Merge branch 'core-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[firefly-linux-kernel-4.4.55.git] / drivers / spi / spi-tegra20-sflash.c
1 /*
2  * SPI driver for Nvidia's Tegra20 Serial Flash Controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * Author: Laxman Dewangan <ldewangan@nvidia.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <linux/clk.h>
22 #include <linux/completion.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spi-tegra.h>
37 #include <mach/clk.h>
38
39 #define SPI_COMMAND                             0x000
40 #define SPI_GO                                  BIT(30)
41 #define SPI_M_S                                 BIT(28)
42 #define SPI_ACTIVE_SCLK_MASK                    (0x3 << 26)
43 #define SPI_ACTIVE_SCLK_DRIVE_LOW               (0 << 26)
44 #define SPI_ACTIVE_SCLK_DRIVE_HIGH              (1 << 26)
45 #define SPI_ACTIVE_SCLK_PULL_LOW                (2 << 26)
46 #define SPI_ACTIVE_SCLK_PULL_HIGH               (3 << 26)
47
48 #define SPI_CK_SDA_FALLING                      (1 << 21)
49 #define SPI_CK_SDA_RISING                       (0 << 21)
50 #define SPI_CK_SDA_MASK                         (1 << 21)
51 #define SPI_ACTIVE_SDA                          (0x3 << 18)
52 #define SPI_ACTIVE_SDA_DRIVE_LOW                (0 << 18)
53 #define SPI_ACTIVE_SDA_DRIVE_HIGH               (1 << 18)
54 #define SPI_ACTIVE_SDA_PULL_LOW                 (2 << 18)
55 #define SPI_ACTIVE_SDA_PULL_HIGH                (3 << 18)
56
57 #define SPI_CS_POL_INVERT                       BIT(16)
58 #define SPI_TX_EN                               BIT(15)
59 #define SPI_RX_EN                               BIT(14)
60 #define SPI_CS_VAL_HIGH                         BIT(13)
61 #define SPI_CS_VAL_LOW                          0x0
62 #define SPI_CS_SW                               BIT(12)
63 #define SPI_CS_HW                               0x0
64 #define SPI_CS_DELAY_MASK                       (7 << 9)
65 #define SPI_CS3_EN                              BIT(8)
66 #define SPI_CS2_EN                              BIT(7)
67 #define SPI_CS1_EN                              BIT(6)
68 #define SPI_CS0_EN                              BIT(5)
69
70 #define SPI_CS_MASK                     (SPI_CS3_EN | SPI_CS2_EN |      \
71                                         SPI_CS1_EN | SPI_CS0_EN)
72 #define SPI_BIT_LENGTH(x)               (((x) & 0x1f) << 0)
73
74 #define SPI_MODES                       (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK)
75
76 #define SPI_STATUS                      0x004
77 #define SPI_BSY                         BIT(31)
78 #define SPI_RDY                         BIT(30)
79 #define SPI_TXF_FLUSH                   BIT(29)
80 #define SPI_RXF_FLUSH                   BIT(28)
81 #define SPI_RX_UNF                      BIT(27)
82 #define SPI_TX_OVF                      BIT(26)
83 #define SPI_RXF_EMPTY                   BIT(25)
84 #define SPI_RXF_FULL                    BIT(24)
85 #define SPI_TXF_EMPTY                   BIT(23)
86 #define SPI_TXF_FULL                    BIT(22)
87 #define SPI_BLK_CNT(count)              (((count) & 0xffff) + 1)
88
89 #define SPI_FIFO_ERROR                  (SPI_RX_UNF | SPI_TX_OVF)
90 #define SPI_FIFO_EMPTY                  (SPI_TX_EMPTY | SPI_RX_EMPTY)
91
92 #define SPI_RX_CMP                      0x8
93 #define SPI_DMA_CTL                     0x0C
94 #define SPI_DMA_EN                      BIT(31)
95 #define SPI_IE_RXC                      BIT(27)
96 #define SPI_IE_TXC                      BIT(26)
97 #define SPI_PACKED                      BIT(20)
98 #define SPI_RX_TRIG_MASK                (0x3 << 18)
99 #define SPI_RX_TRIG_1W                  (0x0 << 18)
100 #define SPI_RX_TRIG_4W                  (0x1 << 18)
101 #define SPI_TX_TRIG_MASK                (0x3 << 16)
102 #define SPI_TX_TRIG_1W                  (0x0 << 16)
103 #define SPI_TX_TRIG_4W                  (0x1 << 16)
104 #define SPI_DMA_BLK_COUNT(count)        (((count) - 1) & 0xFFFF);
105
106 #define SPI_TX_FIFO                     0x10
107 #define SPI_RX_FIFO                     0x20
108
109 #define DATA_DIR_TX                     (1 << 0)
110 #define DATA_DIR_RX                     (1 << 1)
111
112 #define MAX_CHIP_SELECT                 4
113 #define SPI_FIFO_DEPTH                  4
114 #define SPI_DMA_TIMEOUT               (msecs_to_jiffies(1000))
115
116 struct tegra_sflash_data {
117         struct device                           *dev;
118         struct spi_master                       *master;
119         spinlock_t                              lock;
120
121         struct clk                              *clk;
122         void __iomem                            *base;
123         unsigned                                irq;
124         u32                                     spi_max_frequency;
125         u32                                     cur_speed;
126
127         struct spi_device                       *cur_spi;
128         unsigned                                cur_pos;
129         unsigned                                cur_len;
130         unsigned                                bytes_per_word;
131         unsigned                                cur_direction;
132         unsigned                                curr_xfer_words;
133
134         unsigned                                cur_rx_pos;
135         unsigned                                cur_tx_pos;
136
137         u32                                     tx_status;
138         u32                                     rx_status;
139         u32                                     status_reg;
140
141         u32                                     def_command_reg;
142         u32                                     command_reg;
143         u32                                     dma_control_reg;
144
145         struct completion                       xfer_completion;
146         struct spi_transfer                     *curr_xfer;
147 };
148
149 static int tegra_sflash_runtime_suspend(struct device *dev);
150 static int tegra_sflash_runtime_resume(struct device *dev);
151
152 static inline unsigned long tegra_sflash_readl(struct tegra_sflash_data *tsd,
153                 unsigned long reg)
154 {
155         return readl(tsd->base + reg);
156 }
157
158 static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd,
159                 unsigned long val, unsigned long reg)
160 {
161         writel(val, tsd->base + reg);
162 }
163
164 static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd)
165 {
166         /* Write 1 to clear status register */
167         tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS);
168 }
169
170 static unsigned tegra_sflash_calculate_curr_xfer_param(
171         struct spi_device *spi, struct tegra_sflash_data *tsd,
172         struct spi_transfer *t)
173 {
174         unsigned remain_len = t->len - tsd->cur_pos;
175         unsigned max_word;
176
177         tsd->bytes_per_word = (t->bits_per_word - 1) / 8 + 1;
178         max_word = remain_len / tsd->bytes_per_word;
179         if (max_word > SPI_FIFO_DEPTH)
180                 max_word = SPI_FIFO_DEPTH;
181         tsd->curr_xfer_words = max_word;
182         return max_word;
183 }
184
185 static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf(
186         struct tegra_sflash_data *tsd, struct spi_transfer *t)
187 {
188         unsigned nbytes;
189         unsigned long status;
190         unsigned max_n_32bit = tsd->curr_xfer_words;
191         u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos;
192
193         if (max_n_32bit > SPI_FIFO_DEPTH)
194                 max_n_32bit = SPI_FIFO_DEPTH;
195         nbytes = max_n_32bit * tsd->bytes_per_word;
196
197         status = tegra_sflash_readl(tsd, SPI_STATUS);
198         while (!(status & SPI_TXF_FULL)) {
199                 int i;
200                 unsigned int x = 0;
201
202                 for (i = 0; nbytes && (i < tsd->bytes_per_word);
203                                                         i++, nbytes--)
204                                 x |= ((*tx_buf++) << i*8);
205                 tegra_sflash_writel(tsd, x, SPI_TX_FIFO);
206                 if (!nbytes)
207                         break;
208
209                 status = tegra_sflash_readl(tsd, SPI_STATUS);
210         }
211         tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word;
212         return max_n_32bit;
213 }
214
215 static int tegra_sflash_read_rx_fifo_to_client_rxbuf(
216                 struct tegra_sflash_data *tsd, struct spi_transfer *t)
217 {
218         unsigned long status;
219         unsigned int read_words = 0;
220         u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos;
221
222         status = tegra_sflash_readl(tsd, SPI_STATUS);
223         while (!(status & SPI_RXF_EMPTY)) {
224                 int i;
225                 unsigned long x;
226
227                 x = tegra_sflash_readl(tsd, SPI_RX_FIFO);
228                 for (i = 0; (i < tsd->bytes_per_word); i++)
229                         *rx_buf++ = (x >> (i*8)) & 0xFF;
230                 read_words++;
231                 status = tegra_sflash_readl(tsd, SPI_STATUS);
232         }
233         tsd->cur_rx_pos += read_words * tsd->bytes_per_word;
234         return 0;
235 }
236
237 static int tegra_sflash_start_cpu_based_transfer(
238                 struct tegra_sflash_data *tsd, struct spi_transfer *t)
239 {
240         unsigned long val = 0;
241         unsigned cur_words;
242
243         if (tsd->cur_direction & DATA_DIR_TX)
244                 val |= SPI_IE_TXC;
245
246         if (tsd->cur_direction & DATA_DIR_RX)
247                 val |= SPI_IE_RXC;
248
249         tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
250         tsd->dma_control_reg = val;
251
252         if (tsd->cur_direction & DATA_DIR_TX)
253                 cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t);
254         else
255                 cur_words = tsd->curr_xfer_words;
256         val |= SPI_DMA_BLK_COUNT(cur_words);
257         tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
258         tsd->dma_control_reg = val;
259         val |= SPI_DMA_EN;
260         tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
261         return 0;
262 }
263
264 static int tegra_sflash_start_transfer_one(struct spi_device *spi,
265                 struct spi_transfer *t, bool is_first_of_msg,
266                 bool is_single_xfer)
267 {
268         struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
269         u32 speed;
270         unsigned long command;
271
272         speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz;
273         if (!speed)
274                 speed = tsd->spi_max_frequency;
275         if (speed != tsd->cur_speed) {
276                 clk_set_rate(tsd->clk, speed);
277                 tsd->cur_speed = speed;
278         }
279
280         tsd->cur_spi = spi;
281         tsd->cur_pos = 0;
282         tsd->cur_rx_pos = 0;
283         tsd->cur_tx_pos = 0;
284         tsd->curr_xfer = t;
285         tegra_sflash_calculate_curr_xfer_param(spi, tsd, t);
286         if (is_first_of_msg) {
287                 command = tsd->def_command_reg;
288                 command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
289                 command |= SPI_CS_VAL_HIGH;
290
291                 command &= ~SPI_MODES;
292                 if (spi->mode & SPI_CPHA)
293                         command |= SPI_CK_SDA_FALLING;
294
295                 if (spi->mode & SPI_CPOL)
296                         command |= SPI_ACTIVE_SCLK_DRIVE_HIGH;
297                 else
298                         command |= SPI_ACTIVE_SCLK_DRIVE_LOW;
299                 command |= SPI_CS0_EN << spi->chip_select;
300         } else {
301                 command = tsd->command_reg;
302                 command &= ~SPI_BIT_LENGTH(~0);
303                 command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
304                 command &= ~(SPI_RX_EN | SPI_TX_EN);
305         }
306
307         tsd->cur_direction = 0;
308         if (t->rx_buf) {
309                 command |= SPI_RX_EN;
310                 tsd->cur_direction |= DATA_DIR_RX;
311         }
312         if (t->tx_buf) {
313                 command |= SPI_TX_EN;
314                 tsd->cur_direction |= DATA_DIR_TX;
315         }
316         tegra_sflash_writel(tsd, command, SPI_COMMAND);
317         tsd->command_reg = command;
318
319         return  tegra_sflash_start_cpu_based_transfer(tsd, t);
320 }
321
322 static int tegra_sflash_transfer_one_message(struct spi_master *master,
323                         struct spi_message *msg)
324 {
325         bool is_first_msg = true;
326         int single_xfer;
327         struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
328         struct spi_transfer *xfer;
329         struct spi_device *spi = msg->spi;
330         int ret;
331
332         ret = pm_runtime_get_sync(tsd->dev);
333         if (ret < 0) {
334                 dev_err(tsd->dev, "pm_runtime_get() failed, err = %d\n", ret);
335                 return ret;
336         }
337
338         msg->status = 0;
339         msg->actual_length = 0;
340         single_xfer = list_is_singular(&msg->transfers);
341         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
342                 INIT_COMPLETION(tsd->xfer_completion);
343                 ret = tegra_sflash_start_transfer_one(spi, xfer,
344                                         is_first_msg, single_xfer);
345                 if (ret < 0) {
346                         dev_err(tsd->dev,
347                                 "spi can not start transfer, err %d\n", ret);
348                         goto exit;
349                 }
350                 is_first_msg = false;
351                 ret = wait_for_completion_timeout(&tsd->xfer_completion,
352                                                 SPI_DMA_TIMEOUT);
353                 if (WARN_ON(ret == 0)) {
354                         dev_err(tsd->dev,
355                                 "spi trasfer timeout, err %d\n", ret);
356                         ret = -EIO;
357                         goto exit;
358                 }
359
360                 if (tsd->tx_status ||  tsd->rx_status) {
361                         dev_err(tsd->dev, "Error in Transfer\n");
362                         ret = -EIO;
363                         goto exit;
364                 }
365                 msg->actual_length += xfer->len;
366                 if (xfer->cs_change && xfer->delay_usecs) {
367                         tegra_sflash_writel(tsd, tsd->def_command_reg,
368                                         SPI_COMMAND);
369                         udelay(xfer->delay_usecs);
370                 }
371         }
372         ret = 0;
373 exit:
374         tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
375         msg->status = ret;
376         spi_finalize_current_message(master);
377         pm_runtime_put(tsd->dev);
378         return ret;
379 }
380
381 static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd)
382 {
383         struct spi_transfer *t = tsd->curr_xfer;
384         unsigned long flags;
385
386         spin_lock_irqsave(&tsd->lock, flags);
387         if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) {
388                 dev_err(tsd->dev,
389                         "CpuXfer ERROR bit set 0x%x\n", tsd->status_reg);
390                 dev_err(tsd->dev,
391                         "CpuXfer 0x%08x:0x%08x\n", tsd->command_reg,
392                                 tsd->dma_control_reg);
393                 tegra_periph_reset_assert(tsd->clk);
394                 udelay(2);
395                 tegra_periph_reset_deassert(tsd->clk);
396                 complete(&tsd->xfer_completion);
397                 goto exit;
398         }
399
400         if (tsd->cur_direction & DATA_DIR_RX)
401                 tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t);
402
403         if (tsd->cur_direction & DATA_DIR_TX)
404                 tsd->cur_pos = tsd->cur_tx_pos;
405         else
406                 tsd->cur_pos = tsd->cur_rx_pos;
407
408         if (tsd->cur_pos == t->len) {
409                 complete(&tsd->xfer_completion);
410                 goto exit;
411         }
412
413         tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t);
414         tegra_sflash_start_cpu_based_transfer(tsd, t);
415 exit:
416         spin_unlock_irqrestore(&tsd->lock, flags);
417         return IRQ_HANDLED;
418 }
419
420 static irqreturn_t tegra_sflash_isr(int irq, void *context_data)
421 {
422         struct tegra_sflash_data *tsd = context_data;
423
424         tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS);
425         if (tsd->cur_direction & DATA_DIR_TX)
426                 tsd->tx_status = tsd->status_reg & SPI_TX_OVF;
427
428         if (tsd->cur_direction & DATA_DIR_RX)
429                 tsd->rx_status = tsd->status_reg & SPI_RX_UNF;
430         tegra_sflash_clear_status(tsd);
431
432         return handle_cpu_based_xfer(tsd);
433 }
434
435 static struct tegra_spi_platform_data *tegra_sflash_parse_dt(
436                 struct platform_device *pdev)
437 {
438         struct tegra_spi_platform_data *pdata;
439         struct device_node *np = pdev->dev.of_node;
440         u32 max_freq;
441
442         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
443         if (!pdata) {
444                 dev_err(&pdev->dev, "Memory alloc for pdata failed\n");
445                 return NULL;
446         }
447
448         if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
449                 pdata->spi_max_frequency = max_freq;
450
451         return pdata;
452 }
453
454 static struct of_device_id tegra_sflash_of_match[] = {
455         { .compatible = "nvidia,tegra20-sflash", },
456         {}
457 };
458 MODULE_DEVICE_TABLE(of, tegra_sflash_of_match);
459
460 static int tegra_sflash_probe(struct platform_device *pdev)
461 {
462         struct spi_master       *master;
463         struct tegra_sflash_data        *tsd;
464         struct resource         *r;
465         struct tegra_spi_platform_data *pdata = pdev->dev.platform_data;
466         int ret;
467         const struct of_device_id *match;
468
469         match = of_match_device(of_match_ptr(tegra_sflash_of_match),
470                                         &pdev->dev);
471         if (!match) {
472                 dev_err(&pdev->dev, "Error: No device match found\n");
473                 return -ENODEV;
474         }
475
476         if (!pdata && pdev->dev.of_node)
477                 pdata = tegra_sflash_parse_dt(pdev);
478
479         if (!pdata) {
480                 dev_err(&pdev->dev, "No platform data, exiting\n");
481                 return -ENODEV;
482         }
483
484         if (!pdata->spi_max_frequency)
485                 pdata->spi_max_frequency = 25000000; /* 25MHz */
486
487         master = spi_alloc_master(&pdev->dev, sizeof(*tsd));
488         if (!master) {
489                 dev_err(&pdev->dev, "master allocation failed\n");
490                 return -ENOMEM;
491         }
492
493         /* the spi->mode bits understood by this driver: */
494         master->mode_bits = SPI_CPOL | SPI_CPHA;
495         master->transfer_one_message = tegra_sflash_transfer_one_message;
496         master->num_chipselect = MAX_CHIP_SELECT;
497         master->bus_num = -1;
498
499         dev_set_drvdata(&pdev->dev, master);
500         tsd = spi_master_get_devdata(master);
501         tsd->master = master;
502         tsd->dev = &pdev->dev;
503         spin_lock_init(&tsd->lock);
504
505         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
506         if (!r) {
507                 dev_err(&pdev->dev, "No IO memory resource\n");
508                 ret = -ENODEV;
509                 goto exit_free_master;
510         }
511         tsd->base = devm_request_and_ioremap(&pdev->dev, r);
512         if (!tsd->base) {
513                 dev_err(&pdev->dev,
514                         "Cannot request memregion/iomap dma address\n");
515                 ret = -EADDRNOTAVAIL;
516                 goto exit_free_master;
517         }
518
519         tsd->irq = platform_get_irq(pdev, 0);
520         ret = request_irq(tsd->irq, tegra_sflash_isr, 0,
521                         dev_name(&pdev->dev), tsd);
522         if (ret < 0) {
523                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
524                                         tsd->irq);
525                 goto exit_free_master;
526         }
527
528         tsd->clk = devm_clk_get(&pdev->dev, "spi");
529         if (IS_ERR(tsd->clk)) {
530                 dev_err(&pdev->dev, "can not get clock\n");
531                 ret = PTR_ERR(tsd->clk);
532                 goto exit_free_irq;
533         }
534
535         tsd->spi_max_frequency = pdata->spi_max_frequency;
536         init_completion(&tsd->xfer_completion);
537         pm_runtime_enable(&pdev->dev);
538         if (!pm_runtime_enabled(&pdev->dev)) {
539                 ret = tegra_sflash_runtime_resume(&pdev->dev);
540                 if (ret)
541                         goto exit_pm_disable;
542         }
543
544         ret = pm_runtime_get_sync(&pdev->dev);
545         if (ret < 0) {
546                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
547                 goto exit_pm_disable;
548         }
549
550         /* Reset controller */
551         tegra_periph_reset_assert(tsd->clk);
552         udelay(2);
553         tegra_periph_reset_deassert(tsd->clk);
554
555         tsd->def_command_reg  = SPI_M_S | SPI_CS_SW;
556         tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
557         pm_runtime_put(&pdev->dev);
558
559         master->dev.of_node = pdev->dev.of_node;
560         ret = spi_register_master(master);
561         if (ret < 0) {
562                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
563                 goto exit_pm_disable;
564         }
565         return ret;
566
567 exit_pm_disable:
568         pm_runtime_disable(&pdev->dev);
569         if (!pm_runtime_status_suspended(&pdev->dev))
570                 tegra_sflash_runtime_suspend(&pdev->dev);
571 exit_free_irq:
572         free_irq(tsd->irq, tsd);
573 exit_free_master:
574         spi_master_put(master);
575         return ret;
576 }
577
578 static int tegra_sflash_remove(struct platform_device *pdev)
579 {
580         struct spi_master *master = dev_get_drvdata(&pdev->dev);
581         struct tegra_sflash_data        *tsd = spi_master_get_devdata(master);
582
583         free_irq(tsd->irq, tsd);
584         spi_unregister_master(master);
585
586         pm_runtime_disable(&pdev->dev);
587         if (!pm_runtime_status_suspended(&pdev->dev))
588                 tegra_sflash_runtime_suspend(&pdev->dev);
589
590         return 0;
591 }
592
593 #ifdef CONFIG_PM_SLEEP
594 static int tegra_sflash_suspend(struct device *dev)
595 {
596         struct spi_master *master = dev_get_drvdata(dev);
597
598         return spi_master_suspend(master);
599 }
600
601 static int tegra_sflash_resume(struct device *dev)
602 {
603         struct spi_master *master = dev_get_drvdata(dev);
604         struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
605         int ret;
606
607         ret = pm_runtime_get_sync(dev);
608         if (ret < 0) {
609                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
610                 return ret;
611         }
612         tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND);
613         pm_runtime_put(dev);
614
615         return spi_master_resume(master);
616 }
617 #endif
618
619 static int tegra_sflash_runtime_suspend(struct device *dev)
620 {
621         struct spi_master *master = dev_get_drvdata(dev);
622         struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
623
624         /* Flush all write which are in PPSB queue by reading back */
625         tegra_sflash_readl(tsd, SPI_COMMAND);
626
627         clk_disable_unprepare(tsd->clk);
628         return 0;
629 }
630
631 static int tegra_sflash_runtime_resume(struct device *dev)
632 {
633         struct spi_master *master = dev_get_drvdata(dev);
634         struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
635         int ret;
636
637         ret = clk_prepare_enable(tsd->clk);
638         if (ret < 0) {
639                 dev_err(tsd->dev, "clk_prepare failed: %d\n", ret);
640                 return ret;
641         }
642         return 0;
643 }
644
645 static const struct dev_pm_ops slink_pm_ops = {
646         SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend,
647                 tegra_sflash_runtime_resume, NULL)
648         SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume)
649 };
650 static struct platform_driver tegra_sflash_driver = {
651         .driver = {
652                 .name           = "spi-tegra-sflash",
653                 .owner          = THIS_MODULE,
654                 .pm             = &slink_pm_ops,
655                 .of_match_table = of_match_ptr(tegra_sflash_of_match),
656         },
657         .probe =        tegra_sflash_probe,
658         .remove =       tegra_sflash_remove,
659 };
660 module_platform_driver(tegra_sflash_driver);
661
662 MODULE_ALIAS("platform:spi-tegra-sflash");
663 MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver");
664 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
665 MODULE_LICENSE("GPL v2");