4ba37198e069856c2b6b061e681d1c54955e2eb4
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76         bus->bus = &scsi_bus_type;
77         return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83         unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87
88 /*
89  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90  * not change behaviour from the previous unplug mechanism, experimentation
91  * may prove this needs changing.
92  */
93 #define SCSI_QUEUE_DELAY        3
94
95 /*
96  * Function:    scsi_unprep_request()
97  *
98  * Purpose:     Remove all preparation done for a request, including its
99  *              associated scsi_cmnd, so that it can be requeued.
100  *
101  * Arguments:   req     - request to unprepare
102  *
103  * Lock status: Assumed that no locks are held upon entry.
104  *
105  * Returns:     Nothing.
106  */
107 static void scsi_unprep_request(struct request *req)
108 {
109         struct scsi_cmnd *cmd = req->special;
110
111         blk_unprep_request(req);
112         req->special = NULL;
113
114         scsi_put_command(cmd);
115 }
116
117 /**
118  * __scsi_queue_insert - private queue insertion
119  * @cmd: The SCSI command being requeued
120  * @reason:  The reason for the requeue
121  * @unbusy: Whether the queue should be unbusied
122  *
123  * This is a private queue insertion.  The public interface
124  * scsi_queue_insert() always assumes the queue should be unbusied
125  * because it's always called before the completion.  This function is
126  * for a requeue after completion, which should only occur in this
127  * file.
128  */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131         struct Scsi_Host *host = cmd->device->host;
132         struct scsi_device *device = cmd->device;
133         struct scsi_target *starget = scsi_target(device);
134         struct request_queue *q = device->request_queue;
135         unsigned long flags;
136
137         SCSI_LOG_MLQUEUE(1,
138                  printk("Inserting command %p into mlqueue\n", cmd));
139
140         /*
141          * Set the appropriate busy bit for the device/host.
142          *
143          * If the host/device isn't busy, assume that something actually
144          * completed, and that we should be able to queue a command now.
145          *
146          * Note that the prior mid-layer assumption that any host could
147          * always queue at least one command is now broken.  The mid-layer
148          * will implement a user specifiable stall (see
149          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150          * if a command is requeued with no other commands outstanding
151          * either for the device or for the host.
152          */
153         switch (reason) {
154         case SCSI_MLQUEUE_HOST_BUSY:
155                 host->host_blocked = host->max_host_blocked;
156                 break;
157         case SCSI_MLQUEUE_DEVICE_BUSY:
158         case SCSI_MLQUEUE_EH_RETRY:
159                 device->device_blocked = device->max_device_blocked;
160                 break;
161         case SCSI_MLQUEUE_TARGET_BUSY:
162                 starget->target_blocked = starget->max_target_blocked;
163                 break;
164         }
165
166         /*
167          * Decrement the counters, since these commands are no longer
168          * active on the host/device.
169          */
170         if (unbusy)
171                 scsi_device_unbusy(device);
172
173         /*
174          * Requeue this command.  It will go before all other commands
175          * that are already in the queue. Schedule requeue work under
176          * lock such that the kblockd_schedule_work() call happens
177          * before blk_cleanup_queue() finishes.
178          */
179         spin_lock_irqsave(q->queue_lock, flags);
180         blk_requeue_request(q, cmd->request);
181         kblockd_schedule_work(q, &device->requeue_work);
182         spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184
185 /*
186  * Function:    scsi_queue_insert()
187  *
188  * Purpose:     Insert a command in the midlevel queue.
189  *
190  * Arguments:   cmd    - command that we are adding to queue.
191  *              reason - why we are inserting command to queue.
192  *
193  * Lock status: Assumed that lock is not held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:       We do this for one of two cases.  Either the host is busy
198  *              and it cannot accept any more commands for the time being,
199  *              or the device returned QUEUE_FULL and can accept no more
200  *              commands.
201  * Notes:       This could be called either from an interrupt context or a
202  *              normal process context.
203  */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206         __scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209  * scsi_execute - insert request and wait for the result
210  * @sdev:       scsi device
211  * @cmd:        scsi command
212  * @data_direction: data direction
213  * @buffer:     data buffer
214  * @bufflen:    len of buffer
215  * @sense:      optional sense buffer
216  * @timeout:    request timeout in seconds
217  * @retries:    number of times to retry request
218  * @flags:      or into request flags;
219  * @resid:      optional residual length
220  *
221  * returns the req->errors value which is the scsi_cmnd result
222  * field.
223  */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225                  int data_direction, void *buffer, unsigned bufflen,
226                  unsigned char *sense, int timeout, int retries, int flags,
227                  int *resid)
228 {
229         struct request *req;
230         int write = (data_direction == DMA_TO_DEVICE);
231         int ret = DRIVER_ERROR << 24;
232
233         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234         if (!req)
235                 return ret;
236
237         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
238                                         buffer, bufflen, __GFP_WAIT))
239                 goto out;
240
241         req->cmd_len = COMMAND_SIZE(cmd[0]);
242         memcpy(req->cmd, cmd, req->cmd_len);
243         req->sense = sense;
244         req->sense_len = 0;
245         req->retries = retries;
246         req->timeout = timeout;
247         req->cmd_type = REQ_TYPE_BLOCK_PC;
248         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249
250         /*
251          * head injection *required* here otherwise quiesce won't work
252          */
253         blk_execute_rq(req->q, NULL, req, 1);
254
255         /*
256          * Some devices (USB mass-storage in particular) may transfer
257          * garbage data together with a residue indicating that the data
258          * is invalid.  Prevent the garbage from being misinterpreted
259          * and prevent security leaks by zeroing out the excess data.
260          */
261         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263
264         if (resid)
265                 *resid = req->resid_len;
266         ret = req->errors;
267  out:
268         blk_put_request(req);
269
270         return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273
274
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276                      int data_direction, void *buffer, unsigned bufflen,
277                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
278                      int *resid)
279 {
280         char *sense = NULL;
281         int result;
282         
283         if (sshdr) {
284                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285                 if (!sense)
286                         return DRIVER_ERROR << 24;
287         }
288         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289                               sense, timeout, retries, 0, resid);
290         if (sshdr)
291                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292
293         kfree(sense);
294         return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297
298 /*
299  * Function:    scsi_init_cmd_errh()
300  *
301  * Purpose:     Initialize cmd fields related to error handling.
302  *
303  * Arguments:   cmd     - command that is ready to be queued.
304  *
305  * Notes:       This function has the job of initializing a number of
306  *              fields related to error handling.   Typically this will
307  *              be called once for each command, as required.
308  */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311         cmd->serial_number = 0;
312         scsi_set_resid(cmd, 0);
313         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314         if (cmd->cmd_len == 0)
315                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320         struct Scsi_Host *shost = sdev->host;
321         struct scsi_target *starget = scsi_target(sdev);
322         unsigned long flags;
323
324         spin_lock_irqsave(shost->host_lock, flags);
325         shost->host_busy--;
326         starget->target_busy--;
327         if (unlikely(scsi_host_in_recovery(shost) &&
328                      (shost->host_failed || shost->host_eh_scheduled)))
329                 scsi_eh_wakeup(shost);
330         spin_unlock(shost->host_lock);
331         spin_lock(sdev->request_queue->queue_lock);
332         sdev->device_busy--;
333         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345         struct Scsi_Host *shost = current_sdev->host;
346         struct scsi_device *sdev, *tmp;
347         struct scsi_target *starget = scsi_target(current_sdev);
348         unsigned long flags;
349
350         spin_lock_irqsave(shost->host_lock, flags);
351         starget->starget_sdev_user = NULL;
352         spin_unlock_irqrestore(shost->host_lock, flags);
353
354         /*
355          * Call blk_run_queue for all LUNs on the target, starting with
356          * current_sdev. We race with others (to set starget_sdev_user),
357          * but in most cases, we will be first. Ideally, each LU on the
358          * target would get some limited time or requests on the target.
359          */
360         blk_run_queue(current_sdev->request_queue);
361
362         spin_lock_irqsave(shost->host_lock, flags);
363         if (starget->starget_sdev_user)
364                 goto out;
365         list_for_each_entry_safe(sdev, tmp, &starget->devices,
366                         same_target_siblings) {
367                 if (sdev == current_sdev)
368                         continue;
369                 if (scsi_device_get(sdev))
370                         continue;
371
372                 spin_unlock_irqrestore(shost->host_lock, flags);
373                 blk_run_queue(sdev->request_queue);
374                 spin_lock_irqsave(shost->host_lock, flags);
375         
376                 scsi_device_put(sdev);
377         }
378  out:
379         spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385                 return 1;
386
387         return 0;
388 }
389
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392         return ((starget->can_queue > 0 &&
393                  starget->target_busy >= starget->can_queue) ||
394                  starget->target_blocked);
395 }
396
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400             shost->host_blocked || shost->host_self_blocked)
401                 return 1;
402
403         return 0;
404 }
405
406 /*
407  * Function:    scsi_run_queue()
408  *
409  * Purpose:     Select a proper request queue to serve next
410  *
411  * Arguments:   q       - last request's queue
412  *
413  * Returns:     Nothing
414  *
415  * Notes:       The previous command was completely finished, start
416  *              a new one if possible.
417  */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420         struct scsi_device *sdev = q->queuedata;
421         struct Scsi_Host *shost;
422         LIST_HEAD(starved_list);
423         unsigned long flags;
424
425         shost = sdev->host;
426         if (scsi_target(sdev)->single_lun)
427                 scsi_single_lun_run(sdev);
428
429         spin_lock_irqsave(shost->host_lock, flags);
430         list_splice_init(&shost->starved_list, &starved_list);
431
432         while (!list_empty(&starved_list)) {
433                 /*
434                  * As long as shost is accepting commands and we have
435                  * starved queues, call blk_run_queue. scsi_request_fn
436                  * drops the queue_lock and can add us back to the
437                  * starved_list.
438                  *
439                  * host_lock protects the starved_list and starved_entry.
440                  * scsi_request_fn must get the host_lock before checking
441                  * or modifying starved_list or starved_entry.
442                  */
443                 if (scsi_host_is_busy(shost))
444                         break;
445
446                 sdev = list_entry(starved_list.next,
447                                   struct scsi_device, starved_entry);
448                 list_del_init(&sdev->starved_entry);
449                 if (scsi_target_is_busy(scsi_target(sdev))) {
450                         list_move_tail(&sdev->starved_entry,
451                                        &shost->starved_list);
452                         continue;
453                 }
454
455                 spin_unlock(shost->host_lock);
456                 spin_lock(sdev->request_queue->queue_lock);
457                 __blk_run_queue(sdev->request_queue);
458                 spin_unlock(sdev->request_queue->queue_lock);
459                 spin_lock(shost->host_lock);
460         }
461         /* put any unprocessed entries back */
462         list_splice(&starved_list, &shost->starved_list);
463         spin_unlock_irqrestore(shost->host_lock, flags);
464
465         blk_run_queue(q);
466 }
467
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470         struct scsi_device *sdev;
471         struct request_queue *q;
472
473         sdev = container_of(work, struct scsi_device, requeue_work);
474         q = sdev->request_queue;
475         scsi_run_queue(q);
476 }
477
478 /*
479  * Function:    scsi_requeue_command()
480  *
481  * Purpose:     Handle post-processing of completed commands.
482  *
483  * Arguments:   q       - queue to operate on
484  *              cmd     - command that may need to be requeued.
485  *
486  * Returns:     Nothing
487  *
488  * Notes:       After command completion, there may be blocks left
489  *              over which weren't finished by the previous command
490  *              this can be for a number of reasons - the main one is
491  *              I/O errors in the middle of the request, in which case
492  *              we need to request the blocks that come after the bad
493  *              sector.
494  * Notes:       Upon return, cmd is a stale pointer.
495  */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request *req = cmd->request;
500         unsigned long flags;
501
502         /*
503          * We need to hold a reference on the device to avoid the queue being
504          * killed after the unlock and before scsi_run_queue is invoked which
505          * may happen because scsi_unprep_request() puts the command which
506          * releases its reference on the device.
507          */
508         get_device(&sdev->sdev_gendev);
509
510         spin_lock_irqsave(q->queue_lock, flags);
511         scsi_unprep_request(req);
512         blk_requeue_request(q, req);
513         spin_unlock_irqrestore(q->queue_lock, flags);
514
515         scsi_run_queue(q);
516
517         put_device(&sdev->sdev_gendev);
518 }
519
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522         struct scsi_device *sdev = cmd->device;
523         struct request_queue *q = sdev->request_queue;
524
525         /* need to hold a reference on the device before we let go of the cmd */
526         get_device(&sdev->sdev_gendev);
527
528         scsi_put_command(cmd);
529         scsi_run_queue(q);
530
531         /* ok to remove device now */
532         put_device(&sdev->sdev_gendev);
533 }
534
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537         struct scsi_device *sdev;
538
539         shost_for_each_device(sdev, shost)
540                 scsi_run_queue(sdev->request_queue);
541 }
542
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544
545 /*
546  * Function:    scsi_end_request()
547  *
548  * Purpose:     Post-processing of completed commands (usually invoked at end
549  *              of upper level post-processing and scsi_io_completion).
550  *
551  * Arguments:   cmd      - command that is complete.
552  *              error    - 0 if I/O indicates success, < 0 for I/O error.
553  *              bytes    - number of bytes of completed I/O
554  *              requeue  - indicates whether we should requeue leftovers.
555  *
556  * Lock status: Assumed that lock is not held upon entry.
557  *
558  * Returns:     cmd if requeue required, NULL otherwise.
559  *
560  * Notes:       This is called for block device requests in order to
561  *              mark some number of sectors as complete.
562  * 
563  *              We are guaranteeing that the request queue will be goosed
564  *              at some point during this call.
565  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
566  */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568                                           int bytes, int requeue)
569 {
570         struct request_queue *q = cmd->device->request_queue;
571         struct request *req = cmd->request;
572
573         /*
574          * If there are blocks left over at the end, set up the command
575          * to queue the remainder of them.
576          */
577         if (blk_end_request(req, error, bytes)) {
578                 /* kill remainder if no retrys */
579                 if (error && scsi_noretry_cmd(cmd))
580                         blk_end_request_all(req, error);
581                 else {
582                         if (requeue) {
583                                 /*
584                                  * Bleah.  Leftovers again.  Stick the
585                                  * leftovers in the front of the
586                                  * queue, and goose the queue again.
587                                  */
588                                 scsi_release_buffers(cmd);
589                                 scsi_requeue_command(q, cmd);
590                                 cmd = NULL;
591                         }
592                         return cmd;
593                 }
594         }
595
596         /*
597          * This will goose the queue request function at the end, so we don't
598          * need to worry about launching another command.
599          */
600         __scsi_release_buffers(cmd, 0);
601         scsi_next_command(cmd);
602         return NULL;
603 }
604
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607         unsigned int index;
608
609         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610
611         if (nents <= 8)
612                 index = 0;
613         else
614                 index = get_count_order(nents) - 3;
615
616         return index;
617 }
618
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621         struct scsi_host_sg_pool *sgp;
622
623         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624         mempool_free(sgl, sgp->pool);
625 }
626
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629         struct scsi_host_sg_pool *sgp;
630
631         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632         return mempool_alloc(sgp->pool, gfp_mask);
633 }
634
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636                               gfp_t gfp_mask)
637 {
638         int ret;
639
640         BUG_ON(!nents);
641
642         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643                                gfp_mask, scsi_sg_alloc);
644         if (unlikely(ret))
645                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646                                 scsi_sg_free);
647
648         return ret;
649 }
650
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658
659         if (cmd->sdb.table.nents)
660                 scsi_free_sgtable(&cmd->sdb);
661
662         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663
664         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665                 struct scsi_data_buffer *bidi_sdb =
666                         cmd->request->next_rq->special;
667                 scsi_free_sgtable(bidi_sdb);
668                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669                 cmd->request->next_rq->special = NULL;
670         }
671
672         if (scsi_prot_sg_count(cmd))
673                 scsi_free_sgtable(cmd->prot_sdb);
674 }
675
676 /*
677  * Function:    scsi_release_buffers()
678  *
679  * Purpose:     Completion processing for block device I/O requests.
680  *
681  * Arguments:   cmd     - command that we are bailing.
682  *
683  * Lock status: Assumed that no lock is held upon entry.
684  *
685  * Returns:     Nothing
686  *
687  * Notes:       In the event that an upper level driver rejects a
688  *              command, we must release resources allocated during
689  *              the __init_io() function.  Primarily this would involve
690  *              the scatter-gather table, and potentially any bounce
691  *              buffers.
692  */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695         __scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701         int error = 0;
702
703         switch(host_byte(result)) {
704         case DID_TRANSPORT_FAILFAST:
705                 error = -ENOLINK;
706                 break;
707         case DID_TARGET_FAILURE:
708                 set_host_byte(cmd, DID_OK);
709                 error = -EREMOTEIO;
710                 break;
711         case DID_NEXUS_FAILURE:
712                 set_host_byte(cmd, DID_OK);
713                 error = -EBADE;
714                 break;
715         default:
716                 error = -EIO;
717                 break;
718         }
719
720         return error;
721 }
722
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       This function is matched in terms of capabilities to
735  *              the function that created the scatter-gather list.
736  *              In other words, if there are no bounce buffers
737  *              (the normal case for most drivers), we don't need
738  *              the logic to deal with cleaning up afterwards.
739  *
740  *              We must call scsi_end_request().  This will finish off
741  *              the specified number of sectors.  If we are done, the
742  *              command block will be released and the queue function
743  *              will be goosed.  If we are not done then we have to
744  *              figure out what to do next:
745  *
746  *              a) We can call scsi_requeue_command().  The request
747  *                 will be unprepared and put back on the queue.  Then
748  *                 a new command will be created for it.  This should
749  *                 be used if we made forward progress, or if we want
750  *                 to switch from READ(10) to READ(6) for example.
751  *
752  *              b) We can call scsi_queue_insert().  The request will
753  *                 be put back on the queue and retried using the same
754  *                 command as before, possibly after a delay.
755  *
756  *              c) We can call blk_end_request() with -EIO to fail
757  *                 the remainder of the request.
758  */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761         int result = cmd->result;
762         struct request_queue *q = cmd->device->request_queue;
763         struct request *req = cmd->request;
764         int error = 0;
765         struct scsi_sense_hdr sshdr;
766         int sense_valid = 0;
767         int sense_deferred = 0;
768         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769               ACTION_DELAYED_RETRY} action;
770         char *description = NULL;
771
772         if (result) {
773                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774                 if (sense_valid)
775                         sense_deferred = scsi_sense_is_deferred(&sshdr);
776         }
777
778         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779                 req->errors = result;
780                 if (result) {
781                         if (sense_valid && req->sense) {
782                                 /*
783                                  * SG_IO wants current and deferred errors
784                                  */
785                                 int len = 8 + cmd->sense_buffer[7];
786
787                                 if (len > SCSI_SENSE_BUFFERSIZE)
788                                         len = SCSI_SENSE_BUFFERSIZE;
789                                 memcpy(req->sense, cmd->sense_buffer,  len);
790                                 req->sense_len = len;
791                         }
792                         if (!sense_deferred)
793                                 error = __scsi_error_from_host_byte(cmd, result);
794                 }
795
796                 req->resid_len = scsi_get_resid(cmd);
797
798                 if (scsi_bidi_cmnd(cmd)) {
799                         /*
800                          * Bidi commands Must be complete as a whole,
801                          * both sides at once.
802                          */
803                         req->next_rq->resid_len = scsi_in(cmd)->resid;
804
805                         scsi_release_buffers(cmd);
806                         blk_end_request_all(req, 0);
807
808                         scsi_next_command(cmd);
809                         return;
810                 }
811         }
812
813         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
814         BUG_ON(blk_bidi_rq(req));
815
816         /*
817          * Next deal with any sectors which we were able to correctly
818          * handle.
819          */
820         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
821                                       "%d bytes done.\n",
822                                       blk_rq_sectors(req), good_bytes));
823
824         /*
825          * Recovered errors need reporting, but they're always treated
826          * as success, so fiddle the result code here.  For BLOCK_PC
827          * we already took a copy of the original into rq->errors which
828          * is what gets returned to the user
829          */
830         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
831                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
832                  * print since caller wants ATA registers. Only occurs on
833                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
834                  */
835                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
836                         ;
837                 else if (!(req->cmd_flags & REQ_QUIET))
838                         scsi_print_sense("", cmd);
839                 result = 0;
840                 /* BLOCK_PC may have set error */
841                 error = 0;
842         }
843
844         /*
845          * A number of bytes were successfully read.  If there
846          * are leftovers and there is some kind of error
847          * (result != 0), retry the rest.
848          */
849         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
850                 return;
851
852         error = __scsi_error_from_host_byte(cmd, result);
853
854         if (host_byte(result) == DID_RESET) {
855                 /* Third party bus reset or reset for error recovery
856                  * reasons.  Just retry the command and see what
857                  * happens.
858                  */
859                 action = ACTION_RETRY;
860         } else if (sense_valid && !sense_deferred) {
861                 switch (sshdr.sense_key) {
862                 case UNIT_ATTENTION:
863                         if (cmd->device->removable) {
864                                 /* Detected disc change.  Set a bit
865                                  * and quietly refuse further access.
866                                  */
867                                 cmd->device->changed = 1;
868                                 description = "Media Changed";
869                                 action = ACTION_FAIL;
870                         } else {
871                                 /* Must have been a power glitch, or a
872                                  * bus reset.  Could not have been a
873                                  * media change, so we just retry the
874                                  * command and see what happens.
875                                  */
876                                 action = ACTION_RETRY;
877                         }
878                         break;
879                 case ILLEGAL_REQUEST:
880                         /* If we had an ILLEGAL REQUEST returned, then
881                          * we may have performed an unsupported
882                          * command.  The only thing this should be
883                          * would be a ten byte read where only a six
884                          * byte read was supported.  Also, on a system
885                          * where READ CAPACITY failed, we may have
886                          * read past the end of the disk.
887                          */
888                         if ((cmd->device->use_10_for_rw &&
889                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890                             (cmd->cmnd[0] == READ_10 ||
891                              cmd->cmnd[0] == WRITE_10)) {
892                                 /* This will issue a new 6-byte command. */
893                                 cmd->device->use_10_for_rw = 0;
894                                 action = ACTION_REPREP;
895                         } else if (sshdr.asc == 0x10) /* DIX */ {
896                                 description = "Host Data Integrity Failure";
897                                 action = ACTION_FAIL;
898                                 error = -EILSEQ;
899                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
900                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
901                                    (cmd->cmnd[0] == UNMAP ||
902                                     cmd->cmnd[0] == WRITE_SAME_16 ||
903                                     cmd->cmnd[0] == WRITE_SAME)) {
904                                 description = "Discard failure";
905                                 action = ACTION_FAIL;
906                                 error = -EREMOTEIO;
907                         } else
908                                 action = ACTION_FAIL;
909                         break;
910                 case ABORTED_COMMAND:
911                         action = ACTION_FAIL;
912                         if (sshdr.asc == 0x10) { /* DIF */
913                                 description = "Target Data Integrity Failure";
914                                 error = -EILSEQ;
915                         }
916                         break;
917                 case NOT_READY:
918                         /* If the device is in the process of becoming
919                          * ready, or has a temporary blockage, retry.
920                          */
921                         if (sshdr.asc == 0x04) {
922                                 switch (sshdr.ascq) {
923                                 case 0x01: /* becoming ready */
924                                 case 0x04: /* format in progress */
925                                 case 0x05: /* rebuild in progress */
926                                 case 0x06: /* recalculation in progress */
927                                 case 0x07: /* operation in progress */
928                                 case 0x08: /* Long write in progress */
929                                 case 0x09: /* self test in progress */
930                                 case 0x14: /* space allocation in progress */
931                                         action = ACTION_DELAYED_RETRY;
932                                         break;
933                                 default:
934                                         description = "Device not ready";
935                                         action = ACTION_FAIL;
936                                         break;
937                                 }
938                         } else {
939                                 description = "Device not ready";
940                                 action = ACTION_FAIL;
941                         }
942                         break;
943                 case VOLUME_OVERFLOW:
944                         /* See SSC3rXX or current. */
945                         action = ACTION_FAIL;
946                         break;
947                 default:
948                         description = "Unhandled sense code";
949                         action = ACTION_FAIL;
950                         break;
951                 }
952         } else {
953                 description = "Unhandled error code";
954                 action = ACTION_FAIL;
955         }
956
957         switch (action) {
958         case ACTION_FAIL:
959                 /* Give up and fail the remainder of the request */
960                 scsi_release_buffers(cmd);
961                 if (!(req->cmd_flags & REQ_QUIET)) {
962                         if (description)
963                                 scmd_printk(KERN_INFO, cmd, "%s\n",
964                                             description);
965                         scsi_print_result(cmd);
966                         if (driver_byte(result) & DRIVER_SENSE)
967                                 scsi_print_sense("", cmd);
968                         scsi_print_command(cmd);
969                 }
970                 if (blk_end_request_err(req, error))
971                         scsi_requeue_command(q, cmd);
972                 else
973                         scsi_next_command(cmd);
974                 break;
975         case ACTION_REPREP:
976                 /* Unprep the request and put it back at the head of the queue.
977                  * A new command will be prepared and issued.
978                  */
979                 scsi_release_buffers(cmd);
980                 scsi_requeue_command(q, cmd);
981                 break;
982         case ACTION_RETRY:
983                 /* Retry the same command immediately */
984                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
985                 break;
986         case ACTION_DELAYED_RETRY:
987                 /* Retry the same command after a delay */
988                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
989                 break;
990         }
991 }
992
993 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
994                              gfp_t gfp_mask)
995 {
996         int count;
997
998         /*
999          * If sg table allocation fails, requeue request later.
1000          */
1001         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1002                                         gfp_mask))) {
1003                 return BLKPREP_DEFER;
1004         }
1005
1006         req->buffer = NULL;
1007
1008         /* 
1009          * Next, walk the list, and fill in the addresses and sizes of
1010          * each segment.
1011          */
1012         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1013         BUG_ON(count > sdb->table.nents);
1014         sdb->table.nents = count;
1015         sdb->length = blk_rq_bytes(req);
1016         return BLKPREP_OK;
1017 }
1018
1019 /*
1020  * Function:    scsi_init_io()
1021  *
1022  * Purpose:     SCSI I/O initialize function.
1023  *
1024  * Arguments:   cmd   - Command descriptor we wish to initialize
1025  *
1026  * Returns:     0 on success
1027  *              BLKPREP_DEFER if the failure is retryable
1028  *              BLKPREP_KILL if the failure is fatal
1029  */
1030 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1031 {
1032         struct request *rq = cmd->request;
1033
1034         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1035         if (error)
1036                 goto err_exit;
1037
1038         if (blk_bidi_rq(rq)) {
1039                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1040                         scsi_sdb_cache, GFP_ATOMIC);
1041                 if (!bidi_sdb) {
1042                         error = BLKPREP_DEFER;
1043                         goto err_exit;
1044                 }
1045
1046                 rq->next_rq->special = bidi_sdb;
1047                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1048                 if (error)
1049                         goto err_exit;
1050         }
1051
1052         if (blk_integrity_rq(rq)) {
1053                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1054                 int ivecs, count;
1055
1056                 BUG_ON(prot_sdb == NULL);
1057                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1058
1059                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1060                         error = BLKPREP_DEFER;
1061                         goto err_exit;
1062                 }
1063
1064                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1065                                                 prot_sdb->table.sgl);
1066                 BUG_ON(unlikely(count > ivecs));
1067                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1068
1069                 cmd->prot_sdb = prot_sdb;
1070                 cmd->prot_sdb->table.nents = count;
1071         }
1072
1073         return BLKPREP_OK ;
1074
1075 err_exit:
1076         scsi_release_buffers(cmd);
1077         cmd->request->special = NULL;
1078         scsi_put_command(cmd);
1079         return error;
1080 }
1081 EXPORT_SYMBOL(scsi_init_io);
1082
1083 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1084                 struct request *req)
1085 {
1086         struct scsi_cmnd *cmd;
1087
1088         if (!req->special) {
1089                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1090                 if (unlikely(!cmd))
1091                         return NULL;
1092                 req->special = cmd;
1093         } else {
1094                 cmd = req->special;
1095         }
1096
1097         /* pull a tag out of the request if we have one */
1098         cmd->tag = req->tag;
1099         cmd->request = req;
1100
1101         cmd->cmnd = req->cmd;
1102         cmd->prot_op = SCSI_PROT_NORMAL;
1103
1104         return cmd;
1105 }
1106
1107 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1108 {
1109         struct scsi_cmnd *cmd;
1110         int ret = scsi_prep_state_check(sdev, req);
1111
1112         if (ret != BLKPREP_OK)
1113                 return ret;
1114
1115         cmd = scsi_get_cmd_from_req(sdev, req);
1116         if (unlikely(!cmd))
1117                 return BLKPREP_DEFER;
1118
1119         /*
1120          * BLOCK_PC requests may transfer data, in which case they must
1121          * a bio attached to them.  Or they might contain a SCSI command
1122          * that does not transfer data, in which case they may optionally
1123          * submit a request without an attached bio.
1124          */
1125         if (req->bio) {
1126                 int ret;
1127
1128                 BUG_ON(!req->nr_phys_segments);
1129
1130                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1131                 if (unlikely(ret))
1132                         return ret;
1133         } else {
1134                 BUG_ON(blk_rq_bytes(req));
1135
1136                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1137                 req->buffer = NULL;
1138         }
1139
1140         cmd->cmd_len = req->cmd_len;
1141         if (!blk_rq_bytes(req))
1142                 cmd->sc_data_direction = DMA_NONE;
1143         else if (rq_data_dir(req) == WRITE)
1144                 cmd->sc_data_direction = DMA_TO_DEVICE;
1145         else
1146                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1147         
1148         cmd->transfersize = blk_rq_bytes(req);
1149         cmd->allowed = req->retries;
1150         return BLKPREP_OK;
1151 }
1152 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1153
1154 /*
1155  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1156  * from filesystems that still need to be translated to SCSI CDBs from
1157  * the ULD.
1158  */
1159 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1160 {
1161         struct scsi_cmnd *cmd;
1162         int ret = scsi_prep_state_check(sdev, req);
1163
1164         if (ret != BLKPREP_OK)
1165                 return ret;
1166
1167         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1168                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1169                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1170                 if (ret != BLKPREP_OK)
1171                         return ret;
1172         }
1173
1174         /*
1175          * Filesystem requests must transfer data.
1176          */
1177         BUG_ON(!req->nr_phys_segments);
1178
1179         cmd = scsi_get_cmd_from_req(sdev, req);
1180         if (unlikely(!cmd))
1181                 return BLKPREP_DEFER;
1182
1183         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1184         return scsi_init_io(cmd, GFP_ATOMIC);
1185 }
1186 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1187
1188 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1189 {
1190         int ret = BLKPREP_OK;
1191
1192         /*
1193          * If the device is not in running state we will reject some
1194          * or all commands.
1195          */
1196         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1197                 switch (sdev->sdev_state) {
1198                 case SDEV_OFFLINE:
1199                 case SDEV_TRANSPORT_OFFLINE:
1200                         /*
1201                          * If the device is offline we refuse to process any
1202                          * commands.  The device must be brought online
1203                          * before trying any recovery commands.
1204                          */
1205                         sdev_printk(KERN_ERR, sdev,
1206                                     "rejecting I/O to offline device\n");
1207                         ret = BLKPREP_KILL;
1208                         break;
1209                 case SDEV_DEL:
1210                         /*
1211                          * If the device is fully deleted, we refuse to
1212                          * process any commands as well.
1213                          */
1214                         sdev_printk(KERN_ERR, sdev,
1215                                     "rejecting I/O to dead device\n");
1216                         ret = BLKPREP_KILL;
1217                         break;
1218                 case SDEV_QUIESCE:
1219                 case SDEV_BLOCK:
1220                 case SDEV_CREATED_BLOCK:
1221                         /*
1222                          * If the devices is blocked we defer normal commands.
1223                          */
1224                         if (!(req->cmd_flags & REQ_PREEMPT))
1225                                 ret = BLKPREP_DEFER;
1226                         break;
1227                 default:
1228                         /*
1229                          * For any other not fully online state we only allow
1230                          * special commands.  In particular any user initiated
1231                          * command is not allowed.
1232                          */
1233                         if (!(req->cmd_flags & REQ_PREEMPT))
1234                                 ret = BLKPREP_KILL;
1235                         break;
1236                 }
1237         }
1238         return ret;
1239 }
1240 EXPORT_SYMBOL(scsi_prep_state_check);
1241
1242 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1243 {
1244         struct scsi_device *sdev = q->queuedata;
1245
1246         switch (ret) {
1247         case BLKPREP_KILL:
1248                 req->errors = DID_NO_CONNECT << 16;
1249                 /* release the command and kill it */
1250                 if (req->special) {
1251                         struct scsi_cmnd *cmd = req->special;
1252                         scsi_release_buffers(cmd);
1253                         scsi_put_command(cmd);
1254                         req->special = NULL;
1255                 }
1256                 break;
1257         case BLKPREP_DEFER:
1258                 /*
1259                  * If we defer, the blk_peek_request() returns NULL, but the
1260                  * queue must be restarted, so we schedule a callback to happen
1261                  * shortly.
1262                  */
1263                 if (sdev->device_busy == 0)
1264                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1265                 break;
1266         default:
1267                 req->cmd_flags |= REQ_DONTPREP;
1268         }
1269
1270         return ret;
1271 }
1272 EXPORT_SYMBOL(scsi_prep_return);
1273
1274 int scsi_prep_fn(struct request_queue *q, struct request *req)
1275 {
1276         struct scsi_device *sdev = q->queuedata;
1277         int ret = BLKPREP_KILL;
1278
1279         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1280                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1281         return scsi_prep_return(q, req, ret);
1282 }
1283 EXPORT_SYMBOL(scsi_prep_fn);
1284
1285 /*
1286  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1287  * return 0.
1288  *
1289  * Called with the queue_lock held.
1290  */
1291 static inline int scsi_dev_queue_ready(struct request_queue *q,
1292                                   struct scsi_device *sdev)
1293 {
1294         if (sdev->device_busy == 0 && sdev->device_blocked) {
1295                 /*
1296                  * unblock after device_blocked iterates to zero
1297                  */
1298                 if (--sdev->device_blocked == 0) {
1299                         SCSI_LOG_MLQUEUE(3,
1300                                    sdev_printk(KERN_INFO, sdev,
1301                                    "unblocking device at zero depth\n"));
1302                 } else {
1303                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1304                         return 0;
1305                 }
1306         }
1307         if (scsi_device_is_busy(sdev))
1308                 return 0;
1309
1310         return 1;
1311 }
1312
1313
1314 /*
1315  * scsi_target_queue_ready: checks if there we can send commands to target
1316  * @sdev: scsi device on starget to check.
1317  *
1318  * Called with the host lock held.
1319  */
1320 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1321                                            struct scsi_device *sdev)
1322 {
1323         struct scsi_target *starget = scsi_target(sdev);
1324
1325         if (starget->single_lun) {
1326                 if (starget->starget_sdev_user &&
1327                     starget->starget_sdev_user != sdev)
1328                         return 0;
1329                 starget->starget_sdev_user = sdev;
1330         }
1331
1332         if (starget->target_busy == 0 && starget->target_blocked) {
1333                 /*
1334                  * unblock after target_blocked iterates to zero
1335                  */
1336                 if (--starget->target_blocked == 0) {
1337                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1338                                          "unblocking target at zero depth\n"));
1339                 } else
1340                         return 0;
1341         }
1342
1343         if (scsi_target_is_busy(starget)) {
1344                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1345                 return 0;
1346         }
1347
1348         return 1;
1349 }
1350
1351 /*
1352  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1353  * return 0. We must end up running the queue again whenever 0 is
1354  * returned, else IO can hang.
1355  *
1356  * Called with host_lock held.
1357  */
1358 static inline int scsi_host_queue_ready(struct request_queue *q,
1359                                    struct Scsi_Host *shost,
1360                                    struct scsi_device *sdev)
1361 {
1362         if (scsi_host_in_recovery(shost))
1363                 return 0;
1364         if (shost->host_busy == 0 && shost->host_blocked) {
1365                 /*
1366                  * unblock after host_blocked iterates to zero
1367                  */
1368                 if (--shost->host_blocked == 0) {
1369                         SCSI_LOG_MLQUEUE(3,
1370                                 printk("scsi%d unblocking host at zero depth\n",
1371                                         shost->host_no));
1372                 } else {
1373                         return 0;
1374                 }
1375         }
1376         if (scsi_host_is_busy(shost)) {
1377                 if (list_empty(&sdev->starved_entry))
1378                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1379                 return 0;
1380         }
1381
1382         /* We're OK to process the command, so we can't be starved */
1383         if (!list_empty(&sdev->starved_entry))
1384                 list_del_init(&sdev->starved_entry);
1385
1386         return 1;
1387 }
1388
1389 /*
1390  * Busy state exporting function for request stacking drivers.
1391  *
1392  * For efficiency, no lock is taken to check the busy state of
1393  * shost/starget/sdev, since the returned value is not guaranteed and
1394  * may be changed after request stacking drivers call the function,
1395  * regardless of taking lock or not.
1396  *
1397  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1398  * needs to return 'not busy'. Otherwise, request stacking drivers
1399  * may hold requests forever.
1400  */
1401 static int scsi_lld_busy(struct request_queue *q)
1402 {
1403         struct scsi_device *sdev = q->queuedata;
1404         struct Scsi_Host *shost;
1405
1406         if (blk_queue_dead(q))
1407                 return 0;
1408
1409         shost = sdev->host;
1410
1411         /*
1412          * Ignore host/starget busy state.
1413          * Since block layer does not have a concept of fairness across
1414          * multiple queues, congestion of host/starget needs to be handled
1415          * in SCSI layer.
1416          */
1417         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1418                 return 1;
1419
1420         return 0;
1421 }
1422
1423 /*
1424  * Kill a request for a dead device
1425  */
1426 static void scsi_kill_request(struct request *req, struct request_queue *q)
1427 {
1428         struct scsi_cmnd *cmd = req->special;
1429         struct scsi_device *sdev;
1430         struct scsi_target *starget;
1431         struct Scsi_Host *shost;
1432
1433         blk_start_request(req);
1434
1435         scmd_printk(KERN_INFO, cmd, "killing request\n");
1436
1437         sdev = cmd->device;
1438         starget = scsi_target(sdev);
1439         shost = sdev->host;
1440         scsi_init_cmd_errh(cmd);
1441         cmd->result = DID_NO_CONNECT << 16;
1442         atomic_inc(&cmd->device->iorequest_cnt);
1443
1444         /*
1445          * SCSI request completion path will do scsi_device_unbusy(),
1446          * bump busy counts.  To bump the counters, we need to dance
1447          * with the locks as normal issue path does.
1448          */
1449         sdev->device_busy++;
1450         spin_unlock(sdev->request_queue->queue_lock);
1451         spin_lock(shost->host_lock);
1452         shost->host_busy++;
1453         starget->target_busy++;
1454         spin_unlock(shost->host_lock);
1455         spin_lock(sdev->request_queue->queue_lock);
1456
1457         blk_complete_request(req);
1458 }
1459
1460 static void scsi_softirq_done(struct request *rq)
1461 {
1462         struct scsi_cmnd *cmd = rq->special;
1463         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1464         int disposition;
1465
1466         INIT_LIST_HEAD(&cmd->eh_entry);
1467
1468         atomic_inc(&cmd->device->iodone_cnt);
1469         if (cmd->result)
1470                 atomic_inc(&cmd->device->ioerr_cnt);
1471
1472         disposition = scsi_decide_disposition(cmd);
1473         if (disposition != SUCCESS &&
1474             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1475                 sdev_printk(KERN_ERR, cmd->device,
1476                             "timing out command, waited %lus\n",
1477                             wait_for/HZ);
1478                 disposition = SUCCESS;
1479         }
1480                         
1481         scsi_log_completion(cmd, disposition);
1482
1483         switch (disposition) {
1484                 case SUCCESS:
1485                         scsi_finish_command(cmd);
1486                         break;
1487                 case NEEDS_RETRY:
1488                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1489                         break;
1490                 case ADD_TO_MLQUEUE:
1491                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1492                         break;
1493                 default:
1494                         if (!scsi_eh_scmd_add(cmd, 0))
1495                                 scsi_finish_command(cmd);
1496         }
1497 }
1498
1499 /*
1500  * Function:    scsi_request_fn()
1501  *
1502  * Purpose:     Main strategy routine for SCSI.
1503  *
1504  * Arguments:   q       - Pointer to actual queue.
1505  *
1506  * Returns:     Nothing
1507  *
1508  * Lock status: IO request lock assumed to be held when called.
1509  */
1510 static void scsi_request_fn(struct request_queue *q)
1511 {
1512         struct scsi_device *sdev = q->queuedata;
1513         struct Scsi_Host *shost;
1514         struct scsi_cmnd *cmd;
1515         struct request *req;
1516
1517         if(!get_device(&sdev->sdev_gendev))
1518                 /* We must be tearing the block queue down already */
1519                 return;
1520
1521         /*
1522          * To start with, we keep looping until the queue is empty, or until
1523          * the host is no longer able to accept any more requests.
1524          */
1525         shost = sdev->host;
1526         for (;;) {
1527                 int rtn;
1528                 /*
1529                  * get next queueable request.  We do this early to make sure
1530                  * that the request is fully prepared even if we cannot 
1531                  * accept it.
1532                  */
1533                 req = blk_peek_request(q);
1534                 if (!req || !scsi_dev_queue_ready(q, sdev))
1535                         break;
1536
1537                 if (unlikely(!scsi_device_online(sdev))) {
1538                         sdev_printk(KERN_ERR, sdev,
1539                                     "rejecting I/O to offline device\n");
1540                         scsi_kill_request(req, q);
1541                         continue;
1542                 }
1543
1544
1545                 /*
1546                  * Remove the request from the request list.
1547                  */
1548                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1549                         blk_start_request(req);
1550                 sdev->device_busy++;
1551
1552                 spin_unlock(q->queue_lock);
1553                 cmd = req->special;
1554                 if (unlikely(cmd == NULL)) {
1555                         printk(KERN_CRIT "impossible request in %s.\n"
1556                                          "please mail a stack trace to "
1557                                          "linux-scsi@vger.kernel.org\n",
1558                                          __func__);
1559                         blk_dump_rq_flags(req, "foo");
1560                         BUG();
1561                 }
1562                 spin_lock(shost->host_lock);
1563
1564                 /*
1565                  * We hit this when the driver is using a host wide
1566                  * tag map. For device level tag maps the queue_depth check
1567                  * in the device ready fn would prevent us from trying
1568                  * to allocate a tag. Since the map is a shared host resource
1569                  * we add the dev to the starved list so it eventually gets
1570                  * a run when a tag is freed.
1571                  */
1572                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1573                         if (list_empty(&sdev->starved_entry))
1574                                 list_add_tail(&sdev->starved_entry,
1575                                               &shost->starved_list);
1576                         goto not_ready;
1577                 }
1578
1579                 if (!scsi_target_queue_ready(shost, sdev))
1580                         goto not_ready;
1581
1582                 if (!scsi_host_queue_ready(q, shost, sdev))
1583                         goto not_ready;
1584
1585                 scsi_target(sdev)->target_busy++;
1586                 shost->host_busy++;
1587
1588                 /*
1589                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1590                  *              take the lock again.
1591                  */
1592                 spin_unlock_irq(shost->host_lock);
1593
1594                 /*
1595                  * Finally, initialize any error handling parameters, and set up
1596                  * the timers for timeouts.
1597                  */
1598                 scsi_init_cmd_errh(cmd);
1599
1600                 /*
1601                  * Dispatch the command to the low-level driver.
1602                  */
1603                 rtn = scsi_dispatch_cmd(cmd);
1604                 spin_lock_irq(q->queue_lock);
1605                 if (rtn)
1606                         goto out_delay;
1607         }
1608
1609         goto out;
1610
1611  not_ready:
1612         spin_unlock_irq(shost->host_lock);
1613
1614         /*
1615          * lock q, handle tag, requeue req, and decrement device_busy. We
1616          * must return with queue_lock held.
1617          *
1618          * Decrementing device_busy without checking it is OK, as all such
1619          * cases (host limits or settings) should run the queue at some
1620          * later time.
1621          */
1622         spin_lock_irq(q->queue_lock);
1623         blk_requeue_request(q, req);
1624         sdev->device_busy--;
1625 out_delay:
1626         if (sdev->device_busy == 0)
1627                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1628 out:
1629         /* must be careful here...if we trigger the ->remove() function
1630          * we cannot be holding the q lock */
1631         spin_unlock_irq(q->queue_lock);
1632         put_device(&sdev->sdev_gendev);
1633         spin_lock_irq(q->queue_lock);
1634 }
1635
1636 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1637 {
1638         struct device *host_dev;
1639         u64 bounce_limit = 0xffffffff;
1640
1641         if (shost->unchecked_isa_dma)
1642                 return BLK_BOUNCE_ISA;
1643         /*
1644          * Platforms with virtual-DMA translation
1645          * hardware have no practical limit.
1646          */
1647         if (!PCI_DMA_BUS_IS_PHYS)
1648                 return BLK_BOUNCE_ANY;
1649
1650         host_dev = scsi_get_device(shost);
1651         if (host_dev && host_dev->dma_mask)
1652                 bounce_limit = *host_dev->dma_mask;
1653
1654         return bounce_limit;
1655 }
1656 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1657
1658 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1659                                          request_fn_proc *request_fn)
1660 {
1661         struct request_queue *q;
1662         struct device *dev = shost->dma_dev;
1663
1664         q = blk_init_queue(request_fn, NULL);
1665         if (!q)
1666                 return NULL;
1667
1668         /*
1669          * this limit is imposed by hardware restrictions
1670          */
1671         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1672                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1673
1674         if (scsi_host_prot_dma(shost)) {
1675                 shost->sg_prot_tablesize =
1676                         min_not_zero(shost->sg_prot_tablesize,
1677                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1678                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1679                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1680         }
1681
1682         blk_queue_max_hw_sectors(q, shost->max_sectors);
1683         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1684         blk_queue_segment_boundary(q, shost->dma_boundary);
1685         dma_set_seg_boundary(dev, shost->dma_boundary);
1686
1687         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1688
1689         if (!shost->use_clustering)
1690                 q->limits.cluster = 0;
1691
1692         /*
1693          * set a reasonable default alignment on word boundaries: the
1694          * host and device may alter it using
1695          * blk_queue_update_dma_alignment() later.
1696          */
1697         blk_queue_dma_alignment(q, 0x03);
1698
1699         return q;
1700 }
1701 EXPORT_SYMBOL(__scsi_alloc_queue);
1702
1703 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1704 {
1705         struct request_queue *q;
1706
1707         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1708         if (!q)
1709                 return NULL;
1710
1711         blk_queue_prep_rq(q, scsi_prep_fn);
1712         blk_queue_softirq_done(q, scsi_softirq_done);
1713         blk_queue_rq_timed_out(q, scsi_times_out);
1714         blk_queue_lld_busy(q, scsi_lld_busy);
1715         return q;
1716 }
1717
1718 /*
1719  * Function:    scsi_block_requests()
1720  *
1721  * Purpose:     Utility function used by low-level drivers to prevent further
1722  *              commands from being queued to the device.
1723  *
1724  * Arguments:   shost       - Host in question
1725  *
1726  * Returns:     Nothing
1727  *
1728  * Lock status: No locks are assumed held.
1729  *
1730  * Notes:       There is no timer nor any other means by which the requests
1731  *              get unblocked other than the low-level driver calling
1732  *              scsi_unblock_requests().
1733  */
1734 void scsi_block_requests(struct Scsi_Host *shost)
1735 {
1736         shost->host_self_blocked = 1;
1737 }
1738 EXPORT_SYMBOL(scsi_block_requests);
1739
1740 /*
1741  * Function:    scsi_unblock_requests()
1742  *
1743  * Purpose:     Utility function used by low-level drivers to allow further
1744  *              commands from being queued to the device.
1745  *
1746  * Arguments:   shost       - Host in question
1747  *
1748  * Returns:     Nothing
1749  *
1750  * Lock status: No locks are assumed held.
1751  *
1752  * Notes:       There is no timer nor any other means by which the requests
1753  *              get unblocked other than the low-level driver calling
1754  *              scsi_unblock_requests().
1755  *
1756  *              This is done as an API function so that changes to the
1757  *              internals of the scsi mid-layer won't require wholesale
1758  *              changes to drivers that use this feature.
1759  */
1760 void scsi_unblock_requests(struct Scsi_Host *shost)
1761 {
1762         shost->host_self_blocked = 0;
1763         scsi_run_host_queues(shost);
1764 }
1765 EXPORT_SYMBOL(scsi_unblock_requests);
1766
1767 int __init scsi_init_queue(void)
1768 {
1769         int i;
1770
1771         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1772                                            sizeof(struct scsi_data_buffer),
1773                                            0, 0, NULL);
1774         if (!scsi_sdb_cache) {
1775                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1776                 return -ENOMEM;
1777         }
1778
1779         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1780                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1781                 int size = sgp->size * sizeof(struct scatterlist);
1782
1783                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1784                                 SLAB_HWCACHE_ALIGN, NULL);
1785                 if (!sgp->slab) {
1786                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1787                                         sgp->name);
1788                         goto cleanup_sdb;
1789                 }
1790
1791                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1792                                                      sgp->slab);
1793                 if (!sgp->pool) {
1794                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1795                                         sgp->name);
1796                         goto cleanup_sdb;
1797                 }
1798         }
1799
1800         return 0;
1801
1802 cleanup_sdb:
1803         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1804                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1805                 if (sgp->pool)
1806                         mempool_destroy(sgp->pool);
1807                 if (sgp->slab)
1808                         kmem_cache_destroy(sgp->slab);
1809         }
1810         kmem_cache_destroy(scsi_sdb_cache);
1811
1812         return -ENOMEM;
1813 }
1814
1815 void scsi_exit_queue(void)
1816 {
1817         int i;
1818
1819         kmem_cache_destroy(scsi_sdb_cache);
1820
1821         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1822                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1823                 mempool_destroy(sgp->pool);
1824                 kmem_cache_destroy(sgp->slab);
1825         }
1826 }
1827
1828 /**
1829  *      scsi_mode_select - issue a mode select
1830  *      @sdev:  SCSI device to be queried
1831  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1832  *      @sp:    Save page bit (0 == don't save, 1 == save)
1833  *      @modepage: mode page being requested
1834  *      @buffer: request buffer (may not be smaller than eight bytes)
1835  *      @len:   length of request buffer.
1836  *      @timeout: command timeout
1837  *      @retries: number of retries before failing
1838  *      @data: returns a structure abstracting the mode header data
1839  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1840  *              must be SCSI_SENSE_BUFFERSIZE big.
1841  *
1842  *      Returns zero if successful; negative error number or scsi
1843  *      status on error
1844  *
1845  */
1846 int
1847 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1848                  unsigned char *buffer, int len, int timeout, int retries,
1849                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1850 {
1851         unsigned char cmd[10];
1852         unsigned char *real_buffer;
1853         int ret;
1854
1855         memset(cmd, 0, sizeof(cmd));
1856         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1857
1858         if (sdev->use_10_for_ms) {
1859                 if (len > 65535)
1860                         return -EINVAL;
1861                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1862                 if (!real_buffer)
1863                         return -ENOMEM;
1864                 memcpy(real_buffer + 8, buffer, len);
1865                 len += 8;
1866                 real_buffer[0] = 0;
1867                 real_buffer[1] = 0;
1868                 real_buffer[2] = data->medium_type;
1869                 real_buffer[3] = data->device_specific;
1870                 real_buffer[4] = data->longlba ? 0x01 : 0;
1871                 real_buffer[5] = 0;
1872                 real_buffer[6] = data->block_descriptor_length >> 8;
1873                 real_buffer[7] = data->block_descriptor_length;
1874
1875                 cmd[0] = MODE_SELECT_10;
1876                 cmd[7] = len >> 8;
1877                 cmd[8] = len;
1878         } else {
1879                 if (len > 255 || data->block_descriptor_length > 255 ||
1880                     data->longlba)
1881                         return -EINVAL;
1882
1883                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1884                 if (!real_buffer)
1885                         return -ENOMEM;
1886                 memcpy(real_buffer + 4, buffer, len);
1887                 len += 4;
1888                 real_buffer[0] = 0;
1889                 real_buffer[1] = data->medium_type;
1890                 real_buffer[2] = data->device_specific;
1891                 real_buffer[3] = data->block_descriptor_length;
1892                 
1893
1894                 cmd[0] = MODE_SELECT;
1895                 cmd[4] = len;
1896         }
1897
1898         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1899                                sshdr, timeout, retries, NULL);
1900         kfree(real_buffer);
1901         return ret;
1902 }
1903 EXPORT_SYMBOL_GPL(scsi_mode_select);
1904
1905 /**
1906  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1907  *      @sdev:  SCSI device to be queried
1908  *      @dbd:   set if mode sense will allow block descriptors to be returned
1909  *      @modepage: mode page being requested
1910  *      @buffer: request buffer (may not be smaller than eight bytes)
1911  *      @len:   length of request buffer.
1912  *      @timeout: command timeout
1913  *      @retries: number of retries before failing
1914  *      @data: returns a structure abstracting the mode header data
1915  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1916  *              must be SCSI_SENSE_BUFFERSIZE big.
1917  *
1918  *      Returns zero if unsuccessful, or the header offset (either 4
1919  *      or 8 depending on whether a six or ten byte command was
1920  *      issued) if successful.
1921  */
1922 int
1923 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1924                   unsigned char *buffer, int len, int timeout, int retries,
1925                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1926 {
1927         unsigned char cmd[12];
1928         int use_10_for_ms;
1929         int header_length;
1930         int result;
1931         struct scsi_sense_hdr my_sshdr;
1932
1933         memset(data, 0, sizeof(*data));
1934         memset(&cmd[0], 0, 12);
1935         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1936         cmd[2] = modepage;
1937
1938         /* caller might not be interested in sense, but we need it */
1939         if (!sshdr)
1940                 sshdr = &my_sshdr;
1941
1942  retry:
1943         use_10_for_ms = sdev->use_10_for_ms;
1944
1945         if (use_10_for_ms) {
1946                 if (len < 8)
1947                         len = 8;
1948
1949                 cmd[0] = MODE_SENSE_10;
1950                 cmd[8] = len;
1951                 header_length = 8;
1952         } else {
1953                 if (len < 4)
1954                         len = 4;
1955
1956                 cmd[0] = MODE_SENSE;
1957                 cmd[4] = len;
1958                 header_length = 4;
1959         }
1960
1961         memset(buffer, 0, len);
1962
1963         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1964                                   sshdr, timeout, retries, NULL);
1965
1966         /* This code looks awful: what it's doing is making sure an
1967          * ILLEGAL REQUEST sense return identifies the actual command
1968          * byte as the problem.  MODE_SENSE commands can return
1969          * ILLEGAL REQUEST if the code page isn't supported */
1970
1971         if (use_10_for_ms && !scsi_status_is_good(result) &&
1972             (driver_byte(result) & DRIVER_SENSE)) {
1973                 if (scsi_sense_valid(sshdr)) {
1974                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1975                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1976                                 /* 
1977                                  * Invalid command operation code
1978                                  */
1979                                 sdev->use_10_for_ms = 0;
1980                                 goto retry;
1981                         }
1982                 }
1983         }
1984
1985         if(scsi_status_is_good(result)) {
1986                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1987                              (modepage == 6 || modepage == 8))) {
1988                         /* Initio breakage? */
1989                         header_length = 0;
1990                         data->length = 13;
1991                         data->medium_type = 0;
1992                         data->device_specific = 0;
1993                         data->longlba = 0;
1994                         data->block_descriptor_length = 0;
1995                 } else if(use_10_for_ms) {
1996                         data->length = buffer[0]*256 + buffer[1] + 2;
1997                         data->medium_type = buffer[2];
1998                         data->device_specific = buffer[3];
1999                         data->longlba = buffer[4] & 0x01;
2000                         data->block_descriptor_length = buffer[6]*256
2001                                 + buffer[7];
2002                 } else {
2003                         data->length = buffer[0] + 1;
2004                         data->medium_type = buffer[1];
2005                         data->device_specific = buffer[2];
2006                         data->block_descriptor_length = buffer[3];
2007                 }
2008                 data->header_length = header_length;
2009         }
2010
2011         return result;
2012 }
2013 EXPORT_SYMBOL(scsi_mode_sense);
2014
2015 /**
2016  *      scsi_test_unit_ready - test if unit is ready
2017  *      @sdev:  scsi device to change the state of.
2018  *      @timeout: command timeout
2019  *      @retries: number of retries before failing
2020  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2021  *              returning sense. Make sure that this is cleared before passing
2022  *              in.
2023  *
2024  *      Returns zero if unsuccessful or an error if TUR failed.  For
2025  *      removable media, UNIT_ATTENTION sets ->changed flag.
2026  **/
2027 int
2028 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2029                      struct scsi_sense_hdr *sshdr_external)
2030 {
2031         char cmd[] = {
2032                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2033         };
2034         struct scsi_sense_hdr *sshdr;
2035         int result;
2036
2037         if (!sshdr_external)
2038                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2039         else
2040                 sshdr = sshdr_external;
2041
2042         /* try to eat the UNIT_ATTENTION if there are enough retries */
2043         do {
2044                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2045                                           timeout, retries, NULL);
2046                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2047                     sshdr->sense_key == UNIT_ATTENTION)
2048                         sdev->changed = 1;
2049         } while (scsi_sense_valid(sshdr) &&
2050                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2051
2052         if (!sshdr_external)
2053                 kfree(sshdr);
2054         return result;
2055 }
2056 EXPORT_SYMBOL(scsi_test_unit_ready);
2057
2058 /**
2059  *      scsi_device_set_state - Take the given device through the device state model.
2060  *      @sdev:  scsi device to change the state of.
2061  *      @state: state to change to.
2062  *
2063  *      Returns zero if unsuccessful or an error if the requested 
2064  *      transition is illegal.
2065  */
2066 int
2067 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2068 {
2069         enum scsi_device_state oldstate = sdev->sdev_state;
2070
2071         if (state == oldstate)
2072                 return 0;
2073
2074         switch (state) {
2075         case SDEV_CREATED:
2076                 switch (oldstate) {
2077                 case SDEV_CREATED_BLOCK:
2078                         break;
2079                 default:
2080                         goto illegal;
2081                 }
2082                 break;
2083                         
2084         case SDEV_RUNNING:
2085                 switch (oldstate) {
2086                 case SDEV_CREATED:
2087                 case SDEV_OFFLINE:
2088                 case SDEV_TRANSPORT_OFFLINE:
2089                 case SDEV_QUIESCE:
2090                 case SDEV_BLOCK:
2091                         break;
2092                 default:
2093                         goto illegal;
2094                 }
2095                 break;
2096
2097         case SDEV_QUIESCE:
2098                 switch (oldstate) {
2099                 case SDEV_RUNNING:
2100                 case SDEV_OFFLINE:
2101                 case SDEV_TRANSPORT_OFFLINE:
2102                         break;
2103                 default:
2104                         goto illegal;
2105                 }
2106                 break;
2107
2108         case SDEV_OFFLINE:
2109         case SDEV_TRANSPORT_OFFLINE:
2110                 switch (oldstate) {
2111                 case SDEV_CREATED:
2112                 case SDEV_RUNNING:
2113                 case SDEV_QUIESCE:
2114                 case SDEV_BLOCK:
2115                         break;
2116                 default:
2117                         goto illegal;
2118                 }
2119                 break;
2120
2121         case SDEV_BLOCK:
2122                 switch (oldstate) {
2123                 case SDEV_RUNNING:
2124                 case SDEV_CREATED_BLOCK:
2125                         break;
2126                 default:
2127                         goto illegal;
2128                 }
2129                 break;
2130
2131         case SDEV_CREATED_BLOCK:
2132                 switch (oldstate) {
2133                 case SDEV_CREATED:
2134                         break;
2135                 default:
2136                         goto illegal;
2137                 }
2138                 break;
2139
2140         case SDEV_CANCEL:
2141                 switch (oldstate) {
2142                 case SDEV_CREATED:
2143                 case SDEV_RUNNING:
2144                 case SDEV_QUIESCE:
2145                 case SDEV_OFFLINE:
2146                 case SDEV_TRANSPORT_OFFLINE:
2147                 case SDEV_BLOCK:
2148                         break;
2149                 default:
2150                         goto illegal;
2151                 }
2152                 break;
2153
2154         case SDEV_DEL:
2155                 switch (oldstate) {
2156                 case SDEV_CREATED:
2157                 case SDEV_RUNNING:
2158                 case SDEV_OFFLINE:
2159                 case SDEV_TRANSPORT_OFFLINE:
2160                 case SDEV_CANCEL:
2161                         break;
2162                 default:
2163                         goto illegal;
2164                 }
2165                 break;
2166
2167         }
2168         sdev->sdev_state = state;
2169         return 0;
2170
2171  illegal:
2172         SCSI_LOG_ERROR_RECOVERY(1, 
2173                                 sdev_printk(KERN_ERR, sdev,
2174                                             "Illegal state transition %s->%s\n",
2175                                             scsi_device_state_name(oldstate),
2176                                             scsi_device_state_name(state))
2177                                 );
2178         return -EINVAL;
2179 }
2180 EXPORT_SYMBOL(scsi_device_set_state);
2181
2182 /**
2183  *      sdev_evt_emit - emit a single SCSI device uevent
2184  *      @sdev: associated SCSI device
2185  *      @evt: event to emit
2186  *
2187  *      Send a single uevent (scsi_event) to the associated scsi_device.
2188  */
2189 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2190 {
2191         int idx = 0;
2192         char *envp[3];
2193
2194         switch (evt->evt_type) {
2195         case SDEV_EVT_MEDIA_CHANGE:
2196                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2197                 break;
2198
2199         default:
2200                 /* do nothing */
2201                 break;
2202         }
2203
2204         envp[idx++] = NULL;
2205
2206         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2207 }
2208
2209 /**
2210  *      sdev_evt_thread - send a uevent for each scsi event
2211  *      @work: work struct for scsi_device
2212  *
2213  *      Dispatch queued events to their associated scsi_device kobjects
2214  *      as uevents.
2215  */
2216 void scsi_evt_thread(struct work_struct *work)
2217 {
2218         struct scsi_device *sdev;
2219         LIST_HEAD(event_list);
2220
2221         sdev = container_of(work, struct scsi_device, event_work);
2222
2223         while (1) {
2224                 struct scsi_event *evt;
2225                 struct list_head *this, *tmp;
2226                 unsigned long flags;
2227
2228                 spin_lock_irqsave(&sdev->list_lock, flags);
2229                 list_splice_init(&sdev->event_list, &event_list);
2230                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2231
2232                 if (list_empty(&event_list))
2233                         break;
2234
2235                 list_for_each_safe(this, tmp, &event_list) {
2236                         evt = list_entry(this, struct scsi_event, node);
2237                         list_del(&evt->node);
2238                         scsi_evt_emit(sdev, evt);
2239                         kfree(evt);
2240                 }
2241         }
2242 }
2243
2244 /**
2245  *      sdev_evt_send - send asserted event to uevent thread
2246  *      @sdev: scsi_device event occurred on
2247  *      @evt: event to send
2248  *
2249  *      Assert scsi device event asynchronously.
2250  */
2251 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2252 {
2253         unsigned long flags;
2254
2255 #if 0
2256         /* FIXME: currently this check eliminates all media change events
2257          * for polled devices.  Need to update to discriminate between AN
2258          * and polled events */
2259         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2260                 kfree(evt);
2261                 return;
2262         }
2263 #endif
2264
2265         spin_lock_irqsave(&sdev->list_lock, flags);
2266         list_add_tail(&evt->node, &sdev->event_list);
2267         schedule_work(&sdev->event_work);
2268         spin_unlock_irqrestore(&sdev->list_lock, flags);
2269 }
2270 EXPORT_SYMBOL_GPL(sdev_evt_send);
2271
2272 /**
2273  *      sdev_evt_alloc - allocate a new scsi event
2274  *      @evt_type: type of event to allocate
2275  *      @gfpflags: GFP flags for allocation
2276  *
2277  *      Allocates and returns a new scsi_event.
2278  */
2279 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2280                                   gfp_t gfpflags)
2281 {
2282         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2283         if (!evt)
2284                 return NULL;
2285
2286         evt->evt_type = evt_type;
2287         INIT_LIST_HEAD(&evt->node);
2288
2289         /* evt_type-specific initialization, if any */
2290         switch (evt_type) {
2291         case SDEV_EVT_MEDIA_CHANGE:
2292         default:
2293                 /* do nothing */
2294                 break;
2295         }
2296
2297         return evt;
2298 }
2299 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2300
2301 /**
2302  *      sdev_evt_send_simple - send asserted event to uevent thread
2303  *      @sdev: scsi_device event occurred on
2304  *      @evt_type: type of event to send
2305  *      @gfpflags: GFP flags for allocation
2306  *
2307  *      Assert scsi device event asynchronously, given an event type.
2308  */
2309 void sdev_evt_send_simple(struct scsi_device *sdev,
2310                           enum scsi_device_event evt_type, gfp_t gfpflags)
2311 {
2312         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2313         if (!evt) {
2314                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2315                             evt_type);
2316                 return;
2317         }
2318
2319         sdev_evt_send(sdev, evt);
2320 }
2321 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2322
2323 /**
2324  *      scsi_device_quiesce - Block user issued commands.
2325  *      @sdev:  scsi device to quiesce.
2326  *
2327  *      This works by trying to transition to the SDEV_QUIESCE state
2328  *      (which must be a legal transition).  When the device is in this
2329  *      state, only special requests will be accepted, all others will
2330  *      be deferred.  Since special requests may also be requeued requests,
2331  *      a successful return doesn't guarantee the device will be 
2332  *      totally quiescent.
2333  *
2334  *      Must be called with user context, may sleep.
2335  *
2336  *      Returns zero if unsuccessful or an error if not.
2337  */
2338 int
2339 scsi_device_quiesce(struct scsi_device *sdev)
2340 {
2341         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2342         if (err)
2343                 return err;
2344
2345         scsi_run_queue(sdev->request_queue);
2346         while (sdev->device_busy) {
2347                 msleep_interruptible(200);
2348                 scsi_run_queue(sdev->request_queue);
2349         }
2350         return 0;
2351 }
2352 EXPORT_SYMBOL(scsi_device_quiesce);
2353
2354 /**
2355  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2356  *      @sdev:  scsi device to resume.
2357  *
2358  *      Moves the device from quiesced back to running and restarts the
2359  *      queues.
2360  *
2361  *      Must be called with user context, may sleep.
2362  */
2363 void scsi_device_resume(struct scsi_device *sdev)
2364 {
2365         /* check if the device state was mutated prior to resume, and if
2366          * so assume the state is being managed elsewhere (for example
2367          * device deleted during suspend)
2368          */
2369         if (sdev->sdev_state != SDEV_QUIESCE ||
2370             scsi_device_set_state(sdev, SDEV_RUNNING))
2371                 return;
2372         scsi_run_queue(sdev->request_queue);
2373 }
2374 EXPORT_SYMBOL(scsi_device_resume);
2375
2376 static void
2377 device_quiesce_fn(struct scsi_device *sdev, void *data)
2378 {
2379         scsi_device_quiesce(sdev);
2380 }
2381
2382 void
2383 scsi_target_quiesce(struct scsi_target *starget)
2384 {
2385         starget_for_each_device(starget, NULL, device_quiesce_fn);
2386 }
2387 EXPORT_SYMBOL(scsi_target_quiesce);
2388
2389 static void
2390 device_resume_fn(struct scsi_device *sdev, void *data)
2391 {
2392         scsi_device_resume(sdev);
2393 }
2394
2395 void
2396 scsi_target_resume(struct scsi_target *starget)
2397 {
2398         starget_for_each_device(starget, NULL, device_resume_fn);
2399 }
2400 EXPORT_SYMBOL(scsi_target_resume);
2401
2402 /**
2403  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2404  * @sdev:       device to block
2405  *
2406  * Block request made by scsi lld's to temporarily stop all
2407  * scsi commands on the specified device.  Called from interrupt
2408  * or normal process context.
2409  *
2410  * Returns zero if successful or error if not
2411  *
2412  * Notes:       
2413  *      This routine transitions the device to the SDEV_BLOCK state
2414  *      (which must be a legal transition).  When the device is in this
2415  *      state, all commands are deferred until the scsi lld reenables
2416  *      the device with scsi_device_unblock or device_block_tmo fires.
2417  */
2418 int
2419 scsi_internal_device_block(struct scsi_device *sdev)
2420 {
2421         struct request_queue *q = sdev->request_queue;
2422         unsigned long flags;
2423         int err = 0;
2424
2425         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2426         if (err) {
2427                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2428
2429                 if (err)
2430                         return err;
2431         }
2432
2433         /* 
2434          * The device has transitioned to SDEV_BLOCK.  Stop the
2435          * block layer from calling the midlayer with this device's
2436          * request queue. 
2437          */
2438         spin_lock_irqsave(q->queue_lock, flags);
2439         blk_stop_queue(q);
2440         spin_unlock_irqrestore(q->queue_lock, flags);
2441
2442         return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2445  
2446 /**
2447  * scsi_internal_device_unblock - resume a device after a block request
2448  * @sdev:       device to resume
2449  * @new_state:  state to set devices to after unblocking
2450  *
2451  * Called by scsi lld's or the midlayer to restart the device queue
2452  * for the previously suspended scsi device.  Called from interrupt or
2453  * normal process context.
2454  *
2455  * Returns zero if successful or error if not.
2456  *
2457  * Notes:       
2458  *      This routine transitions the device to the SDEV_RUNNING state
2459  *      or to one of the offline states (which must be a legal transition)
2460  *      allowing the midlayer to goose the queue for this device.
2461  */
2462 int
2463 scsi_internal_device_unblock(struct scsi_device *sdev,
2464                              enum scsi_device_state new_state)
2465 {
2466         struct request_queue *q = sdev->request_queue; 
2467         unsigned long flags;
2468
2469         /*
2470          * Try to transition the scsi device to SDEV_RUNNING or one of the
2471          * offlined states and goose the device queue if successful.
2472          */
2473         if ((sdev->sdev_state == SDEV_BLOCK) ||
2474             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2475                 sdev->sdev_state = new_state;
2476         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2477                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2478                     new_state == SDEV_OFFLINE)
2479                         sdev->sdev_state = new_state;
2480                 else
2481                         sdev->sdev_state = SDEV_CREATED;
2482         } else if (sdev->sdev_state != SDEV_CANCEL &&
2483                  sdev->sdev_state != SDEV_OFFLINE)
2484                 return -EINVAL;
2485
2486         spin_lock_irqsave(q->queue_lock, flags);
2487         blk_start_queue(q);
2488         spin_unlock_irqrestore(q->queue_lock, flags);
2489
2490         return 0;
2491 }
2492 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2493
2494 static void
2495 device_block(struct scsi_device *sdev, void *data)
2496 {
2497         scsi_internal_device_block(sdev);
2498 }
2499
2500 static int
2501 target_block(struct device *dev, void *data)
2502 {
2503         if (scsi_is_target_device(dev))
2504                 starget_for_each_device(to_scsi_target(dev), NULL,
2505                                         device_block);
2506         return 0;
2507 }
2508
2509 void
2510 scsi_target_block(struct device *dev)
2511 {
2512         if (scsi_is_target_device(dev))
2513                 starget_for_each_device(to_scsi_target(dev), NULL,
2514                                         device_block);
2515         else
2516                 device_for_each_child(dev, NULL, target_block);
2517 }
2518 EXPORT_SYMBOL_GPL(scsi_target_block);
2519
2520 static void
2521 device_unblock(struct scsi_device *sdev, void *data)
2522 {
2523         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2524 }
2525
2526 static int
2527 target_unblock(struct device *dev, void *data)
2528 {
2529         if (scsi_is_target_device(dev))
2530                 starget_for_each_device(to_scsi_target(dev), data,
2531                                         device_unblock);
2532         return 0;
2533 }
2534
2535 void
2536 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2537 {
2538         if (scsi_is_target_device(dev))
2539                 starget_for_each_device(to_scsi_target(dev), &new_state,
2540                                         device_unblock);
2541         else
2542                 device_for_each_child(dev, &new_state, target_unblock);
2543 }
2544 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2545
2546 /**
2547  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2548  * @sgl:        scatter-gather list
2549  * @sg_count:   number of segments in sg
2550  * @offset:     offset in bytes into sg, on return offset into the mapped area
2551  * @len:        bytes to map, on return number of bytes mapped
2552  *
2553  * Returns virtual address of the start of the mapped page
2554  */
2555 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2556                           size_t *offset, size_t *len)
2557 {
2558         int i;
2559         size_t sg_len = 0, len_complete = 0;
2560         struct scatterlist *sg;
2561         struct page *page;
2562
2563         WARN_ON(!irqs_disabled());
2564
2565         for_each_sg(sgl, sg, sg_count, i) {
2566                 len_complete = sg_len; /* Complete sg-entries */
2567                 sg_len += sg->length;
2568                 if (sg_len > *offset)
2569                         break;
2570         }
2571
2572         if (unlikely(i == sg_count)) {
2573                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2574                         "elements %d\n",
2575                        __func__, sg_len, *offset, sg_count);
2576                 WARN_ON(1);
2577                 return NULL;
2578         }
2579
2580         /* Offset starting from the beginning of first page in this sg-entry */
2581         *offset = *offset - len_complete + sg->offset;
2582
2583         /* Assumption: contiguous pages can be accessed as "page + i" */
2584         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2585         *offset &= ~PAGE_MASK;
2586
2587         /* Bytes in this sg-entry from *offset to the end of the page */
2588         sg_len = PAGE_SIZE - *offset;
2589         if (*len > sg_len)
2590                 *len = sg_len;
2591
2592         return kmap_atomic(page);
2593 }
2594 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2595
2596 /**
2597  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2598  * @virt:       virtual address to be unmapped
2599  */
2600 void scsi_kunmap_atomic_sg(void *virt)
2601 {
2602         kunmap_atomic(virt);
2603 }
2604 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);