cgroup: superblock can't be released with active dentries
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (tty->dev)
185                 put_device(tty->dev);
186         kfree(tty->write_buf);
187         tty_buffer_free_all(tty);
188         tty->magic = 0xDEADDEAD;
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock(tty);
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock(tty);
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 struct pid *tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805                 if (tty_pgrp) {
806                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807                         if (!on_exit)
808                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809                         put_pid(tty_pgrp);
810                 }
811         } else if (on_exit) {
812                 struct pid *old_pgrp;
813                 spin_lock_irq(&current->sighand->siglock);
814                 old_pgrp = current->signal->tty_old_pgrp;
815                 current->signal->tty_old_pgrp = NULL;
816                 spin_unlock_irq(&current->sighand->siglock);
817                 if (old_pgrp) {
818                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
819                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
820                         put_pid(old_pgrp);
821                 }
822                 return;
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         /* FIXME: Review locking here. The tty_lock never covered any race
860            between a new association and proc_clear_tty but possible we need
861            to protect against this anyway */
862         struct task_struct *tsk = current;
863         disassociate_ctty(0);
864         proc_clear_tty(tsk);
865 }
866
867
868 /**
869  *      stop_tty        -       propagate flow control
870  *      @tty: tty to stop
871  *
872  *      Perform flow control to the driver. For PTY/TTY pairs we
873  *      must also propagate the TIOCKPKT status. May be called
874  *      on an already stopped device and will not re-call the driver
875  *      method.
876  *
877  *      This functionality is used by both the line disciplines for
878  *      halting incoming flow and by the driver. It may therefore be
879  *      called from any context, may be under the tty atomic_write_lock
880  *      but not always.
881  *
882  *      Locking:
883  *              Uses the tty control lock internally
884  */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888         unsigned long flags;
889         spin_lock_irqsave(&tty->ctrl_lock, flags);
890         if (tty->stopped) {
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 return;
893         }
894         tty->stopped = 1;
895         if (tty->link && tty->link->packet) {
896                 tty->ctrl_status &= ~TIOCPKT_START;
897                 tty->ctrl_status |= TIOCPKT_STOP;
898                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899         }
900         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901         if (tty->ops->stop)
902                 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908  *      start_tty       -       propagate flow control
909  *      @tty: tty to start
910  *
911  *      Start a tty that has been stopped if at all possible. Perform
912  *      any necessary wakeups and propagate the TIOCPKT status. If this
913  *      is the tty was previous stopped and is being started then the
914  *      driver start method is invoked and the line discipline woken.
915  *
916  *      Locking:
917  *              ctrl_lock
918  */
919
920 void start_tty(struct tty_struct *tty)
921 {
922         unsigned long flags;
923         spin_lock_irqsave(&tty->ctrl_lock, flags);
924         if (!tty->stopped || tty->flow_stopped) {
925                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926                 return;
927         }
928         tty->stopped = 0;
929         if (tty->link && tty->link->packet) {
930                 tty->ctrl_status &= ~TIOCPKT_STOP;
931                 tty->ctrl_status |= TIOCPKT_START;
932                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933         }
934         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935         if (tty->ops->start)
936                 (tty->ops->start)(tty);
937         /* If we have a running line discipline it may need kicking */
938         tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /**
944  *      tty_read        -       read method for tty device files
945  *      @file: pointer to tty file
946  *      @buf: user buffer
947  *      @count: size of user buffer
948  *      @ppos: unused
949  *
950  *      Perform the read system call function on this terminal device. Checks
951  *      for hung up devices before calling the line discipline method.
952  *
953  *      Locking:
954  *              Locks the line discipline internally while needed. Multiple
955  *      read calls may be outstanding in parallel.
956  */
957
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959                         loff_t *ppos)
960 {
961         int i;
962         struct inode *inode = file->f_path.dentry->d_inode;
963         struct tty_struct *tty = file_tty(file);
964         struct tty_ldisc *ld;
965
966         if (tty_paranoia_check(tty, inode, "tty_read"))
967                 return -EIO;
968         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969                 return -EIO;
970
971         /* We want to wait for the line discipline to sort out in this
972            situation */
973         ld = tty_ldisc_ref_wait(tty);
974         if (ld->ops->read)
975                 i = (ld->ops->read)(tty, file, buf, count);
976         else
977                 i = -EIO;
978         tty_ldisc_deref(ld);
979         if (i > 0)
980                 inode->i_atime = current_fs_time(inode->i_sb);
981         return i;
982 }
983
984 void tty_write_unlock(struct tty_struct *tty)
985         __releases(&tty->atomic_write_lock)
986 {
987         mutex_unlock(&tty->atomic_write_lock);
988         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992         __acquires(&tty->atomic_write_lock)
993 {
994         if (!mutex_trylock(&tty->atomic_write_lock)) {
995                 if (ndelay)
996                         return -EAGAIN;
997                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
998                         return -ERESTARTSYS;
999         }
1000         return 0;
1001 }
1002
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009         struct tty_struct *tty,
1010         struct file *file,
1011         const char __user *buf,
1012         size_t count)
1013 {
1014         ssize_t ret, written = 0;
1015         unsigned int chunk;
1016
1017         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018         if (ret < 0)
1019                 return ret;
1020
1021         /*
1022          * We chunk up writes into a temporary buffer. This
1023          * simplifies low-level drivers immensely, since they
1024          * don't have locking issues and user mode accesses.
1025          *
1026          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027          * big chunk-size..
1028          *
1029          * The default chunk-size is 2kB, because the NTTY
1030          * layer has problems with bigger chunks. It will
1031          * claim to be able to handle more characters than
1032          * it actually does.
1033          *
1034          * FIXME: This can probably go away now except that 64K chunks
1035          * are too likely to fail unless switched to vmalloc...
1036          */
1037         chunk = 2048;
1038         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039                 chunk = 65536;
1040         if (count < chunk)
1041                 chunk = count;
1042
1043         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044         if (tty->write_cnt < chunk) {
1045                 unsigned char *buf_chunk;
1046
1047                 if (chunk < 1024)
1048                         chunk = 1024;
1049
1050                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051                 if (!buf_chunk) {
1052                         ret = -ENOMEM;
1053                         goto out;
1054                 }
1055                 kfree(tty->write_buf);
1056                 tty->write_cnt = chunk;
1057                 tty->write_buf = buf_chunk;
1058         }
1059
1060         /* Do the write .. */
1061         for (;;) {
1062                 size_t size = count;
1063                 if (size > chunk)
1064                         size = chunk;
1065                 ret = -EFAULT;
1066                 if (copy_from_user(tty->write_buf, buf, size))
1067                         break;
1068                 ret = write(tty, file, tty->write_buf, size);
1069                 if (ret <= 0)
1070                         break;
1071                 written += ret;
1072                 buf += ret;
1073                 count -= ret;
1074                 if (!count)
1075                         break;
1076                 ret = -ERESTARTSYS;
1077                 if (signal_pending(current))
1078                         break;
1079                 cond_resched();
1080         }
1081         if (written) {
1082                 struct inode *inode = file->f_path.dentry->d_inode;
1083                 inode->i_mtime = current_fs_time(inode->i_sb);
1084                 ret = written;
1085         }
1086 out:
1087         tty_write_unlock(tty);
1088         return ret;
1089 }
1090
1091 /**
1092  * tty_write_message - write a message to a certain tty, not just the console.
1093  * @tty: the destination tty_struct
1094  * @msg: the message to write
1095  *
1096  * This is used for messages that need to be redirected to a specific tty.
1097  * We don't put it into the syslog queue right now maybe in the future if
1098  * really needed.
1099  *
1100  * We must still hold the BTM and test the CLOSING flag for the moment.
1101  */
1102
1103 void tty_write_message(struct tty_struct *tty, char *msg)
1104 {
1105         if (tty) {
1106                 mutex_lock(&tty->atomic_write_lock);
1107                 tty_lock(tty);
1108                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1109                         tty_unlock(tty);
1110                         tty->ops->write(tty, msg, strlen(msg));
1111                 } else
1112                         tty_unlock(tty);
1113                 tty_write_unlock(tty);
1114         }
1115         return;
1116 }
1117
1118
1119 /**
1120  *      tty_write               -       write method for tty device file
1121  *      @file: tty file pointer
1122  *      @buf: user data to write
1123  *      @count: bytes to write
1124  *      @ppos: unused
1125  *
1126  *      Write data to a tty device via the line discipline.
1127  *
1128  *      Locking:
1129  *              Locks the line discipline as required
1130  *              Writes to the tty driver are serialized by the atomic_write_lock
1131  *      and are then processed in chunks to the device. The line discipline
1132  *      write method will not be invoked in parallel for each device.
1133  */
1134
1135 static ssize_t tty_write(struct file *file, const char __user *buf,
1136                                                 size_t count, loff_t *ppos)
1137 {
1138         struct inode *inode = file->f_path.dentry->d_inode;
1139         struct tty_struct *tty = file_tty(file);
1140         struct tty_ldisc *ld;
1141         ssize_t ret;
1142
1143         if (tty_paranoia_check(tty, inode, "tty_write"))
1144                 return -EIO;
1145         if (!tty || !tty->ops->write ||
1146                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1147                         return -EIO;
1148         /* Short term debug to catch buggy drivers */
1149         if (tty->ops->write_room == NULL)
1150                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1151                         tty->driver->name);
1152         ld = tty_ldisc_ref_wait(tty);
1153         if (!ld->ops->write)
1154                 ret = -EIO;
1155         else
1156                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1157         tty_ldisc_deref(ld);
1158         return ret;
1159 }
1160
1161 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1162                                                 size_t count, loff_t *ppos)
1163 {
1164         struct file *p = NULL;
1165
1166         spin_lock(&redirect_lock);
1167         if (redirect) {
1168                 get_file(redirect);
1169                 p = redirect;
1170         }
1171         spin_unlock(&redirect_lock);
1172
1173         if (p) {
1174                 ssize_t res;
1175                 res = vfs_write(p, buf, count, &p->f_pos);
1176                 fput(p);
1177                 return res;
1178         }
1179         return tty_write(file, buf, count, ppos);
1180 }
1181
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183
1184 /**
1185  *      pty_line_name   -       generate name for a pty
1186  *      @driver: the tty driver in use
1187  *      @index: the minor number
1188  *      @p: output buffer of at least 6 bytes
1189  *
1190  *      Generate a name from a driver reference and write it to the output
1191  *      buffer.
1192  *
1193  *      Locking: None
1194  */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197         int i = index + driver->name_base;
1198         /* ->name is initialized to "ttyp", but "tty" is expected */
1199         sprintf(p, "%s%c%x",
1200                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201                 ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203
1204 /**
1205  *      tty_line_name   -       generate name for a tty
1206  *      @driver: the tty driver in use
1207  *      @index: the minor number
1208  *      @p: output buffer of at least 7 bytes
1209  *
1210  *      Generate a name from a driver reference and write it to the output
1211  *      buffer.
1212  *
1213  *      Locking: None
1214  */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1218 }
1219
1220 /**
1221  *      tty_driver_lookup_tty() - find an existing tty, if any
1222  *      @driver: the driver for the tty
1223  *      @idx:    the minor number
1224  *
1225  *      Return the tty, if found or ERR_PTR() otherwise.
1226  *
1227  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1228  *      be held until the 'fast-open' is also done. Will change once we
1229  *      have refcounting in the driver and per driver locking
1230  */
1231 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1232                 struct inode *inode, int idx)
1233 {
1234         if (driver->ops->lookup)
1235                 return driver->ops->lookup(driver, inode, idx);
1236
1237         return driver->ttys[idx];
1238 }
1239
1240 /**
1241  *      tty_init_termios        -  helper for termios setup
1242  *      @tty: the tty to set up
1243  *
1244  *      Initialise the termios structures for this tty. Thus runs under
1245  *      the tty_mutex currently so we can be relaxed about ordering.
1246  */
1247
1248 int tty_init_termios(struct tty_struct *tty)
1249 {
1250         struct ktermios *tp;
1251         int idx = tty->index;
1252
1253         tp = tty->driver->termios[idx];
1254         if (tp == NULL) {
1255                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1256                 if (tp == NULL)
1257                         return -ENOMEM;
1258                 memcpy(tp, &tty->driver->init_termios,
1259                                                 sizeof(struct ktermios));
1260                 tty->driver->termios[idx] = tp;
1261         }
1262         tty->termios = tp;
1263         tty->termios_locked = tp + 1;
1264
1265         /* Compatibility until drivers always set this */
1266         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1267         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1268         return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274         int ret = tty_init_termios(tty);
1275         if (ret)
1276                 return ret;
1277
1278         tty_driver_kref_get(driver);
1279         tty->count++;
1280         driver->ttys[tty->index] = tty;
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286  *      tty_driver_install_tty() - install a tty entry in the driver
1287  *      @driver: the driver for the tty
1288  *      @tty: the tty
1289  *
1290  *      Install a tty object into the driver tables. The tty->index field
1291  *      will be set by the time this is called. This method is responsible
1292  *      for ensuring any need additional structures are allocated and
1293  *      configured.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         return driver->ops->install ? driver->ops->install(driver, tty) :
1301                 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305  *      tty_driver_remove_tty() - remove a tty from the driver tables
1306  *      @driver: the driver for the tty
1307  *      @idx:    the minor number
1308  *
1309  *      Remvoe a tty object from the driver tables. The tty->index field
1310  *      will be set by the time this is called.
1311  *
1312  *      Locking: tty_mutex for now
1313  */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316         if (driver->ops->remove)
1317                 driver->ops->remove(driver, tty);
1318         else
1319                 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323  *      tty_reopen()    - fast re-open of an open tty
1324  *      @tty    - the tty to open
1325  *
1326  *      Return 0 on success, -errno on error.
1327  *
1328  *      Locking: tty_mutex must be held from the time the tty was found
1329  *               till this open completes.
1330  */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333         struct tty_driver *driver = tty->driver;
1334
1335         if (test_bit(TTY_CLOSING, &tty->flags) ||
1336                         test_bit(TTY_HUPPING, &tty->flags) ||
1337                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338                 return -EIO;
1339
1340         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341             driver->subtype == PTY_TYPE_MASTER) {
1342                 /*
1343                  * special case for PTY masters: only one open permitted,
1344                  * and the slave side open count is incremented as well.
1345                  */
1346                 if (tty->count)
1347                         return -EIO;
1348
1349                 tty->link->count++;
1350         }
1351         tty->count++;
1352
1353         mutex_lock(&tty->ldisc_mutex);
1354         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355         mutex_unlock(&tty->ldisc_mutex);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  *      tty_init_dev            -       initialise a tty device
1362  *      @driver: tty driver we are opening a device on
1363  *      @idx: device index
1364  *      @ret_tty: returned tty structure
1365  *
1366  *      Prepare a tty device. This may not be a "new" clean device but
1367  *      could also be an active device. The pty drivers require special
1368  *      handling because of this.
1369  *
1370  *      Locking:
1371  *              The function is called under the tty_mutex, which
1372  *      protects us from the tty struct or driver itself going away.
1373  *
1374  *      On exit the tty device has the line discipline attached and
1375  *      a reference count of 1. If a pair was created for pty/tty use
1376  *      and the other was a pty master then it too has a reference count of 1.
1377  *
1378  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379  * failed open.  The new code protects the open with a mutex, so it's
1380  * really quite straightforward.  The mutex locking can probably be
1381  * relaxed for the (most common) case of reopening a tty.
1382  */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386         struct tty_struct *tty;
1387         int retval;
1388
1389         /*
1390          * First time open is complex, especially for PTY devices.
1391          * This code guarantees that either everything succeeds and the
1392          * TTY is ready for operation, or else the table slots are vacated
1393          * and the allocated memory released.  (Except that the termios
1394          * and locked termios may be retained.)
1395          */
1396
1397         if (!try_module_get(driver->owner))
1398                 return ERR_PTR(-ENODEV);
1399
1400         tty = alloc_tty_struct();
1401         if (!tty) {
1402                 retval = -ENOMEM;
1403                 goto err_module_put;
1404         }
1405         initialize_tty_struct(tty, driver, idx);
1406
1407         tty_lock(tty);
1408         retval = tty_driver_install_tty(driver, tty);
1409         if (retval < 0)
1410                 goto err_deinit_tty;
1411
1412         /*
1413          * Structures all installed ... call the ldisc open routines.
1414          * If we fail here just call release_tty to clean up.  No need
1415          * to decrement the use counts, as release_tty doesn't care.
1416          */
1417         retval = tty_ldisc_setup(tty, tty->link);
1418         if (retval)
1419                 goto err_release_tty;
1420         /* Return the tty locked so that it cannot vanish under the caller */
1421         return tty;
1422
1423 err_deinit_tty:
1424         tty_unlock(tty);
1425         deinitialize_tty_struct(tty);
1426         free_tty_struct(tty);
1427 err_module_put:
1428         module_put(driver->owner);
1429         return ERR_PTR(retval);
1430
1431         /* call the tty release_tty routine to clean out this slot */
1432 err_release_tty:
1433         tty_unlock(tty);
1434         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1435                                  "clearing slot %d\n", idx);
1436         release_tty(tty, idx);
1437         return ERR_PTR(retval);
1438 }
1439
1440 void tty_free_termios(struct tty_struct *tty)
1441 {
1442         struct ktermios *tp;
1443         int idx = tty->index;
1444         /* Kill this flag and push into drivers for locking etc */
1445         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1446                 /* FIXME: Locking on ->termios array */
1447                 tp = tty->termios;
1448                 tty->driver->termios[idx] = NULL;
1449                 kfree(tp);
1450         }
1451 }
1452 EXPORT_SYMBOL(tty_free_termios);
1453
1454 void tty_shutdown(struct tty_struct *tty)
1455 {
1456         tty_driver_remove_tty(tty->driver, tty);
1457         tty_free_termios(tty);
1458 }
1459 EXPORT_SYMBOL(tty_shutdown);
1460
1461 /**
1462  *      release_one_tty         -       release tty structure memory
1463  *      @kref: kref of tty we are obliterating
1464  *
1465  *      Releases memory associated with a tty structure, and clears out the
1466  *      driver table slots. This function is called when a device is no longer
1467  *      in use. It also gets called when setup of a device fails.
1468  *
1469  *      Locking:
1470  *              tty_mutex - sometimes only
1471  *              takes the file list lock internally when working on the list
1472  *      of ttys that the driver keeps.
1473  *
1474  *      This method gets called from a work queue so that the driver private
1475  *      cleanup ops can sleep (needed for USB at least)
1476  */
1477 static void release_one_tty(struct work_struct *work)
1478 {
1479         struct tty_struct *tty =
1480                 container_of(work, struct tty_struct, hangup_work);
1481         struct tty_driver *driver = tty->driver;
1482
1483         if (tty->ops->cleanup)
1484                 tty->ops->cleanup(tty);
1485
1486         tty->magic = 0;
1487         tty_driver_kref_put(driver);
1488         module_put(driver->owner);
1489
1490         spin_lock(&tty_files_lock);
1491         list_del_init(&tty->tty_files);
1492         spin_unlock(&tty_files_lock);
1493
1494         put_pid(tty->pgrp);
1495         put_pid(tty->session);
1496         free_tty_struct(tty);
1497 }
1498
1499 static void queue_release_one_tty(struct kref *kref)
1500 {
1501         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1502
1503         if (tty->ops->shutdown)
1504                 tty->ops->shutdown(tty);
1505         else
1506                 tty_shutdown(tty);
1507
1508         /* The hangup queue is now free so we can reuse it rather than
1509            waste a chunk of memory for each port */
1510         INIT_WORK(&tty->hangup_work, release_one_tty);
1511         schedule_work(&tty->hangup_work);
1512 }
1513
1514 /**
1515  *      tty_kref_put            -       release a tty kref
1516  *      @tty: tty device
1517  *
1518  *      Release a reference to a tty device and if need be let the kref
1519  *      layer destruct the object for us
1520  */
1521
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524         if (tty)
1525                 kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528
1529 /**
1530  *      release_tty             -       release tty structure memory
1531  *
1532  *      Release both @tty and a possible linked partner (think pty pair),
1533  *      and decrement the refcount of the backing module.
1534  *
1535  *      Locking:
1536  *              tty_mutex - sometimes only
1537  *              takes the file list lock internally when working on the list
1538  *      of ttys that the driver keeps.
1539  *              FIXME: should we require tty_mutex is held here ??
1540  *
1541  */
1542 static void release_tty(struct tty_struct *tty, int idx)
1543 {
1544         /* This should always be true but check for the moment */
1545         WARN_ON(tty->index != idx);
1546
1547         if (tty->link)
1548                 tty_kref_put(tty->link);
1549         tty_kref_put(tty);
1550 }
1551
1552 /**
1553  *      tty_release_checks - check a tty before real release
1554  *      @tty: tty to check
1555  *      @o_tty: link of @tty (if any)
1556  *      @idx: index of the tty
1557  *
1558  *      Performs some paranoid checking before true release of the @tty.
1559  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1560  */
1561 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1562                 int idx)
1563 {
1564 #ifdef TTY_PARANOIA_CHECK
1565         if (idx < 0 || idx >= tty->driver->num) {
1566                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1567                                 __func__, tty->name);
1568                 return -1;
1569         }
1570
1571         /* not much to check for devpts */
1572         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1573                 return 0;
1574
1575         if (tty != tty->driver->ttys[idx]) {
1576                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1577                                 __func__, idx, tty->name);
1578                 return -1;
1579         }
1580         if (tty->termios != tty->driver->termios[idx]) {
1581                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1582                                 __func__, idx, tty->name);
1583                 return -1;
1584         }
1585         if (tty->driver->other) {
1586                 if (o_tty != tty->driver->other->ttys[idx]) {
1587                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1588                                         __func__, idx, tty->name);
1589                         return -1;
1590                 }
1591                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1592                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1593                                         __func__, idx, tty->name);
1594                         return -1;
1595                 }
1596                 if (o_tty->link != tty) {
1597                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1598                         return -1;
1599                 }
1600         }
1601 #endif
1602         return 0;
1603 }
1604
1605 /**
1606  *      tty_release             -       vfs callback for close
1607  *      @inode: inode of tty
1608  *      @filp: file pointer for handle to tty
1609  *
1610  *      Called the last time each file handle is closed that references
1611  *      this tty. There may however be several such references.
1612  *
1613  *      Locking:
1614  *              Takes bkl. See tty_release_dev
1615  *
1616  * Even releasing the tty structures is a tricky business.. We have
1617  * to be very careful that the structures are all released at the
1618  * same time, as interrupts might otherwise get the wrong pointers.
1619  *
1620  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1621  * lead to double frees or releasing memory still in use.
1622  */
1623
1624 int tty_release(struct inode *inode, struct file *filp)
1625 {
1626         struct tty_struct *tty = file_tty(filp);
1627         struct tty_struct *o_tty;
1628         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1629         int     devpts;
1630         int     idx;
1631         char    buf[64];
1632
1633         if (tty_paranoia_check(tty, inode, __func__))
1634                 return 0;
1635
1636         tty_lock(tty);
1637         check_tty_count(tty, __func__);
1638
1639         __tty_fasync(-1, filp, 0);
1640
1641         idx = tty->index;
1642         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1643                       tty->driver->subtype == PTY_TYPE_MASTER);
1644         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1645         /* Review: parallel close */
1646         o_tty = tty->link;
1647
1648         if (tty_release_checks(tty, o_tty, idx)) {
1649                 tty_unlock(tty);
1650                 return 0;
1651         }
1652
1653 #ifdef TTY_DEBUG_HANGUP
1654         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1655                         tty_name(tty, buf), tty->count);
1656 #endif
1657
1658         if (tty->ops->close)
1659                 tty->ops->close(tty, filp);
1660
1661         tty_unlock(tty);
1662         /*
1663          * Sanity check: if tty->count is going to zero, there shouldn't be
1664          * any waiters on tty->read_wait or tty->write_wait.  We test the
1665          * wait queues and kick everyone out _before_ actually starting to
1666          * close.  This ensures that we won't block while releasing the tty
1667          * structure.
1668          *
1669          * The test for the o_tty closing is necessary, since the master and
1670          * slave sides may close in any order.  If the slave side closes out
1671          * first, its count will be one, since the master side holds an open.
1672          * Thus this test wouldn't be triggered at the time the slave closes,
1673          * so we do it now.
1674          *
1675          * Note that it's possible for the tty to be opened again while we're
1676          * flushing out waiters.  By recalculating the closing flags before
1677          * each iteration we avoid any problems.
1678          */
1679         while (1) {
1680                 /* Guard against races with tty->count changes elsewhere and
1681                    opens on /dev/tty */
1682
1683                 mutex_lock(&tty_mutex);
1684                 tty_lock_pair(tty, o_tty);
1685                 tty_closing = tty->count <= 1;
1686                 o_tty_closing = o_tty &&
1687                         (o_tty->count <= (pty_master ? 1 : 0));
1688                 do_sleep = 0;
1689
1690                 if (tty_closing) {
1691                         if (waitqueue_active(&tty->read_wait)) {
1692                                 wake_up_poll(&tty->read_wait, POLLIN);
1693                                 do_sleep++;
1694                         }
1695                         if (waitqueue_active(&tty->write_wait)) {
1696                                 wake_up_poll(&tty->write_wait, POLLOUT);
1697                                 do_sleep++;
1698                         }
1699                 }
1700                 if (o_tty_closing) {
1701                         if (waitqueue_active(&o_tty->read_wait)) {
1702                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1703                                 do_sleep++;
1704                         }
1705                         if (waitqueue_active(&o_tty->write_wait)) {
1706                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1707                                 do_sleep++;
1708                         }
1709                 }
1710                 if (!do_sleep)
1711                         break;
1712
1713                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1714                                 __func__, tty_name(tty, buf));
1715                 tty_unlock_pair(tty, o_tty);
1716                 mutex_unlock(&tty_mutex);
1717                 schedule();
1718         }
1719
1720         /*
1721          * The closing flags are now consistent with the open counts on
1722          * both sides, and we've completed the last operation that could
1723          * block, so it's safe to proceed with closing.
1724          */
1725         if (pty_master) {
1726                 if (--o_tty->count < 0) {
1727                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1728                                 __func__, o_tty->count, tty_name(o_tty, buf));
1729                         o_tty->count = 0;
1730                 }
1731         }
1732         if (--tty->count < 0) {
1733                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1734                                 __func__, tty->count, tty_name(tty, buf));
1735                 tty->count = 0;
1736         }
1737
1738         /*
1739          * We've decremented tty->count, so we need to remove this file
1740          * descriptor off the tty->tty_files list; this serves two
1741          * purposes:
1742          *  - check_tty_count sees the correct number of file descriptors
1743          *    associated with this tty.
1744          *  - do_tty_hangup no longer sees this file descriptor as
1745          *    something that needs to be handled for hangups.
1746          */
1747         tty_del_file(filp);
1748
1749         /*
1750          * Perform some housekeeping before deciding whether to return.
1751          *
1752          * Set the TTY_CLOSING flag if this was the last open.  In the
1753          * case of a pty we may have to wait around for the other side
1754          * to close, and TTY_CLOSING makes sure we can't be reopened.
1755          */
1756         if (tty_closing)
1757                 set_bit(TTY_CLOSING, &tty->flags);
1758         if (o_tty_closing)
1759                 set_bit(TTY_CLOSING, &o_tty->flags);
1760
1761         /*
1762          * If _either_ side is closing, make sure there aren't any
1763          * processes that still think tty or o_tty is their controlling
1764          * tty.
1765          */
1766         if (tty_closing || o_tty_closing) {
1767                 read_lock(&tasklist_lock);
1768                 session_clear_tty(tty->session);
1769                 if (o_tty)
1770                         session_clear_tty(o_tty->session);
1771                 read_unlock(&tasklist_lock);
1772         }
1773
1774         mutex_unlock(&tty_mutex);
1775
1776         /* check whether both sides are closing ... */
1777         if (!tty_closing || (o_tty && !o_tty_closing)) {
1778                 tty_unlock_pair(tty, o_tty);
1779                 return 0;
1780         }
1781
1782 #ifdef TTY_DEBUG_HANGUP
1783         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1784 #endif
1785         /*
1786          * Ask the line discipline code to release its structures
1787          */
1788         tty_ldisc_release(tty, o_tty);
1789         /*
1790          * The release_tty function takes care of the details of clearing
1791          * the slots and preserving the termios structure. The tty_unlock_pair
1792          * should be safe as we keep a kref while the tty is locked (so the
1793          * unlock never unlocks a freed tty).
1794          */
1795         release_tty(tty, idx);
1796         tty_unlock_pair(tty, o_tty);
1797
1798         /* Make this pty number available for reallocation */
1799         if (devpts)
1800                 devpts_kill_index(inode, idx);
1801         return 0;
1802 }
1803
1804 /**
1805  *      tty_open_current_tty - get tty of current task for open
1806  *      @device: device number
1807  *      @filp: file pointer to tty
1808  *      @return: tty of the current task iff @device is /dev/tty
1809  *
1810  *      We cannot return driver and index like for the other nodes because
1811  *      devpts will not work then. It expects inodes to be from devpts FS.
1812  *
1813  *      We need to move to returning a refcounted object from all the lookup
1814  *      paths including this one.
1815  */
1816 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1817 {
1818         struct tty_struct *tty;
1819
1820         if (device != MKDEV(TTYAUX_MAJOR, 0))
1821                 return NULL;
1822
1823         tty = get_current_tty();
1824         if (!tty)
1825                 return ERR_PTR(-ENXIO);
1826
1827         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1828         /* noctty = 1; */
1829         tty_kref_put(tty);
1830         /* FIXME: we put a reference and return a TTY! */
1831         /* This is only safe because the caller holds tty_mutex */
1832         return tty;
1833 }
1834
1835 /**
1836  *      tty_lookup_driver - lookup a tty driver for a given device file
1837  *      @device: device number
1838  *      @filp: file pointer to tty
1839  *      @noctty: set if the device should not become a controlling tty
1840  *      @index: index for the device in the @return driver
1841  *      @return: driver for this inode (with increased refcount)
1842  *
1843  *      If @return is not erroneous, the caller is responsible to decrement the
1844  *      refcount by tty_driver_kref_put.
1845  *
1846  *      Locking: tty_mutex protects get_tty_driver
1847  */
1848 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1849                 int *noctty, int *index)
1850 {
1851         struct tty_driver *driver;
1852
1853         switch (device) {
1854 #ifdef CONFIG_VT
1855         case MKDEV(TTY_MAJOR, 0): {
1856                 extern struct tty_driver *console_driver;
1857                 driver = tty_driver_kref_get(console_driver);
1858                 *index = fg_console;
1859                 *noctty = 1;
1860                 break;
1861         }
1862 #endif
1863         case MKDEV(TTYAUX_MAJOR, 1): {
1864                 struct tty_driver *console_driver = console_device(index);
1865                 if (console_driver) {
1866                         driver = tty_driver_kref_get(console_driver);
1867                         if (driver) {
1868                                 /* Don't let /dev/console block */
1869                                 filp->f_flags |= O_NONBLOCK;
1870                                 *noctty = 1;
1871                                 break;
1872                         }
1873                 }
1874                 return ERR_PTR(-ENODEV);
1875         }
1876         default:
1877                 driver = get_tty_driver(device, index);
1878                 if (!driver)
1879                         return ERR_PTR(-ENODEV);
1880                 break;
1881         }
1882         return driver;
1883 }
1884
1885 /**
1886  *      tty_open                -       open a tty device
1887  *      @inode: inode of device file
1888  *      @filp: file pointer to tty
1889  *
1890  *      tty_open and tty_release keep up the tty count that contains the
1891  *      number of opens done on a tty. We cannot use the inode-count, as
1892  *      different inodes might point to the same tty.
1893  *
1894  *      Open-counting is needed for pty masters, as well as for keeping
1895  *      track of serial lines: DTR is dropped when the last close happens.
1896  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1897  *
1898  *      The termios state of a pty is reset on first open so that
1899  *      settings don't persist across reuse.
1900  *
1901  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902  *               tty->count should protect the rest.
1903  *               ->siglock protects ->signal/->sighand
1904  *
1905  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1906  *      tty_mutex
1907  */
1908
1909 static int tty_open(struct inode *inode, struct file *filp)
1910 {
1911         struct tty_struct *tty;
1912         int noctty, retval;
1913         struct tty_driver *driver = NULL;
1914         int index;
1915         dev_t device = inode->i_rdev;
1916         unsigned saved_flags = filp->f_flags;
1917
1918         nonseekable_open(inode, filp);
1919
1920 retry_open:
1921         retval = tty_alloc_file(filp);
1922         if (retval)
1923                 return -ENOMEM;
1924
1925         noctty = filp->f_flags & O_NOCTTY;
1926         index  = -1;
1927         retval = 0;
1928
1929         mutex_lock(&tty_mutex);
1930         /* This is protected by the tty_mutex */
1931         tty = tty_open_current_tty(device, filp);
1932         if (IS_ERR(tty)) {
1933                 retval = PTR_ERR(tty);
1934                 goto err_unlock;
1935         } else if (!tty) {
1936                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1937                 if (IS_ERR(driver)) {
1938                         retval = PTR_ERR(driver);
1939                         goto err_unlock;
1940                 }
1941
1942                 /* check whether we're reopening an existing tty */
1943                 tty = tty_driver_lookup_tty(driver, inode, index);
1944                 if (IS_ERR(tty)) {
1945                         retval = PTR_ERR(tty);
1946                         goto err_unlock;
1947                 }
1948         }
1949
1950         if (tty) {
1951                 tty_lock(tty);
1952                 retval = tty_reopen(tty);
1953                 if (retval < 0) {
1954                         tty_unlock(tty);
1955                         tty = ERR_PTR(retval);
1956                 }
1957         } else  /* Returns with the tty_lock held for now */
1958                 tty = tty_init_dev(driver, index);
1959
1960         mutex_unlock(&tty_mutex);
1961         if (driver)
1962                 tty_driver_kref_put(driver);
1963         if (IS_ERR(tty)) {
1964                 retval = PTR_ERR(tty);
1965                 goto err_file;
1966         }
1967
1968         tty_add_file(tty, filp);
1969
1970         check_tty_count(tty, __func__);
1971         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1972             tty->driver->subtype == PTY_TYPE_MASTER)
1973                 noctty = 1;
1974 #ifdef TTY_DEBUG_HANGUP
1975         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1976 #endif
1977         if (tty->ops->open)
1978                 retval = tty->ops->open(tty, filp);
1979         else
1980                 retval = -ENODEV;
1981         filp->f_flags = saved_flags;
1982
1983         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1984                                                 !capable(CAP_SYS_ADMIN))
1985                 retval = -EBUSY;
1986
1987         if (retval) {
1988 #ifdef TTY_DEBUG_HANGUP
1989                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1990                                 retval, tty->name);
1991 #endif
1992                 tty_unlock(tty); /* need to call tty_release without BTM */
1993                 tty_release(inode, filp);
1994                 if (retval != -ERESTARTSYS)
1995                         return retval;
1996
1997                 if (signal_pending(current))
1998                         return retval;
1999
2000                 schedule();
2001                 /*
2002                  * Need to reset f_op in case a hangup happened.
2003                  */
2004                 if (filp->f_op == &hung_up_tty_fops)
2005                         filp->f_op = &tty_fops;
2006                 goto retry_open;
2007         }
2008         tty_unlock(tty);
2009
2010
2011         mutex_lock(&tty_mutex);
2012         tty_lock(tty);
2013         spin_lock_irq(&current->sighand->siglock);
2014         if (!noctty &&
2015             current->signal->leader &&
2016             !current->signal->tty &&
2017             tty->session == NULL)
2018                 __proc_set_tty(current, tty);
2019         spin_unlock_irq(&current->sighand->siglock);
2020         tty_unlock(tty);
2021         mutex_unlock(&tty_mutex);
2022         return 0;
2023 err_unlock:
2024         mutex_unlock(&tty_mutex);
2025         /* after locks to avoid deadlock */
2026         if (!IS_ERR_OR_NULL(driver))
2027                 tty_driver_kref_put(driver);
2028 err_file:
2029         tty_free_file(filp);
2030         return retval;
2031 }
2032
2033
2034
2035 /**
2036  *      tty_poll        -       check tty status
2037  *      @filp: file being polled
2038  *      @wait: poll wait structures to update
2039  *
2040  *      Call the line discipline polling method to obtain the poll
2041  *      status of the device.
2042  *
2043  *      Locking: locks called line discipline but ldisc poll method
2044  *      may be re-entered freely by other callers.
2045  */
2046
2047 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2048 {
2049         struct tty_struct *tty = file_tty(filp);
2050         struct tty_ldisc *ld;
2051         int ret = 0;
2052
2053         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2054                 return 0;
2055
2056         ld = tty_ldisc_ref_wait(tty);
2057         if (ld->ops->poll)
2058                 ret = (ld->ops->poll)(tty, filp, wait);
2059         tty_ldisc_deref(ld);
2060         return ret;
2061 }
2062
2063 static int __tty_fasync(int fd, struct file *filp, int on)
2064 {
2065         struct tty_struct *tty = file_tty(filp);
2066         unsigned long flags;
2067         int retval = 0;
2068
2069         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2070                 goto out;
2071
2072         retval = fasync_helper(fd, filp, on, &tty->fasync);
2073         if (retval <= 0)
2074                 goto out;
2075
2076         if (on) {
2077                 enum pid_type type;
2078                 struct pid *pid;
2079                 if (!waitqueue_active(&tty->read_wait))
2080                         tty->minimum_to_wake = 1;
2081                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2082                 if (tty->pgrp) {
2083                         pid = tty->pgrp;
2084                         type = PIDTYPE_PGID;
2085                 } else {
2086                         pid = task_pid(current);
2087                         type = PIDTYPE_PID;
2088                 }
2089                 get_pid(pid);
2090                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2091                 retval = __f_setown(filp, pid, type, 0);
2092                 put_pid(pid);
2093                 if (retval)
2094                         goto out;
2095         } else {
2096                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2097                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2098         }
2099         retval = 0;
2100 out:
2101         return retval;
2102 }
2103
2104 static int tty_fasync(int fd, struct file *filp, int on)
2105 {
2106         struct tty_struct *tty = file_tty(filp);
2107         int retval;
2108
2109         tty_lock(tty);
2110         retval = __tty_fasync(fd, filp, on);
2111         tty_unlock(tty);
2112
2113         return retval;
2114 }
2115
2116 /**
2117  *      tiocsti                 -       fake input character
2118  *      @tty: tty to fake input into
2119  *      @p: pointer to character
2120  *
2121  *      Fake input to a tty device. Does the necessary locking and
2122  *      input management.
2123  *
2124  *      FIXME: does not honour flow control ??
2125  *
2126  *      Locking:
2127  *              Called functions take tty_ldisc_lock
2128  *              current->signal->tty check is safe without locks
2129  *
2130  *      FIXME: may race normal receive processing
2131  */
2132
2133 static int tiocsti(struct tty_struct *tty, char __user *p)
2134 {
2135         char ch, mbz = 0;
2136         struct tty_ldisc *ld;
2137
2138         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2139                 return -EPERM;
2140         if (get_user(ch, p))
2141                 return -EFAULT;
2142         tty_audit_tiocsti(tty, ch);
2143         ld = tty_ldisc_ref_wait(tty);
2144         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2145         tty_ldisc_deref(ld);
2146         return 0;
2147 }
2148
2149 /**
2150  *      tiocgwinsz              -       implement window query ioctl
2151  *      @tty; tty
2152  *      @arg: user buffer for result
2153  *
2154  *      Copies the kernel idea of the window size into the user buffer.
2155  *
2156  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2157  *              is consistent.
2158  */
2159
2160 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2161 {
2162         int err;
2163
2164         mutex_lock(&tty->termios_mutex);
2165         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2166         mutex_unlock(&tty->termios_mutex);
2167
2168         return err ? -EFAULT: 0;
2169 }
2170
2171 /**
2172  *      tty_do_resize           -       resize event
2173  *      @tty: tty being resized
2174  *      @rows: rows (character)
2175  *      @cols: cols (character)
2176  *
2177  *      Update the termios variables and send the necessary signals to
2178  *      peform a terminal resize correctly
2179  */
2180
2181 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2182 {
2183         struct pid *pgrp;
2184         unsigned long flags;
2185
2186         /* Lock the tty */
2187         mutex_lock(&tty->termios_mutex);
2188         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2189                 goto done;
2190         /* Get the PID values and reference them so we can
2191            avoid holding the tty ctrl lock while sending signals */
2192         spin_lock_irqsave(&tty->ctrl_lock, flags);
2193         pgrp = get_pid(tty->pgrp);
2194         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2195
2196         if (pgrp)
2197                 kill_pgrp(pgrp, SIGWINCH, 1);
2198         put_pid(pgrp);
2199
2200         tty->winsize = *ws;
2201 done:
2202         mutex_unlock(&tty->termios_mutex);
2203         return 0;
2204 }
2205
2206 /**
2207  *      tiocswinsz              -       implement window size set ioctl
2208  *      @tty; tty side of tty
2209  *      @arg: user buffer for result
2210  *
2211  *      Copies the user idea of the window size to the kernel. Traditionally
2212  *      this is just advisory information but for the Linux console it
2213  *      actually has driver level meaning and triggers a VC resize.
2214  *
2215  *      Locking:
2216  *              Driver dependent. The default do_resize method takes the
2217  *      tty termios mutex and ctrl_lock. The console takes its own lock
2218  *      then calls into the default method.
2219  */
2220
2221 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2222 {
2223         struct winsize tmp_ws;
2224         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2225                 return -EFAULT;
2226
2227         if (tty->ops->resize)
2228                 return tty->ops->resize(tty, &tmp_ws);
2229         else
2230                 return tty_do_resize(tty, &tmp_ws);
2231 }
2232
2233 /**
2234  *      tioccons        -       allow admin to move logical console
2235  *      @file: the file to become console
2236  *
2237  *      Allow the administrator to move the redirected console device
2238  *
2239  *      Locking: uses redirect_lock to guard the redirect information
2240  */
2241
2242 static int tioccons(struct file *file)
2243 {
2244         if (!capable(CAP_SYS_ADMIN))
2245                 return -EPERM;
2246         if (file->f_op->write == redirected_tty_write) {
2247                 struct file *f;
2248                 spin_lock(&redirect_lock);
2249                 f = redirect;
2250                 redirect = NULL;
2251                 spin_unlock(&redirect_lock);
2252                 if (f)
2253                         fput(f);
2254                 return 0;
2255         }
2256         spin_lock(&redirect_lock);
2257         if (redirect) {
2258                 spin_unlock(&redirect_lock);
2259                 return -EBUSY;
2260         }
2261         get_file(file);
2262         redirect = file;
2263         spin_unlock(&redirect_lock);
2264         return 0;
2265 }
2266
2267 /**
2268  *      fionbio         -       non blocking ioctl
2269  *      @file: file to set blocking value
2270  *      @p: user parameter
2271  *
2272  *      Historical tty interfaces had a blocking control ioctl before
2273  *      the generic functionality existed. This piece of history is preserved
2274  *      in the expected tty API of posix OS's.
2275  *
2276  *      Locking: none, the open file handle ensures it won't go away.
2277  */
2278
2279 static int fionbio(struct file *file, int __user *p)
2280 {
2281         int nonblock;
2282
2283         if (get_user(nonblock, p))
2284                 return -EFAULT;
2285
2286         spin_lock(&file->f_lock);
2287         if (nonblock)
2288                 file->f_flags |= O_NONBLOCK;
2289         else
2290                 file->f_flags &= ~O_NONBLOCK;
2291         spin_unlock(&file->f_lock);
2292         return 0;
2293 }
2294
2295 /**
2296  *      tiocsctty       -       set controlling tty
2297  *      @tty: tty structure
2298  *      @arg: user argument
2299  *
2300  *      This ioctl is used to manage job control. It permits a session
2301  *      leader to set this tty as the controlling tty for the session.
2302  *
2303  *      Locking:
2304  *              Takes tty_mutex() to protect tty instance
2305  *              Takes tasklist_lock internally to walk sessions
2306  *              Takes ->siglock() when updating signal->tty
2307  */
2308
2309 static int tiocsctty(struct tty_struct *tty, int arg)
2310 {
2311         int ret = 0;
2312         if (current->signal->leader && (task_session(current) == tty->session))
2313                 return ret;
2314
2315         mutex_lock(&tty_mutex);
2316         /*
2317          * The process must be a session leader and
2318          * not have a controlling tty already.
2319          */
2320         if (!current->signal->leader || current->signal->tty) {
2321                 ret = -EPERM;
2322                 goto unlock;
2323         }
2324
2325         if (tty->session) {
2326                 /*
2327                  * This tty is already the controlling
2328                  * tty for another session group!
2329                  */
2330                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2331                         /*
2332                          * Steal it away
2333                          */
2334                         read_lock(&tasklist_lock);
2335                         session_clear_tty(tty->session);
2336                         read_unlock(&tasklist_lock);
2337                 } else {
2338                         ret = -EPERM;
2339                         goto unlock;
2340                 }
2341         }
2342         proc_set_tty(current, tty);
2343 unlock:
2344         mutex_unlock(&tty_mutex);
2345         return ret;
2346 }
2347
2348 /**
2349  *      tty_get_pgrp    -       return a ref counted pgrp pid
2350  *      @tty: tty to read
2351  *
2352  *      Returns a refcounted instance of the pid struct for the process
2353  *      group controlling the tty.
2354  */
2355
2356 struct pid *tty_get_pgrp(struct tty_struct *tty)
2357 {
2358         unsigned long flags;
2359         struct pid *pgrp;
2360
2361         spin_lock_irqsave(&tty->ctrl_lock, flags);
2362         pgrp = get_pid(tty->pgrp);
2363         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2364
2365         return pgrp;
2366 }
2367 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2368
2369 /**
2370  *      tiocgpgrp               -       get process group
2371  *      @tty: tty passed by user
2372  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2373  *      @p: returned pid
2374  *
2375  *      Obtain the process group of the tty. If there is no process group
2376  *      return an error.
2377  *
2378  *      Locking: none. Reference to current->signal->tty is safe.
2379  */
2380
2381 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2382 {
2383         struct pid *pid;
2384         int ret;
2385         /*
2386          * (tty == real_tty) is a cheap way of
2387          * testing if the tty is NOT a master pty.
2388          */
2389         if (tty == real_tty && current->signal->tty != real_tty)
2390                 return -ENOTTY;
2391         pid = tty_get_pgrp(real_tty);
2392         ret =  put_user(pid_vnr(pid), p);
2393         put_pid(pid);
2394         return ret;
2395 }
2396
2397 /**
2398  *      tiocspgrp               -       attempt to set process group
2399  *      @tty: tty passed by user
2400  *      @real_tty: tty side device matching tty passed by user
2401  *      @p: pid pointer
2402  *
2403  *      Set the process group of the tty to the session passed. Only
2404  *      permitted where the tty session is our session.
2405  *
2406  *      Locking: RCU, ctrl lock
2407  */
2408
2409 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2410 {
2411         struct pid *pgrp;
2412         pid_t pgrp_nr;
2413         int retval = tty_check_change(real_tty);
2414         unsigned long flags;
2415
2416         if (retval == -EIO)
2417                 return -ENOTTY;
2418         if (retval)
2419                 return retval;
2420         if (!current->signal->tty ||
2421             (current->signal->tty != real_tty) ||
2422             (real_tty->session != task_session(current)))
2423                 return -ENOTTY;
2424         if (get_user(pgrp_nr, p))
2425                 return -EFAULT;
2426         if (pgrp_nr < 0)
2427                 return -EINVAL;
2428         rcu_read_lock();
2429         pgrp = find_vpid(pgrp_nr);
2430         retval = -ESRCH;
2431         if (!pgrp)
2432                 goto out_unlock;
2433         retval = -EPERM;
2434         if (session_of_pgrp(pgrp) != task_session(current))
2435                 goto out_unlock;
2436         retval = 0;
2437         spin_lock_irqsave(&tty->ctrl_lock, flags);
2438         put_pid(real_tty->pgrp);
2439         real_tty->pgrp = get_pid(pgrp);
2440         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2441 out_unlock:
2442         rcu_read_unlock();
2443         return retval;
2444 }
2445
2446 /**
2447  *      tiocgsid                -       get session id
2448  *      @tty: tty passed by user
2449  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2450  *      @p: pointer to returned session id
2451  *
2452  *      Obtain the session id of the tty. If there is no session
2453  *      return an error.
2454  *
2455  *      Locking: none. Reference to current->signal->tty is safe.
2456  */
2457
2458 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2459 {
2460         /*
2461          * (tty == real_tty) is a cheap way of
2462          * testing if the tty is NOT a master pty.
2463         */
2464         if (tty == real_tty && current->signal->tty != real_tty)
2465                 return -ENOTTY;
2466         if (!real_tty->session)
2467                 return -ENOTTY;
2468         return put_user(pid_vnr(real_tty->session), p);
2469 }
2470
2471 /**
2472  *      tiocsetd        -       set line discipline
2473  *      @tty: tty device
2474  *      @p: pointer to user data
2475  *
2476  *      Set the line discipline according to user request.
2477  *
2478  *      Locking: see tty_set_ldisc, this function is just a helper
2479  */
2480
2481 static int tiocsetd(struct tty_struct *tty, int __user *p)
2482 {
2483         int ldisc;
2484         int ret;
2485
2486         if (get_user(ldisc, p))
2487                 return -EFAULT;
2488
2489         ret = tty_set_ldisc(tty, ldisc);
2490
2491         return ret;
2492 }
2493
2494 /**
2495  *      send_break      -       performed time break
2496  *      @tty: device to break on
2497  *      @duration: timeout in mS
2498  *
2499  *      Perform a timed break on hardware that lacks its own driver level
2500  *      timed break functionality.
2501  *
2502  *      Locking:
2503  *              atomic_write_lock serializes
2504  *
2505  */
2506
2507 static int send_break(struct tty_struct *tty, unsigned int duration)
2508 {
2509         int retval;
2510
2511         if (tty->ops->break_ctl == NULL)
2512                 return 0;
2513
2514         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2515                 retval = tty->ops->break_ctl(tty, duration);
2516         else {
2517                 /* Do the work ourselves */
2518                 if (tty_write_lock(tty, 0) < 0)
2519                         return -EINTR;
2520                 retval = tty->ops->break_ctl(tty, -1);
2521                 if (retval)
2522                         goto out;
2523                 if (!signal_pending(current))
2524                         msleep_interruptible(duration);
2525                 retval = tty->ops->break_ctl(tty, 0);
2526 out:
2527                 tty_write_unlock(tty);
2528                 if (signal_pending(current))
2529                         retval = -EINTR;
2530         }
2531         return retval;
2532 }
2533
2534 /**
2535  *      tty_tiocmget            -       get modem status
2536  *      @tty: tty device
2537  *      @file: user file pointer
2538  *      @p: pointer to result
2539  *
2540  *      Obtain the modem status bits from the tty driver if the feature
2541  *      is supported. Return -EINVAL if it is not available.
2542  *
2543  *      Locking: none (up to the driver)
2544  */
2545
2546 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2547 {
2548         int retval = -EINVAL;
2549
2550         if (tty->ops->tiocmget) {
2551                 retval = tty->ops->tiocmget(tty);
2552
2553                 if (retval >= 0)
2554                         retval = put_user(retval, p);
2555         }
2556         return retval;
2557 }
2558
2559 /**
2560  *      tty_tiocmset            -       set modem status
2561  *      @tty: tty device
2562  *      @cmd: command - clear bits, set bits or set all
2563  *      @p: pointer to desired bits
2564  *
2565  *      Set the modem status bits from the tty driver if the feature
2566  *      is supported. Return -EINVAL if it is not available.
2567  *
2568  *      Locking: none (up to the driver)
2569  */
2570
2571 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2572              unsigned __user *p)
2573 {
2574         int retval;
2575         unsigned int set, clear, val;
2576
2577         if (tty->ops->tiocmset == NULL)
2578                 return -EINVAL;
2579
2580         retval = get_user(val, p);
2581         if (retval)
2582                 return retval;
2583         set = clear = 0;
2584         switch (cmd) {
2585         case TIOCMBIS:
2586                 set = val;
2587                 break;
2588         case TIOCMBIC:
2589                 clear = val;
2590                 break;
2591         case TIOCMSET:
2592                 set = val;
2593                 clear = ~val;
2594                 break;
2595         }
2596         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2598         return tty->ops->tiocmset(tty, set, clear);
2599 }
2600
2601 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2602 {
2603         int retval = -EINVAL;
2604         struct serial_icounter_struct icount;
2605         memset(&icount, 0, sizeof(icount));
2606         if (tty->ops->get_icount)
2607                 retval = tty->ops->get_icount(tty, &icount);
2608         if (retval != 0)
2609                 return retval;
2610         if (copy_to_user(arg, &icount, sizeof(icount)))
2611                 return -EFAULT;
2612         return 0;
2613 }
2614
2615 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2616 {
2617         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2618             tty->driver->subtype == PTY_TYPE_MASTER)
2619                 tty = tty->link;
2620         return tty;
2621 }
2622 EXPORT_SYMBOL(tty_pair_get_tty);
2623
2624 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2625 {
2626         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2627             tty->driver->subtype == PTY_TYPE_MASTER)
2628             return tty;
2629         return tty->link;
2630 }
2631 EXPORT_SYMBOL(tty_pair_get_pty);
2632
2633 /*
2634  * Split this up, as gcc can choke on it otherwise..
2635  */
2636 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2637 {
2638         struct tty_struct *tty = file_tty(file);
2639         struct tty_struct *real_tty;
2640         void __user *p = (void __user *)arg;
2641         int retval;
2642         struct tty_ldisc *ld;
2643         struct inode *inode = file->f_dentry->d_inode;
2644
2645         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2646                 return -EINVAL;
2647
2648         real_tty = tty_pair_get_tty(tty);
2649
2650         /*
2651          * Factor out some common prep work
2652          */
2653         switch (cmd) {
2654         case TIOCSETD:
2655         case TIOCSBRK:
2656         case TIOCCBRK:
2657         case TCSBRK:
2658         case TCSBRKP:
2659                 retval = tty_check_change(tty);
2660                 if (retval)
2661                         return retval;
2662                 if (cmd != TIOCCBRK) {
2663                         tty_wait_until_sent(tty, 0);
2664                         if (signal_pending(current))
2665                                 return -EINTR;
2666                 }
2667                 break;
2668         }
2669
2670         /*
2671          *      Now do the stuff.
2672          */
2673         switch (cmd) {
2674         case TIOCSTI:
2675                 return tiocsti(tty, p);
2676         case TIOCGWINSZ:
2677                 return tiocgwinsz(real_tty, p);
2678         case TIOCSWINSZ:
2679                 return tiocswinsz(real_tty, p);
2680         case TIOCCONS:
2681                 return real_tty != tty ? -EINVAL : tioccons(file);
2682         case FIONBIO:
2683                 return fionbio(file, p);
2684         case TIOCEXCL:
2685                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2686                 return 0;
2687         case TIOCNXCL:
2688                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2689                 return 0;
2690         case TIOCNOTTY:
2691                 if (current->signal->tty != tty)
2692                         return -ENOTTY;
2693                 no_tty();
2694                 return 0;
2695         case TIOCSCTTY:
2696                 return tiocsctty(tty, arg);
2697         case TIOCGPGRP:
2698                 return tiocgpgrp(tty, real_tty, p);
2699         case TIOCSPGRP:
2700                 return tiocspgrp(tty, real_tty, p);
2701         case TIOCGSID:
2702                 return tiocgsid(tty, real_tty, p);
2703         case TIOCGETD:
2704                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2705         case TIOCSETD:
2706                 return tiocsetd(tty, p);
2707         case TIOCVHANGUP:
2708                 if (!capable(CAP_SYS_ADMIN))
2709                         return -EPERM;
2710                 tty_vhangup(tty);
2711                 return 0;
2712         case TIOCGDEV:
2713         {
2714                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2715                 return put_user(ret, (unsigned int __user *)p);
2716         }
2717         /*
2718          * Break handling
2719          */
2720         case TIOCSBRK:  /* Turn break on, unconditionally */
2721                 if (tty->ops->break_ctl)
2722                         return tty->ops->break_ctl(tty, -1);
2723                 return 0;
2724         case TIOCCBRK:  /* Turn break off, unconditionally */
2725                 if (tty->ops->break_ctl)
2726                         return tty->ops->break_ctl(tty, 0);
2727                 return 0;
2728         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2729                 /* non-zero arg means wait for all output data
2730                  * to be sent (performed above) but don't send break.
2731                  * This is used by the tcdrain() termios function.
2732                  */
2733                 if (!arg)
2734                         return send_break(tty, 250);
2735                 return 0;
2736         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2737                 return send_break(tty, arg ? arg*100 : 250);
2738
2739         case TIOCMGET:
2740                 return tty_tiocmget(tty, p);
2741         case TIOCMSET:
2742         case TIOCMBIC:
2743         case TIOCMBIS:
2744                 return tty_tiocmset(tty, cmd, p);
2745         case TIOCGICOUNT:
2746                 retval = tty_tiocgicount(tty, p);
2747                 /* For the moment allow fall through to the old method */
2748                 if (retval != -EINVAL)
2749                         return retval;
2750                 break;
2751         case TCFLSH:
2752                 switch (arg) {
2753                 case TCIFLUSH:
2754                 case TCIOFLUSH:
2755                 /* flush tty buffer and allow ldisc to process ioctl */
2756                         tty_buffer_flush(tty);
2757                         break;
2758                 }
2759                 break;
2760         }
2761         if (tty->ops->ioctl) {
2762                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2763                 if (retval != -ENOIOCTLCMD)
2764                         return retval;
2765         }
2766         ld = tty_ldisc_ref_wait(tty);
2767         retval = -EINVAL;
2768         if (ld->ops->ioctl) {
2769                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2770                 if (retval == -ENOIOCTLCMD)
2771                         retval = -EINVAL;
2772         }
2773         tty_ldisc_deref(ld);
2774         return retval;
2775 }
2776
2777 #ifdef CONFIG_COMPAT
2778 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2779                                 unsigned long arg)
2780 {
2781         struct inode *inode = file->f_dentry->d_inode;
2782         struct tty_struct *tty = file_tty(file);
2783         struct tty_ldisc *ld;
2784         int retval = -ENOIOCTLCMD;
2785
2786         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2787                 return -EINVAL;
2788
2789         if (tty->ops->compat_ioctl) {
2790                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2791                 if (retval != -ENOIOCTLCMD)
2792                         return retval;
2793         }
2794
2795         ld = tty_ldisc_ref_wait(tty);
2796         if (ld->ops->compat_ioctl)
2797                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2798         else
2799                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2800         tty_ldisc_deref(ld);
2801
2802         return retval;
2803 }
2804 #endif
2805
2806 /*
2807  * This implements the "Secure Attention Key" ---  the idea is to
2808  * prevent trojan horses by killing all processes associated with this
2809  * tty when the user hits the "Secure Attention Key".  Required for
2810  * super-paranoid applications --- see the Orange Book for more details.
2811  *
2812  * This code could be nicer; ideally it should send a HUP, wait a few
2813  * seconds, then send a INT, and then a KILL signal.  But you then
2814  * have to coordinate with the init process, since all processes associated
2815  * with the current tty must be dead before the new getty is allowed
2816  * to spawn.
2817  *
2818  * Now, if it would be correct ;-/ The current code has a nasty hole -
2819  * it doesn't catch files in flight. We may send the descriptor to ourselves
2820  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2821  *
2822  * Nasty bug: do_SAK is being called in interrupt context.  This can
2823  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2824  */
2825 void __do_SAK(struct tty_struct *tty)
2826 {
2827 #ifdef TTY_SOFT_SAK
2828         tty_hangup(tty);
2829 #else
2830         struct task_struct *g, *p;
2831         struct pid *session;
2832         int             i;
2833         struct file     *filp;
2834         struct fdtable *fdt;
2835
2836         if (!tty)
2837                 return;
2838         session = tty->session;
2839
2840         tty_ldisc_flush(tty);
2841
2842         tty_driver_flush_buffer(tty);
2843
2844         read_lock(&tasklist_lock);
2845         /* Kill the entire session */
2846         do_each_pid_task(session, PIDTYPE_SID, p) {
2847                 printk(KERN_NOTICE "SAK: killed process %d"
2848                         " (%s): task_session(p)==tty->session\n",
2849                         task_pid_nr(p), p->comm);
2850                 send_sig(SIGKILL, p, 1);
2851         } while_each_pid_task(session, PIDTYPE_SID, p);
2852         /* Now kill any processes that happen to have the
2853          * tty open.
2854          */
2855         do_each_thread(g, p) {
2856                 if (p->signal->tty == tty) {
2857                         printk(KERN_NOTICE "SAK: killed process %d"
2858                             " (%s): task_session(p)==tty->session\n",
2859                             task_pid_nr(p), p->comm);
2860                         send_sig(SIGKILL, p, 1);
2861                         continue;
2862                 }
2863                 task_lock(p);
2864                 if (p->files) {
2865                         /*
2866                          * We don't take a ref to the file, so we must
2867                          * hold ->file_lock instead.
2868                          */
2869                         spin_lock(&p->files->file_lock);
2870                         fdt = files_fdtable(p->files);
2871                         for (i = 0; i < fdt->max_fds; i++) {
2872                                 filp = fcheck_files(p->files, i);
2873                                 if (!filp)
2874                                         continue;
2875                                 if (filp->f_op->read == tty_read &&
2876                                     file_tty(filp) == tty) {
2877                                         printk(KERN_NOTICE "SAK: killed process %d"
2878                                             " (%s): fd#%d opened to the tty\n",
2879                                             task_pid_nr(p), p->comm, i);
2880                                         force_sig(SIGKILL, p);
2881                                         break;
2882                                 }
2883                         }
2884                         spin_unlock(&p->files->file_lock);
2885                 }
2886                 task_unlock(p);
2887         } while_each_thread(g, p);
2888         read_unlock(&tasklist_lock);
2889 #endif
2890 }
2891
2892 static void do_SAK_work(struct work_struct *work)
2893 {
2894         struct tty_struct *tty =
2895                 container_of(work, struct tty_struct, SAK_work);
2896         __do_SAK(tty);
2897 }
2898
2899 /*
2900  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2901  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2902  * the values which we write to it will be identical to the values which it
2903  * already has. --akpm
2904  */
2905 void do_SAK(struct tty_struct *tty)
2906 {
2907         if (!tty)
2908                 return;
2909         schedule_work(&tty->SAK_work);
2910 }
2911
2912 EXPORT_SYMBOL(do_SAK);
2913
2914 static int dev_match_devt(struct device *dev, void *data)
2915 {
2916         dev_t *devt = data;
2917         return dev->devt == *devt;
2918 }
2919
2920 /* Must put_device() after it's unused! */
2921 static struct device *tty_get_device(struct tty_struct *tty)
2922 {
2923         dev_t devt = tty_devnum(tty);
2924         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2925 }
2926
2927
2928 /**
2929  *      initialize_tty_struct
2930  *      @tty: tty to initialize
2931  *
2932  *      This subroutine initializes a tty structure that has been newly
2933  *      allocated.
2934  *
2935  *      Locking: none - tty in question must not be exposed at this point
2936  */
2937
2938 void initialize_tty_struct(struct tty_struct *tty,
2939                 struct tty_driver *driver, int idx)
2940 {
2941         memset(tty, 0, sizeof(struct tty_struct));
2942         kref_init(&tty->kref);
2943         tty->magic = TTY_MAGIC;
2944         tty_ldisc_init(tty);
2945         tty->session = NULL;
2946         tty->pgrp = NULL;
2947         tty->overrun_time = jiffies;
2948         tty_buffer_init(tty);
2949         mutex_init(&tty->legacy_mutex);
2950         mutex_init(&tty->termios_mutex);
2951         mutex_init(&tty->ldisc_mutex);
2952         init_waitqueue_head(&tty->write_wait);
2953         init_waitqueue_head(&tty->read_wait);
2954         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2955         mutex_init(&tty->atomic_read_lock);
2956         mutex_init(&tty->atomic_write_lock);
2957         mutex_init(&tty->output_lock);
2958         mutex_init(&tty->echo_lock);
2959         spin_lock_init(&tty->read_lock);
2960         spin_lock_init(&tty->ctrl_lock);
2961         INIT_LIST_HEAD(&tty->tty_files);
2962         INIT_WORK(&tty->SAK_work, do_SAK_work);
2963
2964         tty->driver = driver;
2965         tty->ops = driver->ops;
2966         tty->index = idx;
2967         tty_line_name(driver, idx, tty->name);
2968         tty->dev = tty_get_device(tty);
2969 }
2970
2971 /**
2972  *      deinitialize_tty_struct
2973  *      @tty: tty to deinitialize
2974  *
2975  *      This subroutine deinitializes a tty structure that has been newly
2976  *      allocated but tty_release cannot be called on that yet.
2977  *
2978  *      Locking: none - tty in question must not be exposed at this point
2979  */
2980 void deinitialize_tty_struct(struct tty_struct *tty)
2981 {
2982         tty_ldisc_deinit(tty);
2983 }
2984
2985 /**
2986  *      tty_put_char    -       write one character to a tty
2987  *      @tty: tty
2988  *      @ch: character
2989  *
2990  *      Write one byte to the tty using the provided put_char method
2991  *      if present. Returns the number of characters successfully output.
2992  *
2993  *      Note: the specific put_char operation in the driver layer may go
2994  *      away soon. Don't call it directly, use this method
2995  */
2996
2997 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2998 {
2999         if (tty->ops->put_char)
3000                 return tty->ops->put_char(tty, ch);
3001         return tty->ops->write(tty, &ch, 1);
3002 }
3003 EXPORT_SYMBOL_GPL(tty_put_char);
3004
3005 struct class *tty_class;
3006
3007 /**
3008  *      tty_register_device - register a tty device
3009  *      @driver: the tty driver that describes the tty device
3010  *      @index: the index in the tty driver for this tty device
3011  *      @device: a struct device that is associated with this tty device.
3012  *              This field is optional, if there is no known struct device
3013  *              for this tty device it can be set to NULL safely.
3014  *
3015  *      Returns a pointer to the struct device for this tty device
3016  *      (or ERR_PTR(-EFOO) on error).
3017  *
3018  *      This call is required to be made to register an individual tty device
3019  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3020  *      that bit is not set, this function should not be called by a tty
3021  *      driver.
3022  *
3023  *      Locking: ??
3024  */
3025
3026 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3027                                    struct device *device)
3028 {
3029         char name[64];
3030         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3031
3032         if (index >= driver->num) {
3033                 printk(KERN_ERR "Attempt to register invalid tty line number "
3034                        " (%d).\n", index);
3035                 return ERR_PTR(-EINVAL);
3036         }
3037
3038         if (driver->type == TTY_DRIVER_TYPE_PTY)
3039                 pty_line_name(driver, index, name);
3040         else
3041                 tty_line_name(driver, index, name);
3042
3043         return device_create(tty_class, device, dev, NULL, name);
3044 }
3045 EXPORT_SYMBOL(tty_register_device);
3046
3047 /**
3048  *      tty_unregister_device - unregister a tty device
3049  *      @driver: the tty driver that describes the tty device
3050  *      @index: the index in the tty driver for this tty device
3051  *
3052  *      If a tty device is registered with a call to tty_register_device() then
3053  *      this function must be called when the tty device is gone.
3054  *
3055  *      Locking: ??
3056  */
3057
3058 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3059 {
3060         device_destroy(tty_class,
3061                 MKDEV(driver->major, driver->minor_start) + index);
3062 }
3063 EXPORT_SYMBOL(tty_unregister_device);
3064
3065 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3066 {
3067         struct tty_driver *driver;
3068
3069         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3070         if (driver) {
3071                 kref_init(&driver->kref);
3072                 driver->magic = TTY_DRIVER_MAGIC;
3073                 driver->num = lines;
3074                 driver->owner = owner;
3075                 /* later we'll move allocation of tables here */
3076         }
3077         return driver;
3078 }
3079 EXPORT_SYMBOL(__alloc_tty_driver);
3080
3081 static void destruct_tty_driver(struct kref *kref)
3082 {
3083         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3084         int i;
3085         struct ktermios *tp;
3086         void *p;
3087
3088         if (driver->flags & TTY_DRIVER_INSTALLED) {
3089                 /*
3090                  * Free the termios and termios_locked structures because
3091                  * we don't want to get memory leaks when modular tty
3092                  * drivers are removed from the kernel.
3093                  */
3094                 for (i = 0; i < driver->num; i++) {
3095                         tp = driver->termios[i];
3096                         if (tp) {
3097                                 driver->termios[i] = NULL;
3098                                 kfree(tp);
3099                         }
3100                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3101                                 tty_unregister_device(driver, i);
3102                 }
3103                 p = driver->ttys;
3104                 proc_tty_unregister_driver(driver);
3105                 driver->ttys = NULL;
3106                 driver->termios = NULL;
3107                 kfree(p);
3108                 cdev_del(&driver->cdev);
3109         }
3110         kfree(driver);
3111 }
3112
3113 void tty_driver_kref_put(struct tty_driver *driver)
3114 {
3115         kref_put(&driver->kref, destruct_tty_driver);
3116 }
3117 EXPORT_SYMBOL(tty_driver_kref_put);
3118
3119 void tty_set_operations(struct tty_driver *driver,
3120                         const struct tty_operations *op)
3121 {
3122         driver->ops = op;
3123 };
3124 EXPORT_SYMBOL(tty_set_operations);
3125
3126 void put_tty_driver(struct tty_driver *d)
3127 {
3128         tty_driver_kref_put(d);
3129 }
3130 EXPORT_SYMBOL(put_tty_driver);
3131
3132 /*
3133  * Called by a tty driver to register itself.
3134  */
3135 int tty_register_driver(struct tty_driver *driver)
3136 {
3137         int error;
3138         int i;
3139         dev_t dev;
3140         void **p = NULL;
3141         struct device *d;
3142
3143         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3144                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3145                 if (!p)
3146                         return -ENOMEM;
3147         }
3148
3149         if (!driver->major) {
3150                 error = alloc_chrdev_region(&dev, driver->minor_start,
3151                                                 driver->num, driver->name);
3152                 if (!error) {
3153                         driver->major = MAJOR(dev);
3154                         driver->minor_start = MINOR(dev);
3155                 }
3156         } else {
3157                 dev = MKDEV(driver->major, driver->minor_start);
3158                 error = register_chrdev_region(dev, driver->num, driver->name);
3159         }
3160         if (error < 0) {
3161                 kfree(p);
3162                 return error;
3163         }
3164
3165         if (p) {
3166                 driver->ttys = (struct tty_struct **)p;
3167                 driver->termios = (struct ktermios **)(p + driver->num);
3168         } else {
3169                 driver->ttys = NULL;
3170                 driver->termios = NULL;
3171         }
3172
3173         cdev_init(&driver->cdev, &tty_fops);
3174         driver->cdev.owner = driver->owner;
3175         error = cdev_add(&driver->cdev, dev, driver->num);
3176         if (error) {
3177                 unregister_chrdev_region(dev, driver->num);
3178                 driver->ttys = NULL;
3179                 driver->termios = NULL;
3180                 kfree(p);
3181                 return error;
3182         }
3183
3184         mutex_lock(&tty_mutex);
3185         list_add(&driver->tty_drivers, &tty_drivers);
3186         mutex_unlock(&tty_mutex);
3187
3188         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3189                 for (i = 0; i < driver->num; i++) {
3190                         d = tty_register_device(driver, i, NULL);
3191                         if (IS_ERR(d)) {
3192                                 error = PTR_ERR(d);
3193                                 goto err;
3194                         }
3195                 }
3196         }
3197         proc_tty_register_driver(driver);
3198         driver->flags |= TTY_DRIVER_INSTALLED;
3199         return 0;
3200
3201 err:
3202         for (i--; i >= 0; i--)
3203                 tty_unregister_device(driver, i);
3204
3205         mutex_lock(&tty_mutex);
3206         list_del(&driver->tty_drivers);
3207         mutex_unlock(&tty_mutex);
3208
3209         unregister_chrdev_region(dev, driver->num);
3210         driver->ttys = NULL;
3211         driver->termios = NULL;
3212         kfree(p);
3213         return error;
3214 }
3215
3216 EXPORT_SYMBOL(tty_register_driver);
3217
3218 /*
3219  * Called by a tty driver to unregister itself.
3220  */
3221 int tty_unregister_driver(struct tty_driver *driver)
3222 {
3223 #if 0
3224         /* FIXME */
3225         if (driver->refcount)
3226                 return -EBUSY;
3227 #endif
3228         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3229                                 driver->num);
3230         mutex_lock(&tty_mutex);
3231         list_del(&driver->tty_drivers);
3232         mutex_unlock(&tty_mutex);
3233         return 0;
3234 }
3235
3236 EXPORT_SYMBOL(tty_unregister_driver);
3237
3238 dev_t tty_devnum(struct tty_struct *tty)
3239 {
3240         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3241 }
3242 EXPORT_SYMBOL(tty_devnum);
3243
3244 void proc_clear_tty(struct task_struct *p)
3245 {
3246         unsigned long flags;
3247         struct tty_struct *tty;
3248         spin_lock_irqsave(&p->sighand->siglock, flags);
3249         tty = p->signal->tty;
3250         p->signal->tty = NULL;
3251         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3252         tty_kref_put(tty);
3253 }
3254
3255 /* Called under the sighand lock */
3256
3257 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3258 {
3259         if (tty) {
3260                 unsigned long flags;
3261                 /* We should not have a session or pgrp to put here but.... */
3262                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3263                 put_pid(tty->session);
3264                 put_pid(tty->pgrp);
3265                 tty->pgrp = get_pid(task_pgrp(tsk));
3266                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3267                 tty->session = get_pid(task_session(tsk));
3268                 if (tsk->signal->tty) {
3269                         printk(KERN_DEBUG "tty not NULL!!\n");
3270                         tty_kref_put(tsk->signal->tty);
3271                 }
3272         }
3273         put_pid(tsk->signal->tty_old_pgrp);
3274         tsk->signal->tty = tty_kref_get(tty);
3275         tsk->signal->tty_old_pgrp = NULL;
3276 }
3277
3278 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3279 {
3280         spin_lock_irq(&tsk->sighand->siglock);
3281         __proc_set_tty(tsk, tty);
3282         spin_unlock_irq(&tsk->sighand->siglock);
3283 }
3284
3285 struct tty_struct *get_current_tty(void)
3286 {
3287         struct tty_struct *tty;
3288         unsigned long flags;
3289
3290         spin_lock_irqsave(&current->sighand->siglock, flags);
3291         tty = tty_kref_get(current->signal->tty);
3292         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3293         return tty;
3294 }
3295 EXPORT_SYMBOL_GPL(get_current_tty);
3296
3297 void tty_default_fops(struct file_operations *fops)
3298 {
3299         *fops = tty_fops;
3300 }
3301
3302 /*
3303  * Initialize the console device. This is called *early*, so
3304  * we can't necessarily depend on lots of kernel help here.
3305  * Just do some early initializations, and do the complex setup
3306  * later.
3307  */
3308 void __init console_init(void)
3309 {
3310         initcall_t *call;
3311
3312         /* Setup the default TTY line discipline. */
3313         tty_ldisc_begin();
3314
3315         /*
3316          * set up the console device so that later boot sequences can
3317          * inform about problems etc..
3318          */
3319         call = __con_initcall_start;
3320         while (call < __con_initcall_end) {
3321                 (*call)();
3322                 call++;
3323         }
3324 }
3325
3326 static char *tty_devnode(struct device *dev, umode_t *mode)
3327 {
3328         if (!mode)
3329                 return NULL;
3330         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3331             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3332                 *mode = 0666;
3333         return NULL;
3334 }
3335
3336 static int __init tty_class_init(void)
3337 {
3338         tty_class = class_create(THIS_MODULE, "tty");
3339         if (IS_ERR(tty_class))
3340                 return PTR_ERR(tty_class);
3341         tty_class->devnode = tty_devnode;
3342         return 0;
3343 }
3344
3345 postcore_initcall(tty_class_init);
3346
3347 /* 3/2004 jmc: why do these devices exist? */
3348 static struct cdev tty_cdev, console_cdev;
3349
3350 static ssize_t show_cons_active(struct device *dev,
3351                                 struct device_attribute *attr, char *buf)
3352 {
3353         struct console *cs[16];
3354         int i = 0;
3355         struct console *c;
3356         ssize_t count = 0;
3357
3358         console_lock();
3359         for_each_console(c) {
3360                 if (!c->device)
3361                         continue;
3362                 if (!c->write)
3363                         continue;
3364                 if ((c->flags & CON_ENABLED) == 0)
3365                         continue;
3366                 cs[i++] = c;
3367                 if (i >= ARRAY_SIZE(cs))
3368                         break;
3369         }
3370         while (i--)
3371                 count += sprintf(buf + count, "%s%d%c",
3372                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3373         console_unlock();
3374
3375         return count;
3376 }
3377 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3378
3379 static struct device *consdev;
3380
3381 void console_sysfs_notify(void)
3382 {
3383         if (consdev)
3384                 sysfs_notify(&consdev->kobj, NULL, "active");
3385 }
3386
3387 /*
3388  * Ok, now we can initialize the rest of the tty devices and can count
3389  * on memory allocations, interrupts etc..
3390  */
3391 int __init tty_init(void)
3392 {
3393         cdev_init(&tty_cdev, &tty_fops);
3394         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3395             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3396                 panic("Couldn't register /dev/tty driver\n");
3397         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3398
3399         cdev_init(&console_cdev, &console_fops);
3400         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3401             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3402                 panic("Couldn't register /dev/console driver\n");
3403         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3404                               "console");
3405         if (IS_ERR(consdev))
3406                 consdev = NULL;
3407         else
3408                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3409
3410 #ifdef CONFIG_VT
3411         vty_init(&console_fops);
3412 #endif
3413         return 0;
3414 }
3415