scsi: fix u14-34f printk format warnings
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2013  LSI Corporation
7  *  (mailto:DL-MPTFusionLinux@lsi.com)
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * NO WARRANTY
20  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24  * solely responsible for determining the appropriateness of using and
25  * distributing the Program and assumes all risks associated with its
26  * exercise of rights under this Agreement, including but not limited to
27  * the risks and costs of program errors, damage to or loss of data,
28  * programs or equipment, and unavailability or interruption of operations.
29
30  * DISCLAIMER OF LIABILITY
31  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39  * You should have received a copy of the GNU General Public License
40  * along with this program; if not, write to the Free Software
41  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
42  * USA.
43  */
44
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/errno.h>
48 #include <linux/init.h>
49 #include <linux/slab.h>
50 #include <linux/types.h>
51 #include <linux/pci.h>
52 #include <linux/kdev_t.h>
53 #include <linux/blkdev.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/io.h>
58 #include <linux/time.h>
59 #include <linux/kthread.h>
60 #include <linux/aer.h>
61
62
63 #include "mpt3sas_base.h"
64
65 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
66
67
68 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
69
70  /* maximum controller queue depth */
71 #define MAX_HBA_QUEUE_DEPTH     30000
72 #define MAX_CHAIN_DEPTH         100000
73 static int max_queue_depth = -1;
74 module_param(max_queue_depth, int, 0);
75 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
76
77 static int max_sgl_entries = -1;
78 module_param(max_sgl_entries, int, 0);
79 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
80
81 static int msix_disable = -1;
82 module_param(msix_disable, int, 0);
83 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
84
85 static int max_msix_vectors = 8;
86 module_param(max_msix_vectors, int, 0);
87 MODULE_PARM_DESC(max_msix_vectors,
88         " max msix vectors - (default=8)");
89
90 static int mpt3sas_fwfault_debug;
91 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
92         " enable detection of firmware fault and halt firmware - (default=0)");
93
94
95 /**
96  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
97  *
98  */
99 static int
100 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
101 {
102         int ret = param_set_int(val, kp);
103         struct MPT3SAS_ADAPTER *ioc;
104
105         if (ret)
106                 return ret;
107
108         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
109         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
110                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
111         return 0;
112 }
113 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
114         param_get_int, &mpt3sas_fwfault_debug, 0644);
115
116 /**
117  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
118  * @arg: input argument, used to derive ioc
119  *
120  * Return 0 if controller is removed from pci subsystem.
121  * Return -1 for other case.
122  */
123 static int mpt3sas_remove_dead_ioc_func(void *arg)
124 {
125         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
126         struct pci_dev *pdev;
127
128         if ((ioc == NULL))
129                 return -1;
130
131         pdev = ioc->pdev;
132         if ((pdev == NULL))
133                 return -1;
134         pci_stop_and_remove_bus_device_locked(pdev);
135         return 0;
136 }
137
138 /**
139  * _base_fault_reset_work - workq handling ioc fault conditions
140  * @work: input argument, used to derive ioc
141  * Context: sleep.
142  *
143  * Return nothing.
144  */
145 static void
146 _base_fault_reset_work(struct work_struct *work)
147 {
148         struct MPT3SAS_ADAPTER *ioc =
149             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
150         unsigned long    flags;
151         u32 doorbell;
152         int rc;
153         struct task_struct *p;
154
155
156         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
157         if (ioc->shost_recovery)
158                 goto rearm_timer;
159         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
160
161         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
162         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
163                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
164                     ioc->name);
165
166                 /*
167                  * Call _scsih_flush_pending_cmds callback so that we flush all
168                  * pending commands back to OS. This call is required to aovid
169                  * deadlock at block layer. Dead IOC will fail to do diag reset,
170                  * and this call is safe since dead ioc will never return any
171                  * command back from HW.
172                  */
173                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
174                 /*
175                  * Set remove_host flag early since kernel thread will
176                  * take some time to execute.
177                  */
178                 ioc->remove_host = 1;
179                 /*Remove the Dead Host */
180                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
181                     "mpt3sas_dead_ioc_%d", ioc->id);
182                 if (IS_ERR(p))
183                         pr_err(MPT3SAS_FMT
184                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
185                         ioc->name, __func__);
186                 else
187                         pr_err(MPT3SAS_FMT
188                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
189                         ioc->name, __func__);
190                 return; /* don't rearm timer */
191         }
192
193         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
194                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
195                     FORCE_BIG_HAMMER);
196                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
197                     __func__, (rc == 0) ? "success" : "failed");
198                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
199                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
200                         mpt3sas_base_fault_info(ioc, doorbell &
201                             MPI2_DOORBELL_DATA_MASK);
202                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
203                     MPI2_IOC_STATE_OPERATIONAL)
204                         return; /* don't rearm timer */
205         }
206
207         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
208  rearm_timer:
209         if (ioc->fault_reset_work_q)
210                 queue_delayed_work(ioc->fault_reset_work_q,
211                     &ioc->fault_reset_work,
212                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
213         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
214 }
215
216 /**
217  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
218  * @ioc: per adapter object
219  * Context: sleep.
220  *
221  * Return nothing.
222  */
223 void
224 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
225 {
226         unsigned long    flags;
227
228         if (ioc->fault_reset_work_q)
229                 return;
230
231         /* initialize fault polling */
232
233         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
234         snprintf(ioc->fault_reset_work_q_name,
235             sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
236         ioc->fault_reset_work_q =
237                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
238         if (!ioc->fault_reset_work_q) {
239                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
240                     ioc->name, __func__, __LINE__);
241                         return;
242         }
243         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
244         if (ioc->fault_reset_work_q)
245                 queue_delayed_work(ioc->fault_reset_work_q,
246                     &ioc->fault_reset_work,
247                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
248         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
249 }
250
251 /**
252  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
253  * @ioc: per adapter object
254  * Context: sleep.
255  *
256  * Return nothing.
257  */
258 void
259 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
260 {
261         unsigned long flags;
262         struct workqueue_struct *wq;
263
264         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
265         wq = ioc->fault_reset_work_q;
266         ioc->fault_reset_work_q = NULL;
267         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
268         if (wq) {
269                 if (!cancel_delayed_work(&ioc->fault_reset_work))
270                         flush_workqueue(wq);
271                 destroy_workqueue(wq);
272         }
273 }
274
275 /**
276  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
277  * @ioc: per adapter object
278  * @fault_code: fault code
279  *
280  * Return nothing.
281  */
282 void
283 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
284 {
285         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
286             ioc->name, fault_code);
287 }
288
289 /**
290  * mpt3sas_halt_firmware - halt's mpt controller firmware
291  * @ioc: per adapter object
292  *
293  * For debugging timeout related issues.  Writing 0xCOFFEE00
294  * to the doorbell register will halt controller firmware. With
295  * the purpose to stop both driver and firmware, the enduser can
296  * obtain a ring buffer from controller UART.
297  */
298 void
299 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
300 {
301         u32 doorbell;
302
303         if (!ioc->fwfault_debug)
304                 return;
305
306         dump_stack();
307
308         doorbell = readl(&ioc->chip->Doorbell);
309         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
310                 mpt3sas_base_fault_info(ioc , doorbell);
311         else {
312                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
313                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
314                         ioc->name);
315         }
316
317         if (ioc->fwfault_debug == 2)
318                 for (;;)
319                         ;
320         else
321                 panic("panic in %s\n", __func__);
322 }
323
324 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
325 /**
326  * _base_sas_ioc_info - verbose translation of the ioc status
327  * @ioc: per adapter object
328  * @mpi_reply: reply mf payload returned from firmware
329  * @request_hdr: request mf
330  *
331  * Return nothing.
332  */
333 static void
334 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
335         MPI2RequestHeader_t *request_hdr)
336 {
337         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
338             MPI2_IOCSTATUS_MASK;
339         char *desc = NULL;
340         u16 frame_sz;
341         char *func_str = NULL;
342
343         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
344         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
345             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
346             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
347                 return;
348
349         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
350                 return;
351
352         switch (ioc_status) {
353
354 /****************************************************************************
355 *  Common IOCStatus values for all replies
356 ****************************************************************************/
357
358         case MPI2_IOCSTATUS_INVALID_FUNCTION:
359                 desc = "invalid function";
360                 break;
361         case MPI2_IOCSTATUS_BUSY:
362                 desc = "busy";
363                 break;
364         case MPI2_IOCSTATUS_INVALID_SGL:
365                 desc = "invalid sgl";
366                 break;
367         case MPI2_IOCSTATUS_INTERNAL_ERROR:
368                 desc = "internal error";
369                 break;
370         case MPI2_IOCSTATUS_INVALID_VPID:
371                 desc = "invalid vpid";
372                 break;
373         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
374                 desc = "insufficient resources";
375                 break;
376         case MPI2_IOCSTATUS_INVALID_FIELD:
377                 desc = "invalid field";
378                 break;
379         case MPI2_IOCSTATUS_INVALID_STATE:
380                 desc = "invalid state";
381                 break;
382         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
383                 desc = "op state not supported";
384                 break;
385
386 /****************************************************************************
387 *  Config IOCStatus values
388 ****************************************************************************/
389
390         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
391                 desc = "config invalid action";
392                 break;
393         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
394                 desc = "config invalid type";
395                 break;
396         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
397                 desc = "config invalid page";
398                 break;
399         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
400                 desc = "config invalid data";
401                 break;
402         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
403                 desc = "config no defaults";
404                 break;
405         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
406                 desc = "config cant commit";
407                 break;
408
409 /****************************************************************************
410 *  SCSI IO Reply
411 ****************************************************************************/
412
413         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
414         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
415         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
416         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
417         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
418         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
419         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
420         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
421         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
422         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
423         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
424         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
425                 break;
426
427 /****************************************************************************
428 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
429 ****************************************************************************/
430
431         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
432                 desc = "eedp guard error";
433                 break;
434         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
435                 desc = "eedp ref tag error";
436                 break;
437         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
438                 desc = "eedp app tag error";
439                 break;
440
441 /****************************************************************************
442 *  SCSI Target values
443 ****************************************************************************/
444
445         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
446                 desc = "target invalid io index";
447                 break;
448         case MPI2_IOCSTATUS_TARGET_ABORTED:
449                 desc = "target aborted";
450                 break;
451         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
452                 desc = "target no conn retryable";
453                 break;
454         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
455                 desc = "target no connection";
456                 break;
457         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
458                 desc = "target xfer count mismatch";
459                 break;
460         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
461                 desc = "target data offset error";
462                 break;
463         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
464                 desc = "target too much write data";
465                 break;
466         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
467                 desc = "target iu too short";
468                 break;
469         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
470                 desc = "target ack nak timeout";
471                 break;
472         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
473                 desc = "target nak received";
474                 break;
475
476 /****************************************************************************
477 *  Serial Attached SCSI values
478 ****************************************************************************/
479
480         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
481                 desc = "smp request failed";
482                 break;
483         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
484                 desc = "smp data overrun";
485                 break;
486
487 /****************************************************************************
488 *  Diagnostic Buffer Post / Diagnostic Release values
489 ****************************************************************************/
490
491         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
492                 desc = "diagnostic released";
493                 break;
494         default:
495                 break;
496         }
497
498         if (!desc)
499                 return;
500
501         switch (request_hdr->Function) {
502         case MPI2_FUNCTION_CONFIG:
503                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
504                 func_str = "config_page";
505                 break;
506         case MPI2_FUNCTION_SCSI_TASK_MGMT:
507                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
508                 func_str = "task_mgmt";
509                 break;
510         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
511                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
512                 func_str = "sas_iounit_ctl";
513                 break;
514         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
515                 frame_sz = sizeof(Mpi2SepRequest_t);
516                 func_str = "enclosure";
517                 break;
518         case MPI2_FUNCTION_IOC_INIT:
519                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
520                 func_str = "ioc_init";
521                 break;
522         case MPI2_FUNCTION_PORT_ENABLE:
523                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
524                 func_str = "port_enable";
525                 break;
526         case MPI2_FUNCTION_SMP_PASSTHROUGH:
527                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
528                 func_str = "smp_passthru";
529                 break;
530         default:
531                 frame_sz = 32;
532                 func_str = "unknown";
533                 break;
534         }
535
536         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
537                 ioc->name, desc, ioc_status, request_hdr, func_str);
538
539         _debug_dump_mf(request_hdr, frame_sz/4);
540 }
541
542 /**
543  * _base_display_event_data - verbose translation of firmware asyn events
544  * @ioc: per adapter object
545  * @mpi_reply: reply mf payload returned from firmware
546  *
547  * Return nothing.
548  */
549 static void
550 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
551         Mpi2EventNotificationReply_t *mpi_reply)
552 {
553         char *desc = NULL;
554         u16 event;
555
556         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
557                 return;
558
559         event = le16_to_cpu(mpi_reply->Event);
560
561         switch (event) {
562         case MPI2_EVENT_LOG_DATA:
563                 desc = "Log Data";
564                 break;
565         case MPI2_EVENT_STATE_CHANGE:
566                 desc = "Status Change";
567                 break;
568         case MPI2_EVENT_HARD_RESET_RECEIVED:
569                 desc = "Hard Reset Received";
570                 break;
571         case MPI2_EVENT_EVENT_CHANGE:
572                 desc = "Event Change";
573                 break;
574         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
575                 desc = "Device Status Change";
576                 break;
577         case MPI2_EVENT_IR_OPERATION_STATUS:
578                 desc = "IR Operation Status";
579                 break;
580         case MPI2_EVENT_SAS_DISCOVERY:
581         {
582                 Mpi2EventDataSasDiscovery_t *event_data =
583                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
584                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
585                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
586                     "start" : "stop");
587                 if (event_data->DiscoveryStatus)
588                         pr_info("discovery_status(0x%08x)",
589                             le32_to_cpu(event_data->DiscoveryStatus));
590                         pr_info("\n");
591                 return;
592         }
593         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
594                 desc = "SAS Broadcast Primitive";
595                 break;
596         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
597                 desc = "SAS Init Device Status Change";
598                 break;
599         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
600                 desc = "SAS Init Table Overflow";
601                 break;
602         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
603                 desc = "SAS Topology Change List";
604                 break;
605         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
606                 desc = "SAS Enclosure Device Status Change";
607                 break;
608         case MPI2_EVENT_IR_VOLUME:
609                 desc = "IR Volume";
610                 break;
611         case MPI2_EVENT_IR_PHYSICAL_DISK:
612                 desc = "IR Physical Disk";
613                 break;
614         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
615                 desc = "IR Configuration Change List";
616                 break;
617         case MPI2_EVENT_LOG_ENTRY_ADDED:
618                 desc = "Log Entry Added";
619                 break;
620         }
621
622         if (!desc)
623                 return;
624
625         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
626 }
627 #endif
628
629 /**
630  * _base_sas_log_info - verbose translation of firmware log info
631  * @ioc: per adapter object
632  * @log_info: log info
633  *
634  * Return nothing.
635  */
636 static void
637 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
638 {
639         union loginfo_type {
640                 u32     loginfo;
641                 struct {
642                         u32     subcode:16;
643                         u32     code:8;
644                         u32     originator:4;
645                         u32     bus_type:4;
646                 } dw;
647         };
648         union loginfo_type sas_loginfo;
649         char *originator_str = NULL;
650
651         sas_loginfo.loginfo = log_info;
652         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
653                 return;
654
655         /* each nexus loss loginfo */
656         if (log_info == 0x31170000)
657                 return;
658
659         /* eat the loginfos associated with task aborts */
660         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
661             0x31140000 || log_info == 0x31130000))
662                 return;
663
664         switch (sas_loginfo.dw.originator) {
665         case 0:
666                 originator_str = "IOP";
667                 break;
668         case 1:
669                 originator_str = "PL";
670                 break;
671         case 2:
672                 originator_str = "IR";
673                 break;
674         }
675
676         pr_warn(MPT3SAS_FMT
677                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
678                 ioc->name, log_info,
679              originator_str, sas_loginfo.dw.code,
680              sas_loginfo.dw.subcode);
681 }
682
683 /**
684  * _base_display_reply_info -
685  * @ioc: per adapter object
686  * @smid: system request message index
687  * @msix_index: MSIX table index supplied by the OS
688  * @reply: reply message frame(lower 32bit addr)
689  *
690  * Return nothing.
691  */
692 static void
693 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
694         u32 reply)
695 {
696         MPI2DefaultReply_t *mpi_reply;
697         u16 ioc_status;
698         u32 loginfo = 0;
699
700         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
701         if (unlikely(!mpi_reply)) {
702                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
703                     ioc->name, __FILE__, __LINE__, __func__);
704                 return;
705         }
706         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
707 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
708         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
709             (ioc->logging_level & MPT_DEBUG_REPLY)) {
710                 _base_sas_ioc_info(ioc , mpi_reply,
711                    mpt3sas_base_get_msg_frame(ioc, smid));
712         }
713 #endif
714         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
715                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
716                 _base_sas_log_info(ioc, loginfo);
717         }
718
719         if (ioc_status || loginfo) {
720                 ioc_status &= MPI2_IOCSTATUS_MASK;
721                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
722         }
723 }
724
725 /**
726  * mpt3sas_base_done - base internal command completion routine
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return 1 meaning mf should be freed from _base_interrupt
733  *        0 means the mf is freed from this function.
734  */
735 u8
736 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
737         u32 reply)
738 {
739         MPI2DefaultReply_t *mpi_reply;
740
741         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
742         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
743                 return 1;
744
745         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
746                 return 1;
747
748         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
749         if (mpi_reply) {
750                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
751                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
752         }
753         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
754
755         complete(&ioc->base_cmds.done);
756         return 1;
757 }
758
759 /**
760  * _base_async_event - main callback handler for firmware asyn events
761  * @ioc: per adapter object
762  * @msix_index: MSIX table index supplied by the OS
763  * @reply: reply message frame(lower 32bit addr)
764  *
765  * Return 1 meaning mf should be freed from _base_interrupt
766  *        0 means the mf is freed from this function.
767  */
768 static u8
769 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
770 {
771         Mpi2EventNotificationReply_t *mpi_reply;
772         Mpi2EventAckRequest_t *ack_request;
773         u16 smid;
774
775         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
776         if (!mpi_reply)
777                 return 1;
778         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
779                 return 1;
780 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
781         _base_display_event_data(ioc, mpi_reply);
782 #endif
783         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
784                 goto out;
785         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
786         if (!smid) {
787                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
788                     ioc->name, __func__);
789                 goto out;
790         }
791
792         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
793         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
794         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
795         ack_request->Event = mpi_reply->Event;
796         ack_request->EventContext = mpi_reply->EventContext;
797         ack_request->VF_ID = 0;  /* TODO */
798         ack_request->VP_ID = 0;
799         mpt3sas_base_put_smid_default(ioc, smid);
800
801  out:
802
803         /* scsih callback handler */
804         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
805
806         /* ctl callback handler */
807         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
808
809         return 1;
810 }
811
812 /**
813  * _base_get_cb_idx - obtain the callback index
814  * @ioc: per adapter object
815  * @smid: system request message index
816  *
817  * Return callback index.
818  */
819 static u8
820 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
821 {
822         int i;
823         u8 cb_idx;
824
825         if (smid < ioc->hi_priority_smid) {
826                 i = smid - 1;
827                 cb_idx = ioc->scsi_lookup[i].cb_idx;
828         } else if (smid < ioc->internal_smid) {
829                 i = smid - ioc->hi_priority_smid;
830                 cb_idx = ioc->hpr_lookup[i].cb_idx;
831         } else if (smid <= ioc->hba_queue_depth) {
832                 i = smid - ioc->internal_smid;
833                 cb_idx = ioc->internal_lookup[i].cb_idx;
834         } else
835                 cb_idx = 0xFF;
836         return cb_idx;
837 }
838
839 /**
840  * _base_mask_interrupts - disable interrupts
841  * @ioc: per adapter object
842  *
843  * Disabling ResetIRQ, Reply and Doorbell Interrupts
844  *
845  * Return nothing.
846  */
847 static void
848 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
849 {
850         u32 him_register;
851
852         ioc->mask_interrupts = 1;
853         him_register = readl(&ioc->chip->HostInterruptMask);
854         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
855         writel(him_register, &ioc->chip->HostInterruptMask);
856         readl(&ioc->chip->HostInterruptMask);
857 }
858
859 /**
860  * _base_unmask_interrupts - enable interrupts
861  * @ioc: per adapter object
862  *
863  * Enabling only Reply Interrupts
864  *
865  * Return nothing.
866  */
867 static void
868 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
869 {
870         u32 him_register;
871
872         him_register = readl(&ioc->chip->HostInterruptMask);
873         him_register &= ~MPI2_HIM_RIM;
874         writel(him_register, &ioc->chip->HostInterruptMask);
875         ioc->mask_interrupts = 0;
876 }
877
878 union reply_descriptor {
879         u64 word;
880         struct {
881                 u32 low;
882                 u32 high;
883         } u;
884 };
885
886 /**
887  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
888  * @irq: irq number (not used)
889  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
890  * @r: pt_regs pointer (not used)
891  *
892  * Return IRQ_HANDLE if processed, else IRQ_NONE.
893  */
894 static irqreturn_t
895 _base_interrupt(int irq, void *bus_id)
896 {
897         struct adapter_reply_queue *reply_q = bus_id;
898         union reply_descriptor rd;
899         u32 completed_cmds;
900         u8 request_desript_type;
901         u16 smid;
902         u8 cb_idx;
903         u32 reply;
904         u8 msix_index = reply_q->msix_index;
905         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
906         Mpi2ReplyDescriptorsUnion_t *rpf;
907         u8 rc;
908
909         if (ioc->mask_interrupts)
910                 return IRQ_NONE;
911
912         if (!atomic_add_unless(&reply_q->busy, 1, 1))
913                 return IRQ_NONE;
914
915         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
916         request_desript_type = rpf->Default.ReplyFlags
917              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
918         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
919                 atomic_dec(&reply_q->busy);
920                 return IRQ_NONE;
921         }
922
923         completed_cmds = 0;
924         cb_idx = 0xFF;
925         do {
926                 rd.word = le64_to_cpu(rpf->Words);
927                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
928                         goto out;
929                 reply = 0;
930                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
931                 if (request_desript_type ==
932                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
933                     request_desript_type ==
934                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
935                         cb_idx = _base_get_cb_idx(ioc, smid);
936                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
937                             (likely(mpt_callbacks[cb_idx] != NULL))) {
938                                 rc = mpt_callbacks[cb_idx](ioc, smid,
939                                     msix_index, 0);
940                                 if (rc)
941                                         mpt3sas_base_free_smid(ioc, smid);
942                         }
943                 } else if (request_desript_type ==
944                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
945                         reply = le32_to_cpu(
946                             rpf->AddressReply.ReplyFrameAddress);
947                         if (reply > ioc->reply_dma_max_address ||
948                             reply < ioc->reply_dma_min_address)
949                                 reply = 0;
950                         if (smid) {
951                                 cb_idx = _base_get_cb_idx(ioc, smid);
952                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
953                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
954                                         rc = mpt_callbacks[cb_idx](ioc, smid,
955                                             msix_index, reply);
956                                         if (reply)
957                                                 _base_display_reply_info(ioc,
958                                                     smid, msix_index, reply);
959                                         if (rc)
960                                                 mpt3sas_base_free_smid(ioc,
961                                                     smid);
962                                 }
963                         } else {
964                                 _base_async_event(ioc, msix_index, reply);
965                         }
966
967                         /* reply free queue handling */
968                         if (reply) {
969                                 ioc->reply_free_host_index =
970                                     (ioc->reply_free_host_index ==
971                                     (ioc->reply_free_queue_depth - 1)) ?
972                                     0 : ioc->reply_free_host_index + 1;
973                                 ioc->reply_free[ioc->reply_free_host_index] =
974                                     cpu_to_le32(reply);
975                                 wmb();
976                                 writel(ioc->reply_free_host_index,
977                                     &ioc->chip->ReplyFreeHostIndex);
978                         }
979                 }
980
981                 rpf->Words = cpu_to_le64(ULLONG_MAX);
982                 reply_q->reply_post_host_index =
983                     (reply_q->reply_post_host_index ==
984                     (ioc->reply_post_queue_depth - 1)) ? 0 :
985                     reply_q->reply_post_host_index + 1;
986                 request_desript_type =
987                     reply_q->reply_post_free[reply_q->reply_post_host_index].
988                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
989                 completed_cmds++;
990                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
991                         goto out;
992                 if (!reply_q->reply_post_host_index)
993                         rpf = reply_q->reply_post_free;
994                 else
995                         rpf++;
996         } while (1);
997
998  out:
999
1000         if (!completed_cmds) {
1001                 atomic_dec(&reply_q->busy);
1002                 return IRQ_NONE;
1003         }
1004
1005         wmb();
1006         writel(reply_q->reply_post_host_index | (msix_index <<
1007             MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1008         atomic_dec(&reply_q->busy);
1009         return IRQ_HANDLED;
1010 }
1011
1012 /**
1013  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1014  * @ioc: per adapter object
1015  *
1016  */
1017 static inline int
1018 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1019 {
1020         return (ioc->facts.IOCCapabilities &
1021             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1022 }
1023
1024 /**
1025  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1026  * @ioc: per adapter object
1027  * Context: ISR conext
1028  *
1029  * Called when a Task Management request has completed. We want
1030  * to flush the other reply queues so all the outstanding IO has been
1031  * completed back to OS before we process the TM completetion.
1032  *
1033  * Return nothing.
1034  */
1035 void
1036 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1037 {
1038         struct adapter_reply_queue *reply_q;
1039
1040         /* If MSIX capability is turned off
1041          * then multi-queues are not enabled
1042          */
1043         if (!_base_is_controller_msix_enabled(ioc))
1044                 return;
1045
1046         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1047                 if (ioc->shost_recovery)
1048                         return;
1049                 /* TMs are on msix_index == 0 */
1050                 if (reply_q->msix_index == 0)
1051                         continue;
1052                 _base_interrupt(reply_q->vector, (void *)reply_q);
1053         }
1054 }
1055
1056 /**
1057  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1058  * @cb_idx: callback index
1059  *
1060  * Return nothing.
1061  */
1062 void
1063 mpt3sas_base_release_callback_handler(u8 cb_idx)
1064 {
1065         mpt_callbacks[cb_idx] = NULL;
1066 }
1067
1068 /**
1069  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1070  * @cb_func: callback function
1071  *
1072  * Returns cb_func.
1073  */
1074 u8
1075 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1076 {
1077         u8 cb_idx;
1078
1079         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1080                 if (mpt_callbacks[cb_idx] == NULL)
1081                         break;
1082
1083         mpt_callbacks[cb_idx] = cb_func;
1084         return cb_idx;
1085 }
1086
1087 /**
1088  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1089  *
1090  * Return nothing.
1091  */
1092 void
1093 mpt3sas_base_initialize_callback_handler(void)
1094 {
1095         u8 cb_idx;
1096
1097         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1098                 mpt3sas_base_release_callback_handler(cb_idx);
1099 }
1100
1101
1102 /**
1103  * _base_build_zero_len_sge - build zero length sg entry
1104  * @ioc: per adapter object
1105  * @paddr: virtual address for SGE
1106  *
1107  * Create a zero length scatter gather entry to insure the IOCs hardware has
1108  * something to use if the target device goes brain dead and tries
1109  * to send data even when none is asked for.
1110  *
1111  * Return nothing.
1112  */
1113 static void
1114 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1115 {
1116         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1117             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1118             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1119             MPI2_SGE_FLAGS_SHIFT);
1120         ioc->base_add_sg_single(paddr, flags_length, -1);
1121 }
1122
1123 /**
1124  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1125  * @paddr: virtual address for SGE
1126  * @flags_length: SGE flags and data transfer length
1127  * @dma_addr: Physical address
1128  *
1129  * Return nothing.
1130  */
1131 static void
1132 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1133 {
1134         Mpi2SGESimple32_t *sgel = paddr;
1135
1136         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1137             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1138         sgel->FlagsLength = cpu_to_le32(flags_length);
1139         sgel->Address = cpu_to_le32(dma_addr);
1140 }
1141
1142
1143 /**
1144  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1145  * @paddr: virtual address for SGE
1146  * @flags_length: SGE flags and data transfer length
1147  * @dma_addr: Physical address
1148  *
1149  * Return nothing.
1150  */
1151 static void
1152 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1153 {
1154         Mpi2SGESimple64_t *sgel = paddr;
1155
1156         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1157             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1158         sgel->FlagsLength = cpu_to_le32(flags_length);
1159         sgel->Address = cpu_to_le64(dma_addr);
1160 }
1161
1162 /**
1163  * _base_get_chain_buffer_tracker - obtain chain tracker
1164  * @ioc: per adapter object
1165  * @smid: smid associated to an IO request
1166  *
1167  * Returns chain tracker(from ioc->free_chain_list)
1168  */
1169 static struct chain_tracker *
1170 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1171 {
1172         struct chain_tracker *chain_req;
1173         unsigned long flags;
1174
1175         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1176         if (list_empty(&ioc->free_chain_list)) {
1177                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1178                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1179                         "chain buffers not available\n", ioc->name));
1180                 return NULL;
1181         }
1182         chain_req = list_entry(ioc->free_chain_list.next,
1183             struct chain_tracker, tracker_list);
1184         list_del_init(&chain_req->tracker_list);
1185         list_add_tail(&chain_req->tracker_list,
1186             &ioc->scsi_lookup[smid - 1].chain_list);
1187         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1188         return chain_req;
1189 }
1190
1191
1192 /**
1193  * _base_build_sg - build generic sg
1194  * @ioc: per adapter object
1195  * @psge: virtual address for SGE
1196  * @data_out_dma: physical address for WRITES
1197  * @data_out_sz: data xfer size for WRITES
1198  * @data_in_dma: physical address for READS
1199  * @data_in_sz: data xfer size for READS
1200  *
1201  * Return nothing.
1202  */
1203 static void
1204 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1205         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1206         size_t data_in_sz)
1207 {
1208         u32 sgl_flags;
1209
1210         if (!data_out_sz && !data_in_sz) {
1211                 _base_build_zero_len_sge(ioc, psge);
1212                 return;
1213         }
1214
1215         if (data_out_sz && data_in_sz) {
1216                 /* WRITE sgel first */
1217                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1218                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1219                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1220                 ioc->base_add_sg_single(psge, sgl_flags |
1221                     data_out_sz, data_out_dma);
1222
1223                 /* incr sgel */
1224                 psge += ioc->sge_size;
1225
1226                 /* READ sgel last */
1227                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1228                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1229                     MPI2_SGE_FLAGS_END_OF_LIST);
1230                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1231                 ioc->base_add_sg_single(psge, sgl_flags |
1232                     data_in_sz, data_in_dma);
1233         } else if (data_out_sz) /* WRITE */ {
1234                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1235                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1236                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1237                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1238                 ioc->base_add_sg_single(psge, sgl_flags |
1239                     data_out_sz, data_out_dma);
1240         } else if (data_in_sz) /* READ */ {
1241                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1242                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1243                     MPI2_SGE_FLAGS_END_OF_LIST);
1244                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1245                 ioc->base_add_sg_single(psge, sgl_flags |
1246                     data_in_sz, data_in_dma);
1247         }
1248 }
1249
1250 /* IEEE format sgls */
1251
1252 /**
1253  * _base_add_sg_single_ieee - add sg element for IEEE format
1254  * @paddr: virtual address for SGE
1255  * @flags: SGE flags
1256  * @chain_offset: number of 128 byte elements from start of segment
1257  * @length: data transfer length
1258  * @dma_addr: Physical address
1259  *
1260  * Return nothing.
1261  */
1262 static void
1263 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1264         dma_addr_t dma_addr)
1265 {
1266         Mpi25IeeeSgeChain64_t *sgel = paddr;
1267
1268         sgel->Flags = flags;
1269         sgel->NextChainOffset = chain_offset;
1270         sgel->Length = cpu_to_le32(length);
1271         sgel->Address = cpu_to_le64(dma_addr);
1272 }
1273
1274 /**
1275  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1276  * @ioc: per adapter object
1277  * @paddr: virtual address for SGE
1278  *
1279  * Create a zero length scatter gather entry to insure the IOCs hardware has
1280  * something to use if the target device goes brain dead and tries
1281  * to send data even when none is asked for.
1282  *
1283  * Return nothing.
1284  */
1285 static void
1286 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1287 {
1288         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1289                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1290                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1291         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1292 }
1293
1294 /**
1295  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1296  * @ioc: per adapter object
1297  * @scmd: scsi command
1298  * @smid: system request message index
1299  * Context: none.
1300  *
1301  * The main routine that builds scatter gather table from a given
1302  * scsi request sent via the .queuecommand main handler.
1303  *
1304  * Returns 0 success, anything else error
1305  */
1306 static int
1307 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1308         struct scsi_cmnd *scmd, u16 smid)
1309 {
1310         Mpi2SCSIIORequest_t *mpi_request;
1311         dma_addr_t chain_dma;
1312         struct scatterlist *sg_scmd;
1313         void *sg_local, *chain;
1314         u32 chain_offset;
1315         u32 chain_length;
1316         int sges_left;
1317         u32 sges_in_segment;
1318         u8 simple_sgl_flags;
1319         u8 simple_sgl_flags_last;
1320         u8 chain_sgl_flags;
1321         struct chain_tracker *chain_req;
1322
1323         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1324
1325         /* init scatter gather flags */
1326         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1327             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1328         simple_sgl_flags_last = simple_sgl_flags |
1329             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1330         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1331             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1332
1333         sg_scmd = scsi_sglist(scmd);
1334         sges_left = scsi_dma_map(scmd);
1335         if (!sges_left) {
1336                 sdev_printk(KERN_ERR, scmd->device,
1337                         "pci_map_sg failed: request for %d bytes!\n",
1338                         scsi_bufflen(scmd));
1339                 return -ENOMEM;
1340         }
1341
1342         sg_local = &mpi_request->SGL;
1343         sges_in_segment = (ioc->request_sz -
1344             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1345         if (sges_left <= sges_in_segment)
1346                 goto fill_in_last_segment;
1347
1348         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1349             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1350
1351         /* fill in main message segment when there is a chain following */
1352         while (sges_in_segment > 1) {
1353                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1354                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1355                 sg_scmd = sg_next(sg_scmd);
1356                 sg_local += ioc->sge_size_ieee;
1357                 sges_left--;
1358                 sges_in_segment--;
1359         }
1360
1361         /* initializing the pointers */
1362         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1363         if (!chain_req)
1364                 return -1;
1365         chain = chain_req->chain_buffer;
1366         chain_dma = chain_req->chain_buffer_dma;
1367         do {
1368                 sges_in_segment = (sges_left <=
1369                     ioc->max_sges_in_chain_message) ? sges_left :
1370                     ioc->max_sges_in_chain_message;
1371                 chain_offset = (sges_left == sges_in_segment) ?
1372                     0 : sges_in_segment;
1373                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1374                 if (chain_offset)
1375                         chain_length += ioc->sge_size_ieee;
1376                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1377                     chain_offset, chain_length, chain_dma);
1378
1379                 sg_local = chain;
1380                 if (!chain_offset)
1381                         goto fill_in_last_segment;
1382
1383                 /* fill in chain segments */
1384                 while (sges_in_segment) {
1385                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1386                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1387                         sg_scmd = sg_next(sg_scmd);
1388                         sg_local += ioc->sge_size_ieee;
1389                         sges_left--;
1390                         sges_in_segment--;
1391                 }
1392
1393                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1394                 if (!chain_req)
1395                         return -1;
1396                 chain = chain_req->chain_buffer;
1397                 chain_dma = chain_req->chain_buffer_dma;
1398         } while (1);
1399
1400
1401  fill_in_last_segment:
1402
1403         /* fill the last segment */
1404         while (sges_left) {
1405                 if (sges_left == 1)
1406                         _base_add_sg_single_ieee(sg_local,
1407                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1408                             sg_dma_address(sg_scmd));
1409                 else
1410                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1411                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1412                 sg_scmd = sg_next(sg_scmd);
1413                 sg_local += ioc->sge_size_ieee;
1414                 sges_left--;
1415         }
1416
1417         return 0;
1418 }
1419
1420 /**
1421  * _base_build_sg_ieee - build generic sg for IEEE format
1422  * @ioc: per adapter object
1423  * @psge: virtual address for SGE
1424  * @data_out_dma: physical address for WRITES
1425  * @data_out_sz: data xfer size for WRITES
1426  * @data_in_dma: physical address for READS
1427  * @data_in_sz: data xfer size for READS
1428  *
1429  * Return nothing.
1430  */
1431 static void
1432 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1433         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1434         size_t data_in_sz)
1435 {
1436         u8 sgl_flags;
1437
1438         if (!data_out_sz && !data_in_sz) {
1439                 _base_build_zero_len_sge_ieee(ioc, psge);
1440                 return;
1441         }
1442
1443         if (data_out_sz && data_in_sz) {
1444                 /* WRITE sgel first */
1445                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1446                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1447                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1448                     data_out_dma);
1449
1450                 /* incr sgel */
1451                 psge += ioc->sge_size_ieee;
1452
1453                 /* READ sgel last */
1454                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1455                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1456                     data_in_dma);
1457         } else if (data_out_sz) /* WRITE */ {
1458                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1459                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1460                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1461                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1462                     data_out_dma);
1463         } else if (data_in_sz) /* READ */ {
1464                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1465                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1466                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1467                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1468                     data_in_dma);
1469         }
1470 }
1471
1472 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1473
1474 /**
1475  * _base_config_dma_addressing - set dma addressing
1476  * @ioc: per adapter object
1477  * @pdev: PCI device struct
1478  *
1479  * Returns 0 for success, non-zero for failure.
1480  */
1481 static int
1482 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1483 {
1484         struct sysinfo s;
1485         char *desc = NULL;
1486
1487         if (sizeof(dma_addr_t) > 4) {
1488                 const uint64_t required_mask =
1489                     dma_get_required_mask(&pdev->dev);
1490                 if ((required_mask > DMA_BIT_MASK(32)) &&
1491                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1492                     !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1493                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1494                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1495                         desc = "64";
1496                         goto out;
1497                 }
1498         }
1499
1500         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1501             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1502                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1503                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1504                 desc = "32";
1505         } else
1506                 return -ENODEV;
1507
1508  out:
1509         si_meminfo(&s);
1510         pr_info(MPT3SAS_FMT
1511                 "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1512                 ioc->name, desc, convert_to_kb(s.totalram));
1513
1514         return 0;
1515 }
1516
1517 /**
1518  * _base_check_enable_msix - checks MSIX capabable.
1519  * @ioc: per adapter object
1520  *
1521  * Check to see if card is capable of MSIX, and set number
1522  * of available msix vectors
1523  */
1524 static int
1525 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1526 {
1527         int base;
1528         u16 message_control;
1529
1530         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1531         if (!base) {
1532                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1533                         ioc->name));
1534                 return -EINVAL;
1535         }
1536
1537         /* get msix vector count */
1538
1539         pci_read_config_word(ioc->pdev, base + 2, &message_control);
1540         ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1541         if (ioc->msix_vector_count > 8)
1542                 ioc->msix_vector_count = 8;
1543         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1544                 "msix is supported, vector_count(%d)\n",
1545                 ioc->name, ioc->msix_vector_count));
1546         return 0;
1547 }
1548
1549 /**
1550  * _base_free_irq - free irq
1551  * @ioc: per adapter object
1552  *
1553  * Freeing respective reply_queue from the list.
1554  */
1555 static void
1556 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1557 {
1558         struct adapter_reply_queue *reply_q, *next;
1559
1560         if (list_empty(&ioc->reply_queue_list))
1561                 return;
1562
1563         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1564                 list_del(&reply_q->list);
1565                 synchronize_irq(reply_q->vector);
1566                 free_irq(reply_q->vector, reply_q);
1567                 kfree(reply_q);
1568         }
1569 }
1570
1571 /**
1572  * _base_request_irq - request irq
1573  * @ioc: per adapter object
1574  * @index: msix index into vector table
1575  * @vector: irq vector
1576  *
1577  * Inserting respective reply_queue into the list.
1578  */
1579 static int
1580 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1581 {
1582         struct adapter_reply_queue *reply_q;
1583         int r;
1584
1585         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1586         if (!reply_q) {
1587                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1588                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1589                 return -ENOMEM;
1590         }
1591         reply_q->ioc = ioc;
1592         reply_q->msix_index = index;
1593         reply_q->vector = vector;
1594         atomic_set(&reply_q->busy, 0);
1595         if (ioc->msix_enable)
1596                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1597                     MPT3SAS_DRIVER_NAME, ioc->id, index);
1598         else
1599                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1600                     MPT3SAS_DRIVER_NAME, ioc->id);
1601         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1602             reply_q);
1603         if (r) {
1604                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1605                     reply_q->name, vector);
1606                 kfree(reply_q);
1607                 return -EBUSY;
1608         }
1609
1610         INIT_LIST_HEAD(&reply_q->list);
1611         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1612         return 0;
1613 }
1614
1615 /**
1616  * _base_assign_reply_queues - assigning msix index for each cpu
1617  * @ioc: per adapter object
1618  *
1619  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1620  *
1621  * It would nice if we could call irq_set_affinity, however it is not
1622  * an exported symbol
1623  */
1624 static void
1625 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1626 {
1627         struct adapter_reply_queue *reply_q;
1628         int cpu_id;
1629         int cpu_grouping, loop, grouping, grouping_mod;
1630         int reply_queue;
1631
1632         if (!_base_is_controller_msix_enabled(ioc))
1633                 return;
1634
1635         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1636
1637         /* NUMA Hardware bug workaround - drop to less reply queues */
1638         if (ioc->reply_queue_count > ioc->facts.MaxMSIxVectors) {
1639                 ioc->reply_queue_count = ioc->facts.MaxMSIxVectors;
1640                 reply_queue = 0;
1641                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1642                         reply_q->msix_index = reply_queue;
1643                         if (++reply_queue == ioc->reply_queue_count)
1644                                 reply_queue = 0;
1645                 }
1646         }
1647
1648         /* when there are more cpus than available msix vectors,
1649          * then group cpus togeather on same irq
1650          */
1651         if (ioc->cpu_count > ioc->msix_vector_count) {
1652                 grouping = ioc->cpu_count / ioc->msix_vector_count;
1653                 grouping_mod = ioc->cpu_count % ioc->msix_vector_count;
1654                 if (grouping < 2 || (grouping == 2 && !grouping_mod))
1655                         cpu_grouping = 2;
1656                 else if (grouping < 4 || (grouping == 4 && !grouping_mod))
1657                         cpu_grouping = 4;
1658                 else if (grouping < 8 || (grouping == 8 && !grouping_mod))
1659                         cpu_grouping = 8;
1660                 else
1661                         cpu_grouping = 16;
1662         } else
1663                 cpu_grouping = 0;
1664
1665         loop = 0;
1666         reply_q = list_entry(ioc->reply_queue_list.next,
1667              struct adapter_reply_queue, list);
1668         for_each_online_cpu(cpu_id) {
1669                 if (!cpu_grouping) {
1670                         ioc->cpu_msix_table[cpu_id] = reply_q->msix_index;
1671                         reply_q = list_entry(reply_q->list.next,
1672                             struct adapter_reply_queue, list);
1673                 } else {
1674                         if (loop < cpu_grouping) {
1675                                 ioc->cpu_msix_table[cpu_id] =
1676                                     reply_q->msix_index;
1677                                 loop++;
1678                         } else {
1679                                 reply_q = list_entry(reply_q->list.next,
1680                                     struct adapter_reply_queue, list);
1681                                 ioc->cpu_msix_table[cpu_id] =
1682                                     reply_q->msix_index;
1683                                 loop = 1;
1684                         }
1685                 }
1686         }
1687 }
1688
1689 /**
1690  * _base_disable_msix - disables msix
1691  * @ioc: per adapter object
1692  *
1693  */
1694 static void
1695 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1696 {
1697         if (!ioc->msix_enable)
1698                 return;
1699         pci_disable_msix(ioc->pdev);
1700         ioc->msix_enable = 0;
1701 }
1702
1703 /**
1704  * _base_enable_msix - enables msix, failback to io_apic
1705  * @ioc: per adapter object
1706  *
1707  */
1708 static int
1709 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1710 {
1711         struct msix_entry *entries, *a;
1712         int r;
1713         int i;
1714         u8 try_msix = 0;
1715
1716         if (msix_disable == -1 || msix_disable == 0)
1717                 try_msix = 1;
1718
1719         if (!try_msix)
1720                 goto try_ioapic;
1721
1722         if (_base_check_enable_msix(ioc) != 0)
1723                 goto try_ioapic;
1724
1725         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1726             ioc->msix_vector_count);
1727
1728         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1729           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1730           ioc->cpu_count, max_msix_vectors);
1731
1732         if (max_msix_vectors > 0) {
1733                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1734                         ioc->reply_queue_count);
1735                 ioc->msix_vector_count = ioc->reply_queue_count;
1736         }
1737
1738         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1739             GFP_KERNEL);
1740         if (!entries) {
1741                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1742                         "kcalloc failed @ at %s:%d/%s() !!!\n",
1743                         ioc->name, __FILE__, __LINE__, __func__));
1744                 goto try_ioapic;
1745         }
1746
1747         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1748                 a->entry = i;
1749
1750         r = pci_enable_msix(ioc->pdev, entries, ioc->reply_queue_count);
1751         if (r) {
1752                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1753                         "pci_enable_msix failed (r=%d) !!!\n",
1754                         ioc->name, r));
1755                 kfree(entries);
1756                 goto try_ioapic;
1757         }
1758
1759         ioc->msix_enable = 1;
1760         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1761                 r = _base_request_irq(ioc, i, a->vector);
1762                 if (r) {
1763                         _base_free_irq(ioc);
1764                         _base_disable_msix(ioc);
1765                         kfree(entries);
1766                         goto try_ioapic;
1767                 }
1768         }
1769
1770         kfree(entries);
1771         return 0;
1772
1773 /* failback to io_apic interrupt routing */
1774  try_ioapic:
1775
1776         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1777
1778         return r;
1779 }
1780
1781 /**
1782  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1783  * @ioc: per adapter object
1784  *
1785  * Returns 0 for success, non-zero for failure.
1786  */
1787 int
1788 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1789 {
1790         struct pci_dev *pdev = ioc->pdev;
1791         u32 memap_sz;
1792         u32 pio_sz;
1793         int i, r = 0;
1794         u64 pio_chip = 0;
1795         u64 chip_phys = 0;
1796         struct adapter_reply_queue *reply_q;
1797
1798         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1799             ioc->name, __func__));
1800
1801         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1802         if (pci_enable_device_mem(pdev)) {
1803                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1804                         ioc->name);
1805                 ioc->bars = 0;
1806                 return -ENODEV;
1807         }
1808
1809
1810         if (pci_request_selected_regions(pdev, ioc->bars,
1811             MPT3SAS_DRIVER_NAME)) {
1812                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1813                         ioc->name);
1814                 ioc->bars = 0;
1815                 r = -ENODEV;
1816                 goto out_fail;
1817         }
1818
1819 /* AER (Advanced Error Reporting) hooks */
1820         pci_enable_pcie_error_reporting(pdev);
1821
1822         pci_set_master(pdev);
1823
1824
1825         if (_base_config_dma_addressing(ioc, pdev) != 0) {
1826                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1827                     ioc->name, pci_name(pdev));
1828                 r = -ENODEV;
1829                 goto out_fail;
1830         }
1831
1832         for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1833                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1834                         if (pio_sz)
1835                                 continue;
1836                         pio_chip = (u64)pci_resource_start(pdev, i);
1837                         pio_sz = pci_resource_len(pdev, i);
1838                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1839                         if (memap_sz)
1840                                 continue;
1841                         ioc->chip_phys = pci_resource_start(pdev, i);
1842                         chip_phys = (u64)ioc->chip_phys;
1843                         memap_sz = pci_resource_len(pdev, i);
1844                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1845                         if (ioc->chip == NULL) {
1846                                 pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1847                                         ioc->name);
1848                                 r = -EINVAL;
1849                                 goto out_fail;
1850                         }
1851                 }
1852         }
1853
1854         _base_mask_interrupts(ioc);
1855         r = _base_enable_msix(ioc);
1856         if (r)
1857                 goto out_fail;
1858
1859         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1860                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1861                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1862                     "IO-APIC enabled"), reply_q->vector);
1863
1864         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1865             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1866         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1867             ioc->name, (unsigned long long)pio_chip, pio_sz);
1868
1869         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1870         pci_save_state(pdev);
1871         return 0;
1872
1873  out_fail:
1874         if (ioc->chip_phys)
1875                 iounmap(ioc->chip);
1876         ioc->chip_phys = 0;
1877         pci_release_selected_regions(ioc->pdev, ioc->bars);
1878         pci_disable_pcie_error_reporting(pdev);
1879         pci_disable_device(pdev);
1880         return r;
1881 }
1882
1883 /**
1884  * mpt3sas_base_get_msg_frame - obtain request mf pointer
1885  * @ioc: per adapter object
1886  * @smid: system request message index(smid zero is invalid)
1887  *
1888  * Returns virt pointer to message frame.
1889  */
1890 void *
1891 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1892 {
1893         return (void *)(ioc->request + (smid * ioc->request_sz));
1894 }
1895
1896 /**
1897  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1898  * @ioc: per adapter object
1899  * @smid: system request message index
1900  *
1901  * Returns virt pointer to sense buffer.
1902  */
1903 void *
1904 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1905 {
1906         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1907 }
1908
1909 /**
1910  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1911  * @ioc: per adapter object
1912  * @smid: system request message index
1913  *
1914  * Returns phys pointer to the low 32bit address of the sense buffer.
1915  */
1916 __le32
1917 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1918 {
1919         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1920             SCSI_SENSE_BUFFERSIZE));
1921 }
1922
1923 /**
1924  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1925  * @ioc: per adapter object
1926  * @phys_addr: lower 32 physical addr of the reply
1927  *
1928  * Converts 32bit lower physical addr into a virt address.
1929  */
1930 void *
1931 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1932 {
1933         if (!phys_addr)
1934                 return NULL;
1935         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1936 }
1937
1938 /**
1939  * mpt3sas_base_get_smid - obtain a free smid from internal queue
1940  * @ioc: per adapter object
1941  * @cb_idx: callback index
1942  *
1943  * Returns smid (zero is invalid)
1944  */
1945 u16
1946 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1947 {
1948         unsigned long flags;
1949         struct request_tracker *request;
1950         u16 smid;
1951
1952         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1953         if (list_empty(&ioc->internal_free_list)) {
1954                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1955                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1956                     ioc->name, __func__);
1957                 return 0;
1958         }
1959
1960         request = list_entry(ioc->internal_free_list.next,
1961             struct request_tracker, tracker_list);
1962         request->cb_idx = cb_idx;
1963         smid = request->smid;
1964         list_del(&request->tracker_list);
1965         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1966         return smid;
1967 }
1968
1969 /**
1970  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1971  * @ioc: per adapter object
1972  * @cb_idx: callback index
1973  * @scmd: pointer to scsi command object
1974  *
1975  * Returns smid (zero is invalid)
1976  */
1977 u16
1978 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
1979         struct scsi_cmnd *scmd)
1980 {
1981         unsigned long flags;
1982         struct scsiio_tracker *request;
1983         u16 smid;
1984
1985         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1986         if (list_empty(&ioc->free_list)) {
1987                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1988                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1989                     ioc->name, __func__);
1990                 return 0;
1991         }
1992
1993         request = list_entry(ioc->free_list.next,
1994             struct scsiio_tracker, tracker_list);
1995         request->scmd = scmd;
1996         request->cb_idx = cb_idx;
1997         smid = request->smid;
1998         list_del(&request->tracker_list);
1999         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2000         return smid;
2001 }
2002
2003 /**
2004  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2005  * @ioc: per adapter object
2006  * @cb_idx: callback index
2007  *
2008  * Returns smid (zero is invalid)
2009  */
2010 u16
2011 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2012 {
2013         unsigned long flags;
2014         struct request_tracker *request;
2015         u16 smid;
2016
2017         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2018         if (list_empty(&ioc->hpr_free_list)) {
2019                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2020                 return 0;
2021         }
2022
2023         request = list_entry(ioc->hpr_free_list.next,
2024             struct request_tracker, tracker_list);
2025         request->cb_idx = cb_idx;
2026         smid = request->smid;
2027         list_del(&request->tracker_list);
2028         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2029         return smid;
2030 }
2031
2032 /**
2033  * mpt3sas_base_free_smid - put smid back on free_list
2034  * @ioc: per adapter object
2035  * @smid: system request message index
2036  *
2037  * Return nothing.
2038  */
2039 void
2040 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2041 {
2042         unsigned long flags;
2043         int i;
2044         struct chain_tracker *chain_req, *next;
2045
2046         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2047         if (smid < ioc->hi_priority_smid) {
2048                 /* scsiio queue */
2049                 i = smid - 1;
2050                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2051                         list_for_each_entry_safe(chain_req, next,
2052                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2053                                 list_del_init(&chain_req->tracker_list);
2054                                 list_add(&chain_req->tracker_list,
2055                                     &ioc->free_chain_list);
2056                         }
2057                 }
2058                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2059                 ioc->scsi_lookup[i].scmd = NULL;
2060                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2061                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2062
2063                 /*
2064                  * See _wait_for_commands_to_complete() call with regards
2065                  * to this code.
2066                  */
2067                 if (ioc->shost_recovery && ioc->pending_io_count) {
2068                         if (ioc->pending_io_count == 1)
2069                                 wake_up(&ioc->reset_wq);
2070                         ioc->pending_io_count--;
2071                 }
2072                 return;
2073         } else if (smid < ioc->internal_smid) {
2074                 /* hi-priority */
2075                 i = smid - ioc->hi_priority_smid;
2076                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2077                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2078         } else if (smid <= ioc->hba_queue_depth) {
2079                 /* internal queue */
2080                 i = smid - ioc->internal_smid;
2081                 ioc->internal_lookup[i].cb_idx = 0xFF;
2082                 list_add(&ioc->internal_lookup[i].tracker_list,
2083                     &ioc->internal_free_list);
2084         }
2085         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2086 }
2087
2088 /**
2089  * _base_writeq - 64 bit write to MMIO
2090  * @ioc: per adapter object
2091  * @b: data payload
2092  * @addr: address in MMIO space
2093  * @writeq_lock: spin lock
2094  *
2095  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2096  * care of 32 bit environment where its not quarenteed to send the entire word
2097  * in one transfer.
2098  */
2099 #if defined(writeq) && defined(CONFIG_64BIT)
2100 static inline void
2101 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2102 {
2103         writeq(cpu_to_le64(b), addr);
2104 }
2105 #else
2106 static inline void
2107 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2108 {
2109         unsigned long flags;
2110         __u64 data_out = cpu_to_le64(b);
2111
2112         spin_lock_irqsave(writeq_lock, flags);
2113         writel((u32)(data_out), addr);
2114         writel((u32)(data_out >> 32), (addr + 4));
2115         spin_unlock_irqrestore(writeq_lock, flags);
2116 }
2117 #endif
2118
2119 static inline u8
2120 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2121 {
2122         return ioc->cpu_msix_table[raw_smp_processor_id()];
2123 }
2124
2125 /**
2126  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2127  * @ioc: per adapter object
2128  * @smid: system request message index
2129  * @handle: device handle
2130  *
2131  * Return nothing.
2132  */
2133 void
2134 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2135 {
2136         Mpi2RequestDescriptorUnion_t descriptor;
2137         u64 *request = (u64 *)&descriptor;
2138
2139
2140         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2141         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2142         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2143         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2144         descriptor.SCSIIO.LMID = 0;
2145         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2146             &ioc->scsi_lookup_lock);
2147 }
2148
2149 /**
2150  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2151  * @ioc: per adapter object
2152  * @smid: system request message index
2153  * @handle: device handle
2154  *
2155  * Return nothing.
2156  */
2157 void
2158 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2159         u16 handle)
2160 {
2161         Mpi2RequestDescriptorUnion_t descriptor;
2162         u64 *request = (u64 *)&descriptor;
2163
2164         descriptor.SCSIIO.RequestFlags =
2165             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2166         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2167         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2168         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2169         descriptor.SCSIIO.LMID = 0;
2170         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2171             &ioc->scsi_lookup_lock);
2172 }
2173
2174 /**
2175  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2176  * @ioc: per adapter object
2177  * @smid: system request message index
2178  *
2179  * Return nothing.
2180  */
2181 void
2182 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2183 {
2184         Mpi2RequestDescriptorUnion_t descriptor;
2185         u64 *request = (u64 *)&descriptor;
2186
2187         descriptor.HighPriority.RequestFlags =
2188             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2189         descriptor.HighPriority.MSIxIndex =  0;
2190         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2191         descriptor.HighPriority.LMID = 0;
2192         descriptor.HighPriority.Reserved1 = 0;
2193         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2194             &ioc->scsi_lookup_lock);
2195 }
2196
2197 /**
2198  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2199  * @ioc: per adapter object
2200  * @smid: system request message index
2201  *
2202  * Return nothing.
2203  */
2204 void
2205 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2206 {
2207         Mpi2RequestDescriptorUnion_t descriptor;
2208         u64 *request = (u64 *)&descriptor;
2209
2210         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2211         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2212         descriptor.Default.SMID = cpu_to_le16(smid);
2213         descriptor.Default.LMID = 0;
2214         descriptor.Default.DescriptorTypeDependent = 0;
2215         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2216             &ioc->scsi_lookup_lock);
2217 }
2218
2219
2220
2221 /**
2222  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2223  * @ioc: per adapter object
2224  *
2225  * Return nothing.
2226  */
2227 static void
2228 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2229 {
2230         int i = 0;
2231         char desc[16];
2232         u32 iounit_pg1_flags;
2233         u32 bios_version;
2234
2235         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2236         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2237         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2238            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2239             ioc->name, desc,
2240            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2241            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2242            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2243            ioc->facts.FWVersion.Word & 0x000000FF,
2244            ioc->pdev->revision,
2245            (bios_version & 0xFF000000) >> 24,
2246            (bios_version & 0x00FF0000) >> 16,
2247            (bios_version & 0x0000FF00) >> 8,
2248             bios_version & 0x000000FF);
2249
2250         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2251
2252         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2253                 pr_info("Initiator");
2254                 i++;
2255         }
2256
2257         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2258                 pr_info("%sTarget", i ? "," : "");
2259                 i++;
2260         }
2261
2262         i = 0;
2263         pr_info("), ");
2264         pr_info("Capabilities=(");
2265
2266         if (ioc->facts.IOCCapabilities &
2267                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2268                         pr_info("Raid");
2269                         i++;
2270         }
2271
2272         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2273                 pr_info("%sTLR", i ? "," : "");
2274                 i++;
2275         }
2276
2277         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2278                 pr_info("%sMulticast", i ? "," : "");
2279                 i++;
2280         }
2281
2282         if (ioc->facts.IOCCapabilities &
2283             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2284                 pr_info("%sBIDI Target", i ? "," : "");
2285                 i++;
2286         }
2287
2288         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2289                 pr_info("%sEEDP", i ? "," : "");
2290                 i++;
2291         }
2292
2293         if (ioc->facts.IOCCapabilities &
2294             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2295                 pr_info("%sSnapshot Buffer", i ? "," : "");
2296                 i++;
2297         }
2298
2299         if (ioc->facts.IOCCapabilities &
2300             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2301                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2302                 i++;
2303         }
2304
2305         if (ioc->facts.IOCCapabilities &
2306             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2307                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2308                 i++;
2309         }
2310
2311         if (ioc->facts.IOCCapabilities &
2312             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2313                 pr_info("%sTask Set Full", i ? "," : "");
2314                 i++;
2315         }
2316
2317         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2318         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2319                 pr_info("%sNCQ", i ? "," : "");
2320                 i++;
2321         }
2322
2323         pr_info(")\n");
2324 }
2325
2326 /**
2327  * mpt3sas_base_update_missing_delay - change the missing delay timers
2328  * @ioc: per adapter object
2329  * @device_missing_delay: amount of time till device is reported missing
2330  * @io_missing_delay: interval IO is returned when there is a missing device
2331  *
2332  * Return nothing.
2333  *
2334  * Passed on the command line, this function will modify the device missing
2335  * delay, as well as the io missing delay. This should be called at driver
2336  * load time.
2337  */
2338 void
2339 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2340         u16 device_missing_delay, u8 io_missing_delay)
2341 {
2342         u16 dmd, dmd_new, dmd_orignal;
2343         u8 io_missing_delay_original;
2344         u16 sz;
2345         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2346         Mpi2ConfigReply_t mpi_reply;
2347         u8 num_phys = 0;
2348         u16 ioc_status;
2349
2350         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2351         if (!num_phys)
2352                 return;
2353
2354         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2355             sizeof(Mpi2SasIOUnit1PhyData_t));
2356         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2357         if (!sas_iounit_pg1) {
2358                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2359                     ioc->name, __FILE__, __LINE__, __func__);
2360                 goto out;
2361         }
2362         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2363             sas_iounit_pg1, sz))) {
2364                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2365                     ioc->name, __FILE__, __LINE__, __func__);
2366                 goto out;
2367         }
2368         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2369             MPI2_IOCSTATUS_MASK;
2370         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2371                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2372                     ioc->name, __FILE__, __LINE__, __func__);
2373                 goto out;
2374         }
2375
2376         /* device missing delay */
2377         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2378         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2379                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2380         else
2381                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2382         dmd_orignal = dmd;
2383         if (device_missing_delay > 0x7F) {
2384                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2385                     device_missing_delay;
2386                 dmd = dmd / 16;
2387                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2388         } else
2389                 dmd = device_missing_delay;
2390         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2391
2392         /* io missing delay */
2393         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2394         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2395
2396         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2397             sz)) {
2398                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2399                         dmd_new = (dmd &
2400                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2401                 else
2402                         dmd_new =
2403                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2404                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2405                         ioc->name, dmd_orignal, dmd_new);
2406                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2407                         ioc->name, io_missing_delay_original,
2408                     io_missing_delay);
2409                 ioc->device_missing_delay = dmd_new;
2410                 ioc->io_missing_delay = io_missing_delay;
2411         }
2412
2413 out:
2414         kfree(sas_iounit_pg1);
2415 }
2416 /**
2417  * _base_static_config_pages - static start of day config pages
2418  * @ioc: per adapter object
2419  *
2420  * Return nothing.
2421  */
2422 static void
2423 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2424 {
2425         Mpi2ConfigReply_t mpi_reply;
2426         u32 iounit_pg1_flags;
2427
2428         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2429         if (ioc->ir_firmware)
2430                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2431                     &ioc->manu_pg10);
2432
2433         /*
2434          * Ensure correct T10 PI operation if vendor left EEDPTagMode
2435          * flag unset in NVDATA.
2436          */
2437         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2438         if (ioc->manu_pg11.EEDPTagMode == 0) {
2439                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2440                     ioc->name);
2441                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2442                 ioc->manu_pg11.EEDPTagMode |= 0x1;
2443                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2444                     &ioc->manu_pg11);
2445         }
2446
2447         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2448         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2449         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2450         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2451         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2452         _base_display_ioc_capabilities(ioc);
2453
2454         /*
2455          * Enable task_set_full handling in iounit_pg1 when the
2456          * facts capabilities indicate that its supported.
2457          */
2458         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2459         if ((ioc->facts.IOCCapabilities &
2460             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2461                 iounit_pg1_flags &=
2462                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2463         else
2464                 iounit_pg1_flags |=
2465                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2466         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2467         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2468 }
2469
2470 /**
2471  * _base_release_memory_pools - release memory
2472  * @ioc: per adapter object
2473  *
2474  * Free memory allocated from _base_allocate_memory_pools.
2475  *
2476  * Return nothing.
2477  */
2478 static void
2479 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2480 {
2481         int i;
2482
2483         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2484             __func__));
2485
2486         if (ioc->request) {
2487                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2488                     ioc->request,  ioc->request_dma);
2489                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2490                         "request_pool(0x%p): free\n",
2491                         ioc->name, ioc->request));
2492                 ioc->request = NULL;
2493         }
2494
2495         if (ioc->sense) {
2496                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2497                 if (ioc->sense_dma_pool)
2498                         pci_pool_destroy(ioc->sense_dma_pool);
2499                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2500                         "sense_pool(0x%p): free\n",
2501                         ioc->name, ioc->sense));
2502                 ioc->sense = NULL;
2503         }
2504
2505         if (ioc->reply) {
2506                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2507                 if (ioc->reply_dma_pool)
2508                         pci_pool_destroy(ioc->reply_dma_pool);
2509                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2510                         "reply_pool(0x%p): free\n",
2511                         ioc->name, ioc->reply));
2512                 ioc->reply = NULL;
2513         }
2514
2515         if (ioc->reply_free) {
2516                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2517                     ioc->reply_free_dma);
2518                 if (ioc->reply_free_dma_pool)
2519                         pci_pool_destroy(ioc->reply_free_dma_pool);
2520                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2521                         "reply_free_pool(0x%p): free\n",
2522                         ioc->name, ioc->reply_free));
2523                 ioc->reply_free = NULL;
2524         }
2525
2526         if (ioc->reply_post_free) {
2527                 pci_pool_free(ioc->reply_post_free_dma_pool,
2528                     ioc->reply_post_free, ioc->reply_post_free_dma);
2529                 if (ioc->reply_post_free_dma_pool)
2530                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
2531                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2532                     "reply_post_free_pool(0x%p): free\n", ioc->name,
2533                     ioc->reply_post_free));
2534                 ioc->reply_post_free = NULL;
2535         }
2536
2537         if (ioc->config_page) {
2538                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2539                     "config_page(0x%p): free\n", ioc->name,
2540                     ioc->config_page));
2541                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2542                     ioc->config_page, ioc->config_page_dma);
2543         }
2544
2545         if (ioc->scsi_lookup) {
2546                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2547                 ioc->scsi_lookup = NULL;
2548         }
2549         kfree(ioc->hpr_lookup);
2550         kfree(ioc->internal_lookup);
2551         if (ioc->chain_lookup) {
2552                 for (i = 0; i < ioc->chain_depth; i++) {
2553                         if (ioc->chain_lookup[i].chain_buffer)
2554                                 pci_pool_free(ioc->chain_dma_pool,
2555                                     ioc->chain_lookup[i].chain_buffer,
2556                                     ioc->chain_lookup[i].chain_buffer_dma);
2557                 }
2558                 if (ioc->chain_dma_pool)
2559                         pci_pool_destroy(ioc->chain_dma_pool);
2560                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2561                 ioc->chain_lookup = NULL;
2562         }
2563 }
2564
2565 /**
2566  * _base_allocate_memory_pools - allocate start of day memory pools
2567  * @ioc: per adapter object
2568  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2569  *
2570  * Returns 0 success, anything else error
2571  */
2572 static int
2573 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
2574 {
2575         struct mpt3sas_facts *facts;
2576         u16 max_sge_elements;
2577         u16 chains_needed_per_io;
2578         u32 sz, total_sz, reply_post_free_sz;
2579         u32 retry_sz;
2580         u16 max_request_credit;
2581         unsigned short sg_tablesize;
2582         u16 sge_size;
2583         int i;
2584
2585         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2586             __func__));
2587
2588
2589         retry_sz = 0;
2590         facts = &ioc->facts;
2591
2592         /* command line tunables for max sgl entries */
2593         if (max_sgl_entries != -1)
2594                 sg_tablesize = max_sgl_entries;
2595         else
2596                 sg_tablesize = MPT3SAS_SG_DEPTH;
2597
2598         if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2599                 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2600         else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS)
2601                 sg_tablesize = MPT3SAS_MAX_PHYS_SEGMENTS;
2602         ioc->shost->sg_tablesize = sg_tablesize;
2603
2604         ioc->hi_priority_depth = facts->HighPriorityCredit;
2605         ioc->internal_depth = ioc->hi_priority_depth + (5);
2606         /* command line tunables  for max controller queue depth */
2607         if (max_queue_depth != -1 && max_queue_depth != 0) {
2608                 max_request_credit = min_t(u16, max_queue_depth +
2609                     ioc->hi_priority_depth + ioc->internal_depth,
2610                     facts->RequestCredit);
2611                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2612                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2613         } else
2614                 max_request_credit = min_t(u16, facts->RequestCredit,
2615                     MAX_HBA_QUEUE_DEPTH);
2616
2617         ioc->hba_queue_depth = max_request_credit;
2618
2619         /* request frame size */
2620         ioc->request_sz = facts->IOCRequestFrameSize * 4;
2621
2622         /* reply frame size */
2623         ioc->reply_sz = facts->ReplyFrameSize * 4;
2624
2625         /* calculate the max scatter element size */
2626         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2627
2628  retry_allocation:
2629         total_sz = 0;
2630         /* calculate number of sg elements left over in the 1st frame */
2631         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2632             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2633         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2634
2635         /* now do the same for a chain buffer */
2636         max_sge_elements = ioc->request_sz - sge_size;
2637         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2638
2639         /*
2640          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2641          */
2642         chains_needed_per_io = ((ioc->shost->sg_tablesize -
2643            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2644             + 1;
2645         if (chains_needed_per_io > facts->MaxChainDepth) {
2646                 chains_needed_per_io = facts->MaxChainDepth;
2647                 ioc->shost->sg_tablesize = min_t(u16,
2648                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2649                 * chains_needed_per_io), ioc->shost->sg_tablesize);
2650         }
2651         ioc->chains_needed_per_io = chains_needed_per_io;
2652
2653         /* reply free queue sizing - taking into account for 64 FW events */
2654         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2655
2656         /* calculate reply descriptor post queue depth */
2657         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2658                                 ioc->reply_free_queue_depth +  1 ;
2659         /* align the reply post queue on the next 16 count boundary */
2660         if (ioc->reply_post_queue_depth % 16)
2661                 ioc->reply_post_queue_depth += 16 -
2662                 (ioc->reply_post_queue_depth % 16);
2663
2664
2665         if (ioc->reply_post_queue_depth >
2666             facts->MaxReplyDescriptorPostQueueDepth) {
2667                 ioc->reply_post_queue_depth =
2668                                 facts->MaxReplyDescriptorPostQueueDepth -
2669                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
2670                 ioc->hba_queue_depth =
2671                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2672                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2673         }
2674
2675         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2676             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2677             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2678             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2679             ioc->chains_needed_per_io));
2680
2681         ioc->scsiio_depth = ioc->hba_queue_depth -
2682             ioc->hi_priority_depth - ioc->internal_depth;
2683
2684         /* set the scsi host can_queue depth
2685          * with some internal commands that could be outstanding
2686          */
2687         ioc->shost->can_queue = ioc->scsiio_depth;
2688         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2689                 "scsi host: can_queue depth (%d)\n",
2690                 ioc->name, ioc->shost->can_queue));
2691
2692
2693         /* contiguous pool for request and chains, 16 byte align, one extra "
2694          * "frame for smid=0
2695          */
2696         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2697         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2698
2699         /* hi-priority queue */
2700         sz += (ioc->hi_priority_depth * ioc->request_sz);
2701
2702         /* internal queue */
2703         sz += (ioc->internal_depth * ioc->request_sz);
2704
2705         ioc->request_dma_sz = sz;
2706         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2707         if (!ioc->request) {
2708                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2709                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2710                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2711                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2712                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2713                         goto out;
2714                 retry_sz += 64;
2715                 ioc->hba_queue_depth = max_request_credit - retry_sz;
2716                 goto retry_allocation;
2717         }
2718
2719         if (retry_sz)
2720                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2721                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2722                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2723                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2724
2725         /* hi-priority queue */
2726         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2727             ioc->request_sz);
2728         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2729             ioc->request_sz);
2730
2731         /* internal queue */
2732         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2733             ioc->request_sz);
2734         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2735             ioc->request_sz);
2736
2737         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2738                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2739                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2740             (ioc->hba_queue_depth * ioc->request_sz)/1024));
2741
2742         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2743             ioc->name, (unsigned long long) ioc->request_dma));
2744         total_sz += sz;
2745
2746         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2747         ioc->scsi_lookup_pages = get_order(sz);
2748         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2749             GFP_KERNEL, ioc->scsi_lookup_pages);
2750         if (!ioc->scsi_lookup) {
2751                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2752                         ioc->name, (int)sz);
2753                 goto out;
2754         }
2755
2756         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2757                 ioc->name, ioc->request, ioc->scsiio_depth));
2758
2759         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2760         sz = ioc->chain_depth * sizeof(struct chain_tracker);
2761         ioc->chain_pages = get_order(sz);
2762         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2763             GFP_KERNEL, ioc->chain_pages);
2764         if (!ioc->chain_lookup) {
2765                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2766                         ioc->name);
2767                 goto out;
2768         }
2769         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2770             ioc->request_sz, 16, 0);
2771         if (!ioc->chain_dma_pool) {
2772                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2773                         ioc->name);
2774                 goto out;
2775         }
2776         for (i = 0; i < ioc->chain_depth; i++) {
2777                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2778                     ioc->chain_dma_pool , GFP_KERNEL,
2779                     &ioc->chain_lookup[i].chain_buffer_dma);
2780                 if (!ioc->chain_lookup[i].chain_buffer) {
2781                         ioc->chain_depth = i;
2782                         goto chain_done;
2783                 }
2784                 total_sz += ioc->request_sz;
2785         }
2786  chain_done:
2787         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2788                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2789                 ioc->name, ioc->chain_depth, ioc->request_sz,
2790                 ((ioc->chain_depth *  ioc->request_sz))/1024));
2791
2792         /* initialize hi-priority queue smid's */
2793         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2794             sizeof(struct request_tracker), GFP_KERNEL);
2795         if (!ioc->hpr_lookup) {
2796                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2797                     ioc->name);
2798                 goto out;
2799         }
2800         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2801         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2802                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
2803                 ioc->name, ioc->hi_priority,
2804             ioc->hi_priority_depth, ioc->hi_priority_smid));
2805
2806         /* initialize internal queue smid's */
2807         ioc->internal_lookup = kcalloc(ioc->internal_depth,
2808             sizeof(struct request_tracker), GFP_KERNEL);
2809         if (!ioc->internal_lookup) {
2810                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2811                     ioc->name);
2812                 goto out;
2813         }
2814         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2815         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2816                 "internal(0x%p): depth(%d), start smid(%d)\n",
2817                 ioc->name, ioc->internal,
2818             ioc->internal_depth, ioc->internal_smid));
2819
2820         /* sense buffers, 4 byte align */
2821         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2822         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2823             0);
2824         if (!ioc->sense_dma_pool) {
2825                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2826                     ioc->name);
2827                 goto out;
2828         }
2829         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2830             &ioc->sense_dma);
2831         if (!ioc->sense) {
2832                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2833                     ioc->name);
2834                 goto out;
2835         }
2836         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2837             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2838             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2839             SCSI_SENSE_BUFFERSIZE, sz/1024));
2840         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2841             ioc->name, (unsigned long long)ioc->sense_dma));
2842         total_sz += sz;
2843
2844         /* reply pool, 4 byte align */
2845         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2846         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2847             0);
2848         if (!ioc->reply_dma_pool) {
2849                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
2850                     ioc->name);
2851                 goto out;
2852         }
2853         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2854             &ioc->reply_dma);
2855         if (!ioc->reply) {
2856                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
2857                     ioc->name);
2858                 goto out;
2859         }
2860         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
2861         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
2862         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2863                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2864                 ioc->name, ioc->reply,
2865             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2866         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
2867             ioc->name, (unsigned long long)ioc->reply_dma));
2868         total_sz += sz;
2869
2870         /* reply free queue, 16 byte align */
2871         sz = ioc->reply_free_queue_depth * 4;
2872         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2873             ioc->pdev, sz, 16, 0);
2874         if (!ioc->reply_free_dma_pool) {
2875                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
2876                         ioc->name);
2877                 goto out;
2878         }
2879         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2880             &ioc->reply_free_dma);
2881         if (!ioc->reply_free) {
2882                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
2883                         ioc->name);
2884                 goto out;
2885         }
2886         memset(ioc->reply_free, 0, sz);
2887         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
2888             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2889             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2890         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2891                 "reply_free_dma (0x%llx)\n",
2892                 ioc->name, (unsigned long long)ioc->reply_free_dma));
2893         total_sz += sz;
2894
2895         /* reply post queue, 16 byte align */
2896         reply_post_free_sz = ioc->reply_post_queue_depth *
2897             sizeof(Mpi2DefaultReplyDescriptor_t);
2898         if (_base_is_controller_msix_enabled(ioc))
2899                 sz = reply_post_free_sz * ioc->reply_queue_count;
2900         else
2901                 sz = reply_post_free_sz;
2902         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2903             ioc->pdev, sz, 16, 0);
2904         if (!ioc->reply_post_free_dma_pool) {
2905                 pr_err(MPT3SAS_FMT
2906                         "reply_post_free pool: pci_pool_create failed\n",
2907                         ioc->name);
2908                 goto out;
2909         }
2910         ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool ,
2911             GFP_KERNEL, &ioc->reply_post_free_dma);
2912         if (!ioc->reply_post_free) {
2913                 pr_err(MPT3SAS_FMT
2914                         "reply_post_free pool: pci_pool_alloc failed\n",
2915                         ioc->name);
2916                 goto out;
2917         }
2918         memset(ioc->reply_post_free, 0, sz);
2919         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply post free pool" \
2920             "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2921             ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8,
2922             sz/1024));
2923         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2924                 "reply_post_free_dma = (0x%llx)\n",
2925                 ioc->name, (unsigned long long)
2926             ioc->reply_post_free_dma));
2927         total_sz += sz;
2928
2929         ioc->config_page_sz = 512;
2930         ioc->config_page = pci_alloc_consistent(ioc->pdev,
2931             ioc->config_page_sz, &ioc->config_page_dma);
2932         if (!ioc->config_page) {
2933                 pr_err(MPT3SAS_FMT
2934                         "config page: pci_pool_alloc failed\n",
2935                         ioc->name);
2936                 goto out;
2937         }
2938         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2939                 "config page(0x%p): size(%d)\n",
2940                 ioc->name, ioc->config_page, ioc->config_page_sz));
2941         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
2942                 ioc->name, (unsigned long long)ioc->config_page_dma));
2943         total_sz += ioc->config_page_sz;
2944
2945         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
2946             ioc->name, total_sz/1024);
2947         pr_info(MPT3SAS_FMT
2948                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
2949             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2950         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
2951             ioc->name, ioc->shost->sg_tablesize);
2952         return 0;
2953
2954  out:
2955         return -ENOMEM;
2956 }
2957
2958 /**
2959  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
2960  * @ioc: Pointer to MPT_ADAPTER structure
2961  * @cooked: Request raw or cooked IOC state
2962  *
2963  * Returns all IOC Doorbell register bits if cooked==0, else just the
2964  * Doorbell bits in MPI_IOC_STATE_MASK.
2965  */
2966 u32
2967 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
2968 {
2969         u32 s, sc;
2970
2971         s = readl(&ioc->chip->Doorbell);
2972         sc = s & MPI2_IOC_STATE_MASK;
2973         return cooked ? sc : s;
2974 }
2975
2976 /**
2977  * _base_wait_on_iocstate - waiting on a particular ioc state
2978  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2979  * @timeout: timeout in second
2980  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2981  *
2982  * Returns 0 for success, non-zero for failure.
2983  */
2984 static int
2985 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2986         int sleep_flag)
2987 {
2988         u32 count, cntdn;
2989         u32 current_state;
2990
2991         count = 0;
2992         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2993         do {
2994                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
2995                 if (current_state == ioc_state)
2996                         return 0;
2997                 if (count && current_state == MPI2_IOC_STATE_FAULT)
2998                         break;
2999                 if (sleep_flag == CAN_SLEEP)
3000                         usleep_range(1000, 1500);
3001                 else
3002                         udelay(500);
3003                 count++;
3004         } while (--cntdn);
3005
3006         return current_state;
3007 }
3008
3009 /**
3010  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3011  * a write to the doorbell)
3012  * @ioc: per adapter object
3013  * @timeout: timeout in second
3014  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3015  *
3016  * Returns 0 for success, non-zero for failure.
3017  *
3018  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3019  */
3020 static int
3021 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3022         int sleep_flag)
3023 {
3024         u32 cntdn, count;
3025         u32 int_status;
3026
3027         count = 0;
3028         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3029         do {
3030                 int_status = readl(&ioc->chip->HostInterruptStatus);
3031                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3032                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3033                                 "%s: successful count(%d), timeout(%d)\n",
3034                                 ioc->name, __func__, count, timeout));
3035                         return 0;
3036                 }
3037                 if (sleep_flag == CAN_SLEEP)
3038                         usleep_range(1000, 1500);
3039                 else
3040                         udelay(500);
3041                 count++;
3042         } while (--cntdn);
3043
3044         pr_err(MPT3SAS_FMT
3045                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3046                 ioc->name, __func__, count, int_status);
3047         return -EFAULT;
3048 }
3049
3050 /**
3051  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3052  * @ioc: per adapter object
3053  * @timeout: timeout in second
3054  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3055  *
3056  * Returns 0 for success, non-zero for failure.
3057  *
3058  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3059  * doorbell.
3060  */
3061 static int
3062 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3063         int sleep_flag)
3064 {
3065         u32 cntdn, count;
3066         u32 int_status;
3067         u32 doorbell;
3068
3069         count = 0;
3070         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3071         do {
3072                 int_status = readl(&ioc->chip->HostInterruptStatus);
3073                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3074                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3075                                 "%s: successful count(%d), timeout(%d)\n",
3076                                 ioc->name, __func__, count, timeout));
3077                         return 0;
3078                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3079                         doorbell = readl(&ioc->chip->Doorbell);
3080                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3081                             MPI2_IOC_STATE_FAULT) {
3082                                 mpt3sas_base_fault_info(ioc , doorbell);
3083                                 return -EFAULT;
3084                         }
3085                 } else if (int_status == 0xFFFFFFFF)
3086                         goto out;
3087
3088                 if (sleep_flag == CAN_SLEEP)
3089                         usleep_range(1000, 1500);
3090                 else
3091                         udelay(500);
3092                 count++;
3093         } while (--cntdn);
3094
3095  out:
3096         pr_err(MPT3SAS_FMT
3097          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3098          ioc->name, __func__, count, int_status);
3099         return -EFAULT;
3100 }
3101
3102 /**
3103  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3104  * @ioc: per adapter object
3105  * @timeout: timeout in second
3106  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3107  *
3108  * Returns 0 for success, non-zero for failure.
3109  *
3110  */
3111 static int
3112 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3113         int sleep_flag)
3114 {
3115         u32 cntdn, count;
3116         u32 doorbell_reg;
3117
3118         count = 0;
3119         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3120         do {
3121                 doorbell_reg = readl(&ioc->chip->Doorbell);
3122                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3123                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3124                                 "%s: successful count(%d), timeout(%d)\n",
3125                                 ioc->name, __func__, count, timeout));
3126                         return 0;
3127                 }
3128                 if (sleep_flag == CAN_SLEEP)
3129                         usleep_range(1000, 1500);
3130                 else
3131                         udelay(500);
3132                 count++;
3133         } while (--cntdn);
3134
3135         pr_err(MPT3SAS_FMT
3136                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3137                 ioc->name, __func__, count, doorbell_reg);
3138         return -EFAULT;
3139 }
3140
3141 /**
3142  * _base_send_ioc_reset - send doorbell reset
3143  * @ioc: per adapter object
3144  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3145  * @timeout: timeout in second
3146  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3147  *
3148  * Returns 0 for success, non-zero for failure.
3149  */
3150 static int
3151 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3152         int sleep_flag)
3153 {
3154         u32 ioc_state;
3155         int r = 0;
3156
3157         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3158                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3159                     ioc->name, __func__);
3160                 return -EFAULT;
3161         }
3162
3163         if (!(ioc->facts.IOCCapabilities &
3164            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3165                 return -EFAULT;
3166
3167         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3168
3169         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3170             &ioc->chip->Doorbell);
3171         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3172                 r = -EFAULT;
3173                 goto out;
3174         }
3175         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3176             timeout, sleep_flag);
3177         if (ioc_state) {
3178                 pr_err(MPT3SAS_FMT
3179                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3180                         ioc->name, __func__, ioc_state);
3181                 r = -EFAULT;
3182                 goto out;
3183         }
3184  out:
3185         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3186             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3187         return r;
3188 }
3189
3190 /**
3191  * _base_handshake_req_reply_wait - send request thru doorbell interface
3192  * @ioc: per adapter object
3193  * @request_bytes: request length
3194  * @request: pointer having request payload
3195  * @reply_bytes: reply length
3196  * @reply: pointer to reply payload
3197  * @timeout: timeout in second
3198  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3199  *
3200  * Returns 0 for success, non-zero for failure.
3201  */
3202 static int
3203 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3204         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3205 {
3206         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3207         int i;
3208         u8 failed;
3209         u16 dummy;
3210         __le32 *mfp;
3211
3212         /* make sure doorbell is not in use */
3213         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3214                 pr_err(MPT3SAS_FMT
3215                         "doorbell is in use (line=%d)\n",
3216                         ioc->name, __LINE__);
3217                 return -EFAULT;
3218         }
3219
3220         /* clear pending doorbell interrupts from previous state changes */
3221         if (readl(&ioc->chip->HostInterruptStatus) &
3222             MPI2_HIS_IOC2SYS_DB_STATUS)
3223                 writel(0, &ioc->chip->HostInterruptStatus);
3224
3225         /* send message to ioc */
3226         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3227             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3228             &ioc->chip->Doorbell);
3229
3230         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3231                 pr_err(MPT3SAS_FMT
3232                         "doorbell handshake int failed (line=%d)\n",
3233                         ioc->name, __LINE__);
3234                 return -EFAULT;
3235         }
3236         writel(0, &ioc->chip->HostInterruptStatus);
3237
3238         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3239                 pr_err(MPT3SAS_FMT
3240                         "doorbell handshake ack failed (line=%d)\n",
3241                         ioc->name, __LINE__);
3242                 return -EFAULT;
3243         }
3244
3245         /* send message 32-bits at a time */
3246         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3247                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3248                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3249                         failed = 1;
3250         }
3251
3252         if (failed) {
3253                 pr_err(MPT3SAS_FMT
3254                         "doorbell handshake sending request failed (line=%d)\n",
3255                         ioc->name, __LINE__);
3256                 return -EFAULT;
3257         }
3258
3259         /* now wait for the reply */
3260         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3261                 pr_err(MPT3SAS_FMT
3262                         "doorbell handshake int failed (line=%d)\n",
3263                         ioc->name, __LINE__);
3264                 return -EFAULT;
3265         }
3266
3267         /* read the first two 16-bits, it gives the total length of the reply */
3268         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3269             & MPI2_DOORBELL_DATA_MASK);
3270         writel(0, &ioc->chip->HostInterruptStatus);
3271         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3272                 pr_err(MPT3SAS_FMT
3273                         "doorbell handshake int failed (line=%d)\n",
3274                         ioc->name, __LINE__);
3275                 return -EFAULT;
3276         }
3277         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3278             & MPI2_DOORBELL_DATA_MASK);
3279         writel(0, &ioc->chip->HostInterruptStatus);
3280
3281         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3282                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3283                         pr_err(MPT3SAS_FMT
3284                                 "doorbell handshake int failed (line=%d)\n",
3285                                 ioc->name, __LINE__);
3286                         return -EFAULT;
3287                 }
3288                 if (i >=  reply_bytes/2) /* overflow case */
3289                         dummy = readl(&ioc->chip->Doorbell);
3290                 else
3291                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3292                             & MPI2_DOORBELL_DATA_MASK);
3293                 writel(0, &ioc->chip->HostInterruptStatus);
3294         }
3295
3296         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3297         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3298                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3299                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3300         }
3301         writel(0, &ioc->chip->HostInterruptStatus);
3302
3303         if (ioc->logging_level & MPT_DEBUG_INIT) {
3304                 mfp = (__le32 *)reply;
3305                 pr_info("\toffset:data\n");
3306                 for (i = 0; i < reply_bytes/4; i++)
3307                         pr_info("\t[0x%02x]:%08x\n", i*4,
3308                             le32_to_cpu(mfp[i]));
3309         }
3310         return 0;
3311 }
3312
3313 /**
3314  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3315  * @ioc: per adapter object
3316  * @mpi_reply: the reply payload from FW
3317  * @mpi_request: the request payload sent to FW
3318  *
3319  * The SAS IO Unit Control Request message allows the host to perform low-level
3320  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3321  * to obtain the IOC assigned device handles for a device if it has other
3322  * identifying information about the device, in addition allows the host to
3323  * remove IOC resources associated with the device.
3324  *
3325  * Returns 0 for success, non-zero for failure.
3326  */
3327 int
3328 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3329         Mpi2SasIoUnitControlReply_t *mpi_reply,
3330         Mpi2SasIoUnitControlRequest_t *mpi_request)
3331 {
3332         u16 smid;
3333         u32 ioc_state;
3334         unsigned long timeleft;
3335         u8 issue_reset;
3336         int rc;
3337         void *request;
3338         u16 wait_state_count;
3339
3340         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3341             __func__));
3342
3343         mutex_lock(&ioc->base_cmds.mutex);
3344
3345         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3346                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3347                     ioc->name, __func__);
3348                 rc = -EAGAIN;
3349                 goto out;
3350         }
3351
3352         wait_state_count = 0;
3353         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3354         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3355                 if (wait_state_count++ == 10) {
3356                         pr_err(MPT3SAS_FMT
3357                             "%s: failed due to ioc not operational\n",
3358                             ioc->name, __func__);
3359                         rc = -EFAULT;
3360                         goto out;
3361                 }
3362                 ssleep(1);
3363                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3364                 pr_info(MPT3SAS_FMT
3365                         "%s: waiting for operational state(count=%d)\n",
3366                         ioc->name, __func__, wait_state_count);
3367         }
3368
3369         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3370         if (!smid) {
3371                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3372                     ioc->name, __func__);
3373                 rc = -EAGAIN;
3374                 goto out;
3375         }
3376
3377         rc = 0;
3378         ioc->base_cmds.status = MPT3_CMD_PENDING;
3379         request = mpt3sas_base_get_msg_frame(ioc, smid);
3380         ioc->base_cmds.smid = smid;
3381         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3382         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3383             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3384                 ioc->ioc_link_reset_in_progress = 1;
3385         init_completion(&ioc->base_cmds.done);
3386         mpt3sas_base_put_smid_default(ioc, smid);
3387         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3388             msecs_to_jiffies(10000));
3389         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3390             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3391             ioc->ioc_link_reset_in_progress)
3392                 ioc->ioc_link_reset_in_progress = 0;
3393         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3394                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3395                     ioc->name, __func__);
3396                 _debug_dump_mf(mpi_request,
3397                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3398                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3399                         issue_reset = 1;
3400                 goto issue_host_reset;
3401         }
3402         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3403                 memcpy(mpi_reply, ioc->base_cmds.reply,
3404                     sizeof(Mpi2SasIoUnitControlReply_t));
3405         else
3406                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3407         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3408         goto out;
3409
3410  issue_host_reset:
3411         if (issue_reset)
3412                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3413                     FORCE_BIG_HAMMER);
3414         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3415         rc = -EFAULT;
3416  out:
3417         mutex_unlock(&ioc->base_cmds.mutex);
3418         return rc;
3419 }
3420
3421 /**
3422  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3423  * @ioc: per adapter object
3424  * @mpi_reply: the reply payload from FW
3425  * @mpi_request: the request payload sent to FW
3426  *
3427  * The SCSI Enclosure Processor request message causes the IOC to
3428  * communicate with SES devices to control LED status signals.
3429  *
3430  * Returns 0 for success, non-zero for failure.
3431  */
3432 int
3433 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3434         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3435 {
3436         u16 smid;
3437         u32 ioc_state;
3438         unsigned long timeleft;
3439         u8 issue_reset;
3440         int rc;
3441         void *request;
3442         u16 wait_state_count;
3443
3444         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3445             __func__));
3446
3447         mutex_lock(&ioc->base_cmds.mutex);
3448
3449         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3450                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3451                     ioc->name, __func__);
3452                 rc = -EAGAIN;
3453                 goto out;
3454         }
3455
3456         wait_state_count = 0;
3457         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3458         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3459                 if (wait_state_count++ == 10) {
3460                         pr_err(MPT3SAS_FMT
3461                             "%s: failed due to ioc not operational\n",
3462                             ioc->name, __func__);
3463                         rc = -EFAULT;
3464                         goto out;
3465                 }
3466                 ssleep(1);
3467                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3468                 pr_info(MPT3SAS_FMT
3469                         "%s: waiting for operational state(count=%d)\n",
3470                         ioc->name,
3471                     __func__, wait_state_count);
3472         }
3473
3474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3475         if (!smid) {
3476                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3477                     ioc->name, __func__);
3478                 rc = -EAGAIN;
3479                 goto out;
3480         }
3481
3482         rc = 0;
3483         ioc->base_cmds.status = MPT3_CMD_PENDING;
3484         request = mpt3sas_base_get_msg_frame(ioc, smid);
3485         ioc->base_cmds.smid = smid;
3486         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3487         init_completion(&ioc->base_cmds.done);
3488         mpt3sas_base_put_smid_default(ioc, smid);
3489         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3490             msecs_to_jiffies(10000));
3491         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3492                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3493                     ioc->name, __func__);
3494                 _debug_dump_mf(mpi_request,
3495                     sizeof(Mpi2SepRequest_t)/4);
3496                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3497                         issue_reset = 1;
3498                 goto issue_host_reset;
3499         }
3500         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3501                 memcpy(mpi_reply, ioc->base_cmds.reply,
3502                     sizeof(Mpi2SepReply_t));
3503         else
3504                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3505         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3506         goto out;
3507
3508  issue_host_reset:
3509         if (issue_reset)
3510                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3511                     FORCE_BIG_HAMMER);
3512         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3513         rc = -EFAULT;
3514  out:
3515         mutex_unlock(&ioc->base_cmds.mutex);
3516         return rc;
3517 }
3518
3519 /**
3520  * _base_get_port_facts - obtain port facts reply and save in ioc
3521  * @ioc: per adapter object
3522  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3523  *
3524  * Returns 0 for success, non-zero for failure.
3525  */
3526 static int
3527 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3528 {
3529         Mpi2PortFactsRequest_t mpi_request;
3530         Mpi2PortFactsReply_t mpi_reply;
3531         struct mpt3sas_port_facts *pfacts;
3532         int mpi_reply_sz, mpi_request_sz, r;
3533
3534         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3535             __func__));
3536
3537         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3538         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3539         memset(&mpi_request, 0, mpi_request_sz);
3540         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3541         mpi_request.PortNumber = port;
3542         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3543             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3544
3545         if (r != 0) {
3546                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3547                     ioc->name, __func__, r);
3548                 return r;
3549         }
3550
3551         pfacts = &ioc->pfacts[port];
3552         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3553         pfacts->PortNumber = mpi_reply.PortNumber;
3554         pfacts->VP_ID = mpi_reply.VP_ID;
3555         pfacts->VF_ID = mpi_reply.VF_ID;
3556         pfacts->MaxPostedCmdBuffers =
3557             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3558
3559         return 0;
3560 }
3561
3562 /**
3563  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3564  * @ioc: per adapter object
3565  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3566  *
3567  * Returns 0 for success, non-zero for failure.
3568  */
3569 static int
3570 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3571 {
3572         Mpi2IOCFactsRequest_t mpi_request;
3573         Mpi2IOCFactsReply_t mpi_reply;
3574         struct mpt3sas_facts *facts;
3575         int mpi_reply_sz, mpi_request_sz, r;
3576
3577         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3578             __func__));
3579
3580         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3581         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3582         memset(&mpi_request, 0, mpi_request_sz);
3583         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3584         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3585             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3586
3587         if (r != 0) {
3588                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3589                     ioc->name, __func__, r);
3590                 return r;
3591         }
3592
3593         facts = &ioc->facts;
3594         memset(facts, 0, sizeof(struct mpt3sas_facts));
3595         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3596         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3597         facts->VP_ID = mpi_reply.VP_ID;
3598         facts->VF_ID = mpi_reply.VF_ID;
3599         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3600         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3601         facts->WhoInit = mpi_reply.WhoInit;
3602         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3603         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3604         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3605         facts->MaxReplyDescriptorPostQueueDepth =
3606             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3607         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3608         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3609         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3610                 ioc->ir_firmware = 1;
3611         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3612         facts->IOCRequestFrameSize =
3613             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3614         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3615         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3616         ioc->shost->max_id = -1;
3617         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3618         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3619         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3620         facts->HighPriorityCredit =
3621             le16_to_cpu(mpi_reply.HighPriorityCredit);
3622         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3623         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3624
3625         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3626                 "hba queue depth(%d), max chains per io(%d)\n",
3627                 ioc->name, facts->RequestCredit,
3628             facts->MaxChainDepth));
3629         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3630                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3631             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3632         return 0;
3633 }
3634
3635 /**
3636  * _base_send_ioc_init - send ioc_init to firmware
3637  * @ioc: per adapter object
3638  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3639  *
3640  * Returns 0 for success, non-zero for failure.
3641  */
3642 static int
3643 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3644 {
3645         Mpi2IOCInitRequest_t mpi_request;
3646         Mpi2IOCInitReply_t mpi_reply;
3647         int r;
3648         struct timeval current_time;
3649         u16 ioc_status;
3650
3651         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3652             __func__));
3653
3654         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3655         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3656         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3657         mpi_request.VF_ID = 0; /* TODO */
3658         mpi_request.VP_ID = 0;
3659         mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3660         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3661
3662         if (_base_is_controller_msix_enabled(ioc))
3663                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3664         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3665         mpi_request.ReplyDescriptorPostQueueDepth =
3666             cpu_to_le16(ioc->reply_post_queue_depth);
3667         mpi_request.ReplyFreeQueueDepth =
3668             cpu_to_le16(ioc->reply_free_queue_depth);
3669
3670         mpi_request.SenseBufferAddressHigh =
3671             cpu_to_le32((u64)ioc->sense_dma >> 32);
3672         mpi_request.SystemReplyAddressHigh =
3673             cpu_to_le32((u64)ioc->reply_dma >> 32);
3674         mpi_request.SystemRequestFrameBaseAddress =
3675             cpu_to_le64((u64)ioc->request_dma);
3676         mpi_request.ReplyFreeQueueAddress =
3677             cpu_to_le64((u64)ioc->reply_free_dma);
3678         mpi_request.ReplyDescriptorPostQueueAddress =
3679             cpu_to_le64((u64)ioc->reply_post_free_dma);
3680
3681
3682         /* This time stamp specifies number of milliseconds
3683          * since epoch ~ midnight January 1, 1970.
3684          */
3685         do_gettimeofday(&current_time);
3686         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3687             (current_time.tv_usec / 1000));
3688
3689         if (ioc->logging_level & MPT_DEBUG_INIT) {
3690                 __le32 *mfp;
3691                 int i;
3692
3693                 mfp = (__le32 *)&mpi_request;
3694                 pr_info("\toffset:data\n");
3695                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3696                         pr_info("\t[0x%02x]:%08x\n", i*4,
3697                             le32_to_cpu(mfp[i]));
3698         }
3699
3700         r = _base_handshake_req_reply_wait(ioc,
3701             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3702             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3703             sleep_flag);
3704
3705         if (r != 0) {
3706                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3707                     ioc->name, __func__, r);
3708                 return r;
3709         }
3710
3711         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3712         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3713             mpi_reply.IOCLogInfo) {
3714                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3715                 r = -EIO;
3716         }
3717
3718         return 0;
3719 }
3720
3721 /**
3722  * mpt3sas_port_enable_done - command completion routine for port enable
3723  * @ioc: per adapter object
3724  * @smid: system request message index
3725  * @msix_index: MSIX table index supplied by the OS
3726  * @reply: reply message frame(lower 32bit addr)
3727  *
3728  * Return 1 meaning mf should be freed from _base_interrupt
3729  *        0 means the mf is freed from this function.
3730  */
3731 u8
3732 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3733         u32 reply)
3734 {
3735         MPI2DefaultReply_t *mpi_reply;
3736         u16 ioc_status;
3737
3738         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3739                 return 1;
3740
3741         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3742         if (!mpi_reply)
3743                 return 1;
3744
3745         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3746                 return 1;
3747
3748         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3749         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3750         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3751         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3752         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3753         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3754                 ioc->port_enable_failed = 1;
3755
3756         if (ioc->is_driver_loading) {
3757                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3758                         mpt3sas_port_enable_complete(ioc);
3759                         return 1;
3760                 } else {
3761                         ioc->start_scan_failed = ioc_status;
3762                         ioc->start_scan = 0;
3763                         return 1;
3764                 }
3765         }
3766         complete(&ioc->port_enable_cmds.done);
3767         return 1;
3768 }
3769
3770 /**
3771  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3772  * @ioc: per adapter object
3773  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3774  *
3775  * Returns 0 for success, non-zero for failure.
3776  */
3777 static int
3778 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3779 {
3780         Mpi2PortEnableRequest_t *mpi_request;
3781         Mpi2PortEnableReply_t *mpi_reply;
3782         unsigned long timeleft;
3783         int r = 0;
3784         u16 smid;
3785         u16 ioc_status;
3786
3787         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3788
3789         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3790                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3791                     ioc->name, __func__);
3792                 return -EAGAIN;
3793         }
3794
3795         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3796         if (!smid) {
3797                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3798                     ioc->name, __func__);
3799                 return -EAGAIN;
3800         }
3801
3802         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3803         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3804         ioc->port_enable_cmds.smid = smid;
3805         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3806         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3807
3808         init_completion(&ioc->port_enable_cmds.done);
3809         mpt3sas_base_put_smid_default(ioc, smid);
3810         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3811             300*HZ);
3812         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3813                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3814                     ioc->name, __func__);
3815                 _debug_dump_mf(mpi_request,
3816                     sizeof(Mpi2PortEnableRequest_t)/4);
3817                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3818                         r = -EFAULT;
3819                 else
3820                         r = -ETIME;
3821                 goto out;
3822         }
3823
3824         mpi_reply = ioc->port_enable_cmds.reply;
3825         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3826         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3827                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3828                     ioc->name, __func__, ioc_status);
3829                 r = -EFAULT;
3830                 goto out;
3831         }
3832
3833  out:
3834         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3835         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3836             "SUCCESS" : "FAILED"));
3837         return r;
3838 }
3839
3840 /**
3841  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3842  * @ioc: per adapter object
3843  *
3844  * Returns 0 for success, non-zero for failure.
3845  */
3846 int
3847 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
3848 {
3849         Mpi2PortEnableRequest_t *mpi_request;
3850         u16 smid;
3851
3852         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3853
3854         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3855                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3856                     ioc->name, __func__);
3857                 return -EAGAIN;
3858         }
3859
3860         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3861         if (!smid) {
3862                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3863                     ioc->name, __func__);
3864                 return -EAGAIN;
3865         }
3866
3867         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3868         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3869         ioc->port_enable_cmds.smid = smid;
3870         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3871         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3872
3873         mpt3sas_base_put_smid_default(ioc, smid);
3874         return 0;
3875 }
3876
3877 /**
3878  * _base_determine_wait_on_discovery - desposition
3879  * @ioc: per adapter object
3880  *
3881  * Decide whether to wait on discovery to complete. Used to either
3882  * locate boot device, or report volumes ahead of physical devices.
3883  *
3884  * Returns 1 for wait, 0 for don't wait
3885  */
3886 static int
3887 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
3888 {
3889         /* We wait for discovery to complete if IR firmware is loaded.
3890          * The sas topology events arrive before PD events, so we need time to
3891          * turn on the bit in ioc->pd_handles to indicate PD
3892          * Also, it maybe required to report Volumes ahead of physical
3893          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3894          */
3895         if (ioc->ir_firmware)
3896                 return 1;
3897
3898         /* if no Bios, then we don't need to wait */
3899         if (!ioc->bios_pg3.BiosVersion)
3900                 return 0;
3901
3902         /* Bios is present, then we drop down here.
3903          *
3904          * If there any entries in the Bios Page 2, then we wait
3905          * for discovery to complete.
3906          */
3907
3908         /* Current Boot Device */
3909         if ((ioc->bios_pg2.CurrentBootDeviceForm &
3910             MPI2_BIOSPAGE2_FORM_MASK) ==
3911             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3912         /* Request Boot Device */
3913            (ioc->bios_pg2.ReqBootDeviceForm &
3914             MPI2_BIOSPAGE2_FORM_MASK) ==
3915             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3916         /* Alternate Request Boot Device */
3917            (ioc->bios_pg2.ReqAltBootDeviceForm &
3918             MPI2_BIOSPAGE2_FORM_MASK) ==
3919             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
3920                 return 0;
3921
3922         return 1;
3923 }
3924
3925 /**
3926  * _base_unmask_events - turn on notification for this event
3927  * @ioc: per adapter object
3928  * @event: firmware event
3929  *
3930  * The mask is stored in ioc->event_masks.
3931  */
3932 static void
3933 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
3934 {
3935         u32 desired_event;
3936
3937         if (event >= 128)
3938                 return;
3939
3940         desired_event = (1 << (event % 32));
3941
3942         if (event < 32)
3943                 ioc->event_masks[0] &= ~desired_event;
3944         else if (event < 64)
3945                 ioc->event_masks[1] &= ~desired_event;
3946         else if (event < 96)
3947                 ioc->event_masks[2] &= ~desired_event;
3948         else if (event < 128)
3949                 ioc->event_masks[3] &= ~desired_event;
3950 }
3951
3952 /**
3953  * _base_event_notification - send event notification
3954  * @ioc: per adapter object
3955  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3956  *
3957  * Returns 0 for success, non-zero for failure.
3958  */
3959 static int
3960 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3961 {
3962         Mpi2EventNotificationRequest_t *mpi_request;
3963         unsigned long timeleft;
3964         u16 smid;
3965         int r = 0;
3966         int i;
3967
3968         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3969             __func__));
3970
3971         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3972                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3973                     ioc->name, __func__);
3974                 return -EAGAIN;
3975         }
3976
3977         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3978         if (!smid) {
3979                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3980                     ioc->name, __func__);
3981                 return -EAGAIN;
3982         }
3983         ioc->base_cmds.status = MPT3_CMD_PENDING;
3984         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3985         ioc->base_cmds.smid = smid;
3986         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3987         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3988         mpi_request->VF_ID = 0; /* TODO */
3989         mpi_request->VP_ID = 0;
3990         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3991                 mpi_request->EventMasks[i] =
3992                     cpu_to_le32(ioc->event_masks[i]);
3993         init_completion(&ioc->base_cmds.done);
3994         mpt3sas_base_put_smid_default(ioc, smid);
3995         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
3996         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3997                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3998                     ioc->name, __func__);
3999                 _debug_dump_mf(mpi_request,
4000                     sizeof(Mpi2EventNotificationRequest_t)/4);
4001                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4002                         r = -EFAULT;
4003                 else
4004                         r = -ETIME;
4005         } else
4006                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4007                     ioc->name, __func__));
4008         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4009         return r;
4010 }
4011
4012 /**
4013  * mpt3sas_base_validate_event_type - validating event types
4014  * @ioc: per adapter object
4015  * @event: firmware event
4016  *
4017  * This will turn on firmware event notification when application
4018  * ask for that event. We don't mask events that are already enabled.
4019  */
4020 void
4021 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4022 {
4023         int i, j;
4024         u32 event_mask, desired_event;
4025         u8 send_update_to_fw;
4026
4027         for (i = 0, send_update_to_fw = 0; i <
4028             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4029                 event_mask = ~event_type[i];
4030                 desired_event = 1;
4031                 for (j = 0; j < 32; j++) {
4032                         if (!(event_mask & desired_event) &&
4033                             (ioc->event_masks[i] & desired_event)) {
4034                                 ioc->event_masks[i] &= ~desired_event;
4035                                 send_update_to_fw = 1;
4036                         }
4037                         desired_event = (desired_event << 1);
4038                 }
4039         }
4040
4041         if (!send_update_to_fw)
4042                 return;
4043
4044         mutex_lock(&ioc->base_cmds.mutex);
4045         _base_event_notification(ioc, CAN_SLEEP);
4046         mutex_unlock(&ioc->base_cmds.mutex);
4047 }
4048
4049 /**
4050  * _base_diag_reset - the "big hammer" start of day reset
4051  * @ioc: per adapter object
4052  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4053  *
4054  * Returns 0 for success, non-zero for failure.
4055  */
4056 static int
4057 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4058 {
4059         u32 host_diagnostic;
4060         u32 ioc_state;
4061         u32 count;
4062         u32 hcb_size;
4063
4064         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4065
4066         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4067             ioc->name));
4068
4069         count = 0;
4070         do {
4071                 /* Write magic sequence to WriteSequence register
4072                  * Loop until in diagnostic mode
4073                  */
4074                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4075                         "write magic sequence\n", ioc->name));
4076                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4077                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4078                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4079                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4080                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4081                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4082                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4083
4084                 /* wait 100 msec */
4085                 if (sleep_flag == CAN_SLEEP)
4086                         msleep(100);
4087                 else
4088                         mdelay(100);
4089
4090                 if (count++ > 20)
4091                         goto out;
4092
4093                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4094                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4095                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4096                     ioc->name, count, host_diagnostic));
4097
4098         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4099
4100         hcb_size = readl(&ioc->chip->HCBSize);
4101
4102         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4103             ioc->name));
4104         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4105              &ioc->chip->HostDiagnostic);
4106
4107         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4108         if (sleep_flag == CAN_SLEEP)
4109                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4110         else
4111                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4112
4113         /* Approximately 300 second max wait */
4114         for (count = 0; count < (300000000 /
4115                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4116
4117                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4118
4119                 if (host_diagnostic == 0xFFFFFFFF)
4120                         goto out;
4121                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4122                         break;
4123
4124                 /* Wait to pass the second read delay window */
4125                 if (sleep_flag == CAN_SLEEP)
4126                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4127                                                                 / 1000);
4128                 else
4129                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4130                                                                 / 1000);
4131         }
4132
4133         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4134
4135                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4136                 "restart the adapter assuming the HCB Address points to good F/W\n",
4137                     ioc->name));
4138                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4139                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4140                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4141
4142                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4143                     "re-enable the HCDW\n", ioc->name));
4144                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4145                     &ioc->chip->HCBSize);
4146         }
4147
4148         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4149             ioc->name));
4150         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4151             &ioc->chip->HostDiagnostic);
4152
4153         drsprintk(ioc, pr_info(MPT3SAS_FMT
4154                 "disable writes to the diagnostic register\n", ioc->name));
4155         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4156
4157         drsprintk(ioc, pr_info(MPT3SAS_FMT
4158                 "Wait for FW to go to the READY state\n", ioc->name));
4159         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4160             sleep_flag);
4161         if (ioc_state) {
4162                 pr_err(MPT3SAS_FMT
4163                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4164                         ioc->name, __func__, ioc_state);
4165                 goto out;
4166         }
4167
4168         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4169         return 0;
4170
4171  out:
4172         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4173         return -EFAULT;
4174 }
4175
4176 /**
4177  * _base_make_ioc_ready - put controller in READY state
4178  * @ioc: per adapter object
4179  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4180  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4181  *
4182  * Returns 0 for success, non-zero for failure.
4183  */
4184 static int
4185 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4186         enum reset_type type)
4187 {
4188         u32 ioc_state;
4189         int rc;
4190         int count;
4191
4192         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4193             __func__));
4194
4195         if (ioc->pci_error_recovery)
4196                 return 0;
4197
4198         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4199         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4200             ioc->name, __func__, ioc_state));
4201
4202         /* if in RESET state, it should move to READY state shortly */
4203         count = 0;
4204         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4205                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4206                     MPI2_IOC_STATE_READY) {
4207                         if (count++ == 10) {
4208                                 pr_err(MPT3SAS_FMT
4209                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4210                                     ioc->name, __func__, ioc_state);
4211                                 return -EFAULT;
4212                         }
4213                         if (sleep_flag == CAN_SLEEP)
4214                                 ssleep(1);
4215                         else
4216                                 mdelay(1000);
4217                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4218                 }
4219         }
4220
4221         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4222                 return 0;
4223
4224         if (ioc_state & MPI2_DOORBELL_USED) {
4225                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4226                         "unexpected doorbell active!\n",
4227                         ioc->name));
4228                 goto issue_diag_reset;
4229         }
4230
4231         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4232                 mpt3sas_base_fault_info(ioc, ioc_state &
4233                     MPI2_DOORBELL_DATA_MASK);
4234                 goto issue_diag_reset;
4235         }
4236
4237         if (type == FORCE_BIG_HAMMER)
4238                 goto issue_diag_reset;
4239
4240         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4241                 if (!(_base_send_ioc_reset(ioc,
4242                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4243                         return 0;
4244         }
4245
4246  issue_diag_reset:
4247         rc = _base_diag_reset(ioc, CAN_SLEEP);
4248         return rc;
4249 }
4250
4251 /**
4252  * _base_make_ioc_operational - put controller in OPERATIONAL state
4253  * @ioc: per adapter object
4254  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4255  *
4256  * Returns 0 for success, non-zero for failure.
4257  */
4258 static int
4259 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4260 {
4261         int r, i;
4262         unsigned long   flags;
4263         u32 reply_address;
4264         u16 smid;
4265         struct _tr_list *delayed_tr, *delayed_tr_next;
4266         struct adapter_reply_queue *reply_q;
4267         long reply_post_free;
4268         u32 reply_post_free_sz;
4269
4270         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4271             __func__));
4272
4273         /* clean the delayed target reset list */
4274         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4275             &ioc->delayed_tr_list, list) {
4276                 list_del(&delayed_tr->list);
4277                 kfree(delayed_tr);
4278         }
4279
4280
4281         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4282             &ioc->delayed_tr_volume_list, list) {
4283                 list_del(&delayed_tr->list);
4284                 kfree(delayed_tr);
4285         }
4286
4287         /* initialize the scsi lookup free list */
4288         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4289         INIT_LIST_HEAD(&ioc->free_list);
4290         smid = 1;
4291         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4292                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4293                 ioc->scsi_lookup[i].cb_idx = 0xFF;
4294                 ioc->scsi_lookup[i].smid = smid;
4295                 ioc->scsi_lookup[i].scmd = NULL;
4296                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4297                     &ioc->free_list);
4298         }
4299
4300         /* hi-priority queue */
4301         INIT_LIST_HEAD(&ioc->hpr_free_list);
4302         smid = ioc->hi_priority_smid;
4303         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4304                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4305                 ioc->hpr_lookup[i].smid = smid;
4306                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4307                     &ioc->hpr_free_list);
4308         }
4309
4310         /* internal queue */
4311         INIT_LIST_HEAD(&ioc->internal_free_list);
4312         smid = ioc->internal_smid;
4313         for (i = 0; i < ioc->internal_depth; i++, smid++) {
4314                 ioc->internal_lookup[i].cb_idx = 0xFF;
4315                 ioc->internal_lookup[i].smid = smid;
4316                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4317                     &ioc->internal_free_list);
4318         }
4319
4320         /* chain pool */
4321         INIT_LIST_HEAD(&ioc->free_chain_list);
4322         for (i = 0; i < ioc->chain_depth; i++)
4323                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4324                     &ioc->free_chain_list);
4325
4326         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4327
4328         /* initialize Reply Free Queue */
4329         for (i = 0, reply_address = (u32)ioc->reply_dma ;
4330             i < ioc->reply_free_queue_depth ; i++, reply_address +=
4331             ioc->reply_sz)
4332                 ioc->reply_free[i] = cpu_to_le32(reply_address);
4333
4334         /* initialize reply queues */
4335         if (ioc->is_driver_loading)
4336                 _base_assign_reply_queues(ioc);
4337
4338         /* initialize Reply Post Free Queue */
4339         reply_post_free = (long)ioc->reply_post_free;
4340         reply_post_free_sz = ioc->reply_post_queue_depth *
4341             sizeof(Mpi2DefaultReplyDescriptor_t);
4342         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4343                 reply_q->reply_post_host_index = 0;
4344                 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4345                     reply_post_free;
4346                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4347                         reply_q->reply_post_free[i].Words =
4348                             cpu_to_le64(ULLONG_MAX);
4349                 if (!_base_is_controller_msix_enabled(ioc))
4350                         goto skip_init_reply_post_free_queue;
4351                 reply_post_free += reply_post_free_sz;
4352         }
4353  skip_init_reply_post_free_queue:
4354
4355         r = _base_send_ioc_init(ioc, sleep_flag);
4356         if (r)
4357                 return r;
4358
4359         /* initialize reply free host index */
4360         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4361         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4362
4363         /* initialize reply post host index */
4364         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4365                 writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4366                     &ioc->chip->ReplyPostHostIndex);
4367                 if (!_base_is_controller_msix_enabled(ioc))
4368                         goto skip_init_reply_post_host_index;
4369         }
4370
4371  skip_init_reply_post_host_index:
4372
4373         _base_unmask_interrupts(ioc);
4374         r = _base_event_notification(ioc, sleep_flag);
4375         if (r)
4376                 return r;
4377
4378         if (sleep_flag == CAN_SLEEP)
4379                 _base_static_config_pages(ioc);
4380
4381
4382         if (ioc->is_driver_loading) {
4383                 ioc->wait_for_discovery_to_complete =
4384                     _base_determine_wait_on_discovery(ioc);
4385
4386                 return r; /* scan_start and scan_finished support */
4387         }
4388
4389         r = _base_send_port_enable(ioc, sleep_flag);
4390         if (r)
4391                 return r;
4392
4393         return r;
4394 }
4395
4396 /**
4397  * mpt3sas_base_free_resources - free resources controller resources
4398  * @ioc: per adapter object
4399  *
4400  * Return nothing.
4401  */
4402 void
4403 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4404 {
4405         struct pci_dev *pdev = ioc->pdev;
4406
4407         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4408             __func__));
4409
4410         if (ioc->chip_phys && ioc->chip) {
4411                 _base_mask_interrupts(ioc);
4412                 ioc->shost_recovery = 1;
4413                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4414                 ioc->shost_recovery = 0;
4415         }
4416
4417         _base_free_irq(ioc);
4418         _base_disable_msix(ioc);
4419
4420         if (ioc->chip_phys && ioc->chip)
4421                 iounmap(ioc->chip);
4422         ioc->chip_phys = 0;
4423
4424         if (pci_is_enabled(pdev)) {
4425                 pci_release_selected_regions(ioc->pdev, ioc->bars);
4426                 pci_disable_pcie_error_reporting(pdev);
4427                 pci_disable_device(pdev);
4428         }
4429         return;
4430 }
4431
4432 /**
4433  * mpt3sas_base_attach - attach controller instance
4434  * @ioc: per adapter object
4435  *
4436  * Returns 0 for success, non-zero for failure.
4437  */
4438 int
4439 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4440 {
4441         int r, i;
4442         int cpu_id, last_cpu_id = 0;
4443
4444         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4445             __func__));
4446
4447         /* setup cpu_msix_table */
4448         ioc->cpu_count = num_online_cpus();
4449         for_each_online_cpu(cpu_id)
4450                 last_cpu_id = cpu_id;
4451         ioc->cpu_msix_table_sz = last_cpu_id + 1;
4452         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4453         ioc->reply_queue_count = 1;
4454         if (!ioc->cpu_msix_table) {
4455                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4456                         "allocation for cpu_msix_table failed!!!\n",
4457                         ioc->name));
4458                 r = -ENOMEM;
4459                 goto out_free_resources;
4460         }
4461
4462         r = mpt3sas_base_map_resources(ioc);
4463         if (r)
4464                 goto out_free_resources;
4465
4466
4467         pci_set_drvdata(ioc->pdev, ioc->shost);
4468         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4469         if (r)
4470                 goto out_free_resources;
4471
4472         /*
4473          * In SAS3.0,
4474          * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4475          * Target Status - all require the IEEE formated scatter gather
4476          * elements.
4477          */
4478
4479         ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4480         ioc->build_sg = &_base_build_sg_ieee;
4481         ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4482         ioc->mpi25 = 1;
4483         ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4484
4485         /*
4486          * These function pointers for other requests that don't
4487          * the require IEEE scatter gather elements.
4488          *
4489          * For example Configuration Pages and SAS IOUNIT Control don't.
4490          */
4491         ioc->build_sg_mpi = &_base_build_sg;
4492         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4493
4494         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4495         if (r)
4496                 goto out_free_resources;
4497
4498         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4499             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4500         if (!ioc->pfacts) {
4501                 r = -ENOMEM;
4502                 goto out_free_resources;
4503         }
4504
4505         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4506                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4507                 if (r)
4508                         goto out_free_resources;
4509         }
4510
4511         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4512         if (r)
4513                 goto out_free_resources;
4514
4515         init_waitqueue_head(&ioc->reset_wq);
4516
4517         /* allocate memory pd handle bitmask list */
4518         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4519         if (ioc->facts.MaxDevHandle % 8)
4520                 ioc->pd_handles_sz++;
4521         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4522             GFP_KERNEL);
4523         if (!ioc->pd_handles) {
4524                 r = -ENOMEM;
4525                 goto out_free_resources;
4526         }
4527         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4528             GFP_KERNEL);
4529         if (!ioc->blocking_handles) {
4530                 r = -ENOMEM;
4531                 goto out_free_resources;
4532         }
4533
4534         ioc->fwfault_debug = mpt3sas_fwfault_debug;
4535
4536         /* base internal command bits */
4537         mutex_init(&ioc->base_cmds.mutex);
4538         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4539         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4540
4541         /* port_enable command bits */
4542         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4543         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4544
4545         /* transport internal command bits */
4546         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4547         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4548         mutex_init(&ioc->transport_cmds.mutex);
4549
4550         /* scsih internal command bits */
4551         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4552         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4553         mutex_init(&ioc->scsih_cmds.mutex);
4554
4555         /* task management internal command bits */
4556         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4557         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4558         mutex_init(&ioc->tm_cmds.mutex);
4559
4560         /* config page internal command bits */
4561         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4562         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4563         mutex_init(&ioc->config_cmds.mutex);
4564
4565         /* ctl module internal command bits */
4566         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4567         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4568         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4569         mutex_init(&ioc->ctl_cmds.mutex);
4570
4571         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4572             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4573             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4574             !ioc->ctl_cmds.sense) {
4575                 r = -ENOMEM;
4576                 goto out_free_resources;
4577         }
4578
4579         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4580                 ioc->event_masks[i] = -1;
4581
4582         /* here we enable the events we care about */
4583         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4584         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4585         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4586         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4587         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4588         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4589         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4590         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4591         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4592         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4593
4594         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4595         if (r)
4596                 goto out_free_resources;
4597
4598         return 0;
4599
4600  out_free_resources:
4601
4602         ioc->remove_host = 1;
4603
4604         mpt3sas_base_free_resources(ioc);
4605         _base_release_memory_pools(ioc);
4606         pci_set_drvdata(ioc->pdev, NULL);
4607         kfree(ioc->cpu_msix_table);
4608         kfree(ioc->pd_handles);
4609         kfree(ioc->blocking_handles);
4610         kfree(ioc->tm_cmds.reply);
4611         kfree(ioc->transport_cmds.reply);
4612         kfree(ioc->scsih_cmds.reply);
4613         kfree(ioc->config_cmds.reply);
4614         kfree(ioc->base_cmds.reply);
4615         kfree(ioc->port_enable_cmds.reply);
4616         kfree(ioc->ctl_cmds.reply);
4617         kfree(ioc->ctl_cmds.sense);
4618         kfree(ioc->pfacts);
4619         ioc->ctl_cmds.reply = NULL;
4620         ioc->base_cmds.reply = NULL;
4621         ioc->tm_cmds.reply = NULL;
4622         ioc->scsih_cmds.reply = NULL;
4623         ioc->transport_cmds.reply = NULL;
4624         ioc->config_cmds.reply = NULL;
4625         ioc->pfacts = NULL;
4626         return r;
4627 }
4628
4629
4630 /**
4631  * mpt3sas_base_detach - remove controller instance
4632  * @ioc: per adapter object
4633  *
4634  * Return nothing.
4635  */
4636 void
4637 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4638 {
4639         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4640             __func__));
4641
4642         mpt3sas_base_stop_watchdog(ioc);
4643         mpt3sas_base_free_resources(ioc);
4644         _base_release_memory_pools(ioc);
4645         pci_set_drvdata(ioc->pdev, NULL);
4646         kfree(ioc->cpu_msix_table);
4647         kfree(ioc->pd_handles);
4648         kfree(ioc->blocking_handles);
4649         kfree(ioc->pfacts);
4650         kfree(ioc->ctl_cmds.reply);
4651         kfree(ioc->ctl_cmds.sense);
4652         kfree(ioc->base_cmds.reply);
4653         kfree(ioc->port_enable_cmds.reply);
4654         kfree(ioc->tm_cmds.reply);
4655         kfree(ioc->transport_cmds.reply);
4656         kfree(ioc->scsih_cmds.reply);
4657         kfree(ioc->config_cmds.reply);
4658 }
4659
4660 /**
4661  * _base_reset_handler - reset callback handler (for base)
4662  * @ioc: per adapter object
4663  * @reset_phase: phase
4664  *
4665  * The handler for doing any required cleanup or initialization.
4666  *
4667  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4668  * MPT3_IOC_DONE_RESET
4669  *
4670  * Return nothing.
4671  */
4672 static void
4673 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4674 {
4675         mpt3sas_scsih_reset_handler(ioc, reset_phase);
4676         mpt3sas_ctl_reset_handler(ioc, reset_phase);
4677         switch (reset_phase) {
4678         case MPT3_IOC_PRE_RESET:
4679                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4680                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4681                 break;
4682         case MPT3_IOC_AFTER_RESET:
4683                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4684                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4685                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4686                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
4687                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4688                         complete(&ioc->transport_cmds.done);
4689                 }
4690                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4691                         ioc->base_cmds.status |= MPT3_CMD_RESET;
4692                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4693                         complete(&ioc->base_cmds.done);
4694                 }
4695                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4696                         ioc->port_enable_failed = 1;
4697                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4698                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4699                         if (ioc->is_driver_loading) {
4700                                 ioc->start_scan_failed =
4701                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
4702                                 ioc->start_scan = 0;
4703                                 ioc->port_enable_cmds.status =
4704                                     MPT3_CMD_NOT_USED;
4705                         } else
4706                                 complete(&ioc->port_enable_cmds.done);
4707                 }
4708                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4709                         ioc->config_cmds.status |= MPT3_CMD_RESET;
4710                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4711                         ioc->config_cmds.smid = USHRT_MAX;
4712                         complete(&ioc->config_cmds.done);
4713                 }
4714                 break;
4715         case MPT3_IOC_DONE_RESET:
4716                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4717                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4718                 break;
4719         }
4720 }
4721
4722 /**
4723  * _wait_for_commands_to_complete - reset controller
4724  * @ioc: Pointer to MPT_ADAPTER structure
4725  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4726  *
4727  * This function waiting(3s) for all pending commands to complete
4728  * prior to putting controller in reset.
4729  */
4730 static void
4731 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4732 {
4733         u32 ioc_state;
4734         unsigned long flags;
4735         u16 i;
4736
4737         ioc->pending_io_count = 0;
4738         if (sleep_flag != CAN_SLEEP)
4739                 return;
4740
4741         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4742         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4743                 return;
4744
4745         /* pending command count */
4746         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4747         for (i = 0; i < ioc->scsiio_depth; i++)
4748                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4749                         ioc->pending_io_count++;
4750         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4751
4752         if (!ioc->pending_io_count)
4753                 return;
4754
4755         /* wait for pending commands to complete */
4756         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4757 }
4758
4759 /**
4760  * mpt3sas_base_hard_reset_handler - reset controller
4761  * @ioc: Pointer to MPT_ADAPTER structure
4762  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4763  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4764  *
4765  * Returns 0 for success, non-zero for failure.
4766  */
4767 int
4768 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4769         enum reset_type type)
4770 {
4771         int r;
4772         unsigned long flags;
4773         u32 ioc_state;
4774         u8 is_fault = 0, is_trigger = 0;
4775
4776         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4777             __func__));
4778
4779         if (ioc->pci_error_recovery) {
4780                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4781                     ioc->name, __func__);
4782                 r = 0;
4783                 goto out_unlocked;
4784         }
4785
4786         if (mpt3sas_fwfault_debug)
4787                 mpt3sas_halt_firmware(ioc);
4788
4789         /* TODO - What we really should be doing is pulling
4790          * out all the code associated with NO_SLEEP; its never used.
4791          * That is legacy code from mpt fusion driver, ported over.
4792          * I will leave this BUG_ON here for now till its been resolved.
4793          */
4794         BUG_ON(sleep_flag == NO_SLEEP);
4795
4796         /* wait for an active reset in progress to complete */
4797         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4798                 do {
4799                         ssleep(1);
4800                 } while (ioc->shost_recovery == 1);
4801                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4802                     __func__));
4803                 return ioc->ioc_reset_in_progress_status;
4804         }
4805
4806         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4807         ioc->shost_recovery = 1;
4808         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4809
4810         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4811             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4812             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4813             MPT3_DIAG_BUFFER_IS_RELEASED))) {
4814                 is_trigger = 1;
4815                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4816                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4817                         is_fault = 1;
4818         }
4819         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4820         _wait_for_commands_to_complete(ioc, sleep_flag);
4821         _base_mask_interrupts(ioc);
4822         r = _base_make_ioc_ready(ioc, sleep_flag, type);
4823         if (r)
4824                 goto out;
4825         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4826
4827         /* If this hard reset is called while port enable is active, then
4828          * there is no reason to call make_ioc_operational
4829          */
4830         if (ioc->is_driver_loading && ioc->port_enable_failed) {
4831                 ioc->remove_host = 1;
4832                 r = -EFAULT;
4833                 goto out;
4834         }
4835         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4836         if (r)
4837                 goto out;
4838         r = _base_make_ioc_operational(ioc, sleep_flag);
4839         if (!r)
4840                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
4841
4842  out:
4843         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
4844             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
4845
4846         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4847         ioc->ioc_reset_in_progress_status = r;
4848         ioc->shost_recovery = 0;
4849         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4850         ioc->ioc_reset_count++;
4851         mutex_unlock(&ioc->reset_in_progress_mutex);
4852
4853  out_unlocked:
4854         if ((r == 0) && is_trigger) {
4855                 if (is_fault)
4856                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
4857                 else
4858                         mpt3sas_trigger_master(ioc,
4859                             MASTER_TRIGGER_ADAPTER_RESET);
4860         }
4861         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4862             __func__));
4863         return r;
4864 }