hpsa: disable report lun data caching
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75         HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83                 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87         "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
143                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144         {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154         {0x3241103C, "Smart Array P212", &SA5_access},
155         {0x3243103C, "Smart Array P410", &SA5_access},
156         {0x3245103C, "Smart Array P410i", &SA5_access},
157         {0x3247103C, "Smart Array P411", &SA5_access},
158         {0x3249103C, "Smart Array P812", &SA5_access},
159         {0x324A103C, "Smart Array P712m", &SA5_access},
160         {0x324B103C, "Smart Array P711m", &SA5_access},
161         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162         {0x3350103C, "Smart Array P222", &SA5_access},
163         {0x3351103C, "Smart Array P420", &SA5_access},
164         {0x3352103C, "Smart Array P421", &SA5_access},
165         {0x3353103C, "Smart Array P822", &SA5_access},
166         {0x3354103C, "Smart Array P420i", &SA5_access},
167         {0x3355103C, "Smart Array P220i", &SA5_access},
168         {0x3356103C, "Smart Array P721m", &SA5_access},
169         {0x1921103C, "Smart Array P830i", &SA5_access},
170         {0x1922103C, "Smart Array P430", &SA5_access},
171         {0x1923103C, "Smart Array P431", &SA5_access},
172         {0x1924103C, "Smart Array P830", &SA5_access},
173         {0x1926103C, "Smart Array P731m", &SA5_access},
174         {0x1928103C, "Smart Array P230i", &SA5_access},
175         {0x1929103C, "Smart Array P530", &SA5_access},
176         {0x21BD103C, "Smart Array P244br", &SA5_access},
177         {0x21BE103C, "Smart Array P741m", &SA5_access},
178         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179         {0x21C0103C, "Smart Array P440ar", &SA5_access},
180         {0x21C1103C, "Smart Array P840ar", &SA5_access},
181         {0x21C2103C, "Smart Array P440", &SA5_access},
182         {0x21C3103C, "Smart Array P441", &SA5_access},
183         {0x21C4103C, "Smart Array", &SA5_access},
184         {0x21C5103C, "Smart Array P841", &SA5_access},
185         {0x21C6103C, "Smart HBA H244br", &SA5_access},
186         {0x21C7103C, "Smart HBA H240", &SA5_access},
187         {0x21C8103C, "Smart HBA H241", &SA5_access},
188         {0x21C9103C, "Smart Array", &SA5_access},
189         {0x21CA103C, "Smart Array P246br", &SA5_access},
190         {0x21CB103C, "Smart Array P840", &SA5_access},
191         {0x21CC103C, "Smart Array", &SA5_access},
192         {0x21CD103C, "Smart Array", &SA5_access},
193         {0x21CE103C, "Smart HBA", &SA5_access},
194         {0x05809005, "SmartHBA-SA", &SA5_access},
195         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220         void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227                                             struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230         int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
234
235 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
236 static void hpsa_scan_start(struct Scsi_Host *);
237 static int hpsa_scan_finished(struct Scsi_Host *sh,
238         unsigned long elapsed_time);
239 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
240
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
243 static int hpsa_slave_alloc(struct scsi_device *sdev);
244 static int hpsa_slave_configure(struct scsi_device *sdev);
245 static void hpsa_slave_destroy(struct scsi_device *sdev);
246
247 static void hpsa_update_scsi_devices(struct ctlr_info *h);
248 static int check_for_unit_attention(struct ctlr_info *h,
249         struct CommandList *c);
250 static void check_ioctl_unit_attention(struct ctlr_info *h,
251         struct CommandList *c);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket, int num_buckets,
254         int nsgs, int min_blocks, u32 *bucket_map);
255 static void hpsa_free_performant_mode(struct ctlr_info *h);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
257 static inline u32 next_command(struct ctlr_info *h, u8 q);
258 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260                                u64 *cfg_offset);
261 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262                                     unsigned long *memory_bar);
263 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265                                      int wait_for_ready);
266 static inline void finish_cmd(struct CommandList *c);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info *h);
271 static void hpsa_flush_cache(struct ctlr_info *h);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
274         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
275 static void hpsa_command_resubmit_worker(struct work_struct *work);
276 static u32 lockup_detected(struct ctlr_info *h);
277 static int detect_controller_lockup(struct ctlr_info *h);
278 static void hpsa_disable_rld_caching(struct ctlr_info *h);
279 static int hpsa_luns_changed(struct ctlr_info *h);
280
281 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
282 {
283         unsigned long *priv = shost_priv(sdev->host);
284         return (struct ctlr_info *) *priv;
285 }
286
287 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
288 {
289         unsigned long *priv = shost_priv(sh);
290         return (struct ctlr_info *) *priv;
291 }
292
293 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
294 {
295         return c->scsi_cmd == SCSI_CMD_IDLE;
296 }
297
298 static inline bool hpsa_is_pending_event(struct CommandList *c)
299 {
300         return c->abort_pending || c->reset_pending;
301 }
302
303 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
304 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
305                         u8 *sense_key, u8 *asc, u8 *ascq)
306 {
307         struct scsi_sense_hdr sshdr;
308         bool rc;
309
310         *sense_key = -1;
311         *asc = -1;
312         *ascq = -1;
313
314         if (sense_data_len < 1)
315                 return;
316
317         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
318         if (rc) {
319                 *sense_key = sshdr.sense_key;
320                 *asc = sshdr.asc;
321                 *ascq = sshdr.ascq;
322         }
323 }
324
325 static int check_for_unit_attention(struct ctlr_info *h,
326         struct CommandList *c)
327 {
328         u8 sense_key, asc, ascq;
329         int sense_len;
330
331         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
332                 sense_len = sizeof(c->err_info->SenseInfo);
333         else
334                 sense_len = c->err_info->SenseLen;
335
336         decode_sense_data(c->err_info->SenseInfo, sense_len,
337                                 &sense_key, &asc, &ascq);
338         if (sense_key != UNIT_ATTENTION || asc == 0xff)
339                 return 0;
340
341         switch (asc) {
342         case STATE_CHANGED:
343                 dev_warn(&h->pdev->dev,
344                         "%s: a state change detected, command retried\n",
345                         h->devname);
346                 break;
347         case LUN_FAILED:
348                 dev_warn(&h->pdev->dev,
349                         "%s: LUN failure detected\n", h->devname);
350                 break;
351         case REPORT_LUNS_CHANGED:
352                 dev_warn(&h->pdev->dev,
353                         "%s: report LUN data changed\n", h->devname);
354         /*
355          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
356          * target (array) devices.
357          */
358                 break;
359         case POWER_OR_RESET:
360                 dev_warn(&h->pdev->dev,
361                         "%s: a power on or device reset detected\n",
362                         h->devname);
363                 break;
364         case UNIT_ATTENTION_CLEARED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: unit attention cleared by another initiator\n",
367                         h->devname);
368                 break;
369         default:
370                 dev_warn(&h->pdev->dev,
371                         "%s: unknown unit attention detected\n",
372                         h->devname);
373                 break;
374         }
375         return 1;
376 }
377
378 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
379 {
380         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
381                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
382                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
383                 return 0;
384         dev_warn(&h->pdev->dev, HPSA "device busy");
385         return 1;
386 }
387
388 static u32 lockup_detected(struct ctlr_info *h);
389 static ssize_t host_show_lockup_detected(struct device *dev,
390                 struct device_attribute *attr, char *buf)
391 {
392         int ld;
393         struct ctlr_info *h;
394         struct Scsi_Host *shost = class_to_shost(dev);
395
396         h = shost_to_hba(shost);
397         ld = lockup_detected(h);
398
399         return sprintf(buf, "ld=%d\n", ld);
400 }
401
402 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
403                                          struct device_attribute *attr,
404                                          const char *buf, size_t count)
405 {
406         int status, len;
407         struct ctlr_info *h;
408         struct Scsi_Host *shost = class_to_shost(dev);
409         char tmpbuf[10];
410
411         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
412                 return -EACCES;
413         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
414         strncpy(tmpbuf, buf, len);
415         tmpbuf[len] = '\0';
416         if (sscanf(tmpbuf, "%d", &status) != 1)
417                 return -EINVAL;
418         h = shost_to_hba(shost);
419         h->acciopath_status = !!status;
420         dev_warn(&h->pdev->dev,
421                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
422                 h->acciopath_status ? "enabled" : "disabled");
423         return count;
424 }
425
426 static ssize_t host_store_raid_offload_debug(struct device *dev,
427                                          struct device_attribute *attr,
428                                          const char *buf, size_t count)
429 {
430         int debug_level, len;
431         struct ctlr_info *h;
432         struct Scsi_Host *shost = class_to_shost(dev);
433         char tmpbuf[10];
434
435         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
436                 return -EACCES;
437         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
438         strncpy(tmpbuf, buf, len);
439         tmpbuf[len] = '\0';
440         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
441                 return -EINVAL;
442         if (debug_level < 0)
443                 debug_level = 0;
444         h = shost_to_hba(shost);
445         h->raid_offload_debug = debug_level;
446         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
447                 h->raid_offload_debug);
448         return count;
449 }
450
451 static ssize_t host_store_rescan(struct device *dev,
452                                  struct device_attribute *attr,
453                                  const char *buf, size_t count)
454 {
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         h = shost_to_hba(shost);
458         hpsa_scan_start(h->scsi_host);
459         return count;
460 }
461
462 static ssize_t host_show_firmware_revision(struct device *dev,
463              struct device_attribute *attr, char *buf)
464 {
465         struct ctlr_info *h;
466         struct Scsi_Host *shost = class_to_shost(dev);
467         unsigned char *fwrev;
468
469         h = shost_to_hba(shost);
470         if (!h->hba_inquiry_data)
471                 return 0;
472         fwrev = &h->hba_inquiry_data[32];
473         return snprintf(buf, 20, "%c%c%c%c\n",
474                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
475 }
476
477 static ssize_t host_show_commands_outstanding(struct device *dev,
478              struct device_attribute *attr, char *buf)
479 {
480         struct Scsi_Host *shost = class_to_shost(dev);
481         struct ctlr_info *h = shost_to_hba(shost);
482
483         return snprintf(buf, 20, "%d\n",
484                         atomic_read(&h->commands_outstanding));
485 }
486
487 static ssize_t host_show_transport_mode(struct device *dev,
488         struct device_attribute *attr, char *buf)
489 {
490         struct ctlr_info *h;
491         struct Scsi_Host *shost = class_to_shost(dev);
492
493         h = shost_to_hba(shost);
494         return snprintf(buf, 20, "%s\n",
495                 h->transMethod & CFGTBL_Trans_Performant ?
496                         "performant" : "simple");
497 }
498
499 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
500         struct device_attribute *attr, char *buf)
501 {
502         struct ctlr_info *h;
503         struct Scsi_Host *shost = class_to_shost(dev);
504
505         h = shost_to_hba(shost);
506         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
507                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
508 }
509
510 /* List of controllers which cannot be hard reset on kexec with reset_devices */
511 static u32 unresettable_controller[] = {
512         0x324a103C, /* Smart Array P712m */
513         0x324b103C, /* Smart Array P711m */
514         0x3223103C, /* Smart Array P800 */
515         0x3234103C, /* Smart Array P400 */
516         0x3235103C, /* Smart Array P400i */
517         0x3211103C, /* Smart Array E200i */
518         0x3212103C, /* Smart Array E200 */
519         0x3213103C, /* Smart Array E200i */
520         0x3214103C, /* Smart Array E200i */
521         0x3215103C, /* Smart Array E200i */
522         0x3237103C, /* Smart Array E500 */
523         0x323D103C, /* Smart Array P700m */
524         0x40800E11, /* Smart Array 5i */
525         0x409C0E11, /* Smart Array 6400 */
526         0x409D0E11, /* Smart Array 6400 EM */
527         0x40700E11, /* Smart Array 5300 */
528         0x40820E11, /* Smart Array 532 */
529         0x40830E11, /* Smart Array 5312 */
530         0x409A0E11, /* Smart Array 641 */
531         0x409B0E11, /* Smart Array 642 */
532         0x40910E11, /* Smart Array 6i */
533 };
534
535 /* List of controllers which cannot even be soft reset */
536 static u32 soft_unresettable_controller[] = {
537         0x40800E11, /* Smart Array 5i */
538         0x40700E11, /* Smart Array 5300 */
539         0x40820E11, /* Smart Array 532 */
540         0x40830E11, /* Smart Array 5312 */
541         0x409A0E11, /* Smart Array 641 */
542         0x409B0E11, /* Smart Array 642 */
543         0x40910E11, /* Smart Array 6i */
544         /* Exclude 640x boards.  These are two pci devices in one slot
545          * which share a battery backed cache module.  One controls the
546          * cache, the other accesses the cache through the one that controls
547          * it.  If we reset the one controlling the cache, the other will
548          * likely not be happy.  Just forbid resetting this conjoined mess.
549          * The 640x isn't really supported by hpsa anyway.
550          */
551         0x409C0E11, /* Smart Array 6400 */
552         0x409D0E11, /* Smart Array 6400 EM */
553 };
554
555 static u32 needs_abort_tags_swizzled[] = {
556         0x323D103C, /* Smart Array P700m */
557         0x324a103C, /* Smart Array P712m */
558         0x324b103C, /* SmartArray P711m */
559 };
560
561 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
562 {
563         int i;
564
565         for (i = 0; i < nelems; i++)
566                 if (a[i] == board_id)
567                         return 1;
568         return 0;
569 }
570
571 static int ctlr_is_hard_resettable(u32 board_id)
572 {
573         return !board_id_in_array(unresettable_controller,
574                         ARRAY_SIZE(unresettable_controller), board_id);
575 }
576
577 static int ctlr_is_soft_resettable(u32 board_id)
578 {
579         return !board_id_in_array(soft_unresettable_controller,
580                         ARRAY_SIZE(soft_unresettable_controller), board_id);
581 }
582
583 static int ctlr_is_resettable(u32 board_id)
584 {
585         return ctlr_is_hard_resettable(board_id) ||
586                 ctlr_is_soft_resettable(board_id);
587 }
588
589 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
590 {
591         return board_id_in_array(needs_abort_tags_swizzled,
592                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
593 }
594
595 static ssize_t host_show_resettable(struct device *dev,
596         struct device_attribute *attr, char *buf)
597 {
598         struct ctlr_info *h;
599         struct Scsi_Host *shost = class_to_shost(dev);
600
601         h = shost_to_hba(shost);
602         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
603 }
604
605 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
606 {
607         return (scsi3addr[3] & 0xC0) == 0x40;
608 }
609
610 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
611         "1(+0)ADM", "UNKNOWN"
612 };
613 #define HPSA_RAID_0     0
614 #define HPSA_RAID_4     1
615 #define HPSA_RAID_1     2       /* also used for RAID 10 */
616 #define HPSA_RAID_5     3       /* also used for RAID 50 */
617 #define HPSA_RAID_51    4
618 #define HPSA_RAID_6     5       /* also used for RAID 60 */
619 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
620 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
621
622 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
623 {
624         return !device->physical_device;
625 }
626
627 static ssize_t raid_level_show(struct device *dev,
628              struct device_attribute *attr, char *buf)
629 {
630         ssize_t l = 0;
631         unsigned char rlevel;
632         struct ctlr_info *h;
633         struct scsi_device *sdev;
634         struct hpsa_scsi_dev_t *hdev;
635         unsigned long flags;
636
637         sdev = to_scsi_device(dev);
638         h = sdev_to_hba(sdev);
639         spin_lock_irqsave(&h->lock, flags);
640         hdev = sdev->hostdata;
641         if (!hdev) {
642                 spin_unlock_irqrestore(&h->lock, flags);
643                 return -ENODEV;
644         }
645
646         /* Is this even a logical drive? */
647         if (!is_logical_device(hdev)) {
648                 spin_unlock_irqrestore(&h->lock, flags);
649                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
650                 return l;
651         }
652
653         rlevel = hdev->raid_level;
654         spin_unlock_irqrestore(&h->lock, flags);
655         if (rlevel > RAID_UNKNOWN)
656                 rlevel = RAID_UNKNOWN;
657         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
658         return l;
659 }
660
661 static ssize_t lunid_show(struct device *dev,
662              struct device_attribute *attr, char *buf)
663 {
664         struct ctlr_info *h;
665         struct scsi_device *sdev;
666         struct hpsa_scsi_dev_t *hdev;
667         unsigned long flags;
668         unsigned char lunid[8];
669
670         sdev = to_scsi_device(dev);
671         h = sdev_to_hba(sdev);
672         spin_lock_irqsave(&h->lock, flags);
673         hdev = sdev->hostdata;
674         if (!hdev) {
675                 spin_unlock_irqrestore(&h->lock, flags);
676                 return -ENODEV;
677         }
678         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
679         spin_unlock_irqrestore(&h->lock, flags);
680         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
681                 lunid[0], lunid[1], lunid[2], lunid[3],
682                 lunid[4], lunid[5], lunid[6], lunid[7]);
683 }
684
685 static ssize_t unique_id_show(struct device *dev,
686              struct device_attribute *attr, char *buf)
687 {
688         struct ctlr_info *h;
689         struct scsi_device *sdev;
690         struct hpsa_scsi_dev_t *hdev;
691         unsigned long flags;
692         unsigned char sn[16];
693
694         sdev = to_scsi_device(dev);
695         h = sdev_to_hba(sdev);
696         spin_lock_irqsave(&h->lock, flags);
697         hdev = sdev->hostdata;
698         if (!hdev) {
699                 spin_unlock_irqrestore(&h->lock, flags);
700                 return -ENODEV;
701         }
702         memcpy(sn, hdev->device_id, sizeof(sn));
703         spin_unlock_irqrestore(&h->lock, flags);
704         return snprintf(buf, 16 * 2 + 2,
705                         "%02X%02X%02X%02X%02X%02X%02X%02X"
706                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
707                         sn[0], sn[1], sn[2], sn[3],
708                         sn[4], sn[5], sn[6], sn[7],
709                         sn[8], sn[9], sn[10], sn[11],
710                         sn[12], sn[13], sn[14], sn[15]);
711 }
712
713 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
714              struct device_attribute *attr, char *buf)
715 {
716         struct ctlr_info *h;
717         struct scsi_device *sdev;
718         struct hpsa_scsi_dev_t *hdev;
719         unsigned long flags;
720         int offload_enabled;
721
722         sdev = to_scsi_device(dev);
723         h = sdev_to_hba(sdev);
724         spin_lock_irqsave(&h->lock, flags);
725         hdev = sdev->hostdata;
726         if (!hdev) {
727                 spin_unlock_irqrestore(&h->lock, flags);
728                 return -ENODEV;
729         }
730         offload_enabled = hdev->offload_enabled;
731         spin_unlock_irqrestore(&h->lock, flags);
732         return snprintf(buf, 20, "%d\n", offload_enabled);
733 }
734
735 #define MAX_PATHS 8
736 #define PATH_STRING_LEN 50
737
738 static ssize_t path_info_show(struct device *dev,
739              struct device_attribute *attr, char *buf)
740 {
741         struct ctlr_info *h;
742         struct scsi_device *sdev;
743         struct hpsa_scsi_dev_t *hdev;
744         unsigned long flags;
745         int i;
746         int output_len = 0;
747         u8 box;
748         u8 bay;
749         u8 path_map_index = 0;
750         char *active;
751         unsigned char phys_connector[2];
752         unsigned char path[MAX_PATHS][PATH_STRING_LEN];
753
754         memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
755         sdev = to_scsi_device(dev);
756         h = sdev_to_hba(sdev);
757         spin_lock_irqsave(&h->devlock, flags);
758         hdev = sdev->hostdata;
759         if (!hdev) {
760                 spin_unlock_irqrestore(&h->devlock, flags);
761                 return -ENODEV;
762         }
763
764         bay = hdev->bay;
765         for (i = 0; i < MAX_PATHS; i++) {
766                 path_map_index = 1<<i;
767                 if (i == hdev->active_path_index)
768                         active = "Active";
769                 else if (hdev->path_map & path_map_index)
770                         active = "Inactive";
771                 else
772                         continue;
773
774                 output_len = snprintf(path[i],
775                                 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
776                                 h->scsi_host->host_no,
777                                 hdev->bus, hdev->target, hdev->lun,
778                                 scsi_device_type(hdev->devtype));
779
780                 if (hdev->external ||
781                         hdev->devtype == TYPE_RAID ||
782                         is_logical_device(hdev)) {
783                         output_len += snprintf(path[i] + output_len,
784                                                 PATH_STRING_LEN, "%s\n",
785                                                 active);
786                         continue;
787                 }
788
789                 box = hdev->box[i];
790                 memcpy(&phys_connector, &hdev->phys_connector[i],
791                         sizeof(phys_connector));
792                 if (phys_connector[0] < '0')
793                         phys_connector[0] = '0';
794                 if (phys_connector[1] < '0')
795                         phys_connector[1] = '0';
796                 if (hdev->phys_connector[i] > 0)
797                         output_len += snprintf(path[i] + output_len,
798                                 PATH_STRING_LEN,
799                                 "PORT: %.2s ",
800                                 phys_connector);
801                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
802                         if (box == 0 || box == 0xFF) {
803                                 output_len += snprintf(path[i] + output_len,
804                                         PATH_STRING_LEN,
805                                         "BAY: %hhu %s\n",
806                                         bay, active);
807                         } else {
808                                 output_len += snprintf(path[i] + output_len,
809                                         PATH_STRING_LEN,
810                                         "BOX: %hhu BAY: %hhu %s\n",
811                                         box, bay, active);
812                         }
813                 } else if (box != 0 && box != 0xFF) {
814                         output_len += snprintf(path[i] + output_len,
815                                 PATH_STRING_LEN, "BOX: %hhu %s\n",
816                                 box, active);
817                 } else
818                         output_len += snprintf(path[i] + output_len,
819                                 PATH_STRING_LEN, "%s\n", active);
820         }
821
822         spin_unlock_irqrestore(&h->devlock, flags);
823         return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
824                 path[0], path[1], path[2], path[3],
825                 path[4], path[5], path[6], path[7]);
826 }
827
828 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
829 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
830 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
831 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
832 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
833                         host_show_hp_ssd_smart_path_enabled, NULL);
834 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
835 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
836                 host_show_hp_ssd_smart_path_status,
837                 host_store_hp_ssd_smart_path_status);
838 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
839                         host_store_raid_offload_debug);
840 static DEVICE_ATTR(firmware_revision, S_IRUGO,
841         host_show_firmware_revision, NULL);
842 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
843         host_show_commands_outstanding, NULL);
844 static DEVICE_ATTR(transport_mode, S_IRUGO,
845         host_show_transport_mode, NULL);
846 static DEVICE_ATTR(resettable, S_IRUGO,
847         host_show_resettable, NULL);
848 static DEVICE_ATTR(lockup_detected, S_IRUGO,
849         host_show_lockup_detected, NULL);
850
851 static struct device_attribute *hpsa_sdev_attrs[] = {
852         &dev_attr_raid_level,
853         &dev_attr_lunid,
854         &dev_attr_unique_id,
855         &dev_attr_hp_ssd_smart_path_enabled,
856         &dev_attr_path_info,
857         &dev_attr_lockup_detected,
858         NULL,
859 };
860
861 static struct device_attribute *hpsa_shost_attrs[] = {
862         &dev_attr_rescan,
863         &dev_attr_firmware_revision,
864         &dev_attr_commands_outstanding,
865         &dev_attr_transport_mode,
866         &dev_attr_resettable,
867         &dev_attr_hp_ssd_smart_path_status,
868         &dev_attr_raid_offload_debug,
869         NULL,
870 };
871
872 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
873                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
874
875 static struct scsi_host_template hpsa_driver_template = {
876         .module                 = THIS_MODULE,
877         .name                   = HPSA,
878         .proc_name              = HPSA,
879         .queuecommand           = hpsa_scsi_queue_command,
880         .scan_start             = hpsa_scan_start,
881         .scan_finished          = hpsa_scan_finished,
882         .change_queue_depth     = hpsa_change_queue_depth,
883         .this_id                = -1,
884         .use_clustering         = ENABLE_CLUSTERING,
885         .eh_abort_handler       = hpsa_eh_abort_handler,
886         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
887         .ioctl                  = hpsa_ioctl,
888         .slave_alloc            = hpsa_slave_alloc,
889         .slave_configure        = hpsa_slave_configure,
890         .slave_destroy          = hpsa_slave_destroy,
891 #ifdef CONFIG_COMPAT
892         .compat_ioctl           = hpsa_compat_ioctl,
893 #endif
894         .sdev_attrs = hpsa_sdev_attrs,
895         .shost_attrs = hpsa_shost_attrs,
896         .max_sectors = 8192,
897         .no_write_same = 1,
898 };
899
900 static inline u32 next_command(struct ctlr_info *h, u8 q)
901 {
902         u32 a;
903         struct reply_queue_buffer *rq = &h->reply_queue[q];
904
905         if (h->transMethod & CFGTBL_Trans_io_accel1)
906                 return h->access.command_completed(h, q);
907
908         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
909                 return h->access.command_completed(h, q);
910
911         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
912                 a = rq->head[rq->current_entry];
913                 rq->current_entry++;
914                 atomic_dec(&h->commands_outstanding);
915         } else {
916                 a = FIFO_EMPTY;
917         }
918         /* Check for wraparound */
919         if (rq->current_entry == h->max_commands) {
920                 rq->current_entry = 0;
921                 rq->wraparound ^= 1;
922         }
923         return a;
924 }
925
926 /*
927  * There are some special bits in the bus address of the
928  * command that we have to set for the controller to know
929  * how to process the command:
930  *
931  * Normal performant mode:
932  * bit 0: 1 means performant mode, 0 means simple mode.
933  * bits 1-3 = block fetch table entry
934  * bits 4-6 = command type (== 0)
935  *
936  * ioaccel1 mode:
937  * bit 0 = "performant mode" bit.
938  * bits 1-3 = block fetch table entry
939  * bits 4-6 = command type (== 110)
940  * (command type is needed because ioaccel1 mode
941  * commands are submitted through the same register as normal
942  * mode commands, so this is how the controller knows whether
943  * the command is normal mode or ioaccel1 mode.)
944  *
945  * ioaccel2 mode:
946  * bit 0 = "performant mode" bit.
947  * bits 1-4 = block fetch table entry (note extra bit)
948  * bits 4-6 = not needed, because ioaccel2 mode has
949  * a separate special register for submitting commands.
950  */
951
952 /*
953  * set_performant_mode: Modify the tag for cciss performant
954  * set bit 0 for pull model, bits 3-1 for block fetch
955  * register number
956  */
957 #define DEFAULT_REPLY_QUEUE (-1)
958 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
959                                         int reply_queue)
960 {
961         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
962                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
963                 if (unlikely(!h->msix_vector))
964                         return;
965                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
966                         c->Header.ReplyQueue =
967                                 raw_smp_processor_id() % h->nreply_queues;
968                 else
969                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
970         }
971 }
972
973 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
974                                                 struct CommandList *c,
975                                                 int reply_queue)
976 {
977         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
978
979         /*
980          * Tell the controller to post the reply to the queue for this
981          * processor.  This seems to give the best I/O throughput.
982          */
983         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
984                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
985         else
986                 cp->ReplyQueue = reply_queue % h->nreply_queues;
987         /*
988          * Set the bits in the address sent down to include:
989          *  - performant mode bit (bit 0)
990          *  - pull count (bits 1-3)
991          *  - command type (bits 4-6)
992          */
993         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
994                                         IOACCEL1_BUSADDR_CMDTYPE;
995 }
996
997 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
998                                                 struct CommandList *c,
999                                                 int reply_queue)
1000 {
1001         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1002                 &h->ioaccel2_cmd_pool[c->cmdindex];
1003
1004         /* Tell the controller to post the reply to the queue for this
1005          * processor.  This seems to give the best I/O throughput.
1006          */
1007         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1008                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1009         else
1010                 cp->reply_queue = reply_queue % h->nreply_queues;
1011         /* Set the bits in the address sent down to include:
1012          *  - performant mode bit not used in ioaccel mode 2
1013          *  - pull count (bits 0-3)
1014          *  - command type isn't needed for ioaccel2
1015          */
1016         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1017 }
1018
1019 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1020                                                 struct CommandList *c,
1021                                                 int reply_queue)
1022 {
1023         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1024
1025         /*
1026          * Tell the controller to post the reply to the queue for this
1027          * processor.  This seems to give the best I/O throughput.
1028          */
1029         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1030                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1031         else
1032                 cp->reply_queue = reply_queue % h->nreply_queues;
1033         /*
1034          * Set the bits in the address sent down to include:
1035          *  - performant mode bit not used in ioaccel mode 2
1036          *  - pull count (bits 0-3)
1037          *  - command type isn't needed for ioaccel2
1038          */
1039         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1040 }
1041
1042 static int is_firmware_flash_cmd(u8 *cdb)
1043 {
1044         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1045 }
1046
1047 /*
1048  * During firmware flash, the heartbeat register may not update as frequently
1049  * as it should.  So we dial down lockup detection during firmware flash. and
1050  * dial it back up when firmware flash completes.
1051  */
1052 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1053 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1054 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1055                 struct CommandList *c)
1056 {
1057         if (!is_firmware_flash_cmd(c->Request.CDB))
1058                 return;
1059         atomic_inc(&h->firmware_flash_in_progress);
1060         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1061 }
1062
1063 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1064                 struct CommandList *c)
1065 {
1066         if (is_firmware_flash_cmd(c->Request.CDB) &&
1067                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1068                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1069 }
1070
1071 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1072         struct CommandList *c, int reply_queue)
1073 {
1074         dial_down_lockup_detection_during_fw_flash(h, c);
1075         atomic_inc(&h->commands_outstanding);
1076         switch (c->cmd_type) {
1077         case CMD_IOACCEL1:
1078                 set_ioaccel1_performant_mode(h, c, reply_queue);
1079                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1080                 break;
1081         case CMD_IOACCEL2:
1082                 set_ioaccel2_performant_mode(h, c, reply_queue);
1083                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1084                 break;
1085         case IOACCEL2_TMF:
1086                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1087                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1088                 break;
1089         default:
1090                 set_performant_mode(h, c, reply_queue);
1091                 h->access.submit_command(h, c);
1092         }
1093 }
1094
1095 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1096 {
1097         if (unlikely(hpsa_is_pending_event(c)))
1098                 return finish_cmd(c);
1099
1100         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1101 }
1102
1103 static inline int is_hba_lunid(unsigned char scsi3addr[])
1104 {
1105         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1106 }
1107
1108 static inline int is_scsi_rev_5(struct ctlr_info *h)
1109 {
1110         if (!h->hba_inquiry_data)
1111                 return 0;
1112         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1113                 return 1;
1114         return 0;
1115 }
1116
1117 static int hpsa_find_target_lun(struct ctlr_info *h,
1118         unsigned char scsi3addr[], int bus, int *target, int *lun)
1119 {
1120         /* finds an unused bus, target, lun for a new physical device
1121          * assumes h->devlock is held
1122          */
1123         int i, found = 0;
1124         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1125
1126         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1127
1128         for (i = 0; i < h->ndevices; i++) {
1129                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1130                         __set_bit(h->dev[i]->target, lun_taken);
1131         }
1132
1133         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1134         if (i < HPSA_MAX_DEVICES) {
1135                 /* *bus = 1; */
1136                 *target = i;
1137                 *lun = 0;
1138                 found = 1;
1139         }
1140         return !found;
1141 }
1142
1143 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1144         struct hpsa_scsi_dev_t *dev, char *description)
1145 {
1146         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1147                 return;
1148
1149         dev_printk(level, &h->pdev->dev,
1150                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1151                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1152                         description,
1153                         scsi_device_type(dev->devtype),
1154                         dev->vendor,
1155                         dev->model,
1156                         dev->raid_level > RAID_UNKNOWN ?
1157                                 "RAID-?" : raid_label[dev->raid_level],
1158                         dev->offload_config ? '+' : '-',
1159                         dev->offload_enabled ? '+' : '-',
1160                         dev->expose_device);
1161 }
1162
1163 /* Add an entry into h->dev[] array. */
1164 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1165                 struct hpsa_scsi_dev_t *device,
1166                 struct hpsa_scsi_dev_t *added[], int *nadded)
1167 {
1168         /* assumes h->devlock is held */
1169         int n = h->ndevices;
1170         int i;
1171         unsigned char addr1[8], addr2[8];
1172         struct hpsa_scsi_dev_t *sd;
1173
1174         if (n >= HPSA_MAX_DEVICES) {
1175                 dev_err(&h->pdev->dev, "too many devices, some will be "
1176                         "inaccessible.\n");
1177                 return -1;
1178         }
1179
1180         /* physical devices do not have lun or target assigned until now. */
1181         if (device->lun != -1)
1182                 /* Logical device, lun is already assigned. */
1183                 goto lun_assigned;
1184
1185         /* If this device a non-zero lun of a multi-lun device
1186          * byte 4 of the 8-byte LUN addr will contain the logical
1187          * unit no, zero otherwise.
1188          */
1189         if (device->scsi3addr[4] == 0) {
1190                 /* This is not a non-zero lun of a multi-lun device */
1191                 if (hpsa_find_target_lun(h, device->scsi3addr,
1192                         device->bus, &device->target, &device->lun) != 0)
1193                         return -1;
1194                 goto lun_assigned;
1195         }
1196
1197         /* This is a non-zero lun of a multi-lun device.
1198          * Search through our list and find the device which
1199          * has the same 8 byte LUN address, excepting byte 4 and 5.
1200          * Assign the same bus and target for this new LUN.
1201          * Use the logical unit number from the firmware.
1202          */
1203         memcpy(addr1, device->scsi3addr, 8);
1204         addr1[4] = 0;
1205         addr1[5] = 0;
1206         for (i = 0; i < n; i++) {
1207                 sd = h->dev[i];
1208                 memcpy(addr2, sd->scsi3addr, 8);
1209                 addr2[4] = 0;
1210                 addr2[5] = 0;
1211                 /* differ only in byte 4 and 5? */
1212                 if (memcmp(addr1, addr2, 8) == 0) {
1213                         device->bus = sd->bus;
1214                         device->target = sd->target;
1215                         device->lun = device->scsi3addr[4];
1216                         break;
1217                 }
1218         }
1219         if (device->lun == -1) {
1220                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1221                         " suspect firmware bug or unsupported hardware "
1222                         "configuration.\n");
1223                         return -1;
1224         }
1225
1226 lun_assigned:
1227
1228         h->dev[n] = device;
1229         h->ndevices++;
1230         added[*nadded] = device;
1231         (*nadded)++;
1232         hpsa_show_dev_msg(KERN_INFO, h, device,
1233                 device->expose_device ? "added" : "masked");
1234         device->offload_to_be_enabled = device->offload_enabled;
1235         device->offload_enabled = 0;
1236         return 0;
1237 }
1238
1239 /* Update an entry in h->dev[] array. */
1240 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1241         int entry, struct hpsa_scsi_dev_t *new_entry)
1242 {
1243         int offload_enabled;
1244         /* assumes h->devlock is held */
1245         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1246
1247         /* Raid level changed. */
1248         h->dev[entry]->raid_level = new_entry->raid_level;
1249
1250         /* Raid offload parameters changed.  Careful about the ordering. */
1251         if (new_entry->offload_config && new_entry->offload_enabled) {
1252                 /*
1253                  * if drive is newly offload_enabled, we want to copy the
1254                  * raid map data first.  If previously offload_enabled and
1255                  * offload_config were set, raid map data had better be
1256                  * the same as it was before.  if raid map data is changed
1257                  * then it had better be the case that
1258                  * h->dev[entry]->offload_enabled is currently 0.
1259                  */
1260                 h->dev[entry]->raid_map = new_entry->raid_map;
1261                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1262         }
1263         if (new_entry->hba_ioaccel_enabled) {
1264                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1265                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1266         }
1267         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1268         h->dev[entry]->offload_config = new_entry->offload_config;
1269         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1270         h->dev[entry]->queue_depth = new_entry->queue_depth;
1271
1272         /*
1273          * We can turn off ioaccel offload now, but need to delay turning
1274          * it on until we can update h->dev[entry]->phys_disk[], but we
1275          * can't do that until all the devices are updated.
1276          */
1277         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1278         if (!new_entry->offload_enabled)
1279                 h->dev[entry]->offload_enabled = 0;
1280
1281         offload_enabled = h->dev[entry]->offload_enabled;
1282         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1283         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1284         h->dev[entry]->offload_enabled = offload_enabled;
1285 }
1286
1287 /* Replace an entry from h->dev[] array. */
1288 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1289         int entry, struct hpsa_scsi_dev_t *new_entry,
1290         struct hpsa_scsi_dev_t *added[], int *nadded,
1291         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1292 {
1293         /* assumes h->devlock is held */
1294         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1295         removed[*nremoved] = h->dev[entry];
1296         (*nremoved)++;
1297
1298         /*
1299          * New physical devices won't have target/lun assigned yet
1300          * so we need to preserve the values in the slot we are replacing.
1301          */
1302         if (new_entry->target == -1) {
1303                 new_entry->target = h->dev[entry]->target;
1304                 new_entry->lun = h->dev[entry]->lun;
1305         }
1306
1307         h->dev[entry] = new_entry;
1308         added[*nadded] = new_entry;
1309         (*nadded)++;
1310         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1311         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1312         new_entry->offload_enabled = 0;
1313 }
1314
1315 /* Remove an entry from h->dev[] array. */
1316 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1317         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1318 {
1319         /* assumes h->devlock is held */
1320         int i;
1321         struct hpsa_scsi_dev_t *sd;
1322
1323         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1324
1325         sd = h->dev[entry];
1326         removed[*nremoved] = h->dev[entry];
1327         (*nremoved)++;
1328
1329         for (i = entry; i < h->ndevices-1; i++)
1330                 h->dev[i] = h->dev[i+1];
1331         h->ndevices--;
1332         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1333 }
1334
1335 #define SCSI3ADDR_EQ(a, b) ( \
1336         (a)[7] == (b)[7] && \
1337         (a)[6] == (b)[6] && \
1338         (a)[5] == (b)[5] && \
1339         (a)[4] == (b)[4] && \
1340         (a)[3] == (b)[3] && \
1341         (a)[2] == (b)[2] && \
1342         (a)[1] == (b)[1] && \
1343         (a)[0] == (b)[0])
1344
1345 static void fixup_botched_add(struct ctlr_info *h,
1346         struct hpsa_scsi_dev_t *added)
1347 {
1348         /* called when scsi_add_device fails in order to re-adjust
1349          * h->dev[] to match the mid layer's view.
1350          */
1351         unsigned long flags;
1352         int i, j;
1353
1354         spin_lock_irqsave(&h->lock, flags);
1355         for (i = 0; i < h->ndevices; i++) {
1356                 if (h->dev[i] == added) {
1357                         for (j = i; j < h->ndevices-1; j++)
1358                                 h->dev[j] = h->dev[j+1];
1359                         h->ndevices--;
1360                         break;
1361                 }
1362         }
1363         spin_unlock_irqrestore(&h->lock, flags);
1364         kfree(added);
1365 }
1366
1367 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1368         struct hpsa_scsi_dev_t *dev2)
1369 {
1370         /* we compare everything except lun and target as these
1371          * are not yet assigned.  Compare parts likely
1372          * to differ first
1373          */
1374         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1375                 sizeof(dev1->scsi3addr)) != 0)
1376                 return 0;
1377         if (memcmp(dev1->device_id, dev2->device_id,
1378                 sizeof(dev1->device_id)) != 0)
1379                 return 0;
1380         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1381                 return 0;
1382         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1383                 return 0;
1384         if (dev1->devtype != dev2->devtype)
1385                 return 0;
1386         if (dev1->bus != dev2->bus)
1387                 return 0;
1388         return 1;
1389 }
1390
1391 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1392         struct hpsa_scsi_dev_t *dev2)
1393 {
1394         /* Device attributes that can change, but don't mean
1395          * that the device is a different device, nor that the OS
1396          * needs to be told anything about the change.
1397          */
1398         if (dev1->raid_level != dev2->raid_level)
1399                 return 1;
1400         if (dev1->offload_config != dev2->offload_config)
1401                 return 1;
1402         if (dev1->offload_enabled != dev2->offload_enabled)
1403                 return 1;
1404         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1405                 if (dev1->queue_depth != dev2->queue_depth)
1406                         return 1;
1407         return 0;
1408 }
1409
1410 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1411  * and return needle location in *index.  If scsi3addr matches, but not
1412  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1413  * location in *index.
1414  * In the case of a minor device attribute change, such as RAID level, just
1415  * return DEVICE_UPDATED, along with the updated device's location in index.
1416  * If needle not found, return DEVICE_NOT_FOUND.
1417  */
1418 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1419         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1420         int *index)
1421 {
1422         int i;
1423 #define DEVICE_NOT_FOUND 0
1424 #define DEVICE_CHANGED 1
1425 #define DEVICE_SAME 2
1426 #define DEVICE_UPDATED 3
1427         if (needle == NULL)
1428                 return DEVICE_NOT_FOUND;
1429
1430         for (i = 0; i < haystack_size; i++) {
1431                 if (haystack[i] == NULL) /* previously removed. */
1432                         continue;
1433                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1434                         *index = i;
1435                         if (device_is_the_same(needle, haystack[i])) {
1436                                 if (device_updated(needle, haystack[i]))
1437                                         return DEVICE_UPDATED;
1438                                 return DEVICE_SAME;
1439                         } else {
1440                                 /* Keep offline devices offline */
1441                                 if (needle->volume_offline)
1442                                         return DEVICE_NOT_FOUND;
1443                                 return DEVICE_CHANGED;
1444                         }
1445                 }
1446         }
1447         *index = -1;
1448         return DEVICE_NOT_FOUND;
1449 }
1450
1451 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1452                                         unsigned char scsi3addr[])
1453 {
1454         struct offline_device_entry *device;
1455         unsigned long flags;
1456
1457         /* Check to see if device is already on the list */
1458         spin_lock_irqsave(&h->offline_device_lock, flags);
1459         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1460                 if (memcmp(device->scsi3addr, scsi3addr,
1461                         sizeof(device->scsi3addr)) == 0) {
1462                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1463                         return;
1464                 }
1465         }
1466         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1467
1468         /* Device is not on the list, add it. */
1469         device = kmalloc(sizeof(*device), GFP_KERNEL);
1470         if (!device) {
1471                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1472                 return;
1473         }
1474         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1475         spin_lock_irqsave(&h->offline_device_lock, flags);
1476         list_add_tail(&device->offline_list, &h->offline_device_list);
1477         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1478 }
1479
1480 /* Print a message explaining various offline volume states */
1481 static void hpsa_show_volume_status(struct ctlr_info *h,
1482         struct hpsa_scsi_dev_t *sd)
1483 {
1484         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1485                 dev_info(&h->pdev->dev,
1486                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1487                         h->scsi_host->host_no,
1488                         sd->bus, sd->target, sd->lun);
1489         switch (sd->volume_offline) {
1490         case HPSA_LV_OK:
1491                 break;
1492         case HPSA_LV_UNDERGOING_ERASE:
1493                 dev_info(&h->pdev->dev,
1494                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1495                         h->scsi_host->host_no,
1496                         sd->bus, sd->target, sd->lun);
1497                 break;
1498         case HPSA_LV_NOT_AVAILABLE:
1499                 dev_info(&h->pdev->dev,
1500                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1501                         h->scsi_host->host_no,
1502                         sd->bus, sd->target, sd->lun);
1503                 break;
1504         case HPSA_LV_UNDERGOING_RPI:
1505                 dev_info(&h->pdev->dev,
1506                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1507                         h->scsi_host->host_no,
1508                         sd->bus, sd->target, sd->lun);
1509                 break;
1510         case HPSA_LV_PENDING_RPI:
1511                 dev_info(&h->pdev->dev,
1512                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1513                         h->scsi_host->host_no,
1514                         sd->bus, sd->target, sd->lun);
1515                 break;
1516         case HPSA_LV_ENCRYPTED_NO_KEY:
1517                 dev_info(&h->pdev->dev,
1518                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1519                         h->scsi_host->host_no,
1520                         sd->bus, sd->target, sd->lun);
1521                 break;
1522         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1523                 dev_info(&h->pdev->dev,
1524                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1525                         h->scsi_host->host_no,
1526                         sd->bus, sd->target, sd->lun);
1527                 break;
1528         case HPSA_LV_UNDERGOING_ENCRYPTION:
1529                 dev_info(&h->pdev->dev,
1530                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1531                         h->scsi_host->host_no,
1532                         sd->bus, sd->target, sd->lun);
1533                 break;
1534         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1535                 dev_info(&h->pdev->dev,
1536                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1537                         h->scsi_host->host_no,
1538                         sd->bus, sd->target, sd->lun);
1539                 break;
1540         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1541                 dev_info(&h->pdev->dev,
1542                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1543                         h->scsi_host->host_no,
1544                         sd->bus, sd->target, sd->lun);
1545                 break;
1546         case HPSA_LV_PENDING_ENCRYPTION:
1547                 dev_info(&h->pdev->dev,
1548                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1549                         h->scsi_host->host_no,
1550                         sd->bus, sd->target, sd->lun);
1551                 break;
1552         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1553                 dev_info(&h->pdev->dev,
1554                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1555                         h->scsi_host->host_no,
1556                         sd->bus, sd->target, sd->lun);
1557                 break;
1558         }
1559 }
1560
1561 /*
1562  * Figure the list of physical drive pointers for a logical drive with
1563  * raid offload configured.
1564  */
1565 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1566                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1567                                 struct hpsa_scsi_dev_t *logical_drive)
1568 {
1569         struct raid_map_data *map = &logical_drive->raid_map;
1570         struct raid_map_disk_data *dd = &map->data[0];
1571         int i, j;
1572         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1573                                 le16_to_cpu(map->metadata_disks_per_row);
1574         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1575                                 le16_to_cpu(map->layout_map_count) *
1576                                 total_disks_per_row;
1577         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1578                                 total_disks_per_row;
1579         int qdepth;
1580
1581         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1582                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1583
1584         logical_drive->nphysical_disks = nraid_map_entries;
1585
1586         qdepth = 0;
1587         for (i = 0; i < nraid_map_entries; i++) {
1588                 logical_drive->phys_disk[i] = NULL;
1589                 if (!logical_drive->offload_config)
1590                         continue;
1591                 for (j = 0; j < ndevices; j++) {
1592                         if (dev[j] == NULL)
1593                                 continue;
1594                         if (dev[j]->devtype != TYPE_DISK)
1595                                 continue;
1596                         if (is_logical_device(dev[j]))
1597                                 continue;
1598                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1599                                 continue;
1600
1601                         logical_drive->phys_disk[i] = dev[j];
1602                         if (i < nphys_disk)
1603                                 qdepth = min(h->nr_cmds, qdepth +
1604                                     logical_drive->phys_disk[i]->queue_depth);
1605                         break;
1606                 }
1607
1608                 /*
1609                  * This can happen if a physical drive is removed and
1610                  * the logical drive is degraded.  In that case, the RAID
1611                  * map data will refer to a physical disk which isn't actually
1612                  * present.  And in that case offload_enabled should already
1613                  * be 0, but we'll turn it off here just in case
1614                  */
1615                 if (!logical_drive->phys_disk[i]) {
1616                         logical_drive->offload_enabled = 0;
1617                         logical_drive->offload_to_be_enabled = 0;
1618                         logical_drive->queue_depth = 8;
1619                 }
1620         }
1621         if (nraid_map_entries)
1622                 /*
1623                  * This is correct for reads, too high for full stripe writes,
1624                  * way too high for partial stripe writes
1625                  */
1626                 logical_drive->queue_depth = qdepth;
1627         else
1628                 logical_drive->queue_depth = h->nr_cmds;
1629 }
1630
1631 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1632                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1633 {
1634         int i;
1635
1636         for (i = 0; i < ndevices; i++) {
1637                 if (dev[i] == NULL)
1638                         continue;
1639                 if (dev[i]->devtype != TYPE_DISK)
1640                         continue;
1641                 if (!is_logical_device(dev[i]))
1642                         continue;
1643
1644                 /*
1645                  * If offload is currently enabled, the RAID map and
1646                  * phys_disk[] assignment *better* not be changing
1647                  * and since it isn't changing, we do not need to
1648                  * update it.
1649                  */
1650                 if (dev[i]->offload_enabled)
1651                         continue;
1652
1653                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1654         }
1655 }
1656
1657 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1658 {
1659         int rc = 0;
1660
1661         if (!h->scsi_host)
1662                 return 1;
1663
1664         rc = scsi_add_device(h->scsi_host, device->bus,
1665                                         device->target, device->lun);
1666         return rc;
1667 }
1668
1669 static void hpsa_remove_device(struct ctlr_info *h,
1670                         struct hpsa_scsi_dev_t *device)
1671 {
1672         struct scsi_device *sdev = NULL;
1673
1674         if (!h->scsi_host)
1675                 return;
1676
1677         sdev = scsi_device_lookup(h->scsi_host, device->bus,
1678                                                 device->target, device->lun);
1679
1680         if (sdev) {
1681                 scsi_remove_device(sdev);
1682                 scsi_device_put(sdev);
1683         } else {
1684                 /*
1685                  * We don't expect to get here.  Future commands
1686                  * to this device will get a selection timeout as
1687                  * if the device were gone.
1688                  */
1689                 hpsa_show_dev_msg(KERN_WARNING, h, device,
1690                                         "didn't find device for removal.");
1691         }
1692 }
1693
1694 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1695         struct hpsa_scsi_dev_t *sd[], int nsds)
1696 {
1697         /* sd contains scsi3 addresses and devtypes, and inquiry
1698          * data.  This function takes what's in sd to be the current
1699          * reality and updates h->dev[] to reflect that reality.
1700          */
1701         int i, entry, device_change, changes = 0;
1702         struct hpsa_scsi_dev_t *csd;
1703         unsigned long flags;
1704         struct hpsa_scsi_dev_t **added, **removed;
1705         int nadded, nremoved;
1706
1707         /*
1708          * A reset can cause a device status to change
1709          * re-schedule the scan to see what happened.
1710          */
1711         if (h->reset_in_progress) {
1712                 h->drv_req_rescan = 1;
1713                 return;
1714         }
1715
1716         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1717         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1718
1719         if (!added || !removed) {
1720                 dev_warn(&h->pdev->dev, "out of memory in "
1721                         "adjust_hpsa_scsi_table\n");
1722                 goto free_and_out;
1723         }
1724
1725         spin_lock_irqsave(&h->devlock, flags);
1726
1727         /* find any devices in h->dev[] that are not in
1728          * sd[] and remove them from h->dev[], and for any
1729          * devices which have changed, remove the old device
1730          * info and add the new device info.
1731          * If minor device attributes change, just update
1732          * the existing device structure.
1733          */
1734         i = 0;
1735         nremoved = 0;
1736         nadded = 0;
1737         while (i < h->ndevices) {
1738                 csd = h->dev[i];
1739                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1740                 if (device_change == DEVICE_NOT_FOUND) {
1741                         changes++;
1742                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1743                         continue; /* remove ^^^, hence i not incremented */
1744                 } else if (device_change == DEVICE_CHANGED) {
1745                         changes++;
1746                         hpsa_scsi_replace_entry(h, i, sd[entry],
1747                                 added, &nadded, removed, &nremoved);
1748                         /* Set it to NULL to prevent it from being freed
1749                          * at the bottom of hpsa_update_scsi_devices()
1750                          */
1751                         sd[entry] = NULL;
1752                 } else if (device_change == DEVICE_UPDATED) {
1753                         hpsa_scsi_update_entry(h, i, sd[entry]);
1754                 }
1755                 i++;
1756         }
1757
1758         /* Now, make sure every device listed in sd[] is also
1759          * listed in h->dev[], adding them if they aren't found
1760          */
1761
1762         for (i = 0; i < nsds; i++) {
1763                 if (!sd[i]) /* if already added above. */
1764                         continue;
1765
1766                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1767                  * as the SCSI mid-layer does not handle such devices well.
1768                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1769                  * at 160Hz, and prevents the system from coming up.
1770                  */
1771                 if (sd[i]->volume_offline) {
1772                         hpsa_show_volume_status(h, sd[i]);
1773                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1774                         continue;
1775                 }
1776
1777                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1778                                         h->ndevices, &entry);
1779                 if (device_change == DEVICE_NOT_FOUND) {
1780                         changes++;
1781                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1782                                 break;
1783                         sd[i] = NULL; /* prevent from being freed later. */
1784                 } else if (device_change == DEVICE_CHANGED) {
1785                         /* should never happen... */
1786                         changes++;
1787                         dev_warn(&h->pdev->dev,
1788                                 "device unexpectedly changed.\n");
1789                         /* but if it does happen, we just ignore that device */
1790                 }
1791         }
1792         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1793
1794         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1795          * any logical drives that need it enabled.
1796          */
1797         for (i = 0; i < h->ndevices; i++) {
1798                 if (h->dev[i] == NULL)
1799                         continue;
1800                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1801         }
1802
1803         spin_unlock_irqrestore(&h->devlock, flags);
1804
1805         /* Monitor devices which are in one of several NOT READY states to be
1806          * brought online later. This must be done without holding h->devlock,
1807          * so don't touch h->dev[]
1808          */
1809         for (i = 0; i < nsds; i++) {
1810                 if (!sd[i]) /* if already added above. */
1811                         continue;
1812                 if (sd[i]->volume_offline)
1813                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1814         }
1815
1816         /* Don't notify scsi mid layer of any changes the first time through
1817          * (or if there are no changes) scsi_scan_host will do it later the
1818          * first time through.
1819          */
1820         if (!changes)
1821                 goto free_and_out;
1822
1823         /* Notify scsi mid layer of any removed devices */
1824         for (i = 0; i < nremoved; i++) {
1825                 if (removed[i] == NULL)
1826                         continue;
1827                 if (removed[i]->expose_device)
1828                         hpsa_remove_device(h, removed[i]);
1829                 kfree(removed[i]);
1830                 removed[i] = NULL;
1831         }
1832
1833         /* Notify scsi mid layer of any added devices */
1834         for (i = 0; i < nadded; i++) {
1835                 int rc = 0;
1836
1837                 if (added[i] == NULL)
1838                         continue;
1839                 if (!(added[i]->expose_device))
1840                         continue;
1841                 rc = hpsa_add_device(h, added[i]);
1842                 if (!rc)
1843                         continue;
1844                 dev_warn(&h->pdev->dev,
1845                         "addition failed %d, device not added.", rc);
1846                 /* now we have to remove it from h->dev,
1847                  * since it didn't get added to scsi mid layer
1848                  */
1849                 fixup_botched_add(h, added[i]);
1850                 h->drv_req_rescan = 1;
1851         }
1852
1853 free_and_out:
1854         kfree(added);
1855         kfree(removed);
1856 }
1857
1858 /*
1859  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1860  * Assume's h->devlock is held.
1861  */
1862 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1863         int bus, int target, int lun)
1864 {
1865         int i;
1866         struct hpsa_scsi_dev_t *sd;
1867
1868         for (i = 0; i < h->ndevices; i++) {
1869                 sd = h->dev[i];
1870                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1871                         return sd;
1872         }
1873         return NULL;
1874 }
1875
1876 static int hpsa_slave_alloc(struct scsi_device *sdev)
1877 {
1878         struct hpsa_scsi_dev_t *sd;
1879         unsigned long flags;
1880         struct ctlr_info *h;
1881
1882         h = sdev_to_hba(sdev);
1883         spin_lock_irqsave(&h->devlock, flags);
1884         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1885                 sdev_id(sdev), sdev->lun);
1886         if (likely(sd)) {
1887                 atomic_set(&sd->ioaccel_cmds_out, 0);
1888                 sdev->hostdata = sd->expose_device ? sd : NULL;
1889         } else
1890                 sdev->hostdata = NULL;
1891         spin_unlock_irqrestore(&h->devlock, flags);
1892         return 0;
1893 }
1894
1895 /* configure scsi device based on internal per-device structure */
1896 static int hpsa_slave_configure(struct scsi_device *sdev)
1897 {
1898         struct hpsa_scsi_dev_t *sd;
1899         int queue_depth;
1900
1901         sd = sdev->hostdata;
1902         sdev->no_uld_attach = !sd || !sd->expose_device;
1903
1904         if (sd)
1905                 queue_depth = sd->queue_depth != 0 ?
1906                         sd->queue_depth : sdev->host->can_queue;
1907         else
1908                 queue_depth = sdev->host->can_queue;
1909
1910         scsi_change_queue_depth(sdev, queue_depth);
1911
1912         return 0;
1913 }
1914
1915 static void hpsa_slave_destroy(struct scsi_device *sdev)
1916 {
1917         /* nothing to do. */
1918 }
1919
1920 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1921 {
1922         int i;
1923
1924         if (!h->ioaccel2_cmd_sg_list)
1925                 return;
1926         for (i = 0; i < h->nr_cmds; i++) {
1927                 kfree(h->ioaccel2_cmd_sg_list[i]);
1928                 h->ioaccel2_cmd_sg_list[i] = NULL;
1929         }
1930         kfree(h->ioaccel2_cmd_sg_list);
1931         h->ioaccel2_cmd_sg_list = NULL;
1932 }
1933
1934 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1935 {
1936         int i;
1937
1938         if (h->chainsize <= 0)
1939                 return 0;
1940
1941         h->ioaccel2_cmd_sg_list =
1942                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1943                                         GFP_KERNEL);
1944         if (!h->ioaccel2_cmd_sg_list)
1945                 return -ENOMEM;
1946         for (i = 0; i < h->nr_cmds; i++) {
1947                 h->ioaccel2_cmd_sg_list[i] =
1948                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1949                                         h->maxsgentries, GFP_KERNEL);
1950                 if (!h->ioaccel2_cmd_sg_list[i])
1951                         goto clean;
1952         }
1953         return 0;
1954
1955 clean:
1956         hpsa_free_ioaccel2_sg_chain_blocks(h);
1957         return -ENOMEM;
1958 }
1959
1960 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1961 {
1962         int i;
1963
1964         if (!h->cmd_sg_list)
1965                 return;
1966         for (i = 0; i < h->nr_cmds; i++) {
1967                 kfree(h->cmd_sg_list[i]);
1968                 h->cmd_sg_list[i] = NULL;
1969         }
1970         kfree(h->cmd_sg_list);
1971         h->cmd_sg_list = NULL;
1972 }
1973
1974 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1975 {
1976         int i;
1977
1978         if (h->chainsize <= 0)
1979                 return 0;
1980
1981         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1982                                 GFP_KERNEL);
1983         if (!h->cmd_sg_list) {
1984                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1985                 return -ENOMEM;
1986         }
1987         for (i = 0; i < h->nr_cmds; i++) {
1988                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1989                                                 h->chainsize, GFP_KERNEL);
1990                 if (!h->cmd_sg_list[i]) {
1991                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1992                         goto clean;
1993                 }
1994         }
1995         return 0;
1996
1997 clean:
1998         hpsa_free_sg_chain_blocks(h);
1999         return -ENOMEM;
2000 }
2001
2002 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2003         struct io_accel2_cmd *cp, struct CommandList *c)
2004 {
2005         struct ioaccel2_sg_element *chain_block;
2006         u64 temp64;
2007         u32 chain_size;
2008
2009         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2010         chain_size = le32_to_cpu(cp->sg[0].length);
2011         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2012                                 PCI_DMA_TODEVICE);
2013         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2014                 /* prevent subsequent unmapping */
2015                 cp->sg->address = 0;
2016                 return -1;
2017         }
2018         cp->sg->address = cpu_to_le64(temp64);
2019         return 0;
2020 }
2021
2022 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2023         struct io_accel2_cmd *cp)
2024 {
2025         struct ioaccel2_sg_element *chain_sg;
2026         u64 temp64;
2027         u32 chain_size;
2028
2029         chain_sg = cp->sg;
2030         temp64 = le64_to_cpu(chain_sg->address);
2031         chain_size = le32_to_cpu(cp->sg[0].length);
2032         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2033 }
2034
2035 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2036         struct CommandList *c)
2037 {
2038         struct SGDescriptor *chain_sg, *chain_block;
2039         u64 temp64;
2040         u32 chain_len;
2041
2042         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2043         chain_block = h->cmd_sg_list[c->cmdindex];
2044         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2045         chain_len = sizeof(*chain_sg) *
2046                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2047         chain_sg->Len = cpu_to_le32(chain_len);
2048         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2049                                 PCI_DMA_TODEVICE);
2050         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2051                 /* prevent subsequent unmapping */
2052                 chain_sg->Addr = cpu_to_le64(0);
2053                 return -1;
2054         }
2055         chain_sg->Addr = cpu_to_le64(temp64);
2056         return 0;
2057 }
2058
2059 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2060         struct CommandList *c)
2061 {
2062         struct SGDescriptor *chain_sg;
2063
2064         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2065                 return;
2066
2067         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2068         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2069                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2070 }
2071
2072
2073 /* Decode the various types of errors on ioaccel2 path.
2074  * Return 1 for any error that should generate a RAID path retry.
2075  * Return 0 for errors that don't require a RAID path retry.
2076  */
2077 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2078                                         struct CommandList *c,
2079                                         struct scsi_cmnd *cmd,
2080                                         struct io_accel2_cmd *c2)
2081 {
2082         int data_len;
2083         int retry = 0;
2084         u32 ioaccel2_resid = 0;
2085
2086         switch (c2->error_data.serv_response) {
2087         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2088                 switch (c2->error_data.status) {
2089                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2090                         break;
2091                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2092                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2093                         if (c2->error_data.data_present !=
2094                                         IOACCEL2_SENSE_DATA_PRESENT) {
2095                                 memset(cmd->sense_buffer, 0,
2096                                         SCSI_SENSE_BUFFERSIZE);
2097                                 break;
2098                         }
2099                         /* copy the sense data */
2100                         data_len = c2->error_data.sense_data_len;
2101                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2102                                 data_len = SCSI_SENSE_BUFFERSIZE;
2103                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2104                                 data_len =
2105                                         sizeof(c2->error_data.sense_data_buff);
2106                         memcpy(cmd->sense_buffer,
2107                                 c2->error_data.sense_data_buff, data_len);
2108                         retry = 1;
2109                         break;
2110                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2111                         retry = 1;
2112                         break;
2113                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2114                         retry = 1;
2115                         break;
2116                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2117                         retry = 1;
2118                         break;
2119                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2120                         retry = 1;
2121                         break;
2122                 default:
2123                         retry = 1;
2124                         break;
2125                 }
2126                 break;
2127         case IOACCEL2_SERV_RESPONSE_FAILURE:
2128                 switch (c2->error_data.status) {
2129                 case IOACCEL2_STATUS_SR_IO_ERROR:
2130                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2131                 case IOACCEL2_STATUS_SR_OVERRUN:
2132                         retry = 1;
2133                         break;
2134                 case IOACCEL2_STATUS_SR_UNDERRUN:
2135                         cmd->result = (DID_OK << 16);           /* host byte */
2136                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2137                         ioaccel2_resid = get_unaligned_le32(
2138                                                 &c2->error_data.resid_cnt[0]);
2139                         scsi_set_resid(cmd, ioaccel2_resid);
2140                         break;
2141                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2142                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2143                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2144                         /* We will get an event from ctlr to trigger rescan */
2145                         retry = 1;
2146                         break;
2147                 default:
2148                         retry = 1;
2149                 }
2150                 break;
2151         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2152                 break;
2153         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2154                 break;
2155         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2156                 retry = 1;
2157                 break;
2158         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2159                 break;
2160         default:
2161                 retry = 1;
2162                 break;
2163         }
2164
2165         return retry;   /* retry on raid path? */
2166 }
2167
2168 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2169                 struct CommandList *c)
2170 {
2171         bool do_wake = false;
2172
2173         /*
2174          * Prevent the following race in the abort handler:
2175          *
2176          * 1. LLD is requested to abort a SCSI command
2177          * 2. The SCSI command completes
2178          * 3. The struct CommandList associated with step 2 is made available
2179          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2180          * 5. Abort handler follows scsi_cmnd->host_scribble and
2181          *    finds struct CommandList and tries to aborts it
2182          * Now we have aborted the wrong command.
2183          *
2184          * Reset c->scsi_cmd here so that the abort or reset handler will know
2185          * this command has completed.  Then, check to see if the handler is
2186          * waiting for this command, and, if so, wake it.
2187          */
2188         c->scsi_cmd = SCSI_CMD_IDLE;
2189         mb();   /* Declare command idle before checking for pending events. */
2190         if (c->abort_pending) {
2191                 do_wake = true;
2192                 c->abort_pending = false;
2193         }
2194         if (c->reset_pending) {
2195                 unsigned long flags;
2196                 struct hpsa_scsi_dev_t *dev;
2197
2198                 /*
2199                  * There appears to be a reset pending; lock the lock and
2200                  * reconfirm.  If so, then decrement the count of outstanding
2201                  * commands and wake the reset command if this is the last one.
2202                  */
2203                 spin_lock_irqsave(&h->lock, flags);
2204                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2205                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2206                         do_wake = true;
2207                 c->reset_pending = NULL;
2208                 spin_unlock_irqrestore(&h->lock, flags);
2209         }
2210
2211         if (do_wake)
2212                 wake_up_all(&h->event_sync_wait_queue);
2213 }
2214
2215 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2216                                       struct CommandList *c)
2217 {
2218         hpsa_cmd_resolve_events(h, c);
2219         cmd_tagged_free(h, c);
2220 }
2221
2222 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2223                 struct CommandList *c, struct scsi_cmnd *cmd)
2224 {
2225         hpsa_cmd_resolve_and_free(h, c);
2226         cmd->scsi_done(cmd);
2227 }
2228
2229 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2230 {
2231         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2232         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2233 }
2234
2235 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2236 {
2237         cmd->result = DID_ABORT << 16;
2238 }
2239
2240 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2241                                     struct scsi_cmnd *cmd)
2242 {
2243         hpsa_set_scsi_cmd_aborted(cmd);
2244         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2245                          c->Request.CDB, c->err_info->ScsiStatus);
2246         hpsa_cmd_resolve_and_free(h, c);
2247 }
2248
2249 static void process_ioaccel2_completion(struct ctlr_info *h,
2250                 struct CommandList *c, struct scsi_cmnd *cmd,
2251                 struct hpsa_scsi_dev_t *dev)
2252 {
2253         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2254
2255         /* check for good status */
2256         if (likely(c2->error_data.serv_response == 0 &&
2257                         c2->error_data.status == 0))
2258                 return hpsa_cmd_free_and_done(h, c, cmd);
2259
2260         /*
2261          * Any RAID offload error results in retry which will use
2262          * the normal I/O path so the controller can handle whatever's
2263          * wrong.
2264          */
2265         if (is_logical_device(dev) &&
2266                 c2->error_data.serv_response ==
2267                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2268                 if (c2->error_data.status ==
2269                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2270                         dev->offload_enabled = 0;
2271
2272                 return hpsa_retry_cmd(h, c);
2273         }
2274
2275         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2276                 return hpsa_retry_cmd(h, c);
2277
2278         return hpsa_cmd_free_and_done(h, c, cmd);
2279 }
2280
2281 /* Returns 0 on success, < 0 otherwise. */
2282 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2283                                         struct CommandList *cp)
2284 {
2285         u8 tmf_status = cp->err_info->ScsiStatus;
2286
2287         switch (tmf_status) {
2288         case CISS_TMF_COMPLETE:
2289                 /*
2290                  * CISS_TMF_COMPLETE never happens, instead,
2291                  * ei->CommandStatus == 0 for this case.
2292                  */
2293         case CISS_TMF_SUCCESS:
2294                 return 0;
2295         case CISS_TMF_INVALID_FRAME:
2296         case CISS_TMF_NOT_SUPPORTED:
2297         case CISS_TMF_FAILED:
2298         case CISS_TMF_WRONG_LUN:
2299         case CISS_TMF_OVERLAPPED_TAG:
2300                 break;
2301         default:
2302                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2303                                 tmf_status);
2304                 break;
2305         }
2306         return -tmf_status;
2307 }
2308
2309 static void complete_scsi_command(struct CommandList *cp)
2310 {
2311         struct scsi_cmnd *cmd;
2312         struct ctlr_info *h;
2313         struct ErrorInfo *ei;
2314         struct hpsa_scsi_dev_t *dev;
2315         struct io_accel2_cmd *c2;
2316
2317         u8 sense_key;
2318         u8 asc;      /* additional sense code */
2319         u8 ascq;     /* additional sense code qualifier */
2320         unsigned long sense_data_size;
2321
2322         ei = cp->err_info;
2323         cmd = cp->scsi_cmd;
2324         h = cp->h;
2325         dev = cmd->device->hostdata;
2326         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2327
2328         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2329         if ((cp->cmd_type == CMD_SCSI) &&
2330                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2331                 hpsa_unmap_sg_chain_block(h, cp);
2332
2333         if ((cp->cmd_type == CMD_IOACCEL2) &&
2334                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2335                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2336
2337         cmd->result = (DID_OK << 16);           /* host byte */
2338         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2339
2340         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2341                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2342
2343         /*
2344          * We check for lockup status here as it may be set for
2345          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2346          * fail_all_oustanding_cmds()
2347          */
2348         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2349                 /* DID_NO_CONNECT will prevent a retry */
2350                 cmd->result = DID_NO_CONNECT << 16;
2351                 return hpsa_cmd_free_and_done(h, cp, cmd);
2352         }
2353
2354         if ((unlikely(hpsa_is_pending_event(cp)))) {
2355                 if (cp->reset_pending)
2356                         return hpsa_cmd_resolve_and_free(h, cp);
2357                 if (cp->abort_pending)
2358                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2359         }
2360
2361         if (cp->cmd_type == CMD_IOACCEL2)
2362                 return process_ioaccel2_completion(h, cp, cmd, dev);
2363
2364         scsi_set_resid(cmd, ei->ResidualCnt);
2365         if (ei->CommandStatus == 0)
2366                 return hpsa_cmd_free_and_done(h, cp, cmd);
2367
2368         /* For I/O accelerator commands, copy over some fields to the normal
2369          * CISS header used below for error handling.
2370          */
2371         if (cp->cmd_type == CMD_IOACCEL1) {
2372                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2373                 cp->Header.SGList = scsi_sg_count(cmd);
2374                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2375                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2376                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2377                 cp->Header.tag = c->tag;
2378                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2379                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2380
2381                 /* Any RAID offload error results in retry which will use
2382                  * the normal I/O path so the controller can handle whatever's
2383                  * wrong.
2384                  */
2385                 if (is_logical_device(dev)) {
2386                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2387                                 dev->offload_enabled = 0;
2388                         return hpsa_retry_cmd(h, cp);
2389                 }
2390         }
2391
2392         /* an error has occurred */
2393         switch (ei->CommandStatus) {
2394
2395         case CMD_TARGET_STATUS:
2396                 cmd->result |= ei->ScsiStatus;
2397                 /* copy the sense data */
2398                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2399                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2400                 else
2401                         sense_data_size = sizeof(ei->SenseInfo);
2402                 if (ei->SenseLen < sense_data_size)
2403                         sense_data_size = ei->SenseLen;
2404                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2405                 if (ei->ScsiStatus)
2406                         decode_sense_data(ei->SenseInfo, sense_data_size,
2407                                 &sense_key, &asc, &ascq);
2408                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2409                         if (sense_key == ABORTED_COMMAND) {
2410                                 cmd->result |= DID_SOFT_ERROR << 16;
2411                                 break;
2412                         }
2413                         break;
2414                 }
2415                 /* Problem was not a check condition
2416                  * Pass it up to the upper layers...
2417                  */
2418                 if (ei->ScsiStatus) {
2419                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2420                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2421                                 "Returning result: 0x%x\n",
2422                                 cp, ei->ScsiStatus,
2423                                 sense_key, asc, ascq,
2424                                 cmd->result);
2425                 } else {  /* scsi status is zero??? How??? */
2426                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2427                                 "Returning no connection.\n", cp),
2428
2429                         /* Ordinarily, this case should never happen,
2430                          * but there is a bug in some released firmware
2431                          * revisions that allows it to happen if, for
2432                          * example, a 4100 backplane loses power and
2433                          * the tape drive is in it.  We assume that
2434                          * it's a fatal error of some kind because we
2435                          * can't show that it wasn't. We will make it
2436                          * look like selection timeout since that is
2437                          * the most common reason for this to occur,
2438                          * and it's severe enough.
2439                          */
2440
2441                         cmd->result = DID_NO_CONNECT << 16;
2442                 }
2443                 break;
2444
2445         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2446                 break;
2447         case CMD_DATA_OVERRUN:
2448                 dev_warn(&h->pdev->dev,
2449                         "CDB %16phN data overrun\n", cp->Request.CDB);
2450                 break;
2451         case CMD_INVALID: {
2452                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2453                 print_cmd(cp); */
2454                 /* We get CMD_INVALID if you address a non-existent device
2455                  * instead of a selection timeout (no response).  You will
2456                  * see this if you yank out a drive, then try to access it.
2457                  * This is kind of a shame because it means that any other
2458                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2459                  * missing target. */
2460                 cmd->result = DID_NO_CONNECT << 16;
2461         }
2462                 break;
2463         case CMD_PROTOCOL_ERR:
2464                 cmd->result = DID_ERROR << 16;
2465                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2466                                 cp->Request.CDB);
2467                 break;
2468         case CMD_HARDWARE_ERR:
2469                 cmd->result = DID_ERROR << 16;
2470                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2471                         cp->Request.CDB);
2472                 break;
2473         case CMD_CONNECTION_LOST:
2474                 cmd->result = DID_ERROR << 16;
2475                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2476                         cp->Request.CDB);
2477                 break;
2478         case CMD_ABORTED:
2479                 /* Return now to avoid calling scsi_done(). */
2480                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2481         case CMD_ABORT_FAILED:
2482                 cmd->result = DID_ERROR << 16;
2483                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2484                         cp->Request.CDB);
2485                 break;
2486         case CMD_UNSOLICITED_ABORT:
2487                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2488                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2489                         cp->Request.CDB);
2490                 break;
2491         case CMD_TIMEOUT:
2492                 cmd->result = DID_TIME_OUT << 16;
2493                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2494                         cp->Request.CDB);
2495                 break;
2496         case CMD_UNABORTABLE:
2497                 cmd->result = DID_ERROR << 16;
2498                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2499                 break;
2500         case CMD_TMF_STATUS:
2501                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2502                         cmd->result = DID_ERROR << 16;
2503                 break;
2504         case CMD_IOACCEL_DISABLED:
2505                 /* This only handles the direct pass-through case since RAID
2506                  * offload is handled above.  Just attempt a retry.
2507                  */
2508                 cmd->result = DID_SOFT_ERROR << 16;
2509                 dev_warn(&h->pdev->dev,
2510                                 "cp %p had HP SSD Smart Path error\n", cp);
2511                 break;
2512         default:
2513                 cmd->result = DID_ERROR << 16;
2514                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2515                                 cp, ei->CommandStatus);
2516         }
2517
2518         return hpsa_cmd_free_and_done(h, cp, cmd);
2519 }
2520
2521 static void hpsa_pci_unmap(struct pci_dev *pdev,
2522         struct CommandList *c, int sg_used, int data_direction)
2523 {
2524         int i;
2525
2526         for (i = 0; i < sg_used; i++)
2527                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2528                                 le32_to_cpu(c->SG[i].Len),
2529                                 data_direction);
2530 }
2531
2532 static int hpsa_map_one(struct pci_dev *pdev,
2533                 struct CommandList *cp,
2534                 unsigned char *buf,
2535                 size_t buflen,
2536                 int data_direction)
2537 {
2538         u64 addr64;
2539
2540         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2541                 cp->Header.SGList = 0;
2542                 cp->Header.SGTotal = cpu_to_le16(0);
2543                 return 0;
2544         }
2545
2546         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2547         if (dma_mapping_error(&pdev->dev, addr64)) {
2548                 /* Prevent subsequent unmap of something never mapped */
2549                 cp->Header.SGList = 0;
2550                 cp->Header.SGTotal = cpu_to_le16(0);
2551                 return -1;
2552         }
2553         cp->SG[0].Addr = cpu_to_le64(addr64);
2554         cp->SG[0].Len = cpu_to_le32(buflen);
2555         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2556         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2557         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2558         return 0;
2559 }
2560
2561 #define NO_TIMEOUT ((unsigned long) -1)
2562 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2563 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2564         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2565 {
2566         DECLARE_COMPLETION_ONSTACK(wait);
2567
2568         c->waiting = &wait;
2569         __enqueue_cmd_and_start_io(h, c, reply_queue);
2570         if (timeout_msecs == NO_TIMEOUT) {
2571                 /* TODO: get rid of this no-timeout thing */
2572                 wait_for_completion_io(&wait);
2573                 return IO_OK;
2574         }
2575         if (!wait_for_completion_io_timeout(&wait,
2576                                         msecs_to_jiffies(timeout_msecs))) {
2577                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2578                 return -ETIMEDOUT;
2579         }
2580         return IO_OK;
2581 }
2582
2583 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2584                                    int reply_queue, unsigned long timeout_msecs)
2585 {
2586         if (unlikely(lockup_detected(h))) {
2587                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2588                 return IO_OK;
2589         }
2590         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2591 }
2592
2593 static u32 lockup_detected(struct ctlr_info *h)
2594 {
2595         int cpu;
2596         u32 rc, *lockup_detected;
2597
2598         cpu = get_cpu();
2599         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2600         rc = *lockup_detected;
2601         put_cpu();
2602         return rc;
2603 }
2604
2605 #define MAX_DRIVER_CMD_RETRIES 25
2606 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2607         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2608 {
2609         int backoff_time = 10, retry_count = 0;
2610         int rc;
2611
2612         do {
2613                 memset(c->err_info, 0, sizeof(*c->err_info));
2614                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2615                                                   timeout_msecs);
2616                 if (rc)
2617                         break;
2618                 retry_count++;
2619                 if (retry_count > 3) {
2620                         msleep(backoff_time);
2621                         if (backoff_time < 1000)
2622                                 backoff_time *= 2;
2623                 }
2624         } while ((check_for_unit_attention(h, c) ||
2625                         check_for_busy(h, c)) &&
2626                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2627         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2628         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2629                 rc = -EIO;
2630         return rc;
2631 }
2632
2633 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2634                                 struct CommandList *c)
2635 {
2636         const u8 *cdb = c->Request.CDB;
2637         const u8 *lun = c->Header.LUN.LunAddrBytes;
2638
2639         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2640         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2641                 txt, lun[0], lun[1], lun[2], lun[3],
2642                 lun[4], lun[5], lun[6], lun[7],
2643                 cdb[0], cdb[1], cdb[2], cdb[3],
2644                 cdb[4], cdb[5], cdb[6], cdb[7],
2645                 cdb[8], cdb[9], cdb[10], cdb[11],
2646                 cdb[12], cdb[13], cdb[14], cdb[15]);
2647 }
2648
2649 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2650                         struct CommandList *cp)
2651 {
2652         const struct ErrorInfo *ei = cp->err_info;
2653         struct device *d = &cp->h->pdev->dev;
2654         u8 sense_key, asc, ascq;
2655         int sense_len;
2656
2657         switch (ei->CommandStatus) {
2658         case CMD_TARGET_STATUS:
2659                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2660                         sense_len = sizeof(ei->SenseInfo);
2661                 else
2662                         sense_len = ei->SenseLen;
2663                 decode_sense_data(ei->SenseInfo, sense_len,
2664                                         &sense_key, &asc, &ascq);
2665                 hpsa_print_cmd(h, "SCSI status", cp);
2666                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2667                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2668                                 sense_key, asc, ascq);
2669                 else
2670                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2671                 if (ei->ScsiStatus == 0)
2672                         dev_warn(d, "SCSI status is abnormally zero.  "
2673                         "(probably indicates selection timeout "
2674                         "reported incorrectly due to a known "
2675                         "firmware bug, circa July, 2001.)\n");
2676                 break;
2677         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2678                 break;
2679         case CMD_DATA_OVERRUN:
2680                 hpsa_print_cmd(h, "overrun condition", cp);
2681                 break;
2682         case CMD_INVALID: {
2683                 /* controller unfortunately reports SCSI passthru's
2684                  * to non-existent targets as invalid commands.
2685                  */
2686                 hpsa_print_cmd(h, "invalid command", cp);
2687                 dev_warn(d, "probably means device no longer present\n");
2688                 }
2689                 break;
2690         case CMD_PROTOCOL_ERR:
2691                 hpsa_print_cmd(h, "protocol error", cp);
2692                 break;
2693         case CMD_HARDWARE_ERR:
2694                 hpsa_print_cmd(h, "hardware error", cp);
2695                 break;
2696         case CMD_CONNECTION_LOST:
2697                 hpsa_print_cmd(h, "connection lost", cp);
2698                 break;
2699         case CMD_ABORTED:
2700                 hpsa_print_cmd(h, "aborted", cp);
2701                 break;
2702         case CMD_ABORT_FAILED:
2703                 hpsa_print_cmd(h, "abort failed", cp);
2704                 break;
2705         case CMD_UNSOLICITED_ABORT:
2706                 hpsa_print_cmd(h, "unsolicited abort", cp);
2707                 break;
2708         case CMD_TIMEOUT:
2709                 hpsa_print_cmd(h, "timed out", cp);
2710                 break;
2711         case CMD_UNABORTABLE:
2712                 hpsa_print_cmd(h, "unabortable", cp);
2713                 break;
2714         case CMD_CTLR_LOCKUP:
2715                 hpsa_print_cmd(h, "controller lockup detected", cp);
2716                 break;
2717         default:
2718                 hpsa_print_cmd(h, "unknown status", cp);
2719                 dev_warn(d, "Unknown command status %x\n",
2720                                 ei->CommandStatus);
2721         }
2722 }
2723
2724 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2725                         u16 page, unsigned char *buf,
2726                         unsigned char bufsize)
2727 {
2728         int rc = IO_OK;
2729         struct CommandList *c;
2730         struct ErrorInfo *ei;
2731
2732         c = cmd_alloc(h);
2733
2734         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2735                         page, scsi3addr, TYPE_CMD)) {
2736                 rc = -1;
2737                 goto out;
2738         }
2739         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2740                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2741         if (rc)
2742                 goto out;
2743         ei = c->err_info;
2744         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2745                 hpsa_scsi_interpret_error(h, c);
2746                 rc = -1;
2747         }
2748 out:
2749         cmd_free(h, c);
2750         return rc;
2751 }
2752
2753 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2754         u8 reset_type, int reply_queue)
2755 {
2756         int rc = IO_OK;
2757         struct CommandList *c;
2758         struct ErrorInfo *ei;
2759
2760         c = cmd_alloc(h);
2761
2762
2763         /* fill_cmd can't fail here, no data buffer to map. */
2764         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2765                         scsi3addr, TYPE_MSG);
2766         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2767         if (rc) {
2768                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2769                 goto out;
2770         }
2771         /* no unmap needed here because no data xfer. */
2772
2773         ei = c->err_info;
2774         if (ei->CommandStatus != 0) {
2775                 hpsa_scsi_interpret_error(h, c);
2776                 rc = -1;
2777         }
2778 out:
2779         cmd_free(h, c);
2780         return rc;
2781 }
2782
2783 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2784                                struct hpsa_scsi_dev_t *dev,
2785                                unsigned char *scsi3addr)
2786 {
2787         int i;
2788         bool match = false;
2789         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2790         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2791
2792         if (hpsa_is_cmd_idle(c))
2793                 return false;
2794
2795         switch (c->cmd_type) {
2796         case CMD_SCSI:
2797         case CMD_IOCTL_PEND:
2798                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2799                                 sizeof(c->Header.LUN.LunAddrBytes));
2800                 break;
2801
2802         case CMD_IOACCEL1:
2803         case CMD_IOACCEL2:
2804                 if (c->phys_disk == dev) {
2805                         /* HBA mode match */
2806                         match = true;
2807                 } else {
2808                         /* Possible RAID mode -- check each phys dev. */
2809                         /* FIXME:  Do we need to take out a lock here?  If
2810                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2811                          * instead. */
2812                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2813                                 /* FIXME: an alternate test might be
2814                                  *
2815                                  * match = dev->phys_disk[i]->ioaccel_handle
2816                                  *              == c2->scsi_nexus;      */
2817                                 match = dev->phys_disk[i] == c->phys_disk;
2818                         }
2819                 }
2820                 break;
2821
2822         case IOACCEL2_TMF:
2823                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2824                         match = dev->phys_disk[i]->ioaccel_handle ==
2825                                         le32_to_cpu(ac->it_nexus);
2826                 }
2827                 break;
2828
2829         case 0:         /* The command is in the middle of being initialized. */
2830                 match = false;
2831                 break;
2832
2833         default:
2834                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2835                         c->cmd_type);
2836                 BUG();
2837         }
2838
2839         return match;
2840 }
2841
2842 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2843         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2844 {
2845         int i;
2846         int rc = 0;
2847
2848         /* We can really only handle one reset at a time */
2849         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2850                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2851                 return -EINTR;
2852         }
2853
2854         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2855
2856         for (i = 0; i < h->nr_cmds; i++) {
2857                 struct CommandList *c = h->cmd_pool + i;
2858                 int refcount = atomic_inc_return(&c->refcount);
2859
2860                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2861                         unsigned long flags;
2862
2863                         /*
2864                          * Mark the target command as having a reset pending,
2865                          * then lock a lock so that the command cannot complete
2866                          * while we're considering it.  If the command is not
2867                          * idle then count it; otherwise revoke the event.
2868                          */
2869                         c->reset_pending = dev;
2870                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2871                         if (!hpsa_is_cmd_idle(c))
2872                                 atomic_inc(&dev->reset_cmds_out);
2873                         else
2874                                 c->reset_pending = NULL;
2875                         spin_unlock_irqrestore(&h->lock, flags);
2876                 }
2877
2878                 cmd_free(h, c);
2879         }
2880
2881         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2882         if (!rc)
2883                 wait_event(h->event_sync_wait_queue,
2884                         atomic_read(&dev->reset_cmds_out) == 0 ||
2885                         lockup_detected(h));
2886
2887         if (unlikely(lockup_detected(h))) {
2888                 dev_warn(&h->pdev->dev,
2889                          "Controller lockup detected during reset wait\n");
2890                 rc = -ENODEV;
2891         }
2892
2893         if (unlikely(rc))
2894                 atomic_set(&dev->reset_cmds_out, 0);
2895
2896         mutex_unlock(&h->reset_mutex);
2897         return rc;
2898 }
2899
2900 static void hpsa_get_raid_level(struct ctlr_info *h,
2901         unsigned char *scsi3addr, unsigned char *raid_level)
2902 {
2903         int rc;
2904         unsigned char *buf;
2905
2906         *raid_level = RAID_UNKNOWN;
2907         buf = kzalloc(64, GFP_KERNEL);
2908         if (!buf)
2909                 return;
2910         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2911         if (rc == 0)
2912                 *raid_level = buf[8];
2913         if (*raid_level > RAID_UNKNOWN)
2914                 *raid_level = RAID_UNKNOWN;
2915         kfree(buf);
2916         return;
2917 }
2918
2919 #define HPSA_MAP_DEBUG
2920 #ifdef HPSA_MAP_DEBUG
2921 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2922                                 struct raid_map_data *map_buff)
2923 {
2924         struct raid_map_disk_data *dd = &map_buff->data[0];
2925         int map, row, col;
2926         u16 map_cnt, row_cnt, disks_per_row;
2927
2928         if (rc != 0)
2929                 return;
2930
2931         /* Show details only if debugging has been activated. */
2932         if (h->raid_offload_debug < 2)
2933                 return;
2934
2935         dev_info(&h->pdev->dev, "structure_size = %u\n",
2936                                 le32_to_cpu(map_buff->structure_size));
2937         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2938                         le32_to_cpu(map_buff->volume_blk_size));
2939         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2940                         le64_to_cpu(map_buff->volume_blk_cnt));
2941         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2942                         map_buff->phys_blk_shift);
2943         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2944                         map_buff->parity_rotation_shift);
2945         dev_info(&h->pdev->dev, "strip_size = %u\n",
2946                         le16_to_cpu(map_buff->strip_size));
2947         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2948                         le64_to_cpu(map_buff->disk_starting_blk));
2949         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2950                         le64_to_cpu(map_buff->disk_blk_cnt));
2951         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2952                         le16_to_cpu(map_buff->data_disks_per_row));
2953         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2954                         le16_to_cpu(map_buff->metadata_disks_per_row));
2955         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2956                         le16_to_cpu(map_buff->row_cnt));
2957         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2958                         le16_to_cpu(map_buff->layout_map_count));
2959         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2960                         le16_to_cpu(map_buff->flags));
2961         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2962                         le16_to_cpu(map_buff->flags) &
2963                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2964         dev_info(&h->pdev->dev, "dekindex = %u\n",
2965                         le16_to_cpu(map_buff->dekindex));
2966         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2967         for (map = 0; map < map_cnt; map++) {
2968                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2969                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2970                 for (row = 0; row < row_cnt; row++) {
2971                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2972                         disks_per_row =
2973                                 le16_to_cpu(map_buff->data_disks_per_row);
2974                         for (col = 0; col < disks_per_row; col++, dd++)
2975                                 dev_info(&h->pdev->dev,
2976                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2977                                         col, dd->ioaccel_handle,
2978                                         dd->xor_mult[0], dd->xor_mult[1]);
2979                         disks_per_row =
2980                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2981                         for (col = 0; col < disks_per_row; col++, dd++)
2982                                 dev_info(&h->pdev->dev,
2983                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2984                                         col, dd->ioaccel_handle,
2985                                         dd->xor_mult[0], dd->xor_mult[1]);
2986                 }
2987         }
2988 }
2989 #else
2990 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2991                         __attribute__((unused)) int rc,
2992                         __attribute__((unused)) struct raid_map_data *map_buff)
2993 {
2994 }
2995 #endif
2996
2997 static int hpsa_get_raid_map(struct ctlr_info *h,
2998         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2999 {
3000         int rc = 0;
3001         struct CommandList *c;
3002         struct ErrorInfo *ei;
3003
3004         c = cmd_alloc(h);
3005
3006         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3007                         sizeof(this_device->raid_map), 0,
3008                         scsi3addr, TYPE_CMD)) {
3009                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3010                 cmd_free(h, c);
3011                 return -1;
3012         }
3013         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3014                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3015         if (rc)
3016                 goto out;
3017         ei = c->err_info;
3018         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3019                 hpsa_scsi_interpret_error(h, c);
3020                 rc = -1;
3021                 goto out;
3022         }
3023         cmd_free(h, c);
3024
3025         /* @todo in the future, dynamically allocate RAID map memory */
3026         if (le32_to_cpu(this_device->raid_map.structure_size) >
3027                                 sizeof(this_device->raid_map)) {
3028                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3029                 rc = -1;
3030         }
3031         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3032         return rc;
3033 out:
3034         cmd_free(h, c);
3035         return rc;
3036 }
3037
3038 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3039         struct bmic_identify_controller *buf, size_t bufsize)
3040 {
3041         int rc = IO_OK;
3042         struct CommandList *c;
3043         struct ErrorInfo *ei;
3044
3045         c = cmd_alloc(h);
3046
3047         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3048                 0, RAID_CTLR_LUNID, TYPE_CMD);
3049         if (rc)
3050                 goto out;
3051
3052         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3053                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3054         if (rc)
3055                 goto out;
3056         ei = c->err_info;
3057         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3058                 hpsa_scsi_interpret_error(h, c);
3059                 rc = -1;
3060         }
3061 out:
3062         cmd_free(h, c);
3063         return rc;
3064 }
3065
3066
3067 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3068                 unsigned char scsi3addr[], u16 bmic_device_index,
3069                 struct bmic_identify_physical_device *buf, size_t bufsize)
3070 {
3071         int rc = IO_OK;
3072         struct CommandList *c;
3073         struct ErrorInfo *ei;
3074
3075         c = cmd_alloc(h);
3076         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3077                 0, RAID_CTLR_LUNID, TYPE_CMD);
3078         if (rc)
3079                 goto out;
3080
3081         c->Request.CDB[2] = bmic_device_index & 0xff;
3082         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3083
3084         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3085                                                 NO_TIMEOUT);
3086         ei = c->err_info;
3087         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3088                 hpsa_scsi_interpret_error(h, c);
3089                 rc = -1;
3090         }
3091 out:
3092         cmd_free(h, c);
3093         return rc;
3094 }
3095
3096 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3097         unsigned char scsi3addr[], u8 page)
3098 {
3099         int rc;
3100         int i;
3101         int pages;
3102         unsigned char *buf, bufsize;
3103
3104         buf = kzalloc(256, GFP_KERNEL);
3105         if (!buf)
3106                 return 0;
3107
3108         /* Get the size of the page list first */
3109         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3110                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3111                                 buf, HPSA_VPD_HEADER_SZ);
3112         if (rc != 0)
3113                 goto exit_unsupported;
3114         pages = buf[3];
3115         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3116                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3117         else
3118                 bufsize = 255;
3119
3120         /* Get the whole VPD page list */
3121         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3122                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3123                                 buf, bufsize);
3124         if (rc != 0)
3125                 goto exit_unsupported;
3126
3127         pages = buf[3];
3128         for (i = 1; i <= pages; i++)
3129                 if (buf[3 + i] == page)
3130                         goto exit_supported;
3131 exit_unsupported:
3132         kfree(buf);
3133         return 0;
3134 exit_supported:
3135         kfree(buf);
3136         return 1;
3137 }
3138
3139 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3140         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3141 {
3142         int rc;
3143         unsigned char *buf;
3144         u8 ioaccel_status;
3145
3146         this_device->offload_config = 0;
3147         this_device->offload_enabled = 0;
3148         this_device->offload_to_be_enabled = 0;
3149
3150         buf = kzalloc(64, GFP_KERNEL);
3151         if (!buf)
3152                 return;
3153         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3154                 goto out;
3155         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3156                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3157         if (rc != 0)
3158                 goto out;
3159
3160 #define IOACCEL_STATUS_BYTE 4
3161 #define OFFLOAD_CONFIGURED_BIT 0x01
3162 #define OFFLOAD_ENABLED_BIT 0x02
3163         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3164         this_device->offload_config =
3165                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3166         if (this_device->offload_config) {
3167                 this_device->offload_enabled =
3168                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3169                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3170                         this_device->offload_enabled = 0;
3171         }
3172         this_device->offload_to_be_enabled = this_device->offload_enabled;
3173 out:
3174         kfree(buf);
3175         return;
3176 }
3177
3178 /* Get the device id from inquiry page 0x83 */
3179 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3180         unsigned char *device_id, int index, int buflen)
3181 {
3182         int rc;
3183         unsigned char *buf;
3184
3185         if (buflen > 16)
3186                 buflen = 16;
3187         buf = kzalloc(64, GFP_KERNEL);
3188         if (!buf)
3189                 return -ENOMEM;
3190         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3191         if (rc == 0)
3192                 memcpy(device_id, &buf[index], buflen);
3193
3194         kfree(buf);
3195
3196         return rc != 0;
3197 }
3198
3199 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3200                 void *buf, int bufsize,
3201                 int extended_response)
3202 {
3203         int rc = IO_OK;
3204         struct CommandList *c;
3205         unsigned char scsi3addr[8];
3206         struct ErrorInfo *ei;
3207
3208         c = cmd_alloc(h);
3209
3210         /* address the controller */
3211         memset(scsi3addr, 0, sizeof(scsi3addr));
3212         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3213                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3214                 rc = -1;
3215                 goto out;
3216         }
3217         if (extended_response)
3218                 c->Request.CDB[1] = extended_response;
3219         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3220                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3221         if (rc)
3222                 goto out;
3223         ei = c->err_info;
3224         if (ei->CommandStatus != 0 &&
3225             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3226                 hpsa_scsi_interpret_error(h, c);
3227                 rc = -1;
3228         } else {
3229                 struct ReportLUNdata *rld = buf;
3230
3231                 if (rld->extended_response_flag != extended_response) {
3232                         dev_err(&h->pdev->dev,
3233                                 "report luns requested format %u, got %u\n",
3234                                 extended_response,
3235                                 rld->extended_response_flag);
3236                         rc = -1;
3237                 }
3238         }
3239 out:
3240         cmd_free(h, c);
3241         return rc;
3242 }
3243
3244 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3245                 struct ReportExtendedLUNdata *buf, int bufsize)
3246 {
3247         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3248                                                 HPSA_REPORT_PHYS_EXTENDED);
3249 }
3250
3251 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3252                 struct ReportLUNdata *buf, int bufsize)
3253 {
3254         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3255 }
3256
3257 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3258         int bus, int target, int lun)
3259 {
3260         device->bus = bus;
3261         device->target = target;
3262         device->lun = lun;
3263 }
3264
3265 /* Use VPD inquiry to get details of volume status */
3266 static int hpsa_get_volume_status(struct ctlr_info *h,
3267                                         unsigned char scsi3addr[])
3268 {
3269         int rc;
3270         int status;
3271         int size;
3272         unsigned char *buf;
3273
3274         buf = kzalloc(64, GFP_KERNEL);
3275         if (!buf)
3276                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3277
3278         /* Does controller have VPD for logical volume status? */
3279         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3280                 goto exit_failed;
3281
3282         /* Get the size of the VPD return buffer */
3283         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3284                                         buf, HPSA_VPD_HEADER_SZ);
3285         if (rc != 0)
3286                 goto exit_failed;
3287         size = buf[3];
3288
3289         /* Now get the whole VPD buffer */
3290         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3291                                         buf, size + HPSA_VPD_HEADER_SZ);
3292         if (rc != 0)
3293                 goto exit_failed;
3294         status = buf[4]; /* status byte */
3295
3296         kfree(buf);
3297         return status;
3298 exit_failed:
3299         kfree(buf);
3300         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3301 }
3302
3303 /* Determine offline status of a volume.
3304  * Return either:
3305  *  0 (not offline)
3306  *  0xff (offline for unknown reasons)
3307  *  # (integer code indicating one of several NOT READY states
3308  *     describing why a volume is to be kept offline)
3309  */
3310 static int hpsa_volume_offline(struct ctlr_info *h,
3311                                         unsigned char scsi3addr[])
3312 {
3313         struct CommandList *c;
3314         unsigned char *sense;
3315         u8 sense_key, asc, ascq;
3316         int sense_len;
3317         int rc, ldstat = 0;
3318         u16 cmd_status;
3319         u8 scsi_status;
3320 #define ASC_LUN_NOT_READY 0x04
3321 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3322 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3323
3324         c = cmd_alloc(h);
3325
3326         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3327         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3328         if (rc) {
3329                 cmd_free(h, c);
3330                 return 0;
3331         }
3332         sense = c->err_info->SenseInfo;
3333         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3334                 sense_len = sizeof(c->err_info->SenseInfo);
3335         else
3336                 sense_len = c->err_info->SenseLen;
3337         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3338         cmd_status = c->err_info->CommandStatus;
3339         scsi_status = c->err_info->ScsiStatus;
3340         cmd_free(h, c);
3341         /* Is the volume 'not ready'? */
3342         if (cmd_status != CMD_TARGET_STATUS ||
3343                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3344                 sense_key != NOT_READY ||
3345                 asc != ASC_LUN_NOT_READY)  {
3346                 return 0;
3347         }
3348
3349         /* Determine the reason for not ready state */
3350         ldstat = hpsa_get_volume_status(h, scsi3addr);
3351
3352         /* Keep volume offline in certain cases: */
3353         switch (ldstat) {
3354         case HPSA_LV_UNDERGOING_ERASE:
3355         case HPSA_LV_NOT_AVAILABLE:
3356         case HPSA_LV_UNDERGOING_RPI:
3357         case HPSA_LV_PENDING_RPI:
3358         case HPSA_LV_ENCRYPTED_NO_KEY:
3359         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3360         case HPSA_LV_UNDERGOING_ENCRYPTION:
3361         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3362         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3363                 return ldstat;
3364         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3365                 /* If VPD status page isn't available,
3366                  * use ASC/ASCQ to determine state
3367                  */
3368                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3369                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3370                         return ldstat;
3371                 break;
3372         default:
3373                 break;
3374         }
3375         return 0;
3376 }
3377
3378 /*
3379  * Find out if a logical device supports aborts by simply trying one.
3380  * Smart Array may claim not to support aborts on logical drives, but
3381  * if a MSA2000 * is connected, the drives on that will be presented
3382  * by the Smart Array as logical drives, and aborts may be sent to
3383  * those devices successfully.  So the simplest way to find out is
3384  * to simply try an abort and see how the device responds.
3385  */
3386 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3387                                         unsigned char *scsi3addr)
3388 {
3389         struct CommandList *c;
3390         struct ErrorInfo *ei;
3391         int rc = 0;
3392
3393         u64 tag = (u64) -1; /* bogus tag */
3394
3395         /* Assume that physical devices support aborts */
3396         if (!is_logical_dev_addr_mode(scsi3addr))
3397                 return 1;
3398
3399         c = cmd_alloc(h);
3400
3401         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3402         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3403         /* no unmap needed here because no data xfer. */
3404         ei = c->err_info;
3405         switch (ei->CommandStatus) {
3406         case CMD_INVALID:
3407                 rc = 0;
3408                 break;
3409         case CMD_UNABORTABLE:
3410         case CMD_ABORT_FAILED:
3411                 rc = 1;
3412                 break;
3413         case CMD_TMF_STATUS:
3414                 rc = hpsa_evaluate_tmf_status(h, c);
3415                 break;
3416         default:
3417                 rc = 0;
3418                 break;
3419         }
3420         cmd_free(h, c);
3421         return rc;
3422 }
3423
3424 static void sanitize_inquiry_string(unsigned char *s, int len)
3425 {
3426         bool terminated = false;
3427
3428         for (; len > 0; (--len, ++s)) {
3429                 if (*s == 0)
3430                         terminated = true;
3431                 if (terminated || *s < 0x20 || *s > 0x7e)
3432                         *s = ' ';
3433         }
3434 }
3435
3436 static int hpsa_update_device_info(struct ctlr_info *h,
3437         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3438         unsigned char *is_OBDR_device)
3439 {
3440
3441 #define OBDR_SIG_OFFSET 43
3442 #define OBDR_TAPE_SIG "$DR-10"
3443 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3444 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3445
3446         unsigned char *inq_buff;
3447         unsigned char *obdr_sig;
3448         int rc = 0;
3449
3450         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3451         if (!inq_buff) {
3452                 rc = -ENOMEM;
3453                 goto bail_out;
3454         }
3455
3456         /* Do an inquiry to the device to see what it is. */
3457         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3458                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3459                 /* Inquiry failed (msg printed already) */
3460                 dev_err(&h->pdev->dev,
3461                         "hpsa_update_device_info: inquiry failed\n");
3462                 rc = -EIO;
3463                 goto bail_out;
3464         }
3465
3466         sanitize_inquiry_string(&inq_buff[8], 8);
3467         sanitize_inquiry_string(&inq_buff[16], 16);
3468
3469         this_device->devtype = (inq_buff[0] & 0x1f);
3470         memcpy(this_device->scsi3addr, scsi3addr, 8);
3471         memcpy(this_device->vendor, &inq_buff[8],
3472                 sizeof(this_device->vendor));
3473         memcpy(this_device->model, &inq_buff[16],
3474                 sizeof(this_device->model));
3475         memset(this_device->device_id, 0,
3476                 sizeof(this_device->device_id));
3477         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3478                 sizeof(this_device->device_id));
3479
3480         if (this_device->devtype == TYPE_DISK &&
3481                 is_logical_dev_addr_mode(scsi3addr)) {
3482                 int volume_offline;
3483
3484                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3485                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3486                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3487                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3488                 if (volume_offline < 0 || volume_offline > 0xff)
3489                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3490                 this_device->volume_offline = volume_offline & 0xff;
3491         } else {
3492                 this_device->raid_level = RAID_UNKNOWN;
3493                 this_device->offload_config = 0;
3494                 this_device->offload_enabled = 0;
3495                 this_device->offload_to_be_enabled = 0;
3496                 this_device->hba_ioaccel_enabled = 0;
3497                 this_device->volume_offline = 0;
3498                 this_device->queue_depth = h->nr_cmds;
3499         }
3500
3501         if (is_OBDR_device) {
3502                 /* See if this is a One-Button-Disaster-Recovery device
3503                  * by looking for "$DR-10" at offset 43 in inquiry data.
3504                  */
3505                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3506                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3507                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3508                                                 OBDR_SIG_LEN) == 0);
3509         }
3510         kfree(inq_buff);
3511         return 0;
3512
3513 bail_out:
3514         kfree(inq_buff);
3515         return rc;
3516 }
3517
3518 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3519                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3520 {
3521         unsigned long flags;
3522         int rc, entry;
3523         /*
3524          * See if this device supports aborts.  If we already know
3525          * the device, we already know if it supports aborts, otherwise
3526          * we have to find out if it supports aborts by trying one.
3527          */
3528         spin_lock_irqsave(&h->devlock, flags);
3529         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3530         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3531                 entry >= 0 && entry < h->ndevices) {
3532                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3533                 spin_unlock_irqrestore(&h->devlock, flags);
3534         } else {
3535                 spin_unlock_irqrestore(&h->devlock, flags);
3536                 dev->supports_aborts =
3537                                 hpsa_device_supports_aborts(h, scsi3addr);
3538                 if (dev->supports_aborts < 0)
3539                         dev->supports_aborts = 0;
3540         }
3541 }
3542
3543 /*
3544  * Helper function to assign bus, target, lun mapping of devices.
3545  * Logical drive target and lun are assigned at this time, but
3546  * physical device lun and target assignment are deferred (assigned
3547  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3548 */
3549 static void figure_bus_target_lun(struct ctlr_info *h,
3550         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3551 {
3552         u32 lunid = get_unaligned_le32(lunaddrbytes);
3553
3554         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3555                 /* physical device, target and lun filled in later */
3556                 if (is_hba_lunid(lunaddrbytes))
3557                         hpsa_set_bus_target_lun(device,
3558                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3559                 else
3560                         /* defer target, lun assignment for physical devices */
3561                         hpsa_set_bus_target_lun(device,
3562                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3563                 return;
3564         }
3565         /* It's a logical device */
3566         if (device->external) {
3567                 hpsa_set_bus_target_lun(device,
3568                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3569                         lunid & 0x00ff);
3570                 return;
3571         }
3572         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3573                                 0, lunid & 0x3fff);
3574 }
3575
3576
3577 /*
3578  * Get address of physical disk used for an ioaccel2 mode command:
3579  *      1. Extract ioaccel2 handle from the command.
3580  *      2. Find a matching ioaccel2 handle from list of physical disks.
3581  *      3. Return:
3582  *              1 and set scsi3addr to address of matching physical
3583  *              0 if no matching physical disk was found.
3584  */
3585 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3586         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3587 {
3588         struct io_accel2_cmd *c2 =
3589                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3590         unsigned long flags;
3591         int i;
3592
3593         spin_lock_irqsave(&h->devlock, flags);
3594         for (i = 0; i < h->ndevices; i++)
3595                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3596                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3597                                 sizeof(h->dev[i]->scsi3addr));
3598                         spin_unlock_irqrestore(&h->devlock, flags);
3599                         return 1;
3600                 }
3601         spin_unlock_irqrestore(&h->devlock, flags);
3602         return 0;
3603 }
3604
3605 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3606         int i, int nphysicals, int nlocal_logicals)
3607 {
3608         /* In report logicals, local logicals are listed first,
3609         * then any externals.
3610         */
3611         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3612
3613         if (i == raid_ctlr_position)
3614                 return 0;
3615
3616         if (i < logicals_start)
3617                 return 0;
3618
3619         /* i is in logicals range, but still within local logicals */
3620         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3621                 return 0;
3622
3623         return 1; /* it's an external lun */
3624 }
3625
3626 /*
3627  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3628  * logdev.  The number of luns in physdev and logdev are returned in
3629  * *nphysicals and *nlogicals, respectively.
3630  * Returns 0 on success, -1 otherwise.
3631  */
3632 static int hpsa_gather_lun_info(struct ctlr_info *h,
3633         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3634         struct ReportLUNdata *logdev, u32 *nlogicals)
3635 {
3636         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3637                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3638                 return -1;
3639         }
3640         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3641         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3642                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3643                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3644                 *nphysicals = HPSA_MAX_PHYS_LUN;
3645         }
3646         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3647                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3648                 return -1;
3649         }
3650         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3651         /* Reject Logicals in excess of our max capability. */
3652         if (*nlogicals > HPSA_MAX_LUN) {
3653                 dev_warn(&h->pdev->dev,
3654                         "maximum logical LUNs (%d) exceeded.  "
3655                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3656                         *nlogicals - HPSA_MAX_LUN);
3657                         *nlogicals = HPSA_MAX_LUN;
3658         }
3659         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3660                 dev_warn(&h->pdev->dev,
3661                         "maximum logical + physical LUNs (%d) exceeded. "
3662                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3663                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3664                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3665         }
3666         return 0;
3667 }
3668
3669 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3670         int i, int nphysicals, int nlogicals,
3671         struct ReportExtendedLUNdata *physdev_list,
3672         struct ReportLUNdata *logdev_list)
3673 {
3674         /* Helper function, figure out where the LUN ID info is coming from
3675          * given index i, lists of physical and logical devices, where in
3676          * the list the raid controller is supposed to appear (first or last)
3677          */
3678
3679         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3680         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3681
3682         if (i == raid_ctlr_position)
3683                 return RAID_CTLR_LUNID;
3684
3685         if (i < logicals_start)
3686                 return &physdev_list->LUN[i -
3687                                 (raid_ctlr_position == 0)].lunid[0];
3688
3689         if (i < last_device)
3690                 return &logdev_list->LUN[i - nphysicals -
3691                         (raid_ctlr_position == 0)][0];
3692         BUG();
3693         return NULL;
3694 }
3695
3696 /* get physical drive ioaccel handle and queue depth */
3697 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3698                 struct hpsa_scsi_dev_t *dev,
3699                 struct ReportExtendedLUNdata *rlep, int rle_index,
3700                 struct bmic_identify_physical_device *id_phys)
3701 {
3702         int rc;
3703         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3704
3705         dev->ioaccel_handle = rle->ioaccel_handle;
3706         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3707                 dev->hba_ioaccel_enabled = 1;
3708         memset(id_phys, 0, sizeof(*id_phys));
3709         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3710                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3711                         sizeof(*id_phys));
3712         if (!rc)
3713                 /* Reserve space for FW operations */
3714 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3715 #define DRIVE_QUEUE_DEPTH 7
3716                 dev->queue_depth =
3717                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3718                                 DRIVE_CMDS_RESERVED_FOR_FW;
3719         else
3720                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3721 }
3722
3723 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3724         struct ReportExtendedLUNdata *rlep, int rle_index,
3725         struct bmic_identify_physical_device *id_phys)
3726 {
3727         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3728
3729         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3730                 this_device->hba_ioaccel_enabled = 1;
3731
3732         memcpy(&this_device->active_path_index,
3733                 &id_phys->active_path_number,
3734                 sizeof(this_device->active_path_index));
3735         memcpy(&this_device->path_map,
3736                 &id_phys->redundant_path_present_map,
3737                 sizeof(this_device->path_map));
3738         memcpy(&this_device->box,
3739                 &id_phys->alternate_paths_phys_box_on_port,
3740                 sizeof(this_device->box));
3741         memcpy(&this_device->phys_connector,
3742                 &id_phys->alternate_paths_phys_connector,
3743                 sizeof(this_device->phys_connector));
3744         memcpy(&this_device->bay,
3745                 &id_phys->phys_bay_in_box,
3746                 sizeof(this_device->bay));
3747 }
3748
3749 /* get number of local logical disks. */
3750 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3751         struct bmic_identify_controller *id_ctlr,
3752         u32 *nlocals)
3753 {
3754         int rc;
3755
3756         if (!id_ctlr) {
3757                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3758                         __func__);
3759                 return -ENOMEM;
3760         }
3761         memset(id_ctlr, 0, sizeof(*id_ctlr));
3762         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3763         if (!rc)
3764                 if (id_ctlr->configured_logical_drive_count < 256)
3765                         *nlocals = id_ctlr->configured_logical_drive_count;
3766                 else
3767                         *nlocals = le16_to_cpu(
3768                                         id_ctlr->extended_logical_unit_count);
3769         else
3770                 *nlocals = -1;
3771         return rc;
3772 }
3773
3774
3775 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3776 {
3777         /* the idea here is we could get notified
3778          * that some devices have changed, so we do a report
3779          * physical luns and report logical luns cmd, and adjust
3780          * our list of devices accordingly.
3781          *
3782          * The scsi3addr's of devices won't change so long as the
3783          * adapter is not reset.  That means we can rescan and
3784          * tell which devices we already know about, vs. new
3785          * devices, vs.  disappearing devices.
3786          */
3787         struct ReportExtendedLUNdata *physdev_list = NULL;
3788         struct ReportLUNdata *logdev_list = NULL;
3789         struct bmic_identify_physical_device *id_phys = NULL;
3790         struct bmic_identify_controller *id_ctlr = NULL;
3791         u32 nphysicals = 0;
3792         u32 nlogicals = 0;
3793         u32 nlocal_logicals = 0;
3794         u32 ndev_allocated = 0;
3795         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3796         int ncurrent = 0;
3797         int i, n_ext_target_devs, ndevs_to_allocate;
3798         int raid_ctlr_position;
3799         bool physical_device;
3800         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3801
3802         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3803         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3804         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3805         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3806         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3807         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3808
3809         if (!currentsd || !physdev_list || !logdev_list ||
3810                 !tmpdevice || !id_phys || !id_ctlr) {
3811                 dev_err(&h->pdev->dev, "out of memory\n");
3812                 goto out;
3813         }
3814         memset(lunzerobits, 0, sizeof(lunzerobits));
3815
3816         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3817
3818         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3819                         logdev_list, &nlogicals)) {
3820                 h->drv_req_rescan = 1;
3821                 goto out;
3822         }
3823
3824         /* Set number of local logicals (non PTRAID) */
3825         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3826                 dev_warn(&h->pdev->dev,
3827                         "%s: Can't determine number of local logical devices.\n",
3828                         __func__);
3829         }
3830
3831         /* We might see up to the maximum number of logical and physical disks
3832          * plus external target devices, and a device for the local RAID
3833          * controller.
3834          */
3835         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3836
3837         /* Allocate the per device structures */
3838         for (i = 0; i < ndevs_to_allocate; i++) {
3839                 if (i >= HPSA_MAX_DEVICES) {
3840                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3841                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3842                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3843                         break;
3844                 }
3845
3846                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3847                 if (!currentsd[i]) {
3848                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3849                                 __FILE__, __LINE__);
3850                         h->drv_req_rescan = 1;
3851                         goto out;
3852                 }
3853                 ndev_allocated++;
3854         }
3855
3856         if (is_scsi_rev_5(h))
3857                 raid_ctlr_position = 0;
3858         else
3859                 raid_ctlr_position = nphysicals + nlogicals;
3860
3861         /* adjust our table of devices */
3862         n_ext_target_devs = 0;
3863         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3864                 u8 *lunaddrbytes, is_OBDR = 0;
3865                 int rc = 0;
3866                 int phys_dev_index = i - (raid_ctlr_position == 0);
3867
3868                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
3869
3870                 /* Figure out where the LUN ID info is coming from */
3871                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3872                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3873
3874                 /* skip masked non-disk devices */
3875                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
3876                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
3877                         continue;
3878
3879                 /* Get device type, vendor, model, device id */
3880                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3881                                                         &is_OBDR);
3882                 if (rc == -ENOMEM) {
3883                         dev_warn(&h->pdev->dev,
3884                                 "Out of memory, rescan deferred.\n");
3885                         h->drv_req_rescan = 1;
3886                         goto out;
3887                 }
3888                 if (rc) {
3889                         dev_warn(&h->pdev->dev,
3890                                 "Inquiry failed, skipping device.\n");
3891                         continue;
3892                 }
3893
3894                 /* Determine if this is a lun from an external target array */
3895                 tmpdevice->external =
3896                         figure_external_status(h, raid_ctlr_position, i,
3897                                                 nphysicals, nlocal_logicals);
3898
3899                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3900                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3901                 this_device = currentsd[ncurrent];
3902
3903                 /* Turn on discovery_polling if there are ext target devices.
3904                  * Event-based change notification is unreliable for those.
3905                  */
3906                 if (!h->discovery_polling) {
3907                         if (tmpdevice->external) {
3908                                 h->discovery_polling = 1;
3909                                 dev_info(&h->pdev->dev,
3910                                         "External target, activate discovery polling.\n");
3911                         }
3912                 }
3913
3914
3915                 *this_device = *tmpdevice;
3916                 this_device->physical_device = physical_device;
3917
3918                 /*
3919                  * Expose all devices except for physical devices that
3920                  * are masked.
3921                  */
3922                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
3923                         this_device->expose_device = 0;
3924                 else
3925                         this_device->expose_device = 1;
3926
3927                 switch (this_device->devtype) {
3928                 case TYPE_ROM:
3929                         /* We don't *really* support actual CD-ROM devices,
3930                          * just "One Button Disaster Recovery" tape drive
3931                          * which temporarily pretends to be a CD-ROM drive.
3932                          * So we check that the device is really an OBDR tape
3933                          * device by checking for "$DR-10" in bytes 43-48 of
3934                          * the inquiry data.
3935                          */
3936                         if (is_OBDR)
3937                                 ncurrent++;
3938                         break;
3939                 case TYPE_DISK:
3940                         if (this_device->physical_device) {
3941                                 /* The disk is in HBA mode. */
3942                                 /* Never use RAID mapper in HBA mode. */
3943                                 this_device->offload_enabled = 0;
3944                                 hpsa_get_ioaccel_drive_info(h, this_device,
3945                                         physdev_list, phys_dev_index, id_phys);
3946                                 hpsa_get_path_info(this_device,
3947                                         physdev_list, phys_dev_index, id_phys);
3948                         }
3949                         ncurrent++;
3950                         break;
3951                 case TYPE_TAPE:
3952                 case TYPE_MEDIUM_CHANGER:
3953                 case TYPE_ENCLOSURE:
3954                         ncurrent++;
3955                         break;
3956                 case TYPE_RAID:
3957                         /* Only present the Smartarray HBA as a RAID controller.
3958                          * If it's a RAID controller other than the HBA itself
3959                          * (an external RAID controller, MSA500 or similar)
3960                          * don't present it.
3961                          */
3962                         if (!is_hba_lunid(lunaddrbytes))
3963                                 break;
3964                         ncurrent++;
3965                         break;
3966                 default:
3967                         break;
3968                 }
3969                 if (ncurrent >= HPSA_MAX_DEVICES)
3970                         break;
3971         }
3972         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
3973 out:
3974         kfree(tmpdevice);
3975         for (i = 0; i < ndev_allocated; i++)
3976                 kfree(currentsd[i]);
3977         kfree(currentsd);
3978         kfree(physdev_list);
3979         kfree(logdev_list);
3980         kfree(id_ctlr);
3981         kfree(id_phys);
3982 }
3983
3984 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3985                                    struct scatterlist *sg)
3986 {
3987         u64 addr64 = (u64) sg_dma_address(sg);
3988         unsigned int len = sg_dma_len(sg);
3989
3990         desc->Addr = cpu_to_le64(addr64);
3991         desc->Len = cpu_to_le32(len);
3992         desc->Ext = 0;
3993 }
3994
3995 /*
3996  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3997  * dma mapping  and fills in the scatter gather entries of the
3998  * hpsa command, cp.
3999  */
4000 static int hpsa_scatter_gather(struct ctlr_info *h,
4001                 struct CommandList *cp,
4002                 struct scsi_cmnd *cmd)
4003 {
4004         struct scatterlist *sg;
4005         int use_sg, i, sg_limit, chained, last_sg;
4006         struct SGDescriptor *curr_sg;
4007
4008         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4009
4010         use_sg = scsi_dma_map(cmd);
4011         if (use_sg < 0)
4012                 return use_sg;
4013
4014         if (!use_sg)
4015                 goto sglist_finished;
4016
4017         /*
4018          * If the number of entries is greater than the max for a single list,
4019          * then we have a chained list; we will set up all but one entry in the
4020          * first list (the last entry is saved for link information);
4021          * otherwise, we don't have a chained list and we'll set up at each of
4022          * the entries in the one list.
4023          */
4024         curr_sg = cp->SG;
4025         chained = use_sg > h->max_cmd_sg_entries;
4026         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4027         last_sg = scsi_sg_count(cmd) - 1;
4028         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4029                 hpsa_set_sg_descriptor(curr_sg, sg);
4030                 curr_sg++;
4031         }
4032
4033         if (chained) {
4034                 /*
4035                  * Continue with the chained list.  Set curr_sg to the chained
4036                  * list.  Modify the limit to the total count less the entries
4037                  * we've already set up.  Resume the scan at the list entry
4038                  * where the previous loop left off.
4039                  */
4040                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4041                 sg_limit = use_sg - sg_limit;
4042                 for_each_sg(sg, sg, sg_limit, i) {
4043                         hpsa_set_sg_descriptor(curr_sg, sg);
4044                         curr_sg++;
4045                 }
4046         }
4047
4048         /* Back the pointer up to the last entry and mark it as "last". */
4049         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4050
4051         if (use_sg + chained > h->maxSG)
4052                 h->maxSG = use_sg + chained;
4053
4054         if (chained) {
4055                 cp->Header.SGList = h->max_cmd_sg_entries;
4056                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4057                 if (hpsa_map_sg_chain_block(h, cp)) {
4058                         scsi_dma_unmap(cmd);
4059                         return -1;
4060                 }
4061                 return 0;
4062         }
4063
4064 sglist_finished:
4065
4066         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4067         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4068         return 0;
4069 }
4070
4071 #define IO_ACCEL_INELIGIBLE (1)
4072 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4073 {
4074         int is_write = 0;
4075         u32 block;
4076         u32 block_cnt;
4077
4078         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4079         switch (cdb[0]) {
4080         case WRITE_6:
4081         case WRITE_12:
4082                 is_write = 1;
4083         case READ_6:
4084         case READ_12:
4085                 if (*cdb_len == 6) {
4086                         block = get_unaligned_be16(&cdb[2]);
4087                         block_cnt = cdb[4];
4088                         if (block_cnt == 0)
4089                                 block_cnt = 256;
4090                 } else {
4091                         BUG_ON(*cdb_len != 12);
4092                         block = get_unaligned_be32(&cdb[2]);
4093                         block_cnt = get_unaligned_be32(&cdb[6]);
4094                 }
4095                 if (block_cnt > 0xffff)
4096                         return IO_ACCEL_INELIGIBLE;
4097
4098                 cdb[0] = is_write ? WRITE_10 : READ_10;
4099                 cdb[1] = 0;
4100                 cdb[2] = (u8) (block >> 24);
4101                 cdb[3] = (u8) (block >> 16);
4102                 cdb[4] = (u8) (block >> 8);
4103                 cdb[5] = (u8) (block);
4104                 cdb[6] = 0;
4105                 cdb[7] = (u8) (block_cnt >> 8);
4106                 cdb[8] = (u8) (block_cnt);
4107                 cdb[9] = 0;
4108                 *cdb_len = 10;
4109                 break;
4110         }
4111         return 0;
4112 }
4113
4114 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4115         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4116         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4117 {
4118         struct scsi_cmnd *cmd = c->scsi_cmd;
4119         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4120         unsigned int len;
4121         unsigned int total_len = 0;
4122         struct scatterlist *sg;
4123         u64 addr64;
4124         int use_sg, i;
4125         struct SGDescriptor *curr_sg;
4126         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4127
4128         /* TODO: implement chaining support */
4129         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4130                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4131                 return IO_ACCEL_INELIGIBLE;
4132         }
4133
4134         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4135
4136         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4137                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4138                 return IO_ACCEL_INELIGIBLE;
4139         }
4140
4141         c->cmd_type = CMD_IOACCEL1;
4142
4143         /* Adjust the DMA address to point to the accelerated command buffer */
4144         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4145                                 (c->cmdindex * sizeof(*cp));
4146         BUG_ON(c->busaddr & 0x0000007F);
4147
4148         use_sg = scsi_dma_map(cmd);
4149         if (use_sg < 0) {
4150                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4151                 return use_sg;
4152         }
4153
4154         if (use_sg) {
4155                 curr_sg = cp->SG;
4156                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4157                         addr64 = (u64) sg_dma_address(sg);
4158                         len  = sg_dma_len(sg);
4159                         total_len += len;
4160                         curr_sg->Addr = cpu_to_le64(addr64);
4161                         curr_sg->Len = cpu_to_le32(len);
4162                         curr_sg->Ext = cpu_to_le32(0);
4163                         curr_sg++;
4164                 }
4165                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4166
4167                 switch (cmd->sc_data_direction) {
4168                 case DMA_TO_DEVICE:
4169                         control |= IOACCEL1_CONTROL_DATA_OUT;
4170                         break;
4171                 case DMA_FROM_DEVICE:
4172                         control |= IOACCEL1_CONTROL_DATA_IN;
4173                         break;
4174                 case DMA_NONE:
4175                         control |= IOACCEL1_CONTROL_NODATAXFER;
4176                         break;
4177                 default:
4178                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4179                         cmd->sc_data_direction);
4180                         BUG();
4181                         break;
4182                 }
4183         } else {
4184                 control |= IOACCEL1_CONTROL_NODATAXFER;
4185         }
4186
4187         c->Header.SGList = use_sg;
4188         /* Fill out the command structure to submit */
4189         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4190         cp->transfer_len = cpu_to_le32(total_len);
4191         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4192                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4193         cp->control = cpu_to_le32(control);
4194         memcpy(cp->CDB, cdb, cdb_len);
4195         memcpy(cp->CISS_LUN, scsi3addr, 8);
4196         /* Tag was already set at init time. */
4197         enqueue_cmd_and_start_io(h, c);
4198         return 0;
4199 }
4200
4201 /*
4202  * Queue a command directly to a device behind the controller using the
4203  * I/O accelerator path.
4204  */
4205 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4206         struct CommandList *c)
4207 {
4208         struct scsi_cmnd *cmd = c->scsi_cmd;
4209         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4210
4211         c->phys_disk = dev;
4212
4213         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4214                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4215 }
4216
4217 /*
4218  * Set encryption parameters for the ioaccel2 request
4219  */
4220 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4221         struct CommandList *c, struct io_accel2_cmd *cp)
4222 {
4223         struct scsi_cmnd *cmd = c->scsi_cmd;
4224         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4225         struct raid_map_data *map = &dev->raid_map;
4226         u64 first_block;
4227
4228         /* Are we doing encryption on this device */
4229         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4230                 return;
4231         /* Set the data encryption key index. */
4232         cp->dekindex = map->dekindex;
4233
4234         /* Set the encryption enable flag, encoded into direction field. */
4235         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4236
4237         /* Set encryption tweak values based on logical block address
4238          * If block size is 512, tweak value is LBA.
4239          * For other block sizes, tweak is (LBA * block size)/ 512)
4240          */
4241         switch (cmd->cmnd[0]) {
4242         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4243         case WRITE_6:
4244         case READ_6:
4245                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4246                 break;
4247         case WRITE_10:
4248         case READ_10:
4249         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4250         case WRITE_12:
4251         case READ_12:
4252                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4253                 break;
4254         case WRITE_16:
4255         case READ_16:
4256                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4257                 break;
4258         default:
4259                 dev_err(&h->pdev->dev,
4260                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4261                         __func__, cmd->cmnd[0]);
4262                 BUG();
4263                 break;
4264         }
4265
4266         if (le32_to_cpu(map->volume_blk_size) != 512)
4267                 first_block = first_block *
4268                                 le32_to_cpu(map->volume_blk_size)/512;
4269
4270         cp->tweak_lower = cpu_to_le32(first_block);
4271         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4272 }
4273
4274 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4275         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4276         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4277 {
4278         struct scsi_cmnd *cmd = c->scsi_cmd;
4279         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4280         struct ioaccel2_sg_element *curr_sg;
4281         int use_sg, i;
4282         struct scatterlist *sg;
4283         u64 addr64;
4284         u32 len;
4285         u32 total_len = 0;
4286
4287         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4288
4289         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4290                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4291                 return IO_ACCEL_INELIGIBLE;
4292         }
4293
4294         c->cmd_type = CMD_IOACCEL2;
4295         /* Adjust the DMA address to point to the accelerated command buffer */
4296         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4297                                 (c->cmdindex * sizeof(*cp));
4298         BUG_ON(c->busaddr & 0x0000007F);
4299
4300         memset(cp, 0, sizeof(*cp));
4301         cp->IU_type = IOACCEL2_IU_TYPE;
4302
4303         use_sg = scsi_dma_map(cmd);
4304         if (use_sg < 0) {
4305                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4306                 return use_sg;
4307         }
4308
4309         if (use_sg) {
4310                 curr_sg = cp->sg;
4311                 if (use_sg > h->ioaccel_maxsg) {
4312                         addr64 = le64_to_cpu(
4313                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4314                         curr_sg->address = cpu_to_le64(addr64);
4315                         curr_sg->length = 0;
4316                         curr_sg->reserved[0] = 0;
4317                         curr_sg->reserved[1] = 0;
4318                         curr_sg->reserved[2] = 0;
4319                         curr_sg->chain_indicator = 0x80;
4320
4321                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4322                 }
4323                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4324                         addr64 = (u64) sg_dma_address(sg);
4325                         len  = sg_dma_len(sg);
4326                         total_len += len;
4327                         curr_sg->address = cpu_to_le64(addr64);
4328                         curr_sg->length = cpu_to_le32(len);
4329                         curr_sg->reserved[0] = 0;
4330                         curr_sg->reserved[1] = 0;
4331                         curr_sg->reserved[2] = 0;
4332                         curr_sg->chain_indicator = 0;
4333                         curr_sg++;
4334                 }
4335
4336                 switch (cmd->sc_data_direction) {
4337                 case DMA_TO_DEVICE:
4338                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4339                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4340                         break;
4341                 case DMA_FROM_DEVICE:
4342                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4343                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4344                         break;
4345                 case DMA_NONE:
4346                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4347                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4348                         break;
4349                 default:
4350                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4351                                 cmd->sc_data_direction);
4352                         BUG();
4353                         break;
4354                 }
4355         } else {
4356                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4357                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4358         }
4359
4360         /* Set encryption parameters, if necessary */
4361         set_encrypt_ioaccel2(h, c, cp);
4362
4363         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4364         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4365         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4366
4367         cp->data_len = cpu_to_le32(total_len);
4368         cp->err_ptr = cpu_to_le64(c->busaddr +
4369                         offsetof(struct io_accel2_cmd, error_data));
4370         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4371
4372         /* fill in sg elements */
4373         if (use_sg > h->ioaccel_maxsg) {
4374                 cp->sg_count = 1;
4375                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4376                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4377                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4378                         scsi_dma_unmap(cmd);
4379                         return -1;
4380                 }
4381         } else
4382                 cp->sg_count = (u8) use_sg;
4383
4384         enqueue_cmd_and_start_io(h, c);
4385         return 0;
4386 }
4387
4388 /*
4389  * Queue a command to the correct I/O accelerator path.
4390  */
4391 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4392         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4393         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4394 {
4395         /* Try to honor the device's queue depth */
4396         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4397                                         phys_disk->queue_depth) {
4398                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4399                 return IO_ACCEL_INELIGIBLE;
4400         }
4401         if (h->transMethod & CFGTBL_Trans_io_accel1)
4402                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4403                                                 cdb, cdb_len, scsi3addr,
4404                                                 phys_disk);
4405         else
4406                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4407                                                 cdb, cdb_len, scsi3addr,
4408                                                 phys_disk);
4409 }
4410
4411 static void raid_map_helper(struct raid_map_data *map,
4412                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4413 {
4414         if (offload_to_mirror == 0)  {
4415                 /* use physical disk in the first mirrored group. */
4416                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4417                 return;
4418         }
4419         do {
4420                 /* determine mirror group that *map_index indicates */
4421                 *current_group = *map_index /
4422                         le16_to_cpu(map->data_disks_per_row);
4423                 if (offload_to_mirror == *current_group)
4424                         continue;
4425                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4426                         /* select map index from next group */
4427                         *map_index += le16_to_cpu(map->data_disks_per_row);
4428                         (*current_group)++;
4429                 } else {
4430                         /* select map index from first group */
4431                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4432                         *current_group = 0;
4433                 }
4434         } while (offload_to_mirror != *current_group);
4435 }
4436
4437 /*
4438  * Attempt to perform offload RAID mapping for a logical volume I/O.
4439  */
4440 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4441         struct CommandList *c)
4442 {
4443         struct scsi_cmnd *cmd = c->scsi_cmd;
4444         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4445         struct raid_map_data *map = &dev->raid_map;
4446         struct raid_map_disk_data *dd = &map->data[0];
4447         int is_write = 0;
4448         u32 map_index;
4449         u64 first_block, last_block;
4450         u32 block_cnt;
4451         u32 blocks_per_row;
4452         u64 first_row, last_row;
4453         u32 first_row_offset, last_row_offset;
4454         u32 first_column, last_column;
4455         u64 r0_first_row, r0_last_row;
4456         u32 r5or6_blocks_per_row;
4457         u64 r5or6_first_row, r5or6_last_row;
4458         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4459         u32 r5or6_first_column, r5or6_last_column;
4460         u32 total_disks_per_row;
4461         u32 stripesize;
4462         u32 first_group, last_group, current_group;
4463         u32 map_row;
4464         u32 disk_handle;
4465         u64 disk_block;
4466         u32 disk_block_cnt;
4467         u8 cdb[16];
4468         u8 cdb_len;
4469         u16 strip_size;
4470 #if BITS_PER_LONG == 32
4471         u64 tmpdiv;
4472 #endif
4473         int offload_to_mirror;
4474
4475         /* check for valid opcode, get LBA and block count */
4476         switch (cmd->cmnd[0]) {
4477         case WRITE_6:
4478                 is_write = 1;
4479         case READ_6:
4480                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4481                 block_cnt = cmd->cmnd[4];
4482                 if (block_cnt == 0)
4483                         block_cnt = 256;
4484                 break;
4485         case WRITE_10:
4486                 is_write = 1;
4487         case READ_10:
4488                 first_block =
4489                         (((u64) cmd->cmnd[2]) << 24) |
4490                         (((u64) cmd->cmnd[3]) << 16) |
4491                         (((u64) cmd->cmnd[4]) << 8) |
4492                         cmd->cmnd[5];
4493                 block_cnt =
4494                         (((u32) cmd->cmnd[7]) << 8) |
4495                         cmd->cmnd[8];
4496                 break;
4497         case WRITE_12:
4498                 is_write = 1;
4499         case READ_12:
4500                 first_block =
4501                         (((u64) cmd->cmnd[2]) << 24) |
4502                         (((u64) cmd->cmnd[3]) << 16) |
4503                         (((u64) cmd->cmnd[4]) << 8) |
4504                         cmd->cmnd[5];
4505                 block_cnt =
4506                         (((u32) cmd->cmnd[6]) << 24) |
4507                         (((u32) cmd->cmnd[7]) << 16) |
4508                         (((u32) cmd->cmnd[8]) << 8) |
4509                 cmd->cmnd[9];
4510                 break;
4511         case WRITE_16:
4512                 is_write = 1;
4513         case READ_16:
4514                 first_block =
4515                         (((u64) cmd->cmnd[2]) << 56) |
4516                         (((u64) cmd->cmnd[3]) << 48) |
4517                         (((u64) cmd->cmnd[4]) << 40) |
4518                         (((u64) cmd->cmnd[5]) << 32) |
4519                         (((u64) cmd->cmnd[6]) << 24) |
4520                         (((u64) cmd->cmnd[7]) << 16) |
4521                         (((u64) cmd->cmnd[8]) << 8) |
4522                         cmd->cmnd[9];
4523                 block_cnt =
4524                         (((u32) cmd->cmnd[10]) << 24) |
4525                         (((u32) cmd->cmnd[11]) << 16) |
4526                         (((u32) cmd->cmnd[12]) << 8) |
4527                         cmd->cmnd[13];
4528                 break;
4529         default:
4530                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4531         }
4532         last_block = first_block + block_cnt - 1;
4533
4534         /* check for write to non-RAID-0 */
4535         if (is_write && dev->raid_level != 0)
4536                 return IO_ACCEL_INELIGIBLE;
4537
4538         /* check for invalid block or wraparound */
4539         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4540                 last_block < first_block)
4541                 return IO_ACCEL_INELIGIBLE;
4542
4543         /* calculate stripe information for the request */
4544         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4545                                 le16_to_cpu(map->strip_size);
4546         strip_size = le16_to_cpu(map->strip_size);
4547 #if BITS_PER_LONG == 32
4548         tmpdiv = first_block;
4549         (void) do_div(tmpdiv, blocks_per_row);
4550         first_row = tmpdiv;
4551         tmpdiv = last_block;
4552         (void) do_div(tmpdiv, blocks_per_row);
4553         last_row = tmpdiv;
4554         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4555         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4556         tmpdiv = first_row_offset;
4557         (void) do_div(tmpdiv, strip_size);
4558         first_column = tmpdiv;
4559         tmpdiv = last_row_offset;
4560         (void) do_div(tmpdiv, strip_size);
4561         last_column = tmpdiv;
4562 #else
4563         first_row = first_block / blocks_per_row;
4564         last_row = last_block / blocks_per_row;
4565         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4566         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4567         first_column = first_row_offset / strip_size;
4568         last_column = last_row_offset / strip_size;
4569 #endif
4570
4571         /* if this isn't a single row/column then give to the controller */
4572         if ((first_row != last_row) || (first_column != last_column))
4573                 return IO_ACCEL_INELIGIBLE;
4574
4575         /* proceeding with driver mapping */
4576         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4577                                 le16_to_cpu(map->metadata_disks_per_row);
4578         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4579                                 le16_to_cpu(map->row_cnt);
4580         map_index = (map_row * total_disks_per_row) + first_column;
4581
4582         switch (dev->raid_level) {
4583         case HPSA_RAID_0:
4584                 break; /* nothing special to do */
4585         case HPSA_RAID_1:
4586                 /* Handles load balance across RAID 1 members.
4587                  * (2-drive R1 and R10 with even # of drives.)
4588                  * Appropriate for SSDs, not optimal for HDDs
4589                  */
4590                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4591                 if (dev->offload_to_mirror)
4592                         map_index += le16_to_cpu(map->data_disks_per_row);
4593                 dev->offload_to_mirror = !dev->offload_to_mirror;
4594                 break;
4595         case HPSA_RAID_ADM:
4596                 /* Handles N-way mirrors  (R1-ADM)
4597                  * and R10 with # of drives divisible by 3.)
4598                  */
4599                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4600
4601                 offload_to_mirror = dev->offload_to_mirror;
4602                 raid_map_helper(map, offload_to_mirror,
4603                                 &map_index, &current_group);
4604                 /* set mirror group to use next time */
4605                 offload_to_mirror =
4606                         (offload_to_mirror >=
4607                         le16_to_cpu(map->layout_map_count) - 1)
4608                         ? 0 : offload_to_mirror + 1;
4609                 dev->offload_to_mirror = offload_to_mirror;
4610                 /* Avoid direct use of dev->offload_to_mirror within this
4611                  * function since multiple threads might simultaneously
4612                  * increment it beyond the range of dev->layout_map_count -1.
4613                  */
4614                 break;
4615         case HPSA_RAID_5:
4616         case HPSA_RAID_6:
4617                 if (le16_to_cpu(map->layout_map_count) <= 1)
4618                         break;
4619
4620                 /* Verify first and last block are in same RAID group */
4621                 r5or6_blocks_per_row =
4622                         le16_to_cpu(map->strip_size) *
4623                         le16_to_cpu(map->data_disks_per_row);
4624                 BUG_ON(r5or6_blocks_per_row == 0);
4625                 stripesize = r5or6_blocks_per_row *
4626                         le16_to_cpu(map->layout_map_count);
4627 #if BITS_PER_LONG == 32
4628                 tmpdiv = first_block;
4629                 first_group = do_div(tmpdiv, stripesize);
4630                 tmpdiv = first_group;
4631                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4632                 first_group = tmpdiv;
4633                 tmpdiv = last_block;
4634                 last_group = do_div(tmpdiv, stripesize);
4635                 tmpdiv = last_group;
4636                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4637                 last_group = tmpdiv;
4638 #else
4639                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4640                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4641 #endif
4642                 if (first_group != last_group)
4643                         return IO_ACCEL_INELIGIBLE;
4644
4645                 /* Verify request is in a single row of RAID 5/6 */
4646 #if BITS_PER_LONG == 32
4647                 tmpdiv = first_block;
4648                 (void) do_div(tmpdiv, stripesize);
4649                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4650                 tmpdiv = last_block;
4651                 (void) do_div(tmpdiv, stripesize);
4652                 r5or6_last_row = r0_last_row = tmpdiv;
4653 #else
4654                 first_row = r5or6_first_row = r0_first_row =
4655                                                 first_block / stripesize;
4656                 r5or6_last_row = r0_last_row = last_block / stripesize;
4657 #endif
4658                 if (r5or6_first_row != r5or6_last_row)
4659                         return IO_ACCEL_INELIGIBLE;
4660
4661
4662                 /* Verify request is in a single column */
4663 #if BITS_PER_LONG == 32
4664                 tmpdiv = first_block;
4665                 first_row_offset = do_div(tmpdiv, stripesize);
4666                 tmpdiv = first_row_offset;
4667                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4668                 r5or6_first_row_offset = first_row_offset;
4669                 tmpdiv = last_block;
4670                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4671                 tmpdiv = r5or6_last_row_offset;
4672                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4673                 tmpdiv = r5or6_first_row_offset;
4674                 (void) do_div(tmpdiv, map->strip_size);
4675                 first_column = r5or6_first_column = tmpdiv;
4676                 tmpdiv = r5or6_last_row_offset;
4677                 (void) do_div(tmpdiv, map->strip_size);
4678                 r5or6_last_column = tmpdiv;
4679 #else
4680                 first_row_offset = r5or6_first_row_offset =
4681                         (u32)((first_block % stripesize) %
4682                                                 r5or6_blocks_per_row);
4683
4684                 r5or6_last_row_offset =
4685                         (u32)((last_block % stripesize) %
4686                                                 r5or6_blocks_per_row);
4687
4688                 first_column = r5or6_first_column =
4689                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4690                 r5or6_last_column =
4691                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4692 #endif
4693                 if (r5or6_first_column != r5or6_last_column)
4694                         return IO_ACCEL_INELIGIBLE;
4695
4696                 /* Request is eligible */
4697                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4698                         le16_to_cpu(map->row_cnt);
4699
4700                 map_index = (first_group *
4701                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4702                         (map_row * total_disks_per_row) + first_column;
4703                 break;
4704         default:
4705                 return IO_ACCEL_INELIGIBLE;
4706         }
4707
4708         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4709                 return IO_ACCEL_INELIGIBLE;
4710
4711         c->phys_disk = dev->phys_disk[map_index];
4712
4713         disk_handle = dd[map_index].ioaccel_handle;
4714         disk_block = le64_to_cpu(map->disk_starting_blk) +
4715                         first_row * le16_to_cpu(map->strip_size) +
4716                         (first_row_offset - first_column *
4717                         le16_to_cpu(map->strip_size));
4718         disk_block_cnt = block_cnt;
4719
4720         /* handle differing logical/physical block sizes */
4721         if (map->phys_blk_shift) {
4722                 disk_block <<= map->phys_blk_shift;
4723                 disk_block_cnt <<= map->phys_blk_shift;
4724         }
4725         BUG_ON(disk_block_cnt > 0xffff);
4726
4727         /* build the new CDB for the physical disk I/O */
4728         if (disk_block > 0xffffffff) {
4729                 cdb[0] = is_write ? WRITE_16 : READ_16;
4730                 cdb[1] = 0;
4731                 cdb[2] = (u8) (disk_block >> 56);
4732                 cdb[3] = (u8) (disk_block >> 48);
4733                 cdb[4] = (u8) (disk_block >> 40);
4734                 cdb[5] = (u8) (disk_block >> 32);
4735                 cdb[6] = (u8) (disk_block >> 24);
4736                 cdb[7] = (u8) (disk_block >> 16);
4737                 cdb[8] = (u8) (disk_block >> 8);
4738                 cdb[9] = (u8) (disk_block);
4739                 cdb[10] = (u8) (disk_block_cnt >> 24);
4740                 cdb[11] = (u8) (disk_block_cnt >> 16);
4741                 cdb[12] = (u8) (disk_block_cnt >> 8);
4742                 cdb[13] = (u8) (disk_block_cnt);
4743                 cdb[14] = 0;
4744                 cdb[15] = 0;
4745                 cdb_len = 16;
4746         } else {
4747                 cdb[0] = is_write ? WRITE_10 : READ_10;
4748                 cdb[1] = 0;
4749                 cdb[2] = (u8) (disk_block >> 24);
4750                 cdb[3] = (u8) (disk_block >> 16);
4751                 cdb[4] = (u8) (disk_block >> 8);
4752                 cdb[5] = (u8) (disk_block);
4753                 cdb[6] = 0;
4754                 cdb[7] = (u8) (disk_block_cnt >> 8);
4755                 cdb[8] = (u8) (disk_block_cnt);
4756                 cdb[9] = 0;
4757                 cdb_len = 10;
4758         }
4759         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4760                                                 dev->scsi3addr,
4761                                                 dev->phys_disk[map_index]);
4762 }
4763
4764 /*
4765  * Submit commands down the "normal" RAID stack path
4766  * All callers to hpsa_ciss_submit must check lockup_detected
4767  * beforehand, before (opt.) and after calling cmd_alloc
4768  */
4769 static int hpsa_ciss_submit(struct ctlr_info *h,
4770         struct CommandList *c, struct scsi_cmnd *cmd,
4771         unsigned char scsi3addr[])
4772 {
4773         cmd->host_scribble = (unsigned char *) c;
4774         c->cmd_type = CMD_SCSI;
4775         c->scsi_cmd = cmd;
4776         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4777         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4778         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4779
4780         /* Fill in the request block... */
4781
4782         c->Request.Timeout = 0;
4783         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4784         c->Request.CDBLen = cmd->cmd_len;
4785         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4786         switch (cmd->sc_data_direction) {
4787         case DMA_TO_DEVICE:
4788                 c->Request.type_attr_dir =
4789                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4790                 break;
4791         case DMA_FROM_DEVICE:
4792                 c->Request.type_attr_dir =
4793                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4794                 break;
4795         case DMA_NONE:
4796                 c->Request.type_attr_dir =
4797                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4798                 break;
4799         case DMA_BIDIRECTIONAL:
4800                 /* This can happen if a buggy application does a scsi passthru
4801                  * and sets both inlen and outlen to non-zero. ( see
4802                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4803                  */
4804
4805                 c->Request.type_attr_dir =
4806                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4807                 /* This is technically wrong, and hpsa controllers should
4808                  * reject it with CMD_INVALID, which is the most correct
4809                  * response, but non-fibre backends appear to let it
4810                  * slide by, and give the same results as if this field
4811                  * were set correctly.  Either way is acceptable for
4812                  * our purposes here.
4813                  */
4814
4815                 break;
4816
4817         default:
4818                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4819                         cmd->sc_data_direction);
4820                 BUG();
4821                 break;
4822         }
4823
4824         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4825                 hpsa_cmd_resolve_and_free(h, c);
4826                 return SCSI_MLQUEUE_HOST_BUSY;
4827         }
4828         enqueue_cmd_and_start_io(h, c);
4829         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4830         return 0;
4831 }
4832
4833 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4834                                 struct CommandList *c)
4835 {
4836         dma_addr_t cmd_dma_handle, err_dma_handle;
4837
4838         /* Zero out all of commandlist except the last field, refcount */
4839         memset(c, 0, offsetof(struct CommandList, refcount));
4840         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4841         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4842         c->err_info = h->errinfo_pool + index;
4843         memset(c->err_info, 0, sizeof(*c->err_info));
4844         err_dma_handle = h->errinfo_pool_dhandle
4845             + index * sizeof(*c->err_info);
4846         c->cmdindex = index;
4847         c->busaddr = (u32) cmd_dma_handle;
4848         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4849         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4850         c->h = h;
4851         c->scsi_cmd = SCSI_CMD_IDLE;
4852 }
4853
4854 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4855 {
4856         int i;
4857
4858         for (i = 0; i < h->nr_cmds; i++) {
4859                 struct CommandList *c = h->cmd_pool + i;
4860
4861                 hpsa_cmd_init(h, i, c);
4862                 atomic_set(&c->refcount, 0);
4863         }
4864 }
4865
4866 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4867                                 struct CommandList *c)
4868 {
4869         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4870
4871         BUG_ON(c->cmdindex != index);
4872
4873         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4874         memset(c->err_info, 0, sizeof(*c->err_info));
4875         c->busaddr = (u32) cmd_dma_handle;
4876 }
4877
4878 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4879                 struct CommandList *c, struct scsi_cmnd *cmd,
4880                 unsigned char *scsi3addr)
4881 {
4882         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4883         int rc = IO_ACCEL_INELIGIBLE;
4884
4885         cmd->host_scribble = (unsigned char *) c;
4886
4887         if (dev->offload_enabled) {
4888                 hpsa_cmd_init(h, c->cmdindex, c);
4889                 c->cmd_type = CMD_SCSI;
4890                 c->scsi_cmd = cmd;
4891                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4892                 if (rc < 0)     /* scsi_dma_map failed. */
4893                         rc = SCSI_MLQUEUE_HOST_BUSY;
4894         } else if (dev->hba_ioaccel_enabled) {
4895                 hpsa_cmd_init(h, c->cmdindex, c);
4896                 c->cmd_type = CMD_SCSI;
4897                 c->scsi_cmd = cmd;
4898                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4899                 if (rc < 0)     /* scsi_dma_map failed. */
4900                         rc = SCSI_MLQUEUE_HOST_BUSY;
4901         }
4902         return rc;
4903 }
4904
4905 static void hpsa_command_resubmit_worker(struct work_struct *work)
4906 {
4907         struct scsi_cmnd *cmd;
4908         struct hpsa_scsi_dev_t *dev;
4909         struct CommandList *c = container_of(work, struct CommandList, work);
4910
4911         cmd = c->scsi_cmd;
4912         dev = cmd->device->hostdata;
4913         if (!dev) {
4914                 cmd->result = DID_NO_CONNECT << 16;
4915                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4916         }
4917         if (c->reset_pending)
4918                 return hpsa_cmd_resolve_and_free(c->h, c);
4919         if (c->abort_pending)
4920                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4921         if (c->cmd_type == CMD_IOACCEL2) {
4922                 struct ctlr_info *h = c->h;
4923                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4924                 int rc;
4925
4926                 if (c2->error_data.serv_response ==
4927                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4928                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4929                         if (rc == 0)
4930                                 return;
4931                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4932                                 /*
4933                                  * If we get here, it means dma mapping failed.
4934                                  * Try again via scsi mid layer, which will
4935                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4936                                  */
4937                                 cmd->result = DID_IMM_RETRY << 16;
4938                                 return hpsa_cmd_free_and_done(h, c, cmd);
4939                         }
4940                         /* else, fall thru and resubmit down CISS path */
4941                 }
4942         }
4943         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4944         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4945                 /*
4946                  * If we get here, it means dma mapping failed. Try
4947                  * again via scsi mid layer, which will then get
4948                  * SCSI_MLQUEUE_HOST_BUSY.
4949                  *
4950                  * hpsa_ciss_submit will have already freed c
4951                  * if it encountered a dma mapping failure.
4952                  */
4953                 cmd->result = DID_IMM_RETRY << 16;
4954                 cmd->scsi_done(cmd);
4955         }
4956 }
4957
4958 /* Running in struct Scsi_Host->host_lock less mode */
4959 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4960 {
4961         struct ctlr_info *h;
4962         struct hpsa_scsi_dev_t *dev;
4963         unsigned char scsi3addr[8];
4964         struct CommandList *c;
4965         int rc = 0;
4966
4967         /* Get the ptr to our adapter structure out of cmd->host. */
4968         h = sdev_to_hba(cmd->device);
4969
4970         BUG_ON(cmd->request->tag < 0);
4971
4972         dev = cmd->device->hostdata;
4973         if (!dev) {
4974                 cmd->result = DID_NO_CONNECT << 16;
4975                 cmd->scsi_done(cmd);
4976                 return 0;
4977         }
4978
4979         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4980
4981         if (unlikely(lockup_detected(h))) {
4982                 cmd->result = DID_NO_CONNECT << 16;
4983                 cmd->scsi_done(cmd);
4984                 return 0;
4985         }
4986         c = cmd_tagged_alloc(h, cmd);
4987
4988         /*
4989          * Call alternate submit routine for I/O accelerated commands.
4990          * Retries always go down the normal I/O path.
4991          */
4992         if (likely(cmd->retries == 0 &&
4993                 cmd->request->cmd_type == REQ_TYPE_FS &&
4994                 h->acciopath_status)) {
4995                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4996                 if (rc == 0)
4997                         return 0;
4998                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4999                         hpsa_cmd_resolve_and_free(h, c);
5000                         return SCSI_MLQUEUE_HOST_BUSY;
5001                 }
5002         }
5003         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5004 }
5005
5006 static void hpsa_scan_complete(struct ctlr_info *h)
5007 {
5008         unsigned long flags;
5009
5010         spin_lock_irqsave(&h->scan_lock, flags);
5011         h->scan_finished = 1;
5012         wake_up_all(&h->scan_wait_queue);
5013         spin_unlock_irqrestore(&h->scan_lock, flags);
5014 }
5015
5016 static void hpsa_scan_start(struct Scsi_Host *sh)
5017 {
5018         struct ctlr_info *h = shost_to_hba(sh);
5019         unsigned long flags;
5020
5021         /*
5022          * Don't let rescans be initiated on a controller known to be locked
5023          * up.  If the controller locks up *during* a rescan, that thread is
5024          * probably hosed, but at least we can prevent new rescan threads from
5025          * piling up on a locked up controller.
5026          */
5027         if (unlikely(lockup_detected(h)))
5028                 return hpsa_scan_complete(h);
5029
5030         /* wait until any scan already in progress is finished. */
5031         while (1) {
5032                 spin_lock_irqsave(&h->scan_lock, flags);
5033                 if (h->scan_finished)
5034                         break;
5035                 spin_unlock_irqrestore(&h->scan_lock, flags);
5036                 wait_event(h->scan_wait_queue, h->scan_finished);
5037                 /* Note: We don't need to worry about a race between this
5038                  * thread and driver unload because the midlayer will
5039                  * have incremented the reference count, so unload won't
5040                  * happen if we're in here.
5041                  */
5042         }
5043         h->scan_finished = 0; /* mark scan as in progress */
5044         spin_unlock_irqrestore(&h->scan_lock, flags);
5045
5046         if (unlikely(lockup_detected(h)))
5047                 return hpsa_scan_complete(h);
5048
5049         hpsa_update_scsi_devices(h);
5050
5051         hpsa_scan_complete(h);
5052 }
5053
5054 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5055 {
5056         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5057
5058         if (!logical_drive)
5059                 return -ENODEV;
5060
5061         if (qdepth < 1)
5062                 qdepth = 1;
5063         else if (qdepth > logical_drive->queue_depth)
5064                 qdepth = logical_drive->queue_depth;
5065
5066         return scsi_change_queue_depth(sdev, qdepth);
5067 }
5068
5069 static int hpsa_scan_finished(struct Scsi_Host *sh,
5070         unsigned long elapsed_time)
5071 {
5072         struct ctlr_info *h = shost_to_hba(sh);
5073         unsigned long flags;
5074         int finished;
5075
5076         spin_lock_irqsave(&h->scan_lock, flags);
5077         finished = h->scan_finished;
5078         spin_unlock_irqrestore(&h->scan_lock, flags);
5079         return finished;
5080 }
5081
5082 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5083 {
5084         struct Scsi_Host *sh;
5085         int error;
5086
5087         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5088         if (sh == NULL) {
5089                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5090                 return -ENOMEM;
5091         }
5092
5093         sh->io_port = 0;
5094         sh->n_io_port = 0;
5095         sh->this_id = -1;
5096         sh->max_channel = 3;
5097         sh->max_cmd_len = MAX_COMMAND_SIZE;
5098         sh->max_lun = HPSA_MAX_LUN;
5099         sh->max_id = HPSA_MAX_LUN;
5100         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5101         sh->cmd_per_lun = sh->can_queue;
5102         sh->sg_tablesize = h->maxsgentries;
5103         sh->hostdata[0] = (unsigned long) h;
5104         sh->irq = h->intr[h->intr_mode];
5105         sh->unique_id = sh->irq;
5106         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5107         if (error) {
5108                 dev_err(&h->pdev->dev,
5109                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5110                         __func__, h->ctlr);
5111                         scsi_host_put(sh);
5112                         return error;
5113         }
5114         h->scsi_host = sh;
5115         return 0;
5116 }
5117
5118 static int hpsa_scsi_add_host(struct ctlr_info *h)
5119 {
5120         int rv;
5121
5122         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5123         if (rv) {
5124                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5125                 return rv;
5126         }
5127         scsi_scan_host(h->scsi_host);
5128         return 0;
5129 }
5130
5131 /*
5132  * The block layer has already gone to the trouble of picking out a unique,
5133  * small-integer tag for this request.  We use an offset from that value as
5134  * an index to select our command block.  (The offset allows us to reserve the
5135  * low-numbered entries for our own uses.)
5136  */
5137 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5138 {
5139         int idx = scmd->request->tag;
5140
5141         if (idx < 0)
5142                 return idx;
5143
5144         /* Offset to leave space for internal cmds. */
5145         return idx += HPSA_NRESERVED_CMDS;
5146 }
5147
5148 /*
5149  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5150  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5151  */
5152 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5153                                 struct CommandList *c, unsigned char lunaddr[],
5154                                 int reply_queue)
5155 {
5156         int rc;
5157
5158         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5159         (void) fill_cmd(c, TEST_UNIT_READY, h,
5160                         NULL, 0, 0, lunaddr, TYPE_CMD);
5161         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5162         if (rc)
5163                 return rc;
5164         /* no unmap needed here because no data xfer. */
5165
5166         /* Check if the unit is already ready. */
5167         if (c->err_info->CommandStatus == CMD_SUCCESS)
5168                 return 0;
5169
5170         /*
5171          * The first command sent after reset will receive "unit attention" to
5172          * indicate that the LUN has been reset...this is actually what we're
5173          * looking for (but, success is good too).
5174          */
5175         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5176                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5177                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5178                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5179                 return 0;
5180
5181         return 1;
5182 }
5183
5184 /*
5185  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5186  * returns zero when the unit is ready, and non-zero when giving up.
5187  */
5188 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5189                                 struct CommandList *c,
5190                                 unsigned char lunaddr[], int reply_queue)
5191 {
5192         int rc;
5193         int count = 0;
5194         int waittime = 1; /* seconds */
5195
5196         /* Send test unit ready until device ready, or give up. */
5197         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5198
5199                 /*
5200                  * Wait for a bit.  do this first, because if we send
5201                  * the TUR right away, the reset will just abort it.
5202                  */
5203                 msleep(1000 * waittime);
5204
5205                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5206                 if (!rc)
5207                         break;
5208
5209                 /* Increase wait time with each try, up to a point. */
5210                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5211                         waittime *= 2;
5212
5213                 dev_warn(&h->pdev->dev,
5214                          "waiting %d secs for device to become ready.\n",
5215                          waittime);
5216         }
5217
5218         return rc;
5219 }
5220
5221 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5222                                            unsigned char lunaddr[],
5223                                            int reply_queue)
5224 {
5225         int first_queue;
5226         int last_queue;
5227         int rq;
5228         int rc = 0;
5229         struct CommandList *c;
5230
5231         c = cmd_alloc(h);
5232
5233         /*
5234          * If no specific reply queue was requested, then send the TUR
5235          * repeatedly, requesting a reply on each reply queue; otherwise execute
5236          * the loop exactly once using only the specified queue.
5237          */
5238         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5239                 first_queue = 0;
5240                 last_queue = h->nreply_queues - 1;
5241         } else {
5242                 first_queue = reply_queue;
5243                 last_queue = reply_queue;
5244         }
5245
5246         for (rq = first_queue; rq <= last_queue; rq++) {
5247                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5248                 if (rc)
5249                         break;
5250         }
5251
5252         if (rc)
5253                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5254         else
5255                 dev_warn(&h->pdev->dev, "device is ready.\n");
5256
5257         cmd_free(h, c);
5258         return rc;
5259 }
5260
5261 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5262  * complaining.  Doing a host- or bus-reset can't do anything good here.
5263  */
5264 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5265 {
5266         int rc;
5267         struct ctlr_info *h;
5268         struct hpsa_scsi_dev_t *dev;
5269         u8 reset_type;
5270         char msg[48];
5271
5272         /* find the controller to which the command to be aborted was sent */
5273         h = sdev_to_hba(scsicmd->device);
5274         if (h == NULL) /* paranoia */
5275                 return FAILED;
5276
5277         if (lockup_detected(h))
5278                 return FAILED;
5279
5280         dev = scsicmd->device->hostdata;
5281         if (!dev) {
5282                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5283                 return FAILED;
5284         }
5285
5286         /* if controller locked up, we can guarantee command won't complete */
5287         if (lockup_detected(h)) {
5288                 snprintf(msg, sizeof(msg),
5289                          "cmd %d RESET FAILED, lockup detected",
5290                          hpsa_get_cmd_index(scsicmd));
5291                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5292                 return FAILED;
5293         }
5294
5295         /* this reset request might be the result of a lockup; check */
5296         if (detect_controller_lockup(h)) {
5297                 snprintf(msg, sizeof(msg),
5298                          "cmd %d RESET FAILED, new lockup detected",
5299                          hpsa_get_cmd_index(scsicmd));
5300                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5301                 return FAILED;
5302         }
5303
5304         /* Do not attempt on controller */
5305         if (is_hba_lunid(dev->scsi3addr))
5306                 return SUCCESS;
5307
5308         if (is_logical_dev_addr_mode(dev->scsi3addr))
5309                 reset_type = HPSA_DEVICE_RESET_MSG;
5310         else
5311                 reset_type = HPSA_PHYS_TARGET_RESET;
5312
5313         sprintf(msg, "resetting %s",
5314                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5315         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5316
5317         h->reset_in_progress = 1;
5318
5319         /* send a reset to the SCSI LUN which the command was sent to */
5320         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5321                            DEFAULT_REPLY_QUEUE);
5322         sprintf(msg, "reset %s %s",
5323                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5324                 rc == 0 ? "completed successfully" : "failed");
5325         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5326         h->reset_in_progress = 0;
5327         return rc == 0 ? SUCCESS : FAILED;
5328 }
5329
5330 static void swizzle_abort_tag(u8 *tag)
5331 {
5332         u8 original_tag[8];
5333
5334         memcpy(original_tag, tag, 8);
5335         tag[0] = original_tag[3];
5336         tag[1] = original_tag[2];
5337         tag[2] = original_tag[1];
5338         tag[3] = original_tag[0];
5339         tag[4] = original_tag[7];
5340         tag[5] = original_tag[6];
5341         tag[6] = original_tag[5];
5342         tag[7] = original_tag[4];
5343 }
5344
5345 static void hpsa_get_tag(struct ctlr_info *h,
5346         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5347 {
5348         u64 tag;
5349         if (c->cmd_type == CMD_IOACCEL1) {
5350                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5351                         &h->ioaccel_cmd_pool[c->cmdindex];
5352                 tag = le64_to_cpu(cm1->tag);
5353                 *tagupper = cpu_to_le32(tag >> 32);
5354                 *taglower = cpu_to_le32(tag);
5355                 return;
5356         }
5357         if (c->cmd_type == CMD_IOACCEL2) {
5358                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5359                         &h->ioaccel2_cmd_pool[c->cmdindex];
5360                 /* upper tag not used in ioaccel2 mode */
5361                 memset(tagupper, 0, sizeof(*tagupper));
5362                 *taglower = cm2->Tag;
5363                 return;
5364         }
5365         tag = le64_to_cpu(c->Header.tag);
5366         *tagupper = cpu_to_le32(tag >> 32);
5367         *taglower = cpu_to_le32(tag);
5368 }
5369
5370 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5371         struct CommandList *abort, int reply_queue)
5372 {
5373         int rc = IO_OK;
5374         struct CommandList *c;
5375         struct ErrorInfo *ei;
5376         __le32 tagupper, taglower;
5377
5378         c = cmd_alloc(h);
5379
5380         /* fill_cmd can't fail here, no buffer to map */
5381         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5382                 0, 0, scsi3addr, TYPE_MSG);
5383         if (h->needs_abort_tags_swizzled)
5384                 swizzle_abort_tag(&c->Request.CDB[4]);
5385         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5386         hpsa_get_tag(h, abort, &taglower, &tagupper);
5387         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5388                 __func__, tagupper, taglower);
5389         /* no unmap needed here because no data xfer. */
5390
5391         ei = c->err_info;
5392         switch (ei->CommandStatus) {
5393         case CMD_SUCCESS:
5394                 break;
5395         case CMD_TMF_STATUS:
5396                 rc = hpsa_evaluate_tmf_status(h, c);
5397                 break;
5398         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5399                 rc = -1;
5400                 break;
5401         default:
5402                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5403                         __func__, tagupper, taglower);
5404                 hpsa_scsi_interpret_error(h, c);
5405                 rc = -1;
5406                 break;
5407         }
5408         cmd_free(h, c);
5409         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5410                 __func__, tagupper, taglower);
5411         return rc;
5412 }
5413
5414 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5415         struct CommandList *command_to_abort, int reply_queue)
5416 {
5417         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5418         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5419         struct io_accel2_cmd *c2a =
5420                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5421         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5422         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5423
5424         /*
5425          * We're overlaying struct hpsa_tmf_struct on top of something which
5426          * was allocated as a struct io_accel2_cmd, so we better be sure it
5427          * actually fits, and doesn't overrun the error info space.
5428          */
5429         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5430                         sizeof(struct io_accel2_cmd));
5431         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5432                         offsetof(struct hpsa_tmf_struct, error_len) +
5433                                 sizeof(ac->error_len));
5434
5435         c->cmd_type = IOACCEL2_TMF;
5436         c->scsi_cmd = SCSI_CMD_BUSY;
5437
5438         /* Adjust the DMA address to point to the accelerated command buffer */
5439         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5440                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5441         BUG_ON(c->busaddr & 0x0000007F);
5442
5443         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5444         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5445         ac->reply_queue = reply_queue;
5446         ac->tmf = IOACCEL2_TMF_ABORT;
5447         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5448         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5449         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5450         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5451         ac->error_ptr = cpu_to_le64(c->busaddr +
5452                         offsetof(struct io_accel2_cmd, error_data));
5453         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5454 }
5455
5456 /* ioaccel2 path firmware cannot handle abort task requests.
5457  * Change abort requests to physical target reset, and send to the
5458  * address of the physical disk used for the ioaccel 2 command.
5459  * Return 0 on success (IO_OK)
5460  *       -1 on failure
5461  */
5462
5463 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5464         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5465 {
5466         int rc = IO_OK;
5467         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5468         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5469         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5470         unsigned char *psa = &phys_scsi3addr[0];
5471
5472         /* Get a pointer to the hpsa logical device. */
5473         scmd = abort->scsi_cmd;
5474         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5475         if (dev == NULL) {
5476                 dev_warn(&h->pdev->dev,
5477                         "Cannot abort: no device pointer for command.\n");
5478                         return -1; /* not abortable */
5479         }
5480
5481         if (h->raid_offload_debug > 0)
5482                 dev_info(&h->pdev->dev,
5483                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5484                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5485                         "Reset as abort",
5486                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5487                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5488
5489         if (!dev->offload_enabled) {
5490                 dev_warn(&h->pdev->dev,
5491                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5492                 return -1; /* not abortable */
5493         }
5494
5495         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5496         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5497                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5498                 return -1; /* not abortable */
5499         }
5500
5501         /* send the reset */
5502         if (h->raid_offload_debug > 0)
5503                 dev_info(&h->pdev->dev,
5504                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5505                         psa[0], psa[1], psa[2], psa[3],
5506                         psa[4], psa[5], psa[6], psa[7]);
5507         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5508         if (rc != 0) {
5509                 dev_warn(&h->pdev->dev,
5510                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5511                         psa[0], psa[1], psa[2], psa[3],
5512                         psa[4], psa[5], psa[6], psa[7]);
5513                 return rc; /* failed to reset */
5514         }
5515
5516         /* wait for device to recover */
5517         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5518                 dev_warn(&h->pdev->dev,
5519                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5520                         psa[0], psa[1], psa[2], psa[3],
5521                         psa[4], psa[5], psa[6], psa[7]);
5522                 return -1;  /* failed to recover */
5523         }
5524
5525         /* device recovered */
5526         dev_info(&h->pdev->dev,
5527                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5528                 psa[0], psa[1], psa[2], psa[3],
5529                 psa[4], psa[5], psa[6], psa[7]);
5530
5531         return rc; /* success */
5532 }
5533
5534 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5535         struct CommandList *abort, int reply_queue)
5536 {
5537         int rc = IO_OK;
5538         struct CommandList *c;
5539         __le32 taglower, tagupper;
5540         struct hpsa_scsi_dev_t *dev;
5541         struct io_accel2_cmd *c2;
5542
5543         dev = abort->scsi_cmd->device->hostdata;
5544         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5545                 return -1;
5546
5547         c = cmd_alloc(h);
5548         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5549         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5550         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5551         hpsa_get_tag(h, abort, &taglower, &tagupper);
5552         dev_dbg(&h->pdev->dev,
5553                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5554                 __func__, tagupper, taglower);
5555         /* no unmap needed here because no data xfer. */
5556
5557         dev_dbg(&h->pdev->dev,
5558                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5559                 __func__, tagupper, taglower, c2->error_data.serv_response);
5560         switch (c2->error_data.serv_response) {
5561         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5562         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5563                 rc = 0;
5564                 break;
5565         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5566         case IOACCEL2_SERV_RESPONSE_FAILURE:
5567         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5568                 rc = -1;
5569                 break;
5570         default:
5571                 dev_warn(&h->pdev->dev,
5572                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5573                         __func__, tagupper, taglower,
5574                         c2->error_data.serv_response);
5575                 rc = -1;
5576         }
5577         cmd_free(h, c);
5578         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5579                 tagupper, taglower);
5580         return rc;
5581 }
5582
5583 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5584         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5585 {
5586         /*
5587          * ioccelerator mode 2 commands should be aborted via the
5588          * accelerated path, since RAID path is unaware of these commands,
5589          * but not all underlying firmware can handle abort TMF.
5590          * Change abort to physical device reset when abort TMF is unsupported.
5591          */
5592         if (abort->cmd_type == CMD_IOACCEL2) {
5593                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5594                         return hpsa_send_abort_ioaccel2(h, abort,
5595                                                 reply_queue);
5596                 else
5597                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5598                                                         abort, reply_queue);
5599         }
5600         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5601 }
5602
5603 /* Find out which reply queue a command was meant to return on */
5604 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5605                                         struct CommandList *c)
5606 {
5607         if (c->cmd_type == CMD_IOACCEL2)
5608                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5609         return c->Header.ReplyQueue;
5610 }
5611
5612 /*
5613  * Limit concurrency of abort commands to prevent
5614  * over-subscription of commands
5615  */
5616 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5617 {
5618 #define ABORT_CMD_WAIT_MSECS 5000
5619         return !wait_event_timeout(h->abort_cmd_wait_queue,
5620                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5621                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5622 }
5623
5624 /* Send an abort for the specified command.
5625  *      If the device and controller support it,
5626  *              send a task abort request.
5627  */
5628 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5629 {
5630
5631         int rc;
5632         struct ctlr_info *h;
5633         struct hpsa_scsi_dev_t *dev;
5634         struct CommandList *abort; /* pointer to command to be aborted */
5635         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5636         char msg[256];          /* For debug messaging. */
5637         int ml = 0;
5638         __le32 tagupper, taglower;
5639         int refcount, reply_queue;
5640
5641         if (sc == NULL)
5642                 return FAILED;
5643
5644         if (sc->device == NULL)
5645                 return FAILED;
5646
5647         /* Find the controller of the command to be aborted */
5648         h = sdev_to_hba(sc->device);
5649         if (h == NULL)
5650                 return FAILED;
5651
5652         /* Find the device of the command to be aborted */
5653         dev = sc->device->hostdata;
5654         if (!dev) {
5655                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5656                                 msg);
5657                 return FAILED;
5658         }
5659
5660         /* If controller locked up, we can guarantee command won't complete */
5661         if (lockup_detected(h)) {
5662                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5663                                         "ABORT FAILED, lockup detected");
5664                 return FAILED;
5665         }
5666
5667         /* This is a good time to check if controller lockup has occurred */
5668         if (detect_controller_lockup(h)) {
5669                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5670                                         "ABORT FAILED, new lockup detected");
5671                 return FAILED;
5672         }
5673
5674         /* Check that controller supports some kind of task abort */
5675         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5676                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5677                 return FAILED;
5678
5679         memset(msg, 0, sizeof(msg));
5680         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5681                 h->scsi_host->host_no, sc->device->channel,
5682                 sc->device->id, sc->device->lun,
5683                 "Aborting command", sc);
5684
5685         /* Get SCSI command to be aborted */
5686         abort = (struct CommandList *) sc->host_scribble;
5687         if (abort == NULL) {
5688                 /* This can happen if the command already completed. */
5689                 return SUCCESS;
5690         }
5691         refcount = atomic_inc_return(&abort->refcount);
5692         if (refcount == 1) { /* Command is done already. */
5693                 cmd_free(h, abort);
5694                 return SUCCESS;
5695         }
5696
5697         /* Don't bother trying the abort if we know it won't work. */
5698         if (abort->cmd_type != CMD_IOACCEL2 &&
5699                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5700                 cmd_free(h, abort);
5701                 return FAILED;
5702         }
5703
5704         /*
5705          * Check that we're aborting the right command.
5706          * It's possible the CommandList already completed and got re-used.
5707          */
5708         if (abort->scsi_cmd != sc) {
5709                 cmd_free(h, abort);
5710                 return SUCCESS;
5711         }
5712
5713         abort->abort_pending = true;
5714         hpsa_get_tag(h, abort, &taglower, &tagupper);
5715         reply_queue = hpsa_extract_reply_queue(h, abort);
5716         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5717         as  = abort->scsi_cmd;
5718         if (as != NULL)
5719                 ml += sprintf(msg+ml,
5720                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5721                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5722                         as->serial_number);
5723         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5724         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5725
5726         /*
5727          * Command is in flight, or possibly already completed
5728          * by the firmware (but not to the scsi mid layer) but we can't
5729          * distinguish which.  Send the abort down.
5730          */
5731         if (wait_for_available_abort_cmd(h)) {
5732                 dev_warn(&h->pdev->dev,
5733                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5734                         msg);
5735                 cmd_free(h, abort);
5736                 return FAILED;
5737         }
5738         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5739         atomic_inc(&h->abort_cmds_available);
5740         wake_up_all(&h->abort_cmd_wait_queue);
5741         if (rc != 0) {
5742                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5743                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5744                                 "FAILED to abort command");
5745                 cmd_free(h, abort);
5746                 return FAILED;
5747         }
5748         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5749         wait_event(h->event_sync_wait_queue,
5750                    abort->scsi_cmd != sc || lockup_detected(h));
5751         cmd_free(h, abort);
5752         return !lockup_detected(h) ? SUCCESS : FAILED;
5753 }
5754
5755 /*
5756  * For operations with an associated SCSI command, a command block is allocated
5757  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5758  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5759  * the complement, although cmd_free() may be called instead.
5760  */
5761 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5762                                             struct scsi_cmnd *scmd)
5763 {
5764         int idx = hpsa_get_cmd_index(scmd);
5765         struct CommandList *c = h->cmd_pool + idx;
5766
5767         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5768                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5769                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5770                 /* The index value comes from the block layer, so if it's out of
5771                  * bounds, it's probably not our bug.
5772                  */
5773                 BUG();
5774         }
5775
5776         atomic_inc(&c->refcount);
5777         if (unlikely(!hpsa_is_cmd_idle(c))) {
5778                 /*
5779                  * We expect that the SCSI layer will hand us a unique tag
5780                  * value.  Thus, there should never be a collision here between
5781                  * two requests...because if the selected command isn't idle
5782                  * then someone is going to be very disappointed.
5783                  */
5784                 dev_err(&h->pdev->dev,
5785                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5786                         idx);
5787                 if (c->scsi_cmd != NULL)
5788                         scsi_print_command(c->scsi_cmd);
5789                 scsi_print_command(scmd);
5790         }
5791
5792         hpsa_cmd_partial_init(h, idx, c);
5793         return c;
5794 }
5795
5796 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5797 {
5798         /*
5799          * Release our reference to the block.  We don't need to do anything
5800          * else to free it, because it is accessed by index.  (There's no point
5801          * in checking the result of the decrement, since we cannot guarantee
5802          * that there isn't a concurrent abort which is also accessing it.)
5803          */
5804         (void)atomic_dec(&c->refcount);
5805 }
5806
5807 /*
5808  * For operations that cannot sleep, a command block is allocated at init,
5809  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5810  * which ones are free or in use.  Lock must be held when calling this.
5811  * cmd_free() is the complement.
5812  * This function never gives up and returns NULL.  If it hangs,
5813  * another thread must call cmd_free() to free some tags.
5814  */
5815
5816 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5817 {
5818         struct CommandList *c;
5819         int refcount, i;
5820         int offset = 0;
5821
5822         /*
5823          * There is some *extremely* small but non-zero chance that that
5824          * multiple threads could get in here, and one thread could
5825          * be scanning through the list of bits looking for a free
5826          * one, but the free ones are always behind him, and other
5827          * threads sneak in behind him and eat them before he can
5828          * get to them, so that while there is always a free one, a
5829          * very unlucky thread might be starved anyway, never able to
5830          * beat the other threads.  In reality, this happens so
5831          * infrequently as to be indistinguishable from never.
5832          *
5833          * Note that we start allocating commands before the SCSI host structure
5834          * is initialized.  Since the search starts at bit zero, this
5835          * all works, since we have at least one command structure available;
5836          * however, it means that the structures with the low indexes have to be
5837          * reserved for driver-initiated requests, while requests from the block
5838          * layer will use the higher indexes.
5839          */
5840
5841         for (;;) {
5842                 i = find_next_zero_bit(h->cmd_pool_bits,
5843                                         HPSA_NRESERVED_CMDS,
5844                                         offset);
5845                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5846                         offset = 0;
5847                         continue;
5848                 }
5849                 c = h->cmd_pool + i;
5850                 refcount = atomic_inc_return(&c->refcount);
5851                 if (unlikely(refcount > 1)) {
5852                         cmd_free(h, c); /* already in use */
5853                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5854                         continue;
5855                 }
5856                 set_bit(i & (BITS_PER_LONG - 1),
5857                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5858                 break; /* it's ours now. */
5859         }
5860         hpsa_cmd_partial_init(h, i, c);
5861         return c;
5862 }
5863
5864 /*
5865  * This is the complementary operation to cmd_alloc().  Note, however, in some
5866  * corner cases it may also be used to free blocks allocated by
5867  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5868  * the clear-bit is harmless.
5869  */
5870 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5871 {
5872         if (atomic_dec_and_test(&c->refcount)) {
5873                 int i;
5874
5875                 i = c - h->cmd_pool;
5876                 clear_bit(i & (BITS_PER_LONG - 1),
5877                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5878         }
5879 }
5880
5881 #ifdef CONFIG_COMPAT
5882
5883 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5884         void __user *arg)
5885 {
5886         IOCTL32_Command_struct __user *arg32 =
5887             (IOCTL32_Command_struct __user *) arg;
5888         IOCTL_Command_struct arg64;
5889         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5890         int err;
5891         u32 cp;
5892
5893         memset(&arg64, 0, sizeof(arg64));
5894         err = 0;
5895         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5896                            sizeof(arg64.LUN_info));
5897         err |= copy_from_user(&arg64.Request, &arg32->Request,
5898                            sizeof(arg64.Request));
5899         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5900                            sizeof(arg64.error_info));
5901         err |= get_user(arg64.buf_size, &arg32->buf_size);
5902         err |= get_user(cp, &arg32->buf);
5903         arg64.buf = compat_ptr(cp);
5904         err |= copy_to_user(p, &arg64, sizeof(arg64));
5905
5906         if (err)
5907                 return -EFAULT;
5908
5909         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5910         if (err)
5911                 return err;
5912         err |= copy_in_user(&arg32->error_info, &p->error_info,
5913                          sizeof(arg32->error_info));
5914         if (err)
5915                 return -EFAULT;
5916         return err;
5917 }
5918
5919 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5920         int cmd, void __user *arg)
5921 {
5922         BIG_IOCTL32_Command_struct __user *arg32 =
5923             (BIG_IOCTL32_Command_struct __user *) arg;
5924         BIG_IOCTL_Command_struct arg64;
5925         BIG_IOCTL_Command_struct __user *p =
5926             compat_alloc_user_space(sizeof(arg64));
5927         int err;
5928         u32 cp;
5929
5930         memset(&arg64, 0, sizeof(arg64));
5931         err = 0;
5932         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5933                            sizeof(arg64.LUN_info));
5934         err |= copy_from_user(&arg64.Request, &arg32->Request,
5935                            sizeof(arg64.Request));
5936         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5937                            sizeof(arg64.error_info));
5938         err |= get_user(arg64.buf_size, &arg32->buf_size);
5939         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5940         err |= get_user(cp, &arg32->buf);
5941         arg64.buf = compat_ptr(cp);
5942         err |= copy_to_user(p, &arg64, sizeof(arg64));
5943
5944         if (err)
5945                 return -EFAULT;
5946
5947         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5948         if (err)
5949                 return err;
5950         err |= copy_in_user(&arg32->error_info, &p->error_info,
5951                          sizeof(arg32->error_info));
5952         if (err)
5953                 return -EFAULT;
5954         return err;
5955 }
5956
5957 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5958 {
5959         switch (cmd) {
5960         case CCISS_GETPCIINFO:
5961         case CCISS_GETINTINFO:
5962         case CCISS_SETINTINFO:
5963         case CCISS_GETNODENAME:
5964         case CCISS_SETNODENAME:
5965         case CCISS_GETHEARTBEAT:
5966         case CCISS_GETBUSTYPES:
5967         case CCISS_GETFIRMVER:
5968         case CCISS_GETDRIVVER:
5969         case CCISS_REVALIDVOLS:
5970         case CCISS_DEREGDISK:
5971         case CCISS_REGNEWDISK:
5972         case CCISS_REGNEWD:
5973         case CCISS_RESCANDISK:
5974         case CCISS_GETLUNINFO:
5975                 return hpsa_ioctl(dev, cmd, arg);
5976
5977         case CCISS_PASSTHRU32:
5978                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5979         case CCISS_BIG_PASSTHRU32:
5980                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5981
5982         default:
5983                 return -ENOIOCTLCMD;
5984         }
5985 }
5986 #endif
5987
5988 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5989 {
5990         struct hpsa_pci_info pciinfo;
5991
5992         if (!argp)
5993                 return -EINVAL;
5994         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5995         pciinfo.bus = h->pdev->bus->number;
5996         pciinfo.dev_fn = h->pdev->devfn;
5997         pciinfo.board_id = h->board_id;
5998         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5999                 return -EFAULT;
6000         return 0;
6001 }
6002
6003 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6004 {
6005         DriverVer_type DriverVer;
6006         unsigned char vmaj, vmin, vsubmin;
6007         int rc;
6008
6009         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6010                 &vmaj, &vmin, &vsubmin);
6011         if (rc != 3) {
6012                 dev_info(&h->pdev->dev, "driver version string '%s' "
6013                         "unrecognized.", HPSA_DRIVER_VERSION);
6014                 vmaj = 0;
6015                 vmin = 0;
6016                 vsubmin = 0;
6017         }
6018         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6019         if (!argp)
6020                 return -EINVAL;
6021         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6022                 return -EFAULT;
6023         return 0;
6024 }
6025
6026 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6027 {
6028         IOCTL_Command_struct iocommand;
6029         struct CommandList *c;
6030         char *buff = NULL;
6031         u64 temp64;
6032         int rc = 0;
6033
6034         if (!argp)
6035                 return -EINVAL;
6036         if (!capable(CAP_SYS_RAWIO))
6037                 return -EPERM;
6038         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6039                 return -EFAULT;
6040         if ((iocommand.buf_size < 1) &&
6041             (iocommand.Request.Type.Direction != XFER_NONE)) {
6042                 return -EINVAL;
6043         }
6044         if (iocommand.buf_size > 0) {
6045                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6046                 if (buff == NULL)
6047                         return -ENOMEM;
6048                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6049                         /* Copy the data into the buffer we created */
6050                         if (copy_from_user(buff, iocommand.buf,
6051                                 iocommand.buf_size)) {
6052                                 rc = -EFAULT;
6053                                 goto out_kfree;
6054                         }
6055                 } else {
6056                         memset(buff, 0, iocommand.buf_size);
6057                 }
6058         }
6059         c = cmd_alloc(h);
6060
6061         /* Fill in the command type */
6062         c->cmd_type = CMD_IOCTL_PEND;
6063         c->scsi_cmd = SCSI_CMD_BUSY;
6064         /* Fill in Command Header */
6065         c->Header.ReplyQueue = 0; /* unused in simple mode */
6066         if (iocommand.buf_size > 0) {   /* buffer to fill */
6067                 c->Header.SGList = 1;
6068                 c->Header.SGTotal = cpu_to_le16(1);
6069         } else  { /* no buffers to fill */
6070                 c->Header.SGList = 0;
6071                 c->Header.SGTotal = cpu_to_le16(0);
6072         }
6073         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6074
6075         /* Fill in Request block */
6076         memcpy(&c->Request, &iocommand.Request,
6077                 sizeof(c->Request));
6078
6079         /* Fill in the scatter gather information */
6080         if (iocommand.buf_size > 0) {
6081                 temp64 = pci_map_single(h->pdev, buff,
6082                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6083                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6084                         c->SG[0].Addr = cpu_to_le64(0);
6085                         c->SG[0].Len = cpu_to_le32(0);
6086                         rc = -ENOMEM;
6087                         goto out;
6088                 }
6089                 c->SG[0].Addr = cpu_to_le64(temp64);
6090                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6091                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6092         }
6093         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6094         if (iocommand.buf_size > 0)
6095                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6096         check_ioctl_unit_attention(h, c);
6097         if (rc) {
6098                 rc = -EIO;
6099                 goto out;
6100         }
6101
6102         /* Copy the error information out */
6103         memcpy(&iocommand.error_info, c->err_info,
6104                 sizeof(iocommand.error_info));
6105         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6106                 rc = -EFAULT;
6107                 goto out;
6108         }
6109         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6110                 iocommand.buf_size > 0) {
6111                 /* Copy the data out of the buffer we created */
6112                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6113                         rc = -EFAULT;
6114                         goto out;
6115                 }
6116         }
6117 out:
6118         cmd_free(h, c);
6119 out_kfree:
6120         kfree(buff);
6121         return rc;
6122 }
6123
6124 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6125 {
6126         BIG_IOCTL_Command_struct *ioc;
6127         struct CommandList *c;
6128         unsigned char **buff = NULL;
6129         int *buff_size = NULL;
6130         u64 temp64;
6131         BYTE sg_used = 0;
6132         int status = 0;
6133         u32 left;
6134         u32 sz;
6135         BYTE __user *data_ptr;
6136
6137         if (!argp)
6138                 return -EINVAL;
6139         if (!capable(CAP_SYS_RAWIO))
6140                 return -EPERM;
6141         ioc = (BIG_IOCTL_Command_struct *)
6142             kmalloc(sizeof(*ioc), GFP_KERNEL);
6143         if (!ioc) {
6144                 status = -ENOMEM;
6145                 goto cleanup1;
6146         }
6147         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6148                 status = -EFAULT;
6149                 goto cleanup1;
6150         }
6151         if ((ioc->buf_size < 1) &&
6152             (ioc->Request.Type.Direction != XFER_NONE)) {
6153                 status = -EINVAL;
6154                 goto cleanup1;
6155         }
6156         /* Check kmalloc limits  using all SGs */
6157         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6158                 status = -EINVAL;
6159                 goto cleanup1;
6160         }
6161         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6162                 status = -EINVAL;
6163                 goto cleanup1;
6164         }
6165         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6166         if (!buff) {
6167                 status = -ENOMEM;
6168                 goto cleanup1;
6169         }
6170         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6171         if (!buff_size) {
6172                 status = -ENOMEM;
6173                 goto cleanup1;
6174         }
6175         left = ioc->buf_size;
6176         data_ptr = ioc->buf;
6177         while (left) {
6178                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6179                 buff_size[sg_used] = sz;
6180                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6181                 if (buff[sg_used] == NULL) {
6182                         status = -ENOMEM;
6183                         goto cleanup1;
6184                 }
6185                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6186                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6187                                 status = -EFAULT;
6188                                 goto cleanup1;
6189                         }
6190                 } else
6191                         memset(buff[sg_used], 0, sz);
6192                 left -= sz;
6193                 data_ptr += sz;
6194                 sg_used++;
6195         }
6196         c = cmd_alloc(h);
6197
6198         c->cmd_type = CMD_IOCTL_PEND;
6199         c->scsi_cmd = SCSI_CMD_BUSY;
6200         c->Header.ReplyQueue = 0;
6201         c->Header.SGList = (u8) sg_used;
6202         c->Header.SGTotal = cpu_to_le16(sg_used);
6203         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6204         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6205         if (ioc->buf_size > 0) {
6206                 int i;
6207                 for (i = 0; i < sg_used; i++) {
6208                         temp64 = pci_map_single(h->pdev, buff[i],
6209                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6210                         if (dma_mapping_error(&h->pdev->dev,
6211                                                         (dma_addr_t) temp64)) {
6212                                 c->SG[i].Addr = cpu_to_le64(0);
6213                                 c->SG[i].Len = cpu_to_le32(0);
6214                                 hpsa_pci_unmap(h->pdev, c, i,
6215                                         PCI_DMA_BIDIRECTIONAL);
6216                                 status = -ENOMEM;
6217                                 goto cleanup0;
6218                         }
6219                         c->SG[i].Addr = cpu_to_le64(temp64);
6220                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6221                         c->SG[i].Ext = cpu_to_le32(0);
6222                 }
6223                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6224         }
6225         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6226         if (sg_used)
6227                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6228         check_ioctl_unit_attention(h, c);
6229         if (status) {
6230                 status = -EIO;
6231                 goto cleanup0;
6232         }
6233
6234         /* Copy the error information out */
6235         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6236         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6237                 status = -EFAULT;
6238                 goto cleanup0;
6239         }
6240         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6241                 int i;
6242
6243                 /* Copy the data out of the buffer we created */
6244                 BYTE __user *ptr = ioc->buf;
6245                 for (i = 0; i < sg_used; i++) {
6246                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6247                                 status = -EFAULT;
6248                                 goto cleanup0;
6249                         }
6250                         ptr += buff_size[i];
6251                 }
6252         }
6253         status = 0;
6254 cleanup0:
6255         cmd_free(h, c);
6256 cleanup1:
6257         if (buff) {
6258                 int i;
6259
6260                 for (i = 0; i < sg_used; i++)
6261                         kfree(buff[i]);
6262                 kfree(buff);
6263         }
6264         kfree(buff_size);
6265         kfree(ioc);
6266         return status;
6267 }
6268
6269 static void check_ioctl_unit_attention(struct ctlr_info *h,
6270         struct CommandList *c)
6271 {
6272         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6273                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6274                 (void) check_for_unit_attention(h, c);
6275 }
6276
6277 /*
6278  * ioctl
6279  */
6280 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6281 {
6282         struct ctlr_info *h;
6283         void __user *argp = (void __user *)arg;
6284         int rc;
6285
6286         h = sdev_to_hba(dev);
6287
6288         switch (cmd) {
6289         case CCISS_DEREGDISK:
6290         case CCISS_REGNEWDISK:
6291         case CCISS_REGNEWD:
6292                 hpsa_scan_start(h->scsi_host);
6293                 return 0;
6294         case CCISS_GETPCIINFO:
6295                 return hpsa_getpciinfo_ioctl(h, argp);
6296         case CCISS_GETDRIVVER:
6297                 return hpsa_getdrivver_ioctl(h, argp);
6298         case CCISS_PASSTHRU:
6299                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6300                         return -EAGAIN;
6301                 rc = hpsa_passthru_ioctl(h, argp);
6302                 atomic_inc(&h->passthru_cmds_avail);
6303                 return rc;
6304         case CCISS_BIG_PASSTHRU:
6305                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6306                         return -EAGAIN;
6307                 rc = hpsa_big_passthru_ioctl(h, argp);
6308                 atomic_inc(&h->passthru_cmds_avail);
6309                 return rc;
6310         default:
6311                 return -ENOTTY;
6312         }
6313 }
6314
6315 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6316                                 u8 reset_type)
6317 {
6318         struct CommandList *c;
6319
6320         c = cmd_alloc(h);
6321
6322         /* fill_cmd can't fail here, no data buffer to map */
6323         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6324                 RAID_CTLR_LUNID, TYPE_MSG);
6325         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6326         c->waiting = NULL;
6327         enqueue_cmd_and_start_io(h, c);
6328         /* Don't wait for completion, the reset won't complete.  Don't free
6329          * the command either.  This is the last command we will send before
6330          * re-initializing everything, so it doesn't matter and won't leak.
6331          */
6332         return;
6333 }
6334
6335 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6336         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6337         int cmd_type)
6338 {
6339         int pci_dir = XFER_NONE;
6340         u64 tag; /* for commands to be aborted */
6341
6342         c->cmd_type = CMD_IOCTL_PEND;
6343         c->scsi_cmd = SCSI_CMD_BUSY;
6344         c->Header.ReplyQueue = 0;
6345         if (buff != NULL && size > 0) {
6346                 c->Header.SGList = 1;
6347                 c->Header.SGTotal = cpu_to_le16(1);
6348         } else {
6349                 c->Header.SGList = 0;
6350                 c->Header.SGTotal = cpu_to_le16(0);
6351         }
6352         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6353
6354         if (cmd_type == TYPE_CMD) {
6355                 switch (cmd) {
6356                 case HPSA_INQUIRY:
6357                         /* are we trying to read a vital product page */
6358                         if (page_code & VPD_PAGE) {
6359                                 c->Request.CDB[1] = 0x01;
6360                                 c->Request.CDB[2] = (page_code & 0xff);
6361                         }
6362                         c->Request.CDBLen = 6;
6363                         c->Request.type_attr_dir =
6364                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6365                         c->Request.Timeout = 0;
6366                         c->Request.CDB[0] = HPSA_INQUIRY;
6367                         c->Request.CDB[4] = size & 0xFF;
6368                         break;
6369                 case HPSA_REPORT_LOG:
6370                 case HPSA_REPORT_PHYS:
6371                         /* Talking to controller so It's a physical command
6372                            mode = 00 target = 0.  Nothing to write.
6373                          */
6374                         c->Request.CDBLen = 12;
6375                         c->Request.type_attr_dir =
6376                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6377                         c->Request.Timeout = 0;
6378                         c->Request.CDB[0] = cmd;
6379                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6380                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6381                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6382                         c->Request.CDB[9] = size & 0xFF;
6383                         break;
6384                 case BMIC_SENSE_DIAG_OPTIONS:
6385                         c->Request.CDBLen = 16;
6386                         c->Request.type_attr_dir =
6387                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6388                         c->Request.Timeout = 0;
6389                         /* Spec says this should be BMIC_WRITE */
6390                         c->Request.CDB[0] = BMIC_READ;
6391                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6392                         break;
6393                 case BMIC_SET_DIAG_OPTIONS:
6394                         c->Request.CDBLen = 16;
6395                         c->Request.type_attr_dir =
6396                                         TYPE_ATTR_DIR(cmd_type,
6397                                                 ATTR_SIMPLE, XFER_WRITE);
6398                         c->Request.Timeout = 0;
6399                         c->Request.CDB[0] = BMIC_WRITE;
6400                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6401                         break;
6402                 case HPSA_CACHE_FLUSH:
6403                         c->Request.CDBLen = 12;
6404                         c->Request.type_attr_dir =
6405                                         TYPE_ATTR_DIR(cmd_type,
6406                                                 ATTR_SIMPLE, XFER_WRITE);
6407                         c->Request.Timeout = 0;
6408                         c->Request.CDB[0] = BMIC_WRITE;
6409                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6410                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6411                         c->Request.CDB[8] = size & 0xFF;
6412                         break;
6413                 case TEST_UNIT_READY:
6414                         c->Request.CDBLen = 6;
6415                         c->Request.type_attr_dir =
6416                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6417                         c->Request.Timeout = 0;
6418                         break;
6419                 case HPSA_GET_RAID_MAP:
6420                         c->Request.CDBLen = 12;
6421                         c->Request.type_attr_dir =
6422                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6423                         c->Request.Timeout = 0;
6424                         c->Request.CDB[0] = HPSA_CISS_READ;
6425                         c->Request.CDB[1] = cmd;
6426                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6427                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6428                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6429                         c->Request.CDB[9] = size & 0xFF;
6430                         break;
6431                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6432                         c->Request.CDBLen = 10;
6433                         c->Request.type_attr_dir =
6434                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6435                         c->Request.Timeout = 0;
6436                         c->Request.CDB[0] = BMIC_READ;
6437                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6438                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6439                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6440                         break;
6441                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6442                         c->Request.CDBLen = 10;
6443                         c->Request.type_attr_dir =
6444                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6445                         c->Request.Timeout = 0;
6446                         c->Request.CDB[0] = BMIC_READ;
6447                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6448                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6449                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6450                         break;
6451                 case BMIC_IDENTIFY_CONTROLLER:
6452                         c->Request.CDBLen = 10;
6453                         c->Request.type_attr_dir =
6454                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6455                         c->Request.Timeout = 0;
6456                         c->Request.CDB[0] = BMIC_READ;
6457                         c->Request.CDB[1] = 0;
6458                         c->Request.CDB[2] = 0;
6459                         c->Request.CDB[3] = 0;
6460                         c->Request.CDB[4] = 0;
6461                         c->Request.CDB[5] = 0;
6462                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6463                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6464                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6465                         c->Request.CDB[9] = 0;
6466                         break;
6467
6468                 default:
6469                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6470                         BUG();
6471                         return -1;
6472                 }
6473         } else if (cmd_type == TYPE_MSG) {
6474                 switch (cmd) {
6475
6476                 case  HPSA_PHYS_TARGET_RESET:
6477                         c->Request.CDBLen = 16;
6478                         c->Request.type_attr_dir =
6479                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6480                         c->Request.Timeout = 0; /* Don't time out */
6481                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6482                         c->Request.CDB[0] = HPSA_RESET;
6483                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6484                         /* Physical target reset needs no control bytes 4-7*/
6485                         c->Request.CDB[4] = 0x00;
6486                         c->Request.CDB[5] = 0x00;
6487                         c->Request.CDB[6] = 0x00;
6488                         c->Request.CDB[7] = 0x00;
6489                         break;
6490                 case  HPSA_DEVICE_RESET_MSG:
6491                         c->Request.CDBLen = 16;
6492                         c->Request.type_attr_dir =
6493                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6494                         c->Request.Timeout = 0; /* Don't time out */
6495                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6496                         c->Request.CDB[0] =  cmd;
6497                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6498                         /* If bytes 4-7 are zero, it means reset the */
6499                         /* LunID device */
6500                         c->Request.CDB[4] = 0x00;
6501                         c->Request.CDB[5] = 0x00;
6502                         c->Request.CDB[6] = 0x00;
6503                         c->Request.CDB[7] = 0x00;
6504                         break;
6505                 case  HPSA_ABORT_MSG:
6506                         memcpy(&tag, buff, sizeof(tag));
6507                         dev_dbg(&h->pdev->dev,
6508                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6509                                 tag, c->Header.tag);
6510                         c->Request.CDBLen = 16;
6511                         c->Request.type_attr_dir =
6512                                         TYPE_ATTR_DIR(cmd_type,
6513                                                 ATTR_SIMPLE, XFER_WRITE);
6514                         c->Request.Timeout = 0; /* Don't time out */
6515                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6516                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6517                         c->Request.CDB[2] = 0x00; /* reserved */
6518                         c->Request.CDB[3] = 0x00; /* reserved */
6519                         /* Tag to abort goes in CDB[4]-CDB[11] */
6520                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6521                         c->Request.CDB[12] = 0x00; /* reserved */
6522                         c->Request.CDB[13] = 0x00; /* reserved */
6523                         c->Request.CDB[14] = 0x00; /* reserved */
6524                         c->Request.CDB[15] = 0x00; /* reserved */
6525                 break;
6526                 default:
6527                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6528                                 cmd);
6529                         BUG();
6530                 }
6531         } else {
6532                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6533                 BUG();
6534         }
6535
6536         switch (GET_DIR(c->Request.type_attr_dir)) {
6537         case XFER_READ:
6538                 pci_dir = PCI_DMA_FROMDEVICE;
6539                 break;
6540         case XFER_WRITE:
6541                 pci_dir = PCI_DMA_TODEVICE;
6542                 break;
6543         case XFER_NONE:
6544                 pci_dir = PCI_DMA_NONE;
6545                 break;
6546         default:
6547                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6548         }
6549         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6550                 return -1;
6551         return 0;
6552 }
6553
6554 /*
6555  * Map (physical) PCI mem into (virtual) kernel space
6556  */
6557 static void __iomem *remap_pci_mem(ulong base, ulong size)
6558 {
6559         ulong page_base = ((ulong) base) & PAGE_MASK;
6560         ulong page_offs = ((ulong) base) - page_base;
6561         void __iomem *page_remapped = ioremap_nocache(page_base,
6562                 page_offs + size);
6563
6564         return page_remapped ? (page_remapped + page_offs) : NULL;
6565 }
6566
6567 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6568 {
6569         return h->access.command_completed(h, q);
6570 }
6571
6572 static inline bool interrupt_pending(struct ctlr_info *h)
6573 {
6574         return h->access.intr_pending(h);
6575 }
6576
6577 static inline long interrupt_not_for_us(struct ctlr_info *h)
6578 {
6579         return (h->access.intr_pending(h) == 0) ||
6580                 (h->interrupts_enabled == 0);
6581 }
6582
6583 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6584         u32 raw_tag)
6585 {
6586         if (unlikely(tag_index >= h->nr_cmds)) {
6587                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6588                 return 1;
6589         }
6590         return 0;
6591 }
6592
6593 static inline void finish_cmd(struct CommandList *c)
6594 {
6595         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6596         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6597                         || c->cmd_type == CMD_IOACCEL2))
6598                 complete_scsi_command(c);
6599         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6600                 complete(c->waiting);
6601 }
6602
6603 /* process completion of an indexed ("direct lookup") command */
6604 static inline void process_indexed_cmd(struct ctlr_info *h,
6605         u32 raw_tag)
6606 {
6607         u32 tag_index;
6608         struct CommandList *c;
6609
6610         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6611         if (!bad_tag(h, tag_index, raw_tag)) {
6612                 c = h->cmd_pool + tag_index;
6613                 finish_cmd(c);
6614         }
6615 }
6616
6617 /* Some controllers, like p400, will give us one interrupt
6618  * after a soft reset, even if we turned interrupts off.
6619  * Only need to check for this in the hpsa_xxx_discard_completions
6620  * functions.
6621  */
6622 static int ignore_bogus_interrupt(struct ctlr_info *h)
6623 {
6624         if (likely(!reset_devices))
6625                 return 0;
6626
6627         if (likely(h->interrupts_enabled))
6628                 return 0;
6629
6630         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6631                 "(known firmware bug.)  Ignoring.\n");
6632
6633         return 1;
6634 }
6635
6636 /*
6637  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6638  * Relies on (h-q[x] == x) being true for x such that
6639  * 0 <= x < MAX_REPLY_QUEUES.
6640  */
6641 static struct ctlr_info *queue_to_hba(u8 *queue)
6642 {
6643         return container_of((queue - *queue), struct ctlr_info, q[0]);
6644 }
6645
6646 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6647 {
6648         struct ctlr_info *h = queue_to_hba(queue);
6649         u8 q = *(u8 *) queue;
6650         u32 raw_tag;
6651
6652         if (ignore_bogus_interrupt(h))
6653                 return IRQ_NONE;
6654
6655         if (interrupt_not_for_us(h))
6656                 return IRQ_NONE;
6657         h->last_intr_timestamp = get_jiffies_64();
6658         while (interrupt_pending(h)) {
6659                 raw_tag = get_next_completion(h, q);
6660                 while (raw_tag != FIFO_EMPTY)
6661                         raw_tag = next_command(h, q);
6662         }
6663         return IRQ_HANDLED;
6664 }
6665
6666 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6667 {
6668         struct ctlr_info *h = queue_to_hba(queue);
6669         u32 raw_tag;
6670         u8 q = *(u8 *) queue;
6671
6672         if (ignore_bogus_interrupt(h))
6673                 return IRQ_NONE;
6674
6675         h->last_intr_timestamp = get_jiffies_64();
6676         raw_tag = get_next_completion(h, q);
6677         while (raw_tag != FIFO_EMPTY)
6678                 raw_tag = next_command(h, q);
6679         return IRQ_HANDLED;
6680 }
6681
6682 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6683 {
6684         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6685         u32 raw_tag;
6686         u8 q = *(u8 *) queue;
6687
6688         if (interrupt_not_for_us(h))
6689                 return IRQ_NONE;
6690         h->last_intr_timestamp = get_jiffies_64();
6691         while (interrupt_pending(h)) {
6692                 raw_tag = get_next_completion(h, q);
6693                 while (raw_tag != FIFO_EMPTY) {
6694                         process_indexed_cmd(h, raw_tag);
6695                         raw_tag = next_command(h, q);
6696                 }
6697         }
6698         return IRQ_HANDLED;
6699 }
6700
6701 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6702 {
6703         struct ctlr_info *h = queue_to_hba(queue);
6704         u32 raw_tag;
6705         u8 q = *(u8 *) queue;
6706
6707         h->last_intr_timestamp = get_jiffies_64();
6708         raw_tag = get_next_completion(h, q);
6709         while (raw_tag != FIFO_EMPTY) {
6710                 process_indexed_cmd(h, raw_tag);
6711                 raw_tag = next_command(h, q);
6712         }
6713         return IRQ_HANDLED;
6714 }
6715
6716 /* Send a message CDB to the firmware. Careful, this only works
6717  * in simple mode, not performant mode due to the tag lookup.
6718  * We only ever use this immediately after a controller reset.
6719  */
6720 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6721                         unsigned char type)
6722 {
6723         struct Command {
6724                 struct CommandListHeader CommandHeader;
6725                 struct RequestBlock Request;
6726                 struct ErrDescriptor ErrorDescriptor;
6727         };
6728         struct Command *cmd;
6729         static const size_t cmd_sz = sizeof(*cmd) +
6730                                         sizeof(cmd->ErrorDescriptor);
6731         dma_addr_t paddr64;
6732         __le32 paddr32;
6733         u32 tag;
6734         void __iomem *vaddr;
6735         int i, err;
6736
6737         vaddr = pci_ioremap_bar(pdev, 0);
6738         if (vaddr == NULL)
6739                 return -ENOMEM;
6740
6741         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6742          * CCISS commands, so they must be allocated from the lower 4GiB of
6743          * memory.
6744          */
6745         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6746         if (err) {
6747                 iounmap(vaddr);
6748                 return err;
6749         }
6750
6751         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6752         if (cmd == NULL) {
6753                 iounmap(vaddr);
6754                 return -ENOMEM;
6755         }
6756
6757         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6758          * although there's no guarantee, we assume that the address is at
6759          * least 4-byte aligned (most likely, it's page-aligned).
6760          */
6761         paddr32 = cpu_to_le32(paddr64);
6762
6763         cmd->CommandHeader.ReplyQueue = 0;
6764         cmd->CommandHeader.SGList = 0;
6765         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6766         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6767         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6768
6769         cmd->Request.CDBLen = 16;
6770         cmd->Request.type_attr_dir =
6771                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6772         cmd->Request.Timeout = 0; /* Don't time out */
6773         cmd->Request.CDB[0] = opcode;
6774         cmd->Request.CDB[1] = type;
6775         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6776         cmd->ErrorDescriptor.Addr =
6777                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6778         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6779
6780         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6781
6782         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6783                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6784                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6785                         break;
6786                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6787         }
6788
6789         iounmap(vaddr);
6790
6791         /* we leak the DMA buffer here ... no choice since the controller could
6792          *  still complete the command.
6793          */
6794         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6795                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6796                         opcode, type);
6797                 return -ETIMEDOUT;
6798         }
6799
6800         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6801
6802         if (tag & HPSA_ERROR_BIT) {
6803                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6804                         opcode, type);
6805                 return -EIO;
6806         }
6807
6808         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6809                 opcode, type);
6810         return 0;
6811 }
6812
6813 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6814
6815 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6816         void __iomem *vaddr, u32 use_doorbell)
6817 {
6818
6819         if (use_doorbell) {
6820                 /* For everything after the P600, the PCI power state method
6821                  * of resetting the controller doesn't work, so we have this
6822                  * other way using the doorbell register.
6823                  */
6824                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6825                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6826
6827                 /* PMC hardware guys tell us we need a 10 second delay after
6828                  * doorbell reset and before any attempt to talk to the board
6829                  * at all to ensure that this actually works and doesn't fall
6830                  * over in some weird corner cases.
6831                  */
6832                 msleep(10000);
6833         } else { /* Try to do it the PCI power state way */
6834
6835                 /* Quoting from the Open CISS Specification: "The Power
6836                  * Management Control/Status Register (CSR) controls the power
6837                  * state of the device.  The normal operating state is D0,
6838                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6839                  * the controller, place the interface device in D3 then to D0,
6840                  * this causes a secondary PCI reset which will reset the
6841                  * controller." */
6842
6843                 int rc = 0;
6844
6845                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6846
6847                 /* enter the D3hot power management state */
6848                 rc = pci_set_power_state(pdev, PCI_D3hot);
6849                 if (rc)
6850                         return rc;
6851
6852                 msleep(500);
6853
6854                 /* enter the D0 power management state */
6855                 rc = pci_set_power_state(pdev, PCI_D0);
6856                 if (rc)
6857                         return rc;
6858
6859                 /*
6860                  * The P600 requires a small delay when changing states.
6861                  * Otherwise we may think the board did not reset and we bail.
6862                  * This for kdump only and is particular to the P600.
6863                  */
6864                 msleep(500);
6865         }
6866         return 0;
6867 }
6868
6869 static void init_driver_version(char *driver_version, int len)
6870 {
6871         memset(driver_version, 0, len);
6872         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6873 }
6874
6875 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6876 {
6877         char *driver_version;
6878         int i, size = sizeof(cfgtable->driver_version);
6879
6880         driver_version = kmalloc(size, GFP_KERNEL);
6881         if (!driver_version)
6882                 return -ENOMEM;
6883
6884         init_driver_version(driver_version, size);
6885         for (i = 0; i < size; i++)
6886                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6887         kfree(driver_version);
6888         return 0;
6889 }
6890
6891 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6892                                           unsigned char *driver_ver)
6893 {
6894         int i;
6895
6896         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6897                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6898 }
6899
6900 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6901 {
6902
6903         char *driver_ver, *old_driver_ver;
6904         int rc, size = sizeof(cfgtable->driver_version);
6905
6906         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6907         if (!old_driver_ver)
6908                 return -ENOMEM;
6909         driver_ver = old_driver_ver + size;
6910
6911         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6912          * should have been changed, otherwise we know the reset failed.
6913          */
6914         init_driver_version(old_driver_ver, size);
6915         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6916         rc = !memcmp(driver_ver, old_driver_ver, size);
6917         kfree(old_driver_ver);
6918         return rc;
6919 }
6920 /* This does a hard reset of the controller using PCI power management
6921  * states or the using the doorbell register.
6922  */
6923 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6924 {
6925         u64 cfg_offset;
6926         u32 cfg_base_addr;
6927         u64 cfg_base_addr_index;
6928         void __iomem *vaddr;
6929         unsigned long paddr;
6930         u32 misc_fw_support;
6931         int rc;
6932         struct CfgTable __iomem *cfgtable;
6933         u32 use_doorbell;
6934         u16 command_register;
6935
6936         /* For controllers as old as the P600, this is very nearly
6937          * the same thing as
6938          *
6939          * pci_save_state(pci_dev);
6940          * pci_set_power_state(pci_dev, PCI_D3hot);
6941          * pci_set_power_state(pci_dev, PCI_D0);
6942          * pci_restore_state(pci_dev);
6943          *
6944          * For controllers newer than the P600, the pci power state
6945          * method of resetting doesn't work so we have another way
6946          * using the doorbell register.
6947          */
6948
6949         if (!ctlr_is_resettable(board_id)) {
6950                 dev_warn(&pdev->dev, "Controller not resettable\n");
6951                 return -ENODEV;
6952         }
6953
6954         /* if controller is soft- but not hard resettable... */
6955         if (!ctlr_is_hard_resettable(board_id))
6956                 return -ENOTSUPP; /* try soft reset later. */
6957
6958         /* Save the PCI command register */
6959         pci_read_config_word(pdev, 4, &command_register);
6960         pci_save_state(pdev);
6961
6962         /* find the first memory BAR, so we can find the cfg table */
6963         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6964         if (rc)
6965                 return rc;
6966         vaddr = remap_pci_mem(paddr, 0x250);
6967         if (!vaddr)
6968                 return -ENOMEM;
6969
6970         /* find cfgtable in order to check if reset via doorbell is supported */
6971         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6972                                         &cfg_base_addr_index, &cfg_offset);
6973         if (rc)
6974                 goto unmap_vaddr;
6975         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6976                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6977         if (!cfgtable) {
6978                 rc = -ENOMEM;
6979                 goto unmap_vaddr;
6980         }
6981         rc = write_driver_ver_to_cfgtable(cfgtable);
6982         if (rc)
6983                 goto unmap_cfgtable;
6984
6985         /* If reset via doorbell register is supported, use that.
6986          * There are two such methods.  Favor the newest method.
6987          */
6988         misc_fw_support = readl(&cfgtable->misc_fw_support);
6989         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6990         if (use_doorbell) {
6991                 use_doorbell = DOORBELL_CTLR_RESET2;
6992         } else {
6993                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6994                 if (use_doorbell) {
6995                         dev_warn(&pdev->dev,
6996                                 "Soft reset not supported. Firmware update is required.\n");
6997                         rc = -ENOTSUPP; /* try soft reset */
6998                         goto unmap_cfgtable;
6999                 }
7000         }
7001
7002         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7003         if (rc)
7004                 goto unmap_cfgtable;
7005
7006         pci_restore_state(pdev);
7007         pci_write_config_word(pdev, 4, command_register);
7008
7009         /* Some devices (notably the HP Smart Array 5i Controller)
7010            need a little pause here */
7011         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7012
7013         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7014         if (rc) {
7015                 dev_warn(&pdev->dev,
7016                         "Failed waiting for board to become ready after hard reset\n");
7017                 goto unmap_cfgtable;
7018         }
7019
7020         rc = controller_reset_failed(vaddr);
7021         if (rc < 0)
7022                 goto unmap_cfgtable;
7023         if (rc) {
7024                 dev_warn(&pdev->dev, "Unable to successfully reset "
7025                         "controller. Will try soft reset.\n");
7026                 rc = -ENOTSUPP;
7027         } else {
7028                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7029         }
7030
7031 unmap_cfgtable:
7032         iounmap(cfgtable);
7033
7034 unmap_vaddr:
7035         iounmap(vaddr);
7036         return rc;
7037 }
7038
7039 /*
7040  *  We cannot read the structure directly, for portability we must use
7041  *   the io functions.
7042  *   This is for debug only.
7043  */
7044 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7045 {
7046 #ifdef HPSA_DEBUG
7047         int i;
7048         char temp_name[17];
7049
7050         dev_info(dev, "Controller Configuration information\n");
7051         dev_info(dev, "------------------------------------\n");
7052         for (i = 0; i < 4; i++)
7053                 temp_name[i] = readb(&(tb->Signature[i]));
7054         temp_name[4] = '\0';
7055         dev_info(dev, "   Signature = %s\n", temp_name);
7056         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7057         dev_info(dev, "   Transport methods supported = 0x%x\n",
7058                readl(&(tb->TransportSupport)));
7059         dev_info(dev, "   Transport methods active = 0x%x\n",
7060                readl(&(tb->TransportActive)));
7061         dev_info(dev, "   Requested transport Method = 0x%x\n",
7062                readl(&(tb->HostWrite.TransportRequest)));
7063         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7064                readl(&(tb->HostWrite.CoalIntDelay)));
7065         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7066                readl(&(tb->HostWrite.CoalIntCount)));
7067         dev_info(dev, "   Max outstanding commands = %d\n",
7068                readl(&(tb->CmdsOutMax)));
7069         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7070         for (i = 0; i < 16; i++)
7071                 temp_name[i] = readb(&(tb->ServerName[i]));
7072         temp_name[16] = '\0';
7073         dev_info(dev, "   Server Name = %s\n", temp_name);
7074         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7075                 readl(&(tb->HeartBeat)));
7076 #endif                          /* HPSA_DEBUG */
7077 }
7078
7079 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7080 {
7081         int i, offset, mem_type, bar_type;
7082
7083         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7084                 return 0;
7085         offset = 0;
7086         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7087                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7088                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7089                         offset += 4;
7090                 else {
7091                         mem_type = pci_resource_flags(pdev, i) &
7092                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7093                         switch (mem_type) {
7094                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7095                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7096                                 offset += 4;    /* 32 bit */
7097                                 break;
7098                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7099                                 offset += 8;
7100                                 break;
7101                         default:        /* reserved in PCI 2.2 */
7102                                 dev_warn(&pdev->dev,
7103                                        "base address is invalid\n");
7104                                 return -1;
7105                                 break;
7106                         }
7107                 }
7108                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7109                         return i + 1;
7110         }
7111         return -1;
7112 }
7113
7114 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7115 {
7116         if (h->msix_vector) {
7117                 if (h->pdev->msix_enabled)
7118                         pci_disable_msix(h->pdev);
7119                 h->msix_vector = 0;
7120         } else if (h->msi_vector) {
7121                 if (h->pdev->msi_enabled)
7122                         pci_disable_msi(h->pdev);
7123                 h->msi_vector = 0;
7124         }
7125 }
7126
7127 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7128  * controllers that are capable. If not, we use legacy INTx mode.
7129  */
7130 static void hpsa_interrupt_mode(struct ctlr_info *h)
7131 {
7132 #ifdef CONFIG_PCI_MSI
7133         int err, i;
7134         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7135
7136         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7137                 hpsa_msix_entries[i].vector = 0;
7138                 hpsa_msix_entries[i].entry = i;
7139         }
7140
7141         /* Some boards advertise MSI but don't really support it */
7142         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7143             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7144                 goto default_int_mode;
7145         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7146                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7147                 h->msix_vector = MAX_REPLY_QUEUES;
7148                 if (h->msix_vector > num_online_cpus())
7149                         h->msix_vector = num_online_cpus();
7150                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7151                                             1, h->msix_vector);
7152                 if (err < 0) {
7153                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7154                         h->msix_vector = 0;
7155                         goto single_msi_mode;
7156                 } else if (err < h->msix_vector) {
7157                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7158                                "available\n", err);
7159                 }
7160                 h->msix_vector = err;
7161                 for (i = 0; i < h->msix_vector; i++)
7162                         h->intr[i] = hpsa_msix_entries[i].vector;
7163                 return;
7164         }
7165 single_msi_mode:
7166         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7167                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7168                 if (!pci_enable_msi(h->pdev))
7169                         h->msi_vector = 1;
7170                 else
7171                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7172         }
7173 default_int_mode:
7174 #endif                          /* CONFIG_PCI_MSI */
7175         /* if we get here we're going to use the default interrupt mode */
7176         h->intr[h->intr_mode] = h->pdev->irq;
7177 }
7178
7179 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7180 {
7181         int i;
7182         u32 subsystem_vendor_id, subsystem_device_id;
7183
7184         subsystem_vendor_id = pdev->subsystem_vendor;
7185         subsystem_device_id = pdev->subsystem_device;
7186         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7187                     subsystem_vendor_id;
7188
7189         for (i = 0; i < ARRAY_SIZE(products); i++)
7190                 if (*board_id == products[i].board_id)
7191                         return i;
7192
7193         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7194                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7195                 !hpsa_allow_any) {
7196                 dev_warn(&pdev->dev, "unrecognized board ID: "
7197                         "0x%08x, ignoring.\n", *board_id);
7198                         return -ENODEV;
7199         }
7200         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7201 }
7202
7203 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7204                                     unsigned long *memory_bar)
7205 {
7206         int i;
7207
7208         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7209                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7210                         /* addressing mode bits already removed */
7211                         *memory_bar = pci_resource_start(pdev, i);
7212                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7213                                 *memory_bar);
7214                         return 0;
7215                 }
7216         dev_warn(&pdev->dev, "no memory BAR found\n");
7217         return -ENODEV;
7218 }
7219
7220 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7221                                      int wait_for_ready)
7222 {
7223         int i, iterations;
7224         u32 scratchpad;
7225         if (wait_for_ready)
7226                 iterations = HPSA_BOARD_READY_ITERATIONS;
7227         else
7228                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7229
7230         for (i = 0; i < iterations; i++) {
7231                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7232                 if (wait_for_ready) {
7233                         if (scratchpad == HPSA_FIRMWARE_READY)
7234                                 return 0;
7235                 } else {
7236                         if (scratchpad != HPSA_FIRMWARE_READY)
7237                                 return 0;
7238                 }
7239                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7240         }
7241         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7242         return -ENODEV;
7243 }
7244
7245 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7246                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7247                                u64 *cfg_offset)
7248 {
7249         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7250         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7251         *cfg_base_addr &= (u32) 0x0000ffff;
7252         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7253         if (*cfg_base_addr_index == -1) {
7254                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7255                 return -ENODEV;
7256         }
7257         return 0;
7258 }
7259
7260 static void hpsa_free_cfgtables(struct ctlr_info *h)
7261 {
7262         if (h->transtable) {
7263                 iounmap(h->transtable);
7264                 h->transtable = NULL;
7265         }
7266         if (h->cfgtable) {
7267                 iounmap(h->cfgtable);
7268                 h->cfgtable = NULL;
7269         }
7270 }
7271
7272 /* Find and map CISS config table and transfer table
7273 + * several items must be unmapped (freed) later
7274 + * */
7275 static int hpsa_find_cfgtables(struct ctlr_info *h)
7276 {
7277         u64 cfg_offset;
7278         u32 cfg_base_addr;
7279         u64 cfg_base_addr_index;
7280         u32 trans_offset;
7281         int rc;
7282
7283         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7284                 &cfg_base_addr_index, &cfg_offset);
7285         if (rc)
7286                 return rc;
7287         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7288                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7289         if (!h->cfgtable) {
7290                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7291                 return -ENOMEM;
7292         }
7293         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7294         if (rc)
7295                 return rc;
7296         /* Find performant mode table. */
7297         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7298         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7299                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7300                                 sizeof(*h->transtable));
7301         if (!h->transtable) {
7302                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7303                 hpsa_free_cfgtables(h);
7304                 return -ENOMEM;
7305         }
7306         return 0;
7307 }
7308
7309 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7310 {
7311 #define MIN_MAX_COMMANDS 16
7312         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7313
7314         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7315
7316         /* Limit commands in memory limited kdump scenario. */
7317         if (reset_devices && h->max_commands > 32)
7318                 h->max_commands = 32;
7319
7320         if (h->max_commands < MIN_MAX_COMMANDS) {
7321                 dev_warn(&h->pdev->dev,
7322                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7323                         h->max_commands,
7324                         MIN_MAX_COMMANDS);
7325                 h->max_commands = MIN_MAX_COMMANDS;
7326         }
7327 }
7328
7329 /* If the controller reports that the total max sg entries is greater than 512,
7330  * then we know that chained SG blocks work.  (Original smart arrays did not
7331  * support chained SG blocks and would return zero for max sg entries.)
7332  */
7333 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7334 {
7335         return h->maxsgentries > 512;
7336 }
7337
7338 /* Interrogate the hardware for some limits:
7339  * max commands, max SG elements without chaining, and with chaining,
7340  * SG chain block size, etc.
7341  */
7342 static void hpsa_find_board_params(struct ctlr_info *h)
7343 {
7344         hpsa_get_max_perf_mode_cmds(h);
7345         h->nr_cmds = h->max_commands;
7346         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7347         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7348         if (hpsa_supports_chained_sg_blocks(h)) {
7349                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7350                 h->max_cmd_sg_entries = 32;
7351                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7352                 h->maxsgentries--; /* save one for chain pointer */
7353         } else {
7354                 /*
7355                  * Original smart arrays supported at most 31 s/g entries
7356                  * embedded inline in the command (trying to use more
7357                  * would lock up the controller)
7358                  */
7359                 h->max_cmd_sg_entries = 31;
7360                 h->maxsgentries = 31; /* default to traditional values */
7361                 h->chainsize = 0;
7362         }
7363
7364         /* Find out what task management functions are supported and cache */
7365         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7366         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7367                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7368         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7369                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7370         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7371                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7372 }
7373
7374 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7375 {
7376         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7377                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7378                 return false;
7379         }
7380         return true;
7381 }
7382
7383 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7384 {
7385         u32 driver_support;
7386
7387         driver_support = readl(&(h->cfgtable->driver_support));
7388         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7389 #ifdef CONFIG_X86
7390         driver_support |= ENABLE_SCSI_PREFETCH;
7391 #endif
7392         driver_support |= ENABLE_UNIT_ATTN;
7393         writel(driver_support, &(h->cfgtable->driver_support));
7394 }
7395
7396 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7397  * in a prefetch beyond physical memory.
7398  */
7399 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7400 {
7401         u32 dma_prefetch;
7402
7403         if (h->board_id != 0x3225103C)
7404                 return;
7405         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7406         dma_prefetch |= 0x8000;
7407         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7408 }
7409
7410 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7411 {
7412         int i;
7413         u32 doorbell_value;
7414         unsigned long flags;
7415         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7416         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7417                 spin_lock_irqsave(&h->lock, flags);
7418                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7419                 spin_unlock_irqrestore(&h->lock, flags);
7420                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7421                         goto done;
7422                 /* delay and try again */
7423                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7424         }
7425         return -ENODEV;
7426 done:
7427         return 0;
7428 }
7429
7430 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7431 {
7432         int i;
7433         u32 doorbell_value;
7434         unsigned long flags;
7435
7436         /* under certain very rare conditions, this can take awhile.
7437          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7438          * as we enter this code.)
7439          */
7440         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7441                 if (h->remove_in_progress)
7442                         goto done;
7443                 spin_lock_irqsave(&h->lock, flags);
7444                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7445                 spin_unlock_irqrestore(&h->lock, flags);
7446                 if (!(doorbell_value & CFGTBL_ChangeReq))
7447                         goto done;
7448                 /* delay and try again */
7449                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7450         }
7451         return -ENODEV;
7452 done:
7453         return 0;
7454 }
7455
7456 /* return -ENODEV or other reason on error, 0 on success */
7457 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7458 {
7459         u32 trans_support;
7460
7461         trans_support = readl(&(h->cfgtable->TransportSupport));
7462         if (!(trans_support & SIMPLE_MODE))
7463                 return -ENOTSUPP;
7464
7465         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7466
7467         /* Update the field, and then ring the doorbell */
7468         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7469         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7470         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7471         if (hpsa_wait_for_mode_change_ack(h))
7472                 goto error;
7473         print_cfg_table(&h->pdev->dev, h->cfgtable);
7474         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7475                 goto error;
7476         h->transMethod = CFGTBL_Trans_Simple;
7477         return 0;
7478 error:
7479         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7480         return -ENODEV;
7481 }
7482
7483 /* free items allocated or mapped by hpsa_pci_init */
7484 static void hpsa_free_pci_init(struct ctlr_info *h)
7485 {
7486         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7487         iounmap(h->vaddr);                      /* pci_init 3 */
7488         h->vaddr = NULL;
7489         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7490         /*
7491          * call pci_disable_device before pci_release_regions per
7492          * Documentation/PCI/pci.txt
7493          */
7494         pci_disable_device(h->pdev);            /* pci_init 1 */
7495         pci_release_regions(h->pdev);           /* pci_init 2 */
7496 }
7497
7498 /* several items must be freed later */
7499 static int hpsa_pci_init(struct ctlr_info *h)
7500 {
7501         int prod_index, err;
7502
7503         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7504         if (prod_index < 0)
7505                 return prod_index;
7506         h->product_name = products[prod_index].product_name;
7507         h->access = *(products[prod_index].access);
7508
7509         h->needs_abort_tags_swizzled =
7510                 ctlr_needs_abort_tags_swizzled(h->board_id);
7511
7512         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7513                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7514
7515         err = pci_enable_device(h->pdev);
7516         if (err) {
7517                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7518                 pci_disable_device(h->pdev);
7519                 return err;
7520         }
7521
7522         err = pci_request_regions(h->pdev, HPSA);
7523         if (err) {
7524                 dev_err(&h->pdev->dev,
7525                         "failed to obtain PCI resources\n");
7526                 pci_disable_device(h->pdev);
7527                 return err;
7528         }
7529
7530         pci_set_master(h->pdev);
7531
7532         hpsa_interrupt_mode(h);
7533         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7534         if (err)
7535                 goto clean2;    /* intmode+region, pci */
7536         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7537         if (!h->vaddr) {
7538                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7539                 err = -ENOMEM;
7540                 goto clean2;    /* intmode+region, pci */
7541         }
7542         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7543         if (err)
7544                 goto clean3;    /* vaddr, intmode+region, pci */
7545         err = hpsa_find_cfgtables(h);
7546         if (err)
7547                 goto clean3;    /* vaddr, intmode+region, pci */
7548         hpsa_find_board_params(h);
7549
7550         if (!hpsa_CISS_signature_present(h)) {
7551                 err = -ENODEV;
7552                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7553         }
7554         hpsa_set_driver_support_bits(h);
7555         hpsa_p600_dma_prefetch_quirk(h);
7556         err = hpsa_enter_simple_mode(h);
7557         if (err)
7558                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7559         return 0;
7560
7561 clean4: /* cfgtables, vaddr, intmode+region, pci */
7562         hpsa_free_cfgtables(h);
7563 clean3: /* vaddr, intmode+region, pci */
7564         iounmap(h->vaddr);
7565         h->vaddr = NULL;
7566 clean2: /* intmode+region, pci */
7567         hpsa_disable_interrupt_mode(h);
7568         /*
7569          * call pci_disable_device before pci_release_regions per
7570          * Documentation/PCI/pci.txt
7571          */
7572         pci_disable_device(h->pdev);
7573         pci_release_regions(h->pdev);
7574         return err;
7575 }
7576
7577 static void hpsa_hba_inquiry(struct ctlr_info *h)
7578 {
7579         int rc;
7580
7581 #define HBA_INQUIRY_BYTE_COUNT 64
7582         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7583         if (!h->hba_inquiry_data)
7584                 return;
7585         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7586                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7587         if (rc != 0) {
7588                 kfree(h->hba_inquiry_data);
7589                 h->hba_inquiry_data = NULL;
7590         }
7591 }
7592
7593 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7594 {
7595         int rc, i;
7596         void __iomem *vaddr;
7597
7598         if (!reset_devices)
7599                 return 0;
7600
7601         /* kdump kernel is loading, we don't know in which state is
7602          * the pci interface. The dev->enable_cnt is equal zero
7603          * so we call enable+disable, wait a while and switch it on.
7604          */
7605         rc = pci_enable_device(pdev);
7606         if (rc) {
7607                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7608                 return -ENODEV;
7609         }
7610         pci_disable_device(pdev);
7611         msleep(260);                    /* a randomly chosen number */
7612         rc = pci_enable_device(pdev);
7613         if (rc) {
7614                 dev_warn(&pdev->dev, "failed to enable device.\n");
7615                 return -ENODEV;
7616         }
7617
7618         pci_set_master(pdev);
7619
7620         vaddr = pci_ioremap_bar(pdev, 0);
7621         if (vaddr == NULL) {
7622                 rc = -ENOMEM;
7623                 goto out_disable;
7624         }
7625         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7626         iounmap(vaddr);
7627
7628         /* Reset the controller with a PCI power-cycle or via doorbell */
7629         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7630
7631         /* -ENOTSUPP here means we cannot reset the controller
7632          * but it's already (and still) up and running in
7633          * "performant mode".  Or, it might be 640x, which can't reset
7634          * due to concerns about shared bbwc between 6402/6404 pair.
7635          */
7636         if (rc)
7637                 goto out_disable;
7638
7639         /* Now try to get the controller to respond to a no-op */
7640         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7641         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7642                 if (hpsa_noop(pdev) == 0)
7643                         break;
7644                 else
7645                         dev_warn(&pdev->dev, "no-op failed%s\n",
7646                                         (i < 11 ? "; re-trying" : ""));
7647         }
7648
7649 out_disable:
7650
7651         pci_disable_device(pdev);
7652         return rc;
7653 }
7654
7655 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7656 {
7657         kfree(h->cmd_pool_bits);
7658         h->cmd_pool_bits = NULL;
7659         if (h->cmd_pool) {
7660                 pci_free_consistent(h->pdev,
7661                                 h->nr_cmds * sizeof(struct CommandList),
7662                                 h->cmd_pool,
7663                                 h->cmd_pool_dhandle);
7664                 h->cmd_pool = NULL;
7665                 h->cmd_pool_dhandle = 0;
7666         }
7667         if (h->errinfo_pool) {
7668                 pci_free_consistent(h->pdev,
7669                                 h->nr_cmds * sizeof(struct ErrorInfo),
7670                                 h->errinfo_pool,
7671                                 h->errinfo_pool_dhandle);
7672                 h->errinfo_pool = NULL;
7673                 h->errinfo_pool_dhandle = 0;
7674         }
7675 }
7676
7677 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7678 {
7679         h->cmd_pool_bits = kzalloc(
7680                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7681                 sizeof(unsigned long), GFP_KERNEL);
7682         h->cmd_pool = pci_alloc_consistent(h->pdev,
7683                     h->nr_cmds * sizeof(*h->cmd_pool),
7684                     &(h->cmd_pool_dhandle));
7685         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7686                     h->nr_cmds * sizeof(*h->errinfo_pool),
7687                     &(h->errinfo_pool_dhandle));
7688         if ((h->cmd_pool_bits == NULL)
7689             || (h->cmd_pool == NULL)
7690             || (h->errinfo_pool == NULL)) {
7691                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7692                 goto clean_up;
7693         }
7694         hpsa_preinitialize_commands(h);
7695         return 0;
7696 clean_up:
7697         hpsa_free_cmd_pool(h);
7698         return -ENOMEM;
7699 }
7700
7701 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7702 {
7703         int i, cpu;
7704
7705         cpu = cpumask_first(cpu_online_mask);
7706         for (i = 0; i < h->msix_vector; i++) {
7707                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7708                 cpu = cpumask_next(cpu, cpu_online_mask);
7709         }
7710 }
7711
7712 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7713 static void hpsa_free_irqs(struct ctlr_info *h)
7714 {
7715         int i;
7716
7717         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7718                 /* Single reply queue, only one irq to free */
7719                 i = h->intr_mode;
7720                 irq_set_affinity_hint(h->intr[i], NULL);
7721                 free_irq(h->intr[i], &h->q[i]);
7722                 h->q[i] = 0;
7723                 return;
7724         }
7725
7726         for (i = 0; i < h->msix_vector; i++) {
7727                 irq_set_affinity_hint(h->intr[i], NULL);
7728                 free_irq(h->intr[i], &h->q[i]);
7729                 h->q[i] = 0;
7730         }
7731         for (; i < MAX_REPLY_QUEUES; i++)
7732                 h->q[i] = 0;
7733 }
7734
7735 /* returns 0 on success; cleans up and returns -Enn on error */
7736 static int hpsa_request_irqs(struct ctlr_info *h,
7737         irqreturn_t (*msixhandler)(int, void *),
7738         irqreturn_t (*intxhandler)(int, void *))
7739 {
7740         int rc, i;
7741
7742         /*
7743          * initialize h->q[x] = x so that interrupt handlers know which
7744          * queue to process.
7745          */
7746         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7747                 h->q[i] = (u8) i;
7748
7749         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7750                 /* If performant mode and MSI-X, use multiple reply queues */
7751                 for (i = 0; i < h->msix_vector; i++) {
7752                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7753                         rc = request_irq(h->intr[i], msixhandler,
7754                                         0, h->intrname[i],
7755                                         &h->q[i]);
7756                         if (rc) {
7757                                 int j;
7758
7759                                 dev_err(&h->pdev->dev,
7760                                         "failed to get irq %d for %s\n",
7761                                        h->intr[i], h->devname);
7762                                 for (j = 0; j < i; j++) {
7763                                         free_irq(h->intr[j], &h->q[j]);
7764                                         h->q[j] = 0;
7765                                 }
7766                                 for (; j < MAX_REPLY_QUEUES; j++)
7767                                         h->q[j] = 0;
7768                                 return rc;
7769                         }
7770                 }
7771                 hpsa_irq_affinity_hints(h);
7772         } else {
7773                 /* Use single reply pool */
7774                 if (h->msix_vector > 0 || h->msi_vector) {
7775                         if (h->msix_vector)
7776                                 sprintf(h->intrname[h->intr_mode],
7777                                         "%s-msix", h->devname);
7778                         else
7779                                 sprintf(h->intrname[h->intr_mode],
7780                                         "%s-msi", h->devname);
7781                         rc = request_irq(h->intr[h->intr_mode],
7782                                 msixhandler, 0,
7783                                 h->intrname[h->intr_mode],
7784                                 &h->q[h->intr_mode]);
7785                 } else {
7786                         sprintf(h->intrname[h->intr_mode],
7787                                 "%s-intx", h->devname);
7788                         rc = request_irq(h->intr[h->intr_mode],
7789                                 intxhandler, IRQF_SHARED,
7790                                 h->intrname[h->intr_mode],
7791                                 &h->q[h->intr_mode]);
7792                 }
7793                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7794         }
7795         if (rc) {
7796                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7797                        h->intr[h->intr_mode], h->devname);
7798                 hpsa_free_irqs(h);
7799                 return -ENODEV;
7800         }
7801         return 0;
7802 }
7803
7804 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7805 {
7806         int rc;
7807         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7808
7809         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7810         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7811         if (rc) {
7812                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7813                 return rc;
7814         }
7815
7816         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7817         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7818         if (rc) {
7819                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7820                         "after soft reset.\n");
7821                 return rc;
7822         }
7823
7824         return 0;
7825 }
7826
7827 static void hpsa_free_reply_queues(struct ctlr_info *h)
7828 {
7829         int i;
7830
7831         for (i = 0; i < h->nreply_queues; i++) {
7832                 if (!h->reply_queue[i].head)
7833                         continue;
7834                 pci_free_consistent(h->pdev,
7835                                         h->reply_queue_size,
7836                                         h->reply_queue[i].head,
7837                                         h->reply_queue[i].busaddr);
7838                 h->reply_queue[i].head = NULL;
7839                 h->reply_queue[i].busaddr = 0;
7840         }
7841         h->reply_queue_size = 0;
7842 }
7843
7844 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7845 {
7846         hpsa_free_performant_mode(h);           /* init_one 7 */
7847         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7848         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7849         hpsa_free_irqs(h);                      /* init_one 4 */
7850         scsi_host_put(h->scsi_host);            /* init_one 3 */
7851         h->scsi_host = NULL;                    /* init_one 3 */
7852         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7853         free_percpu(h->lockup_detected);        /* init_one 2 */
7854         h->lockup_detected = NULL;              /* init_one 2 */
7855         if (h->resubmit_wq) {
7856                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7857                 h->resubmit_wq = NULL;
7858         }
7859         if (h->rescan_ctlr_wq) {
7860                 destroy_workqueue(h->rescan_ctlr_wq);
7861                 h->rescan_ctlr_wq = NULL;
7862         }
7863         kfree(h);                               /* init_one 1 */
7864 }
7865
7866 /* Called when controller lockup detected. */
7867 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7868 {
7869         int i, refcount;
7870         struct CommandList *c;
7871         int failcount = 0;
7872
7873         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7874         for (i = 0; i < h->nr_cmds; i++) {
7875                 c = h->cmd_pool + i;
7876                 refcount = atomic_inc_return(&c->refcount);
7877                 if (refcount > 1) {
7878                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7879                         finish_cmd(c);
7880                         atomic_dec(&h->commands_outstanding);
7881                         failcount++;
7882                 }
7883                 cmd_free(h, c);
7884         }
7885         dev_warn(&h->pdev->dev,
7886                 "failed %d commands in fail_all\n", failcount);
7887 }
7888
7889 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7890 {
7891         int cpu;
7892
7893         for_each_online_cpu(cpu) {
7894                 u32 *lockup_detected;
7895                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7896                 *lockup_detected = value;
7897         }
7898         wmb(); /* be sure the per-cpu variables are out to memory */
7899 }
7900
7901 static void controller_lockup_detected(struct ctlr_info *h)
7902 {
7903         unsigned long flags;
7904         u32 lockup_detected;
7905
7906         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7907         spin_lock_irqsave(&h->lock, flags);
7908         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7909         if (!lockup_detected) {
7910                 /* no heartbeat, but controller gave us a zero. */
7911                 dev_warn(&h->pdev->dev,
7912                         "lockup detected after %d but scratchpad register is zero\n",
7913                         h->heartbeat_sample_interval / HZ);
7914                 lockup_detected = 0xffffffff;
7915         }
7916         set_lockup_detected_for_all_cpus(h, lockup_detected);
7917         spin_unlock_irqrestore(&h->lock, flags);
7918         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7919                         lockup_detected, h->heartbeat_sample_interval / HZ);
7920         pci_disable_device(h->pdev);
7921         fail_all_outstanding_cmds(h);
7922 }
7923
7924 static int detect_controller_lockup(struct ctlr_info *h)
7925 {
7926         u64 now;
7927         u32 heartbeat;
7928         unsigned long flags;
7929
7930         now = get_jiffies_64();
7931         /* If we've received an interrupt recently, we're ok. */
7932         if (time_after64(h->last_intr_timestamp +
7933                                 (h->heartbeat_sample_interval), now))
7934                 return false;
7935
7936         /*
7937          * If we've already checked the heartbeat recently, we're ok.
7938          * This could happen if someone sends us a signal. We
7939          * otherwise don't care about signals in this thread.
7940          */
7941         if (time_after64(h->last_heartbeat_timestamp +
7942                                 (h->heartbeat_sample_interval), now))
7943                 return false;
7944
7945         /* If heartbeat has not changed since we last looked, we're not ok. */
7946         spin_lock_irqsave(&h->lock, flags);
7947         heartbeat = readl(&h->cfgtable->HeartBeat);
7948         spin_unlock_irqrestore(&h->lock, flags);
7949         if (h->last_heartbeat == heartbeat) {
7950                 controller_lockup_detected(h);
7951                 return true;
7952         }
7953
7954         /* We're ok. */
7955         h->last_heartbeat = heartbeat;
7956         h->last_heartbeat_timestamp = now;
7957         return false;
7958 }
7959
7960 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7961 {
7962         int i;
7963         char *event_type;
7964
7965         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7966                 return;
7967
7968         /* Ask the controller to clear the events we're handling. */
7969         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7970                         | CFGTBL_Trans_io_accel2)) &&
7971                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7972                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7973
7974                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7975                         event_type = "state change";
7976                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7977                         event_type = "configuration change";
7978                 /* Stop sending new RAID offload reqs via the IO accelerator */
7979                 scsi_block_requests(h->scsi_host);
7980                 for (i = 0; i < h->ndevices; i++)
7981                         h->dev[i]->offload_enabled = 0;
7982                 hpsa_drain_accel_commands(h);
7983                 /* Set 'accelerator path config change' bit */
7984                 dev_warn(&h->pdev->dev,
7985                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7986                         h->events, event_type);
7987                 writel(h->events, &(h->cfgtable->clear_event_notify));
7988                 /* Set the "clear event notify field update" bit 6 */
7989                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7990                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7991                 hpsa_wait_for_clear_event_notify_ack(h);
7992                 scsi_unblock_requests(h->scsi_host);
7993         } else {
7994                 /* Acknowledge controller notification events. */
7995                 writel(h->events, &(h->cfgtable->clear_event_notify));
7996                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7997                 hpsa_wait_for_clear_event_notify_ack(h);
7998 #if 0
7999                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8000                 hpsa_wait_for_mode_change_ack(h);
8001 #endif
8002         }
8003         return;
8004 }
8005
8006 /* Check a register on the controller to see if there are configuration
8007  * changes (added/changed/removed logical drives, etc.) which mean that
8008  * we should rescan the controller for devices.
8009  * Also check flag for driver-initiated rescan.
8010  */
8011 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8012 {
8013         if (h->drv_req_rescan) {
8014                 h->drv_req_rescan = 0;
8015                 return 1;
8016         }
8017
8018         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8019                 return 0;
8020
8021         h->events = readl(&(h->cfgtable->event_notify));
8022         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8023 }
8024
8025 /*
8026  * Check if any of the offline devices have become ready
8027  */
8028 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8029 {
8030         unsigned long flags;
8031         struct offline_device_entry *d;
8032         struct list_head *this, *tmp;
8033
8034         spin_lock_irqsave(&h->offline_device_lock, flags);
8035         list_for_each_safe(this, tmp, &h->offline_device_list) {
8036                 d = list_entry(this, struct offline_device_entry,
8037                                 offline_list);
8038                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8039                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8040                         spin_lock_irqsave(&h->offline_device_lock, flags);
8041                         list_del(&d->offline_list);
8042                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8043                         return 1;
8044                 }
8045                 spin_lock_irqsave(&h->offline_device_lock, flags);
8046         }
8047         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8048         return 0;
8049 }
8050
8051 static int hpsa_luns_changed(struct ctlr_info *h)
8052 {
8053         int rc = 1; /* assume there are changes */
8054         struct ReportLUNdata *logdev = NULL;
8055
8056         /* if we can't find out if lun data has changed,
8057          * assume that it has.
8058          */
8059
8060         if (!h->lastlogicals)
8061                 goto out;
8062
8063         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8064         if (!logdev) {
8065                 dev_warn(&h->pdev->dev,
8066                         "Out of memory, can't track lun changes.\n");
8067                 goto out;
8068         }
8069         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8070                 dev_warn(&h->pdev->dev,
8071                         "report luns failed, can't track lun changes.\n");
8072                 goto out;
8073         }
8074         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8075                 dev_info(&h->pdev->dev,
8076                         "Lun changes detected.\n");
8077                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8078                 goto out;
8079         } else
8080                 rc = 0; /* no changes detected. */
8081 out:
8082         kfree(logdev);
8083         return rc;
8084 }
8085
8086 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8087 {
8088         unsigned long flags;
8089         struct ctlr_info *h = container_of(to_delayed_work(work),
8090                                         struct ctlr_info, rescan_ctlr_work);
8091
8092
8093         if (h->remove_in_progress)
8094                 return;
8095
8096         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8097                 scsi_host_get(h->scsi_host);
8098                 hpsa_ack_ctlr_events(h);
8099                 hpsa_scan_start(h->scsi_host);
8100                 scsi_host_put(h->scsi_host);
8101         } else if (h->discovery_polling) {
8102                 hpsa_disable_rld_caching(h);
8103                 if (hpsa_luns_changed(h)) {
8104                         struct Scsi_Host *sh = NULL;
8105
8106                         dev_info(&h->pdev->dev,
8107                                 "driver discovery polling rescan.\n");
8108                         sh = scsi_host_get(h->scsi_host);
8109                         if (sh != NULL) {
8110                                 hpsa_scan_start(sh);
8111                                 scsi_host_put(sh);
8112                         }
8113                 }
8114         }
8115         spin_lock_irqsave(&h->lock, flags);
8116         if (!h->remove_in_progress)
8117                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8118                                 h->heartbeat_sample_interval);
8119         spin_unlock_irqrestore(&h->lock, flags);
8120 }
8121
8122 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8123 {
8124         unsigned long flags;
8125         struct ctlr_info *h = container_of(to_delayed_work(work),
8126                                         struct ctlr_info, monitor_ctlr_work);
8127
8128         detect_controller_lockup(h);
8129         if (lockup_detected(h))
8130                 return;
8131
8132         spin_lock_irqsave(&h->lock, flags);
8133         if (!h->remove_in_progress)
8134                 schedule_delayed_work(&h->monitor_ctlr_work,
8135                                 h->heartbeat_sample_interval);
8136         spin_unlock_irqrestore(&h->lock, flags);
8137 }
8138
8139 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8140                                                 char *name)
8141 {
8142         struct workqueue_struct *wq = NULL;
8143
8144         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8145         if (!wq)
8146                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8147
8148         return wq;
8149 }
8150
8151 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8152 {
8153         int dac, rc;
8154         struct ctlr_info *h;
8155         int try_soft_reset = 0;
8156         unsigned long flags;
8157         u32 board_id;
8158
8159         if (number_of_controllers == 0)
8160                 printk(KERN_INFO DRIVER_NAME "\n");
8161
8162         rc = hpsa_lookup_board_id(pdev, &board_id);
8163         if (rc < 0) {
8164                 dev_warn(&pdev->dev, "Board ID not found\n");
8165                 return rc;
8166         }
8167
8168         rc = hpsa_init_reset_devices(pdev, board_id);
8169         if (rc) {
8170                 if (rc != -ENOTSUPP)
8171                         return rc;
8172                 /* If the reset fails in a particular way (it has no way to do
8173                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8174                  * a soft reset once we get the controller configured up to the
8175                  * point that it can accept a command.
8176                  */
8177                 try_soft_reset = 1;
8178                 rc = 0;
8179         }
8180
8181 reinit_after_soft_reset:
8182
8183         /* Command structures must be aligned on a 32-byte boundary because
8184          * the 5 lower bits of the address are used by the hardware. and by
8185          * the driver.  See comments in hpsa.h for more info.
8186          */
8187         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8188         h = kzalloc(sizeof(*h), GFP_KERNEL);
8189         if (!h) {
8190                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8191                 return -ENOMEM;
8192         }
8193
8194         h->pdev = pdev;
8195
8196         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8197         INIT_LIST_HEAD(&h->offline_device_list);
8198         spin_lock_init(&h->lock);
8199         spin_lock_init(&h->offline_device_lock);
8200         spin_lock_init(&h->scan_lock);
8201         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8202         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8203
8204         /* Allocate and clear per-cpu variable lockup_detected */
8205         h->lockup_detected = alloc_percpu(u32);
8206         if (!h->lockup_detected) {
8207                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8208                 rc = -ENOMEM;
8209                 goto clean1;    /* aer/h */
8210         }
8211         set_lockup_detected_for_all_cpus(h, 0);
8212
8213         rc = hpsa_pci_init(h);
8214         if (rc)
8215                 goto clean2;    /* lu, aer/h */
8216
8217         /* relies on h-> settings made by hpsa_pci_init, including
8218          * interrupt_mode h->intr */
8219         rc = hpsa_scsi_host_alloc(h);
8220         if (rc)
8221                 goto clean2_5;  /* pci, lu, aer/h */
8222
8223         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8224         h->ctlr = number_of_controllers;
8225         number_of_controllers++;
8226
8227         /* configure PCI DMA stuff */
8228         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8229         if (rc == 0) {
8230                 dac = 1;
8231         } else {
8232                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8233                 if (rc == 0) {
8234                         dac = 0;
8235                 } else {
8236                         dev_err(&pdev->dev, "no suitable DMA available\n");
8237                         goto clean3;    /* shost, pci, lu, aer/h */
8238                 }
8239         }
8240
8241         /* make sure the board interrupts are off */
8242         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8243
8244         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8245         if (rc)
8246                 goto clean3;    /* shost, pci, lu, aer/h */
8247         rc = hpsa_alloc_cmd_pool(h);
8248         if (rc)
8249                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8250         rc = hpsa_alloc_sg_chain_blocks(h);
8251         if (rc)
8252                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8253         init_waitqueue_head(&h->scan_wait_queue);
8254         init_waitqueue_head(&h->abort_cmd_wait_queue);
8255         init_waitqueue_head(&h->event_sync_wait_queue);
8256         mutex_init(&h->reset_mutex);
8257         h->scan_finished = 1; /* no scan currently in progress */
8258
8259         pci_set_drvdata(pdev, h);
8260         h->ndevices = 0;
8261
8262         spin_lock_init(&h->devlock);
8263         rc = hpsa_put_ctlr_into_performant_mode(h);
8264         if (rc)
8265                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8266
8267         /* hook into SCSI subsystem */
8268         rc = hpsa_scsi_add_host(h);
8269         if (rc)
8270                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8271
8272         /* create the resubmit workqueue */
8273         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8274         if (!h->rescan_ctlr_wq) {
8275                 rc = -ENOMEM;
8276                 goto clean7;
8277         }
8278
8279         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8280         if (!h->resubmit_wq) {
8281                 rc = -ENOMEM;
8282                 goto clean7;    /* aer/h */
8283         }
8284
8285         /*
8286          * At this point, the controller is ready to take commands.
8287          * Now, if reset_devices and the hard reset didn't work, try
8288          * the soft reset and see if that works.
8289          */
8290         if (try_soft_reset) {
8291
8292                 /* This is kind of gross.  We may or may not get a completion
8293                  * from the soft reset command, and if we do, then the value
8294                  * from the fifo may or may not be valid.  So, we wait 10 secs
8295                  * after the reset throwing away any completions we get during
8296                  * that time.  Unregister the interrupt handler and register
8297                  * fake ones to scoop up any residual completions.
8298                  */
8299                 spin_lock_irqsave(&h->lock, flags);
8300                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8301                 spin_unlock_irqrestore(&h->lock, flags);
8302                 hpsa_free_irqs(h);
8303                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8304                                         hpsa_intx_discard_completions);
8305                 if (rc) {
8306                         dev_warn(&h->pdev->dev,
8307                                 "Failed to request_irq after soft reset.\n");
8308                         /*
8309                          * cannot goto clean7 or free_irqs will be called
8310                          * again. Instead, do its work
8311                          */
8312                         hpsa_free_performant_mode(h);   /* clean7 */
8313                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8314                         hpsa_free_cmd_pool(h);          /* clean5 */
8315                         /*
8316                          * skip hpsa_free_irqs(h) clean4 since that
8317                          * was just called before request_irqs failed
8318                          */
8319                         goto clean3;
8320                 }
8321
8322                 rc = hpsa_kdump_soft_reset(h);
8323                 if (rc)
8324                         /* Neither hard nor soft reset worked, we're hosed. */
8325                         goto clean7;
8326
8327                 dev_info(&h->pdev->dev, "Board READY.\n");
8328                 dev_info(&h->pdev->dev,
8329                         "Waiting for stale completions to drain.\n");
8330                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8331                 msleep(10000);
8332                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8333
8334                 rc = controller_reset_failed(h->cfgtable);
8335                 if (rc)
8336                         dev_info(&h->pdev->dev,
8337                                 "Soft reset appears to have failed.\n");
8338
8339                 /* since the controller's reset, we have to go back and re-init
8340                  * everything.  Easiest to just forget what we've done and do it
8341                  * all over again.
8342                  */
8343                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8344                 try_soft_reset = 0;
8345                 if (rc)
8346                         /* don't goto clean, we already unallocated */
8347                         return -ENODEV;
8348
8349                 goto reinit_after_soft_reset;
8350         }
8351
8352         /* Enable Accelerated IO path at driver layer */
8353         h->acciopath_status = 1;
8354         /* Disable discovery polling.*/
8355         h->discovery_polling = 0;
8356
8357
8358         /* Turn the interrupts on so we can service requests */
8359         h->access.set_intr_mask(h, HPSA_INTR_ON);
8360
8361         hpsa_hba_inquiry(h);
8362
8363         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8364         if (!h->lastlogicals)
8365                 dev_info(&h->pdev->dev,
8366                         "Can't track change to report lun data\n");
8367
8368         /* Monitor the controller for firmware lockups */
8369         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8370         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8371         schedule_delayed_work(&h->monitor_ctlr_work,
8372                                 h->heartbeat_sample_interval);
8373         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8374         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8375                                 h->heartbeat_sample_interval);
8376         return 0;
8377
8378 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8379         hpsa_free_performant_mode(h);
8380         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8381 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8382         hpsa_free_sg_chain_blocks(h);
8383 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8384         hpsa_free_cmd_pool(h);
8385 clean4: /* irq, shost, pci, lu, aer/h */
8386         hpsa_free_irqs(h);
8387 clean3: /* shost, pci, lu, aer/h */
8388         scsi_host_put(h->scsi_host);
8389         h->scsi_host = NULL;
8390 clean2_5: /* pci, lu, aer/h */
8391         hpsa_free_pci_init(h);
8392 clean2: /* lu, aer/h */
8393         if (h->lockup_detected) {
8394                 free_percpu(h->lockup_detected);
8395                 h->lockup_detected = NULL;
8396         }
8397 clean1: /* wq/aer/h */
8398         if (h->resubmit_wq) {
8399                 destroy_workqueue(h->resubmit_wq);
8400                 h->resubmit_wq = NULL;
8401         }
8402         if (h->rescan_ctlr_wq) {
8403                 destroy_workqueue(h->rescan_ctlr_wq);
8404                 h->rescan_ctlr_wq = NULL;
8405         }
8406         kfree(h);
8407         return rc;
8408 }
8409
8410 static void hpsa_flush_cache(struct ctlr_info *h)
8411 {
8412         char *flush_buf;
8413         struct CommandList *c;
8414         int rc;
8415
8416         if (unlikely(lockup_detected(h)))
8417                 return;
8418         flush_buf = kzalloc(4, GFP_KERNEL);
8419         if (!flush_buf)
8420                 return;
8421
8422         c = cmd_alloc(h);
8423
8424         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8425                 RAID_CTLR_LUNID, TYPE_CMD)) {
8426                 goto out;
8427         }
8428         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8429                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8430         if (rc)
8431                 goto out;
8432         if (c->err_info->CommandStatus != 0)
8433 out:
8434                 dev_warn(&h->pdev->dev,
8435                         "error flushing cache on controller\n");
8436         cmd_free(h, c);
8437         kfree(flush_buf);
8438 }
8439
8440 /* Make controller gather fresh report lun data each time we
8441  * send down a report luns request
8442  */
8443 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8444 {
8445         u32 *options;
8446         struct CommandList *c;
8447         int rc;
8448
8449         /* Don't bother trying to set diag options if locked up */
8450         if (unlikely(h->lockup_detected))
8451                 return;
8452
8453         options = kzalloc(sizeof(*options), GFP_KERNEL);
8454         if (!options) {
8455                 dev_err(&h->pdev->dev,
8456                         "Error: failed to disable rld caching, during alloc.\n");
8457                 return;
8458         }
8459
8460         c = cmd_alloc(h);
8461
8462         /* first, get the current diag options settings */
8463         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8464                 RAID_CTLR_LUNID, TYPE_CMD))
8465                 goto errout;
8466
8467         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8468                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8469         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8470                 goto errout;
8471
8472         /* Now, set the bit for disabling the RLD caching */
8473         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8474
8475         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8476                 RAID_CTLR_LUNID, TYPE_CMD))
8477                 goto errout;
8478
8479         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8480                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8481         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8482                 goto errout;
8483
8484         /* Now verify that it got set: */
8485         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8486                 RAID_CTLR_LUNID, TYPE_CMD))
8487                 goto errout;
8488
8489         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8490                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8491         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8492                 goto errout;
8493
8494         if (*options && HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8495                 goto out;
8496
8497 errout:
8498         dev_err(&h->pdev->dev,
8499                         "Error: failed to disable report lun data caching.\n");
8500 out:
8501         cmd_free(h, c);
8502         kfree(options);
8503 }
8504
8505 static void hpsa_shutdown(struct pci_dev *pdev)
8506 {
8507         struct ctlr_info *h;
8508
8509         h = pci_get_drvdata(pdev);
8510         /* Turn board interrupts off  and send the flush cache command
8511          * sendcmd will turn off interrupt, and send the flush...
8512          * To write all data in the battery backed cache to disks
8513          */
8514         hpsa_flush_cache(h);
8515         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8516         hpsa_free_irqs(h);                      /* init_one 4 */
8517         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8518 }
8519
8520 static void hpsa_free_device_info(struct ctlr_info *h)
8521 {
8522         int i;
8523
8524         for (i = 0; i < h->ndevices; i++) {
8525                 kfree(h->dev[i]);
8526                 h->dev[i] = NULL;
8527         }
8528 }
8529
8530 static void hpsa_remove_one(struct pci_dev *pdev)
8531 {
8532         struct ctlr_info *h;
8533         unsigned long flags;
8534
8535         if (pci_get_drvdata(pdev) == NULL) {
8536                 dev_err(&pdev->dev, "unable to remove device\n");
8537                 return;
8538         }
8539         h = pci_get_drvdata(pdev);
8540
8541         /* Get rid of any controller monitoring work items */
8542         spin_lock_irqsave(&h->lock, flags);
8543         h->remove_in_progress = 1;
8544         spin_unlock_irqrestore(&h->lock, flags);
8545         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8546         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8547         destroy_workqueue(h->rescan_ctlr_wq);
8548         destroy_workqueue(h->resubmit_wq);
8549
8550         /*
8551          * Call before disabling interrupts.
8552          * scsi_remove_host can trigger I/O operations especially
8553          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8554          * operations which cannot complete and will hang the system.
8555          */
8556         if (h->scsi_host)
8557                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8558         /* includes hpsa_free_irqs - init_one 4 */
8559         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8560         hpsa_shutdown(pdev);
8561
8562         hpsa_free_device_info(h);               /* scan */
8563
8564         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8565         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8566         hpsa_free_ioaccel2_sg_chain_blocks(h);
8567         hpsa_free_performant_mode(h);                   /* init_one 7 */
8568         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8569         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8570         kfree(h->lastlogicals);
8571
8572         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8573
8574         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8575         h->scsi_host = NULL;                            /* init_one 3 */
8576
8577         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8578         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8579
8580         free_percpu(h->lockup_detected);                /* init_one 2 */
8581         h->lockup_detected = NULL;                      /* init_one 2 */
8582         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8583         kfree(h);                                       /* init_one 1 */
8584 }
8585
8586 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8587         __attribute__((unused)) pm_message_t state)
8588 {
8589         return -ENOSYS;
8590 }
8591
8592 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8593 {
8594         return -ENOSYS;
8595 }
8596
8597 static struct pci_driver hpsa_pci_driver = {
8598         .name = HPSA,
8599         .probe = hpsa_init_one,
8600         .remove = hpsa_remove_one,
8601         .id_table = hpsa_pci_device_id, /* id_table */
8602         .shutdown = hpsa_shutdown,
8603         .suspend = hpsa_suspend,
8604         .resume = hpsa_resume,
8605 };
8606
8607 /* Fill in bucket_map[], given nsgs (the max number of
8608  * scatter gather elements supported) and bucket[],
8609  * which is an array of 8 integers.  The bucket[] array
8610  * contains 8 different DMA transfer sizes (in 16
8611  * byte increments) which the controller uses to fetch
8612  * commands.  This function fills in bucket_map[], which
8613  * maps a given number of scatter gather elements to one of
8614  * the 8 DMA transfer sizes.  The point of it is to allow the
8615  * controller to only do as much DMA as needed to fetch the
8616  * command, with the DMA transfer size encoded in the lower
8617  * bits of the command address.
8618  */
8619 static void  calc_bucket_map(int bucket[], int num_buckets,
8620         int nsgs, int min_blocks, u32 *bucket_map)
8621 {
8622         int i, j, b, size;
8623
8624         /* Note, bucket_map must have nsgs+1 entries. */
8625         for (i = 0; i <= nsgs; i++) {
8626                 /* Compute size of a command with i SG entries */
8627                 size = i + min_blocks;
8628                 b = num_buckets; /* Assume the biggest bucket */
8629                 /* Find the bucket that is just big enough */
8630                 for (j = 0; j < num_buckets; j++) {
8631                         if (bucket[j] >= size) {
8632                                 b = j;
8633                                 break;
8634                         }
8635                 }
8636                 /* for a command with i SG entries, use bucket b. */
8637                 bucket_map[i] = b;
8638         }
8639 }
8640
8641 /*
8642  * return -ENODEV on err, 0 on success (or no action)
8643  * allocates numerous items that must be freed later
8644  */
8645 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8646 {
8647         int i;
8648         unsigned long register_value;
8649         unsigned long transMethod = CFGTBL_Trans_Performant |
8650                         (trans_support & CFGTBL_Trans_use_short_tags) |
8651                                 CFGTBL_Trans_enable_directed_msix |
8652                         (trans_support & (CFGTBL_Trans_io_accel1 |
8653                                 CFGTBL_Trans_io_accel2));
8654         struct access_method access = SA5_performant_access;
8655
8656         /* This is a bit complicated.  There are 8 registers on
8657          * the controller which we write to to tell it 8 different
8658          * sizes of commands which there may be.  It's a way of
8659          * reducing the DMA done to fetch each command.  Encoded into
8660          * each command's tag are 3 bits which communicate to the controller
8661          * which of the eight sizes that command fits within.  The size of
8662          * each command depends on how many scatter gather entries there are.
8663          * Each SG entry requires 16 bytes.  The eight registers are programmed
8664          * with the number of 16-byte blocks a command of that size requires.
8665          * The smallest command possible requires 5 such 16 byte blocks.
8666          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8667          * blocks.  Note, this only extends to the SG entries contained
8668          * within the command block, and does not extend to chained blocks
8669          * of SG elements.   bft[] contains the eight values we write to
8670          * the registers.  They are not evenly distributed, but have more
8671          * sizes for small commands, and fewer sizes for larger commands.
8672          */
8673         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8674 #define MIN_IOACCEL2_BFT_ENTRY 5
8675 #define HPSA_IOACCEL2_HEADER_SZ 4
8676         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8677                         13, 14, 15, 16, 17, 18, 19,
8678                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8679         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8680         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8681         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8682                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8683         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8684         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8685         /*  5 = 1 s/g entry or 4k
8686          *  6 = 2 s/g entry or 8k
8687          *  8 = 4 s/g entry or 16k
8688          * 10 = 6 s/g entry or 24k
8689          */
8690
8691         /* If the controller supports either ioaccel method then
8692          * we can also use the RAID stack submit path that does not
8693          * perform the superfluous readl() after each command submission.
8694          */
8695         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8696                 access = SA5_performant_access_no_read;
8697
8698         /* Controller spec: zero out this buffer. */
8699         for (i = 0; i < h->nreply_queues; i++)
8700                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8701
8702         bft[7] = SG_ENTRIES_IN_CMD + 4;
8703         calc_bucket_map(bft, ARRAY_SIZE(bft),
8704                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8705         for (i = 0; i < 8; i++)
8706                 writel(bft[i], &h->transtable->BlockFetch[i]);
8707
8708         /* size of controller ring buffer */
8709         writel(h->max_commands, &h->transtable->RepQSize);
8710         writel(h->nreply_queues, &h->transtable->RepQCount);
8711         writel(0, &h->transtable->RepQCtrAddrLow32);
8712         writel(0, &h->transtable->RepQCtrAddrHigh32);
8713
8714         for (i = 0; i < h->nreply_queues; i++) {
8715                 writel(0, &h->transtable->RepQAddr[i].upper);
8716                 writel(h->reply_queue[i].busaddr,
8717                         &h->transtable->RepQAddr[i].lower);
8718         }
8719
8720         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8721         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8722         /*
8723          * enable outbound interrupt coalescing in accelerator mode;
8724          */
8725         if (trans_support & CFGTBL_Trans_io_accel1) {
8726                 access = SA5_ioaccel_mode1_access;
8727                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8728                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8729         } else {
8730                 if (trans_support & CFGTBL_Trans_io_accel2) {
8731                         access = SA5_ioaccel_mode2_access;
8732                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8733                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8734                 }
8735         }
8736         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8737         if (hpsa_wait_for_mode_change_ack(h)) {
8738                 dev_err(&h->pdev->dev,
8739                         "performant mode problem - doorbell timeout\n");
8740                 return -ENODEV;
8741         }
8742         register_value = readl(&(h->cfgtable->TransportActive));
8743         if (!(register_value & CFGTBL_Trans_Performant)) {
8744                 dev_err(&h->pdev->dev,
8745                         "performant mode problem - transport not active\n");
8746                 return -ENODEV;
8747         }
8748         /* Change the access methods to the performant access methods */
8749         h->access = access;
8750         h->transMethod = transMethod;
8751
8752         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8753                 (trans_support & CFGTBL_Trans_io_accel2)))
8754                 return 0;
8755
8756         if (trans_support & CFGTBL_Trans_io_accel1) {
8757                 /* Set up I/O accelerator mode */
8758                 for (i = 0; i < h->nreply_queues; i++) {
8759                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8760                         h->reply_queue[i].current_entry =
8761                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8762                 }
8763                 bft[7] = h->ioaccel_maxsg + 8;
8764                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8765                                 h->ioaccel1_blockFetchTable);
8766
8767                 /* initialize all reply queue entries to unused */
8768                 for (i = 0; i < h->nreply_queues; i++)
8769                         memset(h->reply_queue[i].head,
8770                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8771                                 h->reply_queue_size);
8772
8773                 /* set all the constant fields in the accelerator command
8774                  * frames once at init time to save CPU cycles later.
8775                  */
8776                 for (i = 0; i < h->nr_cmds; i++) {
8777                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8778
8779                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8780                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8781                                         (i * sizeof(struct ErrorInfo)));
8782                         cp->err_info_len = sizeof(struct ErrorInfo);
8783                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8784                         cp->host_context_flags =
8785                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8786                         cp->timeout_sec = 0;
8787                         cp->ReplyQueue = 0;
8788                         cp->tag =
8789                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8790                         cp->host_addr =
8791                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8792                                         (i * sizeof(struct io_accel1_cmd)));
8793                 }
8794         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8795                 u64 cfg_offset, cfg_base_addr_index;
8796                 u32 bft2_offset, cfg_base_addr;
8797                 int rc;
8798
8799                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8800                         &cfg_base_addr_index, &cfg_offset);
8801                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8802                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8803                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8804                                 4, h->ioaccel2_blockFetchTable);
8805                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8806                 BUILD_BUG_ON(offsetof(struct CfgTable,
8807                                 io_accel_request_size_offset) != 0xb8);
8808                 h->ioaccel2_bft2_regs =
8809                         remap_pci_mem(pci_resource_start(h->pdev,
8810                                         cfg_base_addr_index) +
8811                                         cfg_offset + bft2_offset,
8812                                         ARRAY_SIZE(bft2) *
8813                                         sizeof(*h->ioaccel2_bft2_regs));
8814                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8815                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8816         }
8817         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8818         if (hpsa_wait_for_mode_change_ack(h)) {
8819                 dev_err(&h->pdev->dev,
8820                         "performant mode problem - enabling ioaccel mode\n");
8821                 return -ENODEV;
8822         }
8823         return 0;
8824 }
8825
8826 /* Free ioaccel1 mode command blocks and block fetch table */
8827 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8828 {
8829         if (h->ioaccel_cmd_pool) {
8830                 pci_free_consistent(h->pdev,
8831                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8832                         h->ioaccel_cmd_pool,
8833                         h->ioaccel_cmd_pool_dhandle);
8834                 h->ioaccel_cmd_pool = NULL;
8835                 h->ioaccel_cmd_pool_dhandle = 0;
8836         }
8837         kfree(h->ioaccel1_blockFetchTable);
8838         h->ioaccel1_blockFetchTable = NULL;
8839 }
8840
8841 /* Allocate ioaccel1 mode command blocks and block fetch table */
8842 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8843 {
8844         h->ioaccel_maxsg =
8845                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8846         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8847                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8848
8849         /* Command structures must be aligned on a 128-byte boundary
8850          * because the 7 lower bits of the address are used by the
8851          * hardware.
8852          */
8853         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8854                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8855         h->ioaccel_cmd_pool =
8856                 pci_alloc_consistent(h->pdev,
8857                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8858                         &(h->ioaccel_cmd_pool_dhandle));
8859
8860         h->ioaccel1_blockFetchTable =
8861                 kmalloc(((h->ioaccel_maxsg + 1) *
8862                                 sizeof(u32)), GFP_KERNEL);
8863
8864         if ((h->ioaccel_cmd_pool == NULL) ||
8865                 (h->ioaccel1_blockFetchTable == NULL))
8866                 goto clean_up;
8867
8868         memset(h->ioaccel_cmd_pool, 0,
8869                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8870         return 0;
8871
8872 clean_up:
8873         hpsa_free_ioaccel1_cmd_and_bft(h);
8874         return -ENOMEM;
8875 }
8876
8877 /* Free ioaccel2 mode command blocks and block fetch table */
8878 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8879 {
8880         hpsa_free_ioaccel2_sg_chain_blocks(h);
8881
8882         if (h->ioaccel2_cmd_pool) {
8883                 pci_free_consistent(h->pdev,
8884                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8885                         h->ioaccel2_cmd_pool,
8886                         h->ioaccel2_cmd_pool_dhandle);
8887                 h->ioaccel2_cmd_pool = NULL;
8888                 h->ioaccel2_cmd_pool_dhandle = 0;
8889         }
8890         kfree(h->ioaccel2_blockFetchTable);
8891         h->ioaccel2_blockFetchTable = NULL;
8892 }
8893
8894 /* Allocate ioaccel2 mode command blocks and block fetch table */
8895 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8896 {
8897         int rc;
8898
8899         /* Allocate ioaccel2 mode command blocks and block fetch table */
8900
8901         h->ioaccel_maxsg =
8902                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8903         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8904                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8905
8906         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8907                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8908         h->ioaccel2_cmd_pool =
8909                 pci_alloc_consistent(h->pdev,
8910                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8911                         &(h->ioaccel2_cmd_pool_dhandle));
8912
8913         h->ioaccel2_blockFetchTable =
8914                 kmalloc(((h->ioaccel_maxsg + 1) *
8915                                 sizeof(u32)), GFP_KERNEL);
8916
8917         if ((h->ioaccel2_cmd_pool == NULL) ||
8918                 (h->ioaccel2_blockFetchTable == NULL)) {
8919                 rc = -ENOMEM;
8920                 goto clean_up;
8921         }
8922
8923         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8924         if (rc)
8925                 goto clean_up;
8926
8927         memset(h->ioaccel2_cmd_pool, 0,
8928                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8929         return 0;
8930
8931 clean_up:
8932         hpsa_free_ioaccel2_cmd_and_bft(h);
8933         return rc;
8934 }
8935
8936 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8937 static void hpsa_free_performant_mode(struct ctlr_info *h)
8938 {
8939         kfree(h->blockFetchTable);
8940         h->blockFetchTable = NULL;
8941         hpsa_free_reply_queues(h);
8942         hpsa_free_ioaccel1_cmd_and_bft(h);
8943         hpsa_free_ioaccel2_cmd_and_bft(h);
8944 }
8945
8946 /* return -ENODEV on error, 0 on success (or no action)
8947  * allocates numerous items that must be freed later
8948  */
8949 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8950 {
8951         u32 trans_support;
8952         unsigned long transMethod = CFGTBL_Trans_Performant |
8953                                         CFGTBL_Trans_use_short_tags;
8954         int i, rc;
8955
8956         if (hpsa_simple_mode)
8957                 return 0;
8958
8959         trans_support = readl(&(h->cfgtable->TransportSupport));
8960         if (!(trans_support & PERFORMANT_MODE))
8961                 return 0;
8962
8963         /* Check for I/O accelerator mode support */
8964         if (trans_support & CFGTBL_Trans_io_accel1) {
8965                 transMethod |= CFGTBL_Trans_io_accel1 |
8966                                 CFGTBL_Trans_enable_directed_msix;
8967                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8968                 if (rc)
8969                         return rc;
8970         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8971                 transMethod |= CFGTBL_Trans_io_accel2 |
8972                                 CFGTBL_Trans_enable_directed_msix;
8973                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8974                 if (rc)
8975                         return rc;
8976         }
8977
8978         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8979         hpsa_get_max_perf_mode_cmds(h);
8980         /* Performant mode ring buffer and supporting data structures */
8981         h->reply_queue_size = h->max_commands * sizeof(u64);
8982
8983         for (i = 0; i < h->nreply_queues; i++) {
8984                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8985                                                 h->reply_queue_size,
8986                                                 &(h->reply_queue[i].busaddr));
8987                 if (!h->reply_queue[i].head) {
8988                         rc = -ENOMEM;
8989                         goto clean1;    /* rq, ioaccel */
8990                 }
8991                 h->reply_queue[i].size = h->max_commands;
8992                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8993                 h->reply_queue[i].current_entry = 0;
8994         }
8995
8996         /* Need a block fetch table for performant mode */
8997         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8998                                 sizeof(u32)), GFP_KERNEL);
8999         if (!h->blockFetchTable) {
9000                 rc = -ENOMEM;
9001                 goto clean1;    /* rq, ioaccel */
9002         }
9003
9004         rc = hpsa_enter_performant_mode(h, trans_support);
9005         if (rc)
9006                 goto clean2;    /* bft, rq, ioaccel */
9007         return 0;
9008
9009 clean2: /* bft, rq, ioaccel */
9010         kfree(h->blockFetchTable);
9011         h->blockFetchTable = NULL;
9012 clean1: /* rq, ioaccel */
9013         hpsa_free_reply_queues(h);
9014         hpsa_free_ioaccel1_cmd_and_bft(h);
9015         hpsa_free_ioaccel2_cmd_and_bft(h);
9016         return rc;
9017 }
9018
9019 static int is_accelerated_cmd(struct CommandList *c)
9020 {
9021         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9022 }
9023
9024 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9025 {
9026         struct CommandList *c = NULL;
9027         int i, accel_cmds_out;
9028         int refcount;
9029
9030         do { /* wait for all outstanding ioaccel commands to drain out */
9031                 accel_cmds_out = 0;
9032                 for (i = 0; i < h->nr_cmds; i++) {
9033                         c = h->cmd_pool + i;
9034                         refcount = atomic_inc_return(&c->refcount);
9035                         if (refcount > 1) /* Command is allocated */
9036                                 accel_cmds_out += is_accelerated_cmd(c);
9037                         cmd_free(h, c);
9038                 }
9039                 if (accel_cmds_out <= 0)
9040                         break;
9041                 msleep(100);
9042         } while (1);
9043 }
9044
9045 /*
9046  *  This is it.  Register the PCI driver information for the cards we control
9047  *  the OS will call our registered routines when it finds one of our cards.
9048  */
9049 static int __init hpsa_init(void)
9050 {
9051         return pci_register_driver(&hpsa_pci_driver);
9052 }
9053
9054 static void __exit hpsa_cleanup(void)
9055 {
9056         pci_unregister_driver(&hpsa_pci_driver);
9057 }
9058
9059 static void __attribute__((unused)) verify_offsets(void)
9060 {
9061 #define VERIFY_OFFSET(member, offset) \
9062         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9063
9064         VERIFY_OFFSET(structure_size, 0);
9065         VERIFY_OFFSET(volume_blk_size, 4);
9066         VERIFY_OFFSET(volume_blk_cnt, 8);
9067         VERIFY_OFFSET(phys_blk_shift, 16);
9068         VERIFY_OFFSET(parity_rotation_shift, 17);
9069         VERIFY_OFFSET(strip_size, 18);
9070         VERIFY_OFFSET(disk_starting_blk, 20);
9071         VERIFY_OFFSET(disk_blk_cnt, 28);
9072         VERIFY_OFFSET(data_disks_per_row, 36);
9073         VERIFY_OFFSET(metadata_disks_per_row, 38);
9074         VERIFY_OFFSET(row_cnt, 40);
9075         VERIFY_OFFSET(layout_map_count, 42);
9076         VERIFY_OFFSET(flags, 44);
9077         VERIFY_OFFSET(dekindex, 46);
9078         /* VERIFY_OFFSET(reserved, 48 */
9079         VERIFY_OFFSET(data, 64);
9080
9081 #undef VERIFY_OFFSET
9082
9083 #define VERIFY_OFFSET(member, offset) \
9084         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9085
9086         VERIFY_OFFSET(IU_type, 0);
9087         VERIFY_OFFSET(direction, 1);
9088         VERIFY_OFFSET(reply_queue, 2);
9089         /* VERIFY_OFFSET(reserved1, 3);  */
9090         VERIFY_OFFSET(scsi_nexus, 4);
9091         VERIFY_OFFSET(Tag, 8);
9092         VERIFY_OFFSET(cdb, 16);
9093         VERIFY_OFFSET(cciss_lun, 32);
9094         VERIFY_OFFSET(data_len, 40);
9095         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9096         VERIFY_OFFSET(sg_count, 45);
9097         /* VERIFY_OFFSET(reserved3 */
9098         VERIFY_OFFSET(err_ptr, 48);
9099         VERIFY_OFFSET(err_len, 56);
9100         /* VERIFY_OFFSET(reserved4  */
9101         VERIFY_OFFSET(sg, 64);
9102
9103 #undef VERIFY_OFFSET
9104
9105 #define VERIFY_OFFSET(member, offset) \
9106         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9107
9108         VERIFY_OFFSET(dev_handle, 0x00);
9109         VERIFY_OFFSET(reserved1, 0x02);
9110         VERIFY_OFFSET(function, 0x03);
9111         VERIFY_OFFSET(reserved2, 0x04);
9112         VERIFY_OFFSET(err_info, 0x0C);
9113         VERIFY_OFFSET(reserved3, 0x10);
9114         VERIFY_OFFSET(err_info_len, 0x12);
9115         VERIFY_OFFSET(reserved4, 0x13);
9116         VERIFY_OFFSET(sgl_offset, 0x14);
9117         VERIFY_OFFSET(reserved5, 0x15);
9118         VERIFY_OFFSET(transfer_len, 0x1C);
9119         VERIFY_OFFSET(reserved6, 0x20);
9120         VERIFY_OFFSET(io_flags, 0x24);
9121         VERIFY_OFFSET(reserved7, 0x26);
9122         VERIFY_OFFSET(LUN, 0x34);
9123         VERIFY_OFFSET(control, 0x3C);
9124         VERIFY_OFFSET(CDB, 0x40);
9125         VERIFY_OFFSET(reserved8, 0x50);
9126         VERIFY_OFFSET(host_context_flags, 0x60);
9127         VERIFY_OFFSET(timeout_sec, 0x62);
9128         VERIFY_OFFSET(ReplyQueue, 0x64);
9129         VERIFY_OFFSET(reserved9, 0x65);
9130         VERIFY_OFFSET(tag, 0x68);
9131         VERIFY_OFFSET(host_addr, 0x70);
9132         VERIFY_OFFSET(CISS_LUN, 0x78);
9133         VERIFY_OFFSET(SG, 0x78 + 8);
9134 #undef VERIFY_OFFSET
9135 }
9136
9137 module_init(hpsa_init);
9138 module_exit(hpsa_cleanup);