28945d9996136c472ef8d2e9ccf9918ea6a812e2
[firefly-linux-kernel-4.4.55.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84         se_sess_cache = kmem_cache_create("se_sess_cache",
85                         sizeof(struct se_session), __alignof__(struct se_session),
86                         0, NULL);
87         if (!se_sess_cache) {
88                 pr_err("kmem_cache_create() for struct se_session"
89                                 " failed\n");
90                 goto out;
91         }
92         se_ua_cache = kmem_cache_create("se_ua_cache",
93                         sizeof(struct se_ua), __alignof__(struct se_ua),
94                         0, NULL);
95         if (!se_ua_cache) {
96                 pr_err("kmem_cache_create() for struct se_ua failed\n");
97                 goto out_free_sess_cache;
98         }
99         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100                         sizeof(struct t10_pr_registration),
101                         __alignof__(struct t10_pr_registration), 0, NULL);
102         if (!t10_pr_reg_cache) {
103                 pr_err("kmem_cache_create() for struct t10_pr_registration"
104                                 " failed\n");
105                 goto out_free_ua_cache;
106         }
107         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109                         0, NULL);
110         if (!t10_alua_lu_gp_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112                                 " failed\n");
113                 goto out_free_pr_reg_cache;
114         }
115         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116                         sizeof(struct t10_alua_lu_gp_member),
117                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118         if (!t10_alua_lu_gp_mem_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_cache;
122         }
123         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124                         sizeof(struct t10_alua_tg_pt_gp),
125                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126         if (!t10_alua_tg_pt_gp_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128                                 "cache failed\n");
129                 goto out_free_lu_gp_mem_cache;
130         }
131         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132                         "t10_alua_tg_pt_gp_mem_cache",
133                         sizeof(struct t10_alua_tg_pt_gp_member),
134                         __alignof__(struct t10_alua_tg_pt_gp_member),
135                         0, NULL);
136         if (!t10_alua_tg_pt_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138                                 "mem_t failed\n");
139                 goto out_free_tg_pt_gp_cache;
140         }
141
142         target_completion_wq = alloc_workqueue("target_completion",
143                                                WQ_MEM_RECLAIM, 0);
144         if (!target_completion_wq)
145                 goto out_free_tg_pt_gp_mem_cache;
146
147         return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184  * Allocate a new row index for the entry type specified
185  */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188         u32 new_index;
189
190         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192         spin_lock(&scsi_mib_index_lock);
193         new_index = ++scsi_mib_index[type];
194         spin_unlock(&scsi_mib_index_lock);
195
196         return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201         atomic_set(&qobj->queue_cnt, 0);
202         INIT_LIST_HEAD(&qobj->qobj_list);
203         init_waitqueue_head(&qobj->thread_wq);
204         spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209         int ret;
210
211         if (sub_api_initialized)
212                 return;
213
214         ret = request_module("target_core_iblock");
215         if (ret != 0)
216                 pr_err("Unable to load target_core_iblock\n");
217
218         ret = request_module("target_core_file");
219         if (ret != 0)
220                 pr_err("Unable to load target_core_file\n");
221
222         ret = request_module("target_core_pscsi");
223         if (ret != 0)
224                 pr_err("Unable to load target_core_pscsi\n");
225
226         ret = request_module("target_core_stgt");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_stgt\n");
229
230         sub_api_initialized = 1;
231         return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236         struct se_session *se_sess;
237
238         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239         if (!se_sess) {
240                 pr_err("Unable to allocate struct se_session from"
241                                 " se_sess_cache\n");
242                 return ERR_PTR(-ENOMEM);
243         }
244         INIT_LIST_HEAD(&se_sess->sess_list);
245         INIT_LIST_HEAD(&se_sess->sess_acl_list);
246         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247         INIT_LIST_HEAD(&se_sess->sess_wait_list);
248         spin_lock_init(&se_sess->sess_cmd_lock);
249         kref_init(&se_sess->sess_kref);
250
251         return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254
255 /*
256  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257  */
258 void __transport_register_session(
259         struct se_portal_group *se_tpg,
260         struct se_node_acl *se_nacl,
261         struct se_session *se_sess,
262         void *fabric_sess_ptr)
263 {
264         unsigned char buf[PR_REG_ISID_LEN];
265
266         se_sess->se_tpg = se_tpg;
267         se_sess->fabric_sess_ptr = fabric_sess_ptr;
268         /*
269          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270          *
271          * Only set for struct se_session's that will actually be moving I/O.
272          * eg: *NOT* discovery sessions.
273          */
274         if (se_nacl) {
275                 /*
276                  * If the fabric module supports an ISID based TransportID,
277                  * save this value in binary from the fabric I_T Nexus now.
278                  */
279                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280                         memset(&buf[0], 0, PR_REG_ISID_LEN);
281                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282                                         &buf[0], PR_REG_ISID_LEN);
283                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284                 }
285                 kref_get(&se_nacl->acl_kref);
286
287                 spin_lock_irq(&se_nacl->nacl_sess_lock);
288                 /*
289                  * The se_nacl->nacl_sess pointer will be set to the
290                  * last active I_T Nexus for each struct se_node_acl.
291                  */
292                 se_nacl->nacl_sess = se_sess;
293
294                 list_add_tail(&se_sess->sess_acl_list,
295                               &se_nacl->acl_sess_list);
296                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
297         }
298         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299
300         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304
305 void transport_register_session(
306         struct se_portal_group *se_tpg,
307         struct se_node_acl *se_nacl,
308         struct se_session *se_sess,
309         void *fabric_sess_ptr)
310 {
311         unsigned long flags;
312
313         spin_lock_irqsave(&se_tpg->session_lock, flags);
314         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318
319 static void target_release_session(struct kref *kref)
320 {
321         struct se_session *se_sess = container_of(kref,
322                         struct se_session, sess_kref);
323         struct se_portal_group *se_tpg = se_sess->se_tpg;
324
325         se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327
328 void target_get_session(struct se_session *se_sess)
329 {
330         kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333
334 int target_put_session(struct se_session *se_sess)
335 {
336         return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339
340 static void target_complete_nacl(struct kref *kref)
341 {
342         struct se_node_acl *nacl = container_of(kref,
343                                 struct se_node_acl, acl_kref);
344
345         complete(&nacl->acl_free_comp);
346 }
347
348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350         kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352
353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355         struct se_node_acl *se_nacl;
356         unsigned long flags;
357         /*
358          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359          */
360         se_nacl = se_sess->se_node_acl;
361         if (se_nacl) {
362                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363                 if (se_nacl->acl_stop == 0)
364                         list_del(&se_sess->sess_acl_list);
365                 /*
366                  * If the session list is empty, then clear the pointer.
367                  * Otherwise, set the struct se_session pointer from the tail
368                  * element of the per struct se_node_acl active session list.
369                  */
370                 if (list_empty(&se_nacl->acl_sess_list))
371                         se_nacl->nacl_sess = NULL;
372                 else {
373                         se_nacl->nacl_sess = container_of(
374                                         se_nacl->acl_sess_list.prev,
375                                         struct se_session, sess_acl_list);
376                 }
377                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378         }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384         kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390         struct se_portal_group *se_tpg = se_sess->se_tpg;
391         struct target_core_fabric_ops *se_tfo;
392         struct se_node_acl *se_nacl;
393         unsigned long flags;
394         bool comp_nacl = true;
395
396         if (!se_tpg) {
397                 transport_free_session(se_sess);
398                 return;
399         }
400         se_tfo = se_tpg->se_tpg_tfo;
401
402         spin_lock_irqsave(&se_tpg->session_lock, flags);
403         list_del(&se_sess->sess_list);
404         se_sess->se_tpg = NULL;
405         se_sess->fabric_sess_ptr = NULL;
406         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407
408         /*
409          * Determine if we need to do extra work for this initiator node's
410          * struct se_node_acl if it had been previously dynamically generated.
411          */
412         se_nacl = se_sess->se_node_acl;
413
414         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415         if (se_nacl && se_nacl->dynamic_node_acl) {
416                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417                         list_del(&se_nacl->acl_list);
418                         se_tpg->num_node_acls--;
419                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
421                         core_free_device_list_for_node(se_nacl, se_tpg);
422                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423
424                         comp_nacl = false;
425                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426                 }
427         }
428         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429
430         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431                 se_tpg->se_tpg_tfo->get_fabric_name());
432         /*
433          * If last kref is dropping now for an explict NodeACL, awake sleeping
434          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435          * removal context.
436          */
437         if (se_nacl && comp_nacl == true)
438                 target_put_nacl(se_nacl);
439
440         transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443
444 /*
445  * Called with cmd->t_state_lock held.
446  */
447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449         struct se_device *dev = cmd->se_dev;
450         struct se_task *task;
451         unsigned long flags;
452
453         if (!dev)
454                 return;
455
456         list_for_each_entry(task, &cmd->t_task_list, t_list) {
457                 if (task->task_flags & TF_ACTIVE)
458                         continue;
459
460                 spin_lock_irqsave(&dev->execute_task_lock, flags);
461                 if (task->t_state_active) {
462                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
464
465                         list_del(&task->t_state_list);
466                         atomic_dec(&cmd->t_task_cdbs_ex_left);
467                         task->t_state_active = false;
468                 }
469                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470         }
471
472 }
473
474 /*      transport_cmd_check_stop():
475  *
476  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477  *      'transport_off = 2' determines if task_dev_state should be removed.
478  *
479  *      A non-zero u8 t_state sets cmd->t_state.
480  *      Returns 1 when command is stopped, else 0.
481  */
482 static int transport_cmd_check_stop(
483         struct se_cmd *cmd,
484         int transport_off,
485         u8 t_state)
486 {
487         unsigned long flags;
488
489         spin_lock_irqsave(&cmd->t_state_lock, flags);
490         /*
491          * Determine if IOCTL context caller in requesting the stopping of this
492          * command for LUN shutdown purposes.
493          */
494         if (cmd->transport_state & CMD_T_LUN_STOP) {
495                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497
498                 cmd->transport_state &= ~CMD_T_ACTIVE;
499                 if (transport_off == 2)
500                         transport_all_task_dev_remove_state(cmd);
501                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502
503                 complete(&cmd->transport_lun_stop_comp);
504                 return 1;
505         }
506         /*
507          * Determine if frontend context caller is requesting the stopping of
508          * this command for frontend exceptions.
509          */
510         if (cmd->transport_state & CMD_T_STOP) {
511                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512                         __func__, __LINE__,
513                         cmd->se_tfo->get_task_tag(cmd));
514
515                 if (transport_off == 2)
516                         transport_all_task_dev_remove_state(cmd);
517
518                 /*
519                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520                  * to FE.
521                  */
522                 if (transport_off == 2)
523                         cmd->se_lun = NULL;
524                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526                 complete(&cmd->t_transport_stop_comp);
527                 return 1;
528         }
529         if (transport_off) {
530                 cmd->transport_state &= ~CMD_T_ACTIVE;
531                 if (transport_off == 2) {
532                         transport_all_task_dev_remove_state(cmd);
533                         /*
534                          * Clear struct se_cmd->se_lun before the transport_off == 2
535                          * handoff to fabric module.
536                          */
537                         cmd->se_lun = NULL;
538                         /*
539                          * Some fabric modules like tcm_loop can release
540                          * their internally allocated I/O reference now and
541                          * struct se_cmd now.
542                          *
543                          * Fabric modules are expected to return '1' here if the
544                          * se_cmd being passed is released at this point,
545                          * or zero if not being released.
546                          */
547                         if (cmd->se_tfo->check_stop_free != NULL) {
548                                 spin_unlock_irqrestore(
549                                         &cmd->t_state_lock, flags);
550
551                                 return cmd->se_tfo->check_stop_free(cmd);
552                         }
553                 }
554                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556                 return 0;
557         } else if (t_state)
558                 cmd->t_state = t_state;
559         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560
561         return 0;
562 }
563
564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566         return transport_cmd_check_stop(cmd, 2, 0);
567 }
568
569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571         struct se_lun *lun = cmd->se_lun;
572         unsigned long flags;
573
574         if (!lun)
575                 return;
576
577         spin_lock_irqsave(&cmd->t_state_lock, flags);
578         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580                 transport_all_task_dev_remove_state(cmd);
581         }
582         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583
584         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585         if (!list_empty(&cmd->se_lun_node))
586                 list_del_init(&cmd->se_lun_node);
587         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593                 transport_lun_remove_cmd(cmd);
594
595         if (transport_cmd_check_stop_to_fabric(cmd))
596                 return;
597         if (remove) {
598                 transport_remove_cmd_from_queue(cmd);
599                 transport_put_cmd(cmd);
600         }
601 }
602
603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604                 bool at_head)
605 {
606         struct se_device *dev = cmd->se_dev;
607         struct se_queue_obj *qobj = &dev->dev_queue_obj;
608         unsigned long flags;
609
610         if (t_state) {
611                 spin_lock_irqsave(&cmd->t_state_lock, flags);
612                 cmd->t_state = t_state;
613                 cmd->transport_state |= CMD_T_ACTIVE;
614                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615         }
616
617         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619         /* If the cmd is already on the list, remove it before we add it */
620         if (!list_empty(&cmd->se_queue_node))
621                 list_del(&cmd->se_queue_node);
622         else
623                 atomic_inc(&qobj->queue_cnt);
624
625         if (at_head)
626                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627         else
628                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629         cmd->transport_state |= CMD_T_QUEUED;
630         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632         wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638         struct se_cmd *cmd;
639         unsigned long flags;
640
641         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642         if (list_empty(&qobj->qobj_list)) {
643                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644                 return NULL;
645         }
646         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648         cmd->transport_state &= ~CMD_T_QUEUED;
649         list_del_init(&cmd->se_queue_node);
650         atomic_dec(&qobj->queue_cnt);
651         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652
653         return cmd;
654 }
655
656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659         unsigned long flags;
660
661         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662         if (!(cmd->transport_state & CMD_T_QUEUED)) {
663                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664                 return;
665         }
666         cmd->transport_state &= ~CMD_T_QUEUED;
667         atomic_dec(&qobj->queue_cnt);
668         list_del_init(&cmd->se_queue_node);
669         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671
672 /*
673  * Completion function used by TCM subsystem plugins (such as FILEIO)
674  * for queueing up response from struct se_subsystem_api->do_task()
675  */
676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678         struct se_task *task = list_entry(cmd->t_task_list.next,
679                                 struct se_task, t_list);
680
681         if (good) {
682                 cmd->scsi_status = SAM_STAT_GOOD;
683                 task->task_scsi_status = GOOD;
684         } else {
685                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686                 task->task_se_cmd->scsi_sense_reason =
687                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688
689         }
690
691         transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694
695 static void target_complete_failure_work(struct work_struct *work)
696 {
697         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698
699         transport_generic_request_failure(cmd);
700 }
701
702 /*      transport_complete_task():
703  *
704  *      Called from interrupt and non interrupt context depending
705  *      on the transport plugin.
706  */
707 void transport_complete_task(struct se_task *task, int success)
708 {
709         struct se_cmd *cmd = task->task_se_cmd;
710         struct se_device *dev = cmd->se_dev;
711         unsigned long flags;
712
713         spin_lock_irqsave(&cmd->t_state_lock, flags);
714         task->task_flags &= ~TF_ACTIVE;
715
716         /*
717          * See if any sense data exists, if so set the TASK_SENSE flag.
718          * Also check for any other post completion work that needs to be
719          * done by the plugins.
720          */
721         if (dev && dev->transport->transport_complete) {
722                 if (dev->transport->transport_complete(task) != 0) {
723                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724                         task->task_flags |= TF_HAS_SENSE;
725                         success = 1;
726                 }
727         }
728
729         /*
730          * See if we are waiting for outstanding struct se_task
731          * to complete for an exception condition
732          */
733         if (task->task_flags & TF_REQUEST_STOP) {
734                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735                 complete(&task->task_stop_comp);
736                 return;
737         }
738
739         if (!success)
740                 cmd->transport_state |= CMD_T_FAILED;
741
742         /*
743          * Decrement the outstanding t_task_cdbs_left count.  The last
744          * struct se_task from struct se_cmd will complete itself into the
745          * device queue depending upon int success.
746          */
747         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749                 return;
750         }
751         /*
752          * Check for case where an explict ABORT_TASK has been received
753          * and transport_wait_for_tasks() will be waiting for completion..
754          */
755         if (cmd->transport_state & CMD_T_ABORTED &&
756             cmd->transport_state & CMD_T_STOP) {
757                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758                 complete(&cmd->t_transport_stop_comp);
759                 return;
760         } else if (cmd->transport_state & CMD_T_FAILED) {
761                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762                 INIT_WORK(&cmd->work, target_complete_failure_work);
763         } else {
764                 INIT_WORK(&cmd->work, target_complete_ok_work);
765         }
766
767         cmd->t_state = TRANSPORT_COMPLETE;
768         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770
771         queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774
775 /*
776  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777  * struct se_task list are ready to be added to the active execution list
778  * struct se_device
779
780  * Called with se_dev_t->execute_task_lock called.
781  */
782 static inline int transport_add_task_check_sam_attr(
783         struct se_task *task,
784         struct se_task *task_prev,
785         struct se_device *dev)
786 {
787         /*
788          * No SAM Task attribute emulation enabled, add to tail of
789          * execution queue
790          */
791         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793                 return 0;
794         }
795         /*
796          * HEAD_OF_QUEUE attribute for received CDB, which means
797          * the first task that is associated with a struct se_cmd goes to
798          * head of the struct se_device->execute_task_list, and task_prev
799          * after that for each subsequent task
800          */
801         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802                 list_add(&task->t_execute_list,
803                                 (task_prev != NULL) ?
804                                 &task_prev->t_execute_list :
805                                 &dev->execute_task_list);
806
807                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808                                 " in execution queue\n",
809                                 task->task_se_cmd->t_task_cdb[0]);
810                 return 1;
811         }
812         /*
813          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814          * transitioned from Dermant -> Active state, and are added to the end
815          * of the struct se_device->execute_task_list
816          */
817         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818         return 0;
819 }
820
821 /*      __transport_add_task_to_execute_queue():
822  *
823  *      Called with se_dev_t->execute_task_lock called.
824  */
825 static void __transport_add_task_to_execute_queue(
826         struct se_task *task,
827         struct se_task *task_prev,
828         struct se_device *dev)
829 {
830         int head_of_queue;
831
832         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833         atomic_inc(&dev->execute_tasks);
834
835         if (task->t_state_active)
836                 return;
837         /*
838          * Determine if this task needs to go to HEAD_OF_QUEUE for the
839          * state list as well.  Running with SAM Task Attribute emulation
840          * will always return head_of_queue == 0 here
841          */
842         if (head_of_queue)
843                 list_add(&task->t_state_list, (task_prev) ?
844                                 &task_prev->t_state_list :
845                                 &dev->state_task_list);
846         else
847                 list_add_tail(&task->t_state_list, &dev->state_task_list);
848
849         task->t_state_active = true;
850
851         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853                 task, dev);
854 }
855
856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858         struct se_device *dev = cmd->se_dev;
859         struct se_task *task;
860         unsigned long flags;
861
862         spin_lock_irqsave(&cmd->t_state_lock, flags);
863         list_for_each_entry(task, &cmd->t_task_list, t_list) {
864                 spin_lock(&dev->execute_task_lock);
865                 if (!task->t_state_active) {
866                         list_add_tail(&task->t_state_list,
867                                       &dev->state_task_list);
868                         task->t_state_active = true;
869
870                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871                                 task->task_se_cmd->se_tfo->get_task_tag(
872                                 task->task_se_cmd), task, dev);
873                 }
874                 spin_unlock(&dev->execute_task_lock);
875         }
876         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881         struct se_device *dev = cmd->se_dev;
882         struct se_task *task, *task_prev = NULL;
883
884         list_for_each_entry(task, &cmd->t_task_list, t_list) {
885                 if (!list_empty(&task->t_execute_list))
886                         continue;
887                 /*
888                  * __transport_add_task_to_execute_queue() handles the
889                  * SAM Task Attribute emulation if enabled
890                  */
891                 __transport_add_task_to_execute_queue(task, task_prev, dev);
892                 task_prev = task;
893         }
894 }
895
896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898         unsigned long flags;
899         struct se_device *dev = cmd->se_dev;
900
901         spin_lock_irqsave(&dev->execute_task_lock, flags);
902         __transport_add_tasks_from_cmd(cmd);
903         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905
906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907                 struct se_device *dev)
908 {
909         list_del_init(&task->t_execute_list);
910         atomic_dec(&dev->execute_tasks);
911 }
912
913 static void transport_remove_task_from_execute_queue(
914         struct se_task *task,
915         struct se_device *dev)
916 {
917         unsigned long flags;
918
919         if (WARN_ON(list_empty(&task->t_execute_list)))
920                 return;
921
922         spin_lock_irqsave(&dev->execute_task_lock, flags);
923         __transport_remove_task_from_execute_queue(task, dev);
924         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926
927 /*
928  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929  */
930
931 static void target_qf_do_work(struct work_struct *work)
932 {
933         struct se_device *dev = container_of(work, struct se_device,
934                                         qf_work_queue);
935         LIST_HEAD(qf_cmd_list);
936         struct se_cmd *cmd, *cmd_tmp;
937
938         spin_lock_irq(&dev->qf_cmd_lock);
939         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940         spin_unlock_irq(&dev->qf_cmd_lock);
941
942         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943                 list_del(&cmd->se_qf_node);
944                 atomic_dec(&dev->dev_qf_count);
945                 smp_mb__after_atomic_dec();
946
947                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951                         : "UNKNOWN");
952
953                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954         }
955 }
956
957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959         switch (cmd->data_direction) {
960         case DMA_NONE:
961                 return "NONE";
962         case DMA_FROM_DEVICE:
963                 return "READ";
964         case DMA_TO_DEVICE:
965                 return "WRITE";
966         case DMA_BIDIRECTIONAL:
967                 return "BIDI";
968         default:
969                 break;
970         }
971
972         return "UNKNOWN";
973 }
974
975 void transport_dump_dev_state(
976         struct se_device *dev,
977         char *b,
978         int *bl)
979 {
980         *bl += sprintf(b + *bl, "Status: ");
981         switch (dev->dev_status) {
982         case TRANSPORT_DEVICE_ACTIVATED:
983                 *bl += sprintf(b + *bl, "ACTIVATED");
984                 break;
985         case TRANSPORT_DEVICE_DEACTIVATED:
986                 *bl += sprintf(b + *bl, "DEACTIVATED");
987                 break;
988         case TRANSPORT_DEVICE_SHUTDOWN:
989                 *bl += sprintf(b + *bl, "SHUTDOWN");
990                 break;
991         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993                 *bl += sprintf(b + *bl, "OFFLINE");
994                 break;
995         default:
996                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997                 break;
998         }
999
1000         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
1001                 atomic_read(&dev->execute_tasks), dev->queue_depth);
1002         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1003                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004         *bl += sprintf(b + *bl, "        ");
1005 }
1006
1007 void transport_dump_vpd_proto_id(
1008         struct t10_vpd *vpd,
1009         unsigned char *p_buf,
1010         int p_buf_len)
1011 {
1012         unsigned char buf[VPD_TMP_BUF_SIZE];
1013         int len;
1014
1015         memset(buf, 0, VPD_TMP_BUF_SIZE);
1016         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017
1018         switch (vpd->protocol_identifier) {
1019         case 0x00:
1020                 sprintf(buf+len, "Fibre Channel\n");
1021                 break;
1022         case 0x10:
1023                 sprintf(buf+len, "Parallel SCSI\n");
1024                 break;
1025         case 0x20:
1026                 sprintf(buf+len, "SSA\n");
1027                 break;
1028         case 0x30:
1029                 sprintf(buf+len, "IEEE 1394\n");
1030                 break;
1031         case 0x40:
1032                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033                                 " Protocol\n");
1034                 break;
1035         case 0x50:
1036                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037                 break;
1038         case 0x60:
1039                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040                 break;
1041         case 0x70:
1042                 sprintf(buf+len, "Automation/Drive Interface Transport"
1043                                 " Protocol\n");
1044                 break;
1045         case 0x80:
1046                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047                 break;
1048         default:
1049                 sprintf(buf+len, "Unknown 0x%02x\n",
1050                                 vpd->protocol_identifier);
1051                 break;
1052         }
1053
1054         if (p_buf)
1055                 strncpy(p_buf, buf, p_buf_len);
1056         else
1057                 pr_debug("%s", buf);
1058 }
1059
1060 void
1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063         /*
1064          * Check if the Protocol Identifier Valid (PIV) bit is set..
1065          *
1066          * from spc3r23.pdf section 7.5.1
1067          */
1068          if (page_83[1] & 0x80) {
1069                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1070                 vpd->protocol_identifier_set = 1;
1071                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1072         }
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075
1076 int transport_dump_vpd_assoc(
1077         struct t10_vpd *vpd,
1078         unsigned char *p_buf,
1079         int p_buf_len)
1080 {
1081         unsigned char buf[VPD_TMP_BUF_SIZE];
1082         int ret = 0;
1083         int len;
1084
1085         memset(buf, 0, VPD_TMP_BUF_SIZE);
1086         len = sprintf(buf, "T10 VPD Identifier Association: ");
1087
1088         switch (vpd->association) {
1089         case 0x00:
1090                 sprintf(buf+len, "addressed logical unit\n");
1091                 break;
1092         case 0x10:
1093                 sprintf(buf+len, "target port\n");
1094                 break;
1095         case 0x20:
1096                 sprintf(buf+len, "SCSI target device\n");
1097                 break;
1098         default:
1099                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100                 ret = -EINVAL;
1101                 break;
1102         }
1103
1104         if (p_buf)
1105                 strncpy(p_buf, buf, p_buf_len);
1106         else
1107                 pr_debug("%s", buf);
1108
1109         return ret;
1110 }
1111
1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114         /*
1115          * The VPD identification association..
1116          *
1117          * from spc3r23.pdf Section 7.6.3.1 Table 297
1118          */
1119         vpd->association = (page_83[1] & 0x30);
1120         return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123
1124 int transport_dump_vpd_ident_type(
1125         struct t10_vpd *vpd,
1126         unsigned char *p_buf,
1127         int p_buf_len)
1128 {
1129         unsigned char buf[VPD_TMP_BUF_SIZE];
1130         int ret = 0;
1131         int len;
1132
1133         memset(buf, 0, VPD_TMP_BUF_SIZE);
1134         len = sprintf(buf, "T10 VPD Identifier Type: ");
1135
1136         switch (vpd->device_identifier_type) {
1137         case 0x00:
1138                 sprintf(buf+len, "Vendor specific\n");
1139                 break;
1140         case 0x01:
1141                 sprintf(buf+len, "T10 Vendor ID based\n");
1142                 break;
1143         case 0x02:
1144                 sprintf(buf+len, "EUI-64 based\n");
1145                 break;
1146         case 0x03:
1147                 sprintf(buf+len, "NAA\n");
1148                 break;
1149         case 0x04:
1150                 sprintf(buf+len, "Relative target port identifier\n");
1151                 break;
1152         case 0x08:
1153                 sprintf(buf+len, "SCSI name string\n");
1154                 break;
1155         default:
1156                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1157                                 vpd->device_identifier_type);
1158                 ret = -EINVAL;
1159                 break;
1160         }
1161
1162         if (p_buf) {
1163                 if (p_buf_len < strlen(buf)+1)
1164                         return -EINVAL;
1165                 strncpy(p_buf, buf, p_buf_len);
1166         } else {
1167                 pr_debug("%s", buf);
1168         }
1169
1170         return ret;
1171 }
1172
1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175         /*
1176          * The VPD identifier type..
1177          *
1178          * from spc3r23.pdf Section 7.6.3.1 Table 298
1179          */
1180         vpd->device_identifier_type = (page_83[1] & 0x0f);
1181         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184
1185 int transport_dump_vpd_ident(
1186         struct t10_vpd *vpd,
1187         unsigned char *p_buf,
1188         int p_buf_len)
1189 {
1190         unsigned char buf[VPD_TMP_BUF_SIZE];
1191         int ret = 0;
1192
1193         memset(buf, 0, VPD_TMP_BUF_SIZE);
1194
1195         switch (vpd->device_identifier_code_set) {
1196         case 0x01: /* Binary */
1197                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198                         &vpd->device_identifier[0]);
1199                 break;
1200         case 0x02: /* ASCII */
1201                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202                         &vpd->device_identifier[0]);
1203                 break;
1204         case 0x03: /* UTF-8 */
1205                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206                         &vpd->device_identifier[0]);
1207                 break;
1208         default:
1209                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210                         " 0x%02x", vpd->device_identifier_code_set);
1211                 ret = -EINVAL;
1212                 break;
1213         }
1214
1215         if (p_buf)
1216                 strncpy(p_buf, buf, p_buf_len);
1217         else
1218                 pr_debug("%s", buf);
1219
1220         return ret;
1221 }
1222
1223 int
1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226         static const char hex_str[] = "0123456789abcdef";
1227         int j = 0, i = 4; /* offset to start of the identifer */
1228
1229         /*
1230          * The VPD Code Set (encoding)
1231          *
1232          * from spc3r23.pdf Section 7.6.3.1 Table 296
1233          */
1234         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235         switch (vpd->device_identifier_code_set) {
1236         case 0x01: /* Binary */
1237                 vpd->device_identifier[j++] =
1238                                 hex_str[vpd->device_identifier_type];
1239                 while (i < (4 + page_83[3])) {
1240                         vpd->device_identifier[j++] =
1241                                 hex_str[(page_83[i] & 0xf0) >> 4];
1242                         vpd->device_identifier[j++] =
1243                                 hex_str[page_83[i] & 0x0f];
1244                         i++;
1245                 }
1246                 break;
1247         case 0x02: /* ASCII */
1248         case 0x03: /* UTF-8 */
1249                 while (i < (4 + page_83[3]))
1250                         vpd->device_identifier[j++] = page_83[i++];
1251                 break;
1252         default:
1253                 break;
1254         }
1255
1256         return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259
1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262         /*
1263          * If this device is from Target_Core_Mod/pSCSI, disable the
1264          * SAM Task Attribute emulation.
1265          *
1266          * This is currently not available in upsream Linux/SCSI Target
1267          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268          */
1269         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271                 return;
1272         }
1273
1274         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276                 " device\n", dev->transport->name,
1277                 dev->transport->get_device_rev(dev));
1278 }
1279
1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283         char buf[17];
1284         int i, device_type;
1285         /*
1286          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287          */
1288         for (i = 0; i < 8; i++)
1289                 if (wwn->vendor[i] >= 0x20)
1290                         buf[i] = wwn->vendor[i];
1291                 else
1292                         buf[i] = ' ';
1293         buf[i] = '\0';
1294         pr_debug("  Vendor: %s\n", buf);
1295
1296         for (i = 0; i < 16; i++)
1297                 if (wwn->model[i] >= 0x20)
1298                         buf[i] = wwn->model[i];
1299                 else
1300                         buf[i] = ' ';
1301         buf[i] = '\0';
1302         pr_debug("  Model: %s\n", buf);
1303
1304         for (i = 0; i < 4; i++)
1305                 if (wwn->revision[i] >= 0x20)
1306                         buf[i] = wwn->revision[i];
1307                 else
1308                         buf[i] = ' ';
1309         buf[i] = '\0';
1310         pr_debug("  Revision: %s\n", buf);
1311
1312         device_type = dev->transport->get_device_type(dev);
1313         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1314         pr_debug("                 ANSI SCSI revision: %02x\n",
1315                                 dev->transport->get_device_rev(dev));
1316 }
1317
1318 struct se_device *transport_add_device_to_core_hba(
1319         struct se_hba *hba,
1320         struct se_subsystem_api *transport,
1321         struct se_subsystem_dev *se_dev,
1322         u32 device_flags,
1323         void *transport_dev,
1324         struct se_dev_limits *dev_limits,
1325         const char *inquiry_prod,
1326         const char *inquiry_rev)
1327 {
1328         int force_pt;
1329         struct se_device  *dev;
1330
1331         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332         if (!dev) {
1333                 pr_err("Unable to allocate memory for se_dev_t\n");
1334                 return NULL;
1335         }
1336
1337         transport_init_queue_obj(&dev->dev_queue_obj);
1338         dev->dev_flags          = device_flags;
1339         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1340         dev->dev_ptr            = transport_dev;
1341         dev->se_hba             = hba;
1342         dev->se_sub_dev         = se_dev;
1343         dev->transport          = transport;
1344         INIT_LIST_HEAD(&dev->dev_list);
1345         INIT_LIST_HEAD(&dev->dev_sep_list);
1346         INIT_LIST_HEAD(&dev->dev_tmr_list);
1347         INIT_LIST_HEAD(&dev->execute_task_list);
1348         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1349         INIT_LIST_HEAD(&dev->state_task_list);
1350         INIT_LIST_HEAD(&dev->qf_cmd_list);
1351         spin_lock_init(&dev->execute_task_lock);
1352         spin_lock_init(&dev->delayed_cmd_lock);
1353         spin_lock_init(&dev->dev_reservation_lock);
1354         spin_lock_init(&dev->dev_status_lock);
1355         spin_lock_init(&dev->se_port_lock);
1356         spin_lock_init(&dev->se_tmr_lock);
1357         spin_lock_init(&dev->qf_cmd_lock);
1358         atomic_set(&dev->dev_ordered_id, 0);
1359
1360         se_dev_set_default_attribs(dev, dev_limits);
1361
1362         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1363         dev->creation_time = get_jiffies_64();
1364         spin_lock_init(&dev->stats_lock);
1365
1366         spin_lock(&hba->device_lock);
1367         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1368         hba->dev_count++;
1369         spin_unlock(&hba->device_lock);
1370         /*
1371          * Setup the SAM Task Attribute emulation for struct se_device
1372          */
1373         core_setup_task_attr_emulation(dev);
1374         /*
1375          * Force PR and ALUA passthrough emulation with internal object use.
1376          */
1377         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1378         /*
1379          * Setup the Reservations infrastructure for struct se_device
1380          */
1381         core_setup_reservations(dev, force_pt);
1382         /*
1383          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1384          */
1385         if (core_setup_alua(dev, force_pt) < 0)
1386                 goto out;
1387
1388         /*
1389          * Startup the struct se_device processing thread
1390          */
1391         dev->process_thread = kthread_run(transport_processing_thread, dev,
1392                                           "LIO_%s", dev->transport->name);
1393         if (IS_ERR(dev->process_thread)) {
1394                 pr_err("Unable to create kthread: LIO_%s\n",
1395                         dev->transport->name);
1396                 goto out;
1397         }
1398         /*
1399          * Setup work_queue for QUEUE_FULL
1400          */
1401         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1402         /*
1403          * Preload the initial INQUIRY const values if we are doing
1404          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1405          * passthrough because this is being provided by the backend LLD.
1406          * This is required so that transport_get_inquiry() copies these
1407          * originals once back into DEV_T10_WWN(dev) for the virtual device
1408          * setup.
1409          */
1410         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1411                 if (!inquiry_prod || !inquiry_rev) {
1412                         pr_err("All non TCM/pSCSI plugins require"
1413                                 " INQUIRY consts\n");
1414                         goto out;
1415                 }
1416
1417                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1418                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1419                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1420         }
1421         scsi_dump_inquiry(dev);
1422
1423         return dev;
1424 out:
1425         kthread_stop(dev->process_thread);
1426
1427         spin_lock(&hba->device_lock);
1428         list_del(&dev->dev_list);
1429         hba->dev_count--;
1430         spin_unlock(&hba->device_lock);
1431
1432         se_release_vpd_for_dev(dev);
1433
1434         kfree(dev);
1435
1436         return NULL;
1437 }
1438 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1439
1440 /*      transport_generic_prepare_cdb():
1441  *
1442  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1443  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1444  *      The point of this is since we are mapping iSCSI LUNs to
1445  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1446  *      devices and HBAs for a loop.
1447  */
1448 static inline void transport_generic_prepare_cdb(
1449         unsigned char *cdb)
1450 {
1451         switch (cdb[0]) {
1452         case READ_10: /* SBC - RDProtect */
1453         case READ_12: /* SBC - RDProtect */
1454         case READ_16: /* SBC - RDProtect */
1455         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1456         case VERIFY: /* SBC - VRProtect */
1457         case VERIFY_16: /* SBC - VRProtect */
1458         case WRITE_VERIFY: /* SBC - VRProtect */
1459         case WRITE_VERIFY_12: /* SBC - VRProtect */
1460                 break;
1461         default:
1462                 cdb[1] &= 0x1f; /* clear logical unit number */
1463                 break;
1464         }
1465 }
1466
1467 static struct se_task *
1468 transport_generic_get_task(struct se_cmd *cmd,
1469                 enum dma_data_direction data_direction)
1470 {
1471         struct se_task *task;
1472         struct se_device *dev = cmd->se_dev;
1473
1474         task = dev->transport->alloc_task(cmd->t_task_cdb);
1475         if (!task) {
1476                 pr_err("Unable to allocate struct se_task\n");
1477                 return NULL;
1478         }
1479
1480         INIT_LIST_HEAD(&task->t_list);
1481         INIT_LIST_HEAD(&task->t_execute_list);
1482         INIT_LIST_HEAD(&task->t_state_list);
1483         init_completion(&task->task_stop_comp);
1484         task->task_se_cmd = cmd;
1485         task->task_data_direction = data_direction;
1486
1487         return task;
1488 }
1489
1490 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1491
1492 /*
1493  * Used by fabric modules containing a local struct se_cmd within their
1494  * fabric dependent per I/O descriptor.
1495  */
1496 void transport_init_se_cmd(
1497         struct se_cmd *cmd,
1498         struct target_core_fabric_ops *tfo,
1499         struct se_session *se_sess,
1500         u32 data_length,
1501         int data_direction,
1502         int task_attr,
1503         unsigned char *sense_buffer)
1504 {
1505         INIT_LIST_HEAD(&cmd->se_lun_node);
1506         INIT_LIST_HEAD(&cmd->se_delayed_node);
1507         INIT_LIST_HEAD(&cmd->se_qf_node);
1508         INIT_LIST_HEAD(&cmd->se_queue_node);
1509         INIT_LIST_HEAD(&cmd->se_cmd_list);
1510         INIT_LIST_HEAD(&cmd->t_task_list);
1511         init_completion(&cmd->transport_lun_fe_stop_comp);
1512         init_completion(&cmd->transport_lun_stop_comp);
1513         init_completion(&cmd->t_transport_stop_comp);
1514         init_completion(&cmd->cmd_wait_comp);
1515         spin_lock_init(&cmd->t_state_lock);
1516         cmd->transport_state = CMD_T_DEV_ACTIVE;
1517
1518         cmd->se_tfo = tfo;
1519         cmd->se_sess = se_sess;
1520         cmd->data_length = data_length;
1521         cmd->data_direction = data_direction;
1522         cmd->sam_task_attr = task_attr;
1523         cmd->sense_buffer = sense_buffer;
1524 }
1525 EXPORT_SYMBOL(transport_init_se_cmd);
1526
1527 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1528 {
1529         /*
1530          * Check if SAM Task Attribute emulation is enabled for this
1531          * struct se_device storage object
1532          */
1533         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1534                 return 0;
1535
1536         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1537                 pr_debug("SAM Task Attribute ACA"
1538                         " emulation is not supported\n");
1539                 return -EINVAL;
1540         }
1541         /*
1542          * Used to determine when ORDERED commands should go from
1543          * Dormant to Active status.
1544          */
1545         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1546         smp_mb__after_atomic_inc();
1547         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1548                         cmd->se_ordered_id, cmd->sam_task_attr,
1549                         cmd->se_dev->transport->name);
1550         return 0;
1551 }
1552
1553 /*      target_setup_cmd_from_cdb():
1554  *
1555  *      Called from fabric RX Thread.
1556  */
1557 int target_setup_cmd_from_cdb(
1558         struct se_cmd *cmd,
1559         unsigned char *cdb)
1560 {
1561         int ret;
1562
1563         transport_generic_prepare_cdb(cdb);
1564         /*
1565          * Ensure that the received CDB is less than the max (252 + 8) bytes
1566          * for VARIABLE_LENGTH_CMD
1567          */
1568         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1569                 pr_err("Received SCSI CDB with command_size: %d that"
1570                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1571                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1572                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1573                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1574                 return -EINVAL;
1575         }
1576         /*
1577          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578          * allocate the additional extended CDB buffer now..  Otherwise
1579          * setup the pointer from __t_task_cdb to t_task_cdb.
1580          */
1581         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1582                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1583                                                 GFP_KERNEL);
1584                 if (!cmd->t_task_cdb) {
1585                         pr_err("Unable to allocate cmd->t_task_cdb"
1586                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587                                 scsi_command_size(cdb),
1588                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1589                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1590                         cmd->scsi_sense_reason =
1591                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1592                         return -ENOMEM;
1593                 }
1594         } else
1595                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1596         /*
1597          * Copy the original CDB into cmd->
1598          */
1599         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1600         /*
1601          * Setup the received CDB based on SCSI defined opcodes and
1602          * perform unit attention, persistent reservations and ALUA
1603          * checks for virtual device backends.  The cmd->t_task_cdb
1604          * pointer is expected to be setup before we reach this point.
1605          */
1606         ret = transport_generic_cmd_sequencer(cmd, cdb);
1607         if (ret < 0)
1608                 return ret;
1609         /*
1610          * Check for SAM Task Attribute Emulation
1611          */
1612         if (transport_check_alloc_task_attr(cmd) < 0) {
1613                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1614                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1615                 return -EINVAL;
1616         }
1617         spin_lock(&cmd->se_lun->lun_sep_lock);
1618         if (cmd->se_lun->lun_sep)
1619                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1620         spin_unlock(&cmd->se_lun->lun_sep_lock);
1621         return 0;
1622 }
1623 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1624
1625 /*
1626  * Used by fabric module frontends to queue tasks directly.
1627  * Many only be used from process context only
1628  */
1629 int transport_handle_cdb_direct(
1630         struct se_cmd *cmd)
1631 {
1632         int ret;
1633
1634         if (!cmd->se_lun) {
1635                 dump_stack();
1636                 pr_err("cmd->se_lun is NULL\n");
1637                 return -EINVAL;
1638         }
1639         if (in_interrupt()) {
1640                 dump_stack();
1641                 pr_err("transport_generic_handle_cdb cannot be called"
1642                                 " from interrupt context\n");
1643                 return -EINVAL;
1644         }
1645         /*
1646          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1647          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1648          * in existing usage to ensure that outstanding descriptors are handled
1649          * correctly during shutdown via transport_wait_for_tasks()
1650          *
1651          * Also, we don't take cmd->t_state_lock here as we only expect
1652          * this to be called for initial descriptor submission.
1653          */
1654         cmd->t_state = TRANSPORT_NEW_CMD;
1655         cmd->transport_state |= CMD_T_ACTIVE;
1656
1657         /*
1658          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1659          * so follow TRANSPORT_NEW_CMD processing thread context usage
1660          * and call transport_generic_request_failure() if necessary..
1661          */
1662         ret = transport_generic_new_cmd(cmd);
1663         if (ret < 0)
1664                 transport_generic_request_failure(cmd);
1665
1666         return 0;
1667 }
1668 EXPORT_SYMBOL(transport_handle_cdb_direct);
1669
1670 /**
1671  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1672  *
1673  * @se_cmd: command descriptor to submit
1674  * @se_sess: associated se_sess for endpoint
1675  * @cdb: pointer to SCSI CDB
1676  * @sense: pointer to SCSI sense buffer
1677  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678  * @data_length: fabric expected data transfer length
1679  * @task_addr: SAM task attribute
1680  * @data_dir: DMA data direction
1681  * @flags: flags for command submission from target_sc_flags_tables
1682  *
1683  * This may only be called from process context, and also currently
1684  * assumes internal allocation of fabric payload buffer by target-core.
1685  **/
1686 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1687                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1688                 u32 data_length, int task_attr, int data_dir, int flags)
1689 {
1690         struct se_portal_group *se_tpg;
1691         int rc;
1692
1693         se_tpg = se_sess->se_tpg;
1694         BUG_ON(!se_tpg);
1695         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1696         BUG_ON(in_interrupt());
1697         /*
1698          * Initialize se_cmd for target operation.  From this point
1699          * exceptions are handled by sending exception status via
1700          * target_core_fabric_ops->queue_status() callback
1701          */
1702         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1703                                 data_length, data_dir, task_attr, sense);
1704         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1705                 se_cmd->unknown_data_length = 1;
1706         /*
1707          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1708          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1709          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1710          * kref_put() to happen during fabric packet acknowledgement.
1711          */
1712         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1713         /*
1714          * Signal bidirectional data payloads to target-core
1715          */
1716         if (flags & TARGET_SCF_BIDI_OP)
1717                 se_cmd->se_cmd_flags |= SCF_BIDI;
1718         /*
1719          * Locate se_lun pointer and attach it to struct se_cmd
1720          */
1721         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1722                 transport_send_check_condition_and_sense(se_cmd,
1723                                 se_cmd->scsi_sense_reason, 0);
1724                 target_put_sess_cmd(se_sess, se_cmd);
1725                 return;
1726         }
1727         /*
1728          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1729          * allocate the necessary tasks to complete the received CDB+data
1730          */
1731         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1732         if (rc != 0) {
1733                 transport_generic_request_failure(se_cmd);
1734                 return;
1735         }
1736
1737         /*
1738          * Check if we need to delay processing because of ALUA
1739          * Active/NonOptimized primary access state..
1740          */
1741         core_alua_check_nonop_delay(se_cmd);
1742
1743         /*
1744          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1745          * for immediate execution of READs, otherwise wait for
1746          * transport_generic_handle_data() to be called for WRITEs
1747          * when fabric has filled the incoming buffer.
1748          */
1749         transport_handle_cdb_direct(se_cmd);
1750         return;
1751 }
1752 EXPORT_SYMBOL(target_submit_cmd);
1753
1754 static void target_complete_tmr_failure(struct work_struct *work)
1755 {
1756         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1757
1758         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1759         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1760         transport_generic_free_cmd(se_cmd, 0);
1761 }
1762
1763 /**
1764  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1765  *                     for TMR CDBs
1766  *
1767  * @se_cmd: command descriptor to submit
1768  * @se_sess: associated se_sess for endpoint
1769  * @sense: pointer to SCSI sense buffer
1770  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1771  * @fabric_context: fabric context for TMR req
1772  * @tm_type: Type of TM request
1773  * @gfp: gfp type for caller
1774  * @tag: referenced task tag for TMR_ABORT_TASK
1775  * @flags: submit cmd flags
1776  *
1777  * Callable from all contexts.
1778  **/
1779
1780 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1781                 unsigned char *sense, u32 unpacked_lun,
1782                 void *fabric_tmr_ptr, unsigned char tm_type,
1783                 gfp_t gfp, unsigned int tag, int flags)
1784 {
1785         struct se_portal_group *se_tpg;
1786         int ret;
1787
1788         se_tpg = se_sess->se_tpg;
1789         BUG_ON(!se_tpg);
1790
1791         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1792                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1793         /*
1794          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1795          * allocation failure.
1796          */
1797         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1798         if (ret < 0)
1799                 return -ENOMEM;
1800
1801         if (tm_type == TMR_ABORT_TASK)
1802                 se_cmd->se_tmr_req->ref_task_tag = tag;
1803
1804         /* See target_submit_cmd for commentary */
1805         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1806
1807         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1808         if (ret) {
1809                 /*
1810                  * For callback during failure handling, push this work off
1811                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1812                  */
1813                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1814                 schedule_work(&se_cmd->work);
1815                 return 0;
1816         }
1817         transport_generic_handle_tmr(se_cmd);
1818         return 0;
1819 }
1820 EXPORT_SYMBOL(target_submit_tmr);
1821
1822 /*
1823  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1824  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1825  * complete setup in TCM process context w/ TFO->new_cmd_map().
1826  */
1827 int transport_generic_handle_cdb_map(
1828         struct se_cmd *cmd)
1829 {
1830         if (!cmd->se_lun) {
1831                 dump_stack();
1832                 pr_err("cmd->se_lun is NULL\n");
1833                 return -EINVAL;
1834         }
1835
1836         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1837         return 0;
1838 }
1839 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1840
1841 /*      transport_generic_handle_data():
1842  *
1843  *
1844  */
1845 int transport_generic_handle_data(
1846         struct se_cmd *cmd)
1847 {
1848         /*
1849          * For the software fabric case, then we assume the nexus is being
1850          * failed/shutdown when signals are pending from the kthread context
1851          * caller, so we return a failure.  For the HW target mode case running
1852          * in interrupt code, the signal_pending() check is skipped.
1853          */
1854         if (!in_interrupt() && signal_pending(current))
1855                 return -EPERM;
1856         /*
1857          * If the received CDB has aleady been ABORTED by the generic
1858          * target engine, we now call transport_check_aborted_status()
1859          * to queue any delated TASK_ABORTED status for the received CDB to the
1860          * fabric module as we are expecting no further incoming DATA OUT
1861          * sequences at this point.
1862          */
1863         if (transport_check_aborted_status(cmd, 1) != 0)
1864                 return 0;
1865
1866         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1867         return 0;
1868 }
1869 EXPORT_SYMBOL(transport_generic_handle_data);
1870
1871 /*      transport_generic_handle_tmr():
1872  *
1873  *
1874  */
1875 int transport_generic_handle_tmr(
1876         struct se_cmd *cmd)
1877 {
1878         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1879         return 0;
1880 }
1881 EXPORT_SYMBOL(transport_generic_handle_tmr);
1882
1883 /*
1884  * If the task is active, request it to be stopped and sleep until it
1885  * has completed.
1886  */
1887 bool target_stop_task(struct se_task *task, unsigned long *flags)
1888 {
1889         struct se_cmd *cmd = task->task_se_cmd;
1890         bool was_active = false;
1891
1892         if (task->task_flags & TF_ACTIVE) {
1893                 task->task_flags |= TF_REQUEST_STOP;
1894                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1895
1896                 pr_debug("Task %p waiting to complete\n", task);
1897                 wait_for_completion(&task->task_stop_comp);
1898                 pr_debug("Task %p stopped successfully\n", task);
1899
1900                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1901                 atomic_dec(&cmd->t_task_cdbs_left);
1902                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1903                 was_active = true;
1904         }
1905
1906         return was_active;
1907 }
1908
1909 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1910 {
1911         struct se_task *task, *task_tmp;
1912         unsigned long flags;
1913         int ret = 0;
1914
1915         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1916                 cmd->se_tfo->get_task_tag(cmd));
1917
1918         /*
1919          * No tasks remain in the execution queue
1920          */
1921         spin_lock_irqsave(&cmd->t_state_lock, flags);
1922         list_for_each_entry_safe(task, task_tmp,
1923                                 &cmd->t_task_list, t_list) {
1924                 pr_debug("Processing task %p\n", task);
1925                 /*
1926                  * If the struct se_task has not been sent and is not active,
1927                  * remove the struct se_task from the execution queue.
1928                  */
1929                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1930                         spin_unlock_irqrestore(&cmd->t_state_lock,
1931                                         flags);
1932                         transport_remove_task_from_execute_queue(task,
1933                                         cmd->se_dev);
1934
1935                         pr_debug("Task %p removed from execute queue\n", task);
1936                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1937                         continue;
1938                 }
1939
1940                 if (!target_stop_task(task, &flags)) {
1941                         pr_debug("Task %p - did nothing\n", task);
1942                         ret++;
1943                 }
1944         }
1945         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1946
1947         return ret;
1948 }
1949
1950 /*
1951  * Handle SAM-esque emulation for generic transport request failures.
1952  */
1953 void transport_generic_request_failure(struct se_cmd *cmd)
1954 {
1955         int ret = 0;
1956
1957         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1958                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1959                 cmd->t_task_cdb[0]);
1960         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1961                 cmd->se_tfo->get_cmd_state(cmd),
1962                 cmd->t_state, cmd->scsi_sense_reason);
1963         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1964                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1965                 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1966                 cmd->t_task_list_num,
1967                 atomic_read(&cmd->t_task_cdbs_left),
1968                 atomic_read(&cmd->t_task_cdbs_sent),
1969                 atomic_read(&cmd->t_task_cdbs_ex_left),
1970                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1971                 (cmd->transport_state & CMD_T_STOP) != 0,
1972                 (cmd->transport_state & CMD_T_SENT) != 0);
1973
1974         /*
1975          * For SAM Task Attribute emulation for failed struct se_cmd
1976          */
1977         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1978                 transport_complete_task_attr(cmd);
1979
1980         switch (cmd->scsi_sense_reason) {
1981         case TCM_NON_EXISTENT_LUN:
1982         case TCM_UNSUPPORTED_SCSI_OPCODE:
1983         case TCM_INVALID_CDB_FIELD:
1984         case TCM_INVALID_PARAMETER_LIST:
1985         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1986         case TCM_UNKNOWN_MODE_PAGE:
1987         case TCM_WRITE_PROTECTED:
1988         case TCM_CHECK_CONDITION_ABORT_CMD:
1989         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1990         case TCM_CHECK_CONDITION_NOT_READY:
1991                 break;
1992         case TCM_RESERVATION_CONFLICT:
1993                 /*
1994                  * No SENSE Data payload for this case, set SCSI Status
1995                  * and queue the response to $FABRIC_MOD.
1996                  *
1997                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1998                  */
1999                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2000                 /*
2001                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2002                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2003                  * CONFLICT STATUS.
2004                  *
2005                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2006                  */
2007                 if (cmd->se_sess &&
2008                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2009                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2010                                 cmd->orig_fe_lun, 0x2C,
2011                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2012
2013                 ret = cmd->se_tfo->queue_status(cmd);
2014                 if (ret == -EAGAIN || ret == -ENOMEM)
2015                         goto queue_full;
2016                 goto check_stop;
2017         default:
2018                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2019                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2020                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2021                 break;
2022         }
2023         /*
2024          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2025          * make the call to transport_send_check_condition_and_sense()
2026          * directly.  Otherwise expect the fabric to make the call to
2027          * transport_send_check_condition_and_sense() after handling
2028          * possible unsoliticied write data payloads.
2029          */
2030         ret = transport_send_check_condition_and_sense(cmd,
2031                         cmd->scsi_sense_reason, 0);
2032         if (ret == -EAGAIN || ret == -ENOMEM)
2033                 goto queue_full;
2034
2035 check_stop:
2036         transport_lun_remove_cmd(cmd);
2037         if (!transport_cmd_check_stop_to_fabric(cmd))
2038                 ;
2039         return;
2040
2041 queue_full:
2042         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2043         transport_handle_queue_full(cmd, cmd->se_dev);
2044 }
2045 EXPORT_SYMBOL(transport_generic_request_failure);
2046
2047 static inline u32 transport_lba_21(unsigned char *cdb)
2048 {
2049         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2050 }
2051
2052 static inline u32 transport_lba_32(unsigned char *cdb)
2053 {
2054         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2055 }
2056
2057 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2058 {
2059         unsigned int __v1, __v2;
2060
2061         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2062         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2063
2064         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2065 }
2066
2067 /*
2068  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2069  */
2070 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2071 {
2072         unsigned int __v1, __v2;
2073
2074         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2075         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2076
2077         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2078 }
2079
2080 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2081 {
2082         unsigned long flags;
2083
2084         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2085         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2086         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2087 }
2088
2089 /*
2090  * Called from Fabric Module context from transport_execute_tasks()
2091  *
2092  * The return of this function determins if the tasks from struct se_cmd
2093  * get added to the execution queue in transport_execute_tasks(),
2094  * or are added to the delayed or ordered lists here.
2095  */
2096 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2097 {
2098         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2099                 return 1;
2100         /*
2101          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2102          * to allow the passed struct se_cmd list of tasks to the front of the list.
2103          */
2104          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2105                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2106                         " 0x%02x, se_ordered_id: %u\n",
2107                         cmd->t_task_cdb[0],
2108                         cmd->se_ordered_id);
2109                 return 1;
2110         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2111                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2112                 smp_mb__after_atomic_inc();
2113
2114                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2115                                 " list, se_ordered_id: %u\n",
2116                                 cmd->t_task_cdb[0],
2117                                 cmd->se_ordered_id);
2118                 /*
2119                  * Add ORDERED command to tail of execution queue if
2120                  * no other older commands exist that need to be
2121                  * completed first.
2122                  */
2123                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2124                         return 1;
2125         } else {
2126                 /*
2127                  * For SIMPLE and UNTAGGED Task Attribute commands
2128                  */
2129                 atomic_inc(&cmd->se_dev->simple_cmds);
2130                 smp_mb__after_atomic_inc();
2131         }
2132         /*
2133          * Otherwise if one or more outstanding ORDERED task attribute exist,
2134          * add the dormant task(s) built for the passed struct se_cmd to the
2135          * execution queue and become in Active state for this struct se_device.
2136          */
2137         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2138                 /*
2139                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2140                  * will be drained upon completion of HEAD_OF_QUEUE task.
2141                  */
2142                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2143                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2144                 list_add_tail(&cmd->se_delayed_node,
2145                                 &cmd->se_dev->delayed_cmd_list);
2146                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2147
2148                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2149                         " delayed CMD list, se_ordered_id: %u\n",
2150                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2151                         cmd->se_ordered_id);
2152                 /*
2153                  * Return zero to let transport_execute_tasks() know
2154                  * not to add the delayed tasks to the execution list.
2155                  */
2156                 return 0;
2157         }
2158         /*
2159          * Otherwise, no ORDERED task attributes exist..
2160          */
2161         return 1;
2162 }
2163
2164 /*
2165  * Called from fabric module context in transport_generic_new_cmd() and
2166  * transport_generic_process_write()
2167  */
2168 static int transport_execute_tasks(struct se_cmd *cmd)
2169 {
2170         int add_tasks;
2171         struct se_device *se_dev = cmd->se_dev;
2172         /*
2173          * Call transport_cmd_check_stop() to see if a fabric exception
2174          * has occurred that prevents execution.
2175          */
2176         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2177                 /*
2178                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2179                  * attribute for the tasks of the received struct se_cmd CDB
2180                  */
2181                 add_tasks = transport_execute_task_attr(cmd);
2182                 if (!add_tasks)
2183                         goto execute_tasks;
2184                 /*
2185                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2186                  * adds associated se_tasks while holding dev->execute_task_lock
2187                  * before I/O dispath to avoid a double spinlock access.
2188                  */
2189                 __transport_execute_tasks(se_dev, cmd);
2190                 return 0;
2191         }
2192
2193 execute_tasks:
2194         __transport_execute_tasks(se_dev, NULL);
2195         return 0;
2196 }
2197
2198 /*
2199  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2200  * from struct se_device->execute_task_list and
2201  *
2202  * Called from transport_processing_thread()
2203  */
2204 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2205 {
2206         int error;
2207         struct se_cmd *cmd = NULL;
2208         struct se_task *task = NULL;
2209         unsigned long flags;
2210
2211 check_depth:
2212         spin_lock_irq(&dev->execute_task_lock);
2213         if (new_cmd != NULL)
2214                 __transport_add_tasks_from_cmd(new_cmd);
2215
2216         if (list_empty(&dev->execute_task_list)) {
2217                 spin_unlock_irq(&dev->execute_task_lock);
2218                 return 0;
2219         }
2220         task = list_first_entry(&dev->execute_task_list,
2221                                 struct se_task, t_execute_list);
2222         __transport_remove_task_from_execute_queue(task, dev);
2223         spin_unlock_irq(&dev->execute_task_lock);
2224
2225         cmd = task->task_se_cmd;
2226         spin_lock_irqsave(&cmd->t_state_lock, flags);
2227         task->task_flags |= (TF_ACTIVE | TF_SENT);
2228         atomic_inc(&cmd->t_task_cdbs_sent);
2229
2230         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2231             cmd->t_task_list_num)
2232                 cmd->transport_state |= CMD_T_SENT;
2233
2234         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2235
2236         if (cmd->execute_task)
2237                 error = cmd->execute_task(task);
2238         else
2239                 error = dev->transport->do_task(task);
2240         if (error != 0) {
2241                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2242                 task->task_flags &= ~TF_ACTIVE;
2243                 cmd->transport_state &= ~CMD_T_SENT;
2244                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2245
2246                 transport_stop_tasks_for_cmd(cmd);
2247                 transport_generic_request_failure(cmd);
2248         }
2249
2250         new_cmd = NULL;
2251         goto check_depth;
2252
2253         return 0;
2254 }
2255
2256 static inline u32 transport_get_sectors_6(
2257         unsigned char *cdb,
2258         struct se_cmd *cmd,
2259         int *ret)
2260 {
2261         struct se_device *dev = cmd->se_dev;
2262
2263         /*
2264          * Assume TYPE_DISK for non struct se_device objects.
2265          * Use 8-bit sector value.
2266          */
2267         if (!dev)
2268                 goto type_disk;
2269
2270         /*
2271          * Use 24-bit allocation length for TYPE_TAPE.
2272          */
2273         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2274                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2275
2276         /*
2277          * Everything else assume TYPE_DISK Sector CDB location.
2278          * Use 8-bit sector value.  SBC-3 says:
2279          *
2280          *   A TRANSFER LENGTH field set to zero specifies that 256
2281          *   logical blocks shall be written.  Any other value
2282          *   specifies the number of logical blocks that shall be
2283          *   written.
2284          */
2285 type_disk:
2286         return cdb[4] ? : 256;
2287 }
2288
2289 static inline u32 transport_get_sectors_10(
2290         unsigned char *cdb,
2291         struct se_cmd *cmd,
2292         int *ret)
2293 {
2294         struct se_device *dev = cmd->se_dev;
2295
2296         /*
2297          * Assume TYPE_DISK for non struct se_device objects.
2298          * Use 16-bit sector value.
2299          */
2300         if (!dev)
2301                 goto type_disk;
2302
2303         /*
2304          * XXX_10 is not defined in SSC, throw an exception
2305          */
2306         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2307                 *ret = -EINVAL;
2308                 return 0;
2309         }
2310
2311         /*
2312          * Everything else assume TYPE_DISK Sector CDB location.
2313          * Use 16-bit sector value.
2314          */
2315 type_disk:
2316         return (u32)(cdb[7] << 8) + cdb[8];
2317 }
2318
2319 static inline u32 transport_get_sectors_12(
2320         unsigned char *cdb,
2321         struct se_cmd *cmd,
2322         int *ret)
2323 {
2324         struct se_device *dev = cmd->se_dev;
2325
2326         /*
2327          * Assume TYPE_DISK for non struct se_device objects.
2328          * Use 32-bit sector value.
2329          */
2330         if (!dev)
2331                 goto type_disk;
2332
2333         /*
2334          * XXX_12 is not defined in SSC, throw an exception
2335          */
2336         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2337                 *ret = -EINVAL;
2338                 return 0;
2339         }
2340
2341         /*
2342          * Everything else assume TYPE_DISK Sector CDB location.
2343          * Use 32-bit sector value.
2344          */
2345 type_disk:
2346         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2347 }
2348
2349 static inline u32 transport_get_sectors_16(
2350         unsigned char *cdb,
2351         struct se_cmd *cmd,
2352         int *ret)
2353 {
2354         struct se_device *dev = cmd->se_dev;
2355
2356         /*
2357          * Assume TYPE_DISK for non struct se_device objects.
2358          * Use 32-bit sector value.
2359          */
2360         if (!dev)
2361                 goto type_disk;
2362
2363         /*
2364          * Use 24-bit allocation length for TYPE_TAPE.
2365          */
2366         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2367                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2368
2369 type_disk:
2370         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2371                     (cdb[12] << 8) + cdb[13];
2372 }
2373
2374 /*
2375  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2376  */
2377 static inline u32 transport_get_sectors_32(
2378         unsigned char *cdb,
2379         struct se_cmd *cmd,
2380         int *ret)
2381 {
2382         /*
2383          * Assume TYPE_DISK for non struct se_device objects.
2384          * Use 32-bit sector value.
2385          */
2386         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2387                     (cdb[30] << 8) + cdb[31];
2388
2389 }
2390
2391 static inline u32 transport_get_size(
2392         u32 sectors,
2393         unsigned char *cdb,
2394         struct se_cmd *cmd)
2395 {
2396         struct se_device *dev = cmd->se_dev;
2397
2398         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2399                 if (cdb[1] & 1) { /* sectors */
2400                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2401                 } else /* bytes */
2402                         return sectors;
2403         }
2404
2405         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2406                 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size,
2407                 sectors, dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2408                 dev->transport->name);
2409
2410         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2411 }
2412
2413 static void transport_xor_callback(struct se_cmd *cmd)
2414 {
2415         unsigned char *buf, *addr;
2416         struct scatterlist *sg;
2417         unsigned int offset;
2418         int i;
2419         int count;
2420         /*
2421          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2422          *
2423          * 1) read the specified logical block(s);
2424          * 2) transfer logical blocks from the data-out buffer;
2425          * 3) XOR the logical blocks transferred from the data-out buffer with
2426          *    the logical blocks read, storing the resulting XOR data in a buffer;
2427          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2428          *    blocks transferred from the data-out buffer; and
2429          * 5) transfer the resulting XOR data to the data-in buffer.
2430          */
2431         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2432         if (!buf) {
2433                 pr_err("Unable to allocate xor_callback buf\n");
2434                 return;
2435         }
2436         /*
2437          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2438          * into the locally allocated *buf
2439          */
2440         sg_copy_to_buffer(cmd->t_data_sg,
2441                           cmd->t_data_nents,
2442                           buf,
2443                           cmd->data_length);
2444
2445         /*
2446          * Now perform the XOR against the BIDI read memory located at
2447          * cmd->t_mem_bidi_list
2448          */
2449
2450         offset = 0;
2451         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2452                 addr = kmap_atomic(sg_page(sg));
2453                 if (!addr)
2454                         goto out;
2455
2456                 for (i = 0; i < sg->length; i++)
2457                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2458
2459                 offset += sg->length;
2460                 kunmap_atomic(addr);
2461         }
2462
2463 out:
2464         kfree(buf);
2465 }
2466
2467 /*
2468  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2469  */
2470 static int transport_get_sense_data(struct se_cmd *cmd)
2471 {
2472         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2473         struct se_device *dev = cmd->se_dev;
2474         struct se_task *task = NULL, *task_tmp;
2475         unsigned long flags;
2476         u32 offset = 0;
2477
2478         WARN_ON(!cmd->se_lun);
2479
2480         if (!dev)
2481                 return 0;
2482
2483         spin_lock_irqsave(&cmd->t_state_lock, flags);
2484         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2485                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2486                 return 0;
2487         }
2488
2489         list_for_each_entry_safe(task, task_tmp,
2490                                 &cmd->t_task_list, t_list) {
2491                 if (!(task->task_flags & TF_HAS_SENSE))
2492                         continue;
2493
2494                 if (!dev->transport->get_sense_buffer) {
2495                         pr_err("dev->transport->get_sense_buffer"
2496                                         " is NULL\n");
2497                         continue;
2498                 }
2499
2500                 sense_buffer = dev->transport->get_sense_buffer(task);
2501                 if (!sense_buffer) {
2502                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2503                                 " sense buffer for task with sense\n",
2504                                 cmd->se_tfo->get_task_tag(cmd), task);
2505                         continue;
2506                 }
2507                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2508
2509                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2510                                 TRANSPORT_SENSE_BUFFER);
2511
2512                 memcpy(&buffer[offset], sense_buffer,
2513                                 TRANSPORT_SENSE_BUFFER);
2514                 cmd->scsi_status = task->task_scsi_status;
2515                 /* Automatically padded */
2516                 cmd->scsi_sense_length =
2517                                 (TRANSPORT_SENSE_BUFFER + offset);
2518
2519                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2520                                 " and sense\n",
2521                         dev->se_hba->hba_id, dev->transport->name,
2522                                 cmd->scsi_status);
2523                 return 0;
2524         }
2525         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2526
2527         return -1;
2528 }
2529
2530 static inline long long transport_dev_end_lba(struct se_device *dev)
2531 {
2532         return dev->transport->get_blocks(dev) + 1;
2533 }
2534
2535 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2536 {
2537         struct se_device *dev = cmd->se_dev;
2538         u32 sectors;
2539
2540         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2541                 return 0;
2542
2543         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2544
2545         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2546                 pr_err("LBA: %llu Sectors: %u exceeds"
2547                         " transport_dev_end_lba(): %llu\n",
2548                         cmd->t_task_lba, sectors,
2549                         transport_dev_end_lba(dev));
2550                 return -EINVAL;
2551         }
2552
2553         return 0;
2554 }
2555
2556 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2557 {
2558         /*
2559          * Determine if the received WRITE_SAME is used to for direct
2560          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2561          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2562          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2563          */
2564         int passthrough = (dev->transport->transport_type ==
2565                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2566
2567         if (!passthrough) {
2568                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2569                         pr_err("WRITE_SAME PBDATA and LBDATA"
2570                                 " bits not supported for Block Discard"
2571                                 " Emulation\n");
2572                         return -ENOSYS;
2573                 }
2574                 /*
2575                  * Currently for the emulated case we only accept
2576                  * tpws with the UNMAP=1 bit set.
2577                  */
2578                 if (!(flags[0] & 0x08)) {
2579                         pr_err("WRITE_SAME w/o UNMAP bit not"
2580                                 " supported for Block Discard Emulation\n");
2581                         return -ENOSYS;
2582                 }
2583         }
2584
2585         return 0;
2586 }
2587
2588 /*      transport_generic_cmd_sequencer():
2589  *
2590  *      Generic Command Sequencer that should work for most DAS transport
2591  *      drivers.
2592  *
2593  *      Called from target_setup_cmd_from_cdb() in the $FABRIC_MOD
2594  *      RX Thread.
2595  *
2596  *      FIXME: Need to support other SCSI OPCODES where as well.
2597  */
2598 static int transport_generic_cmd_sequencer(
2599         struct se_cmd *cmd,
2600         unsigned char *cdb)
2601 {
2602         struct se_device *dev = cmd->se_dev;
2603         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2604         int ret = 0, sector_ret = 0, passthrough;
2605         u32 sectors = 0, size = 0, pr_reg_type = 0;
2606         u16 service_action;
2607         u8 alua_ascq = 0;
2608         /*
2609          * Check for an existing UNIT ATTENTION condition
2610          */
2611         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2612                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2613                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2614                 return -EINVAL;
2615         }
2616         /*
2617          * Check status of Asymmetric Logical Unit Assignment port
2618          */
2619         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2620         if (ret != 0) {
2621                 /*
2622                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2623                  * The ALUA additional sense code qualifier (ASCQ) is determined
2624                  * by the ALUA primary or secondary access state..
2625                  */
2626                 if (ret > 0) {
2627                         pr_debug("[%s]: ALUA TG Port not available,"
2628                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2629                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2630
2631                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2632                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2633                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2634                         return -EINVAL;
2635                 }
2636                 goto out_invalid_cdb_field;
2637         }
2638         /*
2639          * Check status for SPC-3 Persistent Reservations
2640          */
2641         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2642                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2643                                         cmd, cdb, pr_reg_type) != 0) {
2644                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2645                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2646                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2647                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2648                         return -EBUSY;
2649                 }
2650                 /*
2651                  * This means the CDB is allowed for the SCSI Initiator port
2652                  * when said port is *NOT* holding the legacy SPC-2 or
2653                  * SPC-3 Persistent Reservation.
2654                  */
2655         }
2656
2657         /*
2658          * If we operate in passthrough mode we skip most CDB emulation and
2659          * instead hand the commands down to the physical SCSI device.
2660          */
2661         passthrough =
2662                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2663
2664         switch (cdb[0]) {
2665         case READ_6:
2666                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2667                 if (sector_ret)
2668                         goto out_unsupported_cdb;
2669                 size = transport_get_size(sectors, cdb, cmd);
2670                 cmd->t_task_lba = transport_lba_21(cdb);
2671                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2672                 break;
2673         case READ_10:
2674                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2675                 if (sector_ret)
2676                         goto out_unsupported_cdb;
2677                 size = transport_get_size(sectors, cdb, cmd);
2678                 cmd->t_task_lba = transport_lba_32(cdb);
2679                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2680                 break;
2681         case READ_12:
2682                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2683                 if (sector_ret)
2684                         goto out_unsupported_cdb;
2685                 size = transport_get_size(sectors, cdb, cmd);
2686                 cmd->t_task_lba = transport_lba_32(cdb);
2687                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2688                 break;
2689         case READ_16:
2690                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2691                 if (sector_ret)
2692                         goto out_unsupported_cdb;
2693                 size = transport_get_size(sectors, cdb, cmd);
2694                 cmd->t_task_lba = transport_lba_64(cdb);
2695                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2696                 break;
2697         case WRITE_6:
2698                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2699                 if (sector_ret)
2700                         goto out_unsupported_cdb;
2701                 size = transport_get_size(sectors, cdb, cmd);
2702                 cmd->t_task_lba = transport_lba_21(cdb);
2703                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2704                 break;
2705         case WRITE_10:
2706                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2707                 if (sector_ret)
2708                         goto out_unsupported_cdb;
2709                 size = transport_get_size(sectors, cdb, cmd);
2710                 cmd->t_task_lba = transport_lba_32(cdb);
2711                 if (cdb[1] & 0x8)
2712                         cmd->se_cmd_flags |= SCF_FUA;
2713                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2714                 break;
2715         case WRITE_12:
2716                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2717                 if (sector_ret)
2718                         goto out_unsupported_cdb;
2719                 size = transport_get_size(sectors, cdb, cmd);
2720                 cmd->t_task_lba = transport_lba_32(cdb);
2721                 if (cdb[1] & 0x8)
2722                         cmd->se_cmd_flags |= SCF_FUA;
2723                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2724                 break;
2725         case WRITE_16:
2726                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2727                 if (sector_ret)
2728                         goto out_unsupported_cdb;
2729                 size = transport_get_size(sectors, cdb, cmd);
2730                 cmd->t_task_lba = transport_lba_64(cdb);
2731                 if (cdb[1] & 0x8)
2732                         cmd->se_cmd_flags |= SCF_FUA;
2733                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2734                 break;
2735         case XDWRITEREAD_10:
2736                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2737                     !(cmd->se_cmd_flags & SCF_BIDI))
2738                         goto out_invalid_cdb_field;
2739                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2740                 if (sector_ret)
2741                         goto out_unsupported_cdb;
2742                 size = transport_get_size(sectors, cdb, cmd);
2743                 cmd->t_task_lba = transport_lba_32(cdb);
2744                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2745
2746                 /*
2747                  * Do now allow BIDI commands for passthrough mode.
2748                  */
2749                 if (passthrough)
2750                         goto out_unsupported_cdb;
2751
2752                 /*
2753                  * Setup BIDI XOR callback to be run after I/O completion.
2754                  */
2755                 cmd->transport_complete_callback = &transport_xor_callback;
2756                 if (cdb[1] & 0x8)
2757                         cmd->se_cmd_flags |= SCF_FUA;
2758                 break;
2759         case VARIABLE_LENGTH_CMD:
2760                 service_action = get_unaligned_be16(&cdb[8]);
2761                 switch (service_action) {
2762                 case XDWRITEREAD_32:
2763                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2764                         if (sector_ret)
2765                                 goto out_unsupported_cdb;
2766                         size = transport_get_size(sectors, cdb, cmd);
2767                         /*
2768                          * Use WRITE_32 and READ_32 opcodes for the emulated
2769                          * XDWRITE_READ_32 logic.
2770                          */
2771                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2772                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2773
2774                         /*
2775                          * Do now allow BIDI commands for passthrough mode.
2776                          */
2777                         if (passthrough)
2778                                 goto out_unsupported_cdb;
2779
2780                         /*
2781                          * Setup BIDI XOR callback to be run during after I/O
2782                          * completion.
2783                          */
2784                         cmd->transport_complete_callback = &transport_xor_callback;
2785                         if (cdb[1] & 0x8)
2786                                 cmd->se_cmd_flags |= SCF_FUA;
2787                         break;
2788                 case WRITE_SAME_32:
2789                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2790                         if (sector_ret)
2791                                 goto out_unsupported_cdb;
2792
2793                         if (sectors)
2794                                 size = transport_get_size(1, cdb, cmd);
2795                         else {
2796                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2797                                        " supported\n");
2798                                 goto out_invalid_cdb_field;
2799                         }
2800
2801                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2802                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2803
2804                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2805                                 goto out_unsupported_cdb;
2806                         if (!passthrough)
2807                                 cmd->execute_task = target_emulate_write_same;
2808                         break;
2809                 default:
2810                         pr_err("VARIABLE_LENGTH_CMD service action"
2811                                 " 0x%04x not supported\n", service_action);
2812                         goto out_unsupported_cdb;
2813                 }
2814                 break;
2815         case MAINTENANCE_IN:
2816                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2817                         /* MAINTENANCE_IN from SCC-2 */
2818                         /*
2819                          * Check for emulated MI_REPORT_TARGET_PGS.
2820                          */
2821                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2822                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2823                                 cmd->execute_task =
2824                                         target_emulate_report_target_port_groups;
2825                         }
2826                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2827                                (cdb[8] << 8) | cdb[9];
2828                 } else {
2829                         /* GPCMD_SEND_KEY from multi media commands */
2830                         size = (cdb[8] << 8) + cdb[9];
2831                 }
2832                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833                 break;
2834         case MODE_SELECT:
2835                 size = cdb[4];
2836                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837                 break;
2838         case MODE_SELECT_10:
2839                 size = (cdb[7] << 8) + cdb[8];
2840                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841                 break;
2842         case MODE_SENSE:
2843                 size = cdb[4];
2844                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2845                 if (!passthrough)
2846                         cmd->execute_task = target_emulate_modesense;
2847                 break;
2848         case MODE_SENSE_10:
2849                 size = (cdb[7] << 8) + cdb[8];
2850                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2851                 if (!passthrough)
2852                         cmd->execute_task = target_emulate_modesense;
2853                 break;
2854         case GPCMD_READ_BUFFER_CAPACITY:
2855         case GPCMD_SEND_OPC:
2856         case LOG_SELECT:
2857         case LOG_SENSE:
2858                 size = (cdb[7] << 8) + cdb[8];
2859                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860                 break;
2861         case READ_BLOCK_LIMITS:
2862                 size = READ_BLOCK_LEN;
2863                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2864                 break;
2865         case GPCMD_GET_CONFIGURATION:
2866         case GPCMD_READ_FORMAT_CAPACITIES:
2867         case GPCMD_READ_DISC_INFO:
2868         case GPCMD_READ_TRACK_RZONE_INFO:
2869                 size = (cdb[7] << 8) + cdb[8];
2870                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2871                 break;
2872         case PERSISTENT_RESERVE_IN:
2873                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2874                         cmd->execute_task = target_scsi3_emulate_pr_in;
2875                 size = (cdb[7] << 8) + cdb[8];
2876                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2877                 break;
2878         case PERSISTENT_RESERVE_OUT:
2879                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2880                         cmd->execute_task = target_scsi3_emulate_pr_out;
2881                 size = (cdb[7] << 8) + cdb[8];
2882                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2883                 break;
2884         case GPCMD_MECHANISM_STATUS:
2885         case GPCMD_READ_DVD_STRUCTURE:
2886                 size = (cdb[8] << 8) + cdb[9];
2887                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2888                 break;
2889         case READ_POSITION:
2890                 size = READ_POSITION_LEN;
2891                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2892                 break;
2893         case MAINTENANCE_OUT:
2894                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2895                         /* MAINTENANCE_OUT from SCC-2
2896                          *
2897                          * Check for emulated MO_SET_TARGET_PGS.
2898                          */
2899                         if (cdb[1] == MO_SET_TARGET_PGS &&
2900                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2901                                 cmd->execute_task =
2902                                         target_emulate_set_target_port_groups;
2903                         }
2904
2905                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2906                                (cdb[8] << 8) | cdb[9];
2907                 } else  {
2908                         /* GPCMD_REPORT_KEY from multi media commands */
2909                         size = (cdb[8] << 8) + cdb[9];
2910                 }
2911                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912                 break;
2913         case INQUIRY:
2914                 size = (cdb[3] << 8) + cdb[4];
2915                 /*
2916                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2917                  * See spc4r17 section 5.3
2918                  */
2919                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2920                         cmd->sam_task_attr = MSG_HEAD_TAG;
2921                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2922                 if (!passthrough)
2923                         cmd->execute_task = target_emulate_inquiry;
2924                 break;
2925         case READ_BUFFER:
2926                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2927                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2928                 break;
2929         case READ_CAPACITY:
2930                 size = READ_CAP_LEN;
2931                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2932                 if (!passthrough)
2933                         cmd->execute_task = target_emulate_readcapacity;
2934                 break;
2935         case READ_MEDIA_SERIAL_NUMBER:
2936         case SECURITY_PROTOCOL_IN:
2937         case SECURITY_PROTOCOL_OUT:
2938                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2939                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2940                 break;
2941         case SERVICE_ACTION_IN:
2942                 switch (cmd->t_task_cdb[1] & 0x1f) {
2943                 case SAI_READ_CAPACITY_16:
2944                         if (!passthrough)
2945                                 cmd->execute_task =
2946                                         target_emulate_readcapacity_16;
2947                         break;
2948                 default:
2949                         if (passthrough)
2950                                 break;
2951
2952                         pr_err("Unsupported SA: 0x%02x\n",
2953                                 cmd->t_task_cdb[1] & 0x1f);
2954                         goto out_invalid_cdb_field;
2955                 }
2956                 /*FALLTHROUGH*/
2957         case ACCESS_CONTROL_IN:
2958         case ACCESS_CONTROL_OUT:
2959         case EXTENDED_COPY:
2960         case READ_ATTRIBUTE:
2961         case RECEIVE_COPY_RESULTS:
2962         case WRITE_ATTRIBUTE:
2963                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2964                        (cdb[12] << 8) | cdb[13];
2965                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2966                 break;
2967         case RECEIVE_DIAGNOSTIC:
2968         case SEND_DIAGNOSTIC:
2969                 size = (cdb[3] << 8) | cdb[4];
2970                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2971                 break;
2972 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2973 #if 0
2974         case GPCMD_READ_CD:
2975                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2976                 size = (2336 * sectors);
2977                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2978                 break;
2979 #endif
2980         case READ_TOC:
2981                 size = cdb[8];
2982                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2983                 break;
2984         case REQUEST_SENSE:
2985                 size = cdb[4];
2986                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2987                 if (!passthrough)
2988                         cmd->execute_task = target_emulate_request_sense;
2989                 break;
2990         case READ_ELEMENT_STATUS:
2991                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2992                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2993                 break;
2994         case WRITE_BUFFER:
2995                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2996                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2997                 break;
2998         case RESERVE:
2999         case RESERVE_10:
3000                 /*
3001                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3002                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3003                  */
3004                 if (cdb[0] == RESERVE_10)
3005                         size = (cdb[7] << 8) | cdb[8];
3006                 else
3007                         size = cmd->data_length;
3008
3009                 /*
3010                  * Setup the legacy emulated handler for SPC-2 and
3011                  * >= SPC-3 compatible reservation handling (CRH=1)
3012                  * Otherwise, we assume the underlying SCSI logic is
3013                  * is running in SPC_PASSTHROUGH, and wants reservations
3014                  * emulation disabled.
3015                  */
3016                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3017                         cmd->execute_task = target_scsi2_reservation_reserve;
3018                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3019                 break;
3020         case RELEASE:
3021         case RELEASE_10:
3022                 /*
3023                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3024                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3025                 */
3026                 if (cdb[0] == RELEASE_10)
3027                         size = (cdb[7] << 8) | cdb[8];
3028                 else
3029                         size = cmd->data_length;
3030
3031                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3032                         cmd->execute_task = target_scsi2_reservation_release;
3033                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3034                 break;
3035         case SYNCHRONIZE_CACHE:
3036         case SYNCHRONIZE_CACHE_16:
3037                 /*
3038                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3039                  */
3040                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3041                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3042                         cmd->t_task_lba = transport_lba_32(cdb);
3043                 } else {
3044                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3045                         cmd->t_task_lba = transport_lba_64(cdb);
3046                 }
3047                 if (sector_ret)
3048                         goto out_unsupported_cdb;
3049
3050                 size = transport_get_size(sectors, cdb, cmd);
3051                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3052
3053                 if (passthrough)
3054                         break;
3055
3056                 /*
3057                  * Check to ensure that LBA + Range does not exceed past end of
3058                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3059                  */
3060                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3061                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3062                                 goto out_invalid_cdb_field;
3063                 }
3064                 cmd->execute_task = target_emulate_synchronize_cache;
3065                 break;
3066         case UNMAP:
3067                 size = get_unaligned_be16(&cdb[7]);
3068                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3069                 if (!passthrough)
3070                         cmd->execute_task = target_emulate_unmap;
3071                 break;
3072         case WRITE_SAME_16:
3073                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3074                 if (sector_ret)
3075                         goto out_unsupported_cdb;
3076
3077                 if (sectors)
3078                         size = transport_get_size(1, cdb, cmd);
3079                 else {
3080                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3081                         goto out_invalid_cdb_field;
3082                 }
3083
3084                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3085                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3086
3087                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3088                         goto out_unsupported_cdb;
3089                 if (!passthrough)
3090                         cmd->execute_task = target_emulate_write_same;
3091                 break;
3092         case WRITE_SAME:
3093                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3094                 if (sector_ret)
3095                         goto out_unsupported_cdb;
3096
3097                 if (sectors)
3098                         size = transport_get_size(1, cdb, cmd);
3099                 else {
3100                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3101                         goto out_invalid_cdb_field;
3102                 }
3103
3104                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3105                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3106                 /*
3107                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3108                  * of byte 1 bit 3 UNMAP instead of original reserved field
3109                  */
3110                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3111                         goto out_unsupported_cdb;
3112                 if (!passthrough)
3113                         cmd->execute_task = target_emulate_write_same;
3114                 break;
3115         case ALLOW_MEDIUM_REMOVAL:
3116         case ERASE:
3117         case REZERO_UNIT:
3118         case SEEK_10:
3119         case SPACE:
3120         case START_STOP:
3121         case TEST_UNIT_READY:
3122         case VERIFY:
3123         case WRITE_FILEMARKS:
3124                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3125                 if (!passthrough)
3126                         cmd->execute_task = target_emulate_noop;
3127                 break;
3128         case GPCMD_CLOSE_TRACK:
3129         case INITIALIZE_ELEMENT_STATUS:
3130         case GPCMD_LOAD_UNLOAD:
3131         case GPCMD_SET_SPEED:
3132         case MOVE_MEDIUM:
3133                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3134                 break;
3135         case REPORT_LUNS:
3136                 cmd->execute_task = target_report_luns;
3137                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3138                 /*
3139                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3140                  * See spc4r17 section 5.3
3141                  */
3142                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3143                         cmd->sam_task_attr = MSG_HEAD_TAG;
3144                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3145                 break;
3146         default:
3147                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3148                         " 0x%02x, sending CHECK_CONDITION.\n",
3149                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3150                 goto out_unsupported_cdb;
3151         }
3152
3153         if (cmd->unknown_data_length)
3154                 cmd->data_length = size;
3155
3156         if (size != cmd->data_length) {
3157                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3158                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3159                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3160                                 cmd->data_length, size, cdb[0]);
3161
3162                 cmd->cmd_spdtl = size;
3163
3164                 if (cmd->data_direction == DMA_TO_DEVICE) {
3165                         pr_err("Rejecting underflow/overflow"
3166                                         " WRITE data\n");
3167                         goto out_invalid_cdb_field;
3168                 }
3169                 /*
3170                  * Reject READ_* or WRITE_* with overflow/underflow for
3171                  * type SCF_SCSI_DATA_SG_IO_CDB.
3172                  */
3173                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3174                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3175                                 " CDB on non 512-byte sector setup subsystem"
3176                                 " plugin: %s\n", dev->transport->name);
3177                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3178                         goto out_invalid_cdb_field;
3179                 }
3180
3181                 if (size > cmd->data_length) {
3182                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3183                         cmd->residual_count = (size - cmd->data_length);
3184                 } else {
3185                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3186                         cmd->residual_count = (cmd->data_length - size);
3187                 }
3188                 cmd->data_length = size;
3189         }
3190
3191         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3192             (sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors ||
3193              sectors > dev->se_sub_dev->se_dev_attrib.max_sectors)) {
3194                 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3195                                    cdb[0], sectors);
3196                 goto out_invalid_cdb_field;
3197         }
3198
3199         /* reject any command that we don't have a handler for */
3200         if (!(passthrough || cmd->execute_task ||
3201              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3202                 goto out_unsupported_cdb;
3203
3204         transport_set_supported_SAM_opcode(cmd);
3205         return ret;
3206
3207 out_unsupported_cdb:
3208         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3209         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3210         return -EINVAL;
3211 out_invalid_cdb_field:
3212         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3213         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3214         return -EINVAL;
3215 }
3216
3217 /*
3218  * Called from I/O completion to determine which dormant/delayed
3219  * and ordered cmds need to have their tasks added to the execution queue.
3220  */
3221 static void transport_complete_task_attr(struct se_cmd *cmd)
3222 {
3223         struct se_device *dev = cmd->se_dev;
3224         struct se_cmd *cmd_p, *cmd_tmp;
3225         int new_active_tasks = 0;
3226
3227         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3228                 atomic_dec(&dev->simple_cmds);
3229                 smp_mb__after_atomic_dec();
3230                 dev->dev_cur_ordered_id++;
3231                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3232                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3233                         cmd->se_ordered_id);
3234         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3235                 dev->dev_cur_ordered_id++;
3236                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3237                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3238                         cmd->se_ordered_id);
3239         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3240                 atomic_dec(&dev->dev_ordered_sync);
3241                 smp_mb__after_atomic_dec();
3242
3243                 dev->dev_cur_ordered_id++;
3244                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3245                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3246         }
3247         /*
3248          * Process all commands up to the last received
3249          * ORDERED task attribute which requires another blocking
3250          * boundary
3251          */
3252         spin_lock(&dev->delayed_cmd_lock);
3253         list_for_each_entry_safe(cmd_p, cmd_tmp,
3254                         &dev->delayed_cmd_list, se_delayed_node) {
3255
3256                 list_del(&cmd_p->se_delayed_node);
3257                 spin_unlock(&dev->delayed_cmd_lock);
3258
3259                 pr_debug("Calling add_tasks() for"
3260                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3261                         " Dormant -> Active, se_ordered_id: %u\n",
3262                         cmd_p->t_task_cdb[0],
3263                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3264
3265                 transport_add_tasks_from_cmd(cmd_p);
3266                 new_active_tasks++;
3267
3268                 spin_lock(&dev->delayed_cmd_lock);
3269                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3270                         break;
3271         }
3272         spin_unlock(&dev->delayed_cmd_lock);
3273         /*
3274          * If new tasks have become active, wake up the transport thread
3275          * to do the processing of the Active tasks.
3276          */
3277         if (new_active_tasks != 0)
3278                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3279 }
3280
3281 static void transport_complete_qf(struct se_cmd *cmd)
3282 {
3283         int ret = 0;
3284
3285         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3286                 transport_complete_task_attr(cmd);
3287
3288         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3289                 ret = cmd->se_tfo->queue_status(cmd);
3290                 if (ret)
3291                         goto out;
3292         }
3293
3294         switch (cmd->data_direction) {
3295         case DMA_FROM_DEVICE:
3296                 ret = cmd->se_tfo->queue_data_in(cmd);
3297                 break;
3298         case DMA_TO_DEVICE:
3299                 if (cmd->t_bidi_data_sg) {
3300                         ret = cmd->se_tfo->queue_data_in(cmd);
3301                         if (ret < 0)
3302                                 break;
3303                 }
3304                 /* Fall through for DMA_TO_DEVICE */
3305         case DMA_NONE:
3306                 ret = cmd->se_tfo->queue_status(cmd);
3307                 break;
3308         default:
3309                 break;
3310         }
3311
3312 out:
3313         if (ret < 0) {
3314                 transport_handle_queue_full(cmd, cmd->se_dev);
3315                 return;
3316         }
3317         transport_lun_remove_cmd(cmd);
3318         transport_cmd_check_stop_to_fabric(cmd);
3319 }
3320
3321 static void transport_handle_queue_full(
3322         struct se_cmd *cmd,
3323         struct se_device *dev)
3324 {
3325         spin_lock_irq(&dev->qf_cmd_lock);
3326         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3327         atomic_inc(&dev->dev_qf_count);
3328         smp_mb__after_atomic_inc();
3329         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3330
3331         schedule_work(&cmd->se_dev->qf_work_queue);
3332 }
3333
3334 static void target_complete_ok_work(struct work_struct *work)
3335 {
3336         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3337         int reason = 0, ret;
3338
3339         /*
3340          * Check if we need to move delayed/dormant tasks from cmds on the
3341          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3342          * Attribute.
3343          */
3344         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3345                 transport_complete_task_attr(cmd);
3346         /*
3347          * Check to schedule QUEUE_FULL work, or execute an existing
3348          * cmd->transport_qf_callback()
3349          */
3350         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3351                 schedule_work(&cmd->se_dev->qf_work_queue);
3352
3353         /*
3354          * Check if we need to retrieve a sense buffer from
3355          * the struct se_cmd in question.
3356          */
3357         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3358                 if (transport_get_sense_data(cmd) < 0)
3359                         reason = TCM_NON_EXISTENT_LUN;
3360
3361                 /*
3362                  * Only set when an struct se_task->task_scsi_status returned
3363                  * a non GOOD status.
3364                  */
3365                 if (cmd->scsi_status) {
3366                         ret = transport_send_check_condition_and_sense(
3367                                         cmd, reason, 1);
3368                         if (ret == -EAGAIN || ret == -ENOMEM)
3369                                 goto queue_full;
3370
3371                         transport_lun_remove_cmd(cmd);
3372                         transport_cmd_check_stop_to_fabric(cmd);
3373                         return;
3374                 }
3375         }
3376         /*
3377          * Check for a callback, used by amongst other things
3378          * XDWRITE_READ_10 emulation.
3379          */
3380         if (cmd->transport_complete_callback)
3381                 cmd->transport_complete_callback(cmd);
3382
3383         switch (cmd->data_direction) {
3384         case DMA_FROM_DEVICE:
3385                 spin_lock(&cmd->se_lun->lun_sep_lock);
3386                 if (cmd->se_lun->lun_sep) {
3387                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3388                                         cmd->data_length;
3389                 }
3390                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3391
3392                 ret = cmd->se_tfo->queue_data_in(cmd);
3393                 if (ret == -EAGAIN || ret == -ENOMEM)
3394                         goto queue_full;
3395                 break;
3396         case DMA_TO_DEVICE:
3397                 spin_lock(&cmd->se_lun->lun_sep_lock);
3398                 if (cmd->se_lun->lun_sep) {
3399                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3400                                 cmd->data_length;
3401                 }
3402                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3403                 /*
3404                  * Check if we need to send READ payload for BIDI-COMMAND
3405                  */
3406                 if (cmd->t_bidi_data_sg) {
3407                         spin_lock(&cmd->se_lun->lun_sep_lock);
3408                         if (cmd->se_lun->lun_sep) {
3409                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3410                                         cmd->data_length;
3411                         }
3412                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3413                         ret = cmd->se_tfo->queue_data_in(cmd);
3414                         if (ret == -EAGAIN || ret == -ENOMEM)
3415                                 goto queue_full;
3416                         break;
3417                 }
3418                 /* Fall through for DMA_TO_DEVICE */
3419         case DMA_NONE:
3420                 ret = cmd->se_tfo->queue_status(cmd);
3421                 if (ret == -EAGAIN || ret == -ENOMEM)
3422                         goto queue_full;
3423                 break;
3424         default:
3425                 break;
3426         }
3427
3428         transport_lun_remove_cmd(cmd);
3429         transport_cmd_check_stop_to_fabric(cmd);
3430         return;
3431
3432 queue_full:
3433         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3434                 " data_direction: %d\n", cmd, cmd->data_direction);
3435         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3436         transport_handle_queue_full(cmd, cmd->se_dev);
3437 }
3438
3439 static void transport_free_dev_tasks(struct se_cmd *cmd)
3440 {
3441         struct se_task *task, *task_tmp;
3442         unsigned long flags;
3443         LIST_HEAD(dispose_list);
3444
3445         spin_lock_irqsave(&cmd->t_state_lock, flags);
3446         list_for_each_entry_safe(task, task_tmp,
3447                                 &cmd->t_task_list, t_list) {
3448                 if (!(task->task_flags & TF_ACTIVE))
3449                         list_move_tail(&task->t_list, &dispose_list);
3450         }
3451         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3452
3453         while (!list_empty(&dispose_list)) {
3454                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3455
3456                 list_del(&task->t_list);
3457                 cmd->se_dev->transport->free_task(task);
3458         }
3459 }
3460
3461 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3462 {
3463         struct scatterlist *sg;
3464         int count;
3465
3466         for_each_sg(sgl, sg, nents, count)
3467                 __free_page(sg_page(sg));
3468
3469         kfree(sgl);
3470 }
3471
3472 static inline void transport_free_pages(struct se_cmd *cmd)
3473 {
3474         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3475                 return;
3476
3477         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3478         cmd->t_data_sg = NULL;
3479         cmd->t_data_nents = 0;
3480
3481         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3482         cmd->t_bidi_data_sg = NULL;
3483         cmd->t_bidi_data_nents = 0;
3484 }
3485
3486 /**
3487  * transport_release_cmd - free a command
3488  * @cmd:       command to free
3489  *
3490  * This routine unconditionally frees a command, and reference counting
3491  * or list removal must be done in the caller.
3492  */
3493 static void transport_release_cmd(struct se_cmd *cmd)
3494 {
3495         BUG_ON(!cmd->se_tfo);
3496
3497         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3498                 core_tmr_release_req(cmd->se_tmr_req);
3499         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3500                 kfree(cmd->t_task_cdb);
3501         /*
3502          * If this cmd has been setup with target_get_sess_cmd(), drop
3503          * the kref and call ->release_cmd() in kref callback.
3504          */
3505          if (cmd->check_release != 0) {
3506                 target_put_sess_cmd(cmd->se_sess, cmd);
3507                 return;
3508         }
3509         cmd->se_tfo->release_cmd(cmd);
3510 }
3511
3512 /**
3513  * transport_put_cmd - release a reference to a command
3514  * @cmd:       command to release
3515  *
3516  * This routine releases our reference to the command and frees it if possible.
3517  */
3518 static void transport_put_cmd(struct se_cmd *cmd)
3519 {
3520         unsigned long flags;
3521         int free_tasks = 0;
3522
3523         spin_lock_irqsave(&cmd->t_state_lock, flags);
3524         if (atomic_read(&cmd->t_fe_count)) {
3525                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3526                         goto out_busy;
3527         }
3528
3529         if (atomic_read(&cmd->t_se_count)) {
3530                 if (!atomic_dec_and_test(&cmd->t_se_count))
3531                         goto out_busy;
3532         }
3533
3534         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3535                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3536                 transport_all_task_dev_remove_state(cmd);
3537                 free_tasks = 1;
3538         }
3539         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3540
3541         if (free_tasks != 0)
3542                 transport_free_dev_tasks(cmd);
3543
3544         transport_free_pages(cmd);
3545         transport_release_cmd(cmd);
3546         return;
3547 out_busy:
3548         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3549 }
3550
3551 /*
3552  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3553  * allocating in the core.
3554  * @cmd:  Associated se_cmd descriptor
3555  * @mem:  SGL style memory for TCM WRITE / READ
3556  * @sg_mem_num: Number of SGL elements
3557  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3558  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3559  *
3560  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3561  * of parameters.
3562  */
3563 int transport_generic_map_mem_to_cmd(
3564         struct se_cmd *cmd,
3565         struct scatterlist *sgl,
3566         u32 sgl_count,
3567         struct scatterlist *sgl_bidi,
3568         u32 sgl_bidi_count)
3569 {
3570         if (!sgl || !sgl_count)
3571                 return 0;
3572
3573         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3574             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3575                 /*
3576                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3577                  * scatterlists already have been set to follow what the fabric
3578                  * passes for the original expected data transfer length.
3579                  */
3580                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3581                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3582                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3583                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3584                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3585                         return -EINVAL;
3586                 }
3587
3588                 cmd->t_data_sg = sgl;
3589                 cmd->t_data_nents = sgl_count;
3590
3591                 if (sgl_bidi && sgl_bidi_count) {
3592                         cmd->t_bidi_data_sg = sgl_bidi;
3593                         cmd->t_bidi_data_nents = sgl_bidi_count;
3594                 }
3595                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3596         }
3597
3598         return 0;
3599 }
3600 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3601
3602 void *transport_kmap_data_sg(struct se_cmd *cmd)
3603 {
3604         struct scatterlist *sg = cmd->t_data_sg;
3605         struct page **pages;
3606         int i;
3607
3608         BUG_ON(!sg);
3609         /*
3610          * We need to take into account a possible offset here for fabrics like
3611          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3612          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3613          */
3614         if (!cmd->t_data_nents)
3615                 return NULL;
3616         else if (cmd->t_data_nents == 1)
3617                 return kmap(sg_page(sg)) + sg->offset;
3618
3619         /* >1 page. use vmap */
3620         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3621         if (!pages)
3622                 return NULL;
3623
3624         /* convert sg[] to pages[] */
3625         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3626                 pages[i] = sg_page(sg);
3627         }
3628
3629         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3630         kfree(pages);
3631         if (!cmd->t_data_vmap)
3632                 return NULL;
3633
3634         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3635 }
3636 EXPORT_SYMBOL(transport_kmap_data_sg);
3637
3638 void transport_kunmap_data_sg(struct se_cmd *cmd)
3639 {
3640         if (!cmd->t_data_nents) {
3641                 return;
3642         } else if (cmd->t_data_nents == 1) {
3643                 kunmap(sg_page(cmd->t_data_sg));
3644                 return;
3645         }
3646
3647         vunmap(cmd->t_data_vmap);
3648         cmd->t_data_vmap = NULL;
3649 }
3650 EXPORT_SYMBOL(transport_kunmap_data_sg);
3651
3652 static int
3653 transport_generic_get_mem(struct se_cmd *cmd)
3654 {
3655         u32 length = cmd->data_length;
3656         unsigned int nents;
3657         struct page *page;
3658         gfp_t zero_flag;
3659         int i = 0;
3660
3661         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3662         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3663         if (!cmd->t_data_sg)
3664                 return -ENOMEM;
3665
3666         cmd->t_data_nents = nents;
3667         sg_init_table(cmd->t_data_sg, nents);
3668
3669         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3670
3671         while (length) {
3672                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3673                 page = alloc_page(GFP_KERNEL | zero_flag);
3674                 if (!page)
3675                         goto out;
3676
3677                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3678                 length -= page_len;
3679                 i++;
3680         }
3681         return 0;
3682
3683 out:
3684         while (i >= 0) {
3685                 __free_page(sg_page(&cmd->t_data_sg[i]));
3686                 i--;
3687         }
3688         kfree(cmd->t_data_sg);
3689         cmd->t_data_sg = NULL;
3690         return -ENOMEM;
3691 }
3692
3693 /* Reduce sectors if they are too long for the device */
3694 static inline sector_t transport_limit_task_sectors(
3695         struct se_device *dev,
3696         unsigned long long lba,
3697         sector_t sectors)
3698 {
3699         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3700
3701         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3702                 if ((lba + sectors) > transport_dev_end_lba(dev))
3703                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3704
3705         return sectors;
3706 }
3707
3708 /*
3709  * Break up cmd into chunks transport can handle
3710  */
3711 static int
3712 transport_allocate_data_tasks(struct se_cmd *cmd,
3713         enum dma_data_direction data_direction,
3714         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3715 {
3716         struct se_device *dev = cmd->se_dev;
3717         struct se_dev_attrib *attr = &dev->se_sub_dev->se_dev_attrib;
3718         sector_t sectors;
3719         struct se_task *task;
3720         unsigned long flags;
3721
3722         if (transport_cmd_get_valid_sectors(cmd) < 0)
3723                 return -EINVAL;
3724
3725         sectors = DIV_ROUND_UP(cmd->data_length, attr->block_size);
3726
3727         BUG_ON(cmd->data_length % attr->block_size);
3728         BUG_ON(sectors > attr->max_sectors);
3729
3730         task = transport_generic_get_task(cmd, data_direction);
3731         if (!task)
3732                 return -ENOMEM;
3733
3734         task->task_sg = cmd_sg;
3735         task->task_sg_nents = sgl_nents;
3736         task->task_size = cmd->data_length;
3737
3738         task->task_lba = cmd->t_task_lba;
3739         task->task_sectors = sectors;
3740
3741         spin_lock_irqsave(&cmd->t_state_lock, flags);
3742         list_add_tail(&task->t_list, &cmd->t_task_list);
3743         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3744
3745         return 1;
3746 }
3747
3748 static int
3749 transport_allocate_control_task(struct se_cmd *cmd)
3750 {
3751         struct se_task *task;
3752         unsigned long flags;
3753
3754         /* Workaround for handling zero-length control CDBs */
3755         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3756             !cmd->data_length)
3757                 return 0;
3758
3759         task = transport_generic_get_task(cmd, cmd->data_direction);
3760         if (!task)
3761                 return -ENOMEM;
3762
3763         task->task_sg = cmd->t_data_sg;
3764         task->task_size = cmd->data_length;
3765         task->task_sg_nents = cmd->t_data_nents;
3766
3767         spin_lock_irqsave(&cmd->t_state_lock, flags);
3768         list_add_tail(&task->t_list, &cmd->t_task_list);
3769         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3770
3771         /* Success! Return number of tasks allocated */
3772         return 1;
3773 }
3774
3775 /*
3776  * Allocate any required resources to execute the command.  For writes we
3777  * might not have the payload yet, so notify the fabric via a call to
3778  * ->write_pending instead. Otherwise place it on the execution queue.
3779  */
3780 int transport_generic_new_cmd(struct se_cmd *cmd)
3781 {
3782         struct se_device *dev = cmd->se_dev;
3783         int task_cdbs, task_cdbs_bidi = 0;
3784         int set_counts = 1;
3785         int ret = 0;
3786
3787         /*
3788          * Determine is the TCM fabric module has already allocated physical
3789          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3790          * beforehand.
3791          */
3792         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3793             cmd->data_length) {
3794                 ret = transport_generic_get_mem(cmd);
3795                 if (ret < 0)
3796                         goto out_fail;
3797         }
3798
3799         /*
3800          * For BIDI command set up the read tasks first.
3801          */
3802         if (cmd->t_bidi_data_sg &&
3803             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3804                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3805
3806                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3807                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3808                                 cmd->t_bidi_data_nents);
3809                 if (task_cdbs_bidi <= 0)
3810                         goto out_fail;
3811
3812                 atomic_inc(&cmd->t_fe_count);
3813                 atomic_inc(&cmd->t_se_count);
3814                 set_counts = 0;
3815         }
3816
3817         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3818                 task_cdbs = transport_allocate_data_tasks(cmd,
3819                                         cmd->data_direction, cmd->t_data_sg,
3820                                         cmd->t_data_nents);
3821         } else {
3822                 task_cdbs = transport_allocate_control_task(cmd);
3823         }
3824
3825         if (task_cdbs < 0)
3826                 goto out_fail;
3827         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3828                 spin_lock_irq(&cmd->t_state_lock);
3829                 cmd->t_state = TRANSPORT_COMPLETE;
3830                 cmd->transport_state |= CMD_T_ACTIVE;
3831                 spin_unlock_irq(&cmd->t_state_lock);
3832
3833                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3834                         u8 ua_asc = 0, ua_ascq = 0;
3835
3836                         core_scsi3_ua_clear_for_request_sense(cmd,
3837                                         &ua_asc, &ua_ascq);
3838                 }
3839
3840                 INIT_WORK(&cmd->work, target_complete_ok_work);
3841                 queue_work(target_completion_wq, &cmd->work);
3842                 return 0;
3843         }
3844
3845         if (set_counts) {
3846                 atomic_inc(&cmd->t_fe_count);
3847                 atomic_inc(&cmd->t_se_count);
3848         }
3849
3850         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3851         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3852         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3853
3854         /*
3855          * For WRITEs, let the fabric know its buffer is ready..
3856          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3857          * will be added to the struct se_device execution queue after its WRITE
3858          * data has arrived. (ie: It gets handled by the transport processing
3859          * thread a second time)
3860          */
3861         if (cmd->data_direction == DMA_TO_DEVICE) {
3862                 transport_add_tasks_to_state_queue(cmd);
3863                 return transport_generic_write_pending(cmd);
3864         }
3865         /*
3866          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3867          * to the execution queue.
3868          */
3869         transport_execute_tasks(cmd);
3870         return 0;
3871
3872 out_fail:
3873         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3874         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3875         return -EINVAL;
3876 }
3877 EXPORT_SYMBOL(transport_generic_new_cmd);
3878
3879 /*      transport_generic_process_write():
3880  *
3881  *
3882  */
3883 void transport_generic_process_write(struct se_cmd *cmd)
3884 {
3885         transport_execute_tasks(cmd);
3886 }
3887 EXPORT_SYMBOL(transport_generic_process_write);
3888
3889 static void transport_write_pending_qf(struct se_cmd *cmd)
3890 {
3891         int ret;
3892
3893         ret = cmd->se_tfo->write_pending(cmd);
3894         if (ret == -EAGAIN || ret == -ENOMEM) {
3895                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3896                          cmd);
3897                 transport_handle_queue_full(cmd, cmd->se_dev);
3898         }
3899 }
3900
3901 static int transport_generic_write_pending(struct se_cmd *cmd)
3902 {
3903         unsigned long flags;
3904         int ret;
3905
3906         spin_lock_irqsave(&cmd->t_state_lock, flags);
3907         cmd->t_state = TRANSPORT_WRITE_PENDING;
3908         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3909
3910         /*
3911          * Clear the se_cmd for WRITE_PENDING status in order to set
3912          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3913          * from HW target mode interrupt code.  This is safe to be called
3914          * with transport_off=1 before the cmd->se_tfo->write_pending
3915          * because the se_cmd->se_lun pointer is not being cleared.
3916          */
3917         transport_cmd_check_stop(cmd, 1, 0);
3918
3919         /*
3920          * Call the fabric write_pending function here to let the
3921          * frontend know that WRITE buffers are ready.
3922          */
3923         ret = cmd->se_tfo->write_pending(cmd);
3924         if (ret == -EAGAIN || ret == -ENOMEM)
3925                 goto queue_full;
3926         else if (ret < 0)
3927                 return ret;
3928
3929         return 1;
3930
3931 queue_full:
3932         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3933         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3934         transport_handle_queue_full(cmd, cmd->se_dev);
3935         return 0;
3936 }
3937
3938 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3939 {
3940         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3941                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3942                          transport_wait_for_tasks(cmd);
3943
3944                 transport_release_cmd(cmd);
3945         } else {
3946                 if (wait_for_tasks)
3947                         transport_wait_for_tasks(cmd);
3948
3949                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3950
3951                 if (cmd->se_lun)
3952                         transport_lun_remove_cmd(cmd);
3953
3954                 transport_free_dev_tasks(cmd);
3955
3956                 transport_put_cmd(cmd);
3957         }
3958 }
3959 EXPORT_SYMBOL(transport_generic_free_cmd);
3960
3961 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3962  * @se_sess:    session to reference
3963  * @se_cmd:     command descriptor to add
3964  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3965  */
3966 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3967                         bool ack_kref)
3968 {
3969         unsigned long flags;
3970
3971         kref_init(&se_cmd->cmd_kref);
3972         /*
3973          * Add a second kref if the fabric caller is expecting to handle
3974          * fabric acknowledgement that requires two target_put_sess_cmd()
3975          * invocations before se_cmd descriptor release.
3976          */
3977         if (ack_kref == true) {
3978                 kref_get(&se_cmd->cmd_kref);
3979                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3980         }
3981
3982         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3983         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3984         se_cmd->check_release = 1;
3985         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3986 }
3987 EXPORT_SYMBOL(target_get_sess_cmd);
3988
3989 static void target_release_cmd_kref(struct kref *kref)
3990 {
3991         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3992         struct se_session *se_sess = se_cmd->se_sess;
3993         unsigned long flags;
3994
3995         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3996         if (list_empty(&se_cmd->se_cmd_list)) {
3997                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3998                 se_cmd->se_tfo->release_cmd(se_cmd);
3999                 return;
4000         }
4001         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4002                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4003                 complete(&se_cmd->cmd_wait_comp);
4004                 return;
4005         }
4006         list_del(&se_cmd->se_cmd_list);
4007         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4008
4009         se_cmd->se_tfo->release_cmd(se_cmd);
4010 }
4011
4012 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4013  * @se_sess:    session to reference
4014  * @se_cmd:     command descriptor to drop
4015  */
4016 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4017 {
4018         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4019 }
4020 EXPORT_SYMBOL(target_put_sess_cmd);
4021
4022 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4023  * @se_sess:    session to split
4024  */
4025 void target_splice_sess_cmd_list(struct se_session *se_sess)
4026 {
4027         struct se_cmd *se_cmd;
4028         unsigned long flags;
4029
4030         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4031         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4032
4033         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4034         se_sess->sess_tearing_down = 1;
4035
4036         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4037
4038         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4039                 se_cmd->cmd_wait_set = 1;
4040
4041         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4042 }
4043 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4044
4045 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4046  * @se_sess:    session to wait for active I/O
4047  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4048  */
4049 void target_wait_for_sess_cmds(
4050         struct se_session *se_sess,
4051         int wait_for_tasks)
4052 {
4053         struct se_cmd *se_cmd, *tmp_cmd;
4054         bool rc = false;
4055
4056         list_for_each_entry_safe(se_cmd, tmp_cmd,
4057                                 &se_sess->sess_wait_list, se_cmd_list) {
4058                 list_del(&se_cmd->se_cmd_list);
4059
4060                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4061                         " %d\n", se_cmd, se_cmd->t_state,
4062                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4063
4064                 if (wait_for_tasks) {
4065                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4066                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4067                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4068
4069                         rc = transport_wait_for_tasks(se_cmd);
4070
4071                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4072                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4073                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4074                 }
4075
4076                 if (!rc) {
4077                         wait_for_completion(&se_cmd->cmd_wait_comp);
4078                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4079                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4080                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4081                 }
4082
4083                 se_cmd->se_tfo->release_cmd(se_cmd);
4084         }
4085 }
4086 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4087
4088 /*      transport_lun_wait_for_tasks():
4089  *
4090  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4091  *      an struct se_lun to be successfully shutdown.
4092  */
4093 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4094 {
4095         unsigned long flags;
4096         int ret;
4097         /*
4098          * If the frontend has already requested this struct se_cmd to
4099          * be stopped, we can safely ignore this struct se_cmd.
4100          */
4101         spin_lock_irqsave(&cmd->t_state_lock, flags);
4102         if (cmd->transport_state & CMD_T_STOP) {
4103                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4104
4105                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4106                          cmd->se_tfo->get_task_tag(cmd));
4107                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4108                 transport_cmd_check_stop(cmd, 1, 0);
4109                 return -EPERM;
4110         }
4111         cmd->transport_state |= CMD_T_LUN_FE_STOP;
4112         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4113
4114         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4115
4116         ret = transport_stop_tasks_for_cmd(cmd);
4117
4118         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4119                         " %d\n", cmd, cmd->t_task_list_num, ret);
4120         if (!ret) {
4121                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4122                                 cmd->se_tfo->get_task_tag(cmd));
4123                 wait_for_completion(&cmd->transport_lun_stop_comp);
4124                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4125                                 cmd->se_tfo->get_task_tag(cmd));
4126         }
4127         transport_remove_cmd_from_queue(cmd);
4128
4129         return 0;
4130 }
4131
4132 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4133 {
4134         struct se_cmd *cmd = NULL;
4135         unsigned long lun_flags, cmd_flags;
4136         /*
4137          * Do exception processing and return CHECK_CONDITION status to the
4138          * Initiator Port.
4139          */
4140         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4141         while (!list_empty(&lun->lun_cmd_list)) {
4142                 cmd = list_first_entry(&lun->lun_cmd_list,
4143                        struct se_cmd, se_lun_node);
4144                 list_del_init(&cmd->se_lun_node);
4145
4146                 /*
4147                  * This will notify iscsi_target_transport.c:
4148                  * transport_cmd_check_stop() that a LUN shutdown is in
4149                  * progress for the iscsi_cmd_t.
4150                  */
4151                 spin_lock(&cmd->t_state_lock);
4152                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4153                         "_lun_stop for  ITT: 0x%08x\n",
4154                         cmd->se_lun->unpacked_lun,
4155                         cmd->se_tfo->get_task_tag(cmd));
4156                 cmd->transport_state |= CMD_T_LUN_STOP;
4157                 spin_unlock(&cmd->t_state_lock);
4158
4159                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4160
4161                 if (!cmd->se_lun) {
4162                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4163                                 cmd->se_tfo->get_task_tag(cmd),
4164                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4165                         BUG();
4166                 }
4167                 /*
4168                  * If the Storage engine still owns the iscsi_cmd_t, determine
4169                  * and/or stop its context.
4170                  */
4171                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4172                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4173                         cmd->se_tfo->get_task_tag(cmd));
4174
4175                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4176                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4177                         continue;
4178                 }
4179
4180                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4181                         "_wait_for_tasks(): SUCCESS\n",
4182                         cmd->se_lun->unpacked_lun,
4183                         cmd->se_tfo->get_task_tag(cmd));
4184
4185                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4186                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4187                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4188                         goto check_cond;
4189                 }
4190                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4191                 transport_all_task_dev_remove_state(cmd);
4192                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4193
4194                 transport_free_dev_tasks(cmd);
4195                 /*
4196                  * The Storage engine stopped this struct se_cmd before it was
4197                  * send to the fabric frontend for delivery back to the
4198                  * Initiator Node.  Return this SCSI CDB back with an
4199                  * CHECK_CONDITION status.
4200                  */
4201 check_cond:
4202                 transport_send_check_condition_and_sense(cmd,
4203                                 TCM_NON_EXISTENT_LUN, 0);
4204                 /*
4205                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4206                  * be released, notify the waiting thread now that LU has
4207                  * finished accessing it.
4208                  */
4209                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4210                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4211                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4212                                 " struct se_cmd: %p ITT: 0x%08x\n",
4213                                 lun->unpacked_lun,
4214                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4215
4216                         spin_unlock_irqrestore(&cmd->t_state_lock,
4217                                         cmd_flags);
4218                         transport_cmd_check_stop(cmd, 1, 0);
4219                         complete(&cmd->transport_lun_fe_stop_comp);
4220                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4221                         continue;
4222                 }
4223                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4224                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4225
4226                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4227                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4228         }
4229         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4230 }
4231
4232 static int transport_clear_lun_thread(void *p)
4233 {
4234         struct se_lun *lun = p;
4235
4236         __transport_clear_lun_from_sessions(lun);
4237         complete(&lun->lun_shutdown_comp);
4238
4239         return 0;
4240 }
4241
4242 int transport_clear_lun_from_sessions(struct se_lun *lun)
4243 {
4244         struct task_struct *kt;
4245
4246         kt = kthread_run(transport_clear_lun_thread, lun,
4247                         "tcm_cl_%u", lun->unpacked_lun);
4248         if (IS_ERR(kt)) {
4249                 pr_err("Unable to start clear_lun thread\n");
4250                 return PTR_ERR(kt);
4251         }
4252         wait_for_completion(&lun->lun_shutdown_comp);
4253
4254         return 0;
4255 }
4256
4257 /**
4258  * transport_wait_for_tasks - wait for completion to occur
4259  * @cmd:        command to wait
4260  *
4261  * Called from frontend fabric context to wait for storage engine
4262  * to pause and/or release frontend generated struct se_cmd.
4263  */
4264 bool transport_wait_for_tasks(struct se_cmd *cmd)
4265 {
4266         unsigned long flags;
4267
4268         spin_lock_irqsave(&cmd->t_state_lock, flags);
4269         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4270             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4271                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4272                 return false;
4273         }
4274         /*
4275          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4276          * has been set in transport_set_supported_SAM_opcode().
4277          */
4278         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4279             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4280                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4281                 return false;
4282         }
4283         /*
4284          * If we are already stopped due to an external event (ie: LUN shutdown)
4285          * sleep until the connection can have the passed struct se_cmd back.
4286          * The cmd->transport_lun_stopped_sem will be upped by
4287          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4288          * has completed its operation on the struct se_cmd.
4289          */
4290         if (cmd->transport_state & CMD_T_LUN_STOP) {
4291                 pr_debug("wait_for_tasks: Stopping"
4292                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4293                         "_stop_comp); for ITT: 0x%08x\n",
4294                         cmd->se_tfo->get_task_tag(cmd));
4295                 /*
4296                  * There is a special case for WRITES where a FE exception +
4297                  * LUN shutdown means ConfigFS context is still sleeping on
4298                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4299                  * We go ahead and up transport_lun_stop_comp just to be sure
4300                  * here.
4301                  */
4302                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4303                 complete(&cmd->transport_lun_stop_comp);
4304                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4305                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4306
4307                 transport_all_task_dev_remove_state(cmd);
4308                 /*
4309                  * At this point, the frontend who was the originator of this
4310                  * struct se_cmd, now owns the structure and can be released through
4311                  * normal means below.
4312                  */
4313                 pr_debug("wait_for_tasks: Stopped"
4314                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4315                         "stop_comp); for ITT: 0x%08x\n",
4316                         cmd->se_tfo->get_task_tag(cmd));
4317
4318                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4319         }
4320
4321         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4322                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4323                 return false;
4324         }
4325
4326         cmd->transport_state |= CMD_T_STOP;
4327
4328         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4329                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4330                 cmd, cmd->se_tfo->get_task_tag(cmd),
4331                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4332
4333         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4334
4335         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4336
4337         wait_for_completion(&cmd->t_transport_stop_comp);
4338
4339         spin_lock_irqsave(&cmd->t_state_lock, flags);
4340         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4341
4342         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4343                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4344                 cmd->se_tfo->get_task_tag(cmd));
4345
4346         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4347
4348         return true;
4349 }
4350 EXPORT_SYMBOL(transport_wait_for_tasks);
4351
4352 static int transport_get_sense_codes(
4353         struct se_cmd *cmd,
4354         u8 *asc,
4355         u8 *ascq)
4356 {
4357         *asc = cmd->scsi_asc;
4358         *ascq = cmd->scsi_ascq;
4359
4360         return 0;
4361 }
4362
4363 static int transport_set_sense_codes(
4364         struct se_cmd *cmd,
4365         u8 asc,
4366         u8 ascq)
4367 {
4368         cmd->scsi_asc = asc;
4369         cmd->scsi_ascq = ascq;
4370
4371         return 0;
4372 }
4373
4374 int transport_send_check_condition_and_sense(
4375         struct se_cmd *cmd,
4376         u8 reason,
4377         int from_transport)
4378 {
4379         unsigned char *buffer = cmd->sense_buffer;
4380         unsigned long flags;
4381         int offset;
4382         u8 asc = 0, ascq = 0;
4383
4384         spin_lock_irqsave(&cmd->t_state_lock, flags);
4385         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4386                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4387                 return 0;
4388         }
4389         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4390         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4391
4392         if (!reason && from_transport)
4393                 goto after_reason;
4394
4395         if (!from_transport)
4396                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4397         /*
4398          * Data Segment and SenseLength of the fabric response PDU.
4399          *
4400          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4401          * from include/scsi/scsi_cmnd.h
4402          */
4403         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4404                                 TRANSPORT_SENSE_BUFFER);
4405         /*
4406          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4407          * SENSE KEY values from include/scsi/scsi.h
4408          */
4409         switch (reason) {
4410         case TCM_NON_EXISTENT_LUN:
4411                 /* CURRENT ERROR */
4412                 buffer[offset] = 0x70;
4413                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4414                 /* ILLEGAL REQUEST */
4415                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4416                 /* LOGICAL UNIT NOT SUPPORTED */
4417                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4418                 break;
4419         case TCM_UNSUPPORTED_SCSI_OPCODE:
4420         case TCM_SECTOR_COUNT_TOO_MANY:
4421                 /* CURRENT ERROR */
4422                 buffer[offset] = 0x70;
4423                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4424                 /* ILLEGAL REQUEST */
4425                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4426                 /* INVALID COMMAND OPERATION CODE */
4427                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4428                 break;
4429         case TCM_UNKNOWN_MODE_PAGE:
4430                 /* CURRENT ERROR */
4431                 buffer[offset] = 0x70;
4432                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4433                 /* ILLEGAL REQUEST */
4434                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4435                 /* INVALID FIELD IN CDB */
4436                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4437                 break;
4438         case TCM_CHECK_CONDITION_ABORT_CMD:
4439                 /* CURRENT ERROR */
4440                 buffer[offset] = 0x70;
4441                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4442                 /* ABORTED COMMAND */
4443                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4444                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4445                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4446                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4447                 break;
4448         case TCM_INCORRECT_AMOUNT_OF_DATA:
4449                 /* CURRENT ERROR */
4450                 buffer[offset] = 0x70;
4451                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4452                 /* ABORTED COMMAND */
4453                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4454                 /* WRITE ERROR */
4455                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4456                 /* NOT ENOUGH UNSOLICITED DATA */
4457                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4458                 break;
4459         case TCM_INVALID_CDB_FIELD:
4460                 /* CURRENT ERROR */
4461                 buffer[offset] = 0x70;
4462                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4463                 /* ILLEGAL REQUEST */
4464                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4465                 /* INVALID FIELD IN CDB */
4466                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4467                 break;
4468         case TCM_INVALID_PARAMETER_LIST:
4469                 /* CURRENT ERROR */
4470                 buffer[offset] = 0x70;
4471                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4472                 /* ILLEGAL REQUEST */
4473                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4474                 /* INVALID FIELD IN PARAMETER LIST */
4475                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4476                 break;
4477         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4478                 /* CURRENT ERROR */
4479                 buffer[offset] = 0x70;
4480                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4481                 /* ABORTED COMMAND */
4482                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4483                 /* WRITE ERROR */
4484                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4485                 /* UNEXPECTED_UNSOLICITED_DATA */
4486                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4487                 break;
4488         case TCM_SERVICE_CRC_ERROR:
4489                 /* CURRENT ERROR */
4490                 buffer[offset] = 0x70;
4491                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4492                 /* ABORTED COMMAND */
4493                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4494                 /* PROTOCOL SERVICE CRC ERROR */
4495                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4496                 /* N/A */
4497                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4498                 break;
4499         case TCM_SNACK_REJECTED:
4500                 /* CURRENT ERROR */
4501                 buffer[offset] = 0x70;
4502                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4503                 /* ABORTED COMMAND */
4504                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4505                 /* READ ERROR */
4506                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4507                 /* FAILED RETRANSMISSION REQUEST */
4508                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4509                 break;
4510         case TCM_WRITE_PROTECTED:
4511                 /* CURRENT ERROR */
4512                 buffer[offset] = 0x70;
4513                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4514                 /* DATA PROTECT */
4515                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4516                 /* WRITE PROTECTED */
4517                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4518                 break;
4519         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4520                 /* CURRENT ERROR */
4521                 buffer[offset] = 0x70;
4522                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4523                 /* UNIT ATTENTION */
4524                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4525                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4526                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4527                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4528                 break;
4529         case TCM_CHECK_CONDITION_NOT_READY:
4530                 /* CURRENT ERROR */
4531                 buffer[offset] = 0x70;
4532                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4533                 /* Not Ready */
4534                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4535                 transport_get_sense_codes(cmd, &asc, &ascq);
4536                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4537                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4538                 break;
4539         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4540         default:
4541                 /* CURRENT ERROR */
4542                 buffer[offset] = 0x70;
4543                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4544                 /* ILLEGAL REQUEST */
4545                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4546                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4547                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4548                 break;
4549         }
4550         /*
4551          * This code uses linux/include/scsi/scsi.h SAM status codes!
4552          */
4553         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4554         /*
4555          * Automatically padded, this value is encoded in the fabric's
4556          * data_length response PDU containing the SCSI defined sense data.
4557          */
4558         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4559
4560 after_reason:
4561         return cmd->se_tfo->queue_status(cmd);
4562 }
4563 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4564
4565 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4566 {
4567         int ret = 0;
4568
4569         if (cmd->transport_state & CMD_T_ABORTED) {
4570                 if (!send_status ||
4571                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4572                         return 1;
4573
4574                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4575                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4576                         cmd->t_task_cdb[0],
4577                         cmd->se_tfo->get_task_tag(cmd));
4578
4579                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4580                 cmd->se_tfo->queue_status(cmd);
4581                 ret = 1;
4582         }
4583         return ret;
4584 }
4585 EXPORT_SYMBOL(transport_check_aborted_status);
4586
4587 void transport_send_task_abort(struct se_cmd *cmd)
4588 {
4589         unsigned long flags;
4590
4591         spin_lock_irqsave(&cmd->t_state_lock, flags);
4592         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4593                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4594                 return;
4595         }
4596         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4597
4598         /*
4599          * If there are still expected incoming fabric WRITEs, we wait
4600          * until until they have completed before sending a TASK_ABORTED
4601          * response.  This response with TASK_ABORTED status will be
4602          * queued back to fabric module by transport_check_aborted_status().
4603          */
4604         if (cmd->data_direction == DMA_TO_DEVICE) {
4605                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4606                         cmd->transport_state |= CMD_T_ABORTED;
4607                         smp_mb__after_atomic_inc();
4608                 }
4609         }
4610         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4611
4612         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4613                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4614                 cmd->se_tfo->get_task_tag(cmd));
4615
4616         cmd->se_tfo->queue_status(cmd);
4617 }
4618
4619 static int transport_generic_do_tmr(struct se_cmd *cmd)
4620 {
4621         struct se_device *dev = cmd->se_dev;
4622         struct se_tmr_req *tmr = cmd->se_tmr_req;
4623         int ret;
4624
4625         switch (tmr->function) {
4626         case TMR_ABORT_TASK:
4627                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4628                 break;
4629         case TMR_ABORT_TASK_SET:
4630         case TMR_CLEAR_ACA:
4631         case TMR_CLEAR_TASK_SET:
4632                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4633                 break;
4634         case TMR_LUN_RESET:
4635                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4636                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4637                                          TMR_FUNCTION_REJECTED;
4638                 break;
4639         case TMR_TARGET_WARM_RESET:
4640                 tmr->response = TMR_FUNCTION_REJECTED;
4641                 break;
4642         case TMR_TARGET_COLD_RESET:
4643                 tmr->response = TMR_FUNCTION_REJECTED;
4644                 break;
4645         default:
4646                 pr_err("Uknown TMR function: 0x%02x.\n",
4647                                 tmr->function);
4648                 tmr->response = TMR_FUNCTION_REJECTED;
4649                 break;
4650         }
4651
4652         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4653         cmd->se_tfo->queue_tm_rsp(cmd);
4654
4655         transport_cmd_check_stop_to_fabric(cmd);
4656         return 0;
4657 }
4658
4659 /*      transport_processing_thread():
4660  *
4661  *
4662  */
4663 static int transport_processing_thread(void *param)
4664 {
4665         int ret;
4666         struct se_cmd *cmd;
4667         struct se_device *dev = param;
4668
4669         while (!kthread_should_stop()) {
4670                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4671                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4672                                 kthread_should_stop());
4673                 if (ret < 0)
4674                         goto out;
4675
4676 get_cmd:
4677                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4678                 if (!cmd)
4679                         continue;
4680
4681                 switch (cmd->t_state) {
4682                 case TRANSPORT_NEW_CMD:
4683                         BUG();
4684                         break;
4685                 case TRANSPORT_NEW_CMD_MAP:
4686                         if (!cmd->se_tfo->new_cmd_map) {
4687                                 pr_err("cmd->se_tfo->new_cmd_map is"
4688                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4689                                 BUG();
4690                         }
4691                         ret = cmd->se_tfo->new_cmd_map(cmd);
4692                         if (ret < 0) {
4693                                 transport_generic_request_failure(cmd);
4694                                 break;
4695                         }
4696                         ret = transport_generic_new_cmd(cmd);
4697                         if (ret < 0) {
4698                                 transport_generic_request_failure(cmd);
4699                                 break;
4700                         }
4701                         break;
4702                 case TRANSPORT_PROCESS_WRITE:
4703                         transport_generic_process_write(cmd);
4704                         break;
4705                 case TRANSPORT_PROCESS_TMR:
4706                         transport_generic_do_tmr(cmd);
4707                         break;
4708                 case TRANSPORT_COMPLETE_QF_WP:
4709                         transport_write_pending_qf(cmd);
4710                         break;
4711                 case TRANSPORT_COMPLETE_QF_OK:
4712                         transport_complete_qf(cmd);
4713                         break;
4714                 default:
4715                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4716                                 "i_state: %d on SE LUN: %u\n",
4717                                 cmd->t_state,
4718                                 cmd->se_tfo->get_task_tag(cmd),
4719                                 cmd->se_tfo->get_cmd_state(cmd),
4720                                 cmd->se_lun->unpacked_lun);
4721                         BUG();
4722                 }
4723
4724                 goto get_cmd;
4725         }
4726
4727 out:
4728         WARN_ON(!list_empty(&dev->state_task_list));
4729         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4730         dev->process_thread = NULL;
4731         return 0;
4732 }