Merge tag 'v3.10-rc1' into stable/for-linus-3.10
[firefly-linux-kernel-4.4.55.git] / drivers / staging / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the licence that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  *
12  * Project home: http://compcache.googlecode.com
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
46 {
47         spin_lock(&zram->stat64_lock);
48         *v = *v + inc;
49         spin_unlock(&zram->stat64_lock);
50 }
51
52 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
53 {
54         spin_lock(&zram->stat64_lock);
55         *v = *v - dec;
56         spin_unlock(&zram->stat64_lock);
57 }
58
59 static void zram_stat64_inc(struct zram *zram, u64 *v)
60 {
61         zram_stat64_add(zram, v, 1);
62 }
63
64 static int zram_test_flag(struct zram_meta *meta, u32 index,
65                         enum zram_pageflags flag)
66 {
67         return meta->table[index].flags & BIT(flag);
68 }
69
70 static void zram_set_flag(struct zram_meta *meta, u32 index,
71                         enum zram_pageflags flag)
72 {
73         meta->table[index].flags |= BIT(flag);
74 }
75
76 static void zram_clear_flag(struct zram_meta *meta, u32 index,
77                         enum zram_pageflags flag)
78 {
79         meta->table[index].flags &= ~BIT(flag);
80 }
81
82 static int page_zero_filled(void *ptr)
83 {
84         unsigned int pos;
85         unsigned long *page;
86
87         page = (unsigned long *)ptr;
88
89         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
90                 if (page[pos])
91                         return 0;
92         }
93
94         return 1;
95 }
96
97 static void zram_free_page(struct zram *zram, size_t index)
98 {
99         struct zram_meta *meta = zram->meta;
100         unsigned long handle = meta->table[index].handle;
101         u16 size = meta->table[index].size;
102
103         if (unlikely(!handle)) {
104                 /*
105                  * No memory is allocated for zero filled pages.
106                  * Simply clear zero page flag.
107                  */
108                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
109                         zram_clear_flag(meta, index, ZRAM_ZERO);
110                         zram->stats.pages_zero--;
111                 }
112                 return;
113         }
114
115         if (unlikely(size > max_zpage_size))
116                 zram->stats.bad_compress--;
117
118         zs_free(meta->mem_pool, handle);
119
120         if (size <= PAGE_SIZE / 2)
121                 zram->stats.good_compress--;
122
123         zram_stat64_sub(zram, &zram->stats.compr_size,
124                         meta->table[index].size);
125         zram->stats.pages_stored--;
126
127         meta->table[index].handle = 0;
128         meta->table[index].size = 0;
129 }
130
131 static void handle_zero_page(struct bio_vec *bvec)
132 {
133         struct page *page = bvec->bv_page;
134         void *user_mem;
135
136         user_mem = kmap_atomic(page);
137         memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
138         kunmap_atomic(user_mem);
139
140         flush_dcache_page(page);
141 }
142
143 static inline int is_partial_io(struct bio_vec *bvec)
144 {
145         return bvec->bv_len != PAGE_SIZE;
146 }
147
148 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
149 {
150         int ret = LZO_E_OK;
151         size_t clen = PAGE_SIZE;
152         unsigned char *cmem;
153         struct zram_meta *meta = zram->meta;
154         unsigned long handle = meta->table[index].handle;
155
156         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
157                 memset(mem, 0, PAGE_SIZE);
158                 return 0;
159         }
160
161         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
162         if (meta->table[index].size == PAGE_SIZE)
163                 memcpy(mem, cmem, PAGE_SIZE);
164         else
165                 ret = lzo1x_decompress_safe(cmem, meta->table[index].size,
166                                                 mem, &clen);
167         zs_unmap_object(meta->mem_pool, handle);
168
169         /* Should NEVER happen. Return bio error if it does. */
170         if (unlikely(ret != LZO_E_OK)) {
171                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
172                 zram_stat64_inc(zram, &zram->stats.failed_reads);
173                 return ret;
174         }
175
176         return 0;
177 }
178
179 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
180                           u32 index, int offset, struct bio *bio)
181 {
182         int ret;
183         struct page *page;
184         unsigned char *user_mem, *uncmem = NULL;
185         struct zram_meta *meta = zram->meta;
186         page = bvec->bv_page;
187
188         if (unlikely(!meta->table[index].handle) ||
189                         zram_test_flag(meta, index, ZRAM_ZERO)) {
190                 handle_zero_page(bvec);
191                 return 0;
192         }
193
194         if (is_partial_io(bvec))
195                 /* Use  a temporary buffer to decompress the page */
196                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
197
198         user_mem = kmap_atomic(page);
199         if (!is_partial_io(bvec))
200                 uncmem = user_mem;
201
202         if (!uncmem) {
203                 pr_info("Unable to allocate temp memory\n");
204                 ret = -ENOMEM;
205                 goto out_cleanup;
206         }
207
208         ret = zram_decompress_page(zram, uncmem, index);
209         /* Should NEVER happen. Return bio error if it does. */
210         if (unlikely(ret != LZO_E_OK))
211                 goto out_cleanup;
212
213         if (is_partial_io(bvec))
214                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
215                                 bvec->bv_len);
216
217         flush_dcache_page(page);
218         ret = 0;
219 out_cleanup:
220         kunmap_atomic(user_mem);
221         if (is_partial_io(bvec))
222                 kfree(uncmem);
223         return ret;
224 }
225
226 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
227                            int offset)
228 {
229         int ret = 0;
230         size_t clen;
231         unsigned long handle;
232         struct page *page;
233         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
234         struct zram_meta *meta = zram->meta;
235
236         page = bvec->bv_page;
237         src = meta->compress_buffer;
238
239         if (is_partial_io(bvec)) {
240                 /*
241                  * This is a partial IO. We need to read the full page
242                  * before to write the changes.
243                  */
244                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
245                 if (!uncmem) {
246                         ret = -ENOMEM;
247                         goto out;
248                 }
249                 ret = zram_decompress_page(zram, uncmem, index);
250                 if (ret)
251                         goto out;
252         }
253
254         /*
255          * System overwrites unused sectors. Free memory associated
256          * with this sector now.
257          */
258         if (meta->table[index].handle ||
259             zram_test_flag(meta, index, ZRAM_ZERO))
260                 zram_free_page(zram, index);
261
262         user_mem = kmap_atomic(page);
263
264         if (is_partial_io(bvec)) {
265                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
266                        bvec->bv_len);
267                 kunmap_atomic(user_mem);
268                 user_mem = NULL;
269         } else {
270                 uncmem = user_mem;
271         }
272
273         if (page_zero_filled(uncmem)) {
274                 kunmap_atomic(user_mem);
275                 if (is_partial_io(bvec))
276                         kfree(uncmem);
277                 zram->stats.pages_zero++;
278                 zram_set_flag(meta, index, ZRAM_ZERO);
279                 ret = 0;
280                 goto out;
281         }
282
283         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
284                                meta->compress_workmem);
285
286         if (!is_partial_io(bvec)) {
287                 kunmap_atomic(user_mem);
288                 user_mem = NULL;
289                 uncmem = NULL;
290         }
291
292         if (unlikely(ret != LZO_E_OK)) {
293                 pr_err("Compression failed! err=%d\n", ret);
294                 goto out;
295         }
296
297         if (unlikely(clen > max_zpage_size)) {
298                 zram->stats.bad_compress++;
299                 clen = PAGE_SIZE;
300                 src = NULL;
301                 if (is_partial_io(bvec))
302                         src = uncmem;
303         }
304
305         handle = zs_malloc(meta->mem_pool, clen);
306         if (!handle) {
307                 pr_info("Error allocating memory for compressed "
308                         "page: %u, size=%zu\n", index, clen);
309                 ret = -ENOMEM;
310                 goto out;
311         }
312         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
313
314         if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
315                 src = kmap_atomic(page);
316         memcpy(cmem, src, clen);
317         if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
318                 kunmap_atomic(src);
319
320         zs_unmap_object(meta->mem_pool, handle);
321
322         meta->table[index].handle = handle;
323         meta->table[index].size = clen;
324
325         /* Update stats */
326         zram_stat64_add(zram, &zram->stats.compr_size, clen);
327         zram->stats.pages_stored++;
328         if (clen <= PAGE_SIZE / 2)
329                 zram->stats.good_compress++;
330
331 out:
332         if (is_partial_io(bvec))
333                 kfree(uncmem);
334
335         if (ret)
336                 zram_stat64_inc(zram, &zram->stats.failed_writes);
337         return ret;
338 }
339
340 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
341                         int offset, struct bio *bio, int rw)
342 {
343         int ret;
344
345         if (rw == READ) {
346                 down_read(&zram->lock);
347                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
348                 up_read(&zram->lock);
349         } else {
350                 down_write(&zram->lock);
351                 ret = zram_bvec_write(zram, bvec, index, offset);
352                 up_write(&zram->lock);
353         }
354
355         return ret;
356 }
357
358 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
359 {
360         if (*offset + bvec->bv_len >= PAGE_SIZE)
361                 (*index)++;
362         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
363 }
364
365 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
366 {
367         int i, offset;
368         u32 index;
369         struct bio_vec *bvec;
370
371         switch (rw) {
372         case READ:
373                 zram_stat64_inc(zram, &zram->stats.num_reads);
374                 break;
375         case WRITE:
376                 zram_stat64_inc(zram, &zram->stats.num_writes);
377                 break;
378         }
379
380         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
381         offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
382
383         bio_for_each_segment(bvec, bio, i) {
384                 int max_transfer_size = PAGE_SIZE - offset;
385
386                 if (bvec->bv_len > max_transfer_size) {
387                         /*
388                          * zram_bvec_rw() can only make operation on a single
389                          * zram page. Split the bio vector.
390                          */
391                         struct bio_vec bv;
392
393                         bv.bv_page = bvec->bv_page;
394                         bv.bv_len = max_transfer_size;
395                         bv.bv_offset = bvec->bv_offset;
396
397                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
398                                 goto out;
399
400                         bv.bv_len = bvec->bv_len - max_transfer_size;
401                         bv.bv_offset += max_transfer_size;
402                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
403                                 goto out;
404                 } else
405                         if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
406                             < 0)
407                                 goto out;
408
409                 update_position(&index, &offset, bvec);
410         }
411
412         set_bit(BIO_UPTODATE, &bio->bi_flags);
413         bio_endio(bio, 0);
414         return;
415
416 out:
417         bio_io_error(bio);
418 }
419
420 /*
421  * Check if request is within bounds and aligned on zram logical blocks.
422  */
423 static inline int valid_io_request(struct zram *zram, struct bio *bio)
424 {
425         if (unlikely(
426                 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
427                 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
428                 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
429
430                 return 0;
431         }
432
433         /* I/O request is valid */
434         return 1;
435 }
436
437 /*
438  * Handler function for all zram I/O requests.
439  */
440 static void zram_make_request(struct request_queue *queue, struct bio *bio)
441 {
442         struct zram *zram = queue->queuedata;
443
444         down_read(&zram->init_lock);
445         if (unlikely(!zram->init_done))
446                 goto error;
447
448         if (!valid_io_request(zram, bio)) {
449                 zram_stat64_inc(zram, &zram->stats.invalid_io);
450                 goto error;
451         }
452
453         __zram_make_request(zram, bio, bio_data_dir(bio));
454         up_read(&zram->init_lock);
455
456         return;
457
458 error:
459         up_read(&zram->init_lock);
460         bio_io_error(bio);
461 }
462
463 static void __zram_reset_device(struct zram *zram)
464 {
465         size_t index;
466         struct zram_meta *meta;
467
468         if (!zram->init_done)
469                 return;
470
471         meta = zram->meta;
472         zram->init_done = 0;
473
474         /* Free all pages that are still in this zram device */
475         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
476                 unsigned long handle = meta->table[index].handle;
477                 if (!handle)
478                         continue;
479
480                 zs_free(meta->mem_pool, handle);
481         }
482
483         zram_meta_free(zram->meta);
484         zram->meta = NULL;
485         /* Reset stats */
486         memset(&zram->stats, 0, sizeof(zram->stats));
487
488         zram->disksize = 0;
489         set_capacity(zram->disk, 0);
490 }
491
492 void zram_reset_device(struct zram *zram)
493 {
494         down_write(&zram->init_lock);
495         __zram_reset_device(zram);
496         up_write(&zram->init_lock);
497 }
498
499 void zram_meta_free(struct zram_meta *meta)
500 {
501         zs_destroy_pool(meta->mem_pool);
502         kfree(meta->compress_workmem);
503         free_pages((unsigned long)meta->compress_buffer, 1);
504         vfree(meta->table);
505         kfree(meta);
506 }
507
508 struct zram_meta *zram_meta_alloc(u64 disksize)
509 {
510         size_t num_pages;
511         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
512         if (!meta)
513                 goto out;
514
515         meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
516         if (!meta->compress_workmem)
517                 goto free_meta;
518
519         meta->compress_buffer =
520                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
521         if (!meta->compress_buffer) {
522                 pr_err("Error allocating compressor buffer space\n");
523                 goto free_workmem;
524         }
525
526         num_pages = disksize >> PAGE_SHIFT;
527         meta->table = vzalloc(num_pages * sizeof(*meta->table));
528         if (!meta->table) {
529                 pr_err("Error allocating zram address table\n");
530                 goto free_buffer;
531         }
532
533         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
534         if (!meta->mem_pool) {
535                 pr_err("Error creating memory pool\n");
536                 goto free_table;
537         }
538
539         return meta;
540
541 free_table:
542         vfree(meta->table);
543 free_buffer:
544         free_pages((unsigned long)meta->compress_buffer, 1);
545 free_workmem:
546         kfree(meta->compress_workmem);
547 free_meta:
548         kfree(meta);
549         meta = NULL;
550 out:
551         return meta;
552 }
553
554 void zram_init_device(struct zram *zram, struct zram_meta *meta)
555 {
556         if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
557                 pr_info(
558                 "There is little point creating a zram of greater than "
559                 "twice the size of memory since we expect a 2:1 compression "
560                 "ratio. Note that zram uses about 0.1%% of the size of "
561                 "the disk when not in use so a huge zram is "
562                 "wasteful.\n"
563                 "\tMemory Size: %lu kB\n"
564                 "\tSize you selected: %llu kB\n"
565                 "Continuing anyway ...\n",
566                 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
567                 );
568         }
569
570         /* zram devices sort of resembles non-rotational disks */
571         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
572
573         zram->meta = meta;
574         zram->init_done = 1;
575
576         pr_debug("Initialization done!\n");
577 }
578
579 static void zram_slot_free_notify(struct block_device *bdev,
580                                 unsigned long index)
581 {
582         struct zram *zram;
583
584         zram = bdev->bd_disk->private_data;
585         zram_free_page(zram, index);
586         zram_stat64_inc(zram, &zram->stats.notify_free);
587 }
588
589 static const struct block_device_operations zram_devops = {
590         .swap_slot_free_notify = zram_slot_free_notify,
591         .owner = THIS_MODULE
592 };
593
594 static int create_device(struct zram *zram, int device_id)
595 {
596         int ret = 0;
597
598         init_rwsem(&zram->lock);
599         init_rwsem(&zram->init_lock);
600         spin_lock_init(&zram->stat64_lock);
601
602         zram->queue = blk_alloc_queue(GFP_KERNEL);
603         if (!zram->queue) {
604                 pr_err("Error allocating disk queue for device %d\n",
605                         device_id);
606                 ret = -ENOMEM;
607                 goto out;
608         }
609
610         blk_queue_make_request(zram->queue, zram_make_request);
611         zram->queue->queuedata = zram;
612
613          /* gendisk structure */
614         zram->disk = alloc_disk(1);
615         if (!zram->disk) {
616                 blk_cleanup_queue(zram->queue);
617                 pr_warn("Error allocating disk structure for device %d\n",
618                         device_id);
619                 ret = -ENOMEM;
620                 goto out;
621         }
622
623         zram->disk->major = zram_major;
624         zram->disk->first_minor = device_id;
625         zram->disk->fops = &zram_devops;
626         zram->disk->queue = zram->queue;
627         zram->disk->private_data = zram;
628         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
629
630         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
631         set_capacity(zram->disk, 0);
632
633         /*
634          * To ensure that we always get PAGE_SIZE aligned
635          * and n*PAGE_SIZED sized I/O requests.
636          */
637         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
638         blk_queue_logical_block_size(zram->disk->queue,
639                                         ZRAM_LOGICAL_BLOCK_SIZE);
640         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
641         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
642
643         add_disk(zram->disk);
644
645         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
646                                 &zram_disk_attr_group);
647         if (ret < 0) {
648                 pr_warn("Error creating sysfs group");
649                 goto out;
650         }
651
652         zram->init_done = 0;
653
654 out:
655         return ret;
656 }
657
658 static void destroy_device(struct zram *zram)
659 {
660         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
661                         &zram_disk_attr_group);
662
663         if (zram->disk) {
664                 del_gendisk(zram->disk);
665                 put_disk(zram->disk);
666         }
667
668         if (zram->queue)
669                 blk_cleanup_queue(zram->queue);
670 }
671
672 unsigned int zram_get_num_devices(void)
673 {
674         return num_devices;
675 }
676
677 static int __init zram_init(void)
678 {
679         int ret, dev_id;
680
681         if (num_devices > max_num_devices) {
682                 pr_warn("Invalid value for num_devices: %u\n",
683                                 num_devices);
684                 ret = -EINVAL;
685                 goto out;
686         }
687
688         zram_major = register_blkdev(0, "zram");
689         if (zram_major <= 0) {
690                 pr_warn("Unable to get major number\n");
691                 ret = -EBUSY;
692                 goto out;
693         }
694
695         /* Allocate the device array and initialize each one */
696         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
697         if (!zram_devices) {
698                 ret = -ENOMEM;
699                 goto unregister;
700         }
701
702         for (dev_id = 0; dev_id < num_devices; dev_id++) {
703                 ret = create_device(&zram_devices[dev_id], dev_id);
704                 if (ret)
705                         goto free_devices;
706         }
707
708         pr_info("Created %u device(s) ...\n", num_devices);
709
710         return 0;
711
712 free_devices:
713         while (dev_id)
714                 destroy_device(&zram_devices[--dev_id]);
715         kfree(zram_devices);
716 unregister:
717         unregister_blkdev(zram_major, "zram");
718 out:
719         return ret;
720 }
721
722 static void __exit zram_exit(void)
723 {
724         int i;
725         struct zram *zram;
726
727         for (i = 0; i < num_devices; i++) {
728                 zram = &zram_devices[i];
729
730                 destroy_device(zram);
731                 zram_reset_device(zram);
732         }
733
734         unregister_blkdev(zram_major, "zram");
735
736         kfree(zram_devices);
737         pr_debug("Cleanup done!\n");
738 }
739
740 module_param(num_devices, uint, 0);
741 MODULE_PARM_DESC(num_devices, "Number of zram devices");
742
743 module_init(zram_init);
744 module_exit(zram_exit);
745
746 MODULE_LICENSE("Dual BSD/GPL");
747 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
748 MODULE_DESCRIPTION("Compressed RAM Block Device");