Merge branches 'misc' and 'vdso' into for-next
[firefly-linux-kernel-4.4.55.git] / drivers / spi / spi-dw-mid.c
1 /*
2  * Special handling for DW core on Intel MID platform
3  *
4  * Copyright (c) 2009, 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_SPI_DW_MID_DMA
26 #include <linux/intel_mid_dma.h>
27 #include <linux/pci.h>
28
29 #define RX_BUSY         0
30 #define TX_BUSY         1
31
32 struct mid_dma {
33         struct intel_mid_dma_slave      dmas_tx;
34         struct intel_mid_dma_slave      dmas_rx;
35 };
36
37 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
38 {
39         struct dw_spi *dws = param;
40
41         return dws->dma_dev == chan->device->dev;
42 }
43
44 static int mid_spi_dma_init(struct dw_spi *dws)
45 {
46         struct mid_dma *dw_dma = dws->dma_priv;
47         struct pci_dev *dma_dev;
48         struct intel_mid_dma_slave *rxs, *txs;
49         dma_cap_mask_t mask;
50
51         /*
52          * Get pci device for DMA controller, currently it could only
53          * be the DMA controller of Medfield
54          */
55         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
56         if (!dma_dev)
57                 return -ENODEV;
58
59         dws->dma_dev = &dma_dev->dev;
60
61         dma_cap_zero(mask);
62         dma_cap_set(DMA_SLAVE, mask);
63
64         /* 1. Init rx channel */
65         dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
66         if (!dws->rxchan)
67                 goto err_exit;
68         rxs = &dw_dma->dmas_rx;
69         rxs->hs_mode = LNW_DMA_HW_HS;
70         rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
71         dws->rxchan->private = rxs;
72
73         /* 2. Init tx channel */
74         dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
75         if (!dws->txchan)
76                 goto free_rxchan;
77         txs = &dw_dma->dmas_tx;
78         txs->hs_mode = LNW_DMA_HW_HS;
79         txs->cfg_mode = LNW_DMA_MEM_TO_PER;
80         dws->txchan->private = txs;
81
82         dws->dma_inited = 1;
83         return 0;
84
85 free_rxchan:
86         dma_release_channel(dws->rxchan);
87 err_exit:
88         return -EBUSY;
89 }
90
91 static void mid_spi_dma_exit(struct dw_spi *dws)
92 {
93         if (!dws->dma_inited)
94                 return;
95
96         dmaengine_terminate_all(dws->txchan);
97         dma_release_channel(dws->txchan);
98
99         dmaengine_terminate_all(dws->rxchan);
100         dma_release_channel(dws->rxchan);
101 }
102
103 /*
104  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
105  * channel will clear a corresponding bit.
106  */
107 static void dw_spi_dma_tx_done(void *arg)
108 {
109         struct dw_spi *dws = arg;
110
111         if (test_and_clear_bit(TX_BUSY, &dws->dma_chan_busy) & BIT(RX_BUSY))
112                 return;
113         dw_spi_xfer_done(dws);
114 }
115
116 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws)
117 {
118         struct dma_slave_config txconf;
119         struct dma_async_tx_descriptor *txdesc;
120
121         if (!dws->tx_dma)
122                 return NULL;
123
124         txconf.direction = DMA_MEM_TO_DEV;
125         txconf.dst_addr = dws->dma_addr;
126         txconf.dst_maxburst = LNW_DMA_MSIZE_16;
127         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
128         txconf.dst_addr_width = dws->dma_width;
129         txconf.device_fc = false;
130
131         dmaengine_slave_config(dws->txchan, &txconf);
132
133         memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
134         dws->tx_sgl.dma_address = dws->tx_dma;
135         dws->tx_sgl.length = dws->len;
136
137         txdesc = dmaengine_prep_slave_sg(dws->txchan,
138                                 &dws->tx_sgl,
139                                 1,
140                                 DMA_MEM_TO_DEV,
141                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
142         if (!txdesc)
143                 return NULL;
144
145         txdesc->callback = dw_spi_dma_tx_done;
146         txdesc->callback_param = dws;
147
148         return txdesc;
149 }
150
151 /*
152  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
153  * channel will clear a corresponding bit.
154  */
155 static void dw_spi_dma_rx_done(void *arg)
156 {
157         struct dw_spi *dws = arg;
158
159         if (test_and_clear_bit(RX_BUSY, &dws->dma_chan_busy) & BIT(TX_BUSY))
160                 return;
161         dw_spi_xfer_done(dws);
162 }
163
164 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
165 {
166         struct dma_slave_config rxconf;
167         struct dma_async_tx_descriptor *rxdesc;
168
169         if (!dws->rx_dma)
170                 return NULL;
171
172         rxconf.direction = DMA_DEV_TO_MEM;
173         rxconf.src_addr = dws->dma_addr;
174         rxconf.src_maxburst = LNW_DMA_MSIZE_16;
175         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
176         rxconf.src_addr_width = dws->dma_width;
177         rxconf.device_fc = false;
178
179         dmaengine_slave_config(dws->rxchan, &rxconf);
180
181         memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
182         dws->rx_sgl.dma_address = dws->rx_dma;
183         dws->rx_sgl.length = dws->len;
184
185         rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
186                                 &dws->rx_sgl,
187                                 1,
188                                 DMA_DEV_TO_MEM,
189                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
190         if (!rxdesc)
191                 return NULL;
192
193         rxdesc->callback = dw_spi_dma_rx_done;
194         rxdesc->callback_param = dws;
195
196         return rxdesc;
197 }
198
199 static void dw_spi_dma_setup(struct dw_spi *dws)
200 {
201         u16 dma_ctrl = 0;
202
203         spi_enable_chip(dws, 0);
204
205         dw_writew(dws, DW_SPI_DMARDLR, 0xf);
206         dw_writew(dws, DW_SPI_DMATDLR, 0x10);
207
208         if (dws->tx_dma)
209                 dma_ctrl |= SPI_DMA_TDMAE;
210         if (dws->rx_dma)
211                 dma_ctrl |= SPI_DMA_RDMAE;
212         dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
213
214         spi_enable_chip(dws, 1);
215 }
216
217 static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
218 {
219         struct dma_async_tx_descriptor *txdesc, *rxdesc;
220
221         /* 1. setup DMA related registers */
222         if (cs_change)
223                 dw_spi_dma_setup(dws);
224
225         /* 2. Prepare the TX dma transfer */
226         txdesc = dw_spi_dma_prepare_tx(dws);
227
228         /* 3. Prepare the RX dma transfer */
229         rxdesc = dw_spi_dma_prepare_rx(dws);
230
231         /* rx must be started before tx due to spi instinct */
232         if (rxdesc) {
233                 set_bit(RX_BUSY, &dws->dma_chan_busy);
234                 dmaengine_submit(rxdesc);
235                 dma_async_issue_pending(dws->rxchan);
236         }
237
238         if (txdesc) {
239                 set_bit(TX_BUSY, &dws->dma_chan_busy);
240                 dmaengine_submit(txdesc);
241                 dma_async_issue_pending(dws->txchan);
242         }
243
244         return 0;
245 }
246
247 static struct dw_spi_dma_ops mid_dma_ops = {
248         .dma_init       = mid_spi_dma_init,
249         .dma_exit       = mid_spi_dma_exit,
250         .dma_transfer   = mid_spi_dma_transfer,
251 };
252 #endif
253
254 /* Some specific info for SPI0 controller on Intel MID */
255
256 /* HW info for MRST Clk Control Unit, 32b reg per controller */
257 #define MRST_SPI_CLK_BASE       100000000       /* 100m */
258 #define MRST_CLK_SPI_REG        0xff11d86c
259 #define CLK_SPI_BDIV_OFFSET     0
260 #define CLK_SPI_BDIV_MASK       0x00000007
261 #define CLK_SPI_CDIV_OFFSET     9
262 #define CLK_SPI_CDIV_MASK       0x00000e00
263 #define CLK_SPI_DISABLE_OFFSET  8
264
265 int dw_spi_mid_init(struct dw_spi *dws)
266 {
267         void __iomem *clk_reg;
268         u32 clk_cdiv;
269
270         clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
271         if (!clk_reg)
272                 return -ENOMEM;
273
274         /* Get SPI controller operating freq info */
275         clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
276         clk_cdiv &= CLK_SPI_CDIV_MASK;
277         clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
278         dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
279
280         iounmap(clk_reg);
281
282 #ifdef CONFIG_SPI_DW_MID_DMA
283         dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
284         if (!dws->dma_priv)
285                 return -ENOMEM;
286         dws->dma_ops = &mid_dma_ops;
287 #endif
288         return 0;
289 }