeup(tty);
938 }
939
940 EXPORT_SYMBOL(start_tty);
941
942 /**
943  *      tty_read        -       read method for tty device files
944  *      @file: pointer to tty file
945  *      @buf: user buffer
946  *      @count: size of user buffer
947  *      @ppos: unused
948  *
949  *      Perform the read system call function on this terminal device. Checks
950  *      for hung up devices before calling the line discipline method.
951  *
952  *      Locking:
953  *              Locks the line discipline internally while needed. Multiple
954  *      read calls may be outstanding in parallel.
955  */
956
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958                         loff_t *ppos)
959 {
960         int i;
961         struct inode *inode = file->f_path.dentry->d_inode;
962         struct tty_struct *tty = file_tty(file);
963         struct tty_ldisc *ld;
964
965         if (tty_paranoia_check(tty, inode, "tty_read"))
966                 return -EIO;
967         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968                 return -EIO;
969
970         /* We want to wait for the line discipline to sort out in this
971            situation */
972         ld = tty_ldisc_ref_wait(tty);
973         if (ld->ops->read)
974                 i = (ld->ops->read)(tty, file, buf, count);
975         else
976                 i = -EIO;
977         tty_ldisc_deref(ld);
978         if (i > 0)
979                 inode->i_atime = current_fs_time(inode->i_sb);
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written) {
1081                 struct inode *inode = file->f_path.dentry->d_inode;
1082                 inode->i_mtime = current_fs_time(inode->i_sb);
1083                 ret = written;
1084         }
1085 out:
1086         tty_write_unlock(tty);
1087         return ret;
1088 }
1089
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104         if (tty) {
1105                 mutex_lock(&tty->atomic_write_lock);
1106                 tty_lock();
1107                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108                         tty_unlock();
1109                         tty->ops->write(tty, msg, strlen(msg));
1110                 } else
1111                         tty_unlock();
1112                 tty_write_unlock(tty);
1113         }
1114         return;
1115 }
1116
1117
1118 /**
1119  *      tty_write               -       write method for tty device file
1120  *      @file: tty file pointer
1121  *      @buf: user data to write
1122  *      @count: bytes to write
1123  *      @ppos: unused
1124  *
1125  *      Write data to a tty device via the line discipline.
1126  *
1127  *      Locking:
1128  *              Locks the line discipline as required
1129  *              Writes to the tty driver are serialized by the atomic_write_lock
1130  *      and are then processed in chunks to the device. The line discipline
1131  *      write method will not be invoked in parallel for each device.
1132  */
1133
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135                                                 size_t count, loff_t *ppos)
1136 {
1137         struct inode *inode = file->f_path.dentry->d_inode;
1138         struct tty_struct *tty = file_tty(file);
1139         struct tty_ldisc *ld;
1140         ssize_t ret;
1141
1142         if (tty_paranoia_check(tty, inode, "tty_write"))
1143                 return -EIO;
1144         if (!tty || !tty->ops->write ||
1145                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146                         return -EIO;
1147         /* Short term debug to catch buggy drivers */
1148         if (tty->ops->write_room == NULL)
1149                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150                         tty->driver->name);
1151         ld = tty_ldisc_ref_wait(tty);
1152         if (!ld->ops->write)
1153                 ret = -EIO;
1154         else
1155                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156         tty_ldisc_deref(ld);
1157         return ret;
1158 }
1159
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                                                 size_t count, loff_t *ppos)
1162 {
1163         struct file *p = NULL;
1164
1165         spin_lock(&redirect_lock);
1166         if (redirect) {
1167                 get_file(redirect);
1168                 p = redirect;
1169         }
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218
1219 /**
1220  *      tty_driver_lookup_tty() - find an existing tty, if any
1221  *      @driver: the driver for the tty
1222  *      @idx:    the minor number
1223  *
1224  *      Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *      be held until the 'fast-open' is also done. Will change once we
1228  *      have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231                 struct inode *inode, int idx)
1232 {
1233         struct tty_struct *tty;
1234
1235         if (driver->ops->lookup)
1236                 return driver->ops->lookup(driver, inode, idx);
1237
1238         tty = driver->ttys[idx];
1239         return tty;
1240 }
1241
1242 /**
1243  *      tty_init_termios        -  helper for termios setup
1244  *      @tty: the tty to set up
1245  *
1246  *      Initialise the termios structures for this tty. Thus runs under
1247  *      the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252         struct ktermios *tp;
1253         int idx = tty->index;
1254
1255         tp = tty->driver->termios[idx];
1256         if (tp == NULL) {
1257                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258                 if (tp == NULL)
1259                         return -ENOMEM;
1260                 memcpy(tp, &tty->driver->init_termios,
1261                                                 sizeof(struct ktermios));
1262                 tty->driver->termios[idx] = tp;
1263         }
1264         tty->termios = tp;
1265         tty->termios_locked = tp + 1;
1266
1267         /* Compatibility until drivers always set this */
1268         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270         return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274 /**
1275  *      tty_driver_install_tty() - install a tty entry in the driver
1276  *      @driver: the driver for the tty
1277  *      @tty: the tty
1278  *
1279  *      Install a tty object into the driver tables. The tty->index field
1280  *      will be set by the time this is called. This method is responsible
1281  *      for ensuring any need additional structures are allocated and
1282  *      configured.
1283  *
1284  *      Locking: tty_mutex for now
1285  */
1286 static int tty_driver_install_tty(struct tty_driver *driver,
1287                                                 struct tty_struct *tty)
1288 {
1289         int idx = tty->index;
1290         int ret;
1291
1292         if (driver->ops->install) {
1293                 ret = driver->ops->install(driver, tty);
1294                 return ret;
1295         }
1296
1297         if (tty_init_termios(tty) == 0) {
1298                 tty_driver_kref_get(driver);
1299                 tty->count++;
1300                 driver->ttys[idx] = tty;
1301                 return 0;
1302         }
1303         return -ENOMEM;
1304 }
1305
1306 /**
1307  *      tty_driver_remove_tty() - remove a tty from the driver tables
1308  *      @driver: the driver for the tty
1309  *      @idx:    the minor number
1310  *
1311  *      Remvoe a tty object from the driver tables. The tty->index field
1312  *      will be set by the time this is called.
1313  *
1314  *      Locking: tty_mutex for now
1315  */
1316 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317 {
1318         if (driver->ops->remove)
1319                 driver->ops->remove(driver, tty);
1320         else
1321                 driver->ttys[tty->index] = NULL;
1322 }
1323
1324 /*
1325  *      tty_reopen()    - fast re-open of an open tty
1326  *      @tty    - the tty to open
1327  *
1328  *      Return 0 on success, -errno on error.
1329  *
1330  *      Locking: tty_mutex must be held from the time the tty was found
1331  *               till this open completes.
1332  */
1333 static int tty_reopen(struct tty_struct *tty)
1334 {
1335         struct tty_driver *driver = tty->driver;
1336
1337         if (test_bit(TTY_CLOSING, &tty->flags) ||
1338                         test_bit(TTY_HUPPING, &tty->flags) ||
1339                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340                 return -EIO;
1341
1342         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343             driver->subtype == PTY_TYPE_MASTER) {
1344                 /*
1345                  * special case for PTY masters: only one open permitted,
1346                  * and the slave side open count is incremented as well.
1347                  */
1348                 if (tty->count)
1349                         return -EIO;
1350
1351                 tty->link->count++;
1352         }
1353         tty->count++;
1354         tty->driver = driver; /* N.B. why do this every time?? */
1355
1356         mutex_lock(&tty->ldisc_mutex);
1357         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358         mutex_unlock(&tty->ldisc_mutex);
1359
1360         return 0;
1361 }
1362
1363 /**
1364  *      tty_init_dev            -       initialise a tty device
1365  *      @driver: tty driver we are opening a device on
1366  *      @idx: device index
1367  *      @ret_tty: returned tty structure
1368  *      @first_ok: ok to open a new device (used by ptmx)
1369  *
1370  *      Prepare a tty device. This may not be a "new" clean device but
1371  *      could also be an active device. The pty drivers require special
1372  *      handling because of this.
1373  *
1374  *      Locking:
1375  *              The function is called under the tty_mutex, which
1376  *      protects us from the tty struct or driver itself going away.
1377  *
1378  *      On exit the tty device has the line discipline attached and
1379  *      a reference count of 1. If a pair was created for pty/tty use
1380  *      and the other was a pty master then it too has a reference count of 1.
1381  *
1382  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383  * failed open.  The new code protects the open with a mutex, so it's
1384  * really quite straightforward.  The mutex locking can probably be
1385  * relaxed for the (most common) case of reopening a tty.
1386  */
1387
1388 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389                                                                 int first_ok)
1390 {
1391         struct tty_struct *tty;
1392         int retval;
1393
1394         /* Check if pty master is being opened multiple times */
1395         if (driver->subtype == PTY_TYPE_MASTER &&
1396                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397                 return ERR_PTR(-EIO);
1398         }
1399
1400         /*
1401          * First time open is complex, especially for PTY devices.
1402          * This code guarantees that either everything succeeds and the
1403          * TTY is ready for operation, or else the table slots are vacated
1404          * and the allocated memory released.  (Except that the termios
1405          * and locked termios may be retained.)
1406          */
1407
1408         if (!try_module_get(driver->owner))
1409                 return ERR_PTR(-ENODEV);
1410
1411         tty = alloc_tty_struct();
1412         if (!tty) {
1413                 retval = -ENOMEM;
1414                 goto err_module_put;
1415         }
1416         initialize_tty_struct(tty, driver, idx);
1417
1418         retval = tty_driver_install_tty(driver, tty);
1419         if (retval < 0)
1420                 goto err_deinit_tty;
1421
1422         /*
1423          * Structures all installed ... call the ldisc open routines.
1424          * If we fail here just call release_tty to clean up.  No need
1425          * to decrement the use counts, as release_tty doesn't care.
1426          */
1427         retval = tty_ldisc_setup(tty, tty->link);
1428         if (retval)
1429                 goto err_release_tty;
1430         return tty;
1431
1432 err_deinit_tty:
1433         deinitialize_tty_struct(tty);
1434         free_tty_struct(tty);
1435 err_module_put:
1436         module_put(driver->owner);
1437         return ERR_PTR(retval);
1438
1439         /* call the tty release_tty routine to clean out this slot */
1440 err_release_tty:
1441         if (printk_ratelimit())
1442                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1443                                  "clearing slot %d\n", idx);
1444         release_tty(tty, idx);
1445         return ERR_PTR(retval);
1446 }
1447
1448 void tty_free_termios(struct tty_struct *tty)
1449 {
1450         struct ktermios *tp;
1451         int idx = tty->index;
1452         /* Kill this flag and push into drivers for locking etc */
1453         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1454                 /* FIXME: Locking on ->termios array */
1455                 tp = tty->termios;
1456                 tty->driver->termios[idx] = NULL;
1457                 kfree(tp);
1458         }
1459 }
1460 EXPORT_SYMBOL(tty_free_termios);
1461
1462 void tty_shutdown(struct tty_struct *tty)
1463 {
1464         tty_driver_remove_tty(tty->driver, tty);
1465         tty_free_termios(tty);
1466 }
1467 EXPORT_SYMBOL(tty_shutdown);
1468
1469 /**
1470  *      release_one_tty         -       release tty structure memory
1471  *      @kref: kref of tty we are obliterating
1472  *
1473  *      Releases memory associated with a tty structure, and clears out the
1474  *      driver table slots. This function is called when a device is no longer
1475  *      in use. It also gets called when setup of a device fails.
1476  *
1477  *      Locking:
1478  *              tty_mutex - sometimes only
1479  *              takes the file list lock internally when working on the list
1480  *      of ttys that the driver keeps.
1481  *
1482  *      This method gets called from a work queue so that the driver private
1483  *      cleanup ops can sleep (needed for USB at least)
1484  */
1485 static void release_one_tty(struct work_struct *work)
1486 {
1487         struct tty_struct *tty =
1488                 container_of(work, struct tty_struct, hangup_work);
1489         struct tty_driver *driver = tty->driver;
1490
1491         if (tty->ops->cleanup)
1492                 tty->ops->cleanup(tty);
1493
1494         tty->magic = 0;
1495         tty_driver_kref_put(driver);
1496         module_put(driver->owner);
1497
1498         spin_lock(&tty_files_lock);
1499         list_del_init(&tty->tty_files);
1500         spin_unlock(&tty_files_lock);
1501
1502         put_pid(tty->pgrp);
1503         put_pid(tty->session);
1504         free_tty_struct(tty);
1505 }
1506
1507 static void queue_release_one_tty(struct kref *kref)
1508 {
1509         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1510
1511         if (tty->ops->shutdown)
1512                 tty->ops->shutdown(tty);
1513         else
1514                 tty_shutdown(tty);
1515
1516         /* The hangup queue is now free so we can reuse it rather than
1517            waste a chunk of memory for each port */
1518         INIT_WORK(&tty->hangup_work, release_one_tty);
1519         schedule_work(&tty->hangup_work);
1520 }
1521
1522 /**
1523  *      tty_kref_put            -       release a tty kref
1524  *      @tty: tty device
1525  *
1526  *      Release a reference to a tty device and if need be let the kref
1527  *      layer destruct the object for us
1528  */
1529
1530 void tty_kref_put(struct tty_struct *tty)
1531 {
1532         if (tty)
1533                 kref_put(&tty->kref, queue_release_one_tty);
1534 }
1535 EXPORT_SYMBOL(tty_kref_put);
1536
1537 /**
1538  *      release_tty             -       release tty structure memory
1539  *
1540  *      Release both @tty and a possible linked partner (think pty pair),
1541  *      and decrement the refcount of the backing module.
1542  *
1543  *      Locking:
1544  *              tty_mutex - sometimes only
1545  *              takes the file list lock internally when working on the list
1546  *      of ttys that the driver keeps.
1547  *              FIXME: should we require tty_mutex is held here ??
1548  *
1549  */
1550 static void release_tty(struct tty_struct *tty, int idx)
1551 {
1552         /* This should always be true but check for the moment */
1553         WARN_ON(tty->index != idx);
1554
1555         if (tty->link)
1556                 tty_kref_put(tty->link);
1557         tty_kref_put(tty);
1558 }
1559
1560 /**
1561  *      tty_release             -       vfs callback for close
1562  *      @inode: inode of tty
1563  *      @filp: file pointer for handle to tty
1564  *
1565  *      Called the last time each file handle is closed that references
1566  *      this tty. There may however be several such references.
1567  *
1568  *      Locking:
1569  *              Takes bkl. See tty_release_dev
1570  *
1571  * Even releasing the tty structures is a tricky business.. We have
1572  * to be very careful that the structures are all released at the
1573  * same time, as interrupts might otherwise get the wrong pointers.
1574  *
1575  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1576  * lead to double frees or releasing memory still in use.
1577  */
1578
1579 int tty_release(struct inode *inode, struct file *filp)
1580 {
1581         struct tty_struct *tty = file_tty(filp);
1582         struct tty_struct *o_tty;
1583         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1584         int     devpts;
1585         int     idx;
1586         char    buf[64];
1587
1588         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1589                 return 0;
1590
1591         tty_lock();
1592         check_tty_count(tty, "tty_release_dev");
1593
1594         __tty_fasync(-1, filp, 0);
1595
1596         idx = tty->index;
1597         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1598                       tty->driver->subtype == PTY_TYPE_MASTER);
1599         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1600         o_tty = tty->link;
1601
1602 #ifdef TTY_PARANOIA_CHECK
1603         if (idx < 0 || idx >= tty->driver->num) {
1604                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1605                                   "free (%s)\n", tty->name);
1606                 tty_unlock();
1607                 return 0;
1608         }
1609         if (!devpts) {
1610                 if (tty != tty->driver->ttys[idx]) {
1611                         tty_unlock();
1612                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1613                                "for (%s)\n", idx, tty->name);
1614                         return 0;
1615                 }
1616                 if (tty->termios != tty->driver->termios[idx]) {
1617                         tty_unlock();
1618                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1619                                "for (%s)\n",
1620                                idx, tty->name);
1621                         return 0;
1622                 }
1623         }
1624 #endif
1625
1626 #ifdef TTY_DEBUG_HANGUP
1627         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1628                tty_name(tty, buf), tty->count);
1629 #endif
1630
1631 #ifdef TTY_PARANOIA_CHECK
1632         if (tty->driver->other &&
1633              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1634                 if (o_tty != tty->driver->other->ttys[idx]) {
1635                         tty_unlock();
1636                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1637                                           "not o_tty for (%s)\n",
1638                                idx, tty->name);
1639                         return 0 ;
1640                 }
1641                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1642                         tty_unlock();
1643                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1644                                           "not o_termios for (%s)\n",
1645                                idx, tty->name);
1646                         return 0;
1647                 }
1648                 if (o_tty->link != tty) {
1649                         tty_unlock();
1650                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1651                         return 0;
1652                 }
1653         }
1654 #endif
1655         if (tty->ops->close)
1656                 tty->ops->close(tty, filp);
1657
1658         tty_unlock();
1659         /*
1660          * Sanity check: if tty->count is going to zero, there shouldn't be
1661          * any waiters on tty->read_wait or tty->write_wait.  We test the
1662          * wait queues and kick everyone out _before_ actually starting to
1663          * close.  This ensures that we won't block while releasing the tty
1664          * structure.
1665          *
1666          * The test for the o_tty closing is necessary, since the master and
1667          * slave sides may close in any order.  If the slave side closes out
1668          * first, its count will be one, since the master side holds an open.
1669          * Thus this test wouldn't be triggered at the time the slave closes,
1670          * so we do it now.
1671          *
1672          * Note that it's possible for the tty to be opened again while we're
1673          * flushing out waiters.  By recalculating the closing flags before
1674          * each iteration we avoid any problems.
1675          */
1676         while (1) {
1677                 /* Guard against races with tty->count changes elsewhere and
1678                    opens on /dev/tty */
1679
1680                 mutex_lock(&tty_mutex);
1681                 tty_lock();
1682                 tty_closing = tty->count <= 1;
1683                 o_tty_closing = o_tty &&
1684                         (o_tty->count <= (pty_master ? 1 : 0));
1685                 do_sleep = 0;
1686
1687                 if (tty_closing) {
1688                         if (waitqueue_active(&tty->read_wait)) {
1689                                 wake_up_poll(&tty->read_wait, POLLIN);
1690                                 do_sleep++;
1691                         }
1692                         if (waitqueue_active(&tty->write_wait)) {
1693                                 wake_up_poll(&tty->write_wait, POLLOUT);
1694                                 do_sleep++;
1695                         }
1696                 }
1697                 if (o_tty_closing) {
1698                         if (waitqueue_active(&o_tty->read_wait)) {
1699                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1700                                 do_sleep++;
1701                         }
1702                         if (waitqueue_active(&o_tty->write_wait)) {
1703                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1704                                 do_sleep++;
1705                         }
1706                 }
1707                 if (!do_sleep)
1708                         break;
1709
1710                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1711                                     "active!\n", tty_name(tty, buf));
1712                 tty_unlock();
1713                 mutex_unlock(&tty_mutex);
1714                 schedule();
1715         }
1716
1717         /*
1718          * The closing flags are now consistent with the open counts on
1719          * both sides, and we've completed the last operation that could
1720          * block, so it's safe to proceed with closing.
1721          */
1722         if (pty_master) {
1723                 if (--o_tty->count < 0) {
1724                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1725                                             "(%d) for %s\n",
1726                                o_tty->count, tty_name(o_tty, buf));
1727                         o_tty->count = 0;
1728                 }
1729         }
1730         if (--tty->count < 0) {
1731                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1732                        tty->count, tty_name(tty, buf));
1733                 tty->count = 0;
1734         }
1735
1736         /*
1737          * We've decremented tty->count, so we need to remove this file
1738          * descriptor off the tty->tty_files list; this serves two
1739          * purposes:
1740          *  - check_tty_count sees the correct number of file descriptors
1741          *    associated with this tty.
1742          *  - do_tty_hangup no longer sees this file descriptor as
1743          *    something that needs to be handled for hangups.
1744          */
1745         tty_del_file(filp);
1746
1747         /*
1748          * Perform some housekeeping before deciding whether to return.
1749          *
1750          * Set the TTY_CLOSING flag if this was the last open.  In the
1751          * case of a pty we may have to wait around for the other side
1752          * to close, and TTY_CLOSING makes sure we can't be reopened.
1753          */
1754         if (tty_closing)
1755                 set_bit(TTY_CLOSING, &tty->flags);
1756         if (o_tty_closing)
1757                 set_bit(TTY_CLOSING, &o_tty->flags);
1758
1759         /*
1760          * If _either_ side is closing, make sure there aren't any
1761          * processes that still think tty or o_tty is their controlling
1762          * tty.
1763          */
1764         if (tty_closing || o_tty_closing) {
1765                 read_lock(&tasklist_lock);
1766                 session_clear_tty(tty->session);
1767                 if (o_tty)
1768                         session_clear_tty(o_tty->session);
1769                 read_unlock(&tasklist_lock);
1770         }
1771
1772         mutex_unlock(&tty_mutex);
1773
1774         /* check whether both sides are closing ... */
1775         if (!tty_closing || (o_tty && !o_tty_closing)) {
1776                 tty_unlock();
1777                 return 0;
1778         }
1779
1780 #ifdef TTY_DEBUG_HANGUP
1781         printk(KERN_DEBUG "freeing tty structure...");
1782 #endif
1783         /*
1784          * Ask the line discipline code to release its structures
1785          */
1786         tty_ldisc_release(tty, o_tty);
1787         /*
1788          * The release_tty function takes care of the details of clearing
1789          * the slots and preserving the termios structure.
1790          */
1791         release_tty(tty, idx);
1792
1793         /* Make this pty number available for reallocation */
1794         if (devpts)
1795                 devpts_kill_index(inode, idx);
1796         tty_unlock();
1797         return 0;
1798 }
1799
1800 /**
1801  *      tty_open                -       open a tty device
1802  *      @inode: inode of device file
1803  *      @filp: file pointer to tty
1804  *
1805  *      tty_open and tty_release keep up the tty count that contains the
1806  *      number of opens done on a tty. We cannot use the inode-count, as
1807  *      different inodes might point to the same tty.
1808  *
1809  *      Open-counting is needed for pty masters, as well as for keeping
1810  *      track of serial lines: DTR is dropped when the last close happens.
1811  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1812  *
1813  *      The termios state of a pty is reset on first open so that
1814  *      settings don't persist across reuse.
1815  *
1816  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1817  *               tty->count should protect the rest.
1818  *               ->siglock protects ->signal/->sighand
1819  */
1820
1821 static int tty_open(struct inode *inode, struct file *filp)
1822 {
1823         struct tty_struct *tty = NULL;
1824         int noctty, retval;
1825         struct tty_driver *driver;
1826         int index;
1827         dev_t device = inode->i_rdev;
1828         unsigned saved_flags = filp->f_flags;
1829
1830         nonseekable_open(inode, filp);
1831
1832 retry_open:
1833         retval = tty_alloc_file(filp);
1834         if (retval)
1835                 return -ENOMEM;
1836
1837         noctty = filp->f_flags & O_NOCTTY;
1838         index  = -1;
1839         retval = 0;
1840
1841         mutex_lock(&tty_mutex);
1842         tty_lock();
1843
1844         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1845                 tty = get_current_tty();
1846                 if (!tty) {
1847                         tty_unlock();
1848                         mutex_unlock(&tty_mutex);
1849                         tty_free_file(filp);
1850                         return -ENXIO;
1851                 }
1852                 driver = tty_driver_kref_get(tty->driver);
1853                 index = tty->index;
1854                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1855                 /* noctty = 1; */
1856                 /* FIXME: Should we take a driver reference ? */
1857                 tty_kref_put(tty);
1858                 goto got_driver;
1859         }
1860 #ifdef CONFIG_VT
1861         if (device == MKDEV(TTY_MAJOR, 0)) {
1862                 extern struct tty_driver *console_driver;
1863                 driver = tty_driver_kref_get(console_driver);
1864                 index = fg_console;
1865                 noctty = 1;
1866                 goto got_driver;
1867         }
1868 #endif
1869         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1870                 struct tty_driver *console_driver = console_device(&index);
1871                 if (console_driver) {
1872                         driver = tty_driver_kref_get(console_driver);
1873                         if (driver) {
1874                                 /* Don't let /dev/console block */
1875                                 filp->f_flags |= O_NONBLOCK;
1876                                 noctty = 1;
1877                                 goto got_driver;
1878                         }
1879                 }
1880                 tty_unlock();
1881                 mutex_unlock(&tty_mutex);
1882                 tty_free_file(filp);
1883                 return -ENODEV;
1884         }
1885
1886         driver = get_tty_driver(device, &index);
1887         if (!driver) {
1888                 tty_unlock();
1889                 mutex_unlock(&tty_mutex);
1890                 tty_free_file(filp);
1891                 return -ENODEV;
1892         }
1893 got_driver:
1894         if (!tty) {
1895                 /* check whether we're reopening an existing tty */
1896                 tty = tty_driver_lookup_tty(driver, inode, index);
1897
1898                 if (IS_ERR(tty)) {
1899                         tty_unlock();
1900                         mutex_unlock(&tty_mutex);
1901                         tty_driver_kref_put(driver);
1902                         tty_free_file(filp);
1903                         return PTR_ERR(tty);
1904                 }
1905         }
1906
1907         if (tty) {
1908                 retval = tty_reopen(tty);
1909                 if (retval)
1910                         tty = ERR_PTR(retval);
1911         } else
1912                 tty = tty_init_dev(driver, index, 0);
1913
1914         mutex_unlock(&tty_mutex);
1915         tty_driver_kref_put(driver);
1916         if (IS_ERR(tty)) {
1917                 tty_unlock();
1918                 tty_free_file(filp);
1919                 return PTR_ERR(tty);
1920         }
1921
1922         tty_add_file(tty, filp);
1923
1924         check_tty_count(tty, "tty_open");
1925         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1926             tty->driver->subtype == PTY_TYPE_MASTER)
1927                 noctty = 1;
1928 #ifdef TTY_DEBUG_HANGUP
1929         printk(KERN_DEBUG "opening %s...", tty->name);
1930 #endif
1931         if (tty->ops->open)
1932                 retval = tty->ops->open(tty, filp);
1933         else
1934                 retval = -ENODEV;
1935         filp->f_flags = saved_flags;
1936
1937         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1938                                                 !capable(CAP_SYS_ADMIN))
1939                 retval = -EBUSY;
1940
1941         if (retval) {
1942 #ifdef TTY_DEBUG_HANGUP
1943                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1944                        tty->name);
1945 #endif
1946                 tty_unlock(); /* need to call tty_release without BTM */
1947                 tty_release(inode, filp);
1948                 if (retval != -ERESTARTSYS)
1949                         return retval;
1950
1951                 if (signal_pending(current))
1952                         return retval;
1953
1954                 schedule();
1955                 /*
1956                  * Need to reset f_op in case a hangup happened.
1957                  */
1958                 tty_lock();
1959                 if (filp->f_op == &hung_up_tty_fops)
1960                         filp->f_op = &tty_fops;
1961                 tty_unlock();
1962                 goto retry_open;
1963         }
1964         tty_unlock();
1965
1966
1967         mutex_lock(&tty_mutex);
1968         tty_lock();
1969         spin_lock_irq(&current->sighand->siglock);
1970         if (!noctty &&
1971             current->signal->leader &&
1972             !current->signal->tty &&
1973             tty->session == NULL)
1974                 __proc_set_tty(current, tty);
1975         spin_unlock_irq(&current->sighand->siglock);
1976         tty_unlock();
1977         mutex_unlock(&tty_mutex);
1978         return 0;
1979 }
1980
1981
1982
1983 /**
1984  *      tty_poll        -       check tty status
1985  *      @filp: file being polled
1986  *      @wait: poll wait structures to update
1987  *
1988  *      Call the line discipline polling method to obtain the poll
1989  *      status of the device.
1990  *
1991  *      Locking: locks called line discipline but ldisc poll method
1992  *      may be re-entered freely by other callers.
1993  */
1994
1995 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1996 {
1997         struct tty_struct *tty = file_tty(filp);
1998         struct tty_ldisc *ld;
1999         int ret = 0;
2000
2001         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2002                 return 0;
2003
2004         ld = tty_ldisc_ref_wait(tty);
2005         if (ld->ops->poll)
2006                 ret = (ld->ops->poll)(tty, filp, wait);
2007         tty_ldisc_deref(ld);
2008         return ret;
2009 }
2010
2011 static int __tty_fasync(int fd, struct file *filp, int on)
2012 {
2013         struct tty_struct *tty = file_tty(filp);
2014         unsigned long flags;
2015         int retval = 0;
2016
2017         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2018                 goto out;
2019
2020         retval = fasync_helper(fd, filp, on, &tty->fasync);
2021         if (retval <= 0)
2022                 goto out;
2023
2024         if (on) {
2025                 enum pid_type type;
2026                 struct pid *pid;
2027                 if (!waitqueue_active(&tty->read_wait))
2028                         tty->minimum_to_wake = 1;
2029                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2030                 if (tty->pgrp) {
2031                         pid = tty->pgrp;
2032                         type = PIDTYPE_PGID;
2033                 } else {
2034                         pid = task_pid(current);
2035                         type = PIDTYPE_PID;
2036                 }
2037                 get_pid(pid);
2038                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2039                 retval = __f_setown(filp, pid, type, 0);
2040                 put_pid(pid);
2041                 if (retval)
2042                         goto out;
2043         } else {
2044                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2045                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2046         }
2047         retval = 0;
2048 out:
2049         return retval;
2050 }
2051
2052 static int tty_fasync(int fd, struct file *filp, int on)
2053 {
2054         int retval;
2055         tty_lock();
2056         retval = __tty_fasync(fd, filp, on);
2057         tty_unlock();
2058         return retval;
2059 }
2060
2061 /**
2062  *      tiocsti                 -       fake input character
2063  *      @tty: tty to fake input into
2064  *      @p: pointer to character
2065  *
2066  *      Fake input to a tty device. Does the necessary locking and
2067  *      input management.
2068  *
2069  *      FIXME: does not honour flow control ??
2070  *
2071  *      Locking:
2072  *              Called functions take tty_ldisc_lock
2073  *              current->signal->tty check is safe without locks
2074  *
2075  *      FIXME: may race normal receive processing
2076  */
2077
2078 static int tiocsti(struct tty_struct *tty, char __user *p)
2079 {
2080         char ch, mbz = 0;
2081         struct tty_ldisc *ld;
2082
2083         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2084                 return -EPERM;
2085         if (get_user(ch, p))
2086                 return -EFAULT;
2087         tty_audit_tiocsti(tty, ch);
2088         ld = tty_ldisc_ref_wait(tty);
2089         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2090         tty_ldisc_deref(ld);
2091         return 0;
2092 }
2093
2094 /**
2095  *      tiocgwinsz              -       implement window query ioctl
2096  *      @tty; tty
2097  *      @arg: user buffer for result
2098  *
2099  *      Copies the kernel idea of the window size into the user buffer.
2100  *
2101  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2102  *              is consistent.
2103  */
2104
2105 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2106 {
2107         int err;
2108
2109         mutex_lock(&tty->termios_mutex);
2110         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2111         mutex_unlock(&tty->termios_mutex);
2112
2113         return err ? -EFAULT: 0;
2114 }
2115
2116 /**
2117  *      tty_do_resize           -       resize event
2118  *      @tty: tty being resized
2119  *      @rows: rows (character)
2120  *      @cols: cols (character)
2121  *
2122  *      Update the termios variables and send the necessary signals to
2123  *      peform a terminal resize correctly
2124  */
2125
2126 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2127 {
2128         struct pid *pgrp;
2129         unsigned long flags;
2130
2131         /* Lock the tty */
2132         mutex_lock(&tty->termios_mutex);
2133         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2134                 goto done;
2135         /* Get the PID values and reference them so we can
2136            avoid holding the tty ctrl lock while sending signals */
2137         spin_lock_irqsave(&tty->ctrl_lock, flags);
2138         pgrp = get_pid(tty->pgrp);
2139         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2140
2141         if (pgrp)
2142                 kill_pgrp(pgrp, SIGWINCH, 1);
2143         put_pid(pgrp);
2144
2145         tty->winsize = *ws;
2146 done:
2147         mutex_unlock(&tty->termios_mutex);
2148         return 0;
2149 }
2150
2151 /**
2152  *      tiocswinsz              -       implement window size set ioctl
2153  *      @tty; tty side of tty
2154  *      @arg: user buffer for result
2155  *
2156  *      Copies the user idea of the window size to the kernel. Traditionally
2157  *      this is just advisory information but for the Linux console it
2158  *      actually has driver level meaning and triggers a VC resize.
2159  *
2160  *      Locking:
2161  *              Driver dependent. The default do_resize method takes the
2162  *      tty termios mutex and ctrl_lock. The console takes its own lock
2163  *      then calls into the default method.
2164  */
2165
2166 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2167 {
2168         struct winsize tmp_ws;
2169         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2170                 return -EFAULT;
2171
2172         if (tty->ops->resize)
2173                 return tty->ops->resize(tty, &tmp_ws);
2174         else
2175                 return tty_do_resize(tty, &tmp_ws);
2176 }
2177
2178 /**
2179  *      tioccons        -       allow admin to move logical console
2180  *      @file: the file to become console
2181  *
2182  *      Allow the administrator to move the redirected console device
2183  *
2184  *      Locking: uses redirect_lock to guard the redirect information
2185  */
2186
2187 static int tioccons(struct file *file)
2188 {
2189         if (!capable(CAP_SYS_ADMIN))
2190                 return -EPERM;
2191         if (file->f_op->write == redirected_tty_write) {
2192                 struct file *f;
2193                 spin_lock(&redirect_lock);
2194                 f = redirect;
2195                 redirect = NULL;
2196                 spin_unlock(&redirect_lock);
2197                 if (f)
2198                         fput(f);
2199                 return 0;
2200         }
2201         spin_lock(&redirect_lock);
2202         if (redirect) {
2203                 spin_unlock(&redirect_lock);
2204                 return -EBUSY;
2205         }
2206         get_file(file);
2207         redirect = file;
2208         spin_unlock(&redirect_lock);
2209         return 0;
2210 }
2211
2212 /**
2213  *      fionbio         -       non blocking ioctl
2214  *      @file: file to set blocking value
2215  *      @p: user parameter
2216  *
2217  *      Historical tty interfaces had a blocking control ioctl before
2218  *      the generic functionality existed. This piece of history is preserved
2219  *      in the expected tty API of posix OS's.
2220  *
2221  *      Locking: none, the open file handle ensures it won't go away.
2222  */
2223
2224 static int fionbio(struct file *file, int __user *p)
2225 {
2226         int nonblock;
2227
2228         if (get_user(nonblock, p))
2229                 return -EFAULT;
2230
2231         spin_lock(&file->f_lock);
2232         if (nonblock)
2233                 file->f_flags |= O_NONBLOCK;
2234         else
2235                 file->f_flags &= ~O_NONBLOCK;
2236         spin_unlock(&file->f_lock);
2237         return 0;
2238 }
2239
2240 /**
2241  *      tiocsctty       -       set controlling tty
2242  *      @tty: tty structure
2243  *      @arg: user argument
2244  *
2245  *      This ioctl is used to manage job control. It permits a session
2246  *      leader to set this tty as the controlling tty for the session.
2247  *
2248  *      Locking:
2249  *              Takes tty_mutex() to protect tty instance
2250  *              Takes tasklist_lock internally to walk sessions
2251  *              Takes ->siglock() when updating signal->tty
2252  */
2253
2254 static int tiocsctty(struct tty_struct *tty, int arg)
2255 {
2256         int ret = 0;
2257         if (current->signal->leader && (task_session(current) == tty->session))
2258                 return ret;
2259
2260         mutex_lock(&tty_mutex);
2261         /*
2262          * The process must be a session leader and
2263          * not have a controlling tty already.
2264          */
2265         if (!current->signal->leader || current->signal->tty) {
2266                 ret = -EPERM;
2267                 goto unlock;
2268         }
2269
2270         if (tty->session) {
2271                 /*
2272                  * This tty is already the controlling
2273                  * tty for another session group!
2274                  */
2275                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2276                         /*
2277                          * Steal it away
2278                          */
2279                         read_lock(&tasklist_lock);
2280                         session_clear_tty(tty->session);
2281                         read_unlock(&tasklist_lock);
2282                 } else {
2283                         ret = -EPERM;
2284                         goto unlock;
2285                 }
2286         }
2287         proc_set_tty(current, tty);
2288 unlock:
2289         mutex_unlock(&tty_mutex);
2290         return ret;
2291 }
2292
2293 /**
2294  *      tty_get_pgrp    -       return a ref counted pgrp pid
2295  *      @tty: tty to read
2296  *
2297  *      Returns a refcounted instance of the pid struct for the process
2298  *      group controlling the tty.
2299  */
2300
2301 struct pid *tty_get_pgrp(struct tty_struct *tty)
2302 {
2303         unsigned long flags;
2304         struct pid *pgrp;
2305
2306         spin_lock_irqsave(&tty->ctrl_lock, flags);
2307         pgrp = get_pid(tty->pgrp);
2308         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2309
2310         return pgrp;
2311 }
2312 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2313
2314 /**
2315  *      tiocgpgrp               -       get process group
2316  *      @tty: tty passed by user
2317  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2318  *      @p: returned pid
2319  *
2320  *      Obtain the process group of the tty. If there is no process group
2321  *      return an error.
2322  *
2323  *      Locking: none. Reference to current->signal->tty is safe.
2324  */
2325
2326 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2327 {
2328         struct pid *pid;
2329         int ret;
2330         /*
2331          * (tty == real_tty) is a cheap way of
2332          * testing if the tty is NOT a master pty.
2333          */
2334         if (tty == real_tty && current->signal->tty != real_tty)
2335                 return -ENOTTY;
2336         pid = tty_get_pgrp(real_tty);
2337         ret =  put_user(pid_vnr(pid), p);
2338         put_pid(pid);
2339         return ret;
2340 }
2341
2342 /**
2343  *      tiocspgrp               -       attempt to set process group
2344  *      @tty: tty passed by user
2345  *      @real_tty: tty side device matching tty passed by user
2346  *      @p: pid pointer
2347  *
2348  *      Set the process group of the tty to the session passed. Only
2349  *      permitted where the tty session is our session.
2350  *
2351  *      Locking: RCU, ctrl lock
2352  */
2353
2354 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2355 {
2356         struct pid *pgrp;
2357         pid_t pgrp_nr;
2358         int retval = tty_check_change(real_tty);
2359         unsigned long flags;
2360
2361         if (retval == -EIO)
2362                 return -ENOTTY;
2363         if (retval)
2364                 return retval;
2365         if (!current->signal->tty ||
2366             (current->signal->tty != real_tty) ||
2367             (real_tty->session != task_session(current)))
2368                 return -ENOTTY;
2369         if (get_user(pgrp_nr, p))
2370                 return -EFAULT;
2371         if (pgrp_nr < 0)
2372                 return -EINVAL;
2373         rcu_read_lock();
2374         pgrp = find_vpid(pgrp_nr);
2375         retval = -ESRCH;
2376         if (!pgrp)
2377                 goto out_unlock;
2378         retval = -EPERM;
2379         if (session_of_pgrp(pgrp) != task_session(current))
2380                 goto out_unlock;
2381         retval = 0;
2382         spin_lock_irqsave(&tty->ctrl_lock, flags);
2383         put_pid(real_tty->pgrp);
2384         real_tty->pgrp = get_pid(pgrp);
2385         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2386 out_unlock:
2387         rcu_read_unlock();
2388         return retval;
2389 }
2390
2391 /**
2392  *      tiocgsid                -       get session id
2393  *      @tty: tty passed by user
2394  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2395  *      @p: pointer to returned session id
2396  *
2397  *      Obtain the session id of the tty. If there is no session
2398  *      return an error.
2399  *
2400  *      Locking: none. Reference to current->signal->tty is safe.
2401  */
2402
2403 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2404 {
2405         /*
2406          * (tty == real_tty) is a cheap way of
2407          * testing if the tty is NOT a master pty.
2408         */
2409         if (tty == real_tty && current->signal->tty != real_tty)
2410                 return -ENOTTY;
2411         if (!real_tty->session)
2412                 return -ENOTTY;
2413         return put_user(pid_vnr(real_tty->session), p);
2414 }
2415
2416 /**
2417  *      tiocsetd        -       set line discipline
2418  *      @tty: tty device
2419  *      @p: pointer to user data
2420  *
2421  *      Set the line discipline according to user request.
2422  *
2423  *      Locking: see tty_set_ldisc, this function is just a helper
2424  */
2425
2426 static int tiocsetd(struct tty_struct *tty, int __user *p)
2427 {
2428         int ldisc;
2429         int ret;
2430
2431         if (get_user(ldisc, p))
2432                 return -EFAULT;
2433
2434         ret = tty_set_ldisc(tty, ldisc);
2435
2436         return ret;
2437 }
2438
2439 /**
2440  *      send_break      -       performed time break
2441  *      @tty: device to break on
2442  *      @duration: timeout in mS
2443  *
2444  *      Perform a timed break on hardware that lacks its own driver level
2445  *      timed break functionality.
2446  *
2447  *      Locking:
2448  *              atomic_write_lock serializes
2449  *
2450  */
2451
2452 static int send_break(struct tty_struct *tty, unsigned int duration)
2453 {
2454         int retval;
2455
2456         if (tty->ops->break_ctl == NULL)
2457                 return 0;
2458
2459         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2460                 retval = tty->ops->break_ctl(tty, duration);
2461         else {
2462                 /* Do the work ourselves */
2463                 if (tty_write_lock(tty, 0) < 0)
2464                         return -EINTR;
2465                 retval = tty->ops->break_ctl(tty, -1);
2466                 if (retval)
2467                         goto out;
2468                 if (!signal_pending(current))
2469                         msleep_interruptible(duration);
2470                 retval = tty->ops->break_ctl(tty, 0);
2471 out:
2472                 tty_write_unlock(tty);
2473                 if (signal_pending(current))
2474                         retval = -EINTR;
2475         }
2476         return retval;
2477 }
2478
2479 /**
2480  *      tty_tiocmget            -       get modem status
2481  *      @tty: tty device
2482  *      @file: user file pointer
2483  *      @p: pointer to result
2484  *
2485  *      Obtain the modem status bits from the tty driver if the feature
2486  *      is supported. Return -EINVAL if it is not available.
2487  *
2488  *      Locking: none (up to the driver)
2489  */
2490
2491 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2492 {
2493         int retval = -EINVAL;
2494
2495         if (tty->ops->tiocmget) {
2496                 retval = tty->ops->tiocmget(tty);
2497
2498                 if (retval >= 0)
2499                         retval = put_user(retval, p);
2500         }
2501         return retval;
2502 }
2503
2504 /**
2505  *      tty_tiocmset            -       set modem status
2506  *      @tty: tty device
2507  *      @cmd: command - clear bits, set bits or set all
2508  *      @p: pointer to desired bits
2509  *
2510  *      Set the modem status bits from the tty driver if the feature
2511  *      is supported. Return -EINVAL if it is not available.
2512  *
2513  *      Locking: none (up to the driver)
2514  */
2515
2516 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2517              unsigned __user *p)
2518 {
2519         int retval;
2520         unsigned int set, clear, val;
2521
2522         if (tty->ops->tiocmset == NULL)
2523                 return -EINVAL;
2524
2525         retval = get_user(val, p);
2526         if (retval)
2527                 return retval;
2528         set = clear = 0;
2529         switch (cmd) {
2530         case TIOCMBIS:
2531                 set = val;
2532                 break;
2533         case TIOCMBIC:
2534                 clear = val;
2535                 break;
2536         case TIOCMSET:
2537                 set = val;
2538                 clear = ~val;
2539                 break;
2540         }
2541         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2542         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2543         return tty->ops->tiocmset(tty, set, clear);
2544 }
2545
2546 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2547 {
2548         int retval = -EINVAL;
2549         struct serial_icounter_struct icount;
2550         memset(&icount, 0, sizeof(icount));
2551         if (tty->ops->get_icount)
2552                 retval = tty->ops->get_icount(tty, &icount);
2553         if (retval != 0)
2554                 return retval;
2555         if (copy_to_user(arg, &icount, sizeof(icount)))
2556                 return -EFAULT;
2557         return 0;
2558 }
2559
2560 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2561 {
2562         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2563             tty->driver->subtype == PTY_TYPE_MASTER)
2564                 tty = tty->link;
2565         return tty;
2566 }
2567 EXPORT_SYMBOL(tty_pair_get_tty);
2568
2569 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2570 {
2571         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2572             tty->driver->subtype == PTY_TYPE_MASTER)
2573             return tty;
2574         return tty->link;
2575 }
2576 EXPORT_SYMBOL(tty_pair_get_pty);
2577
2578 /*
2579  * Split this up, as gcc can choke on it otherwise..
2580  */
2581 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2582 {
2583         struct tty_struct *tty = file_tty(file);
2584         struct tty_struct *real_tty;
2585         void __user *p = (void __user *)arg;
2586         int retval;
2587         struct tty_ldisc *ld;
2588         struct inode *inode = file->f_dentry->d_inode;
2589
2590         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2591                 return -EINVAL;
2592
2593         real_tty = tty_pair_get_tty(tty);
2594
2595         /*
2596          * Factor out some common prep work
2597          */
2598         switch (cmd) {
2599         case TIOCSETD:
2600         case TIOCSBRK:
2601         case TIOCCBRK:
2602         case TCSBRK:
2603         case TCSBRKP:
2604                 retval = tty_check_change(tty);
2605                 if (retval)
2606                         return retval;
2607                 if (cmd != TIOCCBRK) {
2608                         tty_wait_until_sent(tty, 0);
2609                         if (signal_pending(current))
2610                                 return -EINTR;
2611                 }
2612                 break;
2613         }
2614
2615         /*
2616          *      Now do the stuff.
2617          */
2618         switch (cmd) {
2619         case TIOCSTI:
2620                 return tiocsti(tty, p);
2621         case TIOCGWINSZ:
2622                 return tiocgwinsz(real_tty, p);
2623         case TIOCSWINSZ:
2624                 return tiocswinsz(real_tty, p);
2625         case TIOCCONS:
2626                 return real_tty != tty ? -EINVAL : tioccons(file);
2627         case FIONBIO:
2628                 return fionbio(file, p);
2629         case TIOCEXCL:
2630                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2631                 return 0;
2632         case TIOCNXCL:
2633                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2634                 return 0;
2635         case TIOCNOTTY:
2636                 if (current->signal->tty != tty)
2637                         return -ENOTTY;
2638                 no_tty();
2639                 return 0;
2640         case TIOCSCTTY:
2641                 return tiocsctty(tty, arg);
2642         case TIOCGPGRP:
2643                 return tiocgpgrp(tty, real_tty, p);
2644         case TIOCSPGRP:
2645                 return tiocspgrp(tty, real_tty, p);
2646         case TIOCGSID:
2647                 return tiocgsid(tty, real_tty, p);
2648         case TIOCGETD:
2649                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2650         case TIOCSETD:
2651                 return tiocsetd(tty, p);
2652         case TIOCVHANGUP:
2653                 if (!capable(CAP_SYS_ADMIN))
2654                         return -EPERM;
2655                 tty_vhangup(tty);
2656                 return 0;
2657         case TIOCGDEV:
2658         {
2659                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2660                 return put_user(ret, (unsigned int __user *)p);
2661         }
2662         /*
2663          * Break handling
2664          */
2665         case TIOCSBRK:  /* Turn break on, unconditionally */
2666                 if (tty->ops->break_ctl)
2667                         return tty->ops->break_ctl(tty, -1);
2668                 return 0;
2669         case TIOCCBRK:  /* Turn break off, unconditionally */
2670                 if (tty->ops->break_ctl)
2671                         return tty->ops->break_ctl(tty, 0);
2672                 return 0;
2673         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2674                 /* non-zero arg means wait for all output data
2675                  * to be sent (performed above) but don't send break.
2676                  * This is used by the tcdrain() termios function.
2677                  */
2678                 if (!arg)
2679                         return send_break(tty, 250);
2680                 return 0;
2681         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2682                 return send_break(tty, arg ? arg*100 : 250);
2683
2684         case TIOCMGET:
2685                 return tty_tiocmget(tty, p);
2686         case TIOCMSET:
2687         case TIOCMBIC:
2688         case TIOCMBIS:
2689                 return tty_tiocmset(tty, cmd, p);
2690         case TIOCGICOUNT:
2691                 retval = tty_tiocgicount(tty, p);
2692                 /* For the moment allow fall through to the old method */
2693                 if (retval != -EINVAL)
2694                         return retval;
2695                 break;
2696         case TCFLSH:
2697                 switch (arg) {
2698                 case TCIFLUSH:
2699                 case TCIOFLUSH:
2700                 /* flush tty buffer and allow ldisc to process ioctl */
2701                         tty_buffer_flush(tty);
2702                         break;
2703                 }
2704                 break;
2705         }
2706         if (tty->ops->ioctl) {
2707                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2708                 if (retval != -ENOIOCTLCMD)
2709                         return retval;
2710         }
2711         ld = tty_ldisc_ref_wait(tty);
2712         retval = -EINVAL;
2713         if (ld->ops->ioctl) {
2714                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2715                 if (retval == -ENOIOCTLCMD)
2716                         retval = -EINVAL;
2717         }
2718         tty_ldisc_deref(ld);
2719         return retval;
2720 }
2721
2722 #ifdef CONFIG_COMPAT
2723 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2724                                 unsigned long arg)
2725 {
2726         struct inode *inode = file->f_dentry->d_inode;
2727         struct tty_struct *tty = file_tty(file);
2728         struct tty_ldisc *ld;
2729         int retval = -ENOIOCTLCMD;
2730
2731         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2732                 return -EINVAL;
2733
2734         if (tty->ops->compat_ioctl) {
2735                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2736                 if (retval != -ENOIOCTLCMD)
2737                         return retval;
2738         }
2739
2740         ld = tty_ldisc_ref_wait(tty);
2741         if (ld->ops->compat_ioctl)
2742                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2743         tty_ldisc_deref(ld);
2744
2745         return retval;
2746 }
2747 #endif
2748
2749 /*
2750  * This implements the "Secure Attention Key" ---  the idea is to
2751  * prevent trojan horses by killing all processes associated with this
2752  * tty when the user hits the "Secure Attention Key".  Required for
2753  * super-paranoid applications --- see the Orange Book for more details.
2754  *
2755  * This code could be nicer; ideally it should send a HUP, wait a few
2756  * seconds, then send a INT, and then a KILL signal.  But you then
2757  * have to coordinate with the init process, since all processes associated
2758  * with the current tty must be dead before the new getty is allowed
2759  * to spawn.
2760  *
2761  * Now, if it would be correct ;-/ The current code has a nasty hole -
2762  * it doesn't catch files in flight. We may send the descriptor to ourselves
2763  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2764  *
2765  * Nasty bug: do_SAK is being called in interrupt context.  This can
2766  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2767  */
2768 void __do_SAK(struct tty_struct *tty)
2769 {
2770 #ifdef TTY_SOFT_SAK
2771         tty_hangup(tty);
2772 #else
2773         struct task_struct *g, *p;
2774         struct pid *session;
2775         int             i;
2776         struct file     *filp;
2777         struct fdtable *fdt;
2778
2779         if (!tty)
2780                 return;
2781         session = tty->session;
2782
2783         tty_ldisc_flush(tty);
2784
2785         tty_driver_flush_buffer(tty);
2786
2787         read_lock(&tasklist_lock);
2788         /* Kill the entire session */
2789         do_each_pid_task(session, PIDTYPE_SID, p) {
2790                 printk(KERN_NOTICE "SAK: killed process %d"
2791                         " (%s): task_session(p)==tty->session\n",
2792                         task_pid_nr(p), p->comm);
2793                 send_sig(SIGKILL, p, 1);
2794         } while_each_pid_task(session, PIDTYPE_SID, p);
2795         /* Now kill any processes that happen to have the
2796          * tty open.
2797          */
2798         do_each_thread(g, p) {
2799                 if (p->signal->tty == tty) {
2800                         printk(KERN_NOTICE "SAK: killed process %d"
2801                             " (%s): task_session(p)==tty->session\n",
2802                             task_pid_nr(p), p->comm);
2803                         send_sig(SIGKILL, p, 1);
2804                         continue;
2805                 }
2806                 task_lock(p);
2807                 if (p->files) {
2808                         /*
2809                          * We don't take a ref to the file, so we must
2810                          * hold ->file_lock instead.
2811                          */
2812                         spin_lock(&p->files->file_lock);
2813                         fdt = files_fdtable(p->files);
2814                         for (i = 0; i < fdt->max_fds; i++) {
2815                                 filp = fcheck_files(p->files, i);
2816                                 if (!filp)
2817                                         continue;
2818                                 if (filp->f_op->read == tty_read &&
2819                                     file_tty(filp) == tty) {
2820                                         printk(KERN_NOTICE "SAK: killed process %d"
2821                                             " (%s): fd#%d opened to the tty\n",
2822                                             task_pid_nr(p), p->comm, i);
2823                                         force_sig(SIGKILL, p);
2824                                         break;
2825                                 }
2826                         }
2827                         spin_unlock(&p->files->file_lock);
2828                 }
2829                 task_unlock(p);
2830         } while_each_thread(g, p);
2831         read_unlock(&tasklist_lock);
2832 #endif
2833 }
2834
2835 static void do_SAK_work(struct work_struct *work)
2836 {
2837         struct tty_struct *tty =
2838                 container_of(work, struct tty_struct, SAK_work);
2839         __do_SAK(tty);
2840 }
2841
2842 /*
2843  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2844  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2845  * the values which we write to it will be identical to the values which it
2846  * already has. --akpm
2847  */
2848 void do_SAK(struct tty_struct *tty)
2849 {
2850         if (!tty)
2851                 return;
2852         schedule_work(&tty->SAK_work);
2853 }
2854
2855 EXPORT_SYMBOL(do_SAK);
2856
2857 static int dev_match_devt(struct device *dev, void *data)
2858 {
2859         dev_t *devt = data;
2860         return dev->devt == *devt;
2861 }
2862
2863 /* Must put_device() after it's unused! */
2864 static struct device *tty_get_device(struct tty_struct *tty)
2865 {
2866         dev_t devt = tty_devnum(tty);
2867         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2868 }
2869
2870
2871 /**
2872  *      initialize_tty_struct
2873  *      @tty: tty to initialize
2874  *
2875  *      This subroutine initializes a tty structure that has been newly
2876  *      allocated.
2877  *
2878  *      Locking: none - tty in question must not be exposed at this point
2879  */
2880
2881 void initialize_tty_struct(struct tty_struct *tty,
2882                 struct tty_driver *driver, int idx)
2883 {
2884         memset(tty, 0, sizeof(struct tty_struct));
2885         kref_init(&tty->kref);
2886         tty->magic = TTY_MAGIC;
2887         tty_ldisc_init(tty);
2888         tty->session = NULL;
2889         tty->pgrp = NULL;
2890         tty->overrun_time = jiffies;
2891         tty->buf.head = tty->buf.tail = NULL;
2892         tty_buffer_init(tty);
2893         mutex_init(&tty->termios_mutex);
2894         mutex_init(&tty->ldisc_mutex);
2895         init_waitqueue_head(&tty->write_wait);
2896         init_waitqueue_head(&tty->read_wait);
2897         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2898         mutex_init(&tty->atomic_read_lock);
2899         mutex_init(&tty->atomic_write_lock);
2900         mutex_init(&tty->output_lock);
2901         mutex_init(&tty->echo_lock);
2902         spin_lock_init(&tty->read_lock);
2903         spin_lock_init(&tty->ctrl_lock);
2904         INIT_LIST_HEAD(&tty->tty_files);
2905         INIT_WORK(&tty->SAK_work, do_SAK_work);
2906
2907         tty->driver = driver;
2908         tty->ops = driver->ops;
2909         tty->index = idx;
2910         tty_line_name(driver, idx, tty->name);
2911         tty->dev = tty_get_device(tty);
2912 }
2913
2914 /**
2915  *      deinitialize_tty_struct
2916  *      @tty: tty to deinitialize
2917  *
2918  *      This subroutine deinitializes a tty structure that has been newly
2919  *      allocated but tty_release cannot be called on that yet.
2920  *
2921  *      Locking: none - tty in question must not be exposed at this point
2922  */
2923 void deinitialize_tty_struct(struct tty_struct *tty)
2924 {
2925         tty_ldisc_deinit(tty);
2926 }
2927
2928 /**
2929  *      tty_put_char    -       write one character to a tty
2930  *      @tty: tty
2931  *      @ch: character
2932  *
2933  *      Write one byte to the tty using the provided put_char method
2934  *      if present. Returns the number of characters successfully output.
2935  *
2936  *      Note: the specific put_char operation in the driver layer may go
2937  *      away soon. Don't call it directly, use this method
2938  */
2939
2940 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2941 {
2942         if (tty->ops->put_char)
2943                 return tty->ops->put_char(tty, ch);
2944         return tty->ops->write(tty, &ch, 1);
2945 }
2946 EXPORT_SYMBOL_GPL(tty_put_char);
2947
2948 struct class *tty_class;
2949
2950 /**
2951  *      tty_register_device - register a tty device
2952  *      @driver: the tty driver that describes the tty device
2953  *      @index: the index in the tty driver for this tty device
2954  *      @device: a struct device that is associated with this tty device.
2955  *              This field is optional, if there is no known struct device
2956  *              for this tty device it can be set to NULL safely.
2957  *
2958  *      Returns a pointer to the struct device for this tty device
2959  *      (or ERR_PTR(-EFOO) on error).
2960  *
2961  *      This call is required to be made to register an individual tty device
2962  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2963  *      that bit is not set, this function should not be called by a tty
2964  *      driver.
2965  *
2966  *      Locking: ??
2967  */
2968
2969 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2970                                    struct device *device)
2971 {
2972         char name[64];
2973         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2974
2975         if (index >= driver->num) {
2976                 printk(KERN_ERR "Attempt to register invalid tty line number "
2977                        " (%d).\n", index);
2978                 return ERR_PTR(-EINVAL);
2979         }
2980
2981         if (driver->type == TTY_DRIVER_TYPE_PTY)
2982                 pty_line_name(driver, index, name);
2983         else
2984                 tty_line_name(driver, index, name);
2985
2986         return device_create(tty_class, device, dev, NULL, name);
2987 }
2988 EXPORT_SYMBOL(tty_register_device);
2989
2990 /**
2991  *      tty_unregister_device - unregister a tty device
2992  *      @driver: the tty driver that describes the tty device
2993  *      @index: the index in the tty driver for this tty device
2994  *
2995  *      If a tty device is registered with a call to tty_register_device() then
2996  *      this function must be called when the tty device is gone.
2997  *
2998  *      Locking: ??
2999  */
3000
3001 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3002 {
3003         device_destroy(tty_class,
3004                 MKDEV(driver->major, driver->minor_start) + index);
3005 }
3006 EXPORT_SYMBOL(tty_unregister_device);
3007
3008 struct tty_driver *alloc_tty_driver(int lines)
3009 {
3010         struct tty_driver *driver;
3011
3012         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3013         if (driver) {
3014                 kref_init(&driver->kref);
3015                 driver->magic = TTY_DRIVER_MAGIC;
3016                 driver->num = lines;
3017                 /* later we'll move allocation of tables here */
3018         }
3019         return driver;
3020 }
3021 EXPORT_SYMBOL(alloc_tty_driver);
3022
3023 static void destruct_tty_driver(struct kref *kref)
3024 {
3025         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3026         int i;
3027         struct ktermios *tp;
3028         void *p;
3029
3030         if (driver->flags & TTY_DRIVER_INSTALLED) {
3031                 /*
3032                  * Free the termios and termios_locked structures because
3033                  * we don't want to get memory leaks when modular tty
3034                  * drivers are removed from the kernel.
3035                  */
3036                 for (i = 0; i < driver->num; i++) {
3037                         tp = driver->termios[i];
3038                         if (tp) {
3039                                 driver->termios[i] = NULL;
3040                                 kfree(tp);
3041                         }
3042                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3043                                 tty_unregister_device(driver, i);
3044                 }
3045                 p = driver->ttys;
3046                 proc_tty_unregister_driver(driver);
3047                 driver->ttys = NULL;
3048                 driver->termios = NULL;
3049                 kfree(p);
3050                 cdev_del(&driver->cdev);
3051         }
3052         kfree(driver);
3053 }
3054
3055 void tty_driver_kref_put(struct tty_driver *driver)
3056 {
3057         kref_put(&driver->kref, destruct_tty_driver);
3058 }
3059 EXPORT_SYMBOL(tty_driver_kref_put);
3060
3061 void tty_set_operations(struct tty_driver *driver,
3062                         const struct tty_operations *op)
3063 {
3064         driver->ops = op;
3065 };
3066 EXPORT_SYMBOL(tty_set_operations);
3067
3068 void put_tty_driver(struct tty_driver *d)
3069 {
3070         tty_driver_kref_put(d);
3071 }
3072 EXPORT_SYMBOL(put_tty_driver);
3073
3074 /*
3075  * Called by a tty driver to register itself.
3076  */
3077 int tty_register_driver(struct tty_driver *driver)
3078 {
3079         int error;
3080         int i;
3081         dev_t dev;
3082         void **p = NULL;
3083         struct device *d;
3084
3085         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3086                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3087                 if (!p)
3088                         return -ENOMEM;
3089         }
3090
3091         if (!driver->major) {
3092                 error = alloc_chrdev_region(&dev, driver->minor_start,
3093                                                 driver->num, driver->name);
3094                 if (!error) {
3095                         driver->major = MAJOR(dev);
3096                         driver->minor_start = MINOR(dev);
3097                 }
3098         } else {
3099                 dev = MKDEV(driver->major, driver->minor_start);
3100                 error = register_chrdev_region(dev, driver->num, driver->name);
3101         }
3102         if (error < 0) {
3103                 kfree(p);
3104                 return error;
3105         }
3106
3107         if (p) {
3108                 driver->ttys = (struct tty_struct **)p;
3109                 driver->termios = (struct ktermios **)(p + driver->num);
3110         } else {
3111                 driver->ttys = NULL;
3112                 driver->termios = NULL;
3113         }
3114
3115         cdev_init(&driver->cdev, &tty_fops);
3116         driver->cdev.owner = driver->owner;
3117         error = cdev_add(&driver->cdev, dev, driver->num);
3118         if (error) {
3119                 unregister_chrdev_region(dev, driver->num);
3120                 driver->ttys = NULL;
3121                 driver->termios = NULL;
3122                 kfree(p);
3123                 return error;
3124         }
3125
3126         mutex_lock(&tty_mutex);
3127         list_add(&driver->tty_drivers, &tty_drivers);
3128         mutex_unlock(&tty_mutex);
3129
3130         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3131                 for (i = 0; i < driver->num; i++) {
3132                         d = tty_register_device(driver, i, NULL);
3133                         if (IS_ERR(d)) {
3134                                 error = PTR_ERR(d);
3135                                 goto err;
3136                         }
3137                 }
3138         }
3139         proc_tty_register_driver(driver);
3140         driver->flags |= TTY_DRIVER_INSTALLED;
3141         return 0;
3142
3143 err:
3144         for (i--; i >= 0; i--)
3145                 tty_unregister_device(driver, i);
3146
3147         mutex_lock(&tty_mutex);
3148         list_del(&driver->tty_drivers);
3149         mutex_unlock(&tty_mutex);
3150
3151         unregister_chrdev_region(dev, driver->num);
3152         driver->ttys = NULL;
3153         driver->termios = NULL;
3154         kfree(p);
3155         return error;
3156 }
3157
3158 EXPORT_SYMBOL(tty_register_driver);
3159
3160 /*
3161  * Called by a tty driver to unregister itself.
3162  */
3163 int tty_unregister_driver(struct tty_driver *driver)
3164 {
3165 #if 0
3166         /* FIXME */
3167         if (driver->refcount)
3168                 return -EBUSY;
3169 #endif
3170         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3171                                 driver->num);
3172         mutex_lock(&tty_mutex);
3173         list_del(&driver->tty_drivers);
3174         mutex_unlock(&tty_mutex);
3175         return 0;
3176 }
3177
3178 EXPORT_SYMBOL(tty_unregister_driver);
3179
3180 dev_t tty_devnum(struct tty_struct *tty)
3181 {
3182         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3183 }
3184 EXPORT_SYMBOL(tty_devnum);
3185
3186 void proc_clear_tty(struct task_struct *p)
3187 {
3188         unsigned long flags;
3189         struct tty_struct *tty;
3190         spin_lock_irqsave(&p->sighand->siglock, flags);
3191         tty = p->signal->tty;
3192         p->signal->tty = NULL;
3193         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3194         tty_kref_put(tty);
3195 }
3196
3197 /* Called under the sighand lock */
3198
3199 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3200 {
3201         if (tty) {
3202                 unsigned long flags;
3203                 /* We should not have a session or pgrp to put here but.... */
3204                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3205                 put_pid(tty->session);
3206                 put_pid(tty->pgrp);
3207                 tty->pgrp = get_pid(task_pgrp(tsk));
3208                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3209                 tty->session = get_pid(task_session(tsk));
3210                 if (tsk->signal->tty) {
3211                         printk(KERN_DEBUG "tty not NULL!!\n");
3212                         tty_kref_put(tsk->signal->tty);
3213                 }
3214         }
3215         put_pid(tsk->signal->tty_old_pgrp);
3216         tsk->signal->tty = tty_kref_get(tty);
3217         tsk->signal->tty_old_pgrp = NULL;
3218 }
3219
3220 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3221 {
3222         spin_lock_irq(&tsk->sighand->siglock);
3223         __proc_set_tty(tsk, tty);
3224         spin_unlock_irq(&tsk->sighand->siglock);
3225 }
3226
3227 struct tty_struct *get_current_tty(void)
3228 {
3229         struct tty_struct *tty;
3230         unsigned long flags;
3231
3232         spin_lock_irqsave(&current->sighand->siglock, flags);
3233         tty = tty_kref_get(current->signal->tty);
3234         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3235         return tty;
3236 }
3237 EXPORT_SYMBOL_GPL(get_current_tty);
3238
3239 void tty_default_fops(struct file_operations *fops)
3240 {
3241         *fops = tty_fops;
3242 }
3243
3244 /*
3245  * Initialize the console device. This is called *early*, so
3246  * we can't necessarily depend on lots of kernel help here.
3247  * Just do some early initializations, and do the complex setup
3248  * later.
3249  */
3250 void __init console_init(void)
3251 {
3252         initcall_t *call;
3253
3254         /* Setup the default TTY line discipline. */
3255         tty_ldisc_begin();
3256
3257         /*
3258          * set up the console device so that later boot sequences can
3259          * inform about problems etc..
3260          */
3261         call = __con_initcall_start;
3262         while (call < __con_initcall_end) {
3263                 (*call)();
3264                 call++;
3265         }
3266 }
3267
3268 static char *tty_devnode(struct device *dev, mode_t *mode)
3269 {
3270         if (!mode)
3271                 return NULL;
3272         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3273             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3274                 *mode = 0666;
3275         return NULL;
3276 }
3277
3278 static int __init tty_class_init(void)
3279 {
3280         tty_class = class_create(THIS_MODULE, "tty");
3281         if (IS_ERR(tty_class))
3282                 return PTR_ERR(tty_class);
3283         tty_class->devnode = tty_devnode;
3284         return 0;
3285 }
3286
3287 postcore_initcall(tty_class_init);
3288
3289 /* 3/2004 jmc: why do these devices exist? */
3290 static struct cdev tty_cdev, console_cdev;
3291
3292 static ssize_t show_cons_active(struct device *dev,
3293                                 struct device_attribute *attr, char *buf)
3294 {
3295         struct console *cs[16];
3296         int i = 0;
3297         struct console *c;
3298         ssize_t count = 0;
3299
3300         console_lock();
3301         for_each_console(c) {
3302                 if (!c->device)
3303                         continue;
3304                 if (!c->write)
3305                         continue;
3306                 if ((c->flags & CON_ENABLED) == 0)
3307                         continue;
3308                 cs[i++] = c;
3309                 if (i >= ARRAY_SIZE(cs))
3310                         break;
3311         }
3312         while (i--)
3313                 count += sprintf(buf + count, "%s%d%c",
3314                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3315         console_unlock();
3316
3317         return count;
3318 }
3319 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3320
3321 static struct device *consdev;
3322
3323 void console_sysfs_notify(void)
3324 {
3325         if (consdev)
3326                 sysfs_notify(&consdev->kobj, NULL, "active");
3327 }
3328
3329 /*
3330  * Ok, now we can initialize the rest of the tty devices and can count
3331  * on memory allocations, interrupts etc..
3332  */
3333 int __init tty_init(void)
3334 {
3335         cdev_init(&tty_cdev, &tty_fops);
3336         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3337             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3338                 panic("Couldn't register /dev/tty driver\n");
3339         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3340
3341         cdev_init(&console_cdev, &console_fops);
3342         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3343             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3344                 panic("Couldn't register /dev/console driver\n");
3345         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3346                               "console");
3347         if (IS_ERR(consdev))
3348                 consdev = NULL;
3349         else
3350                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3351
3352 #ifdef CONFIG_VT
3353         vty_init(&console_fops);
3354 #endif
3355         return 0;
3356 }
3357