7f4f790a3d716109ed2a73a8379b222ed8019331
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
112                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x3241103C, "Smart Array P212", &SA5_access},
124         {0x3243103C, "Smart Array P410", &SA5_access},
125         {0x3245103C, "Smart Array P410i", &SA5_access},
126         {0x3247103C, "Smart Array P411", &SA5_access},
127         {0x3249103C, "Smart Array P812", &SA5_access},
128         {0x324a103C, "Smart Array P712m", &SA5_access},
129         {0x324b103C, "Smart Array P711m", &SA5_access},
130         {0x3350103C, "Smart Array P222", &SA5_access},
131         {0x3351103C, "Smart Array P420", &SA5_access},
132         {0x3352103C, "Smart Array P421", &SA5_access},
133         {0x3353103C, "Smart Array P822", &SA5_access},
134         {0x3354103C, "Smart Array P420i", &SA5_access},
135         {0x3355103C, "Smart Array P220i", &SA5_access},
136         {0x3356103C, "Smart Array P721m", &SA5_access},
137         {0x1920103C, "Smart Array", &SA5_access},
138         {0x1921103C, "Smart Array", &SA5_access},
139         {0x1922103C, "Smart Array", &SA5_access},
140         {0x1923103C, "Smart Array", &SA5_access},
141         {0x1924103C, "Smart Array", &SA5_access},
142         {0x1925103C, "Smart Array", &SA5_access},
143         {0x1926103C, "Smart Array", &SA5_access},
144         {0x1928103C, "Smart Array", &SA5_access},
145         {0x334d103C, "Smart Array P822se", &SA5_access},
146         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170         int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175         unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177         int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188         struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191         int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196                                u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198                                     unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201                                      int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208         unsigned long *priv = shost_priv(sdev->host);
209         return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214         unsigned long *priv = shost_priv(sh);
215         return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219         struct CommandList *c)
220 {
221         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222                 return 0;
223
224         switch (c->err_info->SenseInfo[12]) {
225         case STATE_CHANGED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227                         "detected, command retried\n", h->ctlr);
228                 break;
229         case LUN_FAILED:
230                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231                         "detected, action required\n", h->ctlr);
232                 break;
233         case REPORT_LUNS_CHANGED:
234                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235                         "changed, action required\n", h->ctlr);
236         /*
237          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238          * target (array) devices.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262                 return 0;
263         dev_warn(&h->pdev->dev, HPSA "device busy");
264         return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268                                  struct device_attribute *attr,
269                                  const char *buf, size_t count)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         h = shost_to_hba(shost);
274         hpsa_scan_start(h->scsi_host);
275         return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279              struct device_attribute *attr, char *buf)
280 {
281         struct ctlr_info *h;
282         struct Scsi_Host *shost = class_to_shost(dev);
283         unsigned char *fwrev;
284
285         h = shost_to_hba(shost);
286         if (!h->hba_inquiry_data)
287                 return 0;
288         fwrev = &h->hba_inquiry_data[32];
289         return snprintf(buf, 20, "%c%c%c%c\n",
290                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294              struct device_attribute *attr, char *buf)
295 {
296         struct Scsi_Host *shost = class_to_shost(dev);
297         struct ctlr_info *h = shost_to_hba(shost);
298
299         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307
308         h = shost_to_hba(shost);
309         return snprintf(buf, 20, "%s\n",
310                 h->transMethod & CFGTBL_Trans_Performant ?
311                         "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316         0x324a103C, /* Smart Array P712m */
317         0x324b103C, /* SmartArray P711m */
318         0x3223103C, /* Smart Array P800 */
319         0x3234103C, /* Smart Array P400 */
320         0x3235103C, /* Smart Array P400i */
321         0x3211103C, /* Smart Array E200i */
322         0x3212103C, /* Smart Array E200 */
323         0x3213103C, /* Smart Array E200i */
324         0x3214103C, /* Smart Array E200i */
325         0x3215103C, /* Smart Array E200i */
326         0x3237103C, /* Smart Array E500 */
327         0x323D103C, /* Smart Array P700m */
328         0x40800E11, /* Smart Array 5i */
329         0x409C0E11, /* Smart Array 6400 */
330         0x409D0E11, /* Smart Array 6400 EM */
331         0x40700E11, /* Smart Array 5300 */
332         0x40820E11, /* Smart Array 532 */
333         0x40830E11, /* Smart Array 5312 */
334         0x409A0E11, /* Smart Array 641 */
335         0x409B0E11, /* Smart Array 642 */
336         0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341         0x40800E11, /* Smart Array 5i */
342         0x40700E11, /* Smart Array 5300 */
343         0x40820E11, /* Smart Array 532 */
344         0x40830E11, /* Smart Array 5312 */
345         0x409A0E11, /* Smart Array 641 */
346         0x409B0E11, /* Smart Array 642 */
347         0x40910E11, /* Smart Array 6i */
348         /* Exclude 640x boards.  These are two pci devices in one slot
349          * which share a battery backed cache module.  One controls the
350          * cache, the other accesses the cache through the one that controls
351          * it.  If we reset the one controlling the cache, the other will
352          * likely not be happy.  Just forbid resetting this conjoined mess.
353          * The 640x isn't really supported by hpsa anyway.
354          */
355         0x409C0E11, /* Smart Array 6400 */
356         0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361         int i;
362
363         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364                 if (unresettable_controller[i] == board_id)
365                         return 0;
366         return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374                 if (soft_unresettable_controller[i] == board_id)
375                         return 0;
376         return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381         return ctlr_is_hard_resettable(board_id) ||
382                 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386         struct device_attribute *attr, char *buf)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390
391         h = shost_to_hba(shost);
392         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397         return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401         "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406              struct device_attribute *attr, char *buf)
407 {
408         ssize_t l = 0;
409         unsigned char rlevel;
410         struct ctlr_info *h;
411         struct scsi_device *sdev;
412         struct hpsa_scsi_dev_t *hdev;
413         unsigned long flags;
414
415         sdev = to_scsi_device(dev);
416         h = sdev_to_hba(sdev);
417         spin_lock_irqsave(&h->lock, flags);
418         hdev = sdev->hostdata;
419         if (!hdev) {
420                 spin_unlock_irqrestore(&h->lock, flags);
421                 return -ENODEV;
422         }
423
424         /* Is this even a logical drive? */
425         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428                 return l;
429         }
430
431         rlevel = hdev->raid_level;
432         spin_unlock_irqrestore(&h->lock, flags);
433         if (rlevel > RAID_UNKNOWN)
434                 rlevel = RAID_UNKNOWN;
435         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436         return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440              struct device_attribute *attr, char *buf)
441 {
442         struct ctlr_info *h;
443         struct scsi_device *sdev;
444         struct hpsa_scsi_dev_t *hdev;
445         unsigned long flags;
446         unsigned char lunid[8];
447
448         sdev = to_scsi_device(dev);
449         h = sdev_to_hba(sdev);
450         spin_lock_irqsave(&h->lock, flags);
451         hdev = sdev->hostdata;
452         if (!hdev) {
453                 spin_unlock_irqrestore(&h->lock, flags);
454                 return -ENODEV;
455         }
456         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457         spin_unlock_irqrestore(&h->lock, flags);
458         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459                 lunid[0], lunid[1], lunid[2], lunid[3],
460                 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char sn[16];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(sn, hdev->device_id, sizeof(sn));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 16 * 2 + 2,
483                         "%02X%02X%02X%02X%02X%02X%02X%02X"
484                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485                         sn[0], sn[1], sn[2], sn[3],
486                         sn[4], sn[5], sn[6], sn[7],
487                         sn[8], sn[9], sn[10], sn[11],
488                         sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496         host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498         host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500         host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502         host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505         &dev_attr_raid_level,
506         &dev_attr_lunid,
507         &dev_attr_unique_id,
508         NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512         &dev_attr_rescan,
513         &dev_attr_firmware_revision,
514         &dev_attr_commands_outstanding,
515         &dev_attr_transport_mode,
516         &dev_attr_resettable,
517         NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521         .module                 = THIS_MODULE,
522         .name                   = HPSA,
523         .proc_name              = HPSA,
524         .queuecommand           = hpsa_scsi_queue_command,
525         .scan_start             = hpsa_scan_start,
526         .scan_finished          = hpsa_scan_finished,
527         .change_queue_depth     = hpsa_change_queue_depth,
528         .this_id                = -1,
529         .use_clustering         = ENABLE_CLUSTERING,
530         .eh_abort_handler       = hpsa_eh_abort_handler,
531         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532         .ioctl                  = hpsa_ioctl,
533         .slave_alloc            = hpsa_slave_alloc,
534         .slave_destroy          = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536         .compat_ioctl           = hpsa_compat_ioctl,
537 #endif
538         .sdev_attrs = hpsa_sdev_attrs,
539         .shost_attrs = hpsa_shost_attrs,
540         .max_sectors = 8192,
541 };
542
543
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547         list_add_tail(&c->list, list);
548 }
549
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552         u32 a;
553         struct reply_pool *rq = &h->reply_queue[q];
554         unsigned long flags;
555
556         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557                 return h->access.command_completed(h, q);
558
559         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560                 a = rq->head[rq->current_entry];
561                 rq->current_entry++;
562                 spin_lock_irqsave(&h->lock, flags);
563                 h->commands_outstanding--;
564                 spin_unlock_irqrestore(&h->lock, flags);
565         } else {
566                 a = FIFO_EMPTY;
567         }
568         /* Check for wraparound */
569         if (rq->current_entry == h->max_commands) {
570                 rq->current_entry = 0;
571                 rq->wraparound ^= 1;
572         }
573         return a;
574 }
575
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
582         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584                 if (likely(h->msix_vector))
585                         c->Header.ReplyQueue =
586                                 smp_processor_id() % h->nreply_queues;
587         }
588 }
589
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should.  So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603                 struct CommandList *c)
604 {
605         if (!is_firmware_flash_cmd(c->Request.CDB))
606                 return;
607         atomic_inc(&h->firmware_flash_in_progress);
608         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
609 }
610
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612                 struct CommandList *c)
613 {
614         if (is_firmware_flash_cmd(c->Request.CDB) &&
615                 atomic_dec_and_test(&h->firmware_flash_in_progress))
616                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
617 }
618
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620         struct CommandList *c)
621 {
622         unsigned long flags;
623
624         set_performant_mode(h, c);
625         dial_down_lockup_detection_during_fw_flash(h, c);
626         spin_lock_irqsave(&h->lock, flags);
627         addQ(&h->reqQ, c);
628         h->Qdepth++;
629         spin_unlock_irqrestore(&h->lock, flags);
630         start_io(h);
631 }
632
633 static inline void removeQ(struct CommandList *c)
634 {
635         if (WARN_ON(list_empty(&c->list)))
636                 return;
637         list_del_init(&c->list);
638 }
639
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647         if (!h->hba_inquiry_data)
648                 return 0;
649         if ((h->hba_inquiry_data[2] & 0x07) == 5)
650                 return 1;
651         return 0;
652 }
653
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655         unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657         /* finds an unused bus, target, lun for a new physical device
658          * assumes h->devlock is held
659          */
660         int i, found = 0;
661         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662
663         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664
665         for (i = 0; i < h->ndevices; i++) {
666                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667                         __set_bit(h->dev[i]->target, lun_taken);
668         }
669
670         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671         if (i < HPSA_MAX_DEVICES) {
672                 /* *bus = 1; */
673                 *target = i;
674                 *lun = 0;
675                 found = 1;
676         }
677         return !found;
678 }
679
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682                 struct hpsa_scsi_dev_t *device,
683                 struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685         /* assumes h->devlock is held */
686         int n = h->ndevices;
687         int i;
688         unsigned char addr1[8], addr2[8];
689         struct hpsa_scsi_dev_t *sd;
690
691         if (n >= HPSA_MAX_DEVICES) {
692                 dev_err(&h->pdev->dev, "too many devices, some will be "
693                         "inaccessible.\n");
694                 return -1;
695         }
696
697         /* physical devices do not have lun or target assigned until now. */
698         if (device->lun != -1)
699                 /* Logical device, lun is already assigned. */
700                 goto lun_assigned;
701
702         /* If this device a non-zero lun of a multi-lun device
703          * byte 4 of the 8-byte LUN addr will contain the logical
704          * unit no, zero otherise.
705          */
706         if (device->scsi3addr[4] == 0) {
707                 /* This is not a non-zero lun of a multi-lun device */
708                 if (hpsa_find_target_lun(h, device->scsi3addr,
709                         device->bus, &device->target, &device->lun) != 0)
710                         return -1;
711                 goto lun_assigned;
712         }
713
714         /* This is a non-zero lun of a multi-lun device.
715          * Search through our list and find the device which
716          * has the same 8 byte LUN address, excepting byte 4.
717          * Assign the same bus and target for this new LUN.
718          * Use the logical unit number from the firmware.
719          */
720         memcpy(addr1, device->scsi3addr, 8);
721         addr1[4] = 0;
722         for (i = 0; i < n; i++) {
723                 sd = h->dev[i];
724                 memcpy(addr2, sd->scsi3addr, 8);
725                 addr2[4] = 0;
726                 /* differ only in byte 4? */
727                 if (memcmp(addr1, addr2, 8) == 0) {
728                         device->bus = sd->bus;
729                         device->target = sd->target;
730                         device->lun = device->scsi3addr[4];
731                         break;
732                 }
733         }
734         if (device->lun == -1) {
735                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736                         " suspect firmware bug or unsupported hardware "
737                         "configuration.\n");
738                         return -1;
739         }
740
741 lun_assigned:
742
743         h->dev[n] = device;
744         h->ndevices++;
745         added[*nadded] = device;
746         (*nadded)++;
747
748         /* initially, (before registering with scsi layer) we don't
749          * know our hostno and we don't want to print anything first
750          * time anyway (the scsi layer's inquiries will show that info)
751          */
752         /* if (hostno != -1) */
753                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754                         scsi_device_type(device->devtype), hostno,
755                         device->bus, device->target, device->lun);
756         return 0;
757 }
758
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761         int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763         /* assumes h->devlock is held */
764         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
765
766         /* Raid level changed. */
767         h->dev[entry]->raid_level = new_entry->raid_level;
768         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770                 new_entry->target, new_entry->lun);
771 }
772
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775         int entry, struct hpsa_scsi_dev_t *new_entry,
776         struct hpsa_scsi_dev_t *added[], int *nadded,
777         struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779         /* assumes h->devlock is held */
780         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781         removed[*nremoved] = h->dev[entry];
782         (*nremoved)++;
783
784         /*
785          * New physical devices won't have target/lun assigned yet
786          * so we need to preserve the values in the slot we are replacing.
787          */
788         if (new_entry->target == -1) {
789                 new_entry->target = h->dev[entry]->target;
790                 new_entry->lun = h->dev[entry]->lun;
791         }
792
793         h->dev[entry] = new_entry;
794         added[*nadded] = new_entry;
795         (*nadded)++;
796         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798                         new_entry->target, new_entry->lun);
799 }
800
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803         struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805         /* assumes h->devlock is held */
806         int i;
807         struct hpsa_scsi_dev_t *sd;
808
809         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
810
811         sd = h->dev[entry];
812         removed[*nremoved] = h->dev[entry];
813         (*nremoved)++;
814
815         for (i = entry; i < h->ndevices-1; i++)
816                 h->dev[i] = h->dev[i+1];
817         h->ndevices--;
818         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820                 sd->lun);
821 }
822
823 #define SCSI3ADDR_EQ(a, b) ( \
824         (a)[7] == (b)[7] && \
825         (a)[6] == (b)[6] && \
826         (a)[5] == (b)[5] && \
827         (a)[4] == (b)[4] && \
828         (a)[3] == (b)[3] && \
829         (a)[2] == (b)[2] && \
830         (a)[1] == (b)[1] && \
831         (a)[0] == (b)[0])
832
833 static void fixup_botched_add(struct ctlr_info *h,
834         struct hpsa_scsi_dev_t *added)
835 {
836         /* called when scsi_add_device fails in order to re-adjust
837          * h->dev[] to match the mid layer's view.
838          */
839         unsigned long flags;
840         int i, j;
841
842         spin_lock_irqsave(&h->lock, flags);
843         for (i = 0; i < h->ndevices; i++) {
844                 if (h->dev[i] == added) {
845                         for (j = i; j < h->ndevices-1; j++)
846                                 h->dev[j] = h->dev[j+1];
847                         h->ndevices--;
848                         break;
849                 }
850         }
851         spin_unlock_irqrestore(&h->lock, flags);
852         kfree(added);
853 }
854
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856         struct hpsa_scsi_dev_t *dev2)
857 {
858         /* we compare everything except lun and target as these
859          * are not yet assigned.  Compare parts likely
860          * to differ first
861          */
862         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863                 sizeof(dev1->scsi3addr)) != 0)
864                 return 0;
865         if (memcmp(dev1->device_id, dev2->device_id,
866                 sizeof(dev1->device_id)) != 0)
867                 return 0;
868         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869                 return 0;
870         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871                 return 0;
872         if (dev1->devtype != dev2->devtype)
873                 return 0;
874         if (dev1->bus != dev2->bus)
875                 return 0;
876         return 1;
877 }
878
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880         struct hpsa_scsi_dev_t *dev2)
881 {
882         /* Device attributes that can change, but don't mean
883          * that the device is a different device, nor that the OS
884          * needs to be told anything about the change.
885          */
886         if (dev1->raid_level != dev2->raid_level)
887                 return 1;
888         return 0;
889 }
890
891 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
892  * and return needle location in *index.  If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901         int *index)
902 {
903         int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908         for (i = 0; i < haystack_size; i++) {
909                 if (haystack[i] == NULL) /* previously removed. */
910                         continue;
911                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912                         *index = i;
913                         if (device_is_the_same(needle, haystack[i])) {
914                                 if (device_updated(needle, haystack[i]))
915                                         return DEVICE_UPDATED;
916                                 return DEVICE_SAME;
917                         } else {
918                                 return DEVICE_CHANGED;
919                         }
920                 }
921         }
922         *index = -1;
923         return DEVICE_NOT_FOUND;
924 }
925
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927         struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929         /* sd contains scsi3 addresses and devtypes, and inquiry
930          * data.  This function takes what's in sd to be the current
931          * reality and updates h->dev[] to reflect that reality.
932          */
933         int i, entry, device_change, changes = 0;
934         struct hpsa_scsi_dev_t *csd;
935         unsigned long flags;
936         struct hpsa_scsi_dev_t **added, **removed;
937         int nadded, nremoved;
938         struct Scsi_Host *sh = NULL;
939
940         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942
943         if (!added || !removed) {
944                 dev_warn(&h->pdev->dev, "out of memory in "
945                         "adjust_hpsa_scsi_table\n");
946                 goto free_and_out;
947         }
948
949         spin_lock_irqsave(&h->devlock, flags);
950
951         /* find any devices in h->dev[] that are not in
952          * sd[] and remove them from h->dev[], and for any
953          * devices which have changed, remove the old device
954          * info and add the new device info.
955          * If minor device attributes change, just update
956          * the existing device structure.
957          */
958         i = 0;
959         nremoved = 0;
960         nadded = 0;
961         while (i < h->ndevices) {
962                 csd = h->dev[i];
963                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964                 if (device_change == DEVICE_NOT_FOUND) {
965                         changes++;
966                         hpsa_scsi_remove_entry(h, hostno, i,
967                                 removed, &nremoved);
968                         continue; /* remove ^^^, hence i not incremented */
969                 } else if (device_change == DEVICE_CHANGED) {
970                         changes++;
971                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972                                 added, &nadded, removed, &nremoved);
973                         /* Set it to NULL to prevent it from being freed
974                          * at the bottom of hpsa_update_scsi_devices()
975                          */
976                         sd[entry] = NULL;
977                 } else if (device_change == DEVICE_UPDATED) {
978                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979                 }
980                 i++;
981         }
982
983         /* Now, make sure every device listed in sd[] is also
984          * listed in h->dev[], adding them if they aren't found
985          */
986
987         for (i = 0; i < nsds; i++) {
988                 if (!sd[i]) /* if already added above. */
989                         continue;
990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991                                         h->ndevices, &entry);
992                 if (device_change == DEVICE_NOT_FOUND) {
993                         changes++;
994                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
995                                 added, &nadded) != 0)
996                                 break;
997                         sd[i] = NULL; /* prevent from being freed later. */
998                 } else if (device_change == DEVICE_CHANGED) {
999                         /* should never happen... */
1000                         changes++;
1001                         dev_warn(&h->pdev->dev,
1002                                 "device unexpectedly changed.\n");
1003                         /* but if it does happen, we just ignore that device */
1004                 }
1005         }
1006         spin_unlock_irqrestore(&h->devlock, flags);
1007
1008         /* Don't notify scsi mid layer of any changes the first time through
1009          * (or if there are no changes) scsi_scan_host will do it later the
1010          * first time through.
1011          */
1012         if (hostno == -1 || !changes)
1013                 goto free_and_out;
1014
1015         sh = h->scsi_host;
1016         /* Notify scsi mid layer of any removed devices */
1017         for (i = 0; i < nremoved; i++) {
1018                 struct scsi_device *sdev =
1019                         scsi_device_lookup(sh, removed[i]->bus,
1020                                 removed[i]->target, removed[i]->lun);
1021                 if (sdev != NULL) {
1022                         scsi_remove_device(sdev);
1023                         scsi_device_put(sdev);
1024                 } else {
1025                         /* We don't expect to get here.
1026                          * future cmds to this device will get selection
1027                          * timeout as if the device was gone.
1028                          */
1029                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030                                 " for removal.", hostno, removed[i]->bus,
1031                                 removed[i]->target, removed[i]->lun);
1032                 }
1033                 kfree(removed[i]);
1034                 removed[i] = NULL;
1035         }
1036
1037         /* Notify scsi mid layer of any added devices */
1038         for (i = 0; i < nadded; i++) {
1039                 if (scsi_add_device(sh, added[i]->bus,
1040                         added[i]->target, added[i]->lun) == 0)
1041                         continue;
1042                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043                         "device not added.\n", hostno, added[i]->bus,
1044                         added[i]->target, added[i]->lun);
1045                 /* now we have to remove it from h->dev,
1046                  * since it didn't get added to scsi mid layer
1047                  */
1048                 fixup_botched_add(h, added[i]);
1049         }
1050
1051 free_and_out:
1052         kfree(added);
1053         kfree(removed);
1054 }
1055
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061         int bus, int target, int lun)
1062 {
1063         int i;
1064         struct hpsa_scsi_dev_t *sd;
1065
1066         for (i = 0; i < h->ndevices; i++) {
1067                 sd = h->dev[i];
1068                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069                         return sd;
1070         }
1071         return NULL;
1072 }
1073
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077         struct hpsa_scsi_dev_t *sd;
1078         unsigned long flags;
1079         struct ctlr_info *h;
1080
1081         h = sdev_to_hba(sdev);
1082         spin_lock_irqsave(&h->devlock, flags);
1083         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084                 sdev_id(sdev), sdev->lun);
1085         if (sd != NULL)
1086                 sdev->hostdata = sd;
1087         spin_unlock_irqrestore(&h->devlock, flags);
1088         return 0;
1089 }
1090
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093         /* nothing to do. */
1094 }
1095
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098         int i;
1099
1100         if (!h->cmd_sg_list)
1101                 return;
1102         for (i = 0; i < h->nr_cmds; i++) {
1103                 kfree(h->cmd_sg_list[i]);
1104                 h->cmd_sg_list[i] = NULL;
1105         }
1106         kfree(h->cmd_sg_list);
1107         h->cmd_sg_list = NULL;
1108 }
1109
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112         int i;
1113
1114         if (h->chainsize <= 0)
1115                 return 0;
1116
1117         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118                                 GFP_KERNEL);
1119         if (!h->cmd_sg_list)
1120                 return -ENOMEM;
1121         for (i = 0; i < h->nr_cmds; i++) {
1122                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123                                                 h->chainsize, GFP_KERNEL);
1124                 if (!h->cmd_sg_list[i])
1125                         goto clean;
1126         }
1127         return 0;
1128
1129 clean:
1130         hpsa_free_sg_chain_blocks(h);
1131         return -ENOMEM;
1132 }
1133
1134 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1135         struct CommandList *c)
1136 {
1137         struct SGDescriptor *chain_sg, *chain_block;
1138         u64 temp64;
1139
1140         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141         chain_block = h->cmd_sg_list[c->cmdindex];
1142         chain_sg->Ext = HPSA_SG_CHAIN;
1143         chain_sg->Len = sizeof(*chain_sg) *
1144                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1145         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146                                 PCI_DMA_TODEVICE);
1147         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1148                 /* prevent subsequent unmapping */
1149                 chain_sg->Addr.lower = 0;
1150                 chain_sg->Addr.upper = 0;
1151                 return -1;
1152         }
1153         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1154         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1155         return 0;
1156 }
1157
1158 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1159         struct CommandList *c)
1160 {
1161         struct SGDescriptor *chain_sg;
1162         union u64bit temp64;
1163
1164         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1165                 return;
1166
1167         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1168         temp64.val32.lower = chain_sg->Addr.lower;
1169         temp64.val32.upper = chain_sg->Addr.upper;
1170         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1171 }
1172
1173 static void complete_scsi_command(struct CommandList *cp)
1174 {
1175         struct scsi_cmnd *cmd;
1176         struct ctlr_info *h;
1177         struct ErrorInfo *ei;
1178
1179         unsigned char sense_key;
1180         unsigned char asc;      /* additional sense code */
1181         unsigned char ascq;     /* additional sense code qualifier */
1182         unsigned long sense_data_size;
1183
1184         ei = cp->err_info;
1185         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1186         h = cp->h;
1187
1188         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1189         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1190                 hpsa_unmap_sg_chain_block(h, cp);
1191
1192         cmd->result = (DID_OK << 16);           /* host byte */
1193         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1194         cmd->result |= ei->ScsiStatus;
1195
1196         /* copy the sense data whether we need to or not. */
1197         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1198                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1199         else
1200                 sense_data_size = sizeof(ei->SenseInfo);
1201         if (ei->SenseLen < sense_data_size)
1202                 sense_data_size = ei->SenseLen;
1203
1204         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1205         scsi_set_resid(cmd, ei->ResidualCnt);
1206
1207         if (ei->CommandStatus == 0) {
1208                 cmd->scsi_done(cmd);
1209                 cmd_free(h, cp);
1210                 return;
1211         }
1212
1213         /* an error has occurred */
1214         switch (ei->CommandStatus) {
1215
1216         case CMD_TARGET_STATUS:
1217                 if (ei->ScsiStatus) {
1218                         /* Get sense key */
1219                         sense_key = 0xf & ei->SenseInfo[2];
1220                         /* Get additional sense code */
1221                         asc = ei->SenseInfo[12];
1222                         /* Get addition sense code qualifier */
1223                         ascq = ei->SenseInfo[13];
1224                 }
1225
1226                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1227                         if (check_for_unit_attention(h, cp)) {
1228                                 cmd->result = DID_SOFT_ERROR << 16;
1229                                 break;
1230                         }
1231                         if (sense_key == ILLEGAL_REQUEST) {
1232                                 /*
1233                                  * SCSI REPORT_LUNS is commonly unsupported on
1234                                  * Smart Array.  Suppress noisy complaint.
1235                                  */
1236                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1237                                         break;
1238
1239                                 /* If ASC/ASCQ indicate Logical Unit
1240                                  * Not Supported condition,
1241                                  */
1242                                 if ((asc == 0x25) && (ascq == 0x0)) {
1243                                         dev_warn(&h->pdev->dev, "cp %p "
1244                                                 "has check condition\n", cp);
1245                                         break;
1246                                 }
1247                         }
1248
1249                         if (sense_key == NOT_READY) {
1250                                 /* If Sense is Not Ready, Logical Unit
1251                                  * Not ready, Manual Intervention
1252                                  * required
1253                                  */
1254                                 if ((asc == 0x04) && (ascq == 0x03)) {
1255                                         dev_warn(&h->pdev->dev, "cp %p "
1256                                                 "has check condition: unit "
1257                                                 "not ready, manual "
1258                                                 "intervention required\n", cp);
1259                                         break;
1260                                 }
1261                         }
1262                         if (sense_key == ABORTED_COMMAND) {
1263                                 /* Aborted command is retryable */
1264                                 dev_warn(&h->pdev->dev, "cp %p "
1265                                         "has check condition: aborted command: "
1266                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1267                                         cp, asc, ascq);
1268                                 cmd->result = DID_SOFT_ERROR << 16;
1269                                 break;
1270                         }
1271                         /* Must be some other type of check condition */
1272                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1273                                         "unknown type: "
1274                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1275                                         "Returning result: 0x%x, "
1276                                         "cmd=[%02x %02x %02x %02x %02x "
1277                                         "%02x %02x %02x %02x %02x %02x "
1278                                         "%02x %02x %02x %02x %02x]\n",
1279                                         cp, sense_key, asc, ascq,
1280                                         cmd->result,
1281                                         cmd->cmnd[0], cmd->cmnd[1],
1282                                         cmd->cmnd[2], cmd->cmnd[3],
1283                                         cmd->cmnd[4], cmd->cmnd[5],
1284                                         cmd->cmnd[6], cmd->cmnd[7],
1285                                         cmd->cmnd[8], cmd->cmnd[9],
1286                                         cmd->cmnd[10], cmd->cmnd[11],
1287                                         cmd->cmnd[12], cmd->cmnd[13],
1288                                         cmd->cmnd[14], cmd->cmnd[15]);
1289                         break;
1290                 }
1291
1292
1293                 /* Problem was not a check condition
1294                  * Pass it up to the upper layers...
1295                  */
1296                 if (ei->ScsiStatus) {
1297                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1298                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1299                                 "Returning result: 0x%x\n",
1300                                 cp, ei->ScsiStatus,
1301                                 sense_key, asc, ascq,
1302                                 cmd->result);
1303                 } else {  /* scsi status is zero??? How??? */
1304                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1305                                 "Returning no connection.\n", cp),
1306
1307                         /* Ordinarily, this case should never happen,
1308                          * but there is a bug in some released firmware
1309                          * revisions that allows it to happen if, for
1310                          * example, a 4100 backplane loses power and
1311                          * the tape drive is in it.  We assume that
1312                          * it's a fatal error of some kind because we
1313                          * can't show that it wasn't. We will make it
1314                          * look like selection timeout since that is
1315                          * the most common reason for this to occur,
1316                          * and it's severe enough.
1317                          */
1318
1319                         cmd->result = DID_NO_CONNECT << 16;
1320                 }
1321                 break;
1322
1323         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1324                 break;
1325         case CMD_DATA_OVERRUN:
1326                 dev_warn(&h->pdev->dev, "cp %p has"
1327                         " completed with data overrun "
1328                         "reported\n", cp);
1329                 break;
1330         case CMD_INVALID: {
1331                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1332                 print_cmd(cp); */
1333                 /* We get CMD_INVALID if you address a non-existent device
1334                  * instead of a selection timeout (no response).  You will
1335                  * see this if you yank out a drive, then try to access it.
1336                  * This is kind of a shame because it means that any other
1337                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1338                  * missing target. */
1339                 cmd->result = DID_NO_CONNECT << 16;
1340         }
1341                 break;
1342         case CMD_PROTOCOL_ERR:
1343                 cmd->result = DID_ERROR << 16;
1344                 dev_warn(&h->pdev->dev, "cp %p has "
1345                         "protocol error\n", cp);
1346                 break;
1347         case CMD_HARDWARE_ERR:
1348                 cmd->result = DID_ERROR << 16;
1349                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1350                 break;
1351         case CMD_CONNECTION_LOST:
1352                 cmd->result = DID_ERROR << 16;
1353                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1354                 break;
1355         case CMD_ABORTED:
1356                 cmd->result = DID_ABORT << 16;
1357                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1358                                 cp, ei->ScsiStatus);
1359                 break;
1360         case CMD_ABORT_FAILED:
1361                 cmd->result = DID_ERROR << 16;
1362                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1363                 break;
1364         case CMD_UNSOLICITED_ABORT:
1365                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1366                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1367                         "abort\n", cp);
1368                 break;
1369         case CMD_TIMEOUT:
1370                 cmd->result = DID_TIME_OUT << 16;
1371                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1372                 break;
1373         case CMD_UNABORTABLE:
1374                 cmd->result = DID_ERROR << 16;
1375                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1376                 break;
1377         default:
1378                 cmd->result = DID_ERROR << 16;
1379                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1380                                 cp, ei->CommandStatus);
1381         }
1382         cmd->scsi_done(cmd);
1383         cmd_free(h, cp);
1384 }
1385
1386 static void hpsa_pci_unmap(struct pci_dev *pdev,
1387         struct CommandList *c, int sg_used, int data_direction)
1388 {
1389         int i;
1390         union u64bit addr64;
1391
1392         for (i = 0; i < sg_used; i++) {
1393                 addr64.val32.lower = c->SG[i].Addr.lower;
1394                 addr64.val32.upper = c->SG[i].Addr.upper;
1395                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1396                         data_direction);
1397         }
1398 }
1399
1400 static int hpsa_map_one(struct pci_dev *pdev,
1401                 struct CommandList *cp,
1402                 unsigned char *buf,
1403                 size_t buflen,
1404                 int data_direction)
1405 {
1406         u64 addr64;
1407
1408         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1409                 cp->Header.SGList = 0;
1410                 cp->Header.SGTotal = 0;
1411                 return 0;
1412         }
1413
1414         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1415         if (dma_mapping_error(&pdev->dev, addr64)) {
1416                 /* Prevent subsequent unmap of something never mapped */
1417                 cp->Header.SGList = 0;
1418                 cp->Header.SGTotal = 0;
1419                 return -1;
1420         }
1421         cp->SG[0].Addr.lower =
1422           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1423         cp->SG[0].Addr.upper =
1424           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1425         cp->SG[0].Len = buflen;
1426         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1427         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1428         return 0;
1429 }
1430
1431 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1432         struct CommandList *c)
1433 {
1434         DECLARE_COMPLETION_ONSTACK(wait);
1435
1436         c->waiting = &wait;
1437         enqueue_cmd_and_start_io(h, c);
1438         wait_for_completion(&wait);
1439 }
1440
1441 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1442         struct CommandList *c)
1443 {
1444         unsigned long flags;
1445
1446         /* If controller lockup detected, fake a hardware error. */
1447         spin_lock_irqsave(&h->lock, flags);
1448         if (unlikely(h->lockup_detected)) {
1449                 spin_unlock_irqrestore(&h->lock, flags);
1450                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1451         } else {
1452                 spin_unlock_irqrestore(&h->lock, flags);
1453                 hpsa_scsi_do_simple_cmd_core(h, c);
1454         }
1455 }
1456
1457 #define MAX_DRIVER_CMD_RETRIES 25
1458 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1459         struct CommandList *c, int data_direction)
1460 {
1461         int backoff_time = 10, retry_count = 0;
1462
1463         do {
1464                 memset(c->err_info, 0, sizeof(*c->err_info));
1465                 hpsa_scsi_do_simple_cmd_core(h, c);
1466                 retry_count++;
1467                 if (retry_count > 3) {
1468                         msleep(backoff_time);
1469                         if (backoff_time < 1000)
1470                                 backoff_time *= 2;
1471                 }
1472         } while ((check_for_unit_attention(h, c) ||
1473                         check_for_busy(h, c)) &&
1474                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1475         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1476 }
1477
1478 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1479 {
1480         struct ErrorInfo *ei;
1481         struct device *d = &cp->h->pdev->dev;
1482
1483         ei = cp->err_info;
1484         switch (ei->CommandStatus) {
1485         case CMD_TARGET_STATUS:
1486                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1487                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1488                                 ei->ScsiStatus);
1489                 if (ei->ScsiStatus == 0)
1490                         dev_warn(d, "SCSI status is abnormally zero.  "
1491                         "(probably indicates selection timeout "
1492                         "reported incorrectly due to a known "
1493                         "firmware bug, circa July, 2001.)\n");
1494                 break;
1495         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1496                         dev_info(d, "UNDERRUN\n");
1497                 break;
1498         case CMD_DATA_OVERRUN:
1499                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1500                 break;
1501         case CMD_INVALID: {
1502                 /* controller unfortunately reports SCSI passthru's
1503                  * to non-existent targets as invalid commands.
1504                  */
1505                 dev_warn(d, "cp %p is reported invalid (probably means "
1506                         "target device no longer present)\n", cp);
1507                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1508                 print_cmd(cp);  */
1509                 }
1510                 break;
1511         case CMD_PROTOCOL_ERR:
1512                 dev_warn(d, "cp %p has protocol error \n", cp);
1513                 break;
1514         case CMD_HARDWARE_ERR:
1515                 /* cmd->result = DID_ERROR << 16; */
1516                 dev_warn(d, "cp %p had hardware error\n", cp);
1517                 break;
1518         case CMD_CONNECTION_LOST:
1519                 dev_warn(d, "cp %p had connection lost\n", cp);
1520                 break;
1521         case CMD_ABORTED:
1522                 dev_warn(d, "cp %p was aborted\n", cp);
1523                 break;
1524         case CMD_ABORT_FAILED:
1525                 dev_warn(d, "cp %p reports abort failed\n", cp);
1526                 break;
1527         case CMD_UNSOLICITED_ABORT:
1528                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1529                 break;
1530         case CMD_TIMEOUT:
1531                 dev_warn(d, "cp %p timed out\n", cp);
1532                 break;
1533         case CMD_UNABORTABLE:
1534                 dev_warn(d, "Command unabortable\n");
1535                 break;
1536         default:
1537                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1538                                 ei->CommandStatus);
1539         }
1540 }
1541
1542 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1543                         unsigned char page, unsigned char *buf,
1544                         unsigned char bufsize)
1545 {
1546         int rc = IO_OK;
1547         struct CommandList *c;
1548         struct ErrorInfo *ei;
1549
1550         c = cmd_special_alloc(h);
1551
1552         if (c == NULL) {                        /* trouble... */
1553                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1554                 return -ENOMEM;
1555         }
1556
1557         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1558                         page, scsi3addr, TYPE_CMD)) {
1559                 rc = -1;
1560                 goto out;
1561         }
1562         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1563         ei = c->err_info;
1564         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1565                 hpsa_scsi_interpret_error(c);
1566                 rc = -1;
1567         }
1568 out:
1569         cmd_special_free(h, c);
1570         return rc;
1571 }
1572
1573 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1574 {
1575         int rc = IO_OK;
1576         struct CommandList *c;
1577         struct ErrorInfo *ei;
1578
1579         c = cmd_special_alloc(h);
1580
1581         if (c == NULL) {                        /* trouble... */
1582                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1583                 return -ENOMEM;
1584         }
1585
1586         /* fill_cmd can't fail here, no data buffer to map. */
1587         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1588                         NULL, 0, 0, scsi3addr, TYPE_MSG);
1589         hpsa_scsi_do_simple_cmd_core(h, c);
1590         /* no unmap needed here because no data xfer. */
1591
1592         ei = c->err_info;
1593         if (ei->CommandStatus != 0) {
1594                 hpsa_scsi_interpret_error(c);
1595                 rc = -1;
1596         }
1597         cmd_special_free(h, c);
1598         return rc;
1599 }
1600
1601 static void hpsa_get_raid_level(struct ctlr_info *h,
1602         unsigned char *scsi3addr, unsigned char *raid_level)
1603 {
1604         int rc;
1605         unsigned char *buf;
1606
1607         *raid_level = RAID_UNKNOWN;
1608         buf = kzalloc(64, GFP_KERNEL);
1609         if (!buf)
1610                 return;
1611         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1612         if (rc == 0)
1613                 *raid_level = buf[8];
1614         if (*raid_level > RAID_UNKNOWN)
1615                 *raid_level = RAID_UNKNOWN;
1616         kfree(buf);
1617         return;
1618 }
1619
1620 /* Get the device id from inquiry page 0x83 */
1621 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1622         unsigned char *device_id, int buflen)
1623 {
1624         int rc;
1625         unsigned char *buf;
1626
1627         if (buflen > 16)
1628                 buflen = 16;
1629         buf = kzalloc(64, GFP_KERNEL);
1630         if (!buf)
1631                 return -1;
1632         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1633         if (rc == 0)
1634                 memcpy(device_id, &buf[8], buflen);
1635         kfree(buf);
1636         return rc != 0;
1637 }
1638
1639 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1640                 struct ReportLUNdata *buf, int bufsize,
1641                 int extended_response)
1642 {
1643         int rc = IO_OK;
1644         struct CommandList *c;
1645         unsigned char scsi3addr[8];
1646         struct ErrorInfo *ei;
1647
1648         c = cmd_special_alloc(h);
1649         if (c == NULL) {                        /* trouble... */
1650                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1651                 return -1;
1652         }
1653         /* address the controller */
1654         memset(scsi3addr, 0, sizeof(scsi3addr));
1655         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1656                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1657                 rc = -1;
1658                 goto out;
1659         }
1660         if (extended_response)
1661                 c->Request.CDB[1] = extended_response;
1662         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1663         ei = c->err_info;
1664         if (ei->CommandStatus != 0 &&
1665             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1666                 hpsa_scsi_interpret_error(c);
1667                 rc = -1;
1668         }
1669 out:
1670         cmd_special_free(h, c);
1671         return rc;
1672 }
1673
1674 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1675                 struct ReportLUNdata *buf,
1676                 int bufsize, int extended_response)
1677 {
1678         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1679 }
1680
1681 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1682                 struct ReportLUNdata *buf, int bufsize)
1683 {
1684         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1685 }
1686
1687 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1688         int bus, int target, int lun)
1689 {
1690         device->bus = bus;
1691         device->target = target;
1692         device->lun = lun;
1693 }
1694
1695 static int hpsa_update_device_info(struct ctlr_info *h,
1696         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1697         unsigned char *is_OBDR_device)
1698 {
1699
1700 #define OBDR_SIG_OFFSET 43
1701 #define OBDR_TAPE_SIG "$DR-10"
1702 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1703 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1704
1705         unsigned char *inq_buff;
1706         unsigned char *obdr_sig;
1707
1708         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1709         if (!inq_buff)
1710                 goto bail_out;
1711
1712         /* Do an inquiry to the device to see what it is. */
1713         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1714                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1715                 /* Inquiry failed (msg printed already) */
1716                 dev_err(&h->pdev->dev,
1717                         "hpsa_update_device_info: inquiry failed\n");
1718                 goto bail_out;
1719         }
1720
1721         this_device->devtype = (inq_buff[0] & 0x1f);
1722         memcpy(this_device->scsi3addr, scsi3addr, 8);
1723         memcpy(this_device->vendor, &inq_buff[8],
1724                 sizeof(this_device->vendor));
1725         memcpy(this_device->model, &inq_buff[16],
1726                 sizeof(this_device->model));
1727         memset(this_device->device_id, 0,
1728                 sizeof(this_device->device_id));
1729         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1730                 sizeof(this_device->device_id));
1731
1732         if (this_device->devtype == TYPE_DISK &&
1733                 is_logical_dev_addr_mode(scsi3addr))
1734                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1735         else
1736                 this_device->raid_level = RAID_UNKNOWN;
1737
1738         if (is_OBDR_device) {
1739                 /* See if this is a One-Button-Disaster-Recovery device
1740                  * by looking for "$DR-10" at offset 43 in inquiry data.
1741                  */
1742                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1743                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1744                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1745                                                 OBDR_SIG_LEN) == 0);
1746         }
1747
1748         kfree(inq_buff);
1749         return 0;
1750
1751 bail_out:
1752         kfree(inq_buff);
1753         return 1;
1754 }
1755
1756 static unsigned char *ext_target_model[] = {
1757         "MSA2012",
1758         "MSA2024",
1759         "MSA2312",
1760         "MSA2324",
1761         "P2000 G3 SAS",
1762         NULL,
1763 };
1764
1765 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1766 {
1767         int i;
1768
1769         for (i = 0; ext_target_model[i]; i++)
1770                 if (strncmp(device->model, ext_target_model[i],
1771                         strlen(ext_target_model[i])) == 0)
1772                         return 1;
1773         return 0;
1774 }
1775
1776 /* Helper function to assign bus, target, lun mapping of devices.
1777  * Puts non-external target logical volumes on bus 0, external target logical
1778  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1779  * Logical drive target and lun are assigned at this time, but
1780  * physical device lun and target assignment are deferred (assigned
1781  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1782  */
1783 static void figure_bus_target_lun(struct ctlr_info *h,
1784         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1785 {
1786         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1787
1788         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1789                 /* physical device, target and lun filled in later */
1790                 if (is_hba_lunid(lunaddrbytes))
1791                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1792                 else
1793                         /* defer target, lun assignment for physical devices */
1794                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1795                 return;
1796         }
1797         /* It's a logical device */
1798         if (is_ext_target(h, device)) {
1799                 /* external target way, put logicals on bus 1
1800                  * and match target/lun numbers box
1801                  * reports, other smart array, bus 0, target 0, match lunid
1802                  */
1803                 hpsa_set_bus_target_lun(device,
1804                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1805                 return;
1806         }
1807         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1808 }
1809
1810 /*
1811  * If there is no lun 0 on a target, linux won't find any devices.
1812  * For the external targets (arrays), we have to manually detect the enclosure
1813  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1814  * it for some reason.  *tmpdevice is the target we're adding,
1815  * this_device is a pointer into the current element of currentsd[]
1816  * that we're building up in update_scsi_devices(), below.
1817  * lunzerobits is a bitmap that tracks which targets already have a
1818  * lun 0 assigned.
1819  * Returns 1 if an enclosure was added, 0 if not.
1820  */
1821 static int add_ext_target_dev(struct ctlr_info *h,
1822         struct hpsa_scsi_dev_t *tmpdevice,
1823         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1824         unsigned long lunzerobits[], int *n_ext_target_devs)
1825 {
1826         unsigned char scsi3addr[8];
1827
1828         if (test_bit(tmpdevice->target, lunzerobits))
1829                 return 0; /* There is already a lun 0 on this target. */
1830
1831         if (!is_logical_dev_addr_mode(lunaddrbytes))
1832                 return 0; /* It's the logical targets that may lack lun 0. */
1833
1834         if (!is_ext_target(h, tmpdevice))
1835                 return 0; /* Only external target devices have this problem. */
1836
1837         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1838                 return 0;
1839
1840         memset(scsi3addr, 0, 8);
1841         scsi3addr[3] = tmpdevice->target;
1842         if (is_hba_lunid(scsi3addr))
1843                 return 0; /* Don't add the RAID controller here. */
1844
1845         if (is_scsi_rev_5(h))
1846                 return 0; /* p1210m doesn't need to do this. */
1847
1848         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1849                 dev_warn(&h->pdev->dev, "Maximum number of external "
1850                         "target devices exceeded.  Check your hardware "
1851                         "configuration.");
1852                 return 0;
1853         }
1854
1855         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1856                 return 0;
1857         (*n_ext_target_devs)++;
1858         hpsa_set_bus_target_lun(this_device,
1859                                 tmpdevice->bus, tmpdevice->target, 0);
1860         set_bit(tmpdevice->target, lunzerobits);
1861         return 1;
1862 }
1863
1864 /*
1865  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1866  * logdev.  The number of luns in physdev and logdev are returned in
1867  * *nphysicals and *nlogicals, respectively.
1868  * Returns 0 on success, -1 otherwise.
1869  */
1870 static int hpsa_gather_lun_info(struct ctlr_info *h,
1871         int reportlunsize,
1872         struct ReportLUNdata *physdev, u32 *nphysicals,
1873         struct ReportLUNdata *logdev, u32 *nlogicals)
1874 {
1875         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1876                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1877                 return -1;
1878         }
1879         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1880         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1881                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1882                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1883                         *nphysicals - HPSA_MAX_PHYS_LUN);
1884                 *nphysicals = HPSA_MAX_PHYS_LUN;
1885         }
1886         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1887                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1888                 return -1;
1889         }
1890         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1891         /* Reject Logicals in excess of our max capability. */
1892         if (*nlogicals > HPSA_MAX_LUN) {
1893                 dev_warn(&h->pdev->dev,
1894                         "maximum logical LUNs (%d) exceeded.  "
1895                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1896                         *nlogicals - HPSA_MAX_LUN);
1897                         *nlogicals = HPSA_MAX_LUN;
1898         }
1899         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1900                 dev_warn(&h->pdev->dev,
1901                         "maximum logical + physical LUNs (%d) exceeded. "
1902                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1903                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1904                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1905         }
1906         return 0;
1907 }
1908
1909 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1910         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1911         struct ReportLUNdata *logdev_list)
1912 {
1913         /* Helper function, figure out where the LUN ID info is coming from
1914          * given index i, lists of physical and logical devices, where in
1915          * the list the raid controller is supposed to appear (first or last)
1916          */
1917
1918         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1919         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1920
1921         if (i == raid_ctlr_position)
1922                 return RAID_CTLR_LUNID;
1923
1924         if (i < logicals_start)
1925                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1926
1927         if (i < last_device)
1928                 return &logdev_list->LUN[i - nphysicals -
1929                         (raid_ctlr_position == 0)][0];
1930         BUG();
1931         return NULL;
1932 }
1933
1934 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1935 {
1936         /* the idea here is we could get notified
1937          * that some devices have changed, so we do a report
1938          * physical luns and report logical luns cmd, and adjust
1939          * our list of devices accordingly.
1940          *
1941          * The scsi3addr's of devices won't change so long as the
1942          * adapter is not reset.  That means we can rescan and
1943          * tell which devices we already know about, vs. new
1944          * devices, vs.  disappearing devices.
1945          */
1946         struct ReportLUNdata *physdev_list = NULL;
1947         struct ReportLUNdata *logdev_list = NULL;
1948         u32 nphysicals = 0;
1949         u32 nlogicals = 0;
1950         u32 ndev_allocated = 0;
1951         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1952         int ncurrent = 0;
1953         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1954         int i, n_ext_target_devs, ndevs_to_allocate;
1955         int raid_ctlr_position;
1956         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1957
1958         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1959         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1960         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1961         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1962
1963         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1964                 dev_err(&h->pdev->dev, "out of memory\n");
1965                 goto out;
1966         }
1967         memset(lunzerobits, 0, sizeof(lunzerobits));
1968
1969         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1970                         logdev_list, &nlogicals))
1971                 goto out;
1972
1973         /* We might see up to the maximum number of logical and physical disks
1974          * plus external target devices, and a device for the local RAID
1975          * controller.
1976          */
1977         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1978
1979         /* Allocate the per device structures */
1980         for (i = 0; i < ndevs_to_allocate; i++) {
1981                 if (i >= HPSA_MAX_DEVICES) {
1982                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1983                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1984                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1985                         break;
1986                 }
1987
1988                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1989                 if (!currentsd[i]) {
1990                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1991                                 __FILE__, __LINE__);
1992                         goto out;
1993                 }
1994                 ndev_allocated++;
1995         }
1996
1997         if (unlikely(is_scsi_rev_5(h)))
1998                 raid_ctlr_position = 0;
1999         else
2000                 raid_ctlr_position = nphysicals + nlogicals;
2001
2002         /* adjust our table of devices */
2003         n_ext_target_devs = 0;
2004         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2005                 u8 *lunaddrbytes, is_OBDR = 0;
2006
2007                 /* Figure out where the LUN ID info is coming from */
2008                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2009                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2010                 /* skip masked physical devices. */
2011                 if (lunaddrbytes[3] & 0xC0 &&
2012                         i < nphysicals + (raid_ctlr_position == 0))
2013                         continue;
2014
2015                 /* Get device type, vendor, model, device id */
2016                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2017                                                         &is_OBDR))
2018                         continue; /* skip it if we can't talk to it. */
2019                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2020                 this_device = currentsd[ncurrent];
2021
2022                 /*
2023                  * For external target devices, we have to insert a LUN 0 which
2024                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2025                  * is nonetheless an enclosure device there.  We have to
2026                  * present that otherwise linux won't find anything if
2027                  * there is no lun 0.
2028                  */
2029                 if (add_ext_target_dev(h, tmpdevice, this_device,
2030                                 lunaddrbytes, lunzerobits,
2031                                 &n_ext_target_devs)) {
2032                         ncurrent++;
2033                         this_device = currentsd[ncurrent];
2034                 }
2035
2036                 *this_device = *tmpdevice;
2037
2038                 switch (this_device->devtype) {
2039                 case TYPE_ROM:
2040                         /* We don't *really* support actual CD-ROM devices,
2041                          * just "One Button Disaster Recovery" tape drive
2042                          * which temporarily pretends to be a CD-ROM drive.
2043                          * So we check that the device is really an OBDR tape
2044                          * device by checking for "$DR-10" in bytes 43-48 of
2045                          * the inquiry data.
2046                          */
2047                         if (is_OBDR)
2048                                 ncurrent++;
2049                         break;
2050                 case TYPE_DISK:
2051                         if (i < nphysicals)
2052                                 break;
2053                         ncurrent++;
2054                         break;
2055                 case TYPE_TAPE:
2056                 case TYPE_MEDIUM_CHANGER:
2057                         ncurrent++;
2058                         break;
2059                 case TYPE_RAID:
2060                         /* Only present the Smartarray HBA as a RAID controller.
2061                          * If it's a RAID controller other than the HBA itself
2062                          * (an external RAID controller, MSA500 or similar)
2063                          * don't present it.
2064                          */
2065                         if (!is_hba_lunid(lunaddrbytes))
2066                                 break;
2067                         ncurrent++;
2068                         break;
2069                 default:
2070                         break;
2071                 }
2072                 if (ncurrent >= HPSA_MAX_DEVICES)
2073                         break;
2074         }
2075         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2076 out:
2077         kfree(tmpdevice);
2078         for (i = 0; i < ndev_allocated; i++)
2079                 kfree(currentsd[i]);
2080         kfree(currentsd);
2081         kfree(physdev_list);
2082         kfree(logdev_list);
2083 }
2084
2085 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2086  * dma mapping  and fills in the scatter gather entries of the
2087  * hpsa command, cp.
2088  */
2089 static int hpsa_scatter_gather(struct ctlr_info *h,
2090                 struct CommandList *cp,
2091                 struct scsi_cmnd *cmd)
2092 {
2093         unsigned int len;
2094         struct scatterlist *sg;
2095         u64 addr64;
2096         int use_sg, i, sg_index, chained;
2097         struct SGDescriptor *curr_sg;
2098
2099         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2100
2101         use_sg = scsi_dma_map(cmd);
2102         if (use_sg < 0)
2103                 return use_sg;
2104
2105         if (!use_sg)
2106                 goto sglist_finished;
2107
2108         curr_sg = cp->SG;
2109         chained = 0;
2110         sg_index = 0;
2111         scsi_for_each_sg(cmd, sg, use_sg, i) {
2112                 if (i == h->max_cmd_sg_entries - 1 &&
2113                         use_sg > h->max_cmd_sg_entries) {
2114                         chained = 1;
2115                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2116                         sg_index = 0;
2117                 }
2118                 addr64 = (u64) sg_dma_address(sg);
2119                 len  = sg_dma_len(sg);
2120                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2121                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2122                 curr_sg->Len = len;
2123                 curr_sg->Ext = 0;  /* we are not chaining */
2124                 curr_sg++;
2125         }
2126
2127         if (use_sg + chained > h->maxSG)
2128                 h->maxSG = use_sg + chained;
2129
2130         if (chained) {
2131                 cp->Header.SGList = h->max_cmd_sg_entries;
2132                 cp->Header.SGTotal = (u16) (use_sg + 1);
2133                 if (hpsa_map_sg_chain_block(h, cp)) {
2134                         scsi_dma_unmap(cmd);
2135                         return -1;
2136                 }
2137                 return 0;
2138         }
2139
2140 sglist_finished:
2141
2142         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2143         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2144         return 0;
2145 }
2146
2147
2148 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2149         void (*done)(struct scsi_cmnd *))
2150 {
2151         struct ctlr_info *h;
2152         struct hpsa_scsi_dev_t *dev;
2153         unsigned char scsi3addr[8];
2154         struct CommandList *c;
2155         unsigned long flags;
2156
2157         /* Get the ptr to our adapter structure out of cmd->host. */
2158         h = sdev_to_hba(cmd->device);
2159         dev = cmd->device->hostdata;
2160         if (!dev) {
2161                 cmd->result = DID_NO_CONNECT << 16;
2162                 done(cmd);
2163                 return 0;
2164         }
2165         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2166
2167         spin_lock_irqsave(&h->lock, flags);
2168         if (unlikely(h->lockup_detected)) {
2169                 spin_unlock_irqrestore(&h->lock, flags);
2170                 cmd->result = DID_ERROR << 16;
2171                 done(cmd);
2172                 return 0;
2173         }
2174         spin_unlock_irqrestore(&h->lock, flags);
2175         c = cmd_alloc(h);
2176         if (c == NULL) {                        /* trouble... */
2177                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2178                 return SCSI_MLQUEUE_HOST_BUSY;
2179         }
2180
2181         /* Fill in the command list header */
2182
2183         cmd->scsi_done = done;    /* save this for use by completion code */
2184
2185         /* save c in case we have to abort it  */
2186         cmd->host_scribble = (unsigned char *) c;
2187
2188         c->cmd_type = CMD_SCSI;
2189         c->scsi_cmd = cmd;
2190         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2191         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2192         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2193         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2194
2195         /* Fill in the request block... */
2196
2197         c->Request.Timeout = 0;
2198         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2199         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2200         c->Request.CDBLen = cmd->cmd_len;
2201         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2202         c->Request.Type.Type = TYPE_CMD;
2203         c->Request.Type.Attribute = ATTR_SIMPLE;
2204         switch (cmd->sc_data_direction) {
2205         case DMA_TO_DEVICE:
2206                 c->Request.Type.Direction = XFER_WRITE;
2207                 break;
2208         case DMA_FROM_DEVICE:
2209                 c->Request.Type.Direction = XFER_READ;
2210                 break;
2211         case DMA_NONE:
2212                 c->Request.Type.Direction = XFER_NONE;
2213                 break;
2214         case DMA_BIDIRECTIONAL:
2215                 /* This can happen if a buggy application does a scsi passthru
2216                  * and sets both inlen and outlen to non-zero. ( see
2217                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2218                  */
2219
2220                 c->Request.Type.Direction = XFER_RSVD;
2221                 /* This is technically wrong, and hpsa controllers should
2222                  * reject it with CMD_INVALID, which is the most correct
2223                  * response, but non-fibre backends appear to let it
2224                  * slide by, and give the same results as if this field
2225                  * were set correctly.  Either way is acceptable for
2226                  * our purposes here.
2227                  */
2228
2229                 break;
2230
2231         default:
2232                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2233                         cmd->sc_data_direction);
2234                 BUG();
2235                 break;
2236         }
2237
2238         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2239                 cmd_free(h, c);
2240                 return SCSI_MLQUEUE_HOST_BUSY;
2241         }
2242         enqueue_cmd_and_start_io(h, c);
2243         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2244         return 0;
2245 }
2246
2247 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2248
2249 static void hpsa_scan_start(struct Scsi_Host *sh)
2250 {
2251         struct ctlr_info *h = shost_to_hba(sh);
2252         unsigned long flags;
2253
2254         /* wait until any scan already in progress is finished. */
2255         while (1) {
2256                 spin_lock_irqsave(&h->scan_lock, flags);
2257                 if (h->scan_finished)
2258                         break;
2259                 spin_unlock_irqrestore(&h->scan_lock, flags);
2260                 wait_event(h->scan_wait_queue, h->scan_finished);
2261                 /* Note: We don't need to worry about a race between this
2262                  * thread and driver unload because the midlayer will
2263                  * have incremented the reference count, so unload won't
2264                  * happen if we're in here.
2265                  */
2266         }
2267         h->scan_finished = 0; /* mark scan as in progress */
2268         spin_unlock_irqrestore(&h->scan_lock, flags);
2269
2270         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2271
2272         spin_lock_irqsave(&h->scan_lock, flags);
2273         h->scan_finished = 1; /* mark scan as finished. */
2274         wake_up_all(&h->scan_wait_queue);
2275         spin_unlock_irqrestore(&h->scan_lock, flags);
2276 }
2277
2278 static int hpsa_scan_finished(struct Scsi_Host *sh,
2279         unsigned long elapsed_time)
2280 {
2281         struct ctlr_info *h = shost_to_hba(sh);
2282         unsigned long flags;
2283         int finished;
2284
2285         spin_lock_irqsave(&h->scan_lock, flags);
2286         finished = h->scan_finished;
2287         spin_unlock_irqrestore(&h->scan_lock, flags);
2288         return finished;
2289 }
2290
2291 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2292         int qdepth, int reason)
2293 {
2294         struct ctlr_info *h = sdev_to_hba(sdev);
2295
2296         if (reason != SCSI_QDEPTH_DEFAULT)
2297                 return -ENOTSUPP;
2298
2299         if (qdepth < 1)
2300                 qdepth = 1;
2301         else
2302                 if (qdepth > h->nr_cmds)
2303                         qdepth = h->nr_cmds;
2304         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2305         return sdev->queue_depth;
2306 }
2307
2308 static void hpsa_unregister_scsi(struct ctlr_info *h)
2309 {
2310         /* we are being forcibly unloaded, and may not refuse. */
2311         scsi_remove_host(h->scsi_host);
2312         scsi_host_put(h->scsi_host);
2313         h->scsi_host = NULL;
2314 }
2315
2316 static int hpsa_register_scsi(struct ctlr_info *h)
2317 {
2318         struct Scsi_Host *sh;
2319         int error;
2320
2321         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2322         if (sh == NULL)
2323                 goto fail;
2324
2325         sh->io_port = 0;
2326         sh->n_io_port = 0;
2327         sh->this_id = -1;
2328         sh->max_channel = 3;
2329         sh->max_cmd_len = MAX_COMMAND_SIZE;
2330         sh->max_lun = HPSA_MAX_LUN;
2331         sh->max_id = HPSA_MAX_LUN;
2332         sh->can_queue = h->nr_cmds;
2333         sh->cmd_per_lun = h->nr_cmds;
2334         sh->sg_tablesize = h->maxsgentries;
2335         h->scsi_host = sh;
2336         sh->hostdata[0] = (unsigned long) h;
2337         sh->irq = h->intr[h->intr_mode];
2338         sh->unique_id = sh->irq;
2339         error = scsi_add_host(sh, &h->pdev->dev);
2340         if (error)
2341                 goto fail_host_put;
2342         scsi_scan_host(sh);
2343         return 0;
2344
2345  fail_host_put:
2346         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2347                 " failed for controller %d\n", __func__, h->ctlr);
2348         scsi_host_put(sh);
2349         return error;
2350  fail:
2351         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2352                 " failed for controller %d\n", __func__, h->ctlr);
2353         return -ENOMEM;
2354 }
2355
2356 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2357         unsigned char lunaddr[])
2358 {
2359         int rc = 0;
2360         int count = 0;
2361         int waittime = 1; /* seconds */
2362         struct CommandList *c;
2363
2364         c = cmd_special_alloc(h);
2365         if (!c) {
2366                 dev_warn(&h->pdev->dev, "out of memory in "
2367                         "wait_for_device_to_become_ready.\n");
2368                 return IO_ERROR;
2369         }
2370
2371         /* Send test unit ready until device ready, or give up. */
2372         while (count < HPSA_TUR_RETRY_LIMIT) {
2373
2374                 /* Wait for a bit.  do this first, because if we send
2375                  * the TUR right away, the reset will just abort it.
2376                  */
2377                 msleep(1000 * waittime);
2378                 count++;
2379
2380                 /* Increase wait time with each try, up to a point. */
2381                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2382                         waittime = waittime * 2;
2383
2384                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2385                 (void) fill_cmd(c, TEST_UNIT_READY, h,
2386                                 NULL, 0, 0, lunaddr, TYPE_CMD);
2387                 hpsa_scsi_do_simple_cmd_core(h, c);
2388                 /* no unmap needed here because no data xfer. */
2389
2390                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2391                         break;
2392
2393                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2394                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2395                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2396                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2397                         break;
2398
2399                 dev_warn(&h->pdev->dev, "waiting %d secs "
2400                         "for device to become ready.\n", waittime);
2401                 rc = 1; /* device not ready. */
2402         }
2403
2404         if (rc)
2405                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2406         else
2407                 dev_warn(&h->pdev->dev, "device is ready.\n");
2408
2409         cmd_special_free(h, c);
2410         return rc;
2411 }
2412
2413 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2414  * complaining.  Doing a host- or bus-reset can't do anything good here.
2415  */
2416 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2417 {
2418         int rc;
2419         struct ctlr_info *h;
2420         struct hpsa_scsi_dev_t *dev;
2421
2422         /* find the controller to which the command to be aborted was sent */
2423         h = sdev_to_hba(scsicmd->device);
2424         if (h == NULL) /* paranoia */
2425                 return FAILED;
2426         dev = scsicmd->device->hostdata;
2427         if (!dev) {
2428                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2429                         "device lookup failed.\n");
2430                 return FAILED;
2431         }
2432         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2433                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2434         /* send a reset to the SCSI LUN which the command was sent to */
2435         rc = hpsa_send_reset(h, dev->scsi3addr);
2436         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2437                 return SUCCESS;
2438
2439         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2440         return FAILED;
2441 }
2442
2443 static void swizzle_abort_tag(u8 *tag)
2444 {
2445         u8 original_tag[8];
2446
2447         memcpy(original_tag, tag, 8);
2448         tag[0] = original_tag[3];
2449         tag[1] = original_tag[2];
2450         tag[2] = original_tag[1];
2451         tag[3] = original_tag[0];
2452         tag[4] = original_tag[7];
2453         tag[5] = original_tag[6];
2454         tag[6] = original_tag[5];
2455         tag[7] = original_tag[4];
2456 }
2457
2458 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2459         struct CommandList *abort, int swizzle)
2460 {
2461         int rc = IO_OK;
2462         struct CommandList *c;
2463         struct ErrorInfo *ei;
2464
2465         c = cmd_special_alloc(h);
2466         if (c == NULL) {        /* trouble... */
2467                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2468                 return -ENOMEM;
2469         }
2470
2471         /* fill_cmd can't fail here, no buffer to map */
2472         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2473                 0, 0, scsi3addr, TYPE_MSG);
2474         if (swizzle)
2475                 swizzle_abort_tag(&c->Request.CDB[4]);
2476         hpsa_scsi_do_simple_cmd_core(h, c);
2477         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2478                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2479         /* no unmap needed here because no data xfer. */
2480
2481         ei = c->err_info;
2482         switch (ei->CommandStatus) {
2483         case CMD_SUCCESS:
2484                 break;
2485         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2486                 rc = -1;
2487                 break;
2488         default:
2489                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2490                         __func__, abort->Header.Tag.upper,
2491                         abort->Header.Tag.lower);
2492                 hpsa_scsi_interpret_error(c);
2493                 rc = -1;
2494                 break;
2495         }
2496         cmd_special_free(h, c);
2497         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2498                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2499         return rc;
2500 }
2501
2502 /*
2503  * hpsa_find_cmd_in_queue
2504  *
2505  * Used to determine whether a command (find) is still present
2506  * in queue_head.   Optionally excludes the last element of queue_head.
2507  *
2508  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2509  * not yet been submitted, and so can be aborted by the driver without
2510  * sending an abort to the hardware.
2511  *
2512  * Returns pointer to command if found in queue, NULL otherwise.
2513  */
2514 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2515                         struct scsi_cmnd *find, struct list_head *queue_head)
2516 {
2517         unsigned long flags;
2518         struct CommandList *c = NULL;   /* ptr into cmpQ */
2519
2520         if (!find)
2521                 return 0;
2522         spin_lock_irqsave(&h->lock, flags);
2523         list_for_each_entry(c, queue_head, list) {
2524                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2525                         continue;
2526                 if (c->scsi_cmd == find) {
2527                         spin_unlock_irqrestore(&h->lock, flags);
2528                         return c;
2529                 }
2530         }
2531         spin_unlock_irqrestore(&h->lock, flags);
2532         return NULL;
2533 }
2534
2535 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2536                                         u8 *tag, struct list_head *queue_head)
2537 {
2538         unsigned long flags;
2539         struct CommandList *c;
2540
2541         spin_lock_irqsave(&h->lock, flags);
2542         list_for_each_entry(c, queue_head, list) {
2543                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2544                         continue;
2545                 spin_unlock_irqrestore(&h->lock, flags);
2546                 return c;
2547         }
2548         spin_unlock_irqrestore(&h->lock, flags);
2549         return NULL;
2550 }
2551
2552 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2553  * tell which kind we're dealing with, so we send the abort both ways.  There
2554  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2555  * way we construct our tags but we check anyway in case the assumptions which
2556  * make this true someday become false.
2557  */
2558 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2559         unsigned char *scsi3addr, struct CommandList *abort)
2560 {
2561         u8 swizzled_tag[8];
2562         struct CommandList *c;
2563         int rc = 0, rc2 = 0;
2564
2565         /* we do not expect to find the swizzled tag in our queue, but
2566          * check anyway just to be sure the assumptions which make this
2567          * the case haven't become wrong.
2568          */
2569         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2570         swizzle_abort_tag(swizzled_tag);
2571         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2572         if (c != NULL) {
2573                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2574                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2575         }
2576         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2577
2578         /* if the command is still in our queue, we can't conclude that it was
2579          * aborted (it might have just completed normally) but in any case
2580          * we don't need to try to abort it another way.
2581          */
2582         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2583         if (c)
2584                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2585         return rc && rc2;
2586 }
2587
2588 /* Send an abort for the specified command.
2589  *      If the device and controller support it,
2590  *              send a task abort request.
2591  */
2592 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2593 {
2594
2595         int i, rc;
2596         struct ctlr_info *h;
2597         struct hpsa_scsi_dev_t *dev;
2598         struct CommandList *abort; /* pointer to command to be aborted */
2599         struct CommandList *found;
2600         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2601         char msg[256];          /* For debug messaging. */
2602         int ml = 0;
2603
2604         /* Find the controller of the command to be aborted */
2605         h = sdev_to_hba(sc->device);
2606         if (WARN(h == NULL,
2607                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2608                 return FAILED;
2609
2610         /* Check that controller supports some kind of task abort */
2611         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2612                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2613                 return FAILED;
2614
2615         memset(msg, 0, sizeof(msg));
2616         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2617                 h->scsi_host->host_no, sc->device->channel,
2618                 sc->device->id, sc->device->lun);
2619
2620         /* Find the device of the command to be aborted */
2621         dev = sc->device->hostdata;
2622         if (!dev) {
2623                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2624                                 msg);
2625                 return FAILED;
2626         }
2627
2628         /* Get SCSI command to be aborted */
2629         abort = (struct CommandList *) sc->host_scribble;
2630         if (abort == NULL) {
2631                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2632                                 msg);
2633                 return FAILED;
2634         }
2635
2636         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2637                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2638         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2639         if (as != NULL)
2640                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2641                         as->cmnd[0], as->serial_number);
2642         dev_dbg(&h->pdev->dev, "%s\n", msg);
2643         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2644                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2645
2646         /* Search reqQ to See if command is queued but not submitted,
2647          * if so, complete the command with aborted status and remove
2648          * it from the reqQ.
2649          */
2650         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2651         if (found) {
2652                 found->err_info->CommandStatus = CMD_ABORTED;
2653                 finish_cmd(found);
2654                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2655                                 msg);
2656                 return SUCCESS;
2657         }
2658
2659         /* not in reqQ, if also not in cmpQ, must have already completed */
2660         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2661         if (!found)  {
2662                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2663                                 msg);
2664                 return SUCCESS;
2665         }
2666
2667         /*
2668          * Command is in flight, or possibly already completed
2669          * by the firmware (but not to the scsi mid layer) but we can't
2670          * distinguish which.  Send the abort down.
2671          */
2672         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2673         if (rc != 0) {
2674                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2675                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2676                         h->scsi_host->host_no,
2677                         dev->bus, dev->target, dev->lun);
2678                 return FAILED;
2679         }
2680         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2681
2682         /* If the abort(s) above completed and actually aborted the
2683          * command, then the command to be aborted should already be
2684          * completed.  If not, wait around a bit more to see if they
2685          * manage to complete normally.
2686          */
2687 #define ABORT_COMPLETE_WAIT_SECS 30
2688         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2689                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2690                 if (!found)
2691                         return SUCCESS;
2692                 msleep(100);
2693         }
2694         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2695                 msg, ABORT_COMPLETE_WAIT_SECS);
2696         return FAILED;
2697 }
2698
2699
2700 /*
2701  * For operations that cannot sleep, a command block is allocated at init,
2702  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2703  * which ones are free or in use.  Lock must be held when calling this.
2704  * cmd_free() is the complement.
2705  */
2706 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2707 {
2708         struct CommandList *c;
2709         int i;
2710         union u64bit temp64;
2711         dma_addr_t cmd_dma_handle, err_dma_handle;
2712         unsigned long flags;
2713
2714         spin_lock_irqsave(&h->lock, flags);
2715         do {
2716                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2717                 if (i == h->nr_cmds) {
2718                         spin_unlock_irqrestore(&h->lock, flags);
2719                         return NULL;
2720                 }
2721         } while (test_and_set_bit
2722                  (i & (BITS_PER_LONG - 1),
2723                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2724         h->nr_allocs++;
2725         spin_unlock_irqrestore(&h->lock, flags);
2726
2727         c = h->cmd_pool + i;
2728         memset(c, 0, sizeof(*c));
2729         cmd_dma_handle = h->cmd_pool_dhandle
2730             + i * sizeof(*c);
2731         c->err_info = h->errinfo_pool + i;
2732         memset(c->err_info, 0, sizeof(*c->err_info));
2733         err_dma_handle = h->errinfo_pool_dhandle
2734             + i * sizeof(*c->err_info);
2735
2736         c->cmdindex = i;
2737
2738         INIT_LIST_HEAD(&c->list);
2739         c->busaddr = (u32) cmd_dma_handle;
2740         temp64.val = (u64) err_dma_handle;
2741         c->ErrDesc.Addr.lower = temp64.val32.lower;
2742         c->ErrDesc.Addr.upper = temp64.val32.upper;
2743         c->ErrDesc.Len = sizeof(*c->err_info);
2744
2745         c->h = h;
2746         return c;
2747 }
2748
2749 /* For operations that can wait for kmalloc to possibly sleep,
2750  * this routine can be called. Lock need not be held to call
2751  * cmd_special_alloc. cmd_special_free() is the complement.
2752  */
2753 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2754 {
2755         struct CommandList *c;
2756         union u64bit temp64;
2757         dma_addr_t cmd_dma_handle, err_dma_handle;
2758
2759         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2760         if (c == NULL)
2761                 return NULL;
2762         memset(c, 0, sizeof(*c));
2763
2764         c->cmdindex = -1;
2765
2766         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2767                     &err_dma_handle);
2768
2769         if (c->err_info == NULL) {
2770                 pci_free_consistent(h->pdev,
2771                         sizeof(*c), c, cmd_dma_handle);
2772                 return NULL;
2773         }
2774         memset(c->err_info, 0, sizeof(*c->err_info));
2775
2776         INIT_LIST_HEAD(&c->list);
2777         c->busaddr = (u32) cmd_dma_handle;
2778         temp64.val = (u64) err_dma_handle;
2779         c->ErrDesc.Addr.lower = temp64.val32.lower;
2780         c->ErrDesc.Addr.upper = temp64.val32.upper;
2781         c->ErrDesc.Len = sizeof(*c->err_info);
2782
2783         c->h = h;
2784         return c;
2785 }
2786
2787 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2788 {
2789         int i;
2790         unsigned long flags;
2791
2792         i = c - h->cmd_pool;
2793         spin_lock_irqsave(&h->lock, flags);
2794         clear_bit(i & (BITS_PER_LONG - 1),
2795                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2796         h->nr_frees++;
2797         spin_unlock_irqrestore(&h->lock, flags);
2798 }
2799
2800 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2801 {
2802         union u64bit temp64;
2803
2804         temp64.val32.lower = c->ErrDesc.Addr.lower;
2805         temp64.val32.upper = c->ErrDesc.Addr.upper;
2806         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2807                             c->err_info, (dma_addr_t) temp64.val);
2808         pci_free_consistent(h->pdev, sizeof(*c),
2809                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2810 }
2811
2812 #ifdef CONFIG_COMPAT
2813
2814 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2815 {
2816         IOCTL32_Command_struct __user *arg32 =
2817             (IOCTL32_Command_struct __user *) arg;
2818         IOCTL_Command_struct arg64;
2819         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2820         int err;
2821         u32 cp;
2822
2823         memset(&arg64, 0, sizeof(arg64));
2824         err = 0;
2825         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2826                            sizeof(arg64.LUN_info));
2827         err |= copy_from_user(&arg64.Request, &arg32->Request,
2828                            sizeof(arg64.Request));
2829         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2830                            sizeof(arg64.error_info));
2831         err |= get_user(arg64.buf_size, &arg32->buf_size);
2832         err |= get_user(cp, &arg32->buf);
2833         arg64.buf = compat_ptr(cp);
2834         err |= copy_to_user(p, &arg64, sizeof(arg64));
2835
2836         if (err)
2837                 return -EFAULT;
2838
2839         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2840         if (err)
2841                 return err;
2842         err |= copy_in_user(&arg32->error_info, &p->error_info,
2843                          sizeof(arg32->error_info));
2844         if (err)
2845                 return -EFAULT;
2846         return err;
2847 }
2848
2849 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2850         int cmd, void *arg)
2851 {
2852         BIG_IOCTL32_Command_struct __user *arg32 =
2853             (BIG_IOCTL32_Command_struct __user *) arg;
2854         BIG_IOCTL_Command_struct arg64;
2855         BIG_IOCTL_Command_struct __user *p =
2856             compat_alloc_user_space(sizeof(arg64));
2857         int err;
2858         u32 cp;
2859
2860         memset(&arg64, 0, sizeof(arg64));
2861         err = 0;
2862         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2863                            sizeof(arg64.LUN_info));
2864         err |= copy_from_user(&arg64.Request, &arg32->Request,
2865                            sizeof(arg64.Request));
2866         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2867                            sizeof(arg64.error_info));
2868         err |= get_user(arg64.buf_size, &arg32->buf_size);
2869         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2870         err |= get_user(cp, &arg32->buf);
2871         arg64.buf = compat_ptr(cp);
2872         err |= copy_to_user(p, &arg64, sizeof(arg64));
2873
2874         if (err)
2875                 return -EFAULT;
2876
2877         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2878         if (err)
2879                 return err;
2880         err |= copy_in_user(&arg32->error_info, &p->error_info,
2881                          sizeof(arg32->error_info));
2882         if (err)
2883                 return -EFAULT;
2884         return err;
2885 }
2886
2887 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2888 {
2889         switch (cmd) {
2890         case CCISS_GETPCIINFO:
2891         case CCISS_GETINTINFO:
2892         case CCISS_SETINTINFO:
2893         case CCISS_GETNODENAME:
2894         case CCISS_SETNODENAME:
2895         case CCISS_GETHEARTBEAT:
2896         case CCISS_GETBUSTYPES:
2897         case CCISS_GETFIRMVER:
2898         case CCISS_GETDRIVVER:
2899         case CCISS_REVALIDVOLS:
2900         case CCISS_DEREGDISK:
2901         case CCISS_REGNEWDISK:
2902         case CCISS_REGNEWD:
2903         case CCISS_RESCANDISK:
2904         case CCISS_GETLUNINFO:
2905                 return hpsa_ioctl(dev, cmd, arg);
2906
2907         case CCISS_PASSTHRU32:
2908                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2909         case CCISS_BIG_PASSTHRU32:
2910                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2911
2912         default:
2913                 return -ENOIOCTLCMD;
2914         }
2915 }
2916 #endif
2917
2918 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2919 {
2920         struct hpsa_pci_info pciinfo;
2921
2922         if (!argp)
2923                 return -EINVAL;
2924         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2925         pciinfo.bus = h->pdev->bus->number;
2926         pciinfo.dev_fn = h->pdev->devfn;
2927         pciinfo.board_id = h->board_id;
2928         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2929                 return -EFAULT;
2930         return 0;
2931 }
2932
2933 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2934 {
2935         DriverVer_type DriverVer;
2936         unsigned char vmaj, vmin, vsubmin;
2937         int rc;
2938
2939         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2940                 &vmaj, &vmin, &vsubmin);
2941         if (rc != 3) {
2942                 dev_info(&h->pdev->dev, "driver version string '%s' "
2943                         "unrecognized.", HPSA_DRIVER_VERSION);
2944                 vmaj = 0;
2945                 vmin = 0;
2946                 vsubmin = 0;
2947         }
2948         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2949         if (!argp)
2950                 return -EINVAL;
2951         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2952                 return -EFAULT;
2953         return 0;
2954 }
2955
2956 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2957 {
2958         IOCTL_Command_struct iocommand;
2959         struct CommandList *c;
2960         char *buff = NULL;
2961         union u64bit temp64;
2962         int rc = 0;
2963
2964         if (!argp)
2965                 return -EINVAL;
2966         if (!capable(CAP_SYS_RAWIO))
2967                 return -EPERM;
2968         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2969                 return -EFAULT;
2970         if ((iocommand.buf_size < 1) &&
2971             (iocommand.Request.Type.Direction != XFER_NONE)) {
2972                 return -EINVAL;
2973         }
2974         if (iocommand.buf_size > 0) {
2975                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2976                 if (buff == NULL)
2977                         return -EFAULT;
2978                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2979                         /* Copy the data into the buffer we created */
2980                         if (copy_from_user(buff, iocommand.buf,
2981                                 iocommand.buf_size)) {
2982                                 rc = -EFAULT;
2983                                 goto out_kfree;
2984                         }
2985                 } else {
2986                         memset(buff, 0, iocommand.buf_size);
2987                 }
2988         }
2989         c = cmd_special_alloc(h);
2990         if (c == NULL) {
2991                 rc = -ENOMEM;
2992                 goto out_kfree;
2993         }
2994         /* Fill in the command type */
2995         c->cmd_type = CMD_IOCTL_PEND;
2996         /* Fill in Command Header */
2997         c->Header.ReplyQueue = 0; /* unused in simple mode */
2998         if (iocommand.buf_size > 0) {   /* buffer to fill */
2999                 c->Header.SGList = 1;
3000                 c->Header.SGTotal = 1;
3001         } else  { /* no buffers to fill */
3002                 c->Header.SGList = 0;
3003                 c->Header.SGTotal = 0;
3004         }
3005         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3006         /* use the kernel address the cmd block for tag */
3007         c->Header.Tag.lower = c->busaddr;
3008
3009         /* Fill in Request block */
3010         memcpy(&c->Request, &iocommand.Request,
3011                 sizeof(c->Request));
3012
3013         /* Fill in the scatter gather information */
3014         if (iocommand.buf_size > 0) {
3015                 temp64.val = pci_map_single(h->pdev, buff,
3016                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3017                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3018                         c->SG[0].Addr.lower = 0;
3019                         c->SG[0].Addr.upper = 0;
3020                         c->SG[0].Len = 0;
3021                         rc = -ENOMEM;
3022                         goto out;
3023                 }
3024                 c->SG[0].Addr.lower = temp64.val32.lower;
3025                 c->SG[0].Addr.upper = temp64.val32.upper;
3026                 c->SG[0].Len = iocommand.buf_size;
3027                 c->SG[0].Ext = 0; /* we are not chaining*/
3028         }
3029         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3030         if (iocommand.buf_size > 0)
3031                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3032         check_ioctl_unit_attention(h, c);
3033
3034         /* Copy the error information out */
3035         memcpy(&iocommand.error_info, c->err_info,
3036                 sizeof(iocommand.error_info));
3037         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3038                 rc = -EFAULT;
3039                 goto out;
3040         }
3041         if (iocommand.Request.Type.Direction == XFER_READ &&
3042                 iocommand.buf_size > 0) {
3043                 /* Copy the data out of the buffer we created */
3044                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3045                         rc = -EFAULT;
3046                         goto out;
3047                 }
3048         }
3049 out:
3050         cmd_special_free(h, c);
3051 out_kfree:
3052         kfree(buff);
3053         return rc;
3054 }
3055
3056 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3057 {
3058         BIG_IOCTL_Command_struct *ioc;
3059         struct CommandList *c;
3060         unsigned char **buff = NULL;
3061         int *buff_size = NULL;
3062         union u64bit temp64;
3063         BYTE sg_used = 0;
3064         int status = 0;
3065         int i;
3066         u32 left;
3067         u32 sz;
3068         BYTE __user *data_ptr;
3069
3070         if (!argp)
3071                 return -EINVAL;
3072         if (!capable(CAP_SYS_RAWIO))
3073                 return -EPERM;
3074         ioc = (BIG_IOCTL_Command_struct *)
3075             kmalloc(sizeof(*ioc), GFP_KERNEL);
3076         if (!ioc) {
3077                 status = -ENOMEM;
3078                 goto cleanup1;
3079         }
3080         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3081                 status = -EFAULT;
3082                 goto cleanup1;
3083         }
3084         if ((ioc->buf_size < 1) &&
3085             (ioc->Request.Type.Direction != XFER_NONE)) {
3086                 status = -EINVAL;
3087                 goto cleanup1;
3088         }
3089         /* Check kmalloc limits  using all SGs */
3090         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3091                 status = -EINVAL;
3092                 goto cleanup1;
3093         }
3094         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3095                 status = -EINVAL;
3096                 goto cleanup1;
3097         }
3098         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3099         if (!buff) {
3100                 status = -ENOMEM;
3101                 goto cleanup1;
3102         }
3103         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3104         if (!buff_size) {
3105                 status = -ENOMEM;
3106                 goto cleanup1;
3107         }
3108         left = ioc->buf_size;
3109         data_ptr = ioc->buf;
3110         while (left) {
3111                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3112                 buff_size[sg_used] = sz;
3113                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3114                 if (buff[sg_used] == NULL) {
3115                         status = -ENOMEM;
3116                         goto cleanup1;
3117                 }
3118                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3119                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3120                                 status = -ENOMEM;
3121                                 goto cleanup1;
3122                         }
3123                 } else
3124                         memset(buff[sg_used], 0, sz);
3125                 left -= sz;
3126                 data_ptr += sz;
3127                 sg_used++;
3128         }
3129         c = cmd_special_alloc(h);
3130         if (c == NULL) {
3131                 status = -ENOMEM;
3132                 goto cleanup1;
3133         }
3134         c->cmd_type = CMD_IOCTL_PEND;
3135         c->Header.ReplyQueue = 0;
3136         c->Header.SGList = c->Header.SGTotal = sg_used;
3137         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3138         c->Header.Tag.lower = c->busaddr;
3139         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3140         if (ioc->buf_size > 0) {
3141                 int i;
3142                 for (i = 0; i < sg_used; i++) {
3143                         temp64.val = pci_map_single(h->pdev, buff[i],
3144                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3145                         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3146                                 c->SG[i].Addr.lower = 0;
3147                                 c->SG[i].Addr.upper = 0;
3148                                 c->SG[i].Len = 0;
3149                                 hpsa_pci_unmap(h->pdev, c, i,
3150                                         PCI_DMA_BIDIRECTIONAL);
3151                                 status = -ENOMEM;
3152                                 goto cleanup1;
3153                         }
3154                         c->SG[i].Addr.lower = temp64.val32.lower;
3155                         c->SG[i].Addr.upper = temp64.val32.upper;
3156                         c->SG[i].Len = buff_size[i];
3157                         /* we are not chaining */
3158                         c->SG[i].Ext = 0;
3159                 }
3160         }
3161         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3162         if (sg_used)
3163                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3164         check_ioctl_unit_attention(h, c);
3165         /* Copy the error information out */
3166         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3167         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3168                 cmd_special_free(h, c);
3169                 status = -EFAULT;
3170                 goto cleanup1;
3171         }
3172         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3173                 /* Copy the data out of the buffer we created */
3174                 BYTE __user *ptr = ioc->buf;
3175                 for (i = 0; i < sg_used; i++) {
3176                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3177                                 cmd_special_free(h, c);
3178                                 status = -EFAULT;
3179                                 goto cleanup1;
3180                         }
3181                         ptr += buff_size[i];
3182                 }
3183         }
3184         cmd_special_free(h, c);
3185         status = 0;
3186 cleanup1:
3187         if (buff) {
3188                 for (i = 0; i < sg_used; i++)
3189                         kfree(buff[i]);
3190                 kfree(buff);
3191         }
3192         kfree(buff_size);
3193         kfree(ioc);
3194         return status;
3195 }
3196
3197 static void check_ioctl_unit_attention(struct ctlr_info *h,
3198         struct CommandList *c)
3199 {
3200         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3201                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3202                 (void) check_for_unit_attention(h, c);
3203 }
3204 /*
3205  * ioctl
3206  */
3207 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3208 {
3209         struct ctlr_info *h;
3210         void __user *argp = (void __user *)arg;
3211
3212         h = sdev_to_hba(dev);
3213
3214         switch (cmd) {
3215         case CCISS_DEREGDISK:
3216         case CCISS_REGNEWDISK:
3217         case CCISS_REGNEWD:
3218                 hpsa_scan_start(h->scsi_host);
3219                 return 0;
3220         case CCISS_GETPCIINFO:
3221                 return hpsa_getpciinfo_ioctl(h, argp);
3222         case CCISS_GETDRIVVER:
3223                 return hpsa_getdrivver_ioctl(h, argp);
3224         case CCISS_PASSTHRU:
3225                 return hpsa_passthru_ioctl(h, argp);
3226         case CCISS_BIG_PASSTHRU:
3227                 return hpsa_big_passthru_ioctl(h, argp);
3228         default:
3229                 return -ENOTTY;
3230         }
3231 }
3232
3233 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3234                                 u8 reset_type)
3235 {
3236         struct CommandList *c;
3237
3238         c = cmd_alloc(h);
3239         if (!c)
3240                 return -ENOMEM;
3241         /* fill_cmd can't fail here, no data buffer to map */
3242         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3243                 RAID_CTLR_LUNID, TYPE_MSG);
3244         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3245         c->waiting = NULL;
3246         enqueue_cmd_and_start_io(h, c);
3247         /* Don't wait for completion, the reset won't complete.  Don't free
3248          * the command either.  This is the last command we will send before
3249          * re-initializing everything, so it doesn't matter and won't leak.
3250          */
3251         return 0;
3252 }
3253
3254 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3255         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3256         int cmd_type)
3257 {
3258         int pci_dir = XFER_NONE;
3259         struct CommandList *a; /* for commands to be aborted */
3260
3261         c->cmd_type = CMD_IOCTL_PEND;
3262         c->Header.ReplyQueue = 0;
3263         if (buff != NULL && size > 0) {
3264                 c->Header.SGList = 1;
3265                 c->Header.SGTotal = 1;
3266         } else {
3267                 c->Header.SGList = 0;
3268                 c->Header.SGTotal = 0;
3269         }
3270         c->Header.Tag.lower = c->busaddr;
3271         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3272
3273         c->Request.Type.Type = cmd_type;
3274         if (cmd_type == TYPE_CMD) {
3275                 switch (cmd) {
3276                 case HPSA_INQUIRY:
3277                         /* are we trying to read a vital product page */
3278                         if (page_code != 0) {
3279                                 c->Request.CDB[1] = 0x01;
3280                                 c->Request.CDB[2] = page_code;
3281                         }
3282                         c->Request.CDBLen = 6;
3283                         c->Request.Type.Attribute = ATTR_SIMPLE;
3284                         c->Request.Type.Direction = XFER_READ;
3285                         c->Request.Timeout = 0;
3286                         c->Request.CDB[0] = HPSA_INQUIRY;
3287                         c->Request.CDB[4] = size & 0xFF;
3288                         break;
3289                 case HPSA_REPORT_LOG:
3290                 case HPSA_REPORT_PHYS:
3291                         /* Talking to controller so It's a physical command
3292                            mode = 00 target = 0.  Nothing to write.
3293                          */
3294                         c->Request.CDBLen = 12;
3295                         c->Request.Type.Attribute = ATTR_SIMPLE;
3296                         c->Request.Type.Direction = XFER_READ;
3297                         c->Request.Timeout = 0;
3298                         c->Request.CDB[0] = cmd;
3299                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3300                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3301                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3302                         c->Request.CDB[9] = size & 0xFF;
3303                         break;
3304                 case HPSA_CACHE_FLUSH:
3305                         c->Request.CDBLen = 12;
3306                         c->Request.Type.Attribute = ATTR_SIMPLE;
3307                         c->Request.Type.Direction = XFER_WRITE;
3308                         c->Request.Timeout = 0;
3309                         c->Request.CDB[0] = BMIC_WRITE;
3310                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3311                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3312                         c->Request.CDB[8] = size & 0xFF;
3313                         break;
3314                 case TEST_UNIT_READY:
3315                         c->Request.CDBLen = 6;
3316                         c->Request.Type.Attribute = ATTR_SIMPLE;
3317                         c->Request.Type.Direction = XFER_NONE;
3318                         c->Request.Timeout = 0;
3319                         break;
3320                 default:
3321                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3322                         BUG();
3323                         return -1;
3324                 }
3325         } else if (cmd_type == TYPE_MSG) {
3326                 switch (cmd) {
3327
3328                 case  HPSA_DEVICE_RESET_MSG:
3329                         c->Request.CDBLen = 16;
3330                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3331                         c->Request.Type.Attribute = ATTR_SIMPLE;
3332                         c->Request.Type.Direction = XFER_NONE;
3333                         c->Request.Timeout = 0; /* Don't time out */
3334                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3335                         c->Request.CDB[0] =  cmd;
3336                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3337                         /* If bytes 4-7 are zero, it means reset the */
3338                         /* LunID device */
3339                         c->Request.CDB[4] = 0x00;
3340                         c->Request.CDB[5] = 0x00;
3341                         c->Request.CDB[6] = 0x00;
3342                         c->Request.CDB[7] = 0x00;
3343                         break;
3344                 case  HPSA_ABORT_MSG:
3345                         a = buff;       /* point to command to be aborted */
3346                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3347                                 a->Header.Tag.upper, a->Header.Tag.lower,
3348                                 c->Header.Tag.upper, c->Header.Tag.lower);
3349                         c->Request.CDBLen = 16;
3350                         c->Request.Type.Type = TYPE_MSG;
3351                         c->Request.Type.Attribute = ATTR_SIMPLE;
3352                         c->Request.Type.Direction = XFER_WRITE;
3353                         c->Request.Timeout = 0; /* Don't time out */
3354                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3355                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3356                         c->Request.CDB[2] = 0x00; /* reserved */
3357                         c->Request.CDB[3] = 0x00; /* reserved */
3358                         /* Tag to abort goes in CDB[4]-CDB[11] */
3359                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3360                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3361                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3362                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3363                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3364                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3365                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3366                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3367                         c->Request.CDB[12] = 0x00; /* reserved */
3368                         c->Request.CDB[13] = 0x00; /* reserved */
3369                         c->Request.CDB[14] = 0x00; /* reserved */
3370                         c->Request.CDB[15] = 0x00; /* reserved */
3371                 break;
3372                 default:
3373                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3374                                 cmd);
3375                         BUG();
3376                 }
3377         } else {
3378                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3379                 BUG();
3380         }
3381
3382         switch (c->Request.Type.Direction) {
3383         case XFER_READ:
3384                 pci_dir = PCI_DMA_FROMDEVICE;
3385                 break;
3386         case XFER_WRITE:
3387                 pci_dir = PCI_DMA_TODEVICE;
3388                 break;
3389         case XFER_NONE:
3390                 pci_dir = PCI_DMA_NONE;
3391                 break;
3392         default:
3393                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3394         }
3395         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3396                 return -1;
3397         return 0;
3398 }
3399
3400 /*
3401  * Map (physical) PCI mem into (virtual) kernel space
3402  */
3403 static void __iomem *remap_pci_mem(ulong base, ulong size)
3404 {
3405         ulong page_base = ((ulong) base) & PAGE_MASK;
3406         ulong page_offs = ((ulong) base) - page_base;
3407         void __iomem *page_remapped = ioremap_nocache(page_base,
3408                 page_offs + size);
3409
3410         return page_remapped ? (page_remapped + page_offs) : NULL;
3411 }
3412
3413 /* Takes cmds off the submission queue and sends them to the hardware,
3414  * then puts them on the queue of cmds waiting for completion.
3415  */
3416 static void start_io(struct ctlr_info *h)
3417 {
3418         struct CommandList *c;
3419         unsigned long flags;
3420
3421         spin_lock_irqsave(&h->lock, flags);
3422         while (!list_empty(&h->reqQ)) {
3423                 c = list_entry(h->reqQ.next, struct CommandList, list);
3424                 /* can't do anything if fifo is full */
3425                 if ((h->access.fifo_full(h))) {
3426                         dev_warn(&h->pdev->dev, "fifo full\n");
3427                         break;
3428                 }
3429
3430                 /* Get the first entry from the Request Q */
3431                 removeQ(c);
3432                 h->Qdepth--;
3433
3434                 /* Put job onto the completed Q */
3435                 addQ(&h->cmpQ, c);
3436
3437                 /* Must increment commands_outstanding before unlocking
3438                  * and submitting to avoid race checking for fifo full
3439                  * condition.
3440                  */
3441                 h->commands_outstanding++;
3442                 if (h->commands_outstanding > h->max_outstanding)
3443                         h->max_outstanding = h->commands_outstanding;
3444
3445                 /* Tell the controller execute command */
3446                 spin_unlock_irqrestore(&h->lock, flags);
3447                 h->access.submit_command(h, c);
3448                 spin_lock_irqsave(&h->lock, flags);
3449         }
3450         spin_unlock_irqrestore(&h->lock, flags);
3451 }
3452
3453 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3454 {
3455         return h->access.command_completed(h, q);
3456 }
3457
3458 static inline bool interrupt_pending(struct ctlr_info *h)
3459 {
3460         return h->access.intr_pending(h);
3461 }
3462
3463 static inline long interrupt_not_for_us(struct ctlr_info *h)
3464 {
3465         return (h->access.intr_pending(h) == 0) ||
3466                 (h->interrupts_enabled == 0);
3467 }
3468
3469 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3470         u32 raw_tag)
3471 {
3472         if (unlikely(tag_index >= h->nr_cmds)) {
3473                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3474                 return 1;
3475         }
3476         return 0;
3477 }
3478
3479 static inline void finish_cmd(struct CommandList *c)
3480 {
3481         unsigned long flags;
3482
3483         spin_lock_irqsave(&c->h->lock, flags);
3484         removeQ(c);
3485         spin_unlock_irqrestore(&c->h->lock, flags);
3486         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3487         if (likely(c->cmd_type == CMD_SCSI))
3488                 complete_scsi_command(c);
3489         else if (c->cmd_type == CMD_IOCTL_PEND)
3490                 complete(c->waiting);
3491 }
3492
3493 static inline u32 hpsa_tag_contains_index(u32 tag)
3494 {
3495         return tag & DIRECT_LOOKUP_BIT;
3496 }
3497
3498 static inline u32 hpsa_tag_to_index(u32 tag)
3499 {
3500         return tag >> DIRECT_LOOKUP_SHIFT;
3501 }
3502
3503
3504 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3505 {
3506 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3507 #define HPSA_SIMPLE_ERROR_BITS 0x03
3508         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3509                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3510         return tag & ~HPSA_PERF_ERROR_BITS;
3511 }
3512
3513 /* process completion of an indexed ("direct lookup") command */
3514 static inline void process_indexed_cmd(struct ctlr_info *h,
3515         u32 raw_tag)
3516 {
3517         u32 tag_index;
3518         struct CommandList *c;
3519
3520         tag_index = hpsa_tag_to_index(raw_tag);
3521         if (!bad_tag(h, tag_index, raw_tag)) {
3522                 c = h->cmd_pool + tag_index;
3523                 finish_cmd(c);
3524         }
3525 }
3526
3527 /* process completion of a non-indexed command */
3528 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3529         u32 raw_tag)
3530 {
3531         u32 tag;
3532         struct CommandList *c = NULL;
3533         unsigned long flags;
3534
3535         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3536         spin_lock_irqsave(&h->lock, flags);
3537         list_for_each_entry(c, &h->cmpQ, list) {
3538                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3539                         spin_unlock_irqrestore(&h->lock, flags);
3540                         finish_cmd(c);
3541                         return;
3542                 }
3543         }
3544         spin_unlock_irqrestore(&h->lock, flags);
3545         bad_tag(h, h->nr_cmds + 1, raw_tag);
3546 }
3547
3548 /* Some controllers, like p400, will give us one interrupt
3549  * after a soft reset, even if we turned interrupts off.
3550  * Only need to check for this in the hpsa_xxx_discard_completions
3551  * functions.
3552  */
3553 static int ignore_bogus_interrupt(struct ctlr_info *h)
3554 {
3555         if (likely(!reset_devices))
3556                 return 0;
3557
3558         if (likely(h->interrupts_enabled))
3559                 return 0;
3560
3561         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3562                 "(known firmware bug.)  Ignoring.\n");
3563
3564         return 1;
3565 }
3566
3567 /*
3568  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3569  * Relies on (h-q[x] == x) being true for x such that
3570  * 0 <= x < MAX_REPLY_QUEUES.
3571  */
3572 static struct ctlr_info *queue_to_hba(u8 *queue)
3573 {
3574         return container_of((queue - *queue), struct ctlr_info, q[0]);
3575 }
3576
3577 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3578 {
3579         struct ctlr_info *h = queue_to_hba(queue);
3580         u8 q = *(u8 *) queue;
3581         u32 raw_tag;
3582
3583         if (ignore_bogus_interrupt(h))
3584                 return IRQ_NONE;
3585
3586         if (interrupt_not_for_us(h))
3587                 return IRQ_NONE;
3588         h->last_intr_timestamp = get_jiffies_64();
3589         while (interrupt_pending(h)) {
3590                 raw_tag = get_next_completion(h, q);
3591                 while (raw_tag != FIFO_EMPTY)
3592                         raw_tag = next_command(h, q);
3593         }
3594         return IRQ_HANDLED;
3595 }
3596
3597 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3598 {
3599         struct ctlr_info *h = queue_to_hba(queue);
3600         u32 raw_tag;
3601         u8 q = *(u8 *) queue;
3602
3603         if (ignore_bogus_interrupt(h))
3604                 return IRQ_NONE;
3605
3606         h->last_intr_timestamp = get_jiffies_64();
3607         raw_tag = get_next_completion(h, q);
3608         while (raw_tag != FIFO_EMPTY)
3609                 raw_tag = next_command(h, q);
3610         return IRQ_HANDLED;
3611 }
3612
3613 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3614 {
3615         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3616         u32 raw_tag;
3617         u8 q = *(u8 *) queue;
3618
3619         if (interrupt_not_for_us(h))
3620                 return IRQ_NONE;
3621         h->last_intr_timestamp = get_jiffies_64();
3622         while (interrupt_pending(h)) {
3623                 raw_tag = get_next_completion(h, q);
3624                 while (raw_tag != FIFO_EMPTY) {
3625                         if (likely(hpsa_tag_contains_index(raw_tag)))
3626                                 process_indexed_cmd(h, raw_tag);
3627                         else
3628                                 process_nonindexed_cmd(h, raw_tag);
3629                         raw_tag = next_command(h, q);
3630                 }
3631         }
3632         return IRQ_HANDLED;
3633 }
3634
3635 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3636 {
3637         struct ctlr_info *h = queue_to_hba(queue);
3638         u32 raw_tag;
3639         u8 q = *(u8 *) queue;
3640
3641         h->last_intr_timestamp = get_jiffies_64();
3642         raw_tag = get_next_completion(h, q);
3643         while (raw_tag != FIFO_EMPTY) {
3644                 if (likely(hpsa_tag_contains_index(raw_tag)))
3645                         process_indexed_cmd(h, raw_tag);
3646                 else
3647                         process_nonindexed_cmd(h, raw_tag);
3648                 raw_tag = next_command(h, q);
3649         }
3650         return IRQ_HANDLED;
3651 }
3652
3653 /* Send a message CDB to the firmware. Careful, this only works
3654  * in simple mode, not performant mode due to the tag lookup.
3655  * We only ever use this immediately after a controller reset.
3656  */
3657 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3658                         unsigned char type)
3659 {
3660         struct Command {
3661                 struct CommandListHeader CommandHeader;
3662                 struct RequestBlock Request;
3663                 struct ErrDescriptor ErrorDescriptor;
3664         };
3665         struct Command *cmd;
3666         static const size_t cmd_sz = sizeof(*cmd) +
3667                                         sizeof(cmd->ErrorDescriptor);
3668         dma_addr_t paddr64;
3669         uint32_t paddr32, tag;
3670         void __iomem *vaddr;
3671         int i, err;
3672
3673         vaddr = pci_ioremap_bar(pdev, 0);
3674         if (vaddr == NULL)
3675                 return -ENOMEM;
3676
3677         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3678          * CCISS commands, so they must be allocated from the lower 4GiB of
3679          * memory.
3680          */
3681         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3682         if (err) {
3683                 iounmap(vaddr);
3684                 return -ENOMEM;
3685         }
3686
3687         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3688         if (cmd == NULL) {
3689                 iounmap(vaddr);
3690                 return -ENOMEM;
3691         }
3692
3693         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3694          * although there's no guarantee, we assume that the address is at
3695          * least 4-byte aligned (most likely, it's page-aligned).
3696          */
3697         paddr32 = paddr64;
3698
3699         cmd->CommandHeader.ReplyQueue = 0;
3700         cmd->CommandHeader.SGList = 0;
3701         cmd->CommandHeader.SGTotal = 0;
3702         cmd->CommandHeader.Tag.lower = paddr32;
3703         cmd->CommandHeader.Tag.upper = 0;
3704         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3705
3706         cmd->Request.CDBLen = 16;
3707         cmd->Request.Type.Type = TYPE_MSG;
3708         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3709         cmd->Request.Type.Direction = XFER_NONE;
3710         cmd->Request.Timeout = 0; /* Don't time out */
3711         cmd->Request.CDB[0] = opcode;
3712         cmd->Request.CDB[1] = type;
3713         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3714         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3715         cmd->ErrorDescriptor.Addr.upper = 0;
3716         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3717
3718         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3719
3720         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3721                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3722                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3723                         break;
3724                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3725         }
3726
3727         iounmap(vaddr);
3728
3729         /* we leak the DMA buffer here ... no choice since the controller could
3730          *  still complete the command.
3731          */
3732         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3733                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3734                         opcode, type);
3735                 return -ETIMEDOUT;
3736         }
3737
3738         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3739
3740         if (tag & HPSA_ERROR_BIT) {
3741                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3742                         opcode, type);
3743                 return -EIO;
3744         }
3745
3746         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3747                 opcode, type);
3748         return 0;
3749 }
3750
3751 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3752
3753 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3754         void * __iomem vaddr, u32 use_doorbell)
3755 {
3756         u16 pmcsr;
3757         int pos;
3758
3759         if (use_doorbell) {
3760                 /* For everything after the P600, the PCI power state method
3761                  * of resetting the controller doesn't work, so we have this
3762                  * other way using the doorbell register.
3763                  */
3764                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3765                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3766         } else { /* Try to do it the PCI power state way */
3767
3768                 /* Quoting from the Open CISS Specification: "The Power
3769                  * Management Control/Status Register (CSR) controls the power
3770                  * state of the device.  The normal operating state is D0,
3771                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3772                  * the controller, place the interface device in D3 then to D0,
3773                  * this causes a secondary PCI reset which will reset the
3774                  * controller." */
3775
3776                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3777                 if (pos == 0) {
3778                         dev_err(&pdev->dev,
3779                                 "hpsa_reset_controller: "
3780                                 "PCI PM not supported\n");
3781                         return -ENODEV;
3782                 }
3783                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3784                 /* enter the D3hot power management state */
3785                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3786                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3787                 pmcsr |= PCI_D3hot;
3788                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3789
3790                 msleep(500);
3791
3792                 /* enter the D0 power management state */
3793                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3794                 pmcsr |= PCI_D0;
3795                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3796
3797                 /*
3798                  * The P600 requires a small delay when changing states.
3799                  * Otherwise we may think the board did not reset and we bail.
3800                  * This for kdump only and is particular to the P600.
3801                  */
3802                 msleep(500);
3803         }
3804         return 0;
3805 }
3806
3807 static void init_driver_version(char *driver_version, int len)
3808 {
3809         memset(driver_version, 0, len);
3810         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3811 }
3812
3813 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3814 {
3815         char *driver_version;
3816         int i, size = sizeof(cfgtable->driver_version);
3817
3818         driver_version = kmalloc(size, GFP_KERNEL);
3819         if (!driver_version)
3820                 return -ENOMEM;
3821
3822         init_driver_version(driver_version, size);
3823         for (i = 0; i < size; i++)
3824                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3825         kfree(driver_version);
3826         return 0;
3827 }
3828
3829 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3830                                           unsigned char *driver_ver)
3831 {
3832         int i;
3833
3834         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3835                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3836 }
3837
3838 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3839 {
3840
3841         char *driver_ver, *old_driver_ver;
3842         int rc, size = sizeof(cfgtable->driver_version);
3843
3844         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3845         if (!old_driver_ver)
3846                 return -ENOMEM;
3847         driver_ver = old_driver_ver + size;
3848
3849         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3850          * should have been changed, otherwise we know the reset failed.
3851          */
3852         init_driver_version(old_driver_ver, size);
3853         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3854         rc = !memcmp(driver_ver, old_driver_ver, size);
3855         kfree(old_driver_ver);
3856         return rc;
3857 }
3858 /* This does a hard reset of the controller using PCI power management
3859  * states or the using the doorbell register.
3860  */
3861 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3862 {
3863         u64 cfg_offset;
3864         u32 cfg_base_addr;
3865         u64 cfg_base_addr_index;
3866         void __iomem *vaddr;
3867         unsigned long paddr;
3868         u32 misc_fw_support;
3869         int rc;
3870         struct CfgTable __iomem *cfgtable;
3871         u32 use_doorbell;
3872         u32 board_id;
3873         u16 command_register;
3874
3875         /* For controllers as old as the P600, this is very nearly
3876          * the same thing as
3877          *
3878          * pci_save_state(pci_dev);
3879          * pci_set_power_state(pci_dev, PCI_D3hot);
3880          * pci_set_power_state(pci_dev, PCI_D0);
3881          * pci_restore_state(pci_dev);
3882          *
3883          * For controllers newer than the P600, the pci power state
3884          * method of resetting doesn't work so we have another way
3885          * using the doorbell register.
3886          */
3887
3888         rc = hpsa_lookup_board_id(pdev, &board_id);
3889         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3890                 dev_warn(&pdev->dev, "Not resetting device.\n");
3891                 return -ENODEV;
3892         }
3893
3894         /* if controller is soft- but not hard resettable... */
3895         if (!ctlr_is_hard_resettable(board_id))
3896                 return -ENOTSUPP; /* try soft reset later. */
3897
3898         /* Save the PCI command register */
3899         pci_read_config_word(pdev, 4, &command_register);
3900         /* Turn the board off.  This is so that later pci_restore_state()
3901          * won't turn the board on before the rest of config space is ready.
3902          */
3903         pci_disable_device(pdev);
3904         pci_save_state(pdev);
3905
3906         /* find the first memory BAR, so we can find the cfg table */
3907         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3908         if (rc)
3909                 return rc;
3910         vaddr = remap_pci_mem(paddr, 0x250);
3911         if (!vaddr)
3912                 return -ENOMEM;
3913
3914         /* find cfgtable in order to check if reset via doorbell is supported */
3915         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3916                                         &cfg_base_addr_index, &cfg_offset);
3917         if (rc)
3918                 goto unmap_vaddr;
3919         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3920                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3921         if (!cfgtable) {
3922                 rc = -ENOMEM;
3923                 goto unmap_vaddr;
3924         }
3925         rc = write_driver_ver_to_cfgtable(cfgtable);
3926         if (rc)
3927                 goto unmap_vaddr;
3928
3929         /* If reset via doorbell register is supported, use that.
3930          * There are two such methods.  Favor the newest method.
3931          */
3932         misc_fw_support = readl(&cfgtable->misc_fw_support);
3933         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3934         if (use_doorbell) {
3935                 use_doorbell = DOORBELL_CTLR_RESET2;
3936         } else {
3937                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3938                 if (use_doorbell) {
3939                         dev_warn(&pdev->dev, "Soft reset not supported. "
3940                                 "Firmware update is required.\n");
3941                         rc = -ENOTSUPP; /* try soft reset */
3942                         goto unmap_cfgtable;
3943                 }
3944         }
3945
3946         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3947         if (rc)
3948                 goto unmap_cfgtable;
3949
3950         pci_restore_state(pdev);
3951         rc = pci_enable_device(pdev);
3952         if (rc) {
3953                 dev_warn(&pdev->dev, "failed to enable device.\n");
3954                 goto unmap_cfgtable;
3955         }
3956         pci_write_config_word(pdev, 4, command_register);
3957
3958         /* Some devices (notably the HP Smart Array 5i Controller)
3959            need a little pause here */
3960         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3961
3962         /* Wait for board to become not ready, then ready. */
3963         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3964         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3965         if (rc) {
3966                 dev_warn(&pdev->dev,
3967                         "failed waiting for board to reset."
3968                         " Will try soft reset.\n");
3969                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3970                 goto unmap_cfgtable;
3971         }
3972         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3973         if (rc) {
3974                 dev_warn(&pdev->dev,
3975                         "failed waiting for board to become ready "
3976                         "after hard reset\n");
3977                 goto unmap_cfgtable;
3978         }
3979
3980         rc = controller_reset_failed(vaddr);
3981         if (rc < 0)
3982                 goto unmap_cfgtable;
3983         if (rc) {
3984                 dev_warn(&pdev->dev, "Unable to successfully reset "
3985                         "controller. Will try soft reset.\n");
3986                 rc = -ENOTSUPP;
3987         } else {
3988                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3989         }
3990
3991 unmap_cfgtable:
3992         iounmap(cfgtable);
3993
3994 unmap_vaddr:
3995         iounmap(vaddr);
3996         return rc;
3997 }
3998
3999 /*
4000  *  We cannot read the structure directly, for portability we must use
4001  *   the io functions.
4002  *   This is for debug only.
4003  */
4004 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4005 {
4006 #ifdef HPSA_DEBUG
4007         int i;
4008         char temp_name[17];
4009
4010         dev_info(dev, "Controller Configuration information\n");
4011         dev_info(dev, "------------------------------------\n");
4012         for (i = 0; i < 4; i++)
4013                 temp_name[i] = readb(&(tb->Signature[i]));
4014         temp_name[4] = '\0';
4015         dev_info(dev, "   Signature = %s\n", temp_name);
4016         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4017         dev_info(dev, "   Transport methods supported = 0x%x\n",
4018                readl(&(tb->TransportSupport)));
4019         dev_info(dev, "   Transport methods active = 0x%x\n",
4020                readl(&(tb->TransportActive)));
4021         dev_info(dev, "   Requested transport Method = 0x%x\n",
4022                readl(&(tb->HostWrite.TransportRequest)));
4023         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4024                readl(&(tb->HostWrite.CoalIntDelay)));
4025         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4026                readl(&(tb->HostWrite.CoalIntCount)));
4027         dev_info(dev, "   Max outstanding commands = 0x%d\n",
4028                readl(&(tb->CmdsOutMax)));
4029         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4030         for (i = 0; i < 16; i++)
4031                 temp_name[i] = readb(&(tb->ServerName[i]));
4032         temp_name[16] = '\0';
4033         dev_info(dev, "   Server Name = %s\n", temp_name);
4034         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4035                 readl(&(tb->HeartBeat)));
4036 #endif                          /* HPSA_DEBUG */
4037 }
4038
4039 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4040 {
4041         int i, offset, mem_type, bar_type;
4042
4043         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4044                 return 0;
4045         offset = 0;
4046         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4047                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4048                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4049                         offset += 4;
4050                 else {
4051                         mem_type = pci_resource_flags(pdev, i) &
4052                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4053                         switch (mem_type) {
4054                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4055                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4056                                 offset += 4;    /* 32 bit */
4057                                 break;
4058                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4059                                 offset += 8;
4060                                 break;
4061                         default:        /* reserved in PCI 2.2 */
4062                                 dev_warn(&pdev->dev,
4063                                        "base address is invalid\n");
4064                                 return -1;
4065                                 break;
4066                         }
4067                 }
4068                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4069                         return i + 1;
4070         }
4071         return -1;
4072 }
4073
4074 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4075  * controllers that are capable. If not, we use IO-APIC mode.
4076  */
4077
4078 static void hpsa_interrupt_mode(struct ctlr_info *h)
4079 {
4080 #ifdef CONFIG_PCI_MSI
4081         int err, i;
4082         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4083
4084         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4085                 hpsa_msix_entries[i].vector = 0;
4086                 hpsa_msix_entries[i].entry = i;
4087         }
4088
4089         /* Some boards advertise MSI but don't really support it */
4090         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4091             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4092                 goto default_int_mode;
4093         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4094                 dev_info(&h->pdev->dev, "MSIX\n");
4095                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4096                                                 MAX_REPLY_QUEUES);
4097                 if (!err) {
4098                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4099                                 h->intr[i] = hpsa_msix_entries[i].vector;
4100                         h->msix_vector = 1;
4101                         return;
4102                 }
4103                 if (err > 0) {
4104                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4105                                "available\n", err);
4106                         goto default_int_mode;
4107                 } else {
4108                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4109                                err);
4110                         goto default_int_mode;
4111                 }
4112         }
4113         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4114                 dev_info(&h->pdev->dev, "MSI\n");
4115                 if (!pci_enable_msi(h->pdev))
4116                         h->msi_vector = 1;
4117                 else
4118                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4119         }
4120 default_int_mode:
4121 #endif                          /* CONFIG_PCI_MSI */
4122         /* if we get here we're going to use the default interrupt mode */
4123         h->intr[h->intr_mode] = h->pdev->irq;
4124 }
4125
4126 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4127 {
4128         int i;
4129         u32 subsystem_vendor_id, subsystem_device_id;
4130
4131         subsystem_vendor_id = pdev->subsystem_vendor;
4132         subsystem_device_id = pdev->subsystem_device;
4133         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4134                     subsystem_vendor_id;
4135
4136         for (i = 0; i < ARRAY_SIZE(products); i++)
4137                 if (*board_id == products[i].board_id)
4138                         return i;
4139
4140         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4141                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4142                 !hpsa_allow_any) {
4143                 dev_warn(&pdev->dev, "unrecognized board ID: "
4144                         "0x%08x, ignoring.\n", *board_id);
4145                         return -ENODEV;
4146         }
4147         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4148 }
4149
4150 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4151                                     unsigned long *memory_bar)
4152 {
4153         int i;
4154
4155         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4156                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4157                         /* addressing mode bits already removed */
4158                         *memory_bar = pci_resource_start(pdev, i);
4159                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4160                                 *memory_bar);
4161                         return 0;
4162                 }
4163         dev_warn(&pdev->dev, "no memory BAR found\n");
4164         return -ENODEV;
4165 }
4166
4167 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4168                                      int wait_for_ready)
4169 {
4170         int i, iterations;
4171         u32 scratchpad;
4172         if (wait_for_ready)
4173                 iterations = HPSA_BOARD_READY_ITERATIONS;
4174         else
4175                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4176
4177         for (i = 0; i < iterations; i++) {
4178                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4179                 if (wait_for_ready) {
4180                         if (scratchpad == HPSA_FIRMWARE_READY)
4181                                 return 0;
4182                 } else {
4183                         if (scratchpad != HPSA_FIRMWARE_READY)
4184                                 return 0;
4185                 }
4186                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4187         }
4188         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4189         return -ENODEV;
4190 }
4191
4192 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4193                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4194                                u64 *cfg_offset)
4195 {
4196         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4197         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4198         *cfg_base_addr &= (u32) 0x0000ffff;
4199         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4200         if (*cfg_base_addr_index == -1) {
4201                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4202                 return -ENODEV;
4203         }
4204         return 0;
4205 }
4206
4207 static int hpsa_find_cfgtables(struct ctlr_info *h)
4208 {
4209         u64 cfg_offset;
4210         u32 cfg_base_addr;
4211         u64 cfg_base_addr_index;
4212         u32 trans_offset;
4213         int rc;
4214
4215         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4216                 &cfg_base_addr_index, &cfg_offset);
4217         if (rc)
4218                 return rc;
4219         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4220                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4221         if (!h->cfgtable)
4222                 return -ENOMEM;
4223         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4224         if (rc)
4225                 return rc;
4226         /* Find performant mode table. */
4227         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4228         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4229                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4230                                 sizeof(*h->transtable));
4231         if (!h->transtable)
4232                 return -ENOMEM;
4233         return 0;
4234 }
4235
4236 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4237 {
4238         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4239
4240         /* Limit commands in memory limited kdump scenario. */
4241         if (reset_devices && h->max_commands > 32)
4242                 h->max_commands = 32;
4243
4244         if (h->max_commands < 16) {
4245                 dev_warn(&h->pdev->dev, "Controller reports "
4246                         "max supported commands of %d, an obvious lie. "
4247                         "Using 16.  Ensure that firmware is up to date.\n",
4248                         h->max_commands);
4249                 h->max_commands = 16;
4250         }
4251 }
4252
4253 /* Interrogate the hardware for some limits:
4254  * max commands, max SG elements without chaining, and with chaining,
4255  * SG chain block size, etc.
4256  */
4257 static void hpsa_find_board_params(struct ctlr_info *h)
4258 {
4259         hpsa_get_max_perf_mode_cmds(h);
4260         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4261         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4262         /*
4263          * Limit in-command s/g elements to 32 save dma'able memory.
4264          * Howvever spec says if 0, use 31
4265          */
4266         h->max_cmd_sg_entries = 31;
4267         if (h->maxsgentries > 512) {
4268                 h->max_cmd_sg_entries = 32;
4269                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4270                 h->maxsgentries--; /* save one for chain pointer */
4271         } else {
4272                 h->maxsgentries = 31; /* default to traditional values */
4273                 h->chainsize = 0;
4274         }
4275
4276         /* Find out what task management functions are supported and cache */
4277         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4278 }
4279
4280 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4281 {
4282         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4283                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4284                 return false;
4285         }
4286         return true;
4287 }
4288
4289 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4290 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4291 {
4292 #ifdef CONFIG_X86
4293         u32 prefetch;
4294
4295         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4296         prefetch |= 0x100;
4297         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4298 #endif
4299 }
4300
4301 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4302  * in a prefetch beyond physical memory.
4303  */
4304 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4305 {
4306         u32 dma_prefetch;
4307
4308         if (h->board_id != 0x3225103C)
4309                 return;
4310         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4311         dma_prefetch |= 0x8000;
4312         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4313 }
4314
4315 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4316 {
4317         int i;
4318         u32 doorbell_value;
4319         unsigned long flags;
4320
4321         /* under certain very rare conditions, this can take awhile.
4322          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4323          * as we enter this code.)
4324          */
4325         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4326                 spin_lock_irqsave(&h->lock, flags);
4327                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4328                 spin_unlock_irqrestore(&h->lock, flags);
4329                 if (!(doorbell_value & CFGTBL_ChangeReq))
4330                         break;
4331                 /* delay and try again */
4332                 usleep_range(10000, 20000);
4333         }
4334 }
4335
4336 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4337 {
4338         u32 trans_support;
4339
4340         trans_support = readl(&(h->cfgtable->TransportSupport));
4341         if (!(trans_support & SIMPLE_MODE))
4342                 return -ENOTSUPP;
4343
4344         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4345         /* Update the field, and then ring the doorbell */
4346         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4347         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4348         hpsa_wait_for_mode_change_ack(h);
4349         print_cfg_table(&h->pdev->dev, h->cfgtable);
4350         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4351                 dev_warn(&h->pdev->dev,
4352                         "unable to get board into simple mode\n");
4353                 return -ENODEV;
4354         }
4355         h->transMethod = CFGTBL_Trans_Simple;
4356         return 0;
4357 }
4358
4359 static int hpsa_pci_init(struct ctlr_info *h)
4360 {
4361         int prod_index, err;
4362
4363         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4364         if (prod_index < 0)
4365                 return -ENODEV;
4366         h->product_name = products[prod_index].product_name;
4367         h->access = *(products[prod_index].access);
4368
4369         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4370                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4371
4372         err = pci_enable_device(h->pdev);
4373         if (err) {
4374                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4375                 return err;
4376         }
4377
4378         /* Enable bus mastering (pci_disable_device may disable this) */
4379         pci_set_master(h->pdev);
4380
4381         err = pci_request_regions(h->pdev, HPSA);
4382         if (err) {
4383                 dev_err(&h->pdev->dev,
4384                         "cannot obtain PCI resources, aborting\n");
4385                 return err;
4386         }
4387         hpsa_interrupt_mode(h);
4388         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4389         if (err)
4390                 goto err_out_free_res;
4391         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4392         if (!h->vaddr) {
4393                 err = -ENOMEM;
4394                 goto err_out_free_res;
4395         }
4396         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4397         if (err)
4398                 goto err_out_free_res;
4399         err = hpsa_find_cfgtables(h);
4400         if (err)
4401                 goto err_out_free_res;
4402         hpsa_find_board_params(h);
4403
4404         if (!hpsa_CISS_signature_present(h)) {
4405                 err = -ENODEV;
4406                 goto err_out_free_res;
4407         }
4408         hpsa_enable_scsi_prefetch(h);
4409         hpsa_p600_dma_prefetch_quirk(h);
4410         err = hpsa_enter_simple_mode(h);
4411         if (err)
4412                 goto err_out_free_res;
4413         return 0;
4414
4415 err_out_free_res:
4416         if (h->transtable)
4417                 iounmap(h->transtable);
4418         if (h->cfgtable)
4419                 iounmap(h->cfgtable);
4420         if (h->vaddr)
4421                 iounmap(h->vaddr);
4422         pci_disable_device(h->pdev);
4423         pci_release_regions(h->pdev);
4424         return err;
4425 }
4426
4427 static void hpsa_hba_inquiry(struct ctlr_info *h)
4428 {
4429         int rc;
4430
4431 #define HBA_INQUIRY_BYTE_COUNT 64
4432         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4433         if (!h->hba_inquiry_data)
4434                 return;
4435         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4436                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4437         if (rc != 0) {
4438                 kfree(h->hba_inquiry_data);
4439                 h->hba_inquiry_data = NULL;
4440         }
4441 }
4442
4443 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4444 {
4445         int rc, i;
4446
4447         if (!reset_devices)
4448                 return 0;
4449
4450         /* Reset the controller with a PCI power-cycle or via doorbell */
4451         rc = hpsa_kdump_hard_reset_controller(pdev);
4452
4453         /* -ENOTSUPP here means we cannot reset the controller
4454          * but it's already (and still) up and running in
4455          * "performant mode".  Or, it might be 640x, which can't reset
4456          * due to concerns about shared bbwc between 6402/6404 pair.
4457          */
4458         if (rc == -ENOTSUPP)
4459                 return rc; /* just try to do the kdump anyhow. */
4460         if (rc)
4461                 return -ENODEV;
4462
4463         /* Now try to get the controller to respond to a no-op */
4464         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4465         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4466                 if (hpsa_noop(pdev) == 0)
4467                         break;
4468                 else
4469                         dev_warn(&pdev->dev, "no-op failed%s\n",
4470                                         (i < 11 ? "; re-trying" : ""));
4471         }
4472         return 0;
4473 }
4474
4475 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4476 {
4477         h->cmd_pool_bits = kzalloc(
4478                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4479                 sizeof(unsigned long), GFP_KERNEL);
4480         h->cmd_pool = pci_alloc_consistent(h->pdev,
4481                     h->nr_cmds * sizeof(*h->cmd_pool),
4482                     &(h->cmd_pool_dhandle));
4483         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4484                     h->nr_cmds * sizeof(*h->errinfo_pool),
4485                     &(h->errinfo_pool_dhandle));
4486         if ((h->cmd_pool_bits == NULL)
4487             || (h->cmd_pool == NULL)
4488             || (h->errinfo_pool == NULL)) {
4489                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4490                 return -ENOMEM;
4491         }
4492         return 0;
4493 }
4494
4495 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4496 {
4497         kfree(h->cmd_pool_bits);
4498         if (h->cmd_pool)
4499                 pci_free_consistent(h->pdev,
4500                             h->nr_cmds * sizeof(struct CommandList),
4501                             h->cmd_pool, h->cmd_pool_dhandle);
4502         if (h->errinfo_pool)
4503                 pci_free_consistent(h->pdev,
4504                             h->nr_cmds * sizeof(struct ErrorInfo),
4505                             h->errinfo_pool,
4506                             h->errinfo_pool_dhandle);
4507 }
4508
4509 static int hpsa_request_irq(struct ctlr_info *h,
4510         irqreturn_t (*msixhandler)(int, void *),
4511         irqreturn_t (*intxhandler)(int, void *))
4512 {
4513         int rc, i;
4514
4515         /*
4516          * initialize h->q[x] = x so that interrupt handlers know which
4517          * queue to process.
4518          */
4519         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4520                 h->q[i] = (u8) i;
4521
4522         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4523                 /* If performant mode and MSI-X, use multiple reply queues */
4524                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4525                         rc = request_irq(h->intr[i], msixhandler,
4526                                         0, h->devname,
4527                                         &h->q[i]);
4528         } else {
4529                 /* Use single reply pool */
4530                 if (h->msix_vector || h->msi_vector) {
4531                         rc = request_irq(h->intr[h->intr_mode],
4532                                 msixhandler, 0, h->devname,
4533                                 &h->q[h->intr_mode]);
4534                 } else {
4535                         rc = request_irq(h->intr[h->intr_mode],
4536                                 intxhandler, IRQF_SHARED, h->devname,
4537                                 &h->q[h->intr_mode]);
4538                 }
4539         }
4540         if (rc) {
4541                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4542                        h->intr[h->intr_mode], h->devname);
4543                 return -ENODEV;
4544         }
4545         return 0;
4546 }
4547
4548 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4549 {
4550         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4551                 HPSA_RESET_TYPE_CONTROLLER)) {
4552                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4553                 return -EIO;
4554         }
4555
4556         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4557         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4558                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4559                 return -1;
4560         }
4561
4562         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4563         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4564                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4565                         "after soft reset.\n");
4566                 return -1;
4567         }
4568
4569         return 0;
4570 }
4571
4572 static void free_irqs(struct ctlr_info *h)
4573 {
4574         int i;
4575
4576         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4577                 /* Single reply queue, only one irq to free */
4578                 i = h->intr_mode;
4579                 free_irq(h->intr[i], &h->q[i]);
4580                 return;
4581         }
4582
4583         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4584                 free_irq(h->intr[i], &h->q[i]);
4585 }
4586
4587 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4588 {
4589         free_irqs(h);
4590 #ifdef CONFIG_PCI_MSI
4591         if (h->msix_vector) {
4592                 if (h->pdev->msix_enabled)
4593                         pci_disable_msix(h->pdev);
4594         } else if (h->msi_vector) {
4595                 if (h->pdev->msi_enabled)
4596                         pci_disable_msi(h->pdev);
4597         }
4598 #endif /* CONFIG_PCI_MSI */
4599 }
4600
4601 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4602 {
4603         hpsa_free_irqs_and_disable_msix(h);
4604         hpsa_free_sg_chain_blocks(h);
4605         hpsa_free_cmd_pool(h);
4606         kfree(h->blockFetchTable);
4607         pci_free_consistent(h->pdev, h->reply_pool_size,
4608                 h->reply_pool, h->reply_pool_dhandle);
4609         if (h->vaddr)
4610                 iounmap(h->vaddr);
4611         if (h->transtable)
4612                 iounmap(h->transtable);
4613         if (h->cfgtable)
4614                 iounmap(h->cfgtable);
4615         pci_release_regions(h->pdev);
4616         kfree(h);
4617 }
4618
4619 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4620 {
4621         assert_spin_locked(&lockup_detector_lock);
4622         if (!hpsa_lockup_detector)
4623                 return;
4624         if (h->lockup_detected)
4625                 return; /* already stopped the lockup detector */
4626         list_del(&h->lockup_list);
4627 }
4628
4629 /* Called when controller lockup detected. */
4630 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4631 {
4632         struct CommandList *c = NULL;
4633
4634         assert_spin_locked(&h->lock);
4635         /* Mark all outstanding commands as failed and complete them. */
4636         while (!list_empty(list)) {
4637                 c = list_entry(list->next, struct CommandList, list);
4638                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4639                 finish_cmd(c);
4640         }
4641 }
4642
4643 static void controller_lockup_detected(struct ctlr_info *h)
4644 {
4645         unsigned long flags;
4646
4647         assert_spin_locked(&lockup_detector_lock);
4648         remove_ctlr_from_lockup_detector_list(h);
4649         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4650         spin_lock_irqsave(&h->lock, flags);
4651         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4652         spin_unlock_irqrestore(&h->lock, flags);
4653         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4654                         h->lockup_detected);
4655         pci_disable_device(h->pdev);
4656         spin_lock_irqsave(&h->lock, flags);
4657         fail_all_cmds_on_list(h, &h->cmpQ);
4658         fail_all_cmds_on_list(h, &h->reqQ);
4659         spin_unlock_irqrestore(&h->lock, flags);
4660 }
4661
4662 static void detect_controller_lockup(struct ctlr_info *h)
4663 {
4664         u64 now;
4665         u32 heartbeat;
4666         unsigned long flags;
4667
4668         assert_spin_locked(&lockup_detector_lock);
4669         now = get_jiffies_64();
4670         /* If we've received an interrupt recently, we're ok. */
4671         if (time_after64(h->last_intr_timestamp +
4672                                 (h->heartbeat_sample_interval), now))
4673                 return;
4674
4675         /*
4676          * If we've already checked the heartbeat recently, we're ok.
4677          * This could happen if someone sends us a signal. We
4678          * otherwise don't care about signals in this thread.
4679          */
4680         if (time_after64(h->last_heartbeat_timestamp +
4681                                 (h->heartbeat_sample_interval), now))
4682                 return;
4683
4684         /* If heartbeat has not changed since we last looked, we're not ok. */
4685         spin_lock_irqsave(&h->lock, flags);
4686         heartbeat = readl(&h->cfgtable->HeartBeat);
4687         spin_unlock_irqrestore(&h->lock, flags);
4688         if (h->last_heartbeat == heartbeat) {
4689                 controller_lockup_detected(h);
4690                 return;
4691         }
4692
4693         /* We're ok. */
4694         h->last_heartbeat = heartbeat;
4695         h->last_heartbeat_timestamp = now;
4696 }
4697
4698 static int detect_controller_lockup_thread(void *notused)
4699 {
4700         struct ctlr_info *h;
4701         unsigned long flags;
4702
4703         while (1) {
4704                 struct list_head *this, *tmp;
4705
4706                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4707                 if (kthread_should_stop())
4708                         break;
4709                 spin_lock_irqsave(&lockup_detector_lock, flags);
4710                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4711                         h = list_entry(this, struct ctlr_info, lockup_list);
4712                         detect_controller_lockup(h);
4713                 }
4714                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4715         }
4716         return 0;
4717 }
4718
4719 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4720 {
4721         unsigned long flags;
4722
4723         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4724         spin_lock_irqsave(&lockup_detector_lock, flags);
4725         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4726         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4727 }
4728
4729 static void start_controller_lockup_detector(struct ctlr_info *h)
4730 {
4731         /* Start the lockup detector thread if not already started */
4732         if (!hpsa_lockup_detector) {
4733                 spin_lock_init(&lockup_detector_lock);
4734                 hpsa_lockup_detector =
4735                         kthread_run(detect_controller_lockup_thread,
4736                                                 NULL, HPSA);
4737         }
4738         if (!hpsa_lockup_detector) {
4739                 dev_warn(&h->pdev->dev,
4740                         "Could not start lockup detector thread\n");
4741                 return;
4742         }
4743         add_ctlr_to_lockup_detector_list(h);
4744 }
4745
4746 static void stop_controller_lockup_detector(struct ctlr_info *h)
4747 {
4748         unsigned long flags;
4749
4750         spin_lock_irqsave(&lockup_detector_lock, flags);
4751         remove_ctlr_from_lockup_detector_list(h);
4752         /* If the list of ctlr's to monitor is empty, stop the thread */
4753         if (list_empty(&hpsa_ctlr_list)) {
4754                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4755                 kthread_stop(hpsa_lockup_detector);
4756                 spin_lock_irqsave(&lockup_detector_lock, flags);
4757                 hpsa_lockup_detector = NULL;
4758         }
4759         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4760 }
4761
4762 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4763 {
4764         int dac, rc;
4765         struct ctlr_info *h;
4766         int try_soft_reset = 0;
4767         unsigned long flags;
4768
4769         if (number_of_controllers == 0)
4770                 printk(KERN_INFO DRIVER_NAME "\n");
4771
4772         rc = hpsa_init_reset_devices(pdev);
4773         if (rc) {
4774                 if (rc != -ENOTSUPP)
4775                         return rc;
4776                 /* If the reset fails in a particular way (it has no way to do
4777                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4778                  * a soft reset once we get the controller configured up to the
4779                  * point that it can accept a command.
4780                  */
4781                 try_soft_reset = 1;
4782                 rc = 0;
4783         }
4784
4785 reinit_after_soft_reset:
4786
4787         /* Command structures must be aligned on a 32-byte boundary because
4788          * the 5 lower bits of the address are used by the hardware. and by
4789          * the driver.  See comments in hpsa.h for more info.
4790          */
4791 #define COMMANDLIST_ALIGNMENT 32
4792         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4793         h = kzalloc(sizeof(*h), GFP_KERNEL);
4794         if (!h)
4795                 return -ENOMEM;
4796
4797         h->pdev = pdev;
4798         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4799         INIT_LIST_HEAD(&h->cmpQ);
4800         INIT_LIST_HEAD(&h->reqQ);
4801         spin_lock_init(&h->lock);
4802         spin_lock_init(&h->scan_lock);
4803         rc = hpsa_pci_init(h);
4804         if (rc != 0)
4805                 goto clean1;
4806
4807         sprintf(h->devname, HPSA "%d", number_of_controllers);
4808         h->ctlr = number_of_controllers;
4809         number_of_controllers++;
4810
4811         /* configure PCI DMA stuff */
4812         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4813         if (rc == 0) {
4814                 dac = 1;
4815         } else {
4816                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4817                 if (rc == 0) {
4818                         dac = 0;
4819                 } else {
4820                         dev_err(&pdev->dev, "no suitable DMA available\n");
4821                         goto clean1;
4822                 }
4823         }
4824
4825         /* make sure the board interrupts are off */
4826         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4827
4828         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4829                 goto clean2;
4830         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4831                h->devname, pdev->device,
4832                h->intr[h->intr_mode], dac ? "" : " not");
4833         if (hpsa_allocate_cmd_pool(h))
4834                 goto clean4;
4835         if (hpsa_allocate_sg_chain_blocks(h))
4836                 goto clean4;
4837         init_waitqueue_head(&h->scan_wait_queue);
4838         h->scan_finished = 1; /* no scan currently in progress */
4839
4840         pci_set_drvdata(pdev, h);
4841         h->ndevices = 0;
4842         h->scsi_host = NULL;
4843         spin_lock_init(&h->devlock);
4844         hpsa_put_ctlr_into_performant_mode(h);
4845
4846         /* At this point, the controller is ready to take commands.
4847          * Now, if reset_devices and the hard reset didn't work, try
4848          * the soft reset and see if that works.
4849          */
4850         if (try_soft_reset) {
4851
4852                 /* This is kind of gross.  We may or may not get a completion
4853                  * from the soft reset command, and if we do, then the value
4854                  * from the fifo may or may not be valid.  So, we wait 10 secs
4855                  * after the reset throwing away any completions we get during
4856                  * that time.  Unregister the interrupt handler and register
4857                  * fake ones to scoop up any residual completions.
4858                  */
4859                 spin_lock_irqsave(&h->lock, flags);
4860                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4861                 spin_unlock_irqrestore(&h->lock, flags);
4862                 free_irqs(h);
4863                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4864                                         hpsa_intx_discard_completions);
4865                 if (rc) {
4866                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4867                                 "soft reset.\n");
4868                         goto clean4;
4869                 }
4870
4871                 rc = hpsa_kdump_soft_reset(h);
4872                 if (rc)
4873                         /* Neither hard nor soft reset worked, we're hosed. */
4874                         goto clean4;
4875
4876                 dev_info(&h->pdev->dev, "Board READY.\n");
4877                 dev_info(&h->pdev->dev,
4878                         "Waiting for stale completions to drain.\n");
4879                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4880                 msleep(10000);
4881                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4882
4883                 rc = controller_reset_failed(h->cfgtable);
4884                 if (rc)
4885                         dev_info(&h->pdev->dev,
4886                                 "Soft reset appears to have failed.\n");
4887
4888                 /* since the controller's reset, we have to go back and re-init
4889                  * everything.  Easiest to just forget what we've done and do it
4890                  * all over again.
4891                  */
4892                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4893                 try_soft_reset = 0;
4894                 if (rc)
4895                         /* don't go to clean4, we already unallocated */
4896                         return -ENODEV;
4897
4898                 goto reinit_after_soft_reset;
4899         }
4900
4901         /* Turn the interrupts on so we can service requests */
4902         h->access.set_intr_mask(h, HPSA_INTR_ON);
4903
4904         hpsa_hba_inquiry(h);
4905         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4906         start_controller_lockup_detector(h);
4907         return 1;
4908
4909 clean4:
4910         hpsa_free_sg_chain_blocks(h);
4911         hpsa_free_cmd_pool(h);
4912         free_irqs(h);
4913 clean2:
4914 clean1:
4915         kfree(h);
4916         return rc;
4917 }
4918
4919 static void hpsa_flush_cache(struct ctlr_info *h)
4920 {
4921         char *flush_buf;
4922         struct CommandList *c;
4923
4924         flush_buf = kzalloc(4, GFP_KERNEL);
4925         if (!flush_buf)
4926                 return;
4927
4928         c = cmd_special_alloc(h);
4929         if (!c) {
4930                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4931                 goto out_of_memory;
4932         }
4933         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4934                 RAID_CTLR_LUNID, TYPE_CMD)) {
4935                 goto out;
4936         }
4937         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4938         if (c->err_info->CommandStatus != 0)
4939 out:
4940                 dev_warn(&h->pdev->dev,
4941                         "error flushing cache on controller\n");
4942         cmd_special_free(h, c);
4943 out_of_memory:
4944         kfree(flush_buf);
4945 }
4946
4947 static void hpsa_shutdown(struct pci_dev *pdev)
4948 {
4949         struct ctlr_info *h;
4950
4951         h = pci_get_drvdata(pdev);
4952         /* Turn board interrupts off  and send the flush cache command
4953          * sendcmd will turn off interrupt, and send the flush...
4954          * To write all data in the battery backed cache to disks
4955          */
4956         hpsa_flush_cache(h);
4957         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4958         hpsa_free_irqs_and_disable_msix(h);
4959 }
4960
4961 static void hpsa_free_device_info(struct ctlr_info *h)
4962 {
4963         int i;
4964
4965         for (i = 0; i < h->ndevices; i++)
4966                 kfree(h->dev[i]);
4967 }
4968
4969 static void hpsa_remove_one(struct pci_dev *pdev)
4970 {
4971         struct ctlr_info *h;
4972
4973         if (pci_get_drvdata(pdev) == NULL) {
4974                 dev_err(&pdev->dev, "unable to remove device\n");
4975                 return;
4976         }
4977         h = pci_get_drvdata(pdev);
4978         stop_controller_lockup_detector(h);
4979         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4980         hpsa_shutdown(pdev);
4981         iounmap(h->vaddr);
4982         iounmap(h->transtable);
4983         iounmap(h->cfgtable);
4984         hpsa_free_device_info(h);
4985         hpsa_free_sg_chain_blocks(h);
4986         pci_free_consistent(h->pdev,
4987                 h->nr_cmds * sizeof(struct CommandList),
4988                 h->cmd_pool, h->cmd_pool_dhandle);
4989         pci_free_consistent(h->pdev,
4990                 h->nr_cmds * sizeof(struct ErrorInfo),
4991                 h->errinfo_pool, h->errinfo_pool_dhandle);
4992         pci_free_consistent(h->pdev, h->reply_pool_size,
4993                 h->reply_pool, h->reply_pool_dhandle);
4994         kfree(h->cmd_pool_bits);
4995         kfree(h->blockFetchTable);
4996         kfree(h->hba_inquiry_data);
4997         pci_disable_device(pdev);
4998         pci_release_regions(pdev);
4999         pci_set_drvdata(pdev, NULL);
5000         kfree(h);
5001 }
5002
5003 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5004         __attribute__((unused)) pm_message_t state)
5005 {
5006         return -ENOSYS;
5007 }
5008
5009 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5010 {
5011         return -ENOSYS;
5012 }
5013
5014 static struct pci_driver hpsa_pci_driver = {
5015         .name = HPSA,
5016         .probe = hpsa_init_one,
5017         .remove = hpsa_remove_one,
5018         .id_table = hpsa_pci_device_id, /* id_table */
5019         .shutdown = hpsa_shutdown,
5020         .suspend = hpsa_suspend,
5021         .resume = hpsa_resume,
5022 };
5023
5024 /* Fill in bucket_map[], given nsgs (the max number of
5025  * scatter gather elements supported) and bucket[],
5026  * which is an array of 8 integers.  The bucket[] array
5027  * contains 8 different DMA transfer sizes (in 16
5028  * byte increments) which the controller uses to fetch
5029  * commands.  This function fills in bucket_map[], which
5030  * maps a given number of scatter gather elements to one of
5031  * the 8 DMA transfer sizes.  The point of it is to allow the
5032  * controller to only do as much DMA as needed to fetch the
5033  * command, with the DMA transfer size encoded in the lower
5034  * bits of the command address.
5035  */
5036 static void  calc_bucket_map(int bucket[], int num_buckets,
5037         int nsgs, int *bucket_map)
5038 {
5039         int i, j, b, size;
5040
5041         /* even a command with 0 SGs requires 4 blocks */
5042 #define MINIMUM_TRANSFER_BLOCKS 4
5043 #define NUM_BUCKETS 8
5044         /* Note, bucket_map must have nsgs+1 entries. */
5045         for (i = 0; i <= nsgs; i++) {
5046                 /* Compute size of a command with i SG entries */
5047                 size = i + MINIMUM_TRANSFER_BLOCKS;
5048                 b = num_buckets; /* Assume the biggest bucket */
5049                 /* Find the bucket that is just big enough */
5050                 for (j = 0; j < 8; j++) {
5051                         if (bucket[j] >= size) {
5052                                 b = j;
5053                                 break;
5054                         }
5055                 }
5056                 /* for a command with i SG entries, use bucket b. */
5057                 bucket_map[i] = b;
5058         }
5059 }
5060
5061 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5062 {
5063         int i;
5064         unsigned long register_value;
5065
5066         /* This is a bit complicated.  There are 8 registers on
5067          * the controller which we write to to tell it 8 different
5068          * sizes of commands which there may be.  It's a way of
5069          * reducing the DMA done to fetch each command.  Encoded into
5070          * each command's tag are 3 bits which communicate to the controller
5071          * which of the eight sizes that command fits within.  The size of
5072          * each command depends on how many scatter gather entries there are.
5073          * Each SG entry requires 16 bytes.  The eight registers are programmed
5074          * with the number of 16-byte blocks a command of that size requires.
5075          * The smallest command possible requires 5 such 16 byte blocks.
5076          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5077          * blocks.  Note, this only extends to the SG entries contained
5078          * within the command block, and does not extend to chained blocks
5079          * of SG elements.   bft[] contains the eight values we write to
5080          * the registers.  They are not evenly distributed, but have more
5081          * sizes for small commands, and fewer sizes for larger commands.
5082          */
5083         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5084         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5085         /*  5 = 1 s/g entry or 4k
5086          *  6 = 2 s/g entry or 8k
5087          *  8 = 4 s/g entry or 16k
5088          * 10 = 6 s/g entry or 24k
5089          */
5090
5091         /* Controller spec: zero out this buffer. */
5092         memset(h->reply_pool, 0, h->reply_pool_size);
5093
5094         bft[7] = SG_ENTRIES_IN_CMD + 4;
5095         calc_bucket_map(bft, ARRAY_SIZE(bft),
5096                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5097         for (i = 0; i < 8; i++)
5098                 writel(bft[i], &h->transtable->BlockFetch[i]);
5099
5100         /* size of controller ring buffer */
5101         writel(h->max_commands, &h->transtable->RepQSize);
5102         writel(h->nreply_queues, &h->transtable->RepQCount);
5103         writel(0, &h->transtable->RepQCtrAddrLow32);
5104         writel(0, &h->transtable->RepQCtrAddrHigh32);
5105
5106         for (i = 0; i < h->nreply_queues; i++) {
5107                 writel(0, &h->transtable->RepQAddr[i].upper);
5108                 writel(h->reply_pool_dhandle +
5109                         (h->max_commands * sizeof(u64) * i),
5110                         &h->transtable->RepQAddr[i].lower);
5111         }
5112
5113         writel(CFGTBL_Trans_Performant | use_short_tags |
5114                 CFGTBL_Trans_enable_directed_msix,
5115                 &(h->cfgtable->HostWrite.TransportRequest));
5116         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5117         hpsa_wait_for_mode_change_ack(h);
5118         register_value = readl(&(h->cfgtable->TransportActive));
5119         if (!(register_value & CFGTBL_Trans_Performant)) {
5120                 dev_warn(&h->pdev->dev, "unable to get board into"
5121                                         " performant mode\n");
5122                 return;
5123         }
5124         /* Change the access methods to the performant access methods */
5125         h->access = SA5_performant_access;
5126         h->transMethod = CFGTBL_Trans_Performant;
5127 }
5128
5129 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5130 {
5131         u32 trans_support;
5132         int i;
5133
5134         if (hpsa_simple_mode)
5135                 return;
5136
5137         trans_support = readl(&(h->cfgtable->TransportSupport));
5138         if (!(trans_support & PERFORMANT_MODE))
5139                 return;
5140
5141         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5142         hpsa_get_max_perf_mode_cmds(h);
5143         /* Performant mode ring buffer and supporting data structures */
5144         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5145         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5146                                 &(h->reply_pool_dhandle));
5147
5148         for (i = 0; i < h->nreply_queues; i++) {
5149                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5150                 h->reply_queue[i].size = h->max_commands;
5151                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5152                 h->reply_queue[i].current_entry = 0;
5153         }
5154
5155         /* Need a block fetch table for performant mode */
5156         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5157                                 sizeof(u32)), GFP_KERNEL);
5158
5159         if ((h->reply_pool == NULL)
5160                 || (h->blockFetchTable == NULL))
5161                 goto clean_up;
5162
5163         hpsa_enter_performant_mode(h,
5164                 trans_support & CFGTBL_Trans_use_short_tags);
5165
5166         return;
5167
5168 clean_up:
5169         if (h->reply_pool)
5170                 pci_free_consistent(h->pdev, h->reply_pool_size,
5171                         h->reply_pool, h->reply_pool_dhandle);
5172         kfree(h->blockFetchTable);
5173 }
5174
5175 /*
5176  *  This is it.  Register the PCI driver information for the cards we control
5177  *  the OS will call our registered routines when it finds one of our cards.
5178  */
5179 static int __init hpsa_init(void)
5180 {
5181         return pci_register_driver(&hpsa_pci_driver);
5182 }
5183
5184 static void __exit hpsa_cleanup(void)
5185 {
5186         pci_unregister_driver(&hpsa_pci_driver);
5187 }
5188
5189 module_init(hpsa_init);
5190 module_exit(hpsa_cleanup);