Make scsi_free_queue() kill pending SCSI commands
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 /*
71  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72  * not change behaviour from the previous unplug mechanism, experimentation
73  * may prove this needs changing.
74  */
75 #define SCSI_QUEUE_DELAY        3
76
77 /*
78  * Function:    scsi_unprep_request()
79  *
80  * Purpose:     Remove all preparation done for a request, including its
81  *              associated scsi_cmnd, so that it can be requeued.
82  *
83  * Arguments:   req     - request to unprepare
84  *
85  * Lock status: Assumed that no locks are held upon entry.
86  *
87  * Returns:     Nothing.
88  */
89 static void scsi_unprep_request(struct request *req)
90 {
91         struct scsi_cmnd *cmd = req->special;
92
93         blk_unprep_request(req);
94         req->special = NULL;
95
96         scsi_put_command(cmd);
97 }
98
99 /**
100  * __scsi_queue_insert - private queue insertion
101  * @cmd: The SCSI command being requeued
102  * @reason:  The reason for the requeue
103  * @unbusy: Whether the queue should be unbusied
104  *
105  * This is a private queue insertion.  The public interface
106  * scsi_queue_insert() always assumes the queue should be unbusied
107  * because it's always called before the completion.  This function is
108  * for a requeue after completion, which should only occur in this
109  * file.
110  */
111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
112 {
113         struct Scsi_Host *host = cmd->device->host;
114         struct scsi_device *device = cmd->device;
115         struct scsi_target *starget = scsi_target(device);
116         struct request_queue *q = device->request_queue;
117         unsigned long flags;
118
119         SCSI_LOG_MLQUEUE(1,
120                  printk("Inserting command %p into mlqueue\n", cmd));
121
122         /*
123          * Set the appropriate busy bit for the device/host.
124          *
125          * If the host/device isn't busy, assume that something actually
126          * completed, and that we should be able to queue a command now.
127          *
128          * Note that the prior mid-layer assumption that any host could
129          * always queue at least one command is now broken.  The mid-layer
130          * will implement a user specifiable stall (see
131          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132          * if a command is requeued with no other commands outstanding
133          * either for the device or for the host.
134          */
135         switch (reason) {
136         case SCSI_MLQUEUE_HOST_BUSY:
137                 host->host_blocked = host->max_host_blocked;
138                 break;
139         case SCSI_MLQUEUE_DEVICE_BUSY:
140                 device->device_blocked = device->max_device_blocked;
141                 break;
142         case SCSI_MLQUEUE_TARGET_BUSY:
143                 starget->target_blocked = starget->max_target_blocked;
144                 break;
145         }
146
147         /*
148          * Decrement the counters, since these commands are no longer
149          * active on the host/device.
150          */
151         if (unbusy)
152                 scsi_device_unbusy(device);
153
154         /*
155          * Requeue this command.  It will go before all other commands
156          * that are already in the queue.
157          */
158         spin_lock_irqsave(q->queue_lock, flags);
159         blk_requeue_request(q, cmd->request);
160         spin_unlock_irqrestore(q->queue_lock, flags);
161
162         kblockd_schedule_work(q, &device->requeue_work);
163
164         return 0;
165 }
166
167 /*
168  * Function:    scsi_queue_insert()
169  *
170  * Purpose:     Insert a command in the midlevel queue.
171  *
172  * Arguments:   cmd    - command that we are adding to queue.
173  *              reason - why we are inserting command to queue.
174  *
175  * Lock status: Assumed that lock is not held upon entry.
176  *
177  * Returns:     Nothing.
178  *
179  * Notes:       We do this for one of two cases.  Either the host is busy
180  *              and it cannot accept any more commands for the time being,
181  *              or the device returned QUEUE_FULL and can accept no more
182  *              commands.
183  * Notes:       This could be called either from an interrupt context or a
184  *              normal process context.
185  */
186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
187 {
188         return __scsi_queue_insert(cmd, reason, 1);
189 }
190 /**
191  * scsi_execute - insert request and wait for the result
192  * @sdev:       scsi device
193  * @cmd:        scsi command
194  * @data_direction: data direction
195  * @buffer:     data buffer
196  * @bufflen:    len of buffer
197  * @sense:      optional sense buffer
198  * @timeout:    request timeout in seconds
199  * @retries:    number of times to retry request
200  * @flags:      or into request flags;
201  * @resid:      optional residual length
202  *
203  * returns the req->errors value which is the scsi_cmnd result
204  * field.
205  */
206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207                  int data_direction, void *buffer, unsigned bufflen,
208                  unsigned char *sense, int timeout, int retries, int flags,
209                  int *resid)
210 {
211         struct request *req;
212         int write = (data_direction == DMA_TO_DEVICE);
213         int ret = DRIVER_ERROR << 24;
214
215         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216         if (!req)
217                 return ret;
218
219         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
220                                         buffer, bufflen, __GFP_WAIT))
221                 goto out;
222
223         req->cmd_len = COMMAND_SIZE(cmd[0]);
224         memcpy(req->cmd, cmd, req->cmd_len);
225         req->sense = sense;
226         req->sense_len = 0;
227         req->retries = retries;
228         req->timeout = timeout;
229         req->cmd_type = REQ_TYPE_BLOCK_PC;
230         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232         /*
233          * head injection *required* here otherwise quiesce won't work
234          */
235         blk_execute_rq(req->q, NULL, req, 1);
236
237         /*
238          * Some devices (USB mass-storage in particular) may transfer
239          * garbage data together with a residue indicating that the data
240          * is invalid.  Prevent the garbage from being misinterpreted
241          * and prevent security leaks by zeroing out the excess data.
242          */
243         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246         if (resid)
247                 *resid = req->resid_len;
248         ret = req->errors;
249  out:
250         blk_put_request(req);
251
252         return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258                      int data_direction, void *buffer, unsigned bufflen,
259                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
260                      int *resid)
261 {
262         char *sense = NULL;
263         int result;
264         
265         if (sshdr) {
266                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267                 if (!sense)
268                         return DRIVER_ERROR << 24;
269         }
270         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271                               sense, timeout, retries, 0, resid);
272         if (sshdr)
273                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275         kfree(sense);
276         return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd     - command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293         cmd->serial_number = 0;
294         scsi_set_resid(cmd, 0);
295         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296         if (cmd->cmd_len == 0)
297                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302         struct Scsi_Host *shost = sdev->host;
303         struct scsi_target *starget = scsi_target(sdev);
304         unsigned long flags;
305
306         spin_lock_irqsave(shost->host_lock, flags);
307         shost->host_busy--;
308         starget->target_busy--;
309         if (unlikely(scsi_host_in_recovery(shost) &&
310                      (shost->host_failed || shost->host_eh_scheduled)))
311                 scsi_eh_wakeup(shost);
312         spin_unlock(shost->host_lock);
313         spin_lock(sdev->request_queue->queue_lock);
314         sdev->device_busy--;
315         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327         struct Scsi_Host *shost = current_sdev->host;
328         struct scsi_device *sdev, *tmp;
329         struct scsi_target *starget = scsi_target(current_sdev);
330         unsigned long flags;
331
332         spin_lock_irqsave(shost->host_lock, flags);
333         starget->starget_sdev_user = NULL;
334         spin_unlock_irqrestore(shost->host_lock, flags);
335
336         /*
337          * Call blk_run_queue for all LUNs on the target, starting with
338          * current_sdev. We race with others (to set starget_sdev_user),
339          * but in most cases, we will be first. Ideally, each LU on the
340          * target would get some limited time or requests on the target.
341          */
342         blk_run_queue(current_sdev->request_queue);
343
344         spin_lock_irqsave(shost->host_lock, flags);
345         if (starget->starget_sdev_user)
346                 goto out;
347         list_for_each_entry_safe(sdev, tmp, &starget->devices,
348                         same_target_siblings) {
349                 if (sdev == current_sdev)
350                         continue;
351                 if (scsi_device_get(sdev))
352                         continue;
353
354                 spin_unlock_irqrestore(shost->host_lock, flags);
355                 blk_run_queue(sdev->request_queue);
356                 spin_lock_irqsave(shost->host_lock, flags);
357         
358                 scsi_device_put(sdev);
359         }
360  out:
361         spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367                 return 1;
368
369         return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374         return ((starget->can_queue > 0 &&
375                  starget->target_busy >= starget->can_queue) ||
376                  starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382             shost->host_blocked || shost->host_self_blocked)
383                 return 1;
384
385         return 0;
386 }
387
388 /*
389  * Function:    scsi_run_queue()
390  *
391  * Purpose:     Select a proper request queue to serve next
392  *
393  * Arguments:   q       - last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:       The previous command was completely finished, start
398  *              a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402         struct scsi_device *sdev = q->queuedata;
403         struct Scsi_Host *shost;
404         LIST_HEAD(starved_list);
405         unsigned long flags;
406
407         /* if the device is dead, sdev will be NULL, so no queue to run */
408         if (!sdev)
409                 return;
410
411         shost = sdev->host;
412         if (scsi_target(sdev)->single_lun)
413                 scsi_single_lun_run(sdev);
414
415         spin_lock_irqsave(shost->host_lock, flags);
416         list_splice_init(&shost->starved_list, &starved_list);
417
418         while (!list_empty(&starved_list)) {
419                 /*
420                  * As long as shost is accepting commands and we have
421                  * starved queues, call blk_run_queue. scsi_request_fn
422                  * drops the queue_lock and can add us back to the
423                  * starved_list.
424                  *
425                  * host_lock protects the starved_list and starved_entry.
426                  * scsi_request_fn must get the host_lock before checking
427                  * or modifying starved_list or starved_entry.
428                  */
429                 if (scsi_host_is_busy(shost))
430                         break;
431
432                 sdev = list_entry(starved_list.next,
433                                   struct scsi_device, starved_entry);
434                 list_del_init(&sdev->starved_entry);
435                 if (scsi_target_is_busy(scsi_target(sdev))) {
436                         list_move_tail(&sdev->starved_entry,
437                                        &shost->starved_list);
438                         continue;
439                 }
440
441                 spin_unlock(shost->host_lock);
442                 spin_lock(sdev->request_queue->queue_lock);
443                 __blk_run_queue(sdev->request_queue);
444                 spin_unlock(sdev->request_queue->queue_lock);
445                 spin_lock(shost->host_lock);
446         }
447         /* put any unprocessed entries back */
448         list_splice(&starved_list, &shost->starved_list);
449         spin_unlock_irqrestore(shost->host_lock, flags);
450
451         blk_run_queue(q);
452 }
453
454 void scsi_requeue_run_queue(struct work_struct *work)
455 {
456         struct scsi_device *sdev;
457         struct request_queue *q;
458
459         sdev = container_of(work, struct scsi_device, requeue_work);
460         q = sdev->request_queue;
461         scsi_run_queue(q);
462 }
463
464 /*
465  * Function:    scsi_requeue_command()
466  *
467  * Purpose:     Handle post-processing of completed commands.
468  *
469  * Arguments:   q       - queue to operate on
470  *              cmd     - command that may need to be requeued.
471  *
472  * Returns:     Nothing
473  *
474  * Notes:       After command completion, there may be blocks left
475  *              over which weren't finished by the previous command
476  *              this can be for a number of reasons - the main one is
477  *              I/O errors in the middle of the request, in which case
478  *              we need to request the blocks that come after the bad
479  *              sector.
480  * Notes:       Upon return, cmd is a stale pointer.
481  */
482 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
483 {
484         struct request *req = cmd->request;
485         unsigned long flags;
486
487         spin_lock_irqsave(q->queue_lock, flags);
488         scsi_unprep_request(req);
489         blk_requeue_request(q, req);
490         spin_unlock_irqrestore(q->queue_lock, flags);
491
492         scsi_run_queue(q);
493 }
494
495 void scsi_next_command(struct scsi_cmnd *cmd)
496 {
497         struct scsi_device *sdev = cmd->device;
498         struct request_queue *q = sdev->request_queue;
499
500         /* need to hold a reference on the device before we let go of the cmd */
501         get_device(&sdev->sdev_gendev);
502
503         scsi_put_command(cmd);
504         scsi_run_queue(q);
505
506         /* ok to remove device now */
507         put_device(&sdev->sdev_gendev);
508 }
509
510 void scsi_run_host_queues(struct Scsi_Host *shost)
511 {
512         struct scsi_device *sdev;
513
514         shost_for_each_device(sdev, shost)
515                 scsi_run_queue(sdev->request_queue);
516 }
517
518 static void __scsi_release_buffers(struct scsi_cmnd *, int);
519
520 /*
521  * Function:    scsi_end_request()
522  *
523  * Purpose:     Post-processing of completed commands (usually invoked at end
524  *              of upper level post-processing and scsi_io_completion).
525  *
526  * Arguments:   cmd      - command that is complete.
527  *              error    - 0 if I/O indicates success, < 0 for I/O error.
528  *              bytes    - number of bytes of completed I/O
529  *              requeue  - indicates whether we should requeue leftovers.
530  *
531  * Lock status: Assumed that lock is not held upon entry.
532  *
533  * Returns:     cmd if requeue required, NULL otherwise.
534  *
535  * Notes:       This is called for block device requests in order to
536  *              mark some number of sectors as complete.
537  * 
538  *              We are guaranteeing that the request queue will be goosed
539  *              at some point during this call.
540  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
541  */
542 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
543                                           int bytes, int requeue)
544 {
545         struct request_queue *q = cmd->device->request_queue;
546         struct request *req = cmd->request;
547
548         /*
549          * If there are blocks left over at the end, set up the command
550          * to queue the remainder of them.
551          */
552         if (blk_end_request(req, error, bytes)) {
553                 /* kill remainder if no retrys */
554                 if (error && scsi_noretry_cmd(cmd))
555                         blk_end_request_all(req, error);
556                 else {
557                         if (requeue) {
558                                 /*
559                                  * Bleah.  Leftovers again.  Stick the
560                                  * leftovers in the front of the
561                                  * queue, and goose the queue again.
562                                  */
563                                 scsi_release_buffers(cmd);
564                                 scsi_requeue_command(q, cmd);
565                                 cmd = NULL;
566                         }
567                         return cmd;
568                 }
569         }
570
571         /*
572          * This will goose the queue request function at the end, so we don't
573          * need to worry about launching another command.
574          */
575         __scsi_release_buffers(cmd, 0);
576         scsi_next_command(cmd);
577         return NULL;
578 }
579
580 static inline unsigned int scsi_sgtable_index(unsigned short nents)
581 {
582         unsigned int index;
583
584         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
585
586         if (nents <= 8)
587                 index = 0;
588         else
589                 index = get_count_order(nents) - 3;
590
591         return index;
592 }
593
594 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
595 {
596         struct scsi_host_sg_pool *sgp;
597
598         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
599         mempool_free(sgl, sgp->pool);
600 }
601
602 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
603 {
604         struct scsi_host_sg_pool *sgp;
605
606         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
607         return mempool_alloc(sgp->pool, gfp_mask);
608 }
609
610 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
611                               gfp_t gfp_mask)
612 {
613         int ret;
614
615         BUG_ON(!nents);
616
617         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
618                                gfp_mask, scsi_sg_alloc);
619         if (unlikely(ret))
620                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
621                                 scsi_sg_free);
622
623         return ret;
624 }
625
626 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
627 {
628         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
629 }
630
631 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
632 {
633
634         if (cmd->sdb.table.nents)
635                 scsi_free_sgtable(&cmd->sdb);
636
637         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
638
639         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
640                 struct scsi_data_buffer *bidi_sdb =
641                         cmd->request->next_rq->special;
642                 scsi_free_sgtable(bidi_sdb);
643                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
644                 cmd->request->next_rq->special = NULL;
645         }
646
647         if (scsi_prot_sg_count(cmd))
648                 scsi_free_sgtable(cmd->prot_sdb);
649 }
650
651 /*
652  * Function:    scsi_release_buffers()
653  *
654  * Purpose:     Completion processing for block device I/O requests.
655  *
656  * Arguments:   cmd     - command that we are bailing.
657  *
658  * Lock status: Assumed that no lock is held upon entry.
659  *
660  * Returns:     Nothing
661  *
662  * Notes:       In the event that an upper level driver rejects a
663  *              command, we must release resources allocated during
664  *              the __init_io() function.  Primarily this would involve
665  *              the scatter-gather table, and potentially any bounce
666  *              buffers.
667  */
668 void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670         __scsi_release_buffers(cmd, 1);
671 }
672 EXPORT_SYMBOL(scsi_release_buffers);
673
674 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
675 {
676         int error = 0;
677
678         switch(host_byte(result)) {
679         case DID_TRANSPORT_FAILFAST:
680                 error = -ENOLINK;
681                 break;
682         case DID_TARGET_FAILURE:
683                 cmd->result |= (DID_OK << 16);
684                 error = -EREMOTEIO;
685                 break;
686         case DID_NEXUS_FAILURE:
687                 cmd->result |= (DID_OK << 16);
688                 error = -EBADE;
689                 break;
690         default:
691                 error = -EIO;
692                 break;
693         }
694
695         return error;
696 }
697
698 /*
699  * Function:    scsi_io_completion()
700  *
701  * Purpose:     Completion processing for block device I/O requests.
702  *
703  * Arguments:   cmd   - command that is finished.
704  *
705  * Lock status: Assumed that no lock is held upon entry.
706  *
707  * Returns:     Nothing
708  *
709  * Notes:       This function is matched in terms of capabilities to
710  *              the function that created the scatter-gather list.
711  *              In other words, if there are no bounce buffers
712  *              (the normal case for most drivers), we don't need
713  *              the logic to deal with cleaning up afterwards.
714  *
715  *              We must call scsi_end_request().  This will finish off
716  *              the specified number of sectors.  If we are done, the
717  *              command block will be released and the queue function
718  *              will be goosed.  If we are not done then we have to
719  *              figure out what to do next:
720  *
721  *              a) We can call scsi_requeue_command().  The request
722  *                 will be unprepared and put back on the queue.  Then
723  *                 a new command will be created for it.  This should
724  *                 be used if we made forward progress, or if we want
725  *                 to switch from READ(10) to READ(6) for example.
726  *
727  *              b) We can call scsi_queue_insert().  The request will
728  *                 be put back on the queue and retried using the same
729  *                 command as before, possibly after a delay.
730  *
731  *              c) We can call blk_end_request() with -EIO to fail
732  *                 the remainder of the request.
733  */
734 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
735 {
736         int result = cmd->result;
737         struct request_queue *q = cmd->device->request_queue;
738         struct request *req = cmd->request;
739         int error = 0;
740         struct scsi_sense_hdr sshdr;
741         int sense_valid = 0;
742         int sense_deferred = 0;
743         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
744               ACTION_DELAYED_RETRY} action;
745         char *description = NULL;
746
747         if (result) {
748                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
749                 if (sense_valid)
750                         sense_deferred = scsi_sense_is_deferred(&sshdr);
751         }
752
753         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
754                 req->errors = result;
755                 if (result) {
756                         if (sense_valid && req->sense) {
757                                 /*
758                                  * SG_IO wants current and deferred errors
759                                  */
760                                 int len = 8 + cmd->sense_buffer[7];
761
762                                 if (len > SCSI_SENSE_BUFFERSIZE)
763                                         len = SCSI_SENSE_BUFFERSIZE;
764                                 memcpy(req->sense, cmd->sense_buffer,  len);
765                                 req->sense_len = len;
766                         }
767                         if (!sense_deferred)
768                                 error = __scsi_error_from_host_byte(cmd, result);
769                 }
770
771                 req->resid_len = scsi_get_resid(cmd);
772
773                 if (scsi_bidi_cmnd(cmd)) {
774                         /*
775                          * Bidi commands Must be complete as a whole,
776                          * both sides at once.
777                          */
778                         req->next_rq->resid_len = scsi_in(cmd)->resid;
779
780                         scsi_release_buffers(cmd);
781                         blk_end_request_all(req, 0);
782
783                         scsi_next_command(cmd);
784                         return;
785                 }
786         }
787
788         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
789         BUG_ON(blk_bidi_rq(req));
790
791         /*
792          * Next deal with any sectors which we were able to correctly
793          * handle.
794          */
795         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
796                                       "%d bytes done.\n",
797                                       blk_rq_sectors(req), good_bytes));
798
799         /*
800          * Recovered errors need reporting, but they're always treated
801          * as success, so fiddle the result code here.  For BLOCK_PC
802          * we already took a copy of the original into rq->errors which
803          * is what gets returned to the user
804          */
805         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
806                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
807                  * print since caller wants ATA registers. Only occurs on
808                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
809                  */
810                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
811                         ;
812                 else if (!(req->cmd_flags & REQ_QUIET))
813                         scsi_print_sense("", cmd);
814                 result = 0;
815                 /* BLOCK_PC may have set error */
816                 error = 0;
817         }
818
819         /*
820          * A number of bytes were successfully read.  If there
821          * are leftovers and there is some kind of error
822          * (result != 0), retry the rest.
823          */
824         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
825                 return;
826
827         error = __scsi_error_from_host_byte(cmd, result);
828
829         if (host_byte(result) == DID_RESET) {
830                 /* Third party bus reset or reset for error recovery
831                  * reasons.  Just retry the command and see what
832                  * happens.
833                  */
834                 action = ACTION_RETRY;
835         } else if (sense_valid && !sense_deferred) {
836                 switch (sshdr.sense_key) {
837                 case UNIT_ATTENTION:
838                         if (cmd->device->removable) {
839                                 /* Detected disc change.  Set a bit
840                                  * and quietly refuse further access.
841                                  */
842                                 cmd->device->changed = 1;
843                                 description = "Media Changed";
844                                 action = ACTION_FAIL;
845                         } else {
846                                 /* Must have been a power glitch, or a
847                                  * bus reset.  Could not have been a
848                                  * media change, so we just retry the
849                                  * command and see what happens.
850                                  */
851                                 action = ACTION_RETRY;
852                         }
853                         break;
854                 case ILLEGAL_REQUEST:
855                         /* If we had an ILLEGAL REQUEST returned, then
856                          * we may have performed an unsupported
857                          * command.  The only thing this should be
858                          * would be a ten byte read where only a six
859                          * byte read was supported.  Also, on a system
860                          * where READ CAPACITY failed, we may have
861                          * read past the end of the disk.
862                          */
863                         if ((cmd->device->use_10_for_rw &&
864                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
865                             (cmd->cmnd[0] == READ_10 ||
866                              cmd->cmnd[0] == WRITE_10)) {
867                                 /* This will issue a new 6-byte command. */
868                                 cmd->device->use_10_for_rw = 0;
869                                 action = ACTION_REPREP;
870                         } else if (sshdr.asc == 0x10) /* DIX */ {
871                                 description = "Host Data Integrity Failure";
872                                 action = ACTION_FAIL;
873                                 error = -EILSEQ;
874                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
875                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
876                                    (cmd->cmnd[0] == UNMAP ||
877                                     cmd->cmnd[0] == WRITE_SAME_16 ||
878                                     cmd->cmnd[0] == WRITE_SAME)) {
879                                 description = "Discard failure";
880                                 action = ACTION_FAIL;
881                         } else
882                                 action = ACTION_FAIL;
883                         break;
884                 case ABORTED_COMMAND:
885                         action = ACTION_FAIL;
886                         if (sshdr.asc == 0x10) { /* DIF */
887                                 description = "Target Data Integrity Failure";
888                                 error = -EILSEQ;
889                         }
890                         break;
891                 case NOT_READY:
892                         /* If the device is in the process of becoming
893                          * ready, or has a temporary blockage, retry.
894                          */
895                         if (sshdr.asc == 0x04) {
896                                 switch (sshdr.ascq) {
897                                 case 0x01: /* becoming ready */
898                                 case 0x04: /* format in progress */
899                                 case 0x05: /* rebuild in progress */
900                                 case 0x06: /* recalculation in progress */
901                                 case 0x07: /* operation in progress */
902                                 case 0x08: /* Long write in progress */
903                                 case 0x09: /* self test in progress */
904                                 case 0x14: /* space allocation in progress */
905                                         action = ACTION_DELAYED_RETRY;
906                                         break;
907                                 default:
908                                         description = "Device not ready";
909                                         action = ACTION_FAIL;
910                                         break;
911                                 }
912                         } else {
913                                 description = "Device not ready";
914                                 action = ACTION_FAIL;
915                         }
916                         break;
917                 case VOLUME_OVERFLOW:
918                         /* See SSC3rXX or current. */
919                         action = ACTION_FAIL;
920                         break;
921                 default:
922                         description = "Unhandled sense code";
923                         action = ACTION_FAIL;
924                         break;
925                 }
926         } else {
927                 description = "Unhandled error code";
928                 action = ACTION_FAIL;
929         }
930
931         switch (action) {
932         case ACTION_FAIL:
933                 /* Give up and fail the remainder of the request */
934                 scsi_release_buffers(cmd);
935                 if (!(req->cmd_flags & REQ_QUIET)) {
936                         if (description)
937                                 scmd_printk(KERN_INFO, cmd, "%s\n",
938                                             description);
939                         scsi_print_result(cmd);
940                         if (driver_byte(result) & DRIVER_SENSE)
941                                 scsi_print_sense("", cmd);
942                         scsi_print_command(cmd);
943                 }
944                 if (blk_end_request_err(req, error))
945                         scsi_requeue_command(q, cmd);
946                 else
947                         scsi_next_command(cmd);
948                 break;
949         case ACTION_REPREP:
950                 /* Unprep the request and put it back at the head of the queue.
951                  * A new command will be prepared and issued.
952                  */
953                 scsi_release_buffers(cmd);
954                 scsi_requeue_command(q, cmd);
955                 break;
956         case ACTION_RETRY:
957                 /* Retry the same command immediately */
958                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
959                 break;
960         case ACTION_DELAYED_RETRY:
961                 /* Retry the same command after a delay */
962                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
963                 break;
964         }
965 }
966
967 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
968                              gfp_t gfp_mask)
969 {
970         int count;
971
972         /*
973          * If sg table allocation fails, requeue request later.
974          */
975         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
976                                         gfp_mask))) {
977                 return BLKPREP_DEFER;
978         }
979
980         req->buffer = NULL;
981
982         /* 
983          * Next, walk the list, and fill in the addresses and sizes of
984          * each segment.
985          */
986         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
987         BUG_ON(count > sdb->table.nents);
988         sdb->table.nents = count;
989         sdb->length = blk_rq_bytes(req);
990         return BLKPREP_OK;
991 }
992
993 /*
994  * Function:    scsi_init_io()
995  *
996  * Purpose:     SCSI I/O initialize function.
997  *
998  * Arguments:   cmd   - Command descriptor we wish to initialize
999  *
1000  * Returns:     0 on success
1001  *              BLKPREP_DEFER if the failure is retryable
1002  *              BLKPREP_KILL if the failure is fatal
1003  */
1004 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1005 {
1006         struct request *rq = cmd->request;
1007
1008         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1009         if (error)
1010                 goto err_exit;
1011
1012         if (blk_bidi_rq(rq)) {
1013                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1014                         scsi_sdb_cache, GFP_ATOMIC);
1015                 if (!bidi_sdb) {
1016                         error = BLKPREP_DEFER;
1017                         goto err_exit;
1018                 }
1019
1020                 rq->next_rq->special = bidi_sdb;
1021                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1022                 if (error)
1023                         goto err_exit;
1024         }
1025
1026         if (blk_integrity_rq(rq)) {
1027                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1028                 int ivecs, count;
1029
1030                 BUG_ON(prot_sdb == NULL);
1031                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1032
1033                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1034                         error = BLKPREP_DEFER;
1035                         goto err_exit;
1036                 }
1037
1038                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1039                                                 prot_sdb->table.sgl);
1040                 BUG_ON(unlikely(count > ivecs));
1041                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1042
1043                 cmd->prot_sdb = prot_sdb;
1044                 cmd->prot_sdb->table.nents = count;
1045         }
1046
1047         return BLKPREP_OK ;
1048
1049 err_exit:
1050         scsi_release_buffers(cmd);
1051         cmd->request->special = NULL;
1052         scsi_put_command(cmd);
1053         return error;
1054 }
1055 EXPORT_SYMBOL(scsi_init_io);
1056
1057 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1058                 struct request *req)
1059 {
1060         struct scsi_cmnd *cmd;
1061
1062         if (!req->special) {
1063                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1064                 if (unlikely(!cmd))
1065                         return NULL;
1066                 req->special = cmd;
1067         } else {
1068                 cmd = req->special;
1069         }
1070
1071         /* pull a tag out of the request if we have one */
1072         cmd->tag = req->tag;
1073         cmd->request = req;
1074
1075         cmd->cmnd = req->cmd;
1076         cmd->prot_op = SCSI_PROT_NORMAL;
1077
1078         return cmd;
1079 }
1080
1081 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1082 {
1083         struct scsi_cmnd *cmd;
1084         int ret = scsi_prep_state_check(sdev, req);
1085
1086         if (ret != BLKPREP_OK)
1087                 return ret;
1088
1089         cmd = scsi_get_cmd_from_req(sdev, req);
1090         if (unlikely(!cmd))
1091                 return BLKPREP_DEFER;
1092
1093         /*
1094          * BLOCK_PC requests may transfer data, in which case they must
1095          * a bio attached to them.  Or they might contain a SCSI command
1096          * that does not transfer data, in which case they may optionally
1097          * submit a request without an attached bio.
1098          */
1099         if (req->bio) {
1100                 int ret;
1101
1102                 BUG_ON(!req->nr_phys_segments);
1103
1104                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1105                 if (unlikely(ret))
1106                         return ret;
1107         } else {
1108                 BUG_ON(blk_rq_bytes(req));
1109
1110                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1111                 req->buffer = NULL;
1112         }
1113
1114         cmd->cmd_len = req->cmd_len;
1115         if (!blk_rq_bytes(req))
1116                 cmd->sc_data_direction = DMA_NONE;
1117         else if (rq_data_dir(req) == WRITE)
1118                 cmd->sc_data_direction = DMA_TO_DEVICE;
1119         else
1120                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1121         
1122         cmd->transfersize = blk_rq_bytes(req);
1123         cmd->allowed = req->retries;
1124         return BLKPREP_OK;
1125 }
1126 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1127
1128 /*
1129  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1130  * from filesystems that still need to be translated to SCSI CDBs from
1131  * the ULD.
1132  */
1133 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1134 {
1135         struct scsi_cmnd *cmd;
1136         int ret = scsi_prep_state_check(sdev, req);
1137
1138         if (ret != BLKPREP_OK)
1139                 return ret;
1140
1141         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1142                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1143                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1144                 if (ret != BLKPREP_OK)
1145                         return ret;
1146         }
1147
1148         /*
1149          * Filesystem requests must transfer data.
1150          */
1151         BUG_ON(!req->nr_phys_segments);
1152
1153         cmd = scsi_get_cmd_from_req(sdev, req);
1154         if (unlikely(!cmd))
1155                 return BLKPREP_DEFER;
1156
1157         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1158         return scsi_init_io(cmd, GFP_ATOMIC);
1159 }
1160 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1161
1162 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1163 {
1164         int ret = BLKPREP_OK;
1165
1166         /*
1167          * If the device is not in running state we will reject some
1168          * or all commands.
1169          */
1170         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1171                 switch (sdev->sdev_state) {
1172                 case SDEV_OFFLINE:
1173                         /*
1174                          * If the device is offline we refuse to process any
1175                          * commands.  The device must be brought online
1176                          * before trying any recovery commands.
1177                          */
1178                         sdev_printk(KERN_ERR, sdev,
1179                                     "rejecting I/O to offline device\n");
1180                         ret = BLKPREP_KILL;
1181                         break;
1182                 case SDEV_DEL:
1183                         /*
1184                          * If the device is fully deleted, we refuse to
1185                          * process any commands as well.
1186                          */
1187                         sdev_printk(KERN_ERR, sdev,
1188                                     "rejecting I/O to dead device\n");
1189                         ret = BLKPREP_KILL;
1190                         break;
1191                 case SDEV_QUIESCE:
1192                 case SDEV_BLOCK:
1193                 case SDEV_CREATED_BLOCK:
1194                         /*
1195                          * If the devices is blocked we defer normal commands.
1196                          */
1197                         if (!(req->cmd_flags & REQ_PREEMPT))
1198                                 ret = BLKPREP_DEFER;
1199                         break;
1200                 default:
1201                         /*
1202                          * For any other not fully online state we only allow
1203                          * special commands.  In particular any user initiated
1204                          * command is not allowed.
1205                          */
1206                         if (!(req->cmd_flags & REQ_PREEMPT))
1207                                 ret = BLKPREP_KILL;
1208                         break;
1209                 }
1210         }
1211         return ret;
1212 }
1213 EXPORT_SYMBOL(scsi_prep_state_check);
1214
1215 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1216 {
1217         struct scsi_device *sdev = q->queuedata;
1218
1219         switch (ret) {
1220         case BLKPREP_KILL:
1221                 req->errors = DID_NO_CONNECT << 16;
1222                 /* release the command and kill it */
1223                 if (req->special) {
1224                         struct scsi_cmnd *cmd = req->special;
1225                         scsi_release_buffers(cmd);
1226                         scsi_put_command(cmd);
1227                         req->special = NULL;
1228                 }
1229                 break;
1230         case BLKPREP_DEFER:
1231                 /*
1232                  * If we defer, the blk_peek_request() returns NULL, but the
1233                  * queue must be restarted, so we schedule a callback to happen
1234                  * shortly.
1235                  */
1236                 if (sdev->device_busy == 0)
1237                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1238                 break;
1239         default:
1240                 req->cmd_flags |= REQ_DONTPREP;
1241         }
1242
1243         return ret;
1244 }
1245 EXPORT_SYMBOL(scsi_prep_return);
1246
1247 int scsi_prep_fn(struct request_queue *q, struct request *req)
1248 {
1249         struct scsi_device *sdev = q->queuedata;
1250         int ret = BLKPREP_KILL;
1251
1252         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1253                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1254         return scsi_prep_return(q, req, ret);
1255 }
1256 EXPORT_SYMBOL(scsi_prep_fn);
1257
1258 /*
1259  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1260  * return 0.
1261  *
1262  * Called with the queue_lock held.
1263  */
1264 static inline int scsi_dev_queue_ready(struct request_queue *q,
1265                                   struct scsi_device *sdev)
1266 {
1267         if (sdev->device_busy == 0 && sdev->device_blocked) {
1268                 /*
1269                  * unblock after device_blocked iterates to zero
1270                  */
1271                 if (--sdev->device_blocked == 0) {
1272                         SCSI_LOG_MLQUEUE(3,
1273                                    sdev_printk(KERN_INFO, sdev,
1274                                    "unblocking device at zero depth\n"));
1275                 } else {
1276                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1277                         return 0;
1278                 }
1279         }
1280         if (scsi_device_is_busy(sdev))
1281                 return 0;
1282
1283         return 1;
1284 }
1285
1286
1287 /*
1288  * scsi_target_queue_ready: checks if there we can send commands to target
1289  * @sdev: scsi device on starget to check.
1290  *
1291  * Called with the host lock held.
1292  */
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294                                            struct scsi_device *sdev)
1295 {
1296         struct scsi_target *starget = scsi_target(sdev);
1297
1298         if (starget->single_lun) {
1299                 if (starget->starget_sdev_user &&
1300                     starget->starget_sdev_user != sdev)
1301                         return 0;
1302                 starget->starget_sdev_user = sdev;
1303         }
1304
1305         if (starget->target_busy == 0 && starget->target_blocked) {
1306                 /*
1307                  * unblock after target_blocked iterates to zero
1308                  */
1309                 if (--starget->target_blocked == 0) {
1310                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311                                          "unblocking target at zero depth\n"));
1312                 } else
1313                         return 0;
1314         }
1315
1316         if (scsi_target_is_busy(starget)) {
1317                 if (list_empty(&sdev->starved_entry))
1318                         list_add_tail(&sdev->starved_entry,
1319                                       &shost->starved_list);
1320                 return 0;
1321         }
1322
1323         /* We're OK to process the command, so we can't be starved */
1324         if (!list_empty(&sdev->starved_entry))
1325                 list_del_init(&sdev->starved_entry);
1326         return 1;
1327 }
1328
1329 /*
1330  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331  * return 0. We must end up running the queue again whenever 0 is
1332  * returned, else IO can hang.
1333  *
1334  * Called with host_lock held.
1335  */
1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337                                    struct Scsi_Host *shost,
1338                                    struct scsi_device *sdev)
1339 {
1340         if (scsi_host_in_recovery(shost))
1341                 return 0;
1342         if (shost->host_busy == 0 && shost->host_blocked) {
1343                 /*
1344                  * unblock after host_blocked iterates to zero
1345                  */
1346                 if (--shost->host_blocked == 0) {
1347                         SCSI_LOG_MLQUEUE(3,
1348                                 printk("scsi%d unblocking host at zero depth\n",
1349                                         shost->host_no));
1350                 } else {
1351                         return 0;
1352                 }
1353         }
1354         if (scsi_host_is_busy(shost)) {
1355                 if (list_empty(&sdev->starved_entry))
1356                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1357                 return 0;
1358         }
1359
1360         /* We're OK to process the command, so we can't be starved */
1361         if (!list_empty(&sdev->starved_entry))
1362                 list_del_init(&sdev->starved_entry);
1363
1364         return 1;
1365 }
1366
1367 /*
1368  * Busy state exporting function for request stacking drivers.
1369  *
1370  * For efficiency, no lock is taken to check the busy state of
1371  * shost/starget/sdev, since the returned value is not guaranteed and
1372  * may be changed after request stacking drivers call the function,
1373  * regardless of taking lock or not.
1374  *
1375  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1376  * (e.g. !sdev), scsi needs to return 'not busy'.
1377  * Otherwise, request stacking drivers may hold requests forever.
1378  */
1379 static int scsi_lld_busy(struct request_queue *q)
1380 {
1381         struct scsi_device *sdev = q->queuedata;
1382         struct Scsi_Host *shost;
1383         struct scsi_target *starget;
1384
1385         if (!sdev)
1386                 return 0;
1387
1388         shost = sdev->host;
1389         starget = scsi_target(sdev);
1390
1391         if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1392             scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1393                 return 1;
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * Kill a request for a dead device
1400  */
1401 static void scsi_kill_request(struct request *req, struct request_queue *q)
1402 {
1403         struct scsi_cmnd *cmd = req->special;
1404         struct scsi_device *sdev;
1405         struct scsi_target *starget;
1406         struct Scsi_Host *shost;
1407
1408         blk_start_request(req);
1409
1410         sdev = cmd->device;
1411         starget = scsi_target(sdev);
1412         shost = sdev->host;
1413         scsi_init_cmd_errh(cmd);
1414         cmd->result = DID_NO_CONNECT << 16;
1415         atomic_inc(&cmd->device->iorequest_cnt);
1416
1417         /*
1418          * SCSI request completion path will do scsi_device_unbusy(),
1419          * bump busy counts.  To bump the counters, we need to dance
1420          * with the locks as normal issue path does.
1421          */
1422         sdev->device_busy++;
1423         spin_unlock(sdev->request_queue->queue_lock);
1424         spin_lock(shost->host_lock);
1425         shost->host_busy++;
1426         starget->target_busy++;
1427         spin_unlock(shost->host_lock);
1428         spin_lock(sdev->request_queue->queue_lock);
1429
1430         blk_complete_request(req);
1431 }
1432
1433 static void scsi_softirq_done(struct request *rq)
1434 {
1435         struct scsi_cmnd *cmd = rq->special;
1436         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1437         int disposition;
1438
1439         INIT_LIST_HEAD(&cmd->eh_entry);
1440
1441         atomic_inc(&cmd->device->iodone_cnt);
1442         if (cmd->result)
1443                 atomic_inc(&cmd->device->ioerr_cnt);
1444
1445         disposition = scsi_decide_disposition(cmd);
1446         if (disposition != SUCCESS &&
1447             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1448                 sdev_printk(KERN_ERR, cmd->device,
1449                             "timing out command, waited %lus\n",
1450                             wait_for/HZ);
1451                 disposition = SUCCESS;
1452         }
1453                         
1454         scsi_log_completion(cmd, disposition);
1455
1456         switch (disposition) {
1457                 case SUCCESS:
1458                         scsi_finish_command(cmd);
1459                         break;
1460                 case NEEDS_RETRY:
1461                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1462                         break;
1463                 case ADD_TO_MLQUEUE:
1464                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1465                         break;
1466                 default:
1467                         if (!scsi_eh_scmd_add(cmd, 0))
1468                                 scsi_finish_command(cmd);
1469         }
1470 }
1471
1472 /*
1473  * Function:    scsi_request_fn()
1474  *
1475  * Purpose:     Main strategy routine for SCSI.
1476  *
1477  * Arguments:   q       - Pointer to actual queue.
1478  *
1479  * Returns:     Nothing
1480  *
1481  * Lock status: IO request lock assumed to be held when called.
1482  */
1483 static void scsi_request_fn(struct request_queue *q)
1484 {
1485         struct scsi_device *sdev = q->queuedata;
1486         struct Scsi_Host *shost;
1487         struct scsi_cmnd *cmd;
1488         struct request *req;
1489
1490         if (!sdev) {
1491                 printk("scsi: killing requests for dead queue\n");
1492                 while ((req = blk_peek_request(q)) != NULL)
1493                         scsi_kill_request(req, q);
1494                 return;
1495         }
1496
1497         if(!get_device(&sdev->sdev_gendev))
1498                 /* We must be tearing the block queue down already */
1499                 return;
1500
1501         /*
1502          * To start with, we keep looping until the queue is empty, or until
1503          * the host is no longer able to accept any more requests.
1504          */
1505         shost = sdev->host;
1506         for (;;) {
1507                 int rtn;
1508                 /*
1509                  * get next queueable request.  We do this early to make sure
1510                  * that the request is fully prepared even if we cannot 
1511                  * accept it.
1512                  */
1513                 req = blk_peek_request(q);
1514                 if (!req || !scsi_dev_queue_ready(q, sdev))
1515                         break;
1516
1517                 if (unlikely(!scsi_device_online(sdev))) {
1518                         sdev_printk(KERN_ERR, sdev,
1519                                     "rejecting I/O to offline device\n");
1520                         scsi_kill_request(req, q);
1521                         continue;
1522                 }
1523
1524
1525                 /*
1526                  * Remove the request from the request list.
1527                  */
1528                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1529                         blk_start_request(req);
1530                 sdev->device_busy++;
1531
1532                 spin_unlock(q->queue_lock);
1533                 cmd = req->special;
1534                 if (unlikely(cmd == NULL)) {
1535                         printk(KERN_CRIT "impossible request in %s.\n"
1536                                          "please mail a stack trace to "
1537                                          "linux-scsi@vger.kernel.org\n",
1538                                          __func__);
1539                         blk_dump_rq_flags(req, "foo");
1540                         BUG();
1541                 }
1542                 spin_lock(shost->host_lock);
1543
1544                 /*
1545                  * We hit this when the driver is using a host wide
1546                  * tag map. For device level tag maps the queue_depth check
1547                  * in the device ready fn would prevent us from trying
1548                  * to allocate a tag. Since the map is a shared host resource
1549                  * we add the dev to the starved list so it eventually gets
1550                  * a run when a tag is freed.
1551                  */
1552                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1553                         if (list_empty(&sdev->starved_entry))
1554                                 list_add_tail(&sdev->starved_entry,
1555                                               &shost->starved_list);
1556                         goto not_ready;
1557                 }
1558
1559                 if (!scsi_target_queue_ready(shost, sdev))
1560                         goto not_ready;
1561
1562                 if (!scsi_host_queue_ready(q, shost, sdev))
1563                         goto not_ready;
1564
1565                 scsi_target(sdev)->target_busy++;
1566                 shost->host_busy++;
1567
1568                 /*
1569                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1570                  *              take the lock again.
1571                  */
1572                 spin_unlock_irq(shost->host_lock);
1573
1574                 /*
1575                  * Finally, initialize any error handling parameters, and set up
1576                  * the timers for timeouts.
1577                  */
1578                 scsi_init_cmd_errh(cmd);
1579
1580                 /*
1581                  * Dispatch the command to the low-level driver.
1582                  */
1583                 rtn = scsi_dispatch_cmd(cmd);
1584                 spin_lock_irq(q->queue_lock);
1585                 if (rtn)
1586                         goto out_delay;
1587         }
1588
1589         goto out;
1590
1591  not_ready:
1592         spin_unlock_irq(shost->host_lock);
1593
1594         /*
1595          * lock q, handle tag, requeue req, and decrement device_busy. We
1596          * must return with queue_lock held.
1597          *
1598          * Decrementing device_busy without checking it is OK, as all such
1599          * cases (host limits or settings) should run the queue at some
1600          * later time.
1601          */
1602         spin_lock_irq(q->queue_lock);
1603         blk_requeue_request(q, req);
1604         sdev->device_busy--;
1605 out_delay:
1606         if (sdev->device_busy == 0)
1607                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1608 out:
1609         /* must be careful here...if we trigger the ->remove() function
1610          * we cannot be holding the q lock */
1611         spin_unlock_irq(q->queue_lock);
1612         put_device(&sdev->sdev_gendev);
1613         spin_lock_irq(q->queue_lock);
1614 }
1615
1616 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1617 {
1618         struct device *host_dev;
1619         u64 bounce_limit = 0xffffffff;
1620
1621         if (shost->unchecked_isa_dma)
1622                 return BLK_BOUNCE_ISA;
1623         /*
1624          * Platforms with virtual-DMA translation
1625          * hardware have no practical limit.
1626          */
1627         if (!PCI_DMA_BUS_IS_PHYS)
1628                 return BLK_BOUNCE_ANY;
1629
1630         host_dev = scsi_get_device(shost);
1631         if (host_dev && host_dev->dma_mask)
1632                 bounce_limit = *host_dev->dma_mask;
1633
1634         return bounce_limit;
1635 }
1636 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1637
1638 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1639                                          request_fn_proc *request_fn)
1640 {
1641         struct request_queue *q;
1642         struct device *dev = shost->shost_gendev.parent;
1643
1644         q = blk_init_queue(request_fn, NULL);
1645         if (!q)
1646                 return NULL;
1647
1648         /*
1649          * this limit is imposed by hardware restrictions
1650          */
1651         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1652                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1653
1654         if (scsi_host_prot_dma(shost)) {
1655                 shost->sg_prot_tablesize =
1656                         min_not_zero(shost->sg_prot_tablesize,
1657                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1658                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1659                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1660         }
1661
1662         blk_queue_max_hw_sectors(q, shost->max_sectors);
1663         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1664         blk_queue_segment_boundary(q, shost->dma_boundary);
1665         dma_set_seg_boundary(dev, shost->dma_boundary);
1666
1667         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1668
1669         if (!shost->use_clustering)
1670                 q->limits.cluster = 0;
1671
1672         /*
1673          * set a reasonable default alignment on word boundaries: the
1674          * host and device may alter it using
1675          * blk_queue_update_dma_alignment() later.
1676          */
1677         blk_queue_dma_alignment(q, 0x03);
1678
1679         return q;
1680 }
1681 EXPORT_SYMBOL(__scsi_alloc_queue);
1682
1683 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1684 {
1685         struct request_queue *q;
1686
1687         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1688         if (!q)
1689                 return NULL;
1690
1691         blk_queue_prep_rq(q, scsi_prep_fn);
1692         blk_queue_softirq_done(q, scsi_softirq_done);
1693         blk_queue_rq_timed_out(q, scsi_times_out);
1694         blk_queue_lld_busy(q, scsi_lld_busy);
1695         return q;
1696 }
1697
1698 void scsi_free_queue(struct request_queue *q)
1699 {
1700         unsigned long flags;
1701
1702         WARN_ON(q->queuedata);
1703
1704         /* cause scsi_request_fn() to kill all non-finished requests */
1705         spin_lock_irqsave(q->queue_lock, flags);
1706         q->request_fn(q);
1707         spin_unlock_irqrestore(q->queue_lock, flags);
1708
1709         blk_cleanup_queue(q);
1710 }
1711
1712 /*
1713  * Function:    scsi_block_requests()
1714  *
1715  * Purpose:     Utility function used by low-level drivers to prevent further
1716  *              commands from being queued to the device.
1717  *
1718  * Arguments:   shost       - Host in question
1719  *
1720  * Returns:     Nothing
1721  *
1722  * Lock status: No locks are assumed held.
1723  *
1724  * Notes:       There is no timer nor any other means by which the requests
1725  *              get unblocked other than the low-level driver calling
1726  *              scsi_unblock_requests().
1727  */
1728 void scsi_block_requests(struct Scsi_Host *shost)
1729 {
1730         shost->host_self_blocked = 1;
1731 }
1732 EXPORT_SYMBOL(scsi_block_requests);
1733
1734 /*
1735  * Function:    scsi_unblock_requests()
1736  *
1737  * Purpose:     Utility function used by low-level drivers to allow further
1738  *              commands from being queued to the device.
1739  *
1740  * Arguments:   shost       - Host in question
1741  *
1742  * Returns:     Nothing
1743  *
1744  * Lock status: No locks are assumed held.
1745  *
1746  * Notes:       There is no timer nor any other means by which the requests
1747  *              get unblocked other than the low-level driver calling
1748  *              scsi_unblock_requests().
1749  *
1750  *              This is done as an API function so that changes to the
1751  *              internals of the scsi mid-layer won't require wholesale
1752  *              changes to drivers that use this feature.
1753  */
1754 void scsi_unblock_requests(struct Scsi_Host *shost)
1755 {
1756         shost->host_self_blocked = 0;
1757         scsi_run_host_queues(shost);
1758 }
1759 EXPORT_SYMBOL(scsi_unblock_requests);
1760
1761 int __init scsi_init_queue(void)
1762 {
1763         int i;
1764
1765         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1766                                            sizeof(struct scsi_data_buffer),
1767                                            0, 0, NULL);
1768         if (!scsi_sdb_cache) {
1769                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1770                 return -ENOMEM;
1771         }
1772
1773         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1774                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1775                 int size = sgp->size * sizeof(struct scatterlist);
1776
1777                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1778                                 SLAB_HWCACHE_ALIGN, NULL);
1779                 if (!sgp->slab) {
1780                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1781                                         sgp->name);
1782                         goto cleanup_sdb;
1783                 }
1784
1785                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1786                                                      sgp->slab);
1787                 if (!sgp->pool) {
1788                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1789                                         sgp->name);
1790                         goto cleanup_sdb;
1791                 }
1792         }
1793
1794         return 0;
1795
1796 cleanup_sdb:
1797         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1798                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1799                 if (sgp->pool)
1800                         mempool_destroy(sgp->pool);
1801                 if (sgp->slab)
1802                         kmem_cache_destroy(sgp->slab);
1803         }
1804         kmem_cache_destroy(scsi_sdb_cache);
1805
1806         return -ENOMEM;
1807 }
1808
1809 void scsi_exit_queue(void)
1810 {
1811         int i;
1812
1813         kmem_cache_destroy(scsi_sdb_cache);
1814
1815         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1816                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1817                 mempool_destroy(sgp->pool);
1818                 kmem_cache_destroy(sgp->slab);
1819         }
1820 }
1821
1822 /**
1823  *      scsi_mode_select - issue a mode select
1824  *      @sdev:  SCSI device to be queried
1825  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1826  *      @sp:    Save page bit (0 == don't save, 1 == save)
1827  *      @modepage: mode page being requested
1828  *      @buffer: request buffer (may not be smaller than eight bytes)
1829  *      @len:   length of request buffer.
1830  *      @timeout: command timeout
1831  *      @retries: number of retries before failing
1832  *      @data: returns a structure abstracting the mode header data
1833  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1834  *              must be SCSI_SENSE_BUFFERSIZE big.
1835  *
1836  *      Returns zero if successful; negative error number or scsi
1837  *      status on error
1838  *
1839  */
1840 int
1841 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1842                  unsigned char *buffer, int len, int timeout, int retries,
1843                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1844 {
1845         unsigned char cmd[10];
1846         unsigned char *real_buffer;
1847         int ret;
1848
1849         memset(cmd, 0, sizeof(cmd));
1850         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1851
1852         if (sdev->use_10_for_ms) {
1853                 if (len > 65535)
1854                         return -EINVAL;
1855                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1856                 if (!real_buffer)
1857                         return -ENOMEM;
1858                 memcpy(real_buffer + 8, buffer, len);
1859                 len += 8;
1860                 real_buffer[0] = 0;
1861                 real_buffer[1] = 0;
1862                 real_buffer[2] = data->medium_type;
1863                 real_buffer[3] = data->device_specific;
1864                 real_buffer[4] = data->longlba ? 0x01 : 0;
1865                 real_buffer[5] = 0;
1866                 real_buffer[6] = data->block_descriptor_length >> 8;
1867                 real_buffer[7] = data->block_descriptor_length;
1868
1869                 cmd[0] = MODE_SELECT_10;
1870                 cmd[7] = len >> 8;
1871                 cmd[8] = len;
1872         } else {
1873                 if (len > 255 || data->block_descriptor_length > 255 ||
1874                     data->longlba)
1875                         return -EINVAL;
1876
1877                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1878                 if (!real_buffer)
1879                         return -ENOMEM;
1880                 memcpy(real_buffer + 4, buffer, len);
1881                 len += 4;
1882                 real_buffer[0] = 0;
1883                 real_buffer[1] = data->medium_type;
1884                 real_buffer[2] = data->device_specific;
1885                 real_buffer[3] = data->block_descriptor_length;
1886                 
1887
1888                 cmd[0] = MODE_SELECT;
1889                 cmd[4] = len;
1890         }
1891
1892         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1893                                sshdr, timeout, retries, NULL);
1894         kfree(real_buffer);
1895         return ret;
1896 }
1897 EXPORT_SYMBOL_GPL(scsi_mode_select);
1898
1899 /**
1900  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1901  *      @sdev:  SCSI device to be queried
1902  *      @dbd:   set if mode sense will allow block descriptors to be returned
1903  *      @modepage: mode page being requested
1904  *      @buffer: request buffer (may not be smaller than eight bytes)
1905  *      @len:   length of request buffer.
1906  *      @timeout: command timeout
1907  *      @retries: number of retries before failing
1908  *      @data: returns a structure abstracting the mode header data
1909  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1910  *              must be SCSI_SENSE_BUFFERSIZE big.
1911  *
1912  *      Returns zero if unsuccessful, or the header offset (either 4
1913  *      or 8 depending on whether a six or ten byte command was
1914  *      issued) if successful.
1915  */
1916 int
1917 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1918                   unsigned char *buffer, int len, int timeout, int retries,
1919                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1920 {
1921         unsigned char cmd[12];
1922         int use_10_for_ms;
1923         int header_length;
1924         int result;
1925         struct scsi_sense_hdr my_sshdr;
1926
1927         memset(data, 0, sizeof(*data));
1928         memset(&cmd[0], 0, 12);
1929         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1930         cmd[2] = modepage;
1931
1932         /* caller might not be interested in sense, but we need it */
1933         if (!sshdr)
1934                 sshdr = &my_sshdr;
1935
1936  retry:
1937         use_10_for_ms = sdev->use_10_for_ms;
1938
1939         if (use_10_for_ms) {
1940                 if (len < 8)
1941                         len = 8;
1942
1943                 cmd[0] = MODE_SENSE_10;
1944                 cmd[8] = len;
1945                 header_length = 8;
1946         } else {
1947                 if (len < 4)
1948                         len = 4;
1949
1950                 cmd[0] = MODE_SENSE;
1951                 cmd[4] = len;
1952                 header_length = 4;
1953         }
1954
1955         memset(buffer, 0, len);
1956
1957         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1958                                   sshdr, timeout, retries, NULL);
1959
1960         /* This code looks awful: what it's doing is making sure an
1961          * ILLEGAL REQUEST sense return identifies the actual command
1962          * byte as the problem.  MODE_SENSE commands can return
1963          * ILLEGAL REQUEST if the code page isn't supported */
1964
1965         if (use_10_for_ms && !scsi_status_is_good(result) &&
1966             (driver_byte(result) & DRIVER_SENSE)) {
1967                 if (scsi_sense_valid(sshdr)) {
1968                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1969                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1970                                 /* 
1971                                  * Invalid command operation code
1972                                  */
1973                                 sdev->use_10_for_ms = 0;
1974                                 goto retry;
1975                         }
1976                 }
1977         }
1978
1979         if(scsi_status_is_good(result)) {
1980                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1981                              (modepage == 6 || modepage == 8))) {
1982                         /* Initio breakage? */
1983                         header_length = 0;
1984                         data->length = 13;
1985                         data->medium_type = 0;
1986                         data->device_specific = 0;
1987                         data->longlba = 0;
1988                         data->block_descriptor_length = 0;
1989                 } else if(use_10_for_ms) {
1990                         data->length = buffer[0]*256 + buffer[1] + 2;
1991                         data->medium_type = buffer[2];
1992                         data->device_specific = buffer[3];
1993                         data->longlba = buffer[4] & 0x01;
1994                         data->block_descriptor_length = buffer[6]*256
1995                                 + buffer[7];
1996                 } else {
1997                         data->length = buffer[0] + 1;
1998                         data->medium_type = buffer[1];
1999                         data->device_specific = buffer[2];
2000                         data->block_descriptor_length = buffer[3];
2001                 }
2002                 data->header_length = header_length;
2003         }
2004
2005         return result;
2006 }
2007 EXPORT_SYMBOL(scsi_mode_sense);
2008
2009 /**
2010  *      scsi_test_unit_ready - test if unit is ready
2011  *      @sdev:  scsi device to change the state of.
2012  *      @timeout: command timeout
2013  *      @retries: number of retries before failing
2014  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2015  *              returning sense. Make sure that this is cleared before passing
2016  *              in.
2017  *
2018  *      Returns zero if unsuccessful or an error if TUR failed.  For
2019  *      removable media, UNIT_ATTENTION sets ->changed flag.
2020  **/
2021 int
2022 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2023                      struct scsi_sense_hdr *sshdr_external)
2024 {
2025         char cmd[] = {
2026                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2027         };
2028         struct scsi_sense_hdr *sshdr;
2029         int result;
2030
2031         if (!sshdr_external)
2032                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2033         else
2034                 sshdr = sshdr_external;
2035
2036         /* try to eat the UNIT_ATTENTION if there are enough retries */
2037         do {
2038                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2039                                           timeout, retries, NULL);
2040                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2041                     sshdr->sense_key == UNIT_ATTENTION)
2042                         sdev->changed = 1;
2043         } while (scsi_sense_valid(sshdr) &&
2044                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2045
2046         if (!sshdr_external)
2047                 kfree(sshdr);
2048         return result;
2049 }
2050 EXPORT_SYMBOL(scsi_test_unit_ready);
2051
2052 /**
2053  *      scsi_device_set_state - Take the given device through the device state model.
2054  *      @sdev:  scsi device to change the state of.
2055  *      @state: state to change to.
2056  *
2057  *      Returns zero if unsuccessful or an error if the requested 
2058  *      transition is illegal.
2059  */
2060 int
2061 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2062 {
2063         enum scsi_device_state oldstate = sdev->sdev_state;
2064
2065         if (state == oldstate)
2066                 return 0;
2067
2068         switch (state) {
2069         case SDEV_CREATED:
2070                 switch (oldstate) {
2071                 case SDEV_CREATED_BLOCK:
2072                         break;
2073                 default:
2074                         goto illegal;
2075                 }
2076                 break;
2077                         
2078         case SDEV_RUNNING:
2079                 switch (oldstate) {
2080                 case SDEV_CREATED:
2081                 case SDEV_OFFLINE:
2082                 case SDEV_QUIESCE:
2083                 case SDEV_BLOCK:
2084                         break;
2085                 default:
2086                         goto illegal;
2087                 }
2088                 break;
2089
2090         case SDEV_QUIESCE:
2091                 switch (oldstate) {
2092                 case SDEV_RUNNING:
2093                 case SDEV_OFFLINE:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_OFFLINE:
2101                 switch (oldstate) {
2102                 case SDEV_CREATED:
2103                 case SDEV_RUNNING:
2104                 case SDEV_QUIESCE:
2105                 case SDEV_BLOCK:
2106                         break;
2107                 default:
2108                         goto illegal;
2109                 }
2110                 break;
2111
2112         case SDEV_BLOCK:
2113                 switch (oldstate) {
2114                 case SDEV_RUNNING:
2115                 case SDEV_CREATED_BLOCK:
2116                         break;
2117                 default:
2118                         goto illegal;
2119                 }
2120                 break;
2121
2122         case SDEV_CREATED_BLOCK:
2123                 switch (oldstate) {
2124                 case SDEV_CREATED:
2125                         break;
2126                 default:
2127                         goto illegal;
2128                 }
2129                 break;
2130
2131         case SDEV_CANCEL:
2132                 switch (oldstate) {
2133                 case SDEV_CREATED:
2134                 case SDEV_RUNNING:
2135                 case SDEV_QUIESCE:
2136                 case SDEV_OFFLINE:
2137                 case SDEV_BLOCK:
2138                         break;
2139                 default:
2140                         goto illegal;
2141                 }
2142                 break;
2143
2144         case SDEV_DEL:
2145                 switch (oldstate) {
2146                 case SDEV_CREATED:
2147                 case SDEV_RUNNING:
2148                 case SDEV_OFFLINE:
2149                 case SDEV_CANCEL:
2150                         break;
2151                 default:
2152                         goto illegal;
2153                 }
2154                 break;
2155
2156         }
2157         sdev->sdev_state = state;
2158         return 0;
2159
2160  illegal:
2161         SCSI_LOG_ERROR_RECOVERY(1, 
2162                                 sdev_printk(KERN_ERR, sdev,
2163                                             "Illegal state transition %s->%s\n",
2164                                             scsi_device_state_name(oldstate),
2165                                             scsi_device_state_name(state))
2166                                 );
2167         return -EINVAL;
2168 }
2169 EXPORT_SYMBOL(scsi_device_set_state);
2170
2171 /**
2172  *      sdev_evt_emit - emit a single SCSI device uevent
2173  *      @sdev: associated SCSI device
2174  *      @evt: event to emit
2175  *
2176  *      Send a single uevent (scsi_event) to the associated scsi_device.
2177  */
2178 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2179 {
2180         int idx = 0;
2181         char *envp[3];
2182
2183         switch (evt->evt_type) {
2184         case SDEV_EVT_MEDIA_CHANGE:
2185                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2186                 break;
2187
2188         default:
2189                 /* do nothing */
2190                 break;
2191         }
2192
2193         envp[idx++] = NULL;
2194
2195         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2196 }
2197
2198 /**
2199  *      sdev_evt_thread - send a uevent for each scsi event
2200  *      @work: work struct for scsi_device
2201  *
2202  *      Dispatch queued events to their associated scsi_device kobjects
2203  *      as uevents.
2204  */
2205 void scsi_evt_thread(struct work_struct *work)
2206 {
2207         struct scsi_device *sdev;
2208         LIST_HEAD(event_list);
2209
2210         sdev = container_of(work, struct scsi_device, event_work);
2211
2212         while (1) {
2213                 struct scsi_event *evt;
2214                 struct list_head *this, *tmp;
2215                 unsigned long flags;
2216
2217                 spin_lock_irqsave(&sdev->list_lock, flags);
2218                 list_splice_init(&sdev->event_list, &event_list);
2219                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2220
2221                 if (list_empty(&event_list))
2222                         break;
2223
2224                 list_for_each_safe(this, tmp, &event_list) {
2225                         evt = list_entry(this, struct scsi_event, node);
2226                         list_del(&evt->node);
2227                         scsi_evt_emit(sdev, evt);
2228                         kfree(evt);
2229                 }
2230         }
2231 }
2232
2233 /**
2234  *      sdev_evt_send - send asserted event to uevent thread
2235  *      @sdev: scsi_device event occurred on
2236  *      @evt: event to send
2237  *
2238  *      Assert scsi device event asynchronously.
2239  */
2240 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2241 {
2242         unsigned long flags;
2243
2244 #if 0
2245         /* FIXME: currently this check eliminates all media change events
2246          * for polled devices.  Need to update to discriminate between AN
2247          * and polled events */
2248         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2249                 kfree(evt);
2250                 return;
2251         }
2252 #endif
2253
2254         spin_lock_irqsave(&sdev->list_lock, flags);
2255         list_add_tail(&evt->node, &sdev->event_list);
2256         schedule_work(&sdev->event_work);
2257         spin_unlock_irqrestore(&sdev->list_lock, flags);
2258 }
2259 EXPORT_SYMBOL_GPL(sdev_evt_send);
2260
2261 /**
2262  *      sdev_evt_alloc - allocate a new scsi event
2263  *      @evt_type: type of event to allocate
2264  *      @gfpflags: GFP flags for allocation
2265  *
2266  *      Allocates and returns a new scsi_event.
2267  */
2268 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2269                                   gfp_t gfpflags)
2270 {
2271         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2272         if (!evt)
2273                 return NULL;
2274
2275         evt->evt_type = evt_type;
2276         INIT_LIST_HEAD(&evt->node);
2277
2278         /* evt_type-specific initialization, if any */
2279         switch (evt_type) {
2280         case SDEV_EVT_MEDIA_CHANGE:
2281         default:
2282                 /* do nothing */
2283                 break;
2284         }
2285
2286         return evt;
2287 }
2288 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2289
2290 /**
2291  *      sdev_evt_send_simple - send asserted event to uevent thread
2292  *      @sdev: scsi_device event occurred on
2293  *      @evt_type: type of event to send
2294  *      @gfpflags: GFP flags for allocation
2295  *
2296  *      Assert scsi device event asynchronously, given an event type.
2297  */
2298 void sdev_evt_send_simple(struct scsi_device *sdev,
2299                           enum scsi_device_event evt_type, gfp_t gfpflags)
2300 {
2301         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2302         if (!evt) {
2303                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2304                             evt_type);
2305                 return;
2306         }
2307
2308         sdev_evt_send(sdev, evt);
2309 }
2310 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2311
2312 /**
2313  *      scsi_device_quiesce - Block user issued commands.
2314  *      @sdev:  scsi device to quiesce.
2315  *
2316  *      This works by trying to transition to the SDEV_QUIESCE state
2317  *      (which must be a legal transition).  When the device is in this
2318  *      state, only special requests will be accepted, all others will
2319  *      be deferred.  Since special requests may also be requeued requests,
2320  *      a successful return doesn't guarantee the device will be 
2321  *      totally quiescent.
2322  *
2323  *      Must be called with user context, may sleep.
2324  *
2325  *      Returns zero if unsuccessful or an error if not.
2326  */
2327 int
2328 scsi_device_quiesce(struct scsi_device *sdev)
2329 {
2330         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2331         if (err)
2332                 return err;
2333
2334         scsi_run_queue(sdev->request_queue);
2335         while (sdev->device_busy) {
2336                 msleep_interruptible(200);
2337                 scsi_run_queue(sdev->request_queue);
2338         }
2339         return 0;
2340 }
2341 EXPORT_SYMBOL(scsi_device_quiesce);
2342
2343 /**
2344  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2345  *      @sdev:  scsi device to resume.
2346  *
2347  *      Moves the device from quiesced back to running and restarts the
2348  *      queues.
2349  *
2350  *      Must be called with user context, may sleep.
2351  */
2352 void
2353 scsi_device_resume(struct scsi_device *sdev)
2354 {
2355         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2356                 return;
2357         scsi_run_queue(sdev->request_queue);
2358 }
2359 EXPORT_SYMBOL(scsi_device_resume);
2360
2361 static void
2362 device_quiesce_fn(struct scsi_device *sdev, void *data)
2363 {
2364         scsi_device_quiesce(sdev);
2365 }
2366
2367 void
2368 scsi_target_quiesce(struct scsi_target *starget)
2369 {
2370         starget_for_each_device(starget, NULL, device_quiesce_fn);
2371 }
2372 EXPORT_SYMBOL(scsi_target_quiesce);
2373
2374 static void
2375 device_resume_fn(struct scsi_device *sdev, void *data)
2376 {
2377         scsi_device_resume(sdev);
2378 }
2379
2380 void
2381 scsi_target_resume(struct scsi_target *starget)
2382 {
2383         starget_for_each_device(starget, NULL, device_resume_fn);
2384 }
2385 EXPORT_SYMBOL(scsi_target_resume);
2386
2387 /**
2388  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2389  * @sdev:       device to block
2390  *
2391  * Block request made by scsi lld's to temporarily stop all
2392  * scsi commands on the specified device.  Called from interrupt
2393  * or normal process context.
2394  *
2395  * Returns zero if successful or error if not
2396  *
2397  * Notes:       
2398  *      This routine transitions the device to the SDEV_BLOCK state
2399  *      (which must be a legal transition).  When the device is in this
2400  *      state, all commands are deferred until the scsi lld reenables
2401  *      the device with scsi_device_unblock or device_block_tmo fires.
2402  *      This routine assumes the host_lock is held on entry.
2403  */
2404 int
2405 scsi_internal_device_block(struct scsi_device *sdev)
2406 {
2407         struct request_queue *q = sdev->request_queue;
2408         unsigned long flags;
2409         int err = 0;
2410
2411         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2412         if (err) {
2413                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2414
2415                 if (err)
2416                         return err;
2417         }
2418
2419         /* 
2420          * The device has transitioned to SDEV_BLOCK.  Stop the
2421          * block layer from calling the midlayer with this device's
2422          * request queue. 
2423          */
2424         spin_lock_irqsave(q->queue_lock, flags);
2425         blk_stop_queue(q);
2426         spin_unlock_irqrestore(q->queue_lock, flags);
2427
2428         return 0;
2429 }
2430 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2431  
2432 /**
2433  * scsi_internal_device_unblock - resume a device after a block request
2434  * @sdev:       device to resume
2435  *
2436  * Called by scsi lld's or the midlayer to restart the device queue
2437  * for the previously suspended scsi device.  Called from interrupt or
2438  * normal process context.
2439  *
2440  * Returns zero if successful or error if not.
2441  *
2442  * Notes:       
2443  *      This routine transitions the device to the SDEV_RUNNING state
2444  *      (which must be a legal transition) allowing the midlayer to
2445  *      goose the queue for this device.  This routine assumes the 
2446  *      host_lock is held upon entry.
2447  */
2448 int
2449 scsi_internal_device_unblock(struct scsi_device *sdev)
2450 {
2451         struct request_queue *q = sdev->request_queue; 
2452         unsigned long flags;
2453         
2454         /* 
2455          * Try to transition the scsi device to SDEV_RUNNING
2456          * and goose the device queue if successful.  
2457          */
2458         if (sdev->sdev_state == SDEV_BLOCK)
2459                 sdev->sdev_state = SDEV_RUNNING;
2460         else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2461                 sdev->sdev_state = SDEV_CREATED;
2462         else if (sdev->sdev_state != SDEV_CANCEL &&
2463                  sdev->sdev_state != SDEV_OFFLINE)
2464                 return -EINVAL;
2465
2466         spin_lock_irqsave(q->queue_lock, flags);
2467         blk_start_queue(q);
2468         spin_unlock_irqrestore(q->queue_lock, flags);
2469
2470         return 0;
2471 }
2472 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2473
2474 static void
2475 device_block(struct scsi_device *sdev, void *data)
2476 {
2477         scsi_internal_device_block(sdev);
2478 }
2479
2480 static int
2481 target_block(struct device *dev, void *data)
2482 {
2483         if (scsi_is_target_device(dev))
2484                 starget_for_each_device(to_scsi_target(dev), NULL,
2485                                         device_block);
2486         return 0;
2487 }
2488
2489 void
2490 scsi_target_block(struct device *dev)
2491 {
2492         if (scsi_is_target_device(dev))
2493                 starget_for_each_device(to_scsi_target(dev), NULL,
2494                                         device_block);
2495         else
2496                 device_for_each_child(dev, NULL, target_block);
2497 }
2498 EXPORT_SYMBOL_GPL(scsi_target_block);
2499
2500 static void
2501 device_unblock(struct scsi_device *sdev, void *data)
2502 {
2503         scsi_internal_device_unblock(sdev);
2504 }
2505
2506 static int
2507 target_unblock(struct device *dev, void *data)
2508 {
2509         if (scsi_is_target_device(dev))
2510                 starget_for_each_device(to_scsi_target(dev), NULL,
2511                                         device_unblock);
2512         return 0;
2513 }
2514
2515 void
2516 scsi_target_unblock(struct device *dev)
2517 {
2518         if (scsi_is_target_device(dev))
2519                 starget_for_each_device(to_scsi_target(dev), NULL,
2520                                         device_unblock);
2521         else
2522                 device_for_each_child(dev, NULL, target_unblock);
2523 }
2524 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2525
2526 /**
2527  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2528  * @sgl:        scatter-gather list
2529  * @sg_count:   number of segments in sg
2530  * @offset:     offset in bytes into sg, on return offset into the mapped area
2531  * @len:        bytes to map, on return number of bytes mapped
2532  *
2533  * Returns virtual address of the start of the mapped page
2534  */
2535 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2536                           size_t *offset, size_t *len)
2537 {
2538         int i;
2539         size_t sg_len = 0, len_complete = 0;
2540         struct scatterlist *sg;
2541         struct page *page;
2542
2543         WARN_ON(!irqs_disabled());
2544
2545         for_each_sg(sgl, sg, sg_count, i) {
2546                 len_complete = sg_len; /* Complete sg-entries */
2547                 sg_len += sg->length;
2548                 if (sg_len > *offset)
2549                         break;
2550         }
2551
2552         if (unlikely(i == sg_count)) {
2553                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2554                         "elements %d\n",
2555                        __func__, sg_len, *offset, sg_count);
2556                 WARN_ON(1);
2557                 return NULL;
2558         }
2559
2560         /* Offset starting from the beginning of first page in this sg-entry */
2561         *offset = *offset - len_complete + sg->offset;
2562
2563         /* Assumption: contiguous pages can be accessed as "page + i" */
2564         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2565         *offset &= ~PAGE_MASK;
2566
2567         /* Bytes in this sg-entry from *offset to the end of the page */
2568         sg_len = PAGE_SIZE - *offset;
2569         if (*len > sg_len)
2570                 *len = sg_len;
2571
2572         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2573 }
2574 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2575
2576 /**
2577  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2578  * @virt:       virtual address to be unmapped
2579  */
2580 void scsi_kunmap_atomic_sg(void *virt)
2581 {
2582         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2583 }
2584 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);