Merge 3.8-rc5 into staging-next
[firefly-linux-kernel-4.4.55.git] / drivers / staging / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the licence that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  *
12  * Project home: http://compcache.googlecode.com
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
46 {
47         spin_lock(&zram->stat64_lock);
48         *v = *v + inc;
49         spin_unlock(&zram->stat64_lock);
50 }
51
52 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
53 {
54         spin_lock(&zram->stat64_lock);
55         *v = *v - dec;
56         spin_unlock(&zram->stat64_lock);
57 }
58
59 static void zram_stat64_inc(struct zram *zram, u64 *v)
60 {
61         zram_stat64_add(zram, v, 1);
62 }
63
64 static int zram_test_flag(struct zram *zram, u32 index,
65                         enum zram_pageflags flag)
66 {
67         return zram->table[index].flags & BIT(flag);
68 }
69
70 static void zram_set_flag(struct zram *zram, u32 index,
71                         enum zram_pageflags flag)
72 {
73         zram->table[index].flags |= BIT(flag);
74 }
75
76 static void zram_clear_flag(struct zram *zram, u32 index,
77                         enum zram_pageflags flag)
78 {
79         zram->table[index].flags &= ~BIT(flag);
80 }
81
82 static int page_zero_filled(void *ptr)
83 {
84         unsigned int pos;
85         unsigned long *page;
86
87         page = (unsigned long *)ptr;
88
89         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
90                 if (page[pos])
91                         return 0;
92         }
93
94         return 1;
95 }
96
97 static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
98 {
99         if (!zram->disksize) {
100                 pr_info(
101                 "disk size not provided. You can use disksize_kb module "
102                 "param to specify size.\nUsing default: (%u%% of RAM).\n",
103                 default_disksize_perc_ram
104                 );
105                 zram->disksize = default_disksize_perc_ram *
106                                         (totalram_bytes / 100);
107         }
108
109         if (zram->disksize > 2 * (totalram_bytes)) {
110                 pr_info(
111                 "There is little point creating a zram of greater than "
112                 "twice the size of memory since we expect a 2:1 compression "
113                 "ratio. Note that zram uses about 0.1%% of the size of "
114                 "the disk when not in use so a huge zram is "
115                 "wasteful.\n"
116                 "\tMemory Size: %zu kB\n"
117                 "\tSize you selected: %llu kB\n"
118                 "Continuing anyway ...\n",
119                 totalram_bytes >> 10, zram->disksize >> 10);
120         }
121
122         zram->disksize &= PAGE_MASK;
123 }
124
125 static void zram_free_page(struct zram *zram, size_t index)
126 {
127         unsigned long handle = zram->table[index].handle;
128         u16 size = zram->table[index].size;
129
130         if (unlikely(!handle)) {
131                 /*
132                  * No memory is allocated for zero filled pages.
133                  * Simply clear zero page flag.
134                  */
135                 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
136                         zram_clear_flag(zram, index, ZRAM_ZERO);
137                         zram->stats.pages_zero--;
138                 }
139                 return;
140         }
141
142         if (unlikely(size > max_zpage_size))
143                 zram->stats.bad_compress--;
144
145         zs_free(zram->mem_pool, handle);
146
147         if (size <= PAGE_SIZE / 2)
148                 zram->stats.good_compress--;
149
150         zram_stat64_sub(zram, &zram->stats.compr_size,
151                         zram->table[index].size);
152         zram->stats.pages_stored--;
153
154         zram->table[index].handle = 0;
155         zram->table[index].size = 0;
156 }
157
158 static void handle_zero_page(struct bio_vec *bvec)
159 {
160         struct page *page = bvec->bv_page;
161         void *user_mem;
162
163         user_mem = kmap_atomic(page);
164         memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
165         kunmap_atomic(user_mem);
166
167         flush_dcache_page(page);
168 }
169
170 static inline int is_partial_io(struct bio_vec *bvec)
171 {
172         return bvec->bv_len != PAGE_SIZE;
173 }
174
175 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
176 {
177         int ret = LZO_E_OK;
178         size_t clen = PAGE_SIZE;
179         unsigned char *cmem;
180         unsigned long handle = zram->table[index].handle;
181
182         if (!handle || zram_test_flag(zram, index, ZRAM_ZERO)) {
183                 memset(mem, 0, PAGE_SIZE);
184                 return 0;
185         }
186
187         cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
188         if (zram->table[index].size == PAGE_SIZE)
189                 memcpy(mem, cmem, PAGE_SIZE);
190         else
191                 ret = lzo1x_decompress_safe(cmem, zram->table[index].size,
192                                                 mem, &clen);
193         zs_unmap_object(zram->mem_pool, handle);
194
195         /* Should NEVER happen. Return bio error if it does. */
196         if (unlikely(ret != LZO_E_OK)) {
197                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
198                 zram_stat64_inc(zram, &zram->stats.failed_reads);
199                 return ret;
200         }
201
202         return 0;
203 }
204
205 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
206                           u32 index, int offset, struct bio *bio)
207 {
208         int ret;
209         struct page *page;
210         unsigned char *user_mem, *uncmem = NULL;
211
212         page = bvec->bv_page;
213
214         if (unlikely(!zram->table[index].handle) ||
215                         zram_test_flag(zram, index, ZRAM_ZERO)) {
216                 handle_zero_page(bvec);
217                 return 0;
218         }
219
220         user_mem = kmap_atomic(page);
221         if (is_partial_io(bvec))
222                 /* Use  a temporary buffer to decompress the page */
223                 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
224         else
225                 uncmem = user_mem;
226
227         if (!uncmem) {
228                 pr_info("Unable to allocate temp memory\n");
229                 ret = -ENOMEM;
230                 goto out_cleanup;
231         }
232
233         ret = zram_decompress_page(zram, uncmem, index);
234         /* Should NEVER happen. Return bio error if it does. */
235         if (unlikely(ret != LZO_E_OK)) {
236                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
237                 zram_stat64_inc(zram, &zram->stats.failed_reads);
238                 goto out_cleanup;
239         }
240
241         if (is_partial_io(bvec))
242                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
243                                 bvec->bv_len);
244
245         flush_dcache_page(page);
246         ret = 0;
247 out_cleanup:
248         kunmap_atomic(user_mem);
249         if (is_partial_io(bvec))
250                 kfree(uncmem);
251         return ret;
252 }
253
254 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
255                            int offset)
256 {
257         int ret = 0;
258         size_t clen;
259         unsigned long handle;
260         struct page *page;
261         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
262
263         page = bvec->bv_page;
264         src = zram->compress_buffer;
265
266         if (is_partial_io(bvec)) {
267                 /*
268                  * This is a partial IO. We need to read the full page
269                  * before to write the changes.
270                  */
271                 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
272                 if (!uncmem) {
273                         pr_info("Error allocating temp memory!\n");
274                         ret = -ENOMEM;
275                         goto out;
276                 }
277                 ret = zram_decompress_page(zram, uncmem, index);
278                 if (ret)
279                         goto out;
280         }
281
282         /*
283          * System overwrites unused sectors. Free memory associated
284          * with this sector now.
285          */
286         if (zram->table[index].handle ||
287             zram_test_flag(zram, index, ZRAM_ZERO))
288                 zram_free_page(zram, index);
289
290         user_mem = kmap_atomic(page);
291
292         if (is_partial_io(bvec)) {
293                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
294                        bvec->bv_len);
295                 kunmap_atomic(user_mem);
296                 user_mem = NULL;
297         } else {
298                 uncmem = user_mem;
299         }
300
301         if (page_zero_filled(uncmem)) {
302                 kunmap_atomic(user_mem);
303                 if (is_partial_io(bvec))
304                         kfree(uncmem);
305                 zram->stats.pages_zero++;
306                 zram_set_flag(zram, index, ZRAM_ZERO);
307                 ret = 0;
308                 goto out;
309         }
310
311         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
312                                zram->compress_workmem);
313
314         if (!is_partial_io(bvec)) {
315                 kunmap_atomic(user_mem);
316                 user_mem = NULL;
317                 uncmem = NULL;
318         }
319
320         if (unlikely(ret != LZO_E_OK)) {
321                 pr_err("Compression failed! err=%d\n", ret);
322                 goto out;
323         }
324
325         if (unlikely(clen > max_zpage_size)) {
326                 zram->stats.bad_compress++;
327                 clen = PAGE_SIZE;
328                 src = NULL;
329                 if (is_partial_io(bvec))
330                         src = uncmem;
331         }
332
333         handle = zs_malloc(zram->mem_pool, clen);
334         if (!handle) {
335                 pr_info("Error allocating memory for compressed "
336                         "page: %u, size=%zu\n", index, clen);
337                 ret = -ENOMEM;
338                 goto out;
339         }
340         cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
341
342         if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
343                 src = kmap_atomic(page);
344         memcpy(cmem, src, clen);
345         if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
346                 kunmap_atomic(src);
347
348         zs_unmap_object(zram->mem_pool, handle);
349
350         zram->table[index].handle = handle;
351         zram->table[index].size = clen;
352
353         /* Update stats */
354         zram_stat64_add(zram, &zram->stats.compr_size, clen);
355         zram->stats.pages_stored++;
356         if (clen <= PAGE_SIZE / 2)
357                 zram->stats.good_compress++;
358
359 out:
360         if (is_partial_io(bvec))
361                 kfree(uncmem);
362
363         if (ret)
364                 zram_stat64_inc(zram, &zram->stats.failed_writes);
365         return ret;
366 }
367
368 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
369                         int offset, struct bio *bio, int rw)
370 {
371         int ret;
372
373         if (rw == READ) {
374                 down_read(&zram->lock);
375                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
376                 up_read(&zram->lock);
377         } else {
378                 down_write(&zram->lock);
379                 ret = zram_bvec_write(zram, bvec, index, offset);
380                 up_write(&zram->lock);
381         }
382
383         return ret;
384 }
385
386 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
387 {
388         if (*offset + bvec->bv_len >= PAGE_SIZE)
389                 (*index)++;
390         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
391 }
392
393 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
394 {
395         int i, offset;
396         u32 index;
397         struct bio_vec *bvec;
398
399         switch (rw) {
400         case READ:
401                 zram_stat64_inc(zram, &zram->stats.num_reads);
402                 break;
403         case WRITE:
404                 zram_stat64_inc(zram, &zram->stats.num_writes);
405                 break;
406         }
407
408         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
409         offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
410
411         bio_for_each_segment(bvec, bio, i) {
412                 int max_transfer_size = PAGE_SIZE - offset;
413
414                 if (bvec->bv_len > max_transfer_size) {
415                         /*
416                          * zram_bvec_rw() can only make operation on a single
417                          * zram page. Split the bio vector.
418                          */
419                         struct bio_vec bv;
420
421                         bv.bv_page = bvec->bv_page;
422                         bv.bv_len = max_transfer_size;
423                         bv.bv_offset = bvec->bv_offset;
424
425                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
426                                 goto out;
427
428                         bv.bv_len = bvec->bv_len - max_transfer_size;
429                         bv.bv_offset += max_transfer_size;
430                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
431                                 goto out;
432                 } else
433                         if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
434                             < 0)
435                                 goto out;
436
437                 update_position(&index, &offset, bvec);
438         }
439
440         set_bit(BIO_UPTODATE, &bio->bi_flags);
441         bio_endio(bio, 0);
442         return;
443
444 out:
445         bio_io_error(bio);
446 }
447
448 /*
449  * Check if request is within bounds and aligned on zram logical blocks.
450  */
451 static inline int valid_io_request(struct zram *zram, struct bio *bio)
452 {
453         if (unlikely(
454                 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
455                 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
456                 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
457
458                 return 0;
459         }
460
461         /* I/O request is valid */
462         return 1;
463 }
464
465 /*
466  * Handler function for all zram I/O requests.
467  */
468 static void zram_make_request(struct request_queue *queue, struct bio *bio)
469 {
470         struct zram *zram = queue->queuedata;
471
472         if (unlikely(!zram->init_done) && zram_init_device(zram))
473                 goto error;
474
475         down_read(&zram->init_lock);
476         if (unlikely(!zram->init_done))
477                 goto error_unlock;
478
479         if (!valid_io_request(zram, bio)) {
480                 zram_stat64_inc(zram, &zram->stats.invalid_io);
481                 goto error_unlock;
482         }
483
484         __zram_make_request(zram, bio, bio_data_dir(bio));
485         up_read(&zram->init_lock);
486
487         return;
488
489 error_unlock:
490         up_read(&zram->init_lock);
491 error:
492         bio_io_error(bio);
493 }
494
495 void __zram_reset_device(struct zram *zram)
496 {
497         size_t index;
498
499         zram->init_done = 0;
500
501         /* Free various per-device buffers */
502         kfree(zram->compress_workmem);
503         free_pages((unsigned long)zram->compress_buffer, 1);
504
505         zram->compress_workmem = NULL;
506         zram->compress_buffer = NULL;
507
508         /* Free all pages that are still in this zram device */
509         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
510                 unsigned long handle = zram->table[index].handle;
511                 if (!handle)
512                         continue;
513
514                 zs_free(zram->mem_pool, handle);
515         }
516
517         vfree(zram->table);
518         zram->table = NULL;
519
520         zs_destroy_pool(zram->mem_pool);
521         zram->mem_pool = NULL;
522
523         /* Reset stats */
524         memset(&zram->stats, 0, sizeof(zram->stats));
525
526         zram->disksize = 0;
527 }
528
529 void zram_reset_device(struct zram *zram)
530 {
531         down_write(&zram->init_lock);
532         __zram_reset_device(zram);
533         up_write(&zram->init_lock);
534 }
535
536 int zram_init_device(struct zram *zram)
537 {
538         int ret;
539         size_t num_pages;
540
541         down_write(&zram->init_lock);
542
543         if (zram->init_done) {
544                 up_write(&zram->init_lock);
545                 return 0;
546         }
547
548         zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
549
550         zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
551         if (!zram->compress_workmem) {
552                 pr_err("Error allocating compressor working memory!\n");
553                 ret = -ENOMEM;
554                 goto fail_no_table;
555         }
556
557         zram->compress_buffer =
558                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
559         if (!zram->compress_buffer) {
560                 pr_err("Error allocating compressor buffer space\n");
561                 ret = -ENOMEM;
562                 goto fail_no_table;
563         }
564
565         num_pages = zram->disksize >> PAGE_SHIFT;
566         zram->table = vzalloc(num_pages * sizeof(*zram->table));
567         if (!zram->table) {
568                 pr_err("Error allocating zram address table\n");
569                 ret = -ENOMEM;
570                 goto fail_no_table;
571         }
572
573         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
574
575         /* zram devices sort of resembles non-rotational disks */
576         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
577
578         zram->mem_pool = zs_create_pool("zram", GFP_NOIO | __GFP_HIGHMEM);
579         if (!zram->mem_pool) {
580                 pr_err("Error creating memory pool\n");
581                 ret = -ENOMEM;
582                 goto fail;
583         }
584
585         zram->init_done = 1;
586         up_write(&zram->init_lock);
587
588         pr_debug("Initialization done!\n");
589         return 0;
590
591 fail_no_table:
592         /* To prevent accessing table entries during cleanup */
593         zram->disksize = 0;
594 fail:
595         __zram_reset_device(zram);
596         up_write(&zram->init_lock);
597         pr_err("Initialization failed: err=%d\n", ret);
598         return ret;
599 }
600
601 static void zram_slot_free_notify(struct block_device *bdev,
602                                 unsigned long index)
603 {
604         struct zram *zram;
605
606         zram = bdev->bd_disk->private_data;
607         zram_free_page(zram, index);
608         zram_stat64_inc(zram, &zram->stats.notify_free);
609 }
610
611 static const struct block_device_operations zram_devops = {
612         .swap_slot_free_notify = zram_slot_free_notify,
613         .owner = THIS_MODULE
614 };
615
616 static int create_device(struct zram *zram, int device_id)
617 {
618         int ret = 0;
619
620         init_rwsem(&zram->lock);
621         init_rwsem(&zram->init_lock);
622         spin_lock_init(&zram->stat64_lock);
623
624         zram->queue = blk_alloc_queue(GFP_KERNEL);
625         if (!zram->queue) {
626                 pr_err("Error allocating disk queue for device %d\n",
627                         device_id);
628                 ret = -ENOMEM;
629                 goto out;
630         }
631
632         blk_queue_make_request(zram->queue, zram_make_request);
633         zram->queue->queuedata = zram;
634
635          /* gendisk structure */
636         zram->disk = alloc_disk(1);
637         if (!zram->disk) {
638                 blk_cleanup_queue(zram->queue);
639                 pr_warn("Error allocating disk structure for device %d\n",
640                         device_id);
641                 ret = -ENOMEM;
642                 goto out;
643         }
644
645         zram->disk->major = zram_major;
646         zram->disk->first_minor = device_id;
647         zram->disk->fops = &zram_devops;
648         zram->disk->queue = zram->queue;
649         zram->disk->private_data = zram;
650         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
651
652         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
653         set_capacity(zram->disk, 0);
654
655         /*
656          * To ensure that we always get PAGE_SIZE aligned
657          * and n*PAGE_SIZED sized I/O requests.
658          */
659         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
660         blk_queue_logical_block_size(zram->disk->queue,
661                                         ZRAM_LOGICAL_BLOCK_SIZE);
662         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
663         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
664
665         add_disk(zram->disk);
666
667         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
668                                 &zram_disk_attr_group);
669         if (ret < 0) {
670                 pr_warn("Error creating sysfs group");
671                 goto out;
672         }
673
674         zram->init_done = 0;
675
676 out:
677         return ret;
678 }
679
680 static void destroy_device(struct zram *zram)
681 {
682         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
683                         &zram_disk_attr_group);
684
685         if (zram->disk) {
686                 del_gendisk(zram->disk);
687                 put_disk(zram->disk);
688         }
689
690         if (zram->queue)
691                 blk_cleanup_queue(zram->queue);
692 }
693
694 unsigned int zram_get_num_devices(void)
695 {
696         return num_devices;
697 }
698
699 static int __init zram_init(void)
700 {
701         int ret, dev_id;
702
703         if (num_devices > max_num_devices) {
704                 pr_warn("Invalid value for num_devices: %u\n",
705                                 num_devices);
706                 ret = -EINVAL;
707                 goto out;
708         }
709
710         zram_major = register_blkdev(0, "zram");
711         if (zram_major <= 0) {
712                 pr_warn("Unable to get major number\n");
713                 ret = -EBUSY;
714                 goto out;
715         }
716
717         /* Allocate the device array and initialize each one */
718         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
719         if (!zram_devices) {
720                 ret = -ENOMEM;
721                 goto unregister;
722         }
723
724         for (dev_id = 0; dev_id < num_devices; dev_id++) {
725                 ret = create_device(&zram_devices[dev_id], dev_id);
726                 if (ret)
727                         goto free_devices;
728         }
729
730         pr_info("Created %u device(s) ...\n", num_devices);
731
732         return 0;
733
734 free_devices:
735         while (dev_id)
736                 destroy_device(&zram_devices[--dev_id]);
737         kfree(zram_devices);
738 unregister:
739         unregister_blkdev(zram_major, "zram");
740 out:
741         return ret;
742 }
743
744 static void __exit zram_exit(void)
745 {
746         int i;
747         struct zram *zram;
748
749         for (i = 0; i < num_devices; i++) {
750                 zram = &zram_devices[i];
751
752                 destroy_device(zram);
753                 if (zram->init_done)
754                         zram_reset_device(zram);
755         }
756
757         unregister_blkdev(zram_major, "zram");
758
759         kfree(zram_devices);
760         pr_debug("Cleanup done!\n");
761 }
762
763 module_param(num_devices, uint, 0);
764 MODULE_PARM_DESC(num_devices, "Number of zram devices");
765
766 module_init(zram_init);
767 module_exit(zram_exit);
768
769 MODULE_LICENSE("Dual BSD/GPL");
770 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
771 MODULE_DESCRIPTION("Compressed RAM Block Device");