Merge branch 'drm-intel-next' of git://git.kernel.org/pub/scm/linux/kernel/git/anholt...
[firefly-linux-kernel-4.4.55.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 *   The contents of this file are subject to the Mozilla Public
11 *   License Version 1.1 (the "License"); you may not use this file
12 *   except in compliance with the License. You may obtain a copy of
13 *   the License at http://www.mozilla.org/MPL/
14 *
15 *   Software distributed under the License is distributed on an "AS
16 *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 *   implied. See the License for the specific language governing
18 *   rights and limitations under the License.
19 *
20 *   Alternatively, the contents of this file may be used under the
21 *   terms of the GNU Public License version 2 (the "GPL"), in which
22 *   case the provisions of the GPL are applicable instead of the
23 *   above.  If you wish to allow the use of your version of this file
24 *   only under the terms of the GPL and not to allow others to use
25 *   your version of this file under the MPL, indicate your decision
26 *   by deleting the provisions above and replace them with the notice
27 *   and other provisions required by the GPL.  If you do not delete
28 *   the provisions above, a recipient may use your version of this
29 *   file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction.  The lowest level functions are simply C-callable wrappers
52 * around the register accesses.  The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable.  The next higher layer implements common sequences
55 * of invokations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx      Highest level abstractions provided by the
59 *                       hfa384x code.  They are driver defined wrappers
60 *                       for common sequences.  These functions generally
61 *                       use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
64 *                       functions are wrappers for the RID get/set
65 *                       sequence. They  call copy_[to|from]_bap() and
66 *                       cmd_access().   These functions operate on the
67 *                       RIDs and buffers without validation.  The caller
68 *                       is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx       functions that provide access to the f/w commands.
72 *                       The function arguments correspond to each command
73 *                       argument, even command arguments that get packed
74 *                       into single registers.  These functions _just_
75 *                       issue the command by setting the cmd/parm regs
76 *                       & reading the status/resp regs.  Additional
77 *                       activities required to fully use a command
78 *                       (read/write from/to bap, get/set int status etc.)
79 *                       are implemented separately.  Think of these as
80 *                       C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx     These functions implement the sequence required
84 *                       to issue any prism2 command.  Primarily used by the
85 *                       hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx       BAP read/write access functions.
88 *                       Note: we usually use BAP0 for non-interrupt context
89 *                        and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx        download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo.  The four
96 * functions are create(), destroy(), start(), and stop().  create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up.  The start() function gets
99 * the actual hardware running and enables the interrupts.  The stop()
100 * function shuts the hardware down.  The sequence should be:
101 * create()
102 * start()
103 *  .
104 *  .  Do interesting things w/ the hardware
105 *  .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <asm/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <asm/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u,f)  usb_submit_urb(u,f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144         DOWAIT = 0,
145         DOASYNC
146 };
147 typedef enum cmd_mode CMD_MODE;
148
149 #define THROTTLE_JIFFIES        (HZ/8)
150 #define URB_ASYNC_UNLINK 0
151 #define USB_QUEUE_BULK 0
152
153 #define ROUNDUP64(a) (((a)+63)&~63)
154
155 #ifdef DEBUG_USB
156 static void dbprint_urb(struct urb *urb);
157 #endif
158
159 static void
160 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
161
162 static void hfa384x_usb_defer(struct work_struct *data);
163
164 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
165
166 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
167
168 /*---------------------------------------------------*/
169 /* Callbacks */
170 static void hfa384x_usbout_callback(struct urb *urb);
171 static void hfa384x_ctlxout_callback(struct urb *urb);
172 static void hfa384x_usbin_callback(struct urb *urb);
173
174 static void
175 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
176
177 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
178
179 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
180
181 static void
182 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
183
184 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
185                                int urb_status);
186
187 /*---------------------------------------------------*/
188 /* Functions to support the prism2 usb command queue */
189
190 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
191
192 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
193
194 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
195
196 static void hfa384x_usb_throttlefn(unsigned long data);
197
198 static void hfa384x_usbctlx_completion_task(unsigned long data);
199
200 static void hfa384x_usbctlx_reaper_task(unsigned long data);
201
202 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
203
204 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
205
206 struct usbctlx_completor {
207         int (*complete) (struct usbctlx_completor *);
208 };
209 typedef struct usbctlx_completor usbctlx_completor_t;
210
211 static int
212 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
213                               hfa384x_usbctlx_t *ctlx,
214                               usbctlx_completor_t *completor);
215
216 static int
217 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
218
219 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
222
223 static int
224 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
225                    hfa384x_cmdresult_t *result);
226
227 static void
228 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
229                        hfa384x_rridresult_t *result);
230
231 /*---------------------------------------------------*/
232 /* Low level req/resp CTLX formatters and submitters */
233 static int
234 hfa384x_docmd(hfa384x_t *hw,
235               CMD_MODE mode,
236               hfa384x_metacmd_t *cmd,
237               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
238
239 static int
240 hfa384x_dorrid(hfa384x_t *hw,
241                CMD_MODE mode,
242                u16 rid,
243                void *riddata,
244                unsigned int riddatalen,
245                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
246
247 static int
248 hfa384x_dowrid(hfa384x_t *hw,
249                CMD_MODE mode,
250                u16 rid,
251                void *riddata,
252                unsigned int riddatalen,
253                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
254
255 static int
256 hfa384x_dormem(hfa384x_t *hw,
257                CMD_MODE mode,
258                u16 page,
259                u16 offset,
260                void *data,
261                unsigned int len,
262                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
263
264 static int
265 hfa384x_dowmem(hfa384x_t *hw,
266                CMD_MODE mode,
267                u16 page,
268                u16 offset,
269                void *data,
270                unsigned int len,
271                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
272
273 static int hfa384x_isgood_pdrcode(u16 pdrcode);
274
275 static inline const char *ctlxstr(CTLX_STATE s)
276 {
277         static const char *ctlx_str[] = {
278                 "Initial state",
279                 "Complete",
280                 "Request failed",
281                 "Request pending",
282                 "Request packet submitted",
283                 "Request packet completed",
284                 "Response packet completed"
285         };
286
287         return ctlx_str[s];
288 };
289
290 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw)
291 {
292         return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
293 }
294
295 #ifdef DEBUG_USB
296 void dbprint_urb(struct urb *urb)
297 {
298         pr_debug("urb->pipe=0x%08x\n", urb->pipe);
299         pr_debug("urb->status=0x%08x\n", urb->status);
300         pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
301         pr_debug("urb->transfer_buffer=0x%08x\n",
302                  (unsigned int)urb->transfer_buffer);
303         pr_debug("urb->transfer_buffer_length=0x%08x\n",
304                  urb->transfer_buffer_length);
305         pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
306         pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
307         pr_debug("urb->setup_packet(ctl)=0x%08x\n",
308                  (unsigned int)urb->setup_packet);
309         pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
310         pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
311         pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
312         pr_debug("urb->timeout=0x%08x\n", urb->timeout);
313         pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
314         pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
315 }
316 #endif
317
318 /*----------------------------------------------------------------
319 * submit_rx_urb
320 *
321 * Listen for input data on the BULK-IN pipe. If the pipe has
322 * stalled then schedule it to be reset.
323 *
324 * Arguments:
325 *       hw              device struct
326 *       memflags        memory allocation flags
327 *
328 * Returns:
329 *       error code from submission
330 *
331 * Call context:
332 *       Any
333 ----------------------------------------------------------------*/
334 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
335 {
336         struct sk_buff *skb;
337         int result;
338
339         skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
340         if (skb == NULL) {
341                 result = -ENOMEM;
342                 goto done;
343         }
344
345         /* Post the IN urb */
346         usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
347                           hw->endp_in,
348                           skb->data, sizeof(hfa384x_usbin_t),
349                           hfa384x_usbin_callback, hw->wlandev);
350
351         hw->rx_urb_skb = skb;
352
353         result = -ENOLINK;
354         if (!hw->wlandev->hwremoved && !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
355                 result = SUBMIT_URB(&hw->rx_urb, memflags);
356
357                 /* Check whether we need to reset the RX pipe */
358                 if (result == -EPIPE) {
359                         printk(KERN_WARNING
360                                "%s rx pipe stalled: requesting reset\n",
361                                hw->wlandev->netdev->name);
362                         if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
363                                 schedule_work(&hw->usb_work);
364                 }
365         }
366
367         /* Don't leak memory if anything should go wrong */
368         if (result != 0) {
369                 dev_kfree_skb(skb);
370                 hw->rx_urb_skb = NULL;
371         }
372
373 done:
374         return result;
375 }
376
377 /*----------------------------------------------------------------
378 * submit_tx_urb
379 *
380 * Prepares and submits the URB of transmitted data. If the
381 * submission fails then it will schedule the output pipe to
382 * be reset.
383 *
384 * Arguments:
385 *       hw              device struct
386 *       tx_urb          URB of data for tranmission
387 *       memflags        memory allocation flags
388 *
389 * Returns:
390 *       error code from submission
391 *
392 * Call context:
393 *       Any
394 ----------------------------------------------------------------*/
395 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
396 {
397         struct net_device *netdev = hw->wlandev->netdev;
398         int result;
399
400         result = -ENOLINK;
401         if (netif_running(netdev)) {
402
403                 if (!hw->wlandev->hwremoved
404                     && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
405                         result = SUBMIT_URB(tx_urb, memflags);
406
407                         /* Test whether we need to reset the TX pipe */
408                         if (result == -EPIPE) {
409                                 printk(KERN_WARNING
410                                        "%s tx pipe stalled: requesting reset\n",
411                                        netdev->name);
412                                 set_bit(WORK_TX_HALT, &hw->usb_flags);
413                                 schedule_work(&hw->usb_work);
414                         } else if (result == 0) {
415                                 netif_stop_queue(netdev);
416                         }
417                 }
418         }
419
420         return result;
421 }
422
423 /*----------------------------------------------------------------
424 * hfa394x_usb_defer
425 *
426 * There are some things that the USB stack cannot do while
427 * in interrupt context, so we arrange this function to run
428 * in process context.
429 *
430 * Arguments:
431 *       hw      device structure
432 *
433 * Returns:
434 *       nothing
435 *
436 * Call context:
437 *       process (by design)
438 ----------------------------------------------------------------*/
439 static void hfa384x_usb_defer(struct work_struct *data)
440 {
441         hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
442         struct net_device *netdev = hw->wlandev->netdev;
443
444         /* Don't bother trying to reset anything if the plug
445          * has been pulled ...
446          */
447         if (hw->wlandev->hwremoved)
448                 return;
449
450         /* Reception has stopped: try to reset the input pipe */
451         if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
452                 int ret;
453
454                 usb_kill_urb(&hw->rx_urb);      /* Cannot be holding spinlock! */
455
456                 ret = usb_clear_halt(hw->usb, hw->endp_in);
457                 if (ret != 0) {
458                         printk(KERN_ERR
459                                "Failed to clear rx pipe for %s: err=%d\n",
460                                netdev->name, ret);
461                 } else {
462                         printk(KERN_INFO "%s rx pipe reset complete.\n",
463                                netdev->name);
464                         clear_bit(WORK_RX_HALT, &hw->usb_flags);
465                         set_bit(WORK_RX_RESUME, &hw->usb_flags);
466                 }
467         }
468
469         /* Resume receiving data back from the device. */
470         if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
471                 int ret;
472
473                 ret = submit_rx_urb(hw, GFP_KERNEL);
474                 if (ret != 0) {
475                         printk(KERN_ERR
476                                "Failed to resume %s rx pipe.\n", netdev->name);
477                 } else {
478                         clear_bit(WORK_RX_RESUME, &hw->usb_flags);
479                 }
480         }
481
482         /* Transmission has stopped: try to reset the output pipe */
483         if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
484                 int ret;
485
486                 usb_kill_urb(&hw->tx_urb);
487                 ret = usb_clear_halt(hw->usb, hw->endp_out);
488                 if (ret != 0) {
489                         printk(KERN_ERR
490                                "Failed to clear tx pipe for %s: err=%d\n",
491                                netdev->name, ret);
492                 } else {
493                         printk(KERN_INFO "%s tx pipe reset complete.\n",
494                                netdev->name);
495                         clear_bit(WORK_TX_HALT, &hw->usb_flags);
496                         set_bit(WORK_TX_RESUME, &hw->usb_flags);
497
498                         /* Stopping the BULK-OUT pipe also blocked
499                          * us from sending any more CTLX URBs, so
500                          * we need to re-run our queue ...
501                          */
502                         hfa384x_usbctlxq_run(hw);
503                 }
504         }
505
506         /* Resume transmitting. */
507         if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
508                 netif_wake_queue(hw->wlandev->netdev);
509 }
510
511 /*----------------------------------------------------------------
512 * hfa384x_create
513 *
514 * Sets up the hfa384x_t data structure for use.  Note this
515 * does _not_ intialize the actual hardware, just the data structures
516 * we use to keep track of its state.
517 *
518 * Arguments:
519 *       hw              device structure
520 *       irq             device irq number
521 *       iobase          i/o base address for register access
522 *       membase         memory base address for register access
523 *
524 * Returns:
525 *       nothing
526 *
527 * Side effects:
528 *
529 * Call context:
530 *       process
531 ----------------------------------------------------------------*/
532 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
533 {
534         memset(hw, 0, sizeof(hfa384x_t));
535         hw->usb = usb;
536
537         /* set up the endpoints */
538         hw->endp_in = usb_rcvbulkpipe(usb, 1);
539         hw->endp_out = usb_sndbulkpipe(usb, 2);
540
541         /* Set up the waitq */
542         init_waitqueue_head(&hw->cmdq);
543
544         /* Initialize the command queue */
545         spin_lock_init(&hw->ctlxq.lock);
546         INIT_LIST_HEAD(&hw->ctlxq.pending);
547         INIT_LIST_HEAD(&hw->ctlxq.active);
548         INIT_LIST_HEAD(&hw->ctlxq.completing);
549         INIT_LIST_HEAD(&hw->ctlxq.reapable);
550
551         /* Initialize the authentication queue */
552         skb_queue_head_init(&hw->authq);
553
554         tasklet_init(&hw->reaper_bh,
555                      hfa384x_usbctlx_reaper_task, (unsigned long)hw);
556         tasklet_init(&hw->completion_bh,
557                      hfa384x_usbctlx_completion_task, (unsigned long)hw);
558         INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
559         INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
560
561         init_timer(&hw->throttle);
562         hw->throttle.function = hfa384x_usb_throttlefn;
563         hw->throttle.data = (unsigned long)hw;
564
565         init_timer(&hw->resptimer);
566         hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
567         hw->resptimer.data = (unsigned long)hw;
568
569         init_timer(&hw->reqtimer);
570         hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
571         hw->reqtimer.data = (unsigned long)hw;
572
573         usb_init_urb(&hw->rx_urb);
574         usb_init_urb(&hw->tx_urb);
575         usb_init_urb(&hw->ctlx_urb);
576
577         hw->link_status = HFA384x_LINK_NOTCONNECTED;
578         hw->state = HFA384x_STATE_INIT;
579
580         INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
581         init_timer(&hw->commsqual_timer);
582         hw->commsqual_timer.data = (unsigned long)hw;
583         hw->commsqual_timer.function = prism2sta_commsqual_timer;
584 }
585
586 /*----------------------------------------------------------------
587 * hfa384x_destroy
588 *
589 * Partner to hfa384x_create().  This function cleans up the hw
590 * structure so that it can be freed by the caller using a simple
591 * kfree.  Currently, this function is just a placeholder.  If, at some
592 * point in the future, an hw in the 'shutdown' state requires a 'deep'
593 * kfree, this is where it should be done.  Note that if this function
594 * is called on a _running_ hw structure, the drvr_stop() function is
595 * called.
596 *
597 * Arguments:
598 *       hw              device structure
599 *
600 * Returns:
601 *       nothing, this function is not allowed to fail.
602 *
603 * Side effects:
604 *
605 * Call context:
606 *       process
607 ----------------------------------------------------------------*/
608 void hfa384x_destroy(hfa384x_t *hw)
609 {
610         struct sk_buff *skb;
611
612         if (hw->state == HFA384x_STATE_RUNNING)
613                 hfa384x_drvr_stop(hw);
614         hw->state = HFA384x_STATE_PREINIT;
615
616         if (hw->scanresults) {
617                 kfree(hw->scanresults);
618                 hw->scanresults = NULL;
619         }
620
621         /* Now to clean out the auth queue */
622         while ((skb = skb_dequeue(&hw->authq)))
623                 dev_kfree_skb(skb);
624 }
625
626 static hfa384x_usbctlx_t *usbctlx_alloc(void)
627 {
628         hfa384x_usbctlx_t *ctlx;
629
630         ctlx = kmalloc(sizeof(*ctlx), in_interrupt()? GFP_ATOMIC : GFP_KERNEL);
631         if (ctlx != NULL) {
632                 memset(ctlx, 0, sizeof(*ctlx));
633                 init_completion(&ctlx->done);
634         }
635
636         return ctlx;
637 }
638
639 static int
640 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
641                    hfa384x_cmdresult_t *result)
642 {
643         result->status = le16_to_cpu(cmdresp->status);
644         result->resp0 = le16_to_cpu(cmdresp->resp0);
645         result->resp1 = le16_to_cpu(cmdresp->resp1);
646         result->resp2 = le16_to_cpu(cmdresp->resp2);
647
648         pr_debug("cmdresult:status=0x%04x "
649                  "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
650                  result->status, result->resp0, result->resp1, result->resp2);
651
652         return result->status & HFA384x_STATUS_RESULT;
653 }
654
655 static void
656 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
657                        hfa384x_rridresult_t *result)
658 {
659         result->rid = le16_to_cpu(rridresp->rid);
660         result->riddata = rridresp->data;
661         result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
662
663 }
664
665 /*----------------------------------------------------------------
666 * Completor object:
667 * This completor must be passed to hfa384x_usbctlx_complete_sync()
668 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
669 ----------------------------------------------------------------*/
670 struct usbctlx_cmd_completor {
671         usbctlx_completor_t head;
672
673         const hfa384x_usb_cmdresp_t *cmdresp;
674         hfa384x_cmdresult_t *result;
675 };
676 typedef struct usbctlx_cmd_completor usbctlx_cmd_completor_t;
677
678 static int usbctlx_cmd_completor_fn(usbctlx_completor_t * head)
679 {
680         usbctlx_cmd_completor_t *complete = (usbctlx_cmd_completor_t *) head;
681         return usbctlx_get_status(complete->cmdresp, complete->result);
682 }
683
684 static inline usbctlx_completor_t *init_cmd_completor(usbctlx_cmd_completor_t *
685                                                       completor,
686                                                       const
687                                                       hfa384x_usb_cmdresp_t *
688                                                       cmdresp,
689                                                       hfa384x_cmdresult_t *
690                                                       result)
691 {
692         completor->head.complete = usbctlx_cmd_completor_fn;
693         completor->cmdresp = cmdresp;
694         completor->result = result;
695         return &(completor->head);
696 }
697
698 /*----------------------------------------------------------------
699 * Completor object:
700 * This completor must be passed to hfa384x_usbctlx_complete_sync()
701 * when processing a CTLX that reads a RID.
702 ----------------------------------------------------------------*/
703 struct usbctlx_rrid_completor {
704         usbctlx_completor_t head;
705
706         const hfa384x_usb_rridresp_t *rridresp;
707         void *riddata;
708         unsigned int riddatalen;
709 };
710 typedef struct usbctlx_rrid_completor usbctlx_rrid_completor_t;
711
712 static int usbctlx_rrid_completor_fn(usbctlx_completor_t *head)
713 {
714         usbctlx_rrid_completor_t *complete = (usbctlx_rrid_completor_t *) head;
715         hfa384x_rridresult_t rridresult;
716
717         usbctlx_get_rridresult(complete->rridresp, &rridresult);
718
719         /* Validate the length, note body len calculation in bytes */
720         if (rridresult.riddata_len != complete->riddatalen) {
721                 printk(KERN_WARNING
722                        "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
723                        rridresult.rid,
724                        complete->riddatalen, rridresult.riddata_len);
725                 return -ENODATA;
726         }
727
728         memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
729         return 0;
730 }
731
732 static inline usbctlx_completor_t *init_rrid_completor(usbctlx_rrid_completor_t
733                                                        *completor,
734                                                        const
735                                                        hfa384x_usb_rridresp_t *
736                                                        rridresp, void *riddata,
737                                                        unsigned int riddatalen)
738 {
739         completor->head.complete = usbctlx_rrid_completor_fn;
740         completor->rridresp = rridresp;
741         completor->riddata = riddata;
742         completor->riddatalen = riddatalen;
743         return &(completor->head);
744 }
745
746 /*----------------------------------------------------------------
747 * Completor object:
748 * Interprets the results of a synchronous RID-write
749 ----------------------------------------------------------------*/
750 typedef usbctlx_cmd_completor_t usbctlx_wrid_completor_t;
751 #define init_wrid_completor  init_cmd_completor
752
753 /*----------------------------------------------------------------
754 * Completor object:
755 * Interprets the results of a synchronous memory-write
756 ----------------------------------------------------------------*/
757 typedef usbctlx_cmd_completor_t usbctlx_wmem_completor_t;
758 #define init_wmem_completor  init_cmd_completor
759
760 /*----------------------------------------------------------------
761 * Completor object:
762 * Interprets the results of a synchronous memory-read
763 ----------------------------------------------------------------*/
764 struct usbctlx_rmem_completor {
765         usbctlx_completor_t head;
766
767         const hfa384x_usb_rmemresp_t *rmemresp;
768         void *data;
769         unsigned int len;
770 };
771 typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
772
773 static int usbctlx_rmem_completor_fn(usbctlx_completor_t *head)
774 {
775         usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
776
777         pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
778         memcpy(complete->data, complete->rmemresp->data, complete->len);
779         return 0;
780 }
781
782 static inline usbctlx_completor_t *init_rmem_completor(usbctlx_rmem_completor_t
783                                                        *completor,
784                                                        hfa384x_usb_rmemresp_t
785                                                        *rmemresp, void *data,
786                                                        unsigned int len)
787 {
788         completor->head.complete = usbctlx_rmem_completor_fn;
789         completor->rmemresp = rmemresp;
790         completor->data = data;
791         completor->len = len;
792         return &(completor->head);
793 }
794
795 /*----------------------------------------------------------------
796 * hfa384x_cb_status
797 *
798 * Ctlx_complete handler for async CMD type control exchanges.
799 * mark the hw struct as such.
800 *
801 * Note: If the handling is changed here, it should probably be
802 *       changed in docmd as well.
803 *
804 * Arguments:
805 *       hw              hw struct
806 *       ctlx            completed CTLX
807 *
808 * Returns:
809 *       nothing
810 *
811 * Side effects:
812 *
813 * Call context:
814 *       interrupt
815 ----------------------------------------------------------------*/
816 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
817 {
818         if (ctlx->usercb != NULL) {
819                 hfa384x_cmdresult_t cmdresult;
820
821                 if (ctlx->state != CTLX_COMPLETE) {
822                         memset(&cmdresult, 0, sizeof(cmdresult));
823                         cmdresult.status =
824                             HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
825                 } else {
826                         usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
827                 }
828
829                 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
830         }
831 }
832
833 /*----------------------------------------------------------------
834 * hfa384x_cb_rrid
835 *
836 * CTLX completion handler for async RRID type control exchanges.
837 *
838 * Note: If the handling is changed here, it should probably be
839 *       changed in dorrid as well.
840 *
841 * Arguments:
842 *       hw              hw struct
843 *       ctlx            completed CTLX
844 *
845 * Returns:
846 *       nothing
847 *
848 * Side effects:
849 *
850 * Call context:
851 *       interrupt
852 ----------------------------------------------------------------*/
853 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
854 {
855         if (ctlx->usercb != NULL) {
856                 hfa384x_rridresult_t rridresult;
857
858                 if (ctlx->state != CTLX_COMPLETE) {
859                         memset(&rridresult, 0, sizeof(rridresult));
860                         rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
861                 } else {
862                         usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
863                                                &rridresult);
864                 }
865
866                 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
867         }
868 }
869
870 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
871 {
872         return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
873 }
874
875 static inline int
876 hfa384x_docmd_async(hfa384x_t *hw,
877                     hfa384x_metacmd_t *cmd,
878                     ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
879 {
880         return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
881 }
882
883 static inline int
884 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
885                     unsigned int riddatalen)
886 {
887         return hfa384x_dorrid(hw, DOWAIT,
888                               rid, riddata, riddatalen, NULL, NULL, NULL);
889 }
890
891 static inline int
892 hfa384x_dorrid_async(hfa384x_t *hw,
893                      u16 rid, void *riddata, unsigned int riddatalen,
894                      ctlx_cmdcb_t cmdcb,
895                      ctlx_usercb_t usercb, void *usercb_data)
896 {
897         return hfa384x_dorrid(hw, DOASYNC,
898                               rid, riddata, riddatalen,
899                               cmdcb, usercb, usercb_data);
900 }
901
902 static inline int
903 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
904                     unsigned int riddatalen)
905 {
906         return hfa384x_dowrid(hw, DOWAIT,
907                               rid, riddata, riddatalen, NULL, NULL, NULL);
908 }
909
910 static inline int
911 hfa384x_dowrid_async(hfa384x_t *hw,
912                      u16 rid, void *riddata, unsigned int riddatalen,
913                      ctlx_cmdcb_t cmdcb,
914                      ctlx_usercb_t usercb, void *usercb_data)
915 {
916         return hfa384x_dowrid(hw, DOASYNC,
917                               rid, riddata, riddatalen,
918                               cmdcb, usercb, usercb_data);
919 }
920
921 static inline int
922 hfa384x_dormem_wait(hfa384x_t *hw,
923                     u16 page, u16 offset, void *data, unsigned int len)
924 {
925         return hfa384x_dormem(hw, DOWAIT,
926                               page, offset, data, len, NULL, NULL, NULL);
927 }
928
929 static inline int
930 hfa384x_dormem_async(hfa384x_t *hw,
931                      u16 page, u16 offset, void *data, unsigned int len,
932                      ctlx_cmdcb_t cmdcb,
933                      ctlx_usercb_t usercb, void *usercb_data)
934 {
935         return hfa384x_dormem(hw, DOASYNC,
936                               page, offset, data, len,
937                               cmdcb, usercb, usercb_data);
938 }
939
940 static inline int
941 hfa384x_dowmem_wait(hfa384x_t *hw,
942                     u16 page, u16 offset, void *data, unsigned int len)
943 {
944         return hfa384x_dowmem(hw, DOWAIT,
945                               page, offset, data, len, NULL, NULL, NULL);
946 }
947
948 static inline int
949 hfa384x_dowmem_async(hfa384x_t *hw,
950                      u16 page,
951                      u16 offset,
952                      void *data,
953                      unsigned int len,
954                      ctlx_cmdcb_t cmdcb,
955                      ctlx_usercb_t usercb, void *usercb_data)
956 {
957         return hfa384x_dowmem(hw, DOASYNC,
958                               page, offset, data, len,
959                               cmdcb, usercb, usercb_data);
960 }
961
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_initialize
964 *
965 * Issues the initialize command and sets the hw->state based
966 * on the result.
967 *
968 * Arguments:
969 *       hw              device structure
970 *
971 * Returns:
972 *       0               success
973 *       >0              f/w reported error - f/w status code
974 *       <0              driver reported error
975 *
976 * Side effects:
977 *
978 * Call context:
979 *       process
980 ----------------------------------------------------------------*/
981 int hfa384x_cmd_initialize(hfa384x_t *hw)
982 {
983         int result = 0;
984         int i;
985         hfa384x_metacmd_t cmd;
986
987         cmd.cmd = HFA384x_CMDCODE_INIT;
988         cmd.parm0 = 0;
989         cmd.parm1 = 0;
990         cmd.parm2 = 0;
991
992         result = hfa384x_docmd_wait(hw, &cmd);
993
994         pr_debug("cmdresp.init: "
995                  "status=0x%04x, resp0=0x%04x, "
996                  "resp1=0x%04x, resp2=0x%04x\n",
997                  cmd.result.status,
998                  cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
999         if (result == 0) {
1000                 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001                         hw->port_enabled[i] = 0;
1002         }
1003
1004         hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005
1006         return result;
1007 }
1008
1009 /*----------------------------------------------------------------
1010 * hfa384x_cmd_disable
1011 *
1012 * Issues the disable command to stop communications on one of
1013 * the MACs 'ports'.
1014 *
1015 * Arguments:
1016 *       hw              device structure
1017 *       macport         MAC port number (host order)
1018 *
1019 * Returns:
1020 *       0               success
1021 *       >0              f/w reported failure - f/w status code
1022 *       <0              driver reported error (timeout|bad arg)
1023 *
1024 * Side effects:
1025 *
1026 * Call context:
1027 *       process
1028 ----------------------------------------------------------------*/
1029 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030 {
1031         int result = 0;
1032         hfa384x_metacmd_t cmd;
1033
1034         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1035             HFA384x_CMD_MACPORT_SET(macport);
1036         cmd.parm0 = 0;
1037         cmd.parm1 = 0;
1038         cmd.parm2 = 0;
1039
1040         result = hfa384x_docmd_wait(hw, &cmd);
1041
1042         return result;
1043 }
1044
1045 /*----------------------------------------------------------------
1046 * hfa384x_cmd_enable
1047 *
1048 * Issues the enable command to enable communications on one of
1049 * the MACs 'ports'.
1050 *
1051 * Arguments:
1052 *       hw              device structure
1053 *       macport         MAC port number
1054 *
1055 * Returns:
1056 *       0               success
1057 *       >0              f/w reported failure - f/w status code
1058 *       <0              driver reported error (timeout|bad arg)
1059 *
1060 * Side effects:
1061 *
1062 * Call context:
1063 *       process
1064 ----------------------------------------------------------------*/
1065 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066 {
1067         int result = 0;
1068         hfa384x_metacmd_t cmd;
1069
1070         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1071             HFA384x_CMD_MACPORT_SET(macport);
1072         cmd.parm0 = 0;
1073         cmd.parm1 = 0;
1074         cmd.parm2 = 0;
1075
1076         result = hfa384x_docmd_wait(hw, &cmd);
1077
1078         return result;
1079 }
1080
1081 /*----------------------------------------------------------------
1082 * hfa384x_cmd_monitor
1083 *
1084 * Enables the 'monitor mode' of the MAC.  Here's the description of
1085 * monitor mode that I've received thus far:
1086 *
1087 *  "The "monitor mode" of operation is that the MAC passes all
1088 *  frames for which the PLCP checks are correct. All received
1089 *  MPDUs are passed to the host with MAC Port = 7, with a
1090 *  receive status of good, FCS error, or undecryptable. Passing
1091 *  certain MPDUs is a violation of the 802.11 standard, but useful
1092 *  for a debugging tool."  Normal communication is not possible
1093 *  while monitor mode is enabled.
1094 *
1095 * Arguments:
1096 *       hw              device structure
1097 *       enable          a code (0x0b|0x0f) that enables/disables
1098 *                       monitor mode. (host order)
1099 *
1100 * Returns:
1101 *       0               success
1102 *       >0              f/w reported failure - f/w status code
1103 *       <0              driver reported error (timeout|bad arg)
1104 *
1105 * Side effects:
1106 *
1107 * Call context:
1108 *       process
1109 ----------------------------------------------------------------*/
1110 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111 {
1112         int result = 0;
1113         hfa384x_metacmd_t cmd;
1114
1115         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1116             HFA384x_CMD_AINFO_SET(enable);
1117         cmd.parm0 = 0;
1118         cmd.parm1 = 0;
1119         cmd.parm2 = 0;
1120
1121         result = hfa384x_docmd_wait(hw, &cmd);
1122
1123         return result;
1124 }
1125
1126 /*----------------------------------------------------------------
1127 * hfa384x_cmd_download
1128 *
1129 * Sets the controls for the MAC controller code/data download
1130 * process.  The arguments set the mode and address associated
1131 * with a download.  Note that the aux registers should be enabled
1132 * prior to setting one of the download enable modes.
1133 *
1134 * Arguments:
1135 *       hw              device structure
1136 *       mode            0 - Disable programming and begin code exec
1137 *                       1 - Enable volatile mem programming
1138 *                       2 - Enable non-volatile mem programming
1139 *                       3 - Program non-volatile section from NV download
1140 *                           buffer.
1141 *                       (host order)
1142 *       lowaddr
1143 *       highaddr        For mode 1, sets the high & low order bits of
1144 *                       the "destination address".  This address will be
1145 *                       the execution start address when download is
1146 *                       subsequently disabled.
1147 *                       For mode 2, sets the high & low order bits of
1148 *                       the destination in NV ram.
1149 *                       For modes 0 & 3, should be zero. (host order)
1150 *                       NOTE: these are CMD format.
1151 *       codelen         Length of the data to write in mode 2,
1152 *                       zero otherwise. (host order)
1153 *
1154 * Returns:
1155 *       0               success
1156 *       >0              f/w reported failure - f/w status code
1157 *       <0              driver reported error (timeout|bad arg)
1158 *
1159 * Side effects:
1160 *
1161 * Call context:
1162 *       process
1163 ----------------------------------------------------------------*/
1164 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165                          u16 highaddr, u16 codelen)
1166 {
1167         int result = 0;
1168         hfa384x_metacmd_t cmd;
1169
1170         pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171                  mode, lowaddr, highaddr, codelen);
1172
1173         cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1174                    HFA384x_CMD_PROGMODE_SET(mode));
1175
1176         cmd.parm0 = lowaddr;
1177         cmd.parm1 = highaddr;
1178         cmd.parm2 = codelen;
1179
1180         result = hfa384x_docmd_wait(hw, &cmd);
1181
1182         return result;
1183 }
1184
1185 /*----------------------------------------------------------------
1186 * hfa384x_corereset
1187 *
1188 * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1189 * structure is in its "created" state.  That is, it is initialized
1190 * with proper values.  Note that if a reset is done after the
1191 * device has been active for awhile, the caller might have to clean
1192 * up some leftover cruft in the hw structure.
1193 *
1194 * Arguments:
1195 *       hw              device structure
1196 *       holdtime        how long (in ms) to hold the reset
1197 *       settletime      how long (in ms) to wait after releasing
1198 *                       the reset
1199 *
1200 * Returns:
1201 *       nothing
1202 *
1203 * Side effects:
1204 *
1205 * Call context:
1206 *       process
1207 ----------------------------------------------------------------*/
1208 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209 {
1210         int result = 0;
1211
1212         result = usb_reset_device(hw->usb);
1213         if (result < 0) {
1214                 printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1215                        result);
1216         }
1217
1218         return result;
1219 }
1220
1221 /*----------------------------------------------------------------
1222 * hfa384x_usbctlx_complete_sync
1223 *
1224 * Waits for a synchronous CTLX object to complete,
1225 * and then handles the response.
1226 *
1227 * Arguments:
1228 *       hw              device structure
1229 *       ctlx            CTLX ptr
1230 *       completor       functor object to decide what to
1231 *                       do with the CTLX's result.
1232 *
1233 * Returns:
1234 *       0               Success
1235 *       -ERESTARTSYS    Interrupted by a signal
1236 *       -EIO            CTLX failed
1237 *       -ENODEV         Adapter was unplugged
1238 *       ???             Result from completor
1239 *
1240 * Side effects:
1241 *
1242 * Call context:
1243 *       process
1244 ----------------------------------------------------------------*/
1245 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246                                          hfa384x_usbctlx_t *ctlx,
1247                                          usbctlx_completor_t *completor)
1248 {
1249         unsigned long flags;
1250         int result;
1251
1252         result = wait_for_completion_interruptible(&ctlx->done);
1253
1254         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255
1256         /*
1257          * We can only handle the CTLX if the USB disconnect
1258          * function has not run yet ...
1259          */
1260 cleanup:
1261         if (hw->wlandev->hwremoved) {
1262                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263                 result = -ENODEV;
1264         } else if (result != 0) {
1265                 int runqueue = 0;
1266
1267                 /*
1268                  * We were probably interrupted, so delete
1269                  * this CTLX asynchronously, kill the timers
1270                  * and the URB, and then start the next
1271                  * pending CTLX.
1272                  *
1273                  * NOTE: We can only delete the timers and
1274                  *       the URB if this CTLX is active.
1275                  */
1276                 if (ctlx == get_active_ctlx(hw)) {
1277                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278
1279                         del_singleshot_timer_sync(&hw->reqtimer);
1280                         del_singleshot_timer_sync(&hw->resptimer);
1281                         hw->req_timer_done = 1;
1282                         hw->resp_timer_done = 1;
1283                         usb_kill_urb(&hw->ctlx_urb);
1284
1285                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286
1287                         runqueue = 1;
1288
1289                         /*
1290                          * This scenario is so unlikely that I'm
1291                          * happy with a grubby "goto" solution ...
1292                          */
1293                         if (hw->wlandev->hwremoved)
1294                                 goto cleanup;
1295                 }
1296
1297                 /*
1298                  * The completion task will send this CTLX
1299                  * to the reaper the next time it runs. We
1300                  * are no longer in a hurry.
1301                  */
1302                 ctlx->reapable = 1;
1303                 ctlx->state = CTLX_REQ_FAILED;
1304                 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305
1306                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307
1308                 if (runqueue)
1309                         hfa384x_usbctlxq_run(hw);
1310         } else {
1311                 if (ctlx->state == CTLX_COMPLETE) {
1312                         result = completor->complete(completor);
1313                 } else {
1314                         printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1315                                le16_to_cpu(ctlx->outbuf.type),
1316                                ctlxstr(ctlx->state));
1317                         result = -EIO;
1318                 }
1319
1320                 list_del(&ctlx->list);
1321                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322                 kfree(ctlx);
1323         }
1324
1325         return result;
1326 }
1327
1328 /*----------------------------------------------------------------
1329 * hfa384x_docmd
1330 *
1331 * Constructs a command CTLX and submits it.
1332 *
1333 * NOTE: Any changes to the 'post-submit' code in this function
1334 *       need to be carried over to hfa384x_cbcmd() since the handling
1335 *       is virtually identical.
1336 *
1337 * Arguments:
1338 *       hw              device structure
1339 *       mode            DOWAIT or DOASYNC
1340 *       cmd             cmd structure.  Includes all arguments and result
1341 *                       data points.  All in host order. in host order
1342 *       cmdcb           command-specific callback
1343 *       usercb          user callback for async calls, NULL for DOWAIT calls
1344 *       usercb_data     user supplied data pointer for async calls, NULL
1345 *                       for DOASYNC calls
1346 *
1347 * Returns:
1348 *       0               success
1349 *       -EIO            CTLX failure
1350 *       -ERESTARTSYS    Awakened on signal
1351 *       >0              command indicated error, Status and Resp0-2 are
1352 *                       in hw structure.
1353 *
1354 * Side effects:
1355 *
1356 *
1357 * Call context:
1358 *       process
1359 ----------------------------------------------------------------*/
1360 static int
1361 hfa384x_docmd(hfa384x_t *hw,
1362               CMD_MODE mode,
1363               hfa384x_metacmd_t *cmd,
1364               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365 {
1366         int result;
1367         hfa384x_usbctlx_t *ctlx;
1368
1369         ctlx = usbctlx_alloc();
1370         if (ctlx == NULL) {
1371                 result = -ENOMEM;
1372                 goto done;
1373         }
1374
1375         /* Initialize the command */
1376         ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377         ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378         ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379         ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380         ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381
1382         ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383
1384         pr_debug("cmdreq: cmd=0x%04x "
1385                  "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386                  cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387
1388         ctlx->reapable = mode;
1389         ctlx->cmdcb = cmdcb;
1390         ctlx->usercb = usercb;
1391         ctlx->usercb_data = usercb_data;
1392
1393         result = hfa384x_usbctlx_submit(hw, ctlx);
1394         if (result != 0) {
1395                 kfree(ctlx);
1396         } else if (mode == DOWAIT) {
1397                 usbctlx_cmd_completor_t completor;
1398
1399                 result =
1400                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1401                                                   init_cmd_completor(&completor,
1402                                                                      &ctlx->
1403                                                                      inbuf.
1404                                                                      cmdresp,
1405                                                                      &cmd->
1406                                                                      result));
1407         }
1408
1409 done:
1410         return result;
1411 }
1412
1413 /*----------------------------------------------------------------
1414 * hfa384x_dorrid
1415 *
1416 * Constructs a read rid CTLX and issues it.
1417 *
1418 * NOTE: Any changes to the 'post-submit' code in this function
1419 *       need to be carried over to hfa384x_cbrrid() since the handling
1420 *       is virtually identical.
1421 *
1422 * Arguments:
1423 *       hw              device structure
1424 *       mode            DOWAIT or DOASYNC
1425 *       rid             Read RID number (host order)
1426 *       riddata         Caller supplied buffer that MAC formatted RID.data
1427 *                       record will be written to for DOWAIT calls. Should
1428 *                       be NULL for DOASYNC calls.
1429 *       riddatalen      Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1431 *       usercb          user callback for async calls, NULL for DOWAIT calls
1432 *       usercb_data     user supplied data pointer for async calls, NULL
1433 *                       for DOWAIT calls
1434 *
1435 * Returns:
1436 *       0               success
1437 *       -EIO            CTLX failure
1438 *       -ERESTARTSYS    Awakened on signal
1439 *       -ENODATA        riddatalen != macdatalen
1440 *       >0              command indicated error, Status and Resp0-2 are
1441 *                       in hw structure.
1442 *
1443 * Side effects:
1444 *
1445 * Call context:
1446 *       interrupt (DOASYNC)
1447 *       process (DOWAIT or DOASYNC)
1448 ----------------------------------------------------------------*/
1449 static int
1450 hfa384x_dorrid(hfa384x_t *hw,
1451                CMD_MODE mode,
1452                u16 rid,
1453                void *riddata,
1454                unsigned int riddatalen,
1455                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456 {
1457         int result;
1458         hfa384x_usbctlx_t *ctlx;
1459
1460         ctlx = usbctlx_alloc();
1461         if (ctlx == NULL) {
1462                 result = -ENOMEM;
1463                 goto done;
1464         }
1465
1466         /* Initialize the command */
1467         ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468         ctlx->outbuf.rridreq.frmlen =
1469             cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470         ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471
1472         ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473
1474         ctlx->reapable = mode;
1475         ctlx->cmdcb = cmdcb;
1476         ctlx->usercb = usercb;
1477         ctlx->usercb_data = usercb_data;
1478
1479         /* Submit the CTLX */
1480         result = hfa384x_usbctlx_submit(hw, ctlx);
1481         if (result != 0) {
1482                 kfree(ctlx);
1483         } else if (mode == DOWAIT) {
1484                 usbctlx_rrid_completor_t completor;
1485
1486                 result =
1487                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1488                                                   init_rrid_completor
1489                                                   (&completor,
1490                                                    &ctlx->inbuf.rridresp,
1491                                                    riddata, riddatalen));
1492         }
1493
1494 done:
1495         return result;
1496 }
1497
1498 /*----------------------------------------------------------------
1499 * hfa384x_dowrid
1500 *
1501 * Constructs a write rid CTLX and issues it.
1502 *
1503 * NOTE: Any changes to the 'post-submit' code in this function
1504 *       need to be carried over to hfa384x_cbwrid() since the handling
1505 *       is virtually identical.
1506 *
1507 * Arguments:
1508 *       hw              device structure
1509 *       CMD_MODE        DOWAIT or DOASYNC
1510 *       rid             RID code
1511 *       riddata         Data portion of RID formatted for MAC
1512 *       riddatalen      Length of the data portion in bytes
1513 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1514 *       usercb          user callback for async calls, NULL for DOWAIT calls
1515 *       usercb_data     user supplied data pointer for async calls
1516 *
1517 * Returns:
1518 *       0               success
1519 *       -ETIMEDOUT      timed out waiting for register ready or
1520 *                       command completion
1521 *       >0              command indicated error, Status and Resp0-2 are
1522 *                       in hw structure.
1523 *
1524 * Side effects:
1525 *
1526 * Call context:
1527 *       interrupt (DOASYNC)
1528 *       process (DOWAIT or DOASYNC)
1529 ----------------------------------------------------------------*/
1530 static int
1531 hfa384x_dowrid(hfa384x_t *hw,
1532                CMD_MODE mode,
1533                u16 rid,
1534                void *riddata,
1535                unsigned int riddatalen,
1536                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537 {
1538         int result;
1539         hfa384x_usbctlx_t *ctlx;
1540
1541         ctlx = usbctlx_alloc();
1542         if (ctlx == NULL) {
1543                 result = -ENOMEM;
1544                 goto done;
1545         }
1546
1547         /* Initialize the command */
1548         ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549         ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550                                                    (ctlx->outbuf.wridreq.rid) +
1551                                                    riddatalen + 1) / 2);
1552         ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553         memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554
1555         ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556             sizeof(ctlx->outbuf.wridreq.frmlen) +
1557             sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558
1559         ctlx->reapable = mode;
1560         ctlx->cmdcb = cmdcb;
1561         ctlx->usercb = usercb;
1562         ctlx->usercb_data = usercb_data;
1563
1564         /* Submit the CTLX */
1565         result = hfa384x_usbctlx_submit(hw, ctlx);
1566         if (result != 0) {
1567                 kfree(ctlx);
1568         } else if (mode == DOWAIT) {
1569                 usbctlx_wrid_completor_t completor;
1570                 hfa384x_cmdresult_t wridresult;
1571
1572                 result = hfa384x_usbctlx_complete_sync(hw,
1573                                                        ctlx,
1574                                                        init_wrid_completor
1575                                                        (&completor,
1576                                                         &ctlx->inbuf.wridresp,
1577                                                         &wridresult));
1578         }
1579
1580 done:
1581         return result;
1582 }
1583
1584 /*----------------------------------------------------------------
1585 * hfa384x_dormem
1586 *
1587 * Constructs a readmem CTLX and issues it.
1588 *
1589 * NOTE: Any changes to the 'post-submit' code in this function
1590 *       need to be carried over to hfa384x_cbrmem() since the handling
1591 *       is virtually identical.
1592 *
1593 * Arguments:
1594 *       hw              device structure
1595 *       mode            DOWAIT or DOASYNC
1596 *       page            MAC address space page (CMD format)
1597 *       offset          MAC address space offset
1598 *       data            Ptr to data buffer to receive read
1599 *       len             Length of the data to read (max == 2048)
1600 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1601 *       usercb          user callback for async calls, NULL for DOWAIT calls
1602 *       usercb_data     user supplied data pointer for async calls
1603 *
1604 * Returns:
1605 *       0               success
1606 *       -ETIMEDOUT      timed out waiting for register ready or
1607 *                       command completion
1608 *       >0              command indicated error, Status and Resp0-2 are
1609 *                       in hw structure.
1610 *
1611 * Side effects:
1612 *
1613 * Call context:
1614 *       interrupt (DOASYNC)
1615 *       process (DOWAIT or DOASYNC)
1616 ----------------------------------------------------------------*/
1617 static int
1618 hfa384x_dormem(hfa384x_t *hw,
1619                CMD_MODE mode,
1620                u16 page,
1621                u16 offset,
1622                void *data,
1623                unsigned int len,
1624                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625 {
1626         int result;
1627         hfa384x_usbctlx_t *ctlx;
1628
1629         ctlx = usbctlx_alloc();
1630         if (ctlx == NULL) {
1631                 result = -ENOMEM;
1632                 goto done;
1633         }
1634
1635         /* Initialize the command */
1636         ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637         ctlx->outbuf.rmemreq.frmlen =
1638             cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639                         sizeof(ctlx->outbuf.rmemreq.page) + len);
1640         ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641         ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642
1643         ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644
1645         pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646                  ctlx->outbuf.rmemreq.type,
1647                  ctlx->outbuf.rmemreq.frmlen,
1648                  ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649
1650         pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651
1652         ctlx->reapable = mode;
1653         ctlx->cmdcb = cmdcb;
1654         ctlx->usercb = usercb;
1655         ctlx->usercb_data = usercb_data;
1656
1657         result = hfa384x_usbctlx_submit(hw, ctlx);
1658         if (result != 0) {
1659                 kfree(ctlx);
1660         } else if (mode == DOWAIT) {
1661                 usbctlx_rmem_completor_t completor;
1662
1663                 result =
1664                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1665                                                   init_rmem_completor
1666                                                   (&completor,
1667                                                    &ctlx->inbuf.rmemresp, data,
1668                                                    len));
1669         }
1670
1671 done:
1672         return result;
1673 }
1674
1675 /*----------------------------------------------------------------
1676 * hfa384x_dowmem
1677 *
1678 * Constructs a writemem CTLX and issues it.
1679 *
1680 * NOTE: Any changes to the 'post-submit' code in this function
1681 *       need to be carried over to hfa384x_cbwmem() since the handling
1682 *       is virtually identical.
1683 *
1684 * Arguments:
1685 *       hw              device structure
1686 *       mode            DOWAIT or DOASYNC
1687 *       page            MAC address space page (CMD format)
1688 *       offset          MAC address space offset
1689 *       data            Ptr to data buffer containing write data
1690 *       len             Length of the data to read (max == 2048)
1691 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1692 *       usercb          user callback for async calls, NULL for DOWAIT calls
1693 *       usercb_data     user supplied data pointer for async calls.
1694 *
1695 * Returns:
1696 *       0               success
1697 *       -ETIMEDOUT      timed out waiting for register ready or
1698 *                       command completion
1699 *       >0              command indicated error, Status and Resp0-2 are
1700 *                       in hw structure.
1701 *
1702 * Side effects:
1703 *
1704 * Call context:
1705 *       interrupt (DOWAIT)
1706 *       process (DOWAIT or DOASYNC)
1707 ----------------------------------------------------------------*/
1708 static int
1709 hfa384x_dowmem(hfa384x_t *hw,
1710                CMD_MODE mode,
1711                u16 page,
1712                u16 offset,
1713                void *data,
1714                unsigned int len,
1715                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716 {
1717         int result;
1718         hfa384x_usbctlx_t *ctlx;
1719
1720         pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721
1722         ctlx = usbctlx_alloc();
1723         if (ctlx == NULL) {
1724                 result = -ENOMEM;
1725                 goto done;
1726         }
1727
1728         /* Initialize the command */
1729         ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730         ctlx->outbuf.wmemreq.frmlen =
1731             cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732                         sizeof(ctlx->outbuf.wmemreq.page) + len);
1733         ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734         ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735         memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736
1737         ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738             sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739             sizeof(ctlx->outbuf.wmemreq.offset) +
1740             sizeof(ctlx->outbuf.wmemreq.page) + len;
1741
1742         ctlx->reapable = mode;
1743         ctlx->cmdcb = cmdcb;
1744         ctlx->usercb = usercb;
1745         ctlx->usercb_data = usercb_data;
1746
1747         result = hfa384x_usbctlx_submit(hw, ctlx);
1748         if (result != 0) {
1749                 kfree(ctlx);
1750         } else if (mode == DOWAIT) {
1751                 usbctlx_wmem_completor_t completor;
1752                 hfa384x_cmdresult_t wmemresult;
1753
1754                 result = hfa384x_usbctlx_complete_sync(hw,
1755                                                        ctlx,
1756                                                        init_wmem_completor
1757                                                        (&completor,
1758                                                         &ctlx->inbuf.wmemresp,
1759                                                         &wmemresult));
1760         }
1761
1762 done:
1763         return result;
1764 }
1765
1766 /*----------------------------------------------------------------
1767 * hfa384x_drvr_commtallies
1768 *
1769 * Send a commtallies inquiry to the MAC.  Note that this is an async
1770 * call that will result in an info frame arriving sometime later.
1771 *
1772 * Arguments:
1773 *       hw              device structure
1774 *
1775 * Returns:
1776 *       zero            success.
1777 *
1778 * Side effects:
1779 *
1780 * Call context:
1781 *       process
1782 ----------------------------------------------------------------*/
1783 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784 {
1785         hfa384x_metacmd_t cmd;
1786
1787         cmd.cmd = HFA384x_CMDCODE_INQ;
1788         cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789         cmd.parm1 = 0;
1790         cmd.parm2 = 0;
1791
1792         hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793
1794         return 0;
1795 }
1796
1797 /*----------------------------------------------------------------
1798 * hfa384x_drvr_disable
1799 *
1800 * Issues the disable command to stop communications on one of
1801 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1802 * APs may also disable macports 1-6.  Only ports that have been
1803 * previously enabled may be disabled.
1804 *
1805 * Arguments:
1806 *       hw              device structure
1807 *       macport         MAC port number (host order)
1808 *
1809 * Returns:
1810 *       0               success
1811 *       >0              f/w reported failure - f/w status code
1812 *       <0              driver reported error (timeout|bad arg)
1813 *
1814 * Side effects:
1815 *
1816 * Call context:
1817 *       process
1818 ----------------------------------------------------------------*/
1819 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820 {
1821         int result = 0;
1822
1823         if ((!hw->isap && macport != 0) ||
1824             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825             !(hw->port_enabled[macport])) {
1826                 result = -EINVAL;
1827         } else {
1828                 result = hfa384x_cmd_disable(hw, macport);
1829                 if (result == 0)
1830                         hw->port_enabled[macport] = 0;
1831         }
1832         return result;
1833 }
1834
1835 /*----------------------------------------------------------------
1836 * hfa384x_drvr_enable
1837 *
1838 * Issues the enable command to enable communications on one of
1839 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1840 * APs may also enable macports 1-6.  Only ports that are currently
1841 * disabled may be enabled.
1842 *
1843 * Arguments:
1844 *       hw              device structure
1845 *       macport         MAC port number
1846 *
1847 * Returns:
1848 *       0               success
1849 *       >0              f/w reported failure - f/w status code
1850 *       <0              driver reported error (timeout|bad arg)
1851 *
1852 * Side effects:
1853 *
1854 * Call context:
1855 *       process
1856 ----------------------------------------------------------------*/
1857 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858 {
1859         int result = 0;
1860
1861         if ((!hw->isap && macport != 0) ||
1862             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863             (hw->port_enabled[macport])) {
1864                 result = -EINVAL;
1865         } else {
1866                 result = hfa384x_cmd_enable(hw, macport);
1867                 if (result == 0)
1868                         hw->port_enabled[macport] = 1;
1869         }
1870         return result;
1871 }
1872
1873 /*----------------------------------------------------------------
1874 * hfa384x_drvr_flashdl_enable
1875 *
1876 * Begins the flash download state.  Checks to see that we're not
1877 * already in a download state and that a port isn't enabled.
1878 * Sets the download state and retrieves the flash download
1879 * buffer location, buffer size, and timeout length.
1880 *
1881 * Arguments:
1882 *       hw              device structure
1883 *
1884 * Returns:
1885 *       0               success
1886 *       >0              f/w reported error - f/w status code
1887 *       <0              driver reported error
1888 *
1889 * Side effects:
1890 *
1891 * Call context:
1892 *       process
1893 ----------------------------------------------------------------*/
1894 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1895 {
1896         int result = 0;
1897         int i;
1898
1899         /* Check that a port isn't active */
1900         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901                 if (hw->port_enabled[i]) {
1902                         pr_debug("called when port enabled.\n");
1903                         return -EINVAL;
1904                 }
1905         }
1906
1907         /* Check that we're not already in a download state */
1908         if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909                 return -EINVAL;
1910
1911         /* Retrieve the buffer loc&size and timeout */
1912         if ((result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1913                                              &(hw->bufinfo),
1914                                              sizeof(hw->bufinfo)))) {
1915                 return result;
1916         }
1917         hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918         hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919         hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920         if ((result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921                                                &(hw->dltimeout)))) {
1922                 return result;
1923         }
1924         hw->dltimeout = le16_to_cpu(hw->dltimeout);
1925
1926         pr_debug("flashdl_enable\n");
1927
1928         hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1929
1930         return result;
1931 }
1932
1933 /*----------------------------------------------------------------
1934 * hfa384x_drvr_flashdl_disable
1935 *
1936 * Ends the flash download state.  Note that this will cause the MAC
1937 * firmware to restart.
1938 *
1939 * Arguments:
1940 *       hw              device structure
1941 *
1942 * Returns:
1943 *       0               success
1944 *       >0              f/w reported error - f/w status code
1945 *       <0              driver reported error
1946 *
1947 * Side effects:
1948 *
1949 * Call context:
1950 *       process
1951 ----------------------------------------------------------------*/
1952 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1953 {
1954         /* Check that we're already in the download state */
1955         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1956                 return -EINVAL;
1957
1958         pr_debug("flashdl_enable\n");
1959
1960         /* There isn't much we can do at this point, so I don't */
1961         /*  bother  w/ the return value */
1962         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1963         hw->dlstate = HFA384x_DLSTATE_DISABLED;
1964
1965         return 0;
1966 }
1967
1968 /*----------------------------------------------------------------
1969 * hfa384x_drvr_flashdl_write
1970 *
1971 * Performs a FLASH download of a chunk of data. First checks to see
1972 * that we're in the FLASH download state, then sets the download
1973 * mode, uses the aux functions to 1) copy the data to the flash
1974 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1975 * compare.  Lather rinse, repeat as many times an necessary to get
1976 * all the given data into flash.
1977 * When all data has been written using this function (possibly
1978 * repeatedly), call drvr_flashdl_disable() to end the download state
1979 * and restart the MAC.
1980 *
1981 * Arguments:
1982 *       hw              device structure
1983 *       daddr           Card address to write to. (host order)
1984 *       buf             Ptr to data to write.
1985 *       len             Length of data (host order).
1986 *
1987 * Returns:
1988 *       0               success
1989 *       >0              f/w reported error - f/w status code
1990 *       <0              driver reported error
1991 *
1992 * Side effects:
1993 *
1994 * Call context:
1995 *       process
1996 ----------------------------------------------------------------*/
1997 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1998 {
1999         int result = 0;
2000         u32 dlbufaddr;
2001         int nburns;
2002         u32 burnlen;
2003         u32 burndaddr;
2004         u16 burnlo;
2005         u16 burnhi;
2006         int nwrites;
2007         u8 *writebuf;
2008         u16 writepage;
2009         u16 writeoffset;
2010         u32 writelen;
2011         int i;
2012         int j;
2013
2014         pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2015
2016         /* Check that we're in the flash download state */
2017         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2018                 return -EINVAL;
2019
2020         printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2021
2022         /* Convert to flat address for arithmetic */
2023         /* NOTE: dlbuffer RID stores the address in AUX format */
2024         dlbufaddr =
2025             HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2026         pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2027                  hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2028
2029 #if 0
2030         printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2031                hw->bufinfo.len, hw->dltimeout);
2032 #endif
2033         /* Calculations to determine how many fills of the dlbuffer to do
2034          * and how many USB wmemreq's to do for each fill.  At this point
2035          * in time, the dlbuffer size and the wmemreq size are the same.
2036          * Therefore, nwrites should always be 1.  The extra complexity
2037          * here is a hedge against future changes.
2038          */
2039
2040         /* Figure out how many times to do the flash programming */
2041         nburns = len / hw->bufinfo.len;
2042         nburns += (len % hw->bufinfo.len) ? 1 : 0;
2043
2044         /* For each flash program cycle, how many USB wmemreq's are needed? */
2045         nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2046         nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2047
2048         /* For each burn */
2049         for (i = 0; i < nburns; i++) {
2050                 /* Get the dest address and len */
2051                 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2052                     hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2053                 burndaddr = daddr + (hw->bufinfo.len * i);
2054                 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2055                 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2056
2057                 printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2058                        burnlen, burndaddr);
2059
2060                 /* Set the download mode */
2061                 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2062                                               burnlo, burnhi, burnlen);
2063                 if (result) {
2064                         printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2065                                "cmd failed, result=%d. Aborting d/l\n",
2066                                burnlo, burnhi, burnlen, result);
2067                         goto exit_proc;
2068                 }
2069
2070                 /* copy the data to the flash download buffer */
2071                 for (j = 0; j < nwrites; j++) {
2072                         writebuf = buf +
2073                             (i * hw->bufinfo.len) +
2074                             (j * HFA384x_USB_RWMEM_MAXLEN);
2075
2076                         writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2077                                                             (j *
2078                                                              HFA384x_USB_RWMEM_MAXLEN));
2079                         writeoffset =
2080                             HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2081                                                    (j *
2082                                                     HFA384x_USB_RWMEM_MAXLEN));
2083
2084                         writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2085                         writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2086                             HFA384x_USB_RWMEM_MAXLEN : writelen;
2087
2088                         result = hfa384x_dowmem_wait(hw,
2089                                                      writepage,
2090                                                      writeoffset,
2091                                                      writebuf, writelen);
2092                 }
2093
2094                 /* set the download 'write flash' mode */
2095                 result = hfa384x_cmd_download(hw,
2096                                               HFA384x_PROGMODE_NVWRITE,
2097                                               0, 0, 0);
2098                 if (result) {
2099                         printk(KERN_ERR
2100                                "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2101                                "cmd failed, result=%d. Aborting d/l\n",
2102                                burnlo, burnhi, burnlen, result);
2103                         goto exit_proc;
2104                 }
2105
2106                 /* TODO: We really should do a readback and compare. */
2107         }
2108
2109 exit_proc:
2110
2111         /* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2112         /*  actually disable programming mode.  Remember, that will cause the */
2113         /*  the firmware to effectively reset itself. */
2114
2115         return result;
2116 }
2117
2118 /*----------------------------------------------------------------
2119 * hfa384x_drvr_getconfig
2120 *
2121 * Performs the sequence necessary to read a config/info item.
2122 *
2123 * Arguments:
2124 *       hw              device structure
2125 *       rid             config/info record id (host order)
2126 *       buf             host side record buffer.  Upon return it will
2127 *                       contain the body portion of the record (minus the
2128 *                       RID and len).
2129 *       len             buffer length (in bytes, should match record length)
2130 *
2131 * Returns:
2132 *       0               success
2133 *       >0              f/w reported error - f/w status code
2134 *       <0              driver reported error
2135 *       -ENODATA        length mismatch between argument and retrieved
2136 *                       record.
2137 *
2138 * Side effects:
2139 *
2140 * Call context:
2141 *       process
2142 ----------------------------------------------------------------*/
2143 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2144 {
2145         int result;
2146
2147         result = hfa384x_dorrid_wait(hw, rid, buf, len);
2148
2149         return result;
2150 }
2151
2152 /*----------------------------------------------------------------
2153  * hfa384x_drvr_getconfig_async
2154  *
2155  * Performs the sequence necessary to perform an async read of
2156  * of a config/info item.
2157  *
2158  * Arguments:
2159  *       hw              device structure
2160  *       rid             config/info record id (host order)
2161  *       buf             host side record buffer.  Upon return it will
2162  *                       contain the body portion of the record (minus the
2163  *                       RID and len).
2164  *       len             buffer length (in bytes, should match record length)
2165  *       cbfn            caller supplied callback, called when the command
2166  *                       is done (successful or not).
2167  *       cbfndata        pointer to some caller supplied data that will be
2168  *                       passed in as an argument to the cbfn.
2169  *
2170  * Returns:
2171  *       nothing         the cbfn gets a status argument identifying if
2172  *                       any errors occur.
2173  * Side effects:
2174  *       Queues an hfa384x_usbcmd_t for subsequent execution.
2175  *
2176  * Call context:
2177  *       Any
2178  ----------------------------------------------------------------*/
2179 int
2180 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2181                              u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2182 {
2183         return hfa384x_dorrid_async(hw, rid, NULL, 0,
2184                                     hfa384x_cb_rrid, usercb, usercb_data);
2185 }
2186
2187 /*----------------------------------------------------------------
2188  * hfa384x_drvr_setconfig_async
2189  *
2190  * Performs the sequence necessary to write a config/info item.
2191  *
2192  * Arguments:
2193  *       hw              device structure
2194  *       rid             config/info record id (in host order)
2195  *       buf             host side record buffer
2196  *       len             buffer length (in bytes)
2197  *       usercb          completion callback
2198  *       usercb_data     completion callback argument
2199  *
2200  * Returns:
2201  *       0               success
2202  *       >0              f/w reported error - f/w status code
2203  *       <0              driver reported error
2204  *
2205  * Side effects:
2206  *
2207  * Call context:
2208  *       process
2209  ----------------------------------------------------------------*/
2210 int
2211 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2212                              u16 rid,
2213                              void *buf,
2214                              u16 len, ctlx_usercb_t usercb, void *usercb_data)
2215 {
2216         return hfa384x_dowrid_async(hw, rid, buf, len,
2217                                     hfa384x_cb_status, usercb, usercb_data);
2218 }
2219
2220 /*----------------------------------------------------------------
2221 * hfa384x_drvr_ramdl_disable
2222 *
2223 * Ends the ram download state.
2224 *
2225 * Arguments:
2226 *       hw              device structure
2227 *
2228 * Returns:
2229 *       0               success
2230 *       >0              f/w reported error - f/w status code
2231 *       <0              driver reported error
2232 *
2233 * Side effects:
2234 *
2235 * Call context:
2236 *       process
2237 ----------------------------------------------------------------*/
2238 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2239 {
2240         /* Check that we're already in the download state */
2241         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2242                 return -EINVAL;
2243
2244         pr_debug("ramdl_disable()\n");
2245
2246         /* There isn't much we can do at this point, so I don't */
2247         /*  bother  w/ the return value */
2248         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2249         hw->dlstate = HFA384x_DLSTATE_DISABLED;
2250
2251         return 0;
2252 }
2253
2254 /*----------------------------------------------------------------
2255 * hfa384x_drvr_ramdl_enable
2256 *
2257 * Begins the ram download state.  Checks to see that we're not
2258 * already in a download state and that a port isn't enabled.
2259 * Sets the download state and calls cmd_download with the
2260 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2261 *
2262 * Arguments:
2263 *       hw              device structure
2264 *       exeaddr         the card execution address that will be
2265 *                       jumped to when ramdl_disable() is called
2266 *                       (host order).
2267 *
2268 * Returns:
2269 *       0               success
2270 *       >0              f/w reported error - f/w status code
2271 *       <0              driver reported error
2272 *
2273 * Side effects:
2274 *
2275 * Call context:
2276 *       process
2277 ----------------------------------------------------------------*/
2278 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2279 {
2280         int result = 0;
2281         u16 lowaddr;
2282         u16 hiaddr;
2283         int i;
2284
2285         /* Check that a port isn't active */
2286         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2287                 if (hw->port_enabled[i]) {
2288                         printk(KERN_ERR
2289                                "Can't download with a macport enabled.\n");
2290                         return -EINVAL;
2291                 }
2292         }
2293
2294         /* Check that we're not already in a download state */
2295         if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2296                 printk(KERN_ERR "Download state not disabled.\n");
2297                 return -EINVAL;
2298         }
2299
2300         pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2301
2302         /* Call the download(1,addr) function */
2303         lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2304         hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2305
2306         result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2307                                       lowaddr, hiaddr, 0);
2308
2309         if (result == 0) {
2310                 /* Set the download state */
2311                 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2312         } else {
2313                 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2314                          lowaddr, hiaddr, result);
2315         }
2316
2317         return result;
2318 }
2319
2320 /*----------------------------------------------------------------
2321 * hfa384x_drvr_ramdl_write
2322 *
2323 * Performs a RAM download of a chunk of data. First checks to see
2324 * that we're in the RAM download state, then uses the [read|write]mem USB
2325 * commands to 1) copy the data, 2) readback and compare.  The download
2326 * state is unaffected.  When all data has been written using
2327 * this function, call drvr_ramdl_disable() to end the download state
2328 * and restart the MAC.
2329 *
2330 * Arguments:
2331 *       hw              device structure
2332 *       daddr           Card address to write to. (host order)
2333 *       buf             Ptr to data to write.
2334 *       len             Length of data (host order).
2335 *
2336 * Returns:
2337 *       0               success
2338 *       >0              f/w reported error - f/w status code
2339 *       <0              driver reported error
2340 *
2341 * Side effects:
2342 *
2343 * Call context:
2344 *       process
2345 ----------------------------------------------------------------*/
2346 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2347 {
2348         int result = 0;
2349         int nwrites;
2350         u8 *data = buf;
2351         int i;
2352         u32 curraddr;
2353         u16 currpage;
2354         u16 curroffset;
2355         u16 currlen;
2356
2357         /* Check that we're in the ram download state */
2358         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2359                 return -EINVAL;
2360
2361         printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2362
2363         /* How many dowmem calls?  */
2364         nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2365         nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2366
2367         /* Do blocking wmem's */
2368         for (i = 0; i < nwrites; i++) {
2369                 /* make address args */
2370                 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2371                 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2372                 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2373                 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2374                 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2375                         currlen = HFA384x_USB_RWMEM_MAXLEN;
2376
2377                 /* Do blocking ctlx */
2378                 result = hfa384x_dowmem_wait(hw,
2379                                              currpage,
2380                                              curroffset,
2381                                              data +
2382                                              (i * HFA384x_USB_RWMEM_MAXLEN),
2383                                              currlen);
2384
2385                 if (result)
2386                         break;
2387
2388                 /* TODO: We really should have a readback. */
2389         }
2390
2391         return result;
2392 }
2393
2394 /*----------------------------------------------------------------
2395 * hfa384x_drvr_readpda
2396 *
2397 * Performs the sequence to read the PDA space.  Note there is no
2398 * drvr_writepda() function.  Writing a PDA is
2399 * generally implemented by a calling component via calls to
2400 * cmd_download and writing to the flash download buffer via the
2401 * aux regs.
2402 *
2403 * Arguments:
2404 *       hw              device structure
2405 *       buf             buffer to store PDA in
2406 *       len             buffer length
2407 *
2408 * Returns:
2409 *       0               success
2410 *       >0              f/w reported error - f/w status code
2411 *       <0              driver reported error
2412 *       -ETIMEDOUT      timout waiting for the cmd regs to become
2413 *                       available, or waiting for the control reg
2414 *                       to indicate the Aux port is enabled.
2415 *       -ENODATA        the buffer does NOT contain a valid PDA.
2416 *                       Either the card PDA is bad, or the auxdata
2417 *                       reads are giving us garbage.
2418
2419 *
2420 * Side effects:
2421 *
2422 * Call context:
2423 *       process or non-card interrupt.
2424 ----------------------------------------------------------------*/
2425 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2426 {
2427         int result = 0;
2428         u16 *pda = buf;
2429         int pdaok = 0;
2430         int morepdrs = 1;
2431         int currpdr = 0;        /* word offset of the current pdr */
2432         size_t i;
2433         u16 pdrlen;             /* pdr length in bytes, host order */
2434         u16 pdrcode;            /* pdr code, host order */
2435         u16 currpage;
2436         u16 curroffset;
2437         struct pdaloc {
2438                 u32 cardaddr;
2439                 u16 auxctl;
2440         } pdaloc[] = {
2441                 {
2442                 HFA3842_PDA_BASE, 0}, {
2443                 HFA3841_PDA_BASE, 0}, {
2444                 HFA3841_PDA_BOGUS_BASE, 0}
2445         };
2446
2447         /* Read the pda from each known address.  */
2448         for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2449                 /* Make address */
2450                 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2451                 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2452
2453                 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf, len);       /* units of bytes */
2454
2455                 if (result) {
2456                         printk(KERN_WARNING
2457                                "Read from index %zd failed, continuing\n", i);
2458                         continue;
2459                 }
2460
2461                 /* Test for garbage */
2462                 pdaok = 1;      /* initially assume good */
2463                 morepdrs = 1;
2464                 while (pdaok && morepdrs) {
2465                         pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2466                         pdrcode = le16_to_cpu(pda[currpdr + 1]);
2467                         /* Test the record length */
2468                         if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2469                                 printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2470                                 pdaok = 0;
2471                                 break;
2472                         }
2473                         /* Test the code */
2474                         if (!hfa384x_isgood_pdrcode(pdrcode)) {
2475                                 printk(KERN_ERR "pdrcode invalid=%d\n",
2476                                        pdrcode);
2477                                 pdaok = 0;
2478                                 break;
2479                         }
2480                         /* Test for completion */
2481                         if (pdrcode == HFA384x_PDR_END_OF_PDA)
2482                                 morepdrs = 0;
2483
2484                         /* Move to the next pdr (if necessary) */
2485                         if (morepdrs) {
2486                                 /* note the access to pda[], need words here */
2487                                 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2488                         }
2489                 }
2490                 if (pdaok) {
2491                         printk(KERN_INFO
2492                                "PDA Read from 0x%08x in %s space.\n",
2493                                pdaloc[i].cardaddr,
2494                                pdaloc[i].auxctl == 0 ? "EXTDS" :
2495                                pdaloc[i].auxctl == 1 ? "NV" :
2496                                pdaloc[i].auxctl == 2 ? "PHY" :
2497                                pdaloc[i].auxctl == 3 ? "ICSRAM" :
2498                                "<bogus auxctl>");
2499                         break;
2500                 }
2501         }
2502         result = pdaok ? 0 : -ENODATA;
2503
2504         if (result)
2505                 pr_debug("Failure: pda is not okay\n");
2506
2507         return result;
2508 }
2509
2510 /*----------------------------------------------------------------
2511 * hfa384x_drvr_setconfig
2512 *
2513 * Performs the sequence necessary to write a config/info item.
2514 *
2515 * Arguments:
2516 *       hw              device structure
2517 *       rid             config/info record id (in host order)
2518 *       buf             host side record buffer
2519 *       len             buffer length (in bytes)
2520 *
2521 * Returns:
2522 *       0               success
2523 *       >0              f/w reported error - f/w status code
2524 *       <0              driver reported error
2525 *
2526 * Side effects:
2527 *
2528 * Call context:
2529 *       process
2530 ----------------------------------------------------------------*/
2531 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2532 {
2533         return hfa384x_dowrid_wait(hw, rid, buf, len);
2534 }
2535
2536 /*----------------------------------------------------------------
2537 * hfa384x_drvr_start
2538 *
2539 * Issues the MAC initialize command, sets up some data structures,
2540 * and enables the interrupts.  After this function completes, the
2541 * low-level stuff should be ready for any/all commands.
2542 *
2543 * Arguments:
2544 *       hw              device structure
2545 * Returns:
2546 *       0               success
2547 *       >0              f/w reported error - f/w status code
2548 *       <0              driver reported error
2549 *
2550 * Side effects:
2551 *
2552 * Call context:
2553 *       process
2554 ----------------------------------------------------------------*/
2555
2556 int hfa384x_drvr_start(hfa384x_t *hw)
2557 {
2558         int result, result1, result2;
2559         u16 status;
2560
2561         might_sleep();
2562
2563         /* Clear endpoint stalls - but only do this if the endpoint
2564          * is showing a stall status. Some prism2 cards seem to behave
2565          * badly if a clear_halt is called when the endpoint is already
2566          * ok
2567          */
2568         result =
2569             usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2570         if (result < 0) {
2571                 printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2572                 goto done;
2573         }
2574         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2575                 printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2576
2577         result =
2578             usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2579         if (result < 0) {
2580                 printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2581                 goto done;
2582         }
2583         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2584                 printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2585
2586         /* Synchronous unlink, in case we're trying to restart the driver */
2587         usb_kill_urb(&hw->rx_urb);
2588
2589         /* Post the IN urb */
2590         result = submit_rx_urb(hw, GFP_KERNEL);
2591         if (result != 0) {
2592                 printk(KERN_ERR
2593                        "Fatal, failed to submit RX URB, result=%d\n", result);
2594                 goto done;
2595         }
2596
2597         /* Call initialize twice, with a 1 second sleep in between.
2598          * This is a nasty work-around since many prism2 cards seem to
2599          * need time to settle after an init from cold. The second
2600          * call to initialize in theory is not necessary - but we call
2601          * it anyway as a double insurance policy:
2602          * 1) If the first init should fail, the second may well succeed
2603          *    and the card can still be used
2604          * 2) It helps ensures all is well with the card after the first
2605          *    init and settle time.
2606          */
2607         result1 = hfa384x_cmd_initialize(hw);
2608         msleep(1000);
2609         result = result2 = hfa384x_cmd_initialize(hw);
2610         if (result1 != 0) {
2611                 if (result2 != 0) {
2612                         printk(KERN_ERR
2613                                "cmd_initialize() failed on two attempts, results %d and %d\n",
2614                                result1, result2);
2615                         usb_kill_urb(&hw->rx_urb);
2616                         goto done;
2617                 } else {
2618                         pr_debug("First cmd_initialize() failed (result %d),\n",
2619                                  result1);
2620                         pr_debug
2621                             ("but second attempt succeeded. All should be ok\n");
2622                 }
2623         } else if (result2 != 0) {
2624                 printk(KERN_WARNING
2625                        "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2626                        result2);
2627                 printk(KERN_WARNING
2628                        "Most likely the card will be functional\n");
2629                 goto done;
2630         }
2631
2632         hw->state = HFA384x_STATE_RUNNING;
2633
2634 done:
2635         return result;
2636 }
2637
2638 /*----------------------------------------------------------------
2639 * hfa384x_drvr_stop
2640 *
2641 * Shuts down the MAC to the point where it is safe to unload the
2642 * driver.  Any subsystem that may be holding a data or function
2643 * ptr into the driver must be cleared/deinitialized.
2644 *
2645 * Arguments:
2646 *       hw              device structure
2647 * Returns:
2648 *       0               success
2649 *       >0              f/w reported error - f/w status code
2650 *       <0              driver reported error
2651 *
2652 * Side effects:
2653 *
2654 * Call context:
2655 *       process
2656 ----------------------------------------------------------------*/
2657 int hfa384x_drvr_stop(hfa384x_t *hw)
2658 {
2659         int result = 0;
2660         int i;
2661
2662         might_sleep();
2663
2664         /* There's no need for spinlocks here. The USB "disconnect"
2665          * function sets this "removed" flag and then calls us.
2666          */
2667         if (!hw->wlandev->hwremoved) {
2668                 /* Call initialize to leave the MAC in its 'reset' state */
2669                 hfa384x_cmd_initialize(hw);
2670
2671                 /* Cancel the rxurb */
2672                 usb_kill_urb(&hw->rx_urb);
2673         }
2674
2675         hw->link_status = HFA384x_LINK_NOTCONNECTED;
2676         hw->state = HFA384x_STATE_INIT;
2677
2678         del_timer_sync(&hw->commsqual_timer);
2679
2680         /* Clear all the port status */
2681         for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2682                 hw->port_enabled[i] = 0;
2683
2684         return result;
2685 }
2686
2687 /*----------------------------------------------------------------
2688 * hfa384x_drvr_txframe
2689 *
2690 * Takes a frame from prism2sta and queues it for transmission.
2691 *
2692 * Arguments:
2693 *       hw              device structure
2694 *       skb             packet buffer struct.  Contains an 802.11
2695 *                       data frame.
2696 *       p80211_hdr      points to the 802.11 header for the packet.
2697 * Returns:
2698 *       0               Success and more buffs available
2699 *       1               Success but no more buffs
2700 *       2               Allocation failure
2701 *       4               Buffer full or queue busy
2702 *
2703 * Side effects:
2704 *
2705 * Call context:
2706 *       interrupt
2707 ----------------------------------------------------------------*/
2708 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2709                          p80211_hdr_t *p80211_hdr,
2710                          p80211_metawep_t *p80211_wep)
2711 {
2712         int usbpktlen = sizeof(hfa384x_tx_frame_t);
2713         int result;
2714         int ret;
2715         char *ptr;
2716
2717         if (hw->tx_urb.status == -EINPROGRESS) {
2718                 printk(KERN_WARNING "TX URB already in use\n");
2719                 result = 3;
2720                 goto exit;
2721         }
2722
2723         /* Build Tx frame structure */
2724         /* Set up the control field */
2725         memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2726
2727         /* Setup the usb type field */
2728         hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2729
2730         /* Set up the sw_support field to identify this frame */
2731         hw->txbuff.txfrm.desc.sw_support = 0x0123;
2732
2733 /* Tx complete and Tx exception disable per dleach.  Might be causing
2734  * buf depletion
2735  */
2736 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2737 #if defined(DOBOTH)
2738         hw->txbuff.txfrm.desc.tx_control =
2739             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2740             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2741 #elif defined(DOEXC)
2742         hw->txbuff.txfrm.desc.tx_control =
2743             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2744             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2745 #else
2746         hw->txbuff.txfrm.desc.tx_control =
2747             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2748             HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2749 #endif
2750         hw->txbuff.txfrm.desc.tx_control =
2751             cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2752
2753         /* copy the header over to the txdesc */
2754         memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2755                sizeof(p80211_hdr_t));
2756
2757         /* if we're using host WEP, increase size by IV+ICV */
2758         if (p80211_wep->data) {
2759                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2760                 usbpktlen += 8;
2761         } else {
2762                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2763         }
2764
2765         usbpktlen += skb->len;
2766
2767         /* copy over the WEP IV if we are using host WEP */
2768         ptr = hw->txbuff.txfrm.data;
2769         if (p80211_wep->data) {
2770                 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2771                 ptr += sizeof(p80211_wep->iv);
2772                 memcpy(ptr, p80211_wep->data, skb->len);
2773         } else {
2774                 memcpy(ptr, skb->data, skb->len);
2775         }
2776         /* copy over the packet data */
2777         ptr += skb->len;
2778
2779         /* copy over the WEP ICV if we are using host WEP */
2780         if (p80211_wep->data)
2781                 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2782
2783         /* Send the USB packet */
2784         usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2785                           hw->endp_out,
2786                           &(hw->txbuff), ROUNDUP64(usbpktlen),
2787                           hfa384x_usbout_callback, hw->wlandev);
2788         hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2789
2790         result = 1;
2791         ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2792         if (ret != 0) {
2793                 printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2794                 result = 3;
2795         }
2796
2797 exit:
2798         return result;
2799 }
2800
2801 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2802 {
2803         hfa384x_t *hw = wlandev->priv;
2804         unsigned long flags;
2805
2806         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2807
2808         if (!hw->wlandev->hwremoved &&
2809             /* Note the bitwise OR, not the logical OR. */
2810             (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags) |
2811              !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))) {
2812                 schedule_work(&hw->usb_work);
2813         }
2814
2815         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2816 }
2817
2818 /*----------------------------------------------------------------
2819 * hfa384x_usbctlx_reaper_task
2820 *
2821 * Tasklet to delete dead CTLX objects
2822 *
2823 * Arguments:
2824 *       data    ptr to a hfa384x_t
2825 *
2826 * Returns:
2827 *
2828 * Call context:
2829 *       Interrupt
2830 ----------------------------------------------------------------*/
2831 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2832 {
2833         hfa384x_t *hw = (hfa384x_t *) data;
2834         struct list_head *entry;
2835         struct list_head *temp;
2836         unsigned long flags;
2837
2838         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2839
2840         /* This list is guaranteed to be empty if someone
2841          * has unplugged the adapter.
2842          */
2843         list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2844                 hfa384x_usbctlx_t *ctlx;
2845
2846                 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2847                 list_del(&ctlx->list);
2848                 kfree(ctlx);
2849         }
2850
2851         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2852
2853 }
2854
2855 /*----------------------------------------------------------------
2856 * hfa384x_usbctlx_completion_task
2857 *
2858 * Tasklet to call completion handlers for returned CTLXs
2859 *
2860 * Arguments:
2861 *       data    ptr to hfa384x_t
2862 *
2863 * Returns:
2864 *       Nothing
2865 *
2866 * Call context:
2867 *       Interrupt
2868 ----------------------------------------------------------------*/
2869 static void hfa384x_usbctlx_completion_task(unsigned long data)
2870 {
2871         hfa384x_t *hw = (hfa384x_t *) data;
2872         struct list_head *entry;
2873         struct list_head *temp;
2874         unsigned long flags;
2875
2876         int reap = 0;
2877
2878         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2879
2880         /* This list is guaranteed to be empty if someone
2881          * has unplugged the adapter ...
2882          */
2883         list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2884                 hfa384x_usbctlx_t *ctlx;
2885
2886                 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2887
2888                 /* Call the completion function that this
2889                  * command was assigned, assuming it has one.
2890                  */
2891                 if (ctlx->cmdcb != NULL) {
2892                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2893                         ctlx->cmdcb(hw, ctlx);
2894                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2895
2896                         /* Make sure we don't try and complete
2897                          * this CTLX more than once!
2898                          */
2899                         ctlx->cmdcb = NULL;
2900
2901                         /* Did someone yank the adapter out
2902                          * while our list was (briefly) unlocked?
2903                          */
2904                         if (hw->wlandev->hwremoved) {
2905                                 reap = 0;
2906                                 break;
2907                         }
2908                 }
2909
2910                 /*
2911                  * "Reapable" CTLXs are ones which don't have any
2912                  * threads waiting for them to die. Hence they must
2913                  * be delivered to The Reaper!
2914                  */
2915                 if (ctlx->reapable) {
2916                         /* Move the CTLX off the "completing" list (hopefully)
2917                          * on to the "reapable" list where the reaper task
2918                          * can find it. And "reapable" means that this CTLX
2919                          * isn't sitting on a wait-queue somewhere.
2920                          */
2921                         list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2922                         reap = 1;
2923                 }
2924
2925                 complete(&ctlx->done);
2926         }
2927         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2928
2929         if (reap)
2930                 tasklet_schedule(&hw->reaper_bh);
2931 }
2932
2933 /*----------------------------------------------------------------
2934 * unlocked_usbctlx_cancel_async
2935 *
2936 * Mark the CTLX dead asynchronously, and ensure that the
2937 * next command on the queue is run afterwards.
2938 *
2939 * Arguments:
2940 *       hw      ptr to the hfa384x_t structure
2941 *       ctlx    ptr to a CTLX structure
2942 *
2943 * Returns:
2944 *       0       the CTLX's URB is inactive
2945 * -EINPROGRESS  the URB is currently being unlinked
2946 *
2947 * Call context:
2948 *       Either process or interrupt, but presumably interrupt
2949 ----------------------------------------------------------------*/
2950 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2951                                          hfa384x_usbctlx_t *ctlx)
2952 {
2953         int ret;
2954
2955         /*
2956          * Try to delete the URB containing our request packet.
2957          * If we succeed, then its completion handler will be
2958          * called with a status of -ECONNRESET.
2959          */
2960         hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2961         ret = usb_unlink_urb(&hw->ctlx_urb);
2962
2963         if (ret != -EINPROGRESS) {
2964                 /*
2965                  * The OUT URB had either already completed
2966                  * or was still in the pending queue, so the
2967                  * URB's completion function will not be called.
2968                  * We will have to complete the CTLX ourselves.
2969                  */
2970                 ctlx->state = CTLX_REQ_FAILED;
2971                 unlocked_usbctlx_complete(hw, ctlx);
2972                 ret = 0;
2973         }
2974
2975         return ret;
2976 }
2977
2978 /*----------------------------------------------------------------
2979 * unlocked_usbctlx_complete
2980 *
2981 * A CTLX has completed.  It may have been successful, it may not
2982 * have been. At this point, the CTLX should be quiescent.  The URBs
2983 * aren't active and the timers should have been stopped.
2984 *
2985 * The CTLX is migrated to the "completing" queue, and the completing
2986 * tasklet is scheduled.
2987 *
2988 * Arguments:
2989 *       hw              ptr to a hfa384x_t structure
2990 *       ctlx            ptr to a ctlx structure
2991 *
2992 * Returns:
2993 *       nothing
2994 *
2995 * Side effects:
2996 *
2997 * Call context:
2998 *       Either, assume interrupt
2999 ----------------------------------------------------------------*/
3000 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
3001 {
3002         /* Timers have been stopped, and ctlx should be in
3003          * a terminal state. Retire it from the "active"
3004          * queue.
3005          */
3006         list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3007         tasklet_schedule(&hw->completion_bh);
3008
3009         switch (ctlx->state) {
3010         case CTLX_COMPLETE:
3011         case CTLX_REQ_FAILED:
3012                 /* This are the correct terminating states. */
3013                 break;
3014
3015         default:
3016                 printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3017                        le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3018                 break;
3019         }                       /* switch */
3020 }
3021
3022 /*----------------------------------------------------------------
3023 * hfa384x_usbctlxq_run
3024 *
3025 * Checks to see if the head item is running.  If not, starts it.
3026 *
3027 * Arguments:
3028 *       hw      ptr to hfa384x_t
3029 *
3030 * Returns:
3031 *       nothing
3032 *
3033 * Side effects:
3034 *
3035 * Call context:
3036 *       any
3037 ----------------------------------------------------------------*/
3038 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3039 {
3040         unsigned long flags;
3041
3042         /* acquire lock */
3043         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3044
3045         /* Only one active CTLX at any one time, because there's no
3046          * other (reliable) way to match the response URB to the
3047          * correct CTLX.
3048          *
3049          * Don't touch any of these CTLXs if the hardware
3050          * has been removed or the USB subsystem is stalled.
3051          */
3052         if (!list_empty(&hw->ctlxq.active) ||
3053             test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3054                 goto unlock;
3055
3056         while (!list_empty(&hw->ctlxq.pending)) {
3057                 hfa384x_usbctlx_t *head;
3058                 int result;
3059
3060                 /* This is the first pending command */
3061                 head = list_entry(hw->ctlxq.pending.next,
3062                                   hfa384x_usbctlx_t, list);
3063
3064                 /* We need to split this off to avoid a race condition */
3065                 list_move_tail(&head->list, &hw->ctlxq.active);
3066
3067                 /* Fill the out packet */
3068                 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3069                                   hw->endp_out,
3070                                   &(head->outbuf), ROUNDUP64(head->outbufsize),
3071                                   hfa384x_ctlxout_callback, hw);
3072                 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3073
3074                 /* Now submit the URB and update the CTLX's state
3075                  */
3076                 if ((result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC)) == 0) {
3077                         /* This CTLX is now running on the active queue */
3078                         head->state = CTLX_REQ_SUBMITTED;
3079
3080                         /* Start the OUT wait timer */
3081                         hw->req_timer_done = 0;
3082                         hw->reqtimer.expires = jiffies + HZ;
3083                         add_timer(&hw->reqtimer);
3084
3085                         /* Start the IN wait timer */
3086                         hw->resp_timer_done = 0;
3087                         hw->resptimer.expires = jiffies + 2 * HZ;
3088                         add_timer(&hw->resptimer);
3089
3090                         break;
3091                 }
3092
3093                 if (result == -EPIPE) {
3094                         /* The OUT pipe needs resetting, so put
3095                          * this CTLX back in the "pending" queue
3096                          * and schedule a reset ...
3097                          */
3098                         printk(KERN_WARNING
3099                                "%s tx pipe stalled: requesting reset\n",
3100                                hw->wlandev->netdev->name);
3101                         list_move(&head->list, &hw->ctlxq.pending);
3102                         set_bit(WORK_TX_HALT, &hw->usb_flags);
3103                         schedule_work(&hw->usb_work);
3104                         break;
3105                 }
3106
3107                 if (result == -ESHUTDOWN) {
3108                         printk(KERN_WARNING "%s urb shutdown!\n",
3109                                hw->wlandev->netdev->name);
3110                         break;
3111                 }
3112
3113                 printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3114                        le16_to_cpu(head->outbuf.type), result);
3115                 unlocked_usbctlx_complete(hw, head);
3116         }                       /* while */
3117
3118 unlock:
3119         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3120 }
3121
3122 /*----------------------------------------------------------------
3123 * hfa384x_usbin_callback
3124 *
3125 * Callback for URBs on the BULKIN endpoint.
3126 *
3127 * Arguments:
3128 *       urb             ptr to the completed urb
3129 *
3130 * Returns:
3131 *       nothing
3132 *
3133 * Side effects:
3134 *
3135 * Call context:
3136 *       interrupt
3137 ----------------------------------------------------------------*/
3138 static void hfa384x_usbin_callback(struct urb *urb)
3139 {
3140         wlandevice_t *wlandev = urb->context;
3141         hfa384x_t *hw;
3142         hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3143         struct sk_buff *skb = NULL;
3144         int result;
3145         int urb_status;
3146         u16 type;
3147
3148         enum USBIN_ACTION {
3149                 HANDLE,
3150                 RESUBMIT,
3151                 ABORT
3152         } action;
3153
3154         if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3155                 goto exit;
3156
3157         hw = wlandev->priv;
3158         if (!hw)
3159                 goto exit;
3160
3161         skb = hw->rx_urb_skb;
3162         BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3163
3164         hw->rx_urb_skb = NULL;
3165
3166         /* Check for error conditions within the URB */
3167         switch (urb->status) {
3168         case 0:
3169                 action = HANDLE;
3170
3171                 /* Check for short packet */
3172                 if (urb->actual_length == 0) {
3173                         ++(wlandev->linux_stats.rx_errors);
3174                         ++(wlandev->linux_stats.rx_length_errors);
3175                         action = RESUBMIT;
3176                 }
3177                 break;
3178
3179         case -EPIPE:
3180                 printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3181                        wlandev->netdev->name);
3182                 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3183                         schedule_work(&hw->usb_work);
3184                 ++(wlandev->linux_stats.rx_errors);
3185                 action = ABORT;
3186                 break;
3187
3188         case -EILSEQ:
3189         case -ETIMEDOUT:
3190         case -EPROTO:
3191                 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3192                     !timer_pending(&hw->throttle)) {
3193                         mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3194                 }
3195                 ++(wlandev->linux_stats.rx_errors);
3196                 action = ABORT;
3197                 break;
3198
3199         case -EOVERFLOW:
3200                 ++(wlandev->linux_stats.rx_over_errors);
3201                 action = RESUBMIT;
3202                 break;
3203
3204         case -ENODEV:
3205         case -ESHUTDOWN:
3206                 pr_debug("status=%d, device removed.\n", urb->status);
3207                 action = ABORT;
3208                 break;
3209
3210         case -ENOENT:
3211         case -ECONNRESET:
3212                 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3213                 action = ABORT;
3214                 break;
3215
3216         default:
3217                 pr_debug("urb status=%d, transfer flags=0x%x\n",
3218                          urb->status, urb->transfer_flags);
3219                 ++(wlandev->linux_stats.rx_errors);
3220                 action = RESUBMIT;
3221                 break;
3222         }
3223
3224         urb_status = urb->status;
3225
3226         if (action != ABORT) {
3227                 /* Repost the RX URB */
3228                 result = submit_rx_urb(hw, GFP_ATOMIC);
3229
3230                 if (result != 0) {
3231                         printk(KERN_ERR
3232                                "Fatal, failed to resubmit rx_urb. error=%d\n",
3233                                result);
3234                 }
3235         }
3236
3237         /* Handle any USB-IN packet */
3238         /* Note: the check of the sw_support field, the type field doesn't
3239          *       have bit 12 set like the docs suggest.
3240          */
3241         type = le16_to_cpu(usbin->type);
3242         if (HFA384x_USB_ISRXFRM(type)) {
3243                 if (action == HANDLE) {
3244                         if (usbin->txfrm.desc.sw_support == 0x0123) {
3245                                 hfa384x_usbin_txcompl(wlandev, usbin);
3246                         } else {
3247                                 skb_put(skb, sizeof(*usbin));
3248                                 hfa384x_usbin_rx(wlandev, skb);
3249                                 skb = NULL;
3250                         }
3251                 }
3252                 goto exit;
3253         }
3254         if (HFA384x_USB_ISTXFRM(type)) {
3255                 if (action == HANDLE)
3256                         hfa384x_usbin_txcompl(wlandev, usbin);
3257                 goto exit;
3258         }
3259         switch (type) {
3260         case HFA384x_USB_INFOFRM:
3261                 if (action == ABORT)
3262                         goto exit;
3263                 if (action == HANDLE)
3264                         hfa384x_usbin_info(wlandev, usbin);
3265                 break;
3266
3267         case HFA384x_USB_CMDRESP:
3268         case HFA384x_USB_WRIDRESP:
3269         case HFA384x_USB_RRIDRESP:
3270         case HFA384x_USB_WMEMRESP:
3271         case HFA384x_USB_RMEMRESP:
3272                 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3273                 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3274                 break;
3275
3276         case HFA384x_USB_BUFAVAIL:
3277                 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3278                          usbin->bufavail.frmlen);
3279                 break;
3280
3281         case HFA384x_USB_ERROR:
3282                 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3283                          usbin->usberror.errortype);
3284                 break;
3285
3286         default:
3287                 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3288                          usbin->type, urb_status);
3289                 break;
3290         }                       /* switch */
3291
3292 exit:
3293
3294         if (skb)
3295                 dev_kfree_skb(skb);
3296 }
3297
3298 /*----------------------------------------------------------------
3299 * hfa384x_usbin_ctlx
3300 *
3301 * We've received a URB containing a Prism2 "response" message.
3302 * This message needs to be matched up with a CTLX on the active
3303 * queue and our state updated accordingly.
3304 *
3305 * Arguments:
3306 *       hw              ptr to hfa384x_t
3307 *       usbin           ptr to USB IN packet
3308 *       urb_status      status of this Bulk-In URB
3309 *
3310 * Returns:
3311 *       nothing
3312 *
3313 * Side effects:
3314 *
3315 * Call context:
3316 *       interrupt
3317 ----------------------------------------------------------------*/
3318 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3319                                int urb_status)
3320 {
3321         hfa384x_usbctlx_t *ctlx;
3322         int run_queue = 0;
3323         unsigned long flags;
3324
3325 retry:
3326         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3327
3328         /* There can be only one CTLX on the active queue
3329          * at any one time, and this is the CTLX that the
3330          * timers are waiting for.
3331          */
3332         if (list_empty(&hw->ctlxq.active))
3333                 goto unlock;
3334
3335         /* Remove the "response timeout". It's possible that
3336          * we are already too late, and that the timeout is
3337          * already running. And that's just too bad for us,
3338          * because we could lose our CTLX from the active
3339          * queue here ...
3340          */
3341         if (del_timer(&hw->resptimer) == 0) {
3342                 if (hw->resp_timer_done == 0) {
3343                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3344                         goto retry;
3345                 }
3346         } else {
3347                 hw->resp_timer_done = 1;
3348         }
3349
3350         ctlx = get_active_ctlx(hw);
3351
3352         if (urb_status != 0) {
3353                 /*
3354                  * Bad CTLX, so get rid of it. But we only
3355                  * remove it from the active queue if we're no
3356                  * longer expecting the OUT URB to complete.
3357                  */
3358                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3359                         run_queue = 1;
3360         } else {
3361                 const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3362
3363                 /*
3364                  * Check that our message is what we're expecting ...
3365                  */
3366                 if (ctlx->outbuf.type != intype) {
3367                         printk(KERN_WARNING
3368                                "Expected IN[%d], received IN[%d] - ignored.\n",
3369                                le16_to_cpu(ctlx->outbuf.type),
3370                                le16_to_cpu(intype));
3371                         goto unlock;
3372                 }
3373
3374                 /* This URB has succeeded, so grab the data ... */
3375                 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3376
3377                 switch (ctlx->state) {
3378                 case CTLX_REQ_SUBMITTED:
3379                         /*
3380                          * We have received our response URB before
3381                          * our request has been acknowledged. Odd,
3382                          * but our OUT URB is still alive...
3383                          */
3384                         pr_debug
3385                             ("Causality violation: please reboot Universe, or email linux-wlan-devel@lists.linux-wlan.com\n");
3386                         ctlx->state = CTLX_RESP_COMPLETE;
3387                         break;
3388
3389                 case CTLX_REQ_COMPLETE:
3390                         /*
3391                          * This is the usual path: our request
3392                          * has already been acknowledged, and
3393                          * now we have received the reply too.
3394                          */
3395                         ctlx->state = CTLX_COMPLETE;
3396                         unlocked_usbctlx_complete(hw, ctlx);
3397                         run_queue = 1;
3398                         break;
3399
3400                 default:
3401                         /*
3402                          * Throw this CTLX away ...
3403                          */
3404                         printk(KERN_ERR
3405                                "Matched IN URB, CTLX[%d] in invalid state(%s)."
3406                                " Discarded.\n",
3407                                le16_to_cpu(ctlx->outbuf.type),
3408                                ctlxstr(ctlx->state));
3409                         if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3410                                 run_queue = 1;
3411                         break;
3412                 }               /* switch */
3413         }
3414
3415 unlock:
3416         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3417
3418         if (run_queue)
3419                 hfa384x_usbctlxq_run(hw);
3420 }
3421
3422 /*----------------------------------------------------------------
3423 * hfa384x_usbin_txcompl
3424 *
3425 * At this point we have the results of a previous transmit.
3426 *
3427 * Arguments:
3428 *       wlandev         wlan device
3429 *       usbin           ptr to the usb transfer buffer
3430 *
3431 * Returns:
3432 *       nothing
3433 *
3434 * Side effects:
3435 *
3436 * Call context:
3437 *       interrupt
3438 ----------------------------------------------------------------*/
3439 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3440                                   hfa384x_usbin_t *usbin)
3441 {
3442         u16 status;
3443
3444         status = le16_to_cpu(usbin->type);      /* yeah I know it says type... */
3445
3446         /* Was there an error? */
3447         if (HFA384x_TXSTATUS_ISERROR(status))
3448                 prism2sta_ev_txexc(wlandev, status);
3449         else
3450                 prism2sta_ev_tx(wlandev, status);
3451 }
3452
3453 /*----------------------------------------------------------------
3454 * hfa384x_usbin_rx
3455 *
3456 * At this point we have a successful received a rx frame packet.
3457 *
3458 * Arguments:
3459 *       wlandev         wlan device
3460 *       usbin           ptr to the usb transfer buffer
3461 *
3462 * Returns:
3463 *       nothing
3464 *
3465 * Side effects:
3466 *
3467 * Call context:
3468 *       interrupt
3469 ----------------------------------------------------------------*/
3470 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3471 {
3472         hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3473         hfa384x_t *hw = wlandev->priv;
3474         int hdrlen;
3475         p80211_rxmeta_t *rxmeta;
3476         u16 data_len;
3477         u16 fc;
3478
3479         /* Byte order convert once up front. */
3480         usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3481         usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3482
3483         /* Now handle frame based on port# */
3484         switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3485         case 0:
3486                 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3487
3488                 /* If exclude and we receive an unencrypted, drop it */
3489                 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3490                     !WLAN_GET_FC_ISWEP(fc)) {
3491                         goto done;
3492                 }
3493
3494                 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3495
3496                 /* How much header data do we have? */
3497                 hdrlen = p80211_headerlen(fc);
3498
3499                 /* Pull off the descriptor */
3500                 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3501
3502                 /* Now shunt the header block up against the data block
3503                  * with an "overlapping" copy
3504                  */
3505                 memmove(skb_push(skb, hdrlen),
3506                         &usbin->rxfrm.desc.frame_control, hdrlen);
3507
3508                 skb->dev = wlandev->netdev;
3509                 skb->dev->last_rx = jiffies;
3510
3511                 /* And set the frame length properly */
3512                 skb_trim(skb, data_len + hdrlen);
3513
3514                 /* The prism2 series does not return the CRC */
3515                 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3516
3517                 skb_reset_mac_header(skb);
3518
3519                 /* Attach the rxmeta, set some stuff */
3520                 p80211skb_rxmeta_attach(wlandev, skb);
3521                 rxmeta = P80211SKB_RXMETA(skb);
3522                 rxmeta->mactime = usbin->rxfrm.desc.time;
3523                 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3524                 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3525                 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3526
3527                 prism2sta_ev_rx(wlandev, skb);
3528
3529                 break;
3530
3531         case 7:
3532                 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3533                         /* Copy to wlansnif skb */
3534                         hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3535                         dev_kfree_skb(skb);
3536                 } else {
3537                         pr_debug("Received monitor frame: FCSerr set\n");
3538                 }
3539                 break;
3540
3541         default:
3542                 printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3543                        HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3544                 goto done;
3545                 break;
3546         }
3547
3548 done:
3549         return;
3550 }
3551
3552 /*----------------------------------------------------------------
3553 * hfa384x_int_rxmonitor
3554 *
3555 * Helper function for int_rx.  Handles monitor frames.
3556 * Note that this function allocates space for the FCS and sets it
3557 * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3558 * higher layers expect it.  0xffffffff is used as a flag to indicate
3559 * the FCS is bogus.
3560 *
3561 * Arguments:
3562 *       wlandev         wlan device structure
3563 *       rxfrm           rx descriptor read from card in int_rx
3564 *
3565 * Returns:
3566 *       nothing
3567 *
3568 * Side effects:
3569 *       Allocates an skb and passes it up via the PF_PACKET interface.
3570 * Call context:
3571 *       interrupt
3572 ----------------------------------------------------------------*/
3573 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3574                                   hfa384x_usb_rxfrm_t *rxfrm)
3575 {
3576         hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3577         unsigned int hdrlen = 0;
3578         unsigned int datalen = 0;
3579         unsigned int skblen = 0;
3580         u8 *datap;
3581         u16 fc;
3582         struct sk_buff *skb;
3583         hfa384x_t *hw = wlandev->priv;
3584
3585         /* Don't forget the status, time, and data_len fields are in host order */
3586         /* Figure out how big the frame is */
3587         fc = le16_to_cpu(rxdesc->frame_control);
3588         hdrlen = p80211_headerlen(fc);
3589         datalen = le16_to_cpu(rxdesc->data_len);
3590
3591         /* Allocate an ind message+framesize skb */
3592         skblen = sizeof(p80211_caphdr_t) + hdrlen + datalen + WLAN_CRC_LEN;
3593
3594         /* sanity check the length */
3595         if (skblen >
3596             (sizeof(p80211_caphdr_t) +
3597              WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3598                 pr_debug("overlen frm: len=%zd\n",
3599                          skblen - sizeof(p80211_caphdr_t));
3600         }
3601
3602         if ((skb = dev_alloc_skb(skblen)) == NULL) {
3603                 printk(KERN_ERR
3604                        "alloc_skb failed trying to allocate %d bytes\n",
3605                        skblen);
3606                 return;
3607         }
3608
3609         /* only prepend the prism header if in the right mode */
3610         if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3611             (hw->sniffhdr != 0)) {
3612                 p80211_caphdr_t *caphdr;
3613                 /* The NEW header format! */
3614                 datap = skb_put(skb, sizeof(p80211_caphdr_t));
3615                 caphdr = (p80211_caphdr_t *) datap;
3616
3617                 caphdr->version = htonl(P80211CAPTURE_VERSION);
3618                 caphdr->length = htonl(sizeof(p80211_caphdr_t));
3619                 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3620                 caphdr->hosttime = __cpu_to_be64(jiffies);
3621                 caphdr->phytype = htonl(4);     /* dss_dot11_b */
3622                 caphdr->channel = htonl(hw->sniff_channel);
3623                 caphdr->datarate = htonl(rxdesc->rate);
3624                 caphdr->antenna = htonl(0);     /* unknown */
3625                 caphdr->priority = htonl(0);    /* unknown */
3626                 caphdr->ssi_type = htonl(3);    /* rssi_raw */
3627                 caphdr->ssi_signal = htonl(rxdesc->signal);
3628                 caphdr->ssi_noise = htonl(rxdesc->silence);
3629                 caphdr->preamble = htonl(0);    /* unknown */
3630                 caphdr->encoding = htonl(1);    /* cck */
3631         }
3632
3633         /* Copy the 802.11 header to the skb (ctl frames may be less than a full header) */
3634         datap = skb_put(skb, hdrlen);
3635         memcpy(datap, &(rxdesc->frame_control), hdrlen);
3636
3637         /* If any, copy the data from the card to the skb */
3638         if (datalen > 0) {
3639                 datap = skb_put(skb, datalen);
3640                 memcpy(datap, rxfrm->data, datalen);
3641
3642                 /* check for unencrypted stuff if WEP bit set. */
3643                 if (*(datap - hdrlen + 1) & 0x40)       /* wep set */
3644                         if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3645                                 *(datap - hdrlen + 1) &= 0xbf;  // clear wep; it's the 802.2 header!
3646         }
3647
3648         if (hw->sniff_fcs) {
3649                 /* Set the FCS */
3650                 datap = skb_put(skb, WLAN_CRC_LEN);
3651                 memset(datap, 0xff, WLAN_CRC_LEN);
3652         }
3653
3654         /* pass it back up */
3655         prism2sta_ev_rx(wlandev, skb);
3656
3657         return;
3658 }
3659
3660 /*----------------------------------------------------------------
3661 * hfa384x_usbin_info
3662 *
3663 * At this point we have a successful received a Prism2 info frame.
3664 *
3665 * Arguments:
3666 *       wlandev         wlan device
3667 *       usbin           ptr to the usb transfer buffer
3668 *
3669 * Returns:
3670 *       nothing
3671 *
3672 * Side effects:
3673 *
3674 * Call context:
3675 *       interrupt
3676 ----------------------------------------------------------------*/
3677 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3678 {
3679         usbin->infofrm.info.framelen =
3680             le16_to_cpu(usbin->infofrm.info.framelen);
3681         prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3682 }
3683
3684 /*----------------------------------------------------------------
3685 * hfa384x_usbout_callback
3686 *
3687 * Callback for URBs on the BULKOUT endpoint.
3688 *
3689 * Arguments:
3690 *       urb             ptr to the completed urb
3691 *
3692 * Returns:
3693 *       nothing
3694 *
3695 * Side effects:
3696 *
3697 * Call context:
3698 *       interrupt
3699 ----------------------------------------------------------------*/
3700 static void hfa384x_usbout_callback(struct urb *urb)
3701 {
3702         wlandevice_t *wlandev = urb->context;
3703         hfa384x_usbout_t *usbout = urb->transfer_buffer;
3704
3705 #ifdef DEBUG_USB
3706         dbprint_urb(urb);
3707 #endif
3708
3709         if (wlandev && wlandev->netdev) {
3710
3711                 switch (urb->status) {
3712                 case 0:
3713                         hfa384x_usbout_tx(wlandev, usbout);
3714                         break;
3715
3716                 case -EPIPE:
3717                         {
3718                                 hfa384x_t *hw = wlandev->priv;
3719                                 printk(KERN_WARNING
3720                                        "%s tx pipe stalled: requesting reset\n",
3721                                        wlandev->netdev->name);
3722                                 if (!test_and_set_bit
3723                                     (WORK_TX_HALT, &hw->usb_flags))
3724                                         schedule_work(&hw->usb_work);
3725                                 ++(wlandev->linux_stats.tx_errors);
3726                                 break;
3727                         }
3728
3729                 case -EPROTO:
3730                 case -ETIMEDOUT:
3731                 case -EILSEQ:
3732                         {
3733                                 hfa384x_t *hw = wlandev->priv;
3734
3735                                 if (!test_and_set_bit
3736                                     (THROTTLE_TX, &hw->usb_flags)
3737                                     && !timer_pending(&hw->throttle)) {
3738                                         mod_timer(&hw->throttle,
3739                                                   jiffies + THROTTLE_JIFFIES);
3740                                 }
3741                                 ++(wlandev->linux_stats.tx_errors);
3742                                 netif_stop_queue(wlandev->netdev);
3743                                 break;
3744                         }
3745
3746                 case -ENOENT:
3747                 case -ESHUTDOWN:
3748                         /* Ignorable errors */
3749                         break;
3750
3751                 default:
3752                         printk(KERN_INFO "unknown urb->status=%d\n",
3753                                urb->status);
3754                         ++(wlandev->linux_stats.tx_errors);
3755                         break;
3756                 }               /* switch */
3757         }
3758 }
3759
3760 /*----------------------------------------------------------------
3761 * hfa384x_ctlxout_callback
3762 *
3763 * Callback for control data on the BULKOUT endpoint.
3764 *
3765 * Arguments:
3766 *       urb             ptr to the completed urb
3767 *
3768 * Returns:
3769 * nothing
3770 *
3771 * Side effects:
3772 *
3773 * Call context:
3774 * interrupt
3775 ----------------------------------------------------------------*/
3776 static void hfa384x_ctlxout_callback(struct urb *urb)
3777 {
3778         hfa384x_t *hw = urb->context;
3779         int delete_resptimer = 0;
3780         int timer_ok = 1;
3781         int run_queue = 0;
3782         hfa384x_usbctlx_t *ctlx;
3783         unsigned long flags;
3784
3785         pr_debug("urb->status=%d\n", urb->status);
3786 #ifdef DEBUG_USB
3787         dbprint_urb(urb);
3788 #endif
3789         if ((urb->status == -ESHUTDOWN) ||
3790             (urb->status == -ENODEV) || (hw == NULL))
3791                 goto done;
3792
3793 retry:
3794         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3795
3796         /*
3797          * Only one CTLX at a time on the "active" list, and
3798          * none at all if we are unplugged. However, we can
3799          * rely on the disconnect function to clean everything
3800          * up if someone unplugged the adapter.
3801          */
3802         if (list_empty(&hw->ctlxq.active)) {
3803                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3804                 goto done;
3805         }
3806
3807         /*
3808          * Having something on the "active" queue means
3809          * that we have timers to worry about ...
3810          */
3811         if (del_timer(&hw->reqtimer) == 0) {
3812                 if (hw->req_timer_done == 0) {
3813                         /*
3814                          * This timer was actually running while we
3815                          * were trying to delete it. Let it terminate
3816                          * gracefully instead.
3817                          */
3818                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3819                         goto retry;
3820                 }
3821         } else {
3822                 hw->req_timer_done = 1;
3823         }
3824
3825         ctlx = get_active_ctlx(hw);
3826
3827         if (urb->status == 0) {
3828                 /* Request portion of a CTLX is successful */
3829                 switch (ctlx->state) {
3830                 case CTLX_REQ_SUBMITTED:
3831                         /* This OUT-ACK received before IN */
3832                         ctlx->state = CTLX_REQ_COMPLETE;
3833                         break;
3834
3835                 case CTLX_RESP_COMPLETE:
3836                         /* IN already received before this OUT-ACK,
3837                          * so this command must now be complete.
3838                          */
3839                         ctlx->state = CTLX_COMPLETE;
3840                         unlocked_usbctlx_complete(hw, ctlx);
3841                         run_queue = 1;
3842                         break;
3843
3844                 default:
3845                         /* This is NOT a valid CTLX "success" state! */
3846                         printk(KERN_ERR
3847                                "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3848                                le16_to_cpu(ctlx->outbuf.type),
3849                                ctlxstr(ctlx->state), urb->status);
3850                         break;
3851                 }               /* switch */
3852         } else {
3853                 /* If the pipe has stalled then we need to reset it */
3854                 if ((urb->status == -EPIPE) &&
3855                     !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3856                         printk(KERN_WARNING
3857                                "%s tx pipe stalled: requesting reset\n",
3858                                hw->wlandev->netdev->name);
3859                         schedule_work(&hw->usb_work);
3860                 }
3861
3862                 /* If someone cancels the OUT URB then its status
3863                  * should be either -ECONNRESET or -ENOENT.
3864                  */
3865                 ctlx->state = CTLX_REQ_FAILED;
3866                 unlocked_usbctlx_complete(hw, ctlx);
3867                 delete_resptimer = 1;
3868                 run_queue = 1;
3869         }
3870
3871 delresp:
3872         if (delete_resptimer) {
3873                 if ((timer_ok = del_timer(&hw->resptimer)) != 0) {
3874                         hw->resp_timer_done = 1;
3875                 }
3876         }
3877
3878         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3879
3880         if (!timer_ok && (hw->resp_timer_done == 0)) {
3881                 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3882                 goto delresp;
3883         }
3884
3885         if (run_queue)
3886                 hfa384x_usbctlxq_run(hw);
3887
3888 done:
3889         ;
3890 }
3891
3892 /*----------------------------------------------------------------
3893 * hfa384x_usbctlx_reqtimerfn
3894 *
3895 * Timer response function for CTLX request timeouts.  If this
3896 * function is called, it means that the callback for the OUT
3897 * URB containing a Prism2.x XXX_Request was never called.
3898 *
3899 * Arguments:
3900 *       data            a ptr to the hfa384x_t
3901 *
3902 * Returns:
3903 *       nothing
3904 *
3905 * Side effects:
3906 *
3907 * Call context:
3908 *       interrupt
3909 ----------------------------------------------------------------*/
3910 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3911 {
3912         hfa384x_t *hw = (hfa384x_t *) data;
3913         unsigned long flags;
3914
3915         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3916
3917         hw->req_timer_done = 1;
3918
3919         /* Removing the hardware automatically empties
3920          * the active list ...
3921          */
3922         if (!list_empty(&hw->ctlxq.active)) {
3923                 /*
3924                  * We must ensure that our URB is removed from
3925                  * the system, if it hasn't already expired.
3926                  */
3927                 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3928                 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3929                         hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3930
3931                         ctlx->state = CTLX_REQ_FAILED;
3932
3933                         /* This URB was active, but has now been
3934                          * cancelled. It will now have a status of
3935                          * -ECONNRESET in the callback function.
3936                          *
3937                          * We are cancelling this CTLX, so we're
3938                          * not going to need to wait for a response.
3939                          * The URB's callback function will check
3940                          * that this timer is truly dead.
3941                          */
3942                         if (del_timer(&hw->resptimer) != 0)
3943                                 hw->resp_timer_done = 1;
3944                 }
3945         }
3946
3947         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3948 }
3949
3950 /*----------------------------------------------------------------
3951 * hfa384x_usbctlx_resptimerfn
3952 *
3953 * Timer response function for CTLX response timeouts.  If this
3954 * function is called, it means that the callback for the IN
3955 * URB containing a Prism2.x XXX_Response was never called.
3956 *
3957 * Arguments:
3958 *       data            a ptr to the hfa384x_t
3959 *
3960 * Returns:
3961 *       nothing
3962 *
3963 * Side effects:
3964 *
3965 * Call context:
3966 *       interrupt
3967 ----------------------------------------------------------------*/
3968 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3969 {
3970         hfa384x_t *hw = (hfa384x_t *) data;
3971         unsigned long flags;
3972
3973         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3974
3975         hw->resp_timer_done = 1;
3976
3977         /* The active list will be empty if the
3978          * adapter has been unplugged ...
3979          */
3980         if (!list_empty(&hw->ctlxq.active)) {
3981                 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3982
3983                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3984                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3985                         hfa384x_usbctlxq_run(hw);
3986                         goto done;
3987                 }
3988         }
3989
3990         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3991
3992 done:
3993         ;
3994
3995 }
3996
3997 /*----------------------------------------------------------------
3998 * hfa384x_usb_throttlefn
3999 *
4000 *
4001 * Arguments:
4002 *       data    ptr to hw
4003 *
4004 * Returns:
4005 *       Nothing
4006 *
4007 * Side effects:
4008 *
4009 * Call context:
4010 *       Interrupt
4011 ----------------------------------------------------------------*/
4012 static void hfa384x_usb_throttlefn(unsigned long data)
4013 {
4014         hfa384x_t *hw = (hfa384x_t *) data;
4015         unsigned long flags;
4016
4017         spin_lock_irqsave(&hw->ctlxq.lock, flags);
4018
4019         /*
4020          * We need to check BOTH the RX and the TX throttle controls,
4021          * so we use the bitwise OR instead of the logical OR.
4022          */
4023         pr_debug("flags=0x%lx\n", hw->usb_flags);
4024         if (!hw->wlandev->hwremoved &&
4025             ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4026               !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4027              |
4028              (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4029               !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4030             )) {
4031                 schedule_work(&hw->usb_work);
4032         }
4033
4034         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4035 }
4036
4037 /*----------------------------------------------------------------
4038 * hfa384x_usbctlx_submit
4039 *
4040 * Called from the doxxx functions to submit a CTLX to the queue
4041 *
4042 * Arguments:
4043 *       hw              ptr to the hw struct
4044 *       ctlx            ctlx structure to enqueue
4045 *
4046 * Returns:
4047 *       -ENODEV if the adapter is unplugged
4048 *       0
4049 *
4050 * Side effects:
4051 *
4052 * Call context:
4053 *       process or interrupt
4054 ----------------------------------------------------------------*/
4055 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4056 {
4057         unsigned long flags;
4058         int ret;
4059
4060         spin_lock_irqsave(&hw->ctlxq.lock, flags);
4061
4062         if (hw->wlandev->hwremoved) {
4063                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4064                 ret = -ENODEV;
4065         } else {
4066                 ctlx->state = CTLX_PENDING;
4067                 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4068
4069                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4070                 hfa384x_usbctlxq_run(hw);
4071                 ret = 0;
4072         }
4073
4074         return ret;
4075 }
4076
4077 /*----------------------------------------------------------------
4078 * hfa384x_usbout_tx
4079 *
4080 * At this point we have finished a send of a frame.  Mark the URB
4081 * as available and call ev_alloc to notify higher layers we're
4082 * ready for more.
4083 *
4084 * Arguments:
4085 *       wlandev         wlan device
4086 *       usbout          ptr to the usb transfer buffer
4087 *
4088 * Returns:
4089 *       nothing
4090 *
4091 * Side effects:
4092 *
4093 * Call context:
4094 *       interrupt
4095 ----------------------------------------------------------------*/
4096 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4097 {
4098         prism2sta_ev_alloc(wlandev);
4099 }
4100
4101 /*----------------------------------------------------------------
4102 * hfa384x_isgood_pdrcore
4103 *
4104 * Quick check of PDR codes.
4105 *
4106 * Arguments:
4107 *       pdrcode         PDR code number (host order)
4108 *
4109 * Returns:
4110 *       zero            not good.
4111 *       one             is good.
4112 *
4113 * Side effects:
4114 *
4115 * Call context:
4116 ----------------------------------------------------------------*/
4117 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4118 {
4119         switch (pdrcode) {
4120         case HFA384x_PDR_END_OF_PDA:
4121         case HFA384x_PDR_PCB_PARTNUM:
4122         case HFA384x_PDR_PDAVER:
4123         case HFA384x_PDR_NIC_SERIAL:
4124         case HFA384x_PDR_MKK_MEASUREMENTS:
4125         case HFA384x_PDR_NIC_RAMSIZE:
4126         case HFA384x_PDR_MFISUPRANGE:
4127         case HFA384x_PDR_CFISUPRANGE:
4128         case HFA384x_PDR_NICID:
4129         case HFA384x_PDR_MAC_ADDRESS:
4130         case HFA384x_PDR_REGDOMAIN:
4131         case HFA384x_PDR_ALLOWED_CHANNEL:
4132         case HFA384x_PDR_DEFAULT_CHANNEL:
4133         case HFA384x_PDR_TEMPTYPE:
4134         case HFA384x_PDR_IFR_SETTING:
4135         case HFA384x_PDR_RFR_SETTING:
4136         case HFA384x_PDR_HFA3861_BASELINE:
4137         case HFA384x_PDR_HFA3861_SHADOW:
4138         case HFA384x_PDR_HFA3861_IFRF:
4139         case HFA384x_PDR_HFA3861_CHCALSP:
4140         case HFA384x_PDR_HFA3861_CHCALI:
4141         case HFA384x_PDR_3842_NIC_CONFIG:
4142         case HFA384x_PDR_USB_ID:
4143         case HFA384x_PDR_PCI_ID:
4144         case HFA384x_PDR_PCI_IFCONF:
4145         case HFA384x_PDR_PCI_PMCONF:
4146         case HFA384x_PDR_RFENRGY:
4147         case HFA384x_PDR_HFA3861_MANF_TESTSP:
4148         case HFA384x_PDR_HFA3861_MANF_TESTI:
4149                 /* code is OK */
4150                 return 1;
4151                 break;
4152         default:
4153                 if (pdrcode < 0x1000) {
4154                         /* code is OK, but we don't know exactly what it is */
4155                         pr_debug("Encountered unknown PDR#=0x%04x, "
4156                                  "assuming it's ok.\n", pdrcode);
4157                         return 1;
4158                 } else {
4159                         /* bad code */
4160                         pr_debug("Encountered unknown PDR#=0x%04x, "
4161                                  "(>=0x1000), assuming it's bad.\n", pdrcode);
4162                         return 0;
4163                 }
4164                 break;
4165         }
4166         return 0;               /* avoid compiler warnings */
4167 }