5f02a603eb4dae8dd569c9ba24174d617969f8cb
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.10-0"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait for CISS doorbell communication */
64 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
65 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
66 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
67 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
68 #define MAX_IOCTL_CONFIG_WAIT 1000
69
70 /*define how many times we will try a command because of bus resets */
71 #define MAX_CMD_RETRIES 3
72
73 /* Embedded module documentation macros - see modules.h */
74 MODULE_AUTHOR("Hewlett-Packard Company");
75 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
76         HPSA_DRIVER_VERSION);
77 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
78 MODULE_VERSION(HPSA_DRIVER_VERSION);
79 MODULE_LICENSE("GPL");
80
81 static int hpsa_allow_any;
82 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_allow_any,
84                 "Allow hpsa driver to access unknown HP Smart Array hardware");
85 static int hpsa_simple_mode;
86 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_simple_mode,
88         "Use 'simple mode' rather than 'performant mode'");
89
90 /* define the PCI info for the cards we can control */
91 static const struct pci_device_id hpsa_pci_device_id[] = {
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
142         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
143         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
144                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
145         {0,}
146 };
147
148 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
149
150 /*  board_id = Subsystem Device ID & Vendor ID
151  *  product = Marketing Name for the board
152  *  access = Address of the struct of function pointers
153  */
154 static struct board_type products[] = {
155         {0x3241103C, "Smart Array P212", &SA5_access},
156         {0x3243103C, "Smart Array P410", &SA5_access},
157         {0x3245103C, "Smart Array P410i", &SA5_access},
158         {0x3247103C, "Smart Array P411", &SA5_access},
159         {0x3249103C, "Smart Array P812", &SA5_access},
160         {0x324A103C, "Smart Array P712m", &SA5_access},
161         {0x324B103C, "Smart Array P711m", &SA5_access},
162         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
163         {0x3350103C, "Smart Array P222", &SA5_access},
164         {0x3351103C, "Smart Array P420", &SA5_access},
165         {0x3352103C, "Smart Array P421", &SA5_access},
166         {0x3353103C, "Smart Array P822", &SA5_access},
167         {0x3354103C, "Smart Array P420i", &SA5_access},
168         {0x3355103C, "Smart Array P220i", &SA5_access},
169         {0x3356103C, "Smart Array P721m", &SA5_access},
170         {0x1921103C, "Smart Array P830i", &SA5_access},
171         {0x1922103C, "Smart Array P430", &SA5_access},
172         {0x1923103C, "Smart Array P431", &SA5_access},
173         {0x1924103C, "Smart Array P830", &SA5_access},
174         {0x1926103C, "Smart Array P731m", &SA5_access},
175         {0x1928103C, "Smart Array P230i", &SA5_access},
176         {0x1929103C, "Smart Array P530", &SA5_access},
177         {0x21BD103C, "Smart Array P244br", &SA5_access},
178         {0x21BE103C, "Smart Array P741m", &SA5_access},
179         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
180         {0x21C0103C, "Smart Array P440ar", &SA5_access},
181         {0x21C1103C, "Smart Array P840ar", &SA5_access},
182         {0x21C2103C, "Smart Array P440", &SA5_access},
183         {0x21C3103C, "Smart Array P441", &SA5_access},
184         {0x21C4103C, "Smart Array", &SA5_access},
185         {0x21C5103C, "Smart Array P841", &SA5_access},
186         {0x21C6103C, "Smart HBA H244br", &SA5_access},
187         {0x21C7103C, "Smart HBA H240", &SA5_access},
188         {0x21C8103C, "Smart HBA H241", &SA5_access},
189         {0x21C9103C, "Smart Array", &SA5_access},
190         {0x21CA103C, "Smart Array P246br", &SA5_access},
191         {0x21CB103C, "Smart Array P840", &SA5_access},
192         {0x21CC103C, "Smart Array", &SA5_access},
193         {0x21CD103C, "Smart Array", &SA5_access},
194         {0x21CE103C, "Smart HBA", &SA5_access},
195         {0x05809005, "SmartHBA-SA", &SA5_access},
196         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
197         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
198         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
199         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
200         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
201         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
202         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
203         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
204         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
205         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
206         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
207 };
208
209 static struct scsi_transport_template *hpsa_sas_transport_template;
210 static int hpsa_add_sas_host(struct ctlr_info *h);
211 static void hpsa_delete_sas_host(struct ctlr_info *h);
212 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
213                         struct hpsa_scsi_dev_t *device);
214 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
215 static struct hpsa_scsi_dev_t
216         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
217                 struct sas_rphy *rphy);
218
219 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
220 static const struct scsi_cmnd hpsa_cmd_busy;
221 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
222 static const struct scsi_cmnd hpsa_cmd_idle;
223 static int number_of_controllers;
224
225 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
226 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
227 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
228
229 #ifdef CONFIG_COMPAT
230 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
231         void __user *arg);
232 #endif
233
234 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
235 static struct CommandList *cmd_alloc(struct ctlr_info *h);
236 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
237 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
238                                             struct scsi_cmnd *scmd);
239 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
240         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
241         int cmd_type);
242 static void hpsa_free_cmd_pool(struct ctlr_info *h);
243 #define VPD_PAGE (1 << 8)
244 #define HPSA_SIMPLE_ERROR_BITS 0x03
245
246 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
247 static void hpsa_scan_start(struct Scsi_Host *);
248 static int hpsa_scan_finished(struct Scsi_Host *sh,
249         unsigned long elapsed_time);
250 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
251
252 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
253 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
254 static int hpsa_slave_alloc(struct scsi_device *sdev);
255 static int hpsa_slave_configure(struct scsi_device *sdev);
256 static void hpsa_slave_destroy(struct scsi_device *sdev);
257
258 static void hpsa_update_scsi_devices(struct ctlr_info *h);
259 static int check_for_unit_attention(struct ctlr_info *h,
260         struct CommandList *c);
261 static void check_ioctl_unit_attention(struct ctlr_info *h,
262         struct CommandList *c);
263 /* performant mode helper functions */
264 static void calc_bucket_map(int *bucket, int num_buckets,
265         int nsgs, int min_blocks, u32 *bucket_map);
266 static void hpsa_free_performant_mode(struct ctlr_info *h);
267 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
268 static inline u32 next_command(struct ctlr_info *h, u8 q);
269 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
270                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
271                                u64 *cfg_offset);
272 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
273                                     unsigned long *memory_bar);
274 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
275 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
276                                      int wait_for_ready);
277 static inline void finish_cmd(struct CommandList *c);
278 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
279 #define BOARD_NOT_READY 0
280 #define BOARD_READY 1
281 static void hpsa_drain_accel_commands(struct ctlr_info *h);
282 static void hpsa_flush_cache(struct ctlr_info *h);
283 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
284         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
285         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
286 static void hpsa_command_resubmit_worker(struct work_struct *work);
287 static u32 lockup_detected(struct ctlr_info *h);
288 static int detect_controller_lockup(struct ctlr_info *h);
289 static void hpsa_disable_rld_caching(struct ctlr_info *h);
290 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
291         struct ReportExtendedLUNdata *buf, int bufsize);
292 static int hpsa_luns_changed(struct ctlr_info *h);
293
294 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
295 {
296         unsigned long *priv = shost_priv(sdev->host);
297         return (struct ctlr_info *) *priv;
298 }
299
300 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
301 {
302         unsigned long *priv = shost_priv(sh);
303         return (struct ctlr_info *) *priv;
304 }
305
306 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
307 {
308         return c->scsi_cmd == SCSI_CMD_IDLE;
309 }
310
311 static inline bool hpsa_is_pending_event(struct CommandList *c)
312 {
313         return c->abort_pending || c->reset_pending;
314 }
315
316 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
317 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
318                         u8 *sense_key, u8 *asc, u8 *ascq)
319 {
320         struct scsi_sense_hdr sshdr;
321         bool rc;
322
323         *sense_key = -1;
324         *asc = -1;
325         *ascq = -1;
326
327         if (sense_data_len < 1)
328                 return;
329
330         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
331         if (rc) {
332                 *sense_key = sshdr.sense_key;
333                 *asc = sshdr.asc;
334                 *ascq = sshdr.ascq;
335         }
336 }
337
338 static int check_for_unit_attention(struct ctlr_info *h,
339         struct CommandList *c)
340 {
341         u8 sense_key, asc, ascq;
342         int sense_len;
343
344         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
345                 sense_len = sizeof(c->err_info->SenseInfo);
346         else
347                 sense_len = c->err_info->SenseLen;
348
349         decode_sense_data(c->err_info->SenseInfo, sense_len,
350                                 &sense_key, &asc, &ascq);
351         if (sense_key != UNIT_ATTENTION || asc == 0xff)
352                 return 0;
353
354         switch (asc) {
355         case STATE_CHANGED:
356                 dev_warn(&h->pdev->dev,
357                         "%s: a state change detected, command retried\n",
358                         h->devname);
359                 break;
360         case LUN_FAILED:
361                 dev_warn(&h->pdev->dev,
362                         "%s: LUN failure detected\n", h->devname);
363                 break;
364         case REPORT_LUNS_CHANGED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: report LUN data changed\n", h->devname);
367         /*
368          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
369          * target (array) devices.
370          */
371                 break;
372         case POWER_OR_RESET:
373                 dev_warn(&h->pdev->dev,
374                         "%s: a power on or device reset detected\n",
375                         h->devname);
376                 break;
377         case UNIT_ATTENTION_CLEARED:
378                 dev_warn(&h->pdev->dev,
379                         "%s: unit attention cleared by another initiator\n",
380                         h->devname);
381                 break;
382         default:
383                 dev_warn(&h->pdev->dev,
384                         "%s: unknown unit attention detected\n",
385                         h->devname);
386                 break;
387         }
388         return 1;
389 }
390
391 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
392 {
393         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
394                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
395                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
396                 return 0;
397         dev_warn(&h->pdev->dev, HPSA "device busy");
398         return 1;
399 }
400
401 static u32 lockup_detected(struct ctlr_info *h);
402 static ssize_t host_show_lockup_detected(struct device *dev,
403                 struct device_attribute *attr, char *buf)
404 {
405         int ld;
406         struct ctlr_info *h;
407         struct Scsi_Host *shost = class_to_shost(dev);
408
409         h = shost_to_hba(shost);
410         ld = lockup_detected(h);
411
412         return sprintf(buf, "ld=%d\n", ld);
413 }
414
415 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
416                                          struct device_attribute *attr,
417                                          const char *buf, size_t count)
418 {
419         int status, len;
420         struct ctlr_info *h;
421         struct Scsi_Host *shost = class_to_shost(dev);
422         char tmpbuf[10];
423
424         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
425                 return -EACCES;
426         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
427         strncpy(tmpbuf, buf, len);
428         tmpbuf[len] = '\0';
429         if (sscanf(tmpbuf, "%d", &status) != 1)
430                 return -EINVAL;
431         h = shost_to_hba(shost);
432         h->acciopath_status = !!status;
433         dev_warn(&h->pdev->dev,
434                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
435                 h->acciopath_status ? "enabled" : "disabled");
436         return count;
437 }
438
439 static ssize_t host_store_raid_offload_debug(struct device *dev,
440                                          struct device_attribute *attr,
441                                          const char *buf, size_t count)
442 {
443         int debug_level, len;
444         struct ctlr_info *h;
445         struct Scsi_Host *shost = class_to_shost(dev);
446         char tmpbuf[10];
447
448         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
449                 return -EACCES;
450         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
451         strncpy(tmpbuf, buf, len);
452         tmpbuf[len] = '\0';
453         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
454                 return -EINVAL;
455         if (debug_level < 0)
456                 debug_level = 0;
457         h = shost_to_hba(shost);
458         h->raid_offload_debug = debug_level;
459         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
460                 h->raid_offload_debug);
461         return count;
462 }
463
464 static ssize_t host_store_rescan(struct device *dev,
465                                  struct device_attribute *attr,
466                                  const char *buf, size_t count)
467 {
468         struct ctlr_info *h;
469         struct Scsi_Host *shost = class_to_shost(dev);
470         h = shost_to_hba(shost);
471         hpsa_scan_start(h->scsi_host);
472         return count;
473 }
474
475 static ssize_t host_show_firmware_revision(struct device *dev,
476              struct device_attribute *attr, char *buf)
477 {
478         struct ctlr_info *h;
479         struct Scsi_Host *shost = class_to_shost(dev);
480         unsigned char *fwrev;
481
482         h = shost_to_hba(shost);
483         if (!h->hba_inquiry_data)
484                 return 0;
485         fwrev = &h->hba_inquiry_data[32];
486         return snprintf(buf, 20, "%c%c%c%c\n",
487                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
488 }
489
490 static ssize_t host_show_commands_outstanding(struct device *dev,
491              struct device_attribute *attr, char *buf)
492 {
493         struct Scsi_Host *shost = class_to_shost(dev);
494         struct ctlr_info *h = shost_to_hba(shost);
495
496         return snprintf(buf, 20, "%d\n",
497                         atomic_read(&h->commands_outstanding));
498 }
499
500 static ssize_t host_show_transport_mode(struct device *dev,
501         struct device_attribute *attr, char *buf)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505
506         h = shost_to_hba(shost);
507         return snprintf(buf, 20, "%s\n",
508                 h->transMethod & CFGTBL_Trans_Performant ?
509                         "performant" : "simple");
510 }
511
512 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
513         struct device_attribute *attr, char *buf)
514 {
515         struct ctlr_info *h;
516         struct Scsi_Host *shost = class_to_shost(dev);
517
518         h = shost_to_hba(shost);
519         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
520                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
521 }
522
523 /* List of controllers which cannot be hard reset on kexec with reset_devices */
524 static u32 unresettable_controller[] = {
525         0x324a103C, /* Smart Array P712m */
526         0x324b103C, /* Smart Array P711m */
527         0x3223103C, /* Smart Array P800 */
528         0x3234103C, /* Smart Array P400 */
529         0x3235103C, /* Smart Array P400i */
530         0x3211103C, /* Smart Array E200i */
531         0x3212103C, /* Smart Array E200 */
532         0x3213103C, /* Smart Array E200i */
533         0x3214103C, /* Smart Array E200i */
534         0x3215103C, /* Smart Array E200i */
535         0x3237103C, /* Smart Array E500 */
536         0x323D103C, /* Smart Array P700m */
537         0x40800E11, /* Smart Array 5i */
538         0x409C0E11, /* Smart Array 6400 */
539         0x409D0E11, /* Smart Array 6400 EM */
540         0x40700E11, /* Smart Array 5300 */
541         0x40820E11, /* Smart Array 532 */
542         0x40830E11, /* Smart Array 5312 */
543         0x409A0E11, /* Smart Array 641 */
544         0x409B0E11, /* Smart Array 642 */
545         0x40910E11, /* Smart Array 6i */
546 };
547
548 /* List of controllers which cannot even be soft reset */
549 static u32 soft_unresettable_controller[] = {
550         0x40800E11, /* Smart Array 5i */
551         0x40700E11, /* Smart Array 5300 */
552         0x40820E11, /* Smart Array 532 */
553         0x40830E11, /* Smart Array 5312 */
554         0x409A0E11, /* Smart Array 641 */
555         0x409B0E11, /* Smart Array 642 */
556         0x40910E11, /* Smart Array 6i */
557         /* Exclude 640x boards.  These are two pci devices in one slot
558          * which share a battery backed cache module.  One controls the
559          * cache, the other accesses the cache through the one that controls
560          * it.  If we reset the one controlling the cache, the other will
561          * likely not be happy.  Just forbid resetting this conjoined mess.
562          * The 640x isn't really supported by hpsa anyway.
563          */
564         0x409C0E11, /* Smart Array 6400 */
565         0x409D0E11, /* Smart Array 6400 EM */
566 };
567
568 static u32 needs_abort_tags_swizzled[] = {
569         0x323D103C, /* Smart Array P700m */
570         0x324a103C, /* Smart Array P712m */
571         0x324b103C, /* SmartArray P711m */
572 };
573
574 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
575 {
576         int i;
577
578         for (i = 0; i < nelems; i++)
579                 if (a[i] == board_id)
580                         return 1;
581         return 0;
582 }
583
584 static int ctlr_is_hard_resettable(u32 board_id)
585 {
586         return !board_id_in_array(unresettable_controller,
587                         ARRAY_SIZE(unresettable_controller), board_id);
588 }
589
590 static int ctlr_is_soft_resettable(u32 board_id)
591 {
592         return !board_id_in_array(soft_unresettable_controller,
593                         ARRAY_SIZE(soft_unresettable_controller), board_id);
594 }
595
596 static int ctlr_is_resettable(u32 board_id)
597 {
598         return ctlr_is_hard_resettable(board_id) ||
599                 ctlr_is_soft_resettable(board_id);
600 }
601
602 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
603 {
604         return board_id_in_array(needs_abort_tags_swizzled,
605                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
606 }
607
608 static ssize_t host_show_resettable(struct device *dev,
609         struct device_attribute *attr, char *buf)
610 {
611         struct ctlr_info *h;
612         struct Scsi_Host *shost = class_to_shost(dev);
613
614         h = shost_to_hba(shost);
615         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
616 }
617
618 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
619 {
620         return (scsi3addr[3] & 0xC0) == 0x40;
621 }
622
623 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
624         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
625 };
626 #define HPSA_RAID_0     0
627 #define HPSA_RAID_4     1
628 #define HPSA_RAID_1     2       /* also used for RAID 10 */
629 #define HPSA_RAID_5     3       /* also used for RAID 50 */
630 #define HPSA_RAID_51    4
631 #define HPSA_RAID_6     5       /* also used for RAID 60 */
632 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
633 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
634 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
635
636 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
637 {
638         return !device->physical_device;
639 }
640
641 static ssize_t raid_level_show(struct device *dev,
642              struct device_attribute *attr, char *buf)
643 {
644         ssize_t l = 0;
645         unsigned char rlevel;
646         struct ctlr_info *h;
647         struct scsi_device *sdev;
648         struct hpsa_scsi_dev_t *hdev;
649         unsigned long flags;
650
651         sdev = to_scsi_device(dev);
652         h = sdev_to_hba(sdev);
653         spin_lock_irqsave(&h->lock, flags);
654         hdev = sdev->hostdata;
655         if (!hdev) {
656                 spin_unlock_irqrestore(&h->lock, flags);
657                 return -ENODEV;
658         }
659
660         /* Is this even a logical drive? */
661         if (!is_logical_device(hdev)) {
662                 spin_unlock_irqrestore(&h->lock, flags);
663                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
664                 return l;
665         }
666
667         rlevel = hdev->raid_level;
668         spin_unlock_irqrestore(&h->lock, flags);
669         if (rlevel > RAID_UNKNOWN)
670                 rlevel = RAID_UNKNOWN;
671         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
672         return l;
673 }
674
675 static ssize_t lunid_show(struct device *dev,
676              struct device_attribute *attr, char *buf)
677 {
678         struct ctlr_info *h;
679         struct scsi_device *sdev;
680         struct hpsa_scsi_dev_t *hdev;
681         unsigned long flags;
682         unsigned char lunid[8];
683
684         sdev = to_scsi_device(dev);
685         h = sdev_to_hba(sdev);
686         spin_lock_irqsave(&h->lock, flags);
687         hdev = sdev->hostdata;
688         if (!hdev) {
689                 spin_unlock_irqrestore(&h->lock, flags);
690                 return -ENODEV;
691         }
692         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
693         spin_unlock_irqrestore(&h->lock, flags);
694         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
695                 lunid[0], lunid[1], lunid[2], lunid[3],
696                 lunid[4], lunid[5], lunid[6], lunid[7]);
697 }
698
699 static ssize_t unique_id_show(struct device *dev,
700              struct device_attribute *attr, char *buf)
701 {
702         struct ctlr_info *h;
703         struct scsi_device *sdev;
704         struct hpsa_scsi_dev_t *hdev;
705         unsigned long flags;
706         unsigned char sn[16];
707
708         sdev = to_scsi_device(dev);
709         h = sdev_to_hba(sdev);
710         spin_lock_irqsave(&h->lock, flags);
711         hdev = sdev->hostdata;
712         if (!hdev) {
713                 spin_unlock_irqrestore(&h->lock, flags);
714                 return -ENODEV;
715         }
716         memcpy(sn, hdev->device_id, sizeof(sn));
717         spin_unlock_irqrestore(&h->lock, flags);
718         return snprintf(buf, 16 * 2 + 2,
719                         "%02X%02X%02X%02X%02X%02X%02X%02X"
720                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
721                         sn[0], sn[1], sn[2], sn[3],
722                         sn[4], sn[5], sn[6], sn[7],
723                         sn[8], sn[9], sn[10], sn[11],
724                         sn[12], sn[13], sn[14], sn[15]);
725 }
726
727 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
728              struct device_attribute *attr, char *buf)
729 {
730         struct ctlr_info *h;
731         struct scsi_device *sdev;
732         struct hpsa_scsi_dev_t *hdev;
733         unsigned long flags;
734         int offload_enabled;
735
736         sdev = to_scsi_device(dev);
737         h = sdev_to_hba(sdev);
738         spin_lock_irqsave(&h->lock, flags);
739         hdev = sdev->hostdata;
740         if (!hdev) {
741                 spin_unlock_irqrestore(&h->lock, flags);
742                 return -ENODEV;
743         }
744         offload_enabled = hdev->offload_enabled;
745         spin_unlock_irqrestore(&h->lock, flags);
746         return snprintf(buf, 20, "%d\n", offload_enabled);
747 }
748
749 #define MAX_PATHS 8
750
751 static ssize_t path_info_show(struct device *dev,
752              struct device_attribute *attr, char *buf)
753 {
754         struct ctlr_info *h;
755         struct scsi_device *sdev;
756         struct hpsa_scsi_dev_t *hdev;
757         unsigned long flags;
758         int i;
759         int output_len = 0;
760         u8 box;
761         u8 bay;
762         u8 path_map_index = 0;
763         char *active;
764         unsigned char phys_connector[2];
765
766         sdev = to_scsi_device(dev);
767         h = sdev_to_hba(sdev);
768         spin_lock_irqsave(&h->devlock, flags);
769         hdev = sdev->hostdata;
770         if (!hdev) {
771                 spin_unlock_irqrestore(&h->devlock, flags);
772                 return -ENODEV;
773         }
774
775         bay = hdev->bay;
776         for (i = 0; i < MAX_PATHS; i++) {
777                 path_map_index = 1<<i;
778                 if (i == hdev->active_path_index)
779                         active = "Active";
780                 else if (hdev->path_map & path_map_index)
781                         active = "Inactive";
782                 else
783                         continue;
784
785                 output_len += scnprintf(buf + output_len,
786                                 PAGE_SIZE - output_len,
787                                 "[%d:%d:%d:%d] %20.20s ",
788                                 h->scsi_host->host_no,
789                                 hdev->bus, hdev->target, hdev->lun,
790                                 scsi_device_type(hdev->devtype));
791
792                 if (hdev->external ||
793                         hdev->devtype == TYPE_RAID ||
794                         is_logical_device(hdev)) {
795                         output_len += snprintf(buf + output_len,
796                                                 PAGE_SIZE - output_len,
797                                                 "%s\n", active);
798                         continue;
799                 }
800
801                 box = hdev->box[i];
802                 memcpy(&phys_connector, &hdev->phys_connector[i],
803                         sizeof(phys_connector));
804                 if (phys_connector[0] < '0')
805                         phys_connector[0] = '0';
806                 if (phys_connector[1] < '0')
807                         phys_connector[1] = '0';
808                 if (hdev->phys_connector[i] > 0)
809                         output_len += snprintf(buf + output_len,
810                                 PAGE_SIZE - output_len,
811                                 "PORT: %.2s ",
812                                 phys_connector);
813                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
814                         if (box == 0 || box == 0xFF) {
815                                 output_len += snprintf(buf + output_len,
816                                         PAGE_SIZE - output_len,
817                                         "BAY: %hhu %s\n",
818                                         bay, active);
819                         } else {
820                                 output_len += snprintf(buf + output_len,
821                                         PAGE_SIZE - output_len,
822                                         "BOX: %hhu BAY: %hhu %s\n",
823                                         box, bay, active);
824                         }
825                 } else if (box != 0 && box != 0xFF) {
826                         output_len += snprintf(buf + output_len,
827                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
828                                 box, active);
829                 } else
830                         output_len += snprintf(buf + output_len,
831                                 PAGE_SIZE - output_len, "%s\n", active);
832         }
833
834         spin_unlock_irqrestore(&h->devlock, flags);
835         return output_len;
836 }
837
838 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
839 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
840 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
841 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
842 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
843                         host_show_hp_ssd_smart_path_enabled, NULL);
844 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
845 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
846                 host_show_hp_ssd_smart_path_status,
847                 host_store_hp_ssd_smart_path_status);
848 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
849                         host_store_raid_offload_debug);
850 static DEVICE_ATTR(firmware_revision, S_IRUGO,
851         host_show_firmware_revision, NULL);
852 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
853         host_show_commands_outstanding, NULL);
854 static DEVICE_ATTR(transport_mode, S_IRUGO,
855         host_show_transport_mode, NULL);
856 static DEVICE_ATTR(resettable, S_IRUGO,
857         host_show_resettable, NULL);
858 static DEVICE_ATTR(lockup_detected, S_IRUGO,
859         host_show_lockup_detected, NULL);
860
861 static struct device_attribute *hpsa_sdev_attrs[] = {
862         &dev_attr_raid_level,
863         &dev_attr_lunid,
864         &dev_attr_unique_id,
865         &dev_attr_hp_ssd_smart_path_enabled,
866         &dev_attr_path_info,
867         &dev_attr_lockup_detected,
868         NULL,
869 };
870
871 static struct device_attribute *hpsa_shost_attrs[] = {
872         &dev_attr_rescan,
873         &dev_attr_firmware_revision,
874         &dev_attr_commands_outstanding,
875         &dev_attr_transport_mode,
876         &dev_attr_resettable,
877         &dev_attr_hp_ssd_smart_path_status,
878         &dev_attr_raid_offload_debug,
879         NULL,
880 };
881
882 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
883                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
884
885 static struct scsi_host_template hpsa_driver_template = {
886         .module                 = THIS_MODULE,
887         .name                   = HPSA,
888         .proc_name              = HPSA,
889         .queuecommand           = hpsa_scsi_queue_command,
890         .scan_start             = hpsa_scan_start,
891         .scan_finished          = hpsa_scan_finished,
892         .change_queue_depth     = hpsa_change_queue_depth,
893         .this_id                = -1,
894         .use_clustering         = ENABLE_CLUSTERING,
895         .eh_abort_handler       = hpsa_eh_abort_handler,
896         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
897         .ioctl                  = hpsa_ioctl,
898         .slave_alloc            = hpsa_slave_alloc,
899         .slave_configure        = hpsa_slave_configure,
900         .slave_destroy          = hpsa_slave_destroy,
901 #ifdef CONFIG_COMPAT
902         .compat_ioctl           = hpsa_compat_ioctl,
903 #endif
904         .sdev_attrs = hpsa_sdev_attrs,
905         .shost_attrs = hpsa_shost_attrs,
906         .max_sectors = 8192,
907         .no_write_same = 1,
908 };
909
910 static inline u32 next_command(struct ctlr_info *h, u8 q)
911 {
912         u32 a;
913         struct reply_queue_buffer *rq = &h->reply_queue[q];
914
915         if (h->transMethod & CFGTBL_Trans_io_accel1)
916                 return h->access.command_completed(h, q);
917
918         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
919                 return h->access.command_completed(h, q);
920
921         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
922                 a = rq->head[rq->current_entry];
923                 rq->current_entry++;
924                 atomic_dec(&h->commands_outstanding);
925         } else {
926                 a = FIFO_EMPTY;
927         }
928         /* Check for wraparound */
929         if (rq->current_entry == h->max_commands) {
930                 rq->current_entry = 0;
931                 rq->wraparound ^= 1;
932         }
933         return a;
934 }
935
936 /*
937  * There are some special bits in the bus address of the
938  * command that we have to set for the controller to know
939  * how to process the command:
940  *
941  * Normal performant mode:
942  * bit 0: 1 means performant mode, 0 means simple mode.
943  * bits 1-3 = block fetch table entry
944  * bits 4-6 = command type (== 0)
945  *
946  * ioaccel1 mode:
947  * bit 0 = "performant mode" bit.
948  * bits 1-3 = block fetch table entry
949  * bits 4-6 = command type (== 110)
950  * (command type is needed because ioaccel1 mode
951  * commands are submitted through the same register as normal
952  * mode commands, so this is how the controller knows whether
953  * the command is normal mode or ioaccel1 mode.)
954  *
955  * ioaccel2 mode:
956  * bit 0 = "performant mode" bit.
957  * bits 1-4 = block fetch table entry (note extra bit)
958  * bits 4-6 = not needed, because ioaccel2 mode has
959  * a separate special register for submitting commands.
960  */
961
962 /*
963  * set_performant_mode: Modify the tag for cciss performant
964  * set bit 0 for pull model, bits 3-1 for block fetch
965  * register number
966  */
967 #define DEFAULT_REPLY_QUEUE (-1)
968 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
969                                         int reply_queue)
970 {
971         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
972                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
973                 if (unlikely(!h->msix_vector))
974                         return;
975                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
976                         c->Header.ReplyQueue =
977                                 raw_smp_processor_id() % h->nreply_queues;
978                 else
979                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
980         }
981 }
982
983 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
984                                                 struct CommandList *c,
985                                                 int reply_queue)
986 {
987         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
988
989         /*
990          * Tell the controller to post the reply to the queue for this
991          * processor.  This seems to give the best I/O throughput.
992          */
993         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
994                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
995         else
996                 cp->ReplyQueue = reply_queue % h->nreply_queues;
997         /*
998          * Set the bits in the address sent down to include:
999          *  - performant mode bit (bit 0)
1000          *  - pull count (bits 1-3)
1001          *  - command type (bits 4-6)
1002          */
1003         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1004                                         IOACCEL1_BUSADDR_CMDTYPE;
1005 }
1006
1007 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1008                                                 struct CommandList *c,
1009                                                 int reply_queue)
1010 {
1011         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1012                 &h->ioaccel2_cmd_pool[c->cmdindex];
1013
1014         /* Tell the controller to post the reply to the queue for this
1015          * processor.  This seems to give the best I/O throughput.
1016          */
1017         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1018                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1019         else
1020                 cp->reply_queue = reply_queue % h->nreply_queues;
1021         /* Set the bits in the address sent down to include:
1022          *  - performant mode bit not used in ioaccel mode 2
1023          *  - pull count (bits 0-3)
1024          *  - command type isn't needed for ioaccel2
1025          */
1026         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1027 }
1028
1029 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1030                                                 struct CommandList *c,
1031                                                 int reply_queue)
1032 {
1033         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1034
1035         /*
1036          * Tell the controller to post the reply to the queue for this
1037          * processor.  This seems to give the best I/O throughput.
1038          */
1039         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1040                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1041         else
1042                 cp->reply_queue = reply_queue % h->nreply_queues;
1043         /*
1044          * Set the bits in the address sent down to include:
1045          *  - performant mode bit not used in ioaccel mode 2
1046          *  - pull count (bits 0-3)
1047          *  - command type isn't needed for ioaccel2
1048          */
1049         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1050 }
1051
1052 static int is_firmware_flash_cmd(u8 *cdb)
1053 {
1054         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1055 }
1056
1057 /*
1058  * During firmware flash, the heartbeat register may not update as frequently
1059  * as it should.  So we dial down lockup detection during firmware flash. and
1060  * dial it back up when firmware flash completes.
1061  */
1062 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1063 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1064 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1065                 struct CommandList *c)
1066 {
1067         if (!is_firmware_flash_cmd(c->Request.CDB))
1068                 return;
1069         atomic_inc(&h->firmware_flash_in_progress);
1070         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1071 }
1072
1073 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1074                 struct CommandList *c)
1075 {
1076         if (is_firmware_flash_cmd(c->Request.CDB) &&
1077                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1078                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1079 }
1080
1081 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1082         struct CommandList *c, int reply_queue)
1083 {
1084         dial_down_lockup_detection_during_fw_flash(h, c);
1085         atomic_inc(&h->commands_outstanding);
1086         switch (c->cmd_type) {
1087         case CMD_IOACCEL1:
1088                 set_ioaccel1_performant_mode(h, c, reply_queue);
1089                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1090                 break;
1091         case CMD_IOACCEL2:
1092                 set_ioaccel2_performant_mode(h, c, reply_queue);
1093                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1094                 break;
1095         case IOACCEL2_TMF:
1096                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1097                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1098                 break;
1099         default:
1100                 set_performant_mode(h, c, reply_queue);
1101                 h->access.submit_command(h, c);
1102         }
1103 }
1104
1105 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1106 {
1107         if (unlikely(hpsa_is_pending_event(c)))
1108                 return finish_cmd(c);
1109
1110         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1111 }
1112
1113 static inline int is_hba_lunid(unsigned char scsi3addr[])
1114 {
1115         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1116 }
1117
1118 static inline int is_scsi_rev_5(struct ctlr_info *h)
1119 {
1120         if (!h->hba_inquiry_data)
1121                 return 0;
1122         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1123                 return 1;
1124         return 0;
1125 }
1126
1127 static int hpsa_find_target_lun(struct ctlr_info *h,
1128         unsigned char scsi3addr[], int bus, int *target, int *lun)
1129 {
1130         /* finds an unused bus, target, lun for a new physical device
1131          * assumes h->devlock is held
1132          */
1133         int i, found = 0;
1134         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1135
1136         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1137
1138         for (i = 0; i < h->ndevices; i++) {
1139                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1140                         __set_bit(h->dev[i]->target, lun_taken);
1141         }
1142
1143         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1144         if (i < HPSA_MAX_DEVICES) {
1145                 /* *bus = 1; */
1146                 *target = i;
1147                 *lun = 0;
1148                 found = 1;
1149         }
1150         return !found;
1151 }
1152
1153 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1154         struct hpsa_scsi_dev_t *dev, char *description)
1155 {
1156 #define LABEL_SIZE 25
1157         char label[LABEL_SIZE];
1158
1159         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1160                 return;
1161
1162         switch (dev->devtype) {
1163         case TYPE_RAID:
1164                 snprintf(label, LABEL_SIZE, "controller");
1165                 break;
1166         case TYPE_ENCLOSURE:
1167                 snprintf(label, LABEL_SIZE, "enclosure");
1168                 break;
1169         case TYPE_DISK:
1170                 if (dev->external)
1171                         snprintf(label, LABEL_SIZE, "external");
1172                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1173                         snprintf(label, LABEL_SIZE, "%s",
1174                                 raid_label[PHYSICAL_DRIVE]);
1175                 else
1176                         snprintf(label, LABEL_SIZE, "RAID-%s",
1177                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1178                                 raid_label[dev->raid_level]);
1179                 break;
1180         case TYPE_ROM:
1181                 snprintf(label, LABEL_SIZE, "rom");
1182                 break;
1183         case TYPE_TAPE:
1184                 snprintf(label, LABEL_SIZE, "tape");
1185                 break;
1186         case TYPE_MEDIUM_CHANGER:
1187                 snprintf(label, LABEL_SIZE, "changer");
1188                 break;
1189         default:
1190                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1191                 break;
1192         }
1193
1194         dev_printk(level, &h->pdev->dev,
1195                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1196                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1197                         description,
1198                         scsi_device_type(dev->devtype),
1199                         dev->vendor,
1200                         dev->model,
1201                         label,
1202                         dev->offload_config ? '+' : '-',
1203                         dev->offload_enabled ? '+' : '-',
1204                         dev->expose_device);
1205 }
1206
1207 /* Add an entry into h->dev[] array. */
1208 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1209                 struct hpsa_scsi_dev_t *device,
1210                 struct hpsa_scsi_dev_t *added[], int *nadded)
1211 {
1212         /* assumes h->devlock is held */
1213         int n = h->ndevices;
1214         int i;
1215         unsigned char addr1[8], addr2[8];
1216         struct hpsa_scsi_dev_t *sd;
1217
1218         if (n >= HPSA_MAX_DEVICES) {
1219                 dev_err(&h->pdev->dev, "too many devices, some will be "
1220                         "inaccessible.\n");
1221                 return -1;
1222         }
1223
1224         /* physical devices do not have lun or target assigned until now. */
1225         if (device->lun != -1)
1226                 /* Logical device, lun is already assigned. */
1227                 goto lun_assigned;
1228
1229         /* If this device a non-zero lun of a multi-lun device
1230          * byte 4 of the 8-byte LUN addr will contain the logical
1231          * unit no, zero otherwise.
1232          */
1233         if (device->scsi3addr[4] == 0) {
1234                 /* This is not a non-zero lun of a multi-lun device */
1235                 if (hpsa_find_target_lun(h, device->scsi3addr,
1236                         device->bus, &device->target, &device->lun) != 0)
1237                         return -1;
1238                 goto lun_assigned;
1239         }
1240
1241         /* This is a non-zero lun of a multi-lun device.
1242          * Search through our list and find the device which
1243          * has the same 8 byte LUN address, excepting byte 4 and 5.
1244          * Assign the same bus and target for this new LUN.
1245          * Use the logical unit number from the firmware.
1246          */
1247         memcpy(addr1, device->scsi3addr, 8);
1248         addr1[4] = 0;
1249         addr1[5] = 0;
1250         for (i = 0; i < n; i++) {
1251                 sd = h->dev[i];
1252                 memcpy(addr2, sd->scsi3addr, 8);
1253                 addr2[4] = 0;
1254                 addr2[5] = 0;
1255                 /* differ only in byte 4 and 5? */
1256                 if (memcmp(addr1, addr2, 8) == 0) {
1257                         device->bus = sd->bus;
1258                         device->target = sd->target;
1259                         device->lun = device->scsi3addr[4];
1260                         break;
1261                 }
1262         }
1263         if (device->lun == -1) {
1264                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1265                         " suspect firmware bug or unsupported hardware "
1266                         "configuration.\n");
1267                         return -1;
1268         }
1269
1270 lun_assigned:
1271
1272         h->dev[n] = device;
1273         h->ndevices++;
1274         added[*nadded] = device;
1275         (*nadded)++;
1276         hpsa_show_dev_msg(KERN_INFO, h, device,
1277                 device->expose_device ? "added" : "masked");
1278         device->offload_to_be_enabled = device->offload_enabled;
1279         device->offload_enabled = 0;
1280         return 0;
1281 }
1282
1283 /* Update an entry in h->dev[] array. */
1284 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1285         int entry, struct hpsa_scsi_dev_t *new_entry)
1286 {
1287         int offload_enabled;
1288         /* assumes h->devlock is held */
1289         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1290
1291         /* Raid level changed. */
1292         h->dev[entry]->raid_level = new_entry->raid_level;
1293
1294         /* Raid offload parameters changed.  Careful about the ordering. */
1295         if (new_entry->offload_config && new_entry->offload_enabled) {
1296                 /*
1297                  * if drive is newly offload_enabled, we want to copy the
1298                  * raid map data first.  If previously offload_enabled and
1299                  * offload_config were set, raid map data had better be
1300                  * the same as it was before.  if raid map data is changed
1301                  * then it had better be the case that
1302                  * h->dev[entry]->offload_enabled is currently 0.
1303                  */
1304                 h->dev[entry]->raid_map = new_entry->raid_map;
1305                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1306         }
1307         if (new_entry->hba_ioaccel_enabled) {
1308                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1310         }
1311         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1312         h->dev[entry]->offload_config = new_entry->offload_config;
1313         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1314         h->dev[entry]->queue_depth = new_entry->queue_depth;
1315
1316         /*
1317          * We can turn off ioaccel offload now, but need to delay turning
1318          * it on until we can update h->dev[entry]->phys_disk[], but we
1319          * can't do that until all the devices are updated.
1320          */
1321         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1322         if (!new_entry->offload_enabled)
1323                 h->dev[entry]->offload_enabled = 0;
1324
1325         offload_enabled = h->dev[entry]->offload_enabled;
1326         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1327         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1328         h->dev[entry]->offload_enabled = offload_enabled;
1329 }
1330
1331 /* Replace an entry from h->dev[] array. */
1332 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1333         int entry, struct hpsa_scsi_dev_t *new_entry,
1334         struct hpsa_scsi_dev_t *added[], int *nadded,
1335         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1336 {
1337         /* assumes h->devlock is held */
1338         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1339         removed[*nremoved] = h->dev[entry];
1340         (*nremoved)++;
1341
1342         /*
1343          * New physical devices won't have target/lun assigned yet
1344          * so we need to preserve the values in the slot we are replacing.
1345          */
1346         if (new_entry->target == -1) {
1347                 new_entry->target = h->dev[entry]->target;
1348                 new_entry->lun = h->dev[entry]->lun;
1349         }
1350
1351         h->dev[entry] = new_entry;
1352         added[*nadded] = new_entry;
1353         (*nadded)++;
1354         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1355         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1356         new_entry->offload_enabled = 0;
1357 }
1358
1359 /* Remove an entry from h->dev[] array. */
1360 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1361         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1362 {
1363         /* assumes h->devlock is held */
1364         int i;
1365         struct hpsa_scsi_dev_t *sd;
1366
1367         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1368
1369         sd = h->dev[entry];
1370         removed[*nremoved] = h->dev[entry];
1371         (*nremoved)++;
1372
1373         for (i = entry; i < h->ndevices-1; i++)
1374                 h->dev[i] = h->dev[i+1];
1375         h->ndevices--;
1376         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1377 }
1378
1379 #define SCSI3ADDR_EQ(a, b) ( \
1380         (a)[7] == (b)[7] && \
1381         (a)[6] == (b)[6] && \
1382         (a)[5] == (b)[5] && \
1383         (a)[4] == (b)[4] && \
1384         (a)[3] == (b)[3] && \
1385         (a)[2] == (b)[2] && \
1386         (a)[1] == (b)[1] && \
1387         (a)[0] == (b)[0])
1388
1389 static void fixup_botched_add(struct ctlr_info *h,
1390         struct hpsa_scsi_dev_t *added)
1391 {
1392         /* called when scsi_add_device fails in order to re-adjust
1393          * h->dev[] to match the mid layer's view.
1394          */
1395         unsigned long flags;
1396         int i, j;
1397
1398         spin_lock_irqsave(&h->lock, flags);
1399         for (i = 0; i < h->ndevices; i++) {
1400                 if (h->dev[i] == added) {
1401                         for (j = i; j < h->ndevices-1; j++)
1402                                 h->dev[j] = h->dev[j+1];
1403                         h->ndevices--;
1404                         break;
1405                 }
1406         }
1407         spin_unlock_irqrestore(&h->lock, flags);
1408         kfree(added);
1409 }
1410
1411 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1412         struct hpsa_scsi_dev_t *dev2)
1413 {
1414         /* we compare everything except lun and target as these
1415          * are not yet assigned.  Compare parts likely
1416          * to differ first
1417          */
1418         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1419                 sizeof(dev1->scsi3addr)) != 0)
1420                 return 0;
1421         if (memcmp(dev1->device_id, dev2->device_id,
1422                 sizeof(dev1->device_id)) != 0)
1423                 return 0;
1424         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1425                 return 0;
1426         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1427                 return 0;
1428         if (dev1->devtype != dev2->devtype)
1429                 return 0;
1430         if (dev1->bus != dev2->bus)
1431                 return 0;
1432         return 1;
1433 }
1434
1435 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1436         struct hpsa_scsi_dev_t *dev2)
1437 {
1438         /* Device attributes that can change, but don't mean
1439          * that the device is a different device, nor that the OS
1440          * needs to be told anything about the change.
1441          */
1442         if (dev1->raid_level != dev2->raid_level)
1443                 return 1;
1444         if (dev1->offload_config != dev2->offload_config)
1445                 return 1;
1446         if (dev1->offload_enabled != dev2->offload_enabled)
1447                 return 1;
1448         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1449                 if (dev1->queue_depth != dev2->queue_depth)
1450                         return 1;
1451         return 0;
1452 }
1453
1454 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1455  * and return needle location in *index.  If scsi3addr matches, but not
1456  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1457  * location in *index.
1458  * In the case of a minor device attribute change, such as RAID level, just
1459  * return DEVICE_UPDATED, along with the updated device's location in index.
1460  * If needle not found, return DEVICE_NOT_FOUND.
1461  */
1462 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1463         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1464         int *index)
1465 {
1466         int i;
1467 #define DEVICE_NOT_FOUND 0
1468 #define DEVICE_CHANGED 1
1469 #define DEVICE_SAME 2
1470 #define DEVICE_UPDATED 3
1471         if (needle == NULL)
1472                 return DEVICE_NOT_FOUND;
1473
1474         for (i = 0; i < haystack_size; i++) {
1475                 if (haystack[i] == NULL) /* previously removed. */
1476                         continue;
1477                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1478                         *index = i;
1479                         if (device_is_the_same(needle, haystack[i])) {
1480                                 if (device_updated(needle, haystack[i]))
1481                                         return DEVICE_UPDATED;
1482                                 return DEVICE_SAME;
1483                         } else {
1484                                 /* Keep offline devices offline */
1485                                 if (needle->volume_offline)
1486                                         return DEVICE_NOT_FOUND;
1487                                 return DEVICE_CHANGED;
1488                         }
1489                 }
1490         }
1491         *index = -1;
1492         return DEVICE_NOT_FOUND;
1493 }
1494
1495 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1496                                         unsigned char scsi3addr[])
1497 {
1498         struct offline_device_entry *device;
1499         unsigned long flags;
1500
1501         /* Check to see if device is already on the list */
1502         spin_lock_irqsave(&h->offline_device_lock, flags);
1503         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1504                 if (memcmp(device->scsi3addr, scsi3addr,
1505                         sizeof(device->scsi3addr)) == 0) {
1506                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1507                         return;
1508                 }
1509         }
1510         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1511
1512         /* Device is not on the list, add it. */
1513         device = kmalloc(sizeof(*device), GFP_KERNEL);
1514         if (!device) {
1515                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1516                 return;
1517         }
1518         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1519         spin_lock_irqsave(&h->offline_device_lock, flags);
1520         list_add_tail(&device->offline_list, &h->offline_device_list);
1521         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1522 }
1523
1524 /* Print a message explaining various offline volume states */
1525 static void hpsa_show_volume_status(struct ctlr_info *h,
1526         struct hpsa_scsi_dev_t *sd)
1527 {
1528         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1529                 dev_info(&h->pdev->dev,
1530                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1531                         h->scsi_host->host_no,
1532                         sd->bus, sd->target, sd->lun);
1533         switch (sd->volume_offline) {
1534         case HPSA_LV_OK:
1535                 break;
1536         case HPSA_LV_UNDERGOING_ERASE:
1537                 dev_info(&h->pdev->dev,
1538                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1539                         h->scsi_host->host_no,
1540                         sd->bus, sd->target, sd->lun);
1541                 break;
1542         case HPSA_LV_NOT_AVAILABLE:
1543                 dev_info(&h->pdev->dev,
1544                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1545                         h->scsi_host->host_no,
1546                         sd->bus, sd->target, sd->lun);
1547                 break;
1548         case HPSA_LV_UNDERGOING_RPI:
1549                 dev_info(&h->pdev->dev,
1550                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1551                         h->scsi_host->host_no,
1552                         sd->bus, sd->target, sd->lun);
1553                 break;
1554         case HPSA_LV_PENDING_RPI:
1555                 dev_info(&h->pdev->dev,
1556                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1557                         h->scsi_host->host_no,
1558                         sd->bus, sd->target, sd->lun);
1559                 break;
1560         case HPSA_LV_ENCRYPTED_NO_KEY:
1561                 dev_info(&h->pdev->dev,
1562                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1563                         h->scsi_host->host_no,
1564                         sd->bus, sd->target, sd->lun);
1565                 break;
1566         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1567                 dev_info(&h->pdev->dev,
1568                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1569                         h->scsi_host->host_no,
1570                         sd->bus, sd->target, sd->lun);
1571                 break;
1572         case HPSA_LV_UNDERGOING_ENCRYPTION:
1573                 dev_info(&h->pdev->dev,
1574                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1575                         h->scsi_host->host_no,
1576                         sd->bus, sd->target, sd->lun);
1577                 break;
1578         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1579                 dev_info(&h->pdev->dev,
1580                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1581                         h->scsi_host->host_no,
1582                         sd->bus, sd->target, sd->lun);
1583                 break;
1584         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1585                 dev_info(&h->pdev->dev,
1586                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1587                         h->scsi_host->host_no,
1588                         sd->bus, sd->target, sd->lun);
1589                 break;
1590         case HPSA_LV_PENDING_ENCRYPTION:
1591                 dev_info(&h->pdev->dev,
1592                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1593                         h->scsi_host->host_no,
1594                         sd->bus, sd->target, sd->lun);
1595                 break;
1596         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1597                 dev_info(&h->pdev->dev,
1598                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1599                         h->scsi_host->host_no,
1600                         sd->bus, sd->target, sd->lun);
1601                 break;
1602         }
1603 }
1604
1605 /*
1606  * Figure the list of physical drive pointers for a logical drive with
1607  * raid offload configured.
1608  */
1609 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1610                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1611                                 struct hpsa_scsi_dev_t *logical_drive)
1612 {
1613         struct raid_map_data *map = &logical_drive->raid_map;
1614         struct raid_map_disk_data *dd = &map->data[0];
1615         int i, j;
1616         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1617                                 le16_to_cpu(map->metadata_disks_per_row);
1618         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1619                                 le16_to_cpu(map->layout_map_count) *
1620                                 total_disks_per_row;
1621         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1622                                 total_disks_per_row;
1623         int qdepth;
1624
1625         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1626                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1627
1628         logical_drive->nphysical_disks = nraid_map_entries;
1629
1630         qdepth = 0;
1631         for (i = 0; i < nraid_map_entries; i++) {
1632                 logical_drive->phys_disk[i] = NULL;
1633                 if (!logical_drive->offload_config)
1634                         continue;
1635                 for (j = 0; j < ndevices; j++) {
1636                         if (dev[j] == NULL)
1637                                 continue;
1638                         if (dev[j]->devtype != TYPE_DISK)
1639                                 continue;
1640                         if (is_logical_device(dev[j]))
1641                                 continue;
1642                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1643                                 continue;
1644
1645                         logical_drive->phys_disk[i] = dev[j];
1646                         if (i < nphys_disk)
1647                                 qdepth = min(h->nr_cmds, qdepth +
1648                                     logical_drive->phys_disk[i]->queue_depth);
1649                         break;
1650                 }
1651
1652                 /*
1653                  * This can happen if a physical drive is removed and
1654                  * the logical drive is degraded.  In that case, the RAID
1655                  * map data will refer to a physical disk which isn't actually
1656                  * present.  And in that case offload_enabled should already
1657                  * be 0, but we'll turn it off here just in case
1658                  */
1659                 if (!logical_drive->phys_disk[i]) {
1660                         logical_drive->offload_enabled = 0;
1661                         logical_drive->offload_to_be_enabled = 0;
1662                         logical_drive->queue_depth = 8;
1663                 }
1664         }
1665         if (nraid_map_entries)
1666                 /*
1667                  * This is correct for reads, too high for full stripe writes,
1668                  * way too high for partial stripe writes
1669                  */
1670                 logical_drive->queue_depth = qdepth;
1671         else
1672                 logical_drive->queue_depth = h->nr_cmds;
1673 }
1674
1675 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1676                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1677 {
1678         int i;
1679
1680         for (i = 0; i < ndevices; i++) {
1681                 if (dev[i] == NULL)
1682                         continue;
1683                 if (dev[i]->devtype != TYPE_DISK)
1684                         continue;
1685                 if (!is_logical_device(dev[i]))
1686                         continue;
1687
1688                 /*
1689                  * If offload is currently enabled, the RAID map and
1690                  * phys_disk[] assignment *better* not be changing
1691                  * and since it isn't changing, we do not need to
1692                  * update it.
1693                  */
1694                 if (dev[i]->offload_enabled)
1695                         continue;
1696
1697                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1698         }
1699 }
1700
1701 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1702 {
1703         int rc = 0;
1704
1705         if (!h->scsi_host)
1706                 return 1;
1707
1708         if (is_logical_device(device)) /* RAID */
1709                 rc = scsi_add_device(h->scsi_host, device->bus,
1710                                         device->target, device->lun);
1711         else /* HBA */
1712                 rc = hpsa_add_sas_device(h->sas_host, device);
1713
1714         return rc;
1715 }
1716
1717 static void hpsa_remove_device(struct ctlr_info *h,
1718                         struct hpsa_scsi_dev_t *device)
1719 {
1720         struct scsi_device *sdev = NULL;
1721
1722         if (!h->scsi_host)
1723                 return;
1724
1725         if (is_logical_device(device)) { /* RAID */
1726                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1727                                                 device->target, device->lun);
1728                 if (sdev) {
1729                         scsi_remove_device(sdev);
1730                         scsi_device_put(sdev);
1731                 } else {
1732                         /*
1733                          * We don't expect to get here.  Future commands
1734                          * to this device will get a selection timeout as
1735                          * if the device were gone.
1736                          */
1737                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1738                                         "didn't find device for removal.");
1739                 }
1740         } else /* HBA */
1741                 hpsa_remove_sas_device(device);
1742 }
1743
1744 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1745         struct hpsa_scsi_dev_t *sd[], int nsds)
1746 {
1747         /* sd contains scsi3 addresses and devtypes, and inquiry
1748          * data.  This function takes what's in sd to be the current
1749          * reality and updates h->dev[] to reflect that reality.
1750          */
1751         int i, entry, device_change, changes = 0;
1752         struct hpsa_scsi_dev_t *csd;
1753         unsigned long flags;
1754         struct hpsa_scsi_dev_t **added, **removed;
1755         int nadded, nremoved;
1756
1757         /*
1758          * A reset can cause a device status to change
1759          * re-schedule the scan to see what happened.
1760          */
1761         if (h->reset_in_progress) {
1762                 h->drv_req_rescan = 1;
1763                 return;
1764         }
1765
1766         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1767         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1768
1769         if (!added || !removed) {
1770                 dev_warn(&h->pdev->dev, "out of memory in "
1771                         "adjust_hpsa_scsi_table\n");
1772                 goto free_and_out;
1773         }
1774
1775         spin_lock_irqsave(&h->devlock, flags);
1776
1777         /* find any devices in h->dev[] that are not in
1778          * sd[] and remove them from h->dev[], and for any
1779          * devices which have changed, remove the old device
1780          * info and add the new device info.
1781          * If minor device attributes change, just update
1782          * the existing device structure.
1783          */
1784         i = 0;
1785         nremoved = 0;
1786         nadded = 0;
1787         while (i < h->ndevices) {
1788                 csd = h->dev[i];
1789                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1790                 if (device_change == DEVICE_NOT_FOUND) {
1791                         changes++;
1792                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1793                         continue; /* remove ^^^, hence i not incremented */
1794                 } else if (device_change == DEVICE_CHANGED) {
1795                         changes++;
1796                         hpsa_scsi_replace_entry(h, i, sd[entry],
1797                                 added, &nadded, removed, &nremoved);
1798                         /* Set it to NULL to prevent it from being freed
1799                          * at the bottom of hpsa_update_scsi_devices()
1800                          */
1801                         sd[entry] = NULL;
1802                 } else if (device_change == DEVICE_UPDATED) {
1803                         hpsa_scsi_update_entry(h, i, sd[entry]);
1804                 }
1805                 i++;
1806         }
1807
1808         /* Now, make sure every device listed in sd[] is also
1809          * listed in h->dev[], adding them if they aren't found
1810          */
1811
1812         for (i = 0; i < nsds; i++) {
1813                 if (!sd[i]) /* if already added above. */
1814                         continue;
1815
1816                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1817                  * as the SCSI mid-layer does not handle such devices well.
1818                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1819                  * at 160Hz, and prevents the system from coming up.
1820                  */
1821                 if (sd[i]->volume_offline) {
1822                         hpsa_show_volume_status(h, sd[i]);
1823                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1824                         continue;
1825                 }
1826
1827                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1828                                         h->ndevices, &entry);
1829                 if (device_change == DEVICE_NOT_FOUND) {
1830                         changes++;
1831                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1832                                 break;
1833                         sd[i] = NULL; /* prevent from being freed later. */
1834                 } else if (device_change == DEVICE_CHANGED) {
1835                         /* should never happen... */
1836                         changes++;
1837                         dev_warn(&h->pdev->dev,
1838                                 "device unexpectedly changed.\n");
1839                         /* but if it does happen, we just ignore that device */
1840                 }
1841         }
1842         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1843
1844         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1845          * any logical drives that need it enabled.
1846          */
1847         for (i = 0; i < h->ndevices; i++) {
1848                 if (h->dev[i] == NULL)
1849                         continue;
1850                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1851         }
1852
1853         spin_unlock_irqrestore(&h->devlock, flags);
1854
1855         /* Monitor devices which are in one of several NOT READY states to be
1856          * brought online later. This must be done without holding h->devlock,
1857          * so don't touch h->dev[]
1858          */
1859         for (i = 0; i < nsds; i++) {
1860                 if (!sd[i]) /* if already added above. */
1861                         continue;
1862                 if (sd[i]->volume_offline)
1863                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1864         }
1865
1866         /* Don't notify scsi mid layer of any changes the first time through
1867          * (or if there are no changes) scsi_scan_host will do it later the
1868          * first time through.
1869          */
1870         if (!changes)
1871                 goto free_and_out;
1872
1873         /* Notify scsi mid layer of any removed devices */
1874         for (i = 0; i < nremoved; i++) {
1875                 if (removed[i] == NULL)
1876                         continue;
1877                 if (removed[i]->expose_device)
1878                         hpsa_remove_device(h, removed[i]);
1879                 kfree(removed[i]);
1880                 removed[i] = NULL;
1881         }
1882
1883         /* Notify scsi mid layer of any added devices */
1884         for (i = 0; i < nadded; i++) {
1885                 int rc = 0;
1886
1887                 if (added[i] == NULL)
1888                         continue;
1889                 if (!(added[i]->expose_device))
1890                         continue;
1891                 rc = hpsa_add_device(h, added[i]);
1892                 if (!rc)
1893                         continue;
1894                 dev_warn(&h->pdev->dev,
1895                         "addition failed %d, device not added.", rc);
1896                 /* now we have to remove it from h->dev,
1897                  * since it didn't get added to scsi mid layer
1898                  */
1899                 fixup_botched_add(h, added[i]);
1900                 h->drv_req_rescan = 1;
1901         }
1902
1903 free_and_out:
1904         kfree(added);
1905         kfree(removed);
1906 }
1907
1908 /*
1909  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1910  * Assume's h->devlock is held.
1911  */
1912 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1913         int bus, int target, int lun)
1914 {
1915         int i;
1916         struct hpsa_scsi_dev_t *sd;
1917
1918         for (i = 0; i < h->ndevices; i++) {
1919                 sd = h->dev[i];
1920                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1921                         return sd;
1922         }
1923         return NULL;
1924 }
1925
1926 static int hpsa_slave_alloc(struct scsi_device *sdev)
1927 {
1928         struct hpsa_scsi_dev_t *sd;
1929         unsigned long flags;
1930         struct ctlr_info *h;
1931
1932         h = sdev_to_hba(sdev);
1933         spin_lock_irqsave(&h->devlock, flags);
1934         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1935                 struct scsi_target *starget;
1936                 struct sas_rphy *rphy;
1937
1938                 starget = scsi_target(sdev);
1939                 rphy = target_to_rphy(starget);
1940                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1941                 if (sd) {
1942                         sd->target = sdev_id(sdev);
1943                         sd->lun = sdev->lun;
1944                 }
1945         } else
1946                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1947                                         sdev_id(sdev), sdev->lun);
1948
1949         if (sd && sd->expose_device) {
1950                 atomic_set(&sd->ioaccel_cmds_out, 0);
1951                 sdev->hostdata = sd;
1952         } else
1953                 sdev->hostdata = NULL;
1954         spin_unlock_irqrestore(&h->devlock, flags);
1955         return 0;
1956 }
1957
1958 /* configure scsi device based on internal per-device structure */
1959 static int hpsa_slave_configure(struct scsi_device *sdev)
1960 {
1961         struct hpsa_scsi_dev_t *sd;
1962         int queue_depth;
1963
1964         sd = sdev->hostdata;
1965         sdev->no_uld_attach = !sd || !sd->expose_device;
1966
1967         if (sd)
1968                 queue_depth = sd->queue_depth != 0 ?
1969                         sd->queue_depth : sdev->host->can_queue;
1970         else
1971                 queue_depth = sdev->host->can_queue;
1972
1973         scsi_change_queue_depth(sdev, queue_depth);
1974
1975         return 0;
1976 }
1977
1978 static void hpsa_slave_destroy(struct scsi_device *sdev)
1979 {
1980         /* nothing to do. */
1981 }
1982
1983 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1984 {
1985         int i;
1986
1987         if (!h->ioaccel2_cmd_sg_list)
1988                 return;
1989         for (i = 0; i < h->nr_cmds; i++) {
1990                 kfree(h->ioaccel2_cmd_sg_list[i]);
1991                 h->ioaccel2_cmd_sg_list[i] = NULL;
1992         }
1993         kfree(h->ioaccel2_cmd_sg_list);
1994         h->ioaccel2_cmd_sg_list = NULL;
1995 }
1996
1997 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1998 {
1999         int i;
2000
2001         if (h->chainsize <= 0)
2002                 return 0;
2003
2004         h->ioaccel2_cmd_sg_list =
2005                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2006                                         GFP_KERNEL);
2007         if (!h->ioaccel2_cmd_sg_list)
2008                 return -ENOMEM;
2009         for (i = 0; i < h->nr_cmds; i++) {
2010                 h->ioaccel2_cmd_sg_list[i] =
2011                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2012                                         h->maxsgentries, GFP_KERNEL);
2013                 if (!h->ioaccel2_cmd_sg_list[i])
2014                         goto clean;
2015         }
2016         return 0;
2017
2018 clean:
2019         hpsa_free_ioaccel2_sg_chain_blocks(h);
2020         return -ENOMEM;
2021 }
2022
2023 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2024 {
2025         int i;
2026
2027         if (!h->cmd_sg_list)
2028                 return;
2029         for (i = 0; i < h->nr_cmds; i++) {
2030                 kfree(h->cmd_sg_list[i]);
2031                 h->cmd_sg_list[i] = NULL;
2032         }
2033         kfree(h->cmd_sg_list);
2034         h->cmd_sg_list = NULL;
2035 }
2036
2037 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2038 {
2039         int i;
2040
2041         if (h->chainsize <= 0)
2042                 return 0;
2043
2044         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2045                                 GFP_KERNEL);
2046         if (!h->cmd_sg_list) {
2047                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2048                 return -ENOMEM;
2049         }
2050         for (i = 0; i < h->nr_cmds; i++) {
2051                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2052                                                 h->chainsize, GFP_KERNEL);
2053                 if (!h->cmd_sg_list[i]) {
2054                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2055                         goto clean;
2056                 }
2057         }
2058         return 0;
2059
2060 clean:
2061         hpsa_free_sg_chain_blocks(h);
2062         return -ENOMEM;
2063 }
2064
2065 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2066         struct io_accel2_cmd *cp, struct CommandList *c)
2067 {
2068         struct ioaccel2_sg_element *chain_block;
2069         u64 temp64;
2070         u32 chain_size;
2071
2072         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2073         chain_size = le32_to_cpu(cp->sg[0].length);
2074         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2075                                 PCI_DMA_TODEVICE);
2076         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2077                 /* prevent subsequent unmapping */
2078                 cp->sg->address = 0;
2079                 return -1;
2080         }
2081         cp->sg->address = cpu_to_le64(temp64);
2082         return 0;
2083 }
2084
2085 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2086         struct io_accel2_cmd *cp)
2087 {
2088         struct ioaccel2_sg_element *chain_sg;
2089         u64 temp64;
2090         u32 chain_size;
2091
2092         chain_sg = cp->sg;
2093         temp64 = le64_to_cpu(chain_sg->address);
2094         chain_size = le32_to_cpu(cp->sg[0].length);
2095         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2096 }
2097
2098 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2099         struct CommandList *c)
2100 {
2101         struct SGDescriptor *chain_sg, *chain_block;
2102         u64 temp64;
2103         u32 chain_len;
2104
2105         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2106         chain_block = h->cmd_sg_list[c->cmdindex];
2107         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2108         chain_len = sizeof(*chain_sg) *
2109                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2110         chain_sg->Len = cpu_to_le32(chain_len);
2111         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2112                                 PCI_DMA_TODEVICE);
2113         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2114                 /* prevent subsequent unmapping */
2115                 chain_sg->Addr = cpu_to_le64(0);
2116                 return -1;
2117         }
2118         chain_sg->Addr = cpu_to_le64(temp64);
2119         return 0;
2120 }
2121
2122 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2123         struct CommandList *c)
2124 {
2125         struct SGDescriptor *chain_sg;
2126
2127         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2128                 return;
2129
2130         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2131         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2132                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2133 }
2134
2135
2136 /* Decode the various types of errors on ioaccel2 path.
2137  * Return 1 for any error that should generate a RAID path retry.
2138  * Return 0 for errors that don't require a RAID path retry.
2139  */
2140 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2141                                         struct CommandList *c,
2142                                         struct scsi_cmnd *cmd,
2143                                         struct io_accel2_cmd *c2)
2144 {
2145         int data_len;
2146         int retry = 0;
2147         u32 ioaccel2_resid = 0;
2148
2149         switch (c2->error_data.serv_response) {
2150         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2151                 switch (c2->error_data.status) {
2152                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2153                         break;
2154                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2155                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2156                         if (c2->error_data.data_present !=
2157                                         IOACCEL2_SENSE_DATA_PRESENT) {
2158                                 memset(cmd->sense_buffer, 0,
2159                                         SCSI_SENSE_BUFFERSIZE);
2160                                 break;
2161                         }
2162                         /* copy the sense data */
2163                         data_len = c2->error_data.sense_data_len;
2164                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2165                                 data_len = SCSI_SENSE_BUFFERSIZE;
2166                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2167                                 data_len =
2168                                         sizeof(c2->error_data.sense_data_buff);
2169                         memcpy(cmd->sense_buffer,
2170                                 c2->error_data.sense_data_buff, data_len);
2171                         retry = 1;
2172                         break;
2173                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2174                         retry = 1;
2175                         break;
2176                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2177                         retry = 1;
2178                         break;
2179                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2180                         retry = 1;
2181                         break;
2182                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2183                         retry = 1;
2184                         break;
2185                 default:
2186                         retry = 1;
2187                         break;
2188                 }
2189                 break;
2190         case IOACCEL2_SERV_RESPONSE_FAILURE:
2191                 switch (c2->error_data.status) {
2192                 case IOACCEL2_STATUS_SR_IO_ERROR:
2193                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2194                 case IOACCEL2_STATUS_SR_OVERRUN:
2195                         retry = 1;
2196                         break;
2197                 case IOACCEL2_STATUS_SR_UNDERRUN:
2198                         cmd->result = (DID_OK << 16);           /* host byte */
2199                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2200                         ioaccel2_resid = get_unaligned_le32(
2201                                                 &c2->error_data.resid_cnt[0]);
2202                         scsi_set_resid(cmd, ioaccel2_resid);
2203                         break;
2204                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2205                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2206                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2207                         /* We will get an event from ctlr to trigger rescan */
2208                         retry = 1;
2209                         break;
2210                 default:
2211                         retry = 1;
2212                 }
2213                 break;
2214         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2215                 break;
2216         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2217                 break;
2218         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2219                 retry = 1;
2220                 break;
2221         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2222                 break;
2223         default:
2224                 retry = 1;
2225                 break;
2226         }
2227
2228         return retry;   /* retry on raid path? */
2229 }
2230
2231 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2232                 struct CommandList *c)
2233 {
2234         bool do_wake = false;
2235
2236         /*
2237          * Prevent the following race in the abort handler:
2238          *
2239          * 1. LLD is requested to abort a SCSI command
2240          * 2. The SCSI command completes
2241          * 3. The struct CommandList associated with step 2 is made available
2242          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2243          * 5. Abort handler follows scsi_cmnd->host_scribble and
2244          *    finds struct CommandList and tries to aborts it
2245          * Now we have aborted the wrong command.
2246          *
2247          * Reset c->scsi_cmd here so that the abort or reset handler will know
2248          * this command has completed.  Then, check to see if the handler is
2249          * waiting for this command, and, if so, wake it.
2250          */
2251         c->scsi_cmd = SCSI_CMD_IDLE;
2252         mb();   /* Declare command idle before checking for pending events. */
2253         if (c->abort_pending) {
2254                 do_wake = true;
2255                 c->abort_pending = false;
2256         }
2257         if (c->reset_pending) {
2258                 unsigned long flags;
2259                 struct hpsa_scsi_dev_t *dev;
2260
2261                 /*
2262                  * There appears to be a reset pending; lock the lock and
2263                  * reconfirm.  If so, then decrement the count of outstanding
2264                  * commands and wake the reset command if this is the last one.
2265                  */
2266                 spin_lock_irqsave(&h->lock, flags);
2267                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2268                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2269                         do_wake = true;
2270                 c->reset_pending = NULL;
2271                 spin_unlock_irqrestore(&h->lock, flags);
2272         }
2273
2274         if (do_wake)
2275                 wake_up_all(&h->event_sync_wait_queue);
2276 }
2277
2278 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2279                                       struct CommandList *c)
2280 {
2281         hpsa_cmd_resolve_events(h, c);
2282         cmd_tagged_free(h, c);
2283 }
2284
2285 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2286                 struct CommandList *c, struct scsi_cmnd *cmd)
2287 {
2288         hpsa_cmd_resolve_and_free(h, c);
2289         cmd->scsi_done(cmd);
2290 }
2291
2292 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2293 {
2294         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2295         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2296 }
2297
2298 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2299 {
2300         cmd->result = DID_ABORT << 16;
2301 }
2302
2303 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2304                                     struct scsi_cmnd *cmd)
2305 {
2306         hpsa_set_scsi_cmd_aborted(cmd);
2307         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2308                          c->Request.CDB, c->err_info->ScsiStatus);
2309         hpsa_cmd_resolve_and_free(h, c);
2310 }
2311
2312 static void process_ioaccel2_completion(struct ctlr_info *h,
2313                 struct CommandList *c, struct scsi_cmnd *cmd,
2314                 struct hpsa_scsi_dev_t *dev)
2315 {
2316         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2317
2318         /* check for good status */
2319         if (likely(c2->error_data.serv_response == 0 &&
2320                         c2->error_data.status == 0))
2321                 return hpsa_cmd_free_and_done(h, c, cmd);
2322
2323         /*
2324          * Any RAID offload error results in retry which will use
2325          * the normal I/O path so the controller can handle whatever's
2326          * wrong.
2327          */
2328         if (is_logical_device(dev) &&
2329                 c2->error_data.serv_response ==
2330                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2331                 if (c2->error_data.status ==
2332                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2333                         dev->offload_enabled = 0;
2334
2335                 return hpsa_retry_cmd(h, c);
2336         }
2337
2338         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2339                 return hpsa_retry_cmd(h, c);
2340
2341         return hpsa_cmd_free_and_done(h, c, cmd);
2342 }
2343
2344 /* Returns 0 on success, < 0 otherwise. */
2345 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2346                                         struct CommandList *cp)
2347 {
2348         u8 tmf_status = cp->err_info->ScsiStatus;
2349
2350         switch (tmf_status) {
2351         case CISS_TMF_COMPLETE:
2352                 /*
2353                  * CISS_TMF_COMPLETE never happens, instead,
2354                  * ei->CommandStatus == 0 for this case.
2355                  */
2356         case CISS_TMF_SUCCESS:
2357                 return 0;
2358         case CISS_TMF_INVALID_FRAME:
2359         case CISS_TMF_NOT_SUPPORTED:
2360         case CISS_TMF_FAILED:
2361         case CISS_TMF_WRONG_LUN:
2362         case CISS_TMF_OVERLAPPED_TAG:
2363                 break;
2364         default:
2365                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2366                                 tmf_status);
2367                 break;
2368         }
2369         return -tmf_status;
2370 }
2371
2372 static void complete_scsi_command(struct CommandList *cp)
2373 {
2374         struct scsi_cmnd *cmd;
2375         struct ctlr_info *h;
2376         struct ErrorInfo *ei;
2377         struct hpsa_scsi_dev_t *dev;
2378         struct io_accel2_cmd *c2;
2379
2380         u8 sense_key;
2381         u8 asc;      /* additional sense code */
2382         u8 ascq;     /* additional sense code qualifier */
2383         unsigned long sense_data_size;
2384
2385         ei = cp->err_info;
2386         cmd = cp->scsi_cmd;
2387         h = cp->h;
2388         dev = cmd->device->hostdata;
2389         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2390
2391         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2392         if ((cp->cmd_type == CMD_SCSI) &&
2393                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2394                 hpsa_unmap_sg_chain_block(h, cp);
2395
2396         if ((cp->cmd_type == CMD_IOACCEL2) &&
2397                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2398                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2399
2400         cmd->result = (DID_OK << 16);           /* host byte */
2401         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2402
2403         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2404                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2405
2406         /*
2407          * We check for lockup status here as it may be set for
2408          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2409          * fail_all_oustanding_cmds()
2410          */
2411         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2412                 /* DID_NO_CONNECT will prevent a retry */
2413                 cmd->result = DID_NO_CONNECT << 16;
2414                 return hpsa_cmd_free_and_done(h, cp, cmd);
2415         }
2416
2417         if ((unlikely(hpsa_is_pending_event(cp)))) {
2418                 if (cp->reset_pending)
2419                         return hpsa_cmd_resolve_and_free(h, cp);
2420                 if (cp->abort_pending)
2421                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2422         }
2423
2424         if (cp->cmd_type == CMD_IOACCEL2)
2425                 return process_ioaccel2_completion(h, cp, cmd, dev);
2426
2427         scsi_set_resid(cmd, ei->ResidualCnt);
2428         if (ei->CommandStatus == 0)
2429                 return hpsa_cmd_free_and_done(h, cp, cmd);
2430
2431         /* For I/O accelerator commands, copy over some fields to the normal
2432          * CISS header used below for error handling.
2433          */
2434         if (cp->cmd_type == CMD_IOACCEL1) {
2435                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2436                 cp->Header.SGList = scsi_sg_count(cmd);
2437                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2438                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2439                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2440                 cp->Header.tag = c->tag;
2441                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2442                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2443
2444                 /* Any RAID offload error results in retry which will use
2445                  * the normal I/O path so the controller can handle whatever's
2446                  * wrong.
2447                  */
2448                 if (is_logical_device(dev)) {
2449                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2450                                 dev->offload_enabled = 0;
2451                         return hpsa_retry_cmd(h, cp);
2452                 }
2453         }
2454
2455         /* an error has occurred */
2456         switch (ei->CommandStatus) {
2457
2458         case CMD_TARGET_STATUS:
2459                 cmd->result |= ei->ScsiStatus;
2460                 /* copy the sense data */
2461                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2462                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2463                 else
2464                         sense_data_size = sizeof(ei->SenseInfo);
2465                 if (ei->SenseLen < sense_data_size)
2466                         sense_data_size = ei->SenseLen;
2467                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2468                 if (ei->ScsiStatus)
2469                         decode_sense_data(ei->SenseInfo, sense_data_size,
2470                                 &sense_key, &asc, &ascq);
2471                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2472                         if (sense_key == ABORTED_COMMAND) {
2473                                 cmd->result |= DID_SOFT_ERROR << 16;
2474                                 break;
2475                         }
2476                         break;
2477                 }
2478                 /* Problem was not a check condition
2479                  * Pass it up to the upper layers...
2480                  */
2481                 if (ei->ScsiStatus) {
2482                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2483                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2484                                 "Returning result: 0x%x\n",
2485                                 cp, ei->ScsiStatus,
2486                                 sense_key, asc, ascq,
2487                                 cmd->result);
2488                 } else {  /* scsi status is zero??? How??? */
2489                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2490                                 "Returning no connection.\n", cp),
2491
2492                         /* Ordinarily, this case should never happen,
2493                          * but there is a bug in some released firmware
2494                          * revisions that allows it to happen if, for
2495                          * example, a 4100 backplane loses power and
2496                          * the tape drive is in it.  We assume that
2497                          * it's a fatal error of some kind because we
2498                          * can't show that it wasn't. We will make it
2499                          * look like selection timeout since that is
2500                          * the most common reason for this to occur,
2501                          * and it's severe enough.
2502                          */
2503
2504                         cmd->result = DID_NO_CONNECT << 16;
2505                 }
2506                 break;
2507
2508         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2509                 break;
2510         case CMD_DATA_OVERRUN:
2511                 dev_warn(&h->pdev->dev,
2512                         "CDB %16phN data overrun\n", cp->Request.CDB);
2513                 break;
2514         case CMD_INVALID: {
2515                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2516                 print_cmd(cp); */
2517                 /* We get CMD_INVALID if you address a non-existent device
2518                  * instead of a selection timeout (no response).  You will
2519                  * see this if you yank out a drive, then try to access it.
2520                  * This is kind of a shame because it means that any other
2521                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2522                  * missing target. */
2523                 cmd->result = DID_NO_CONNECT << 16;
2524         }
2525                 break;
2526         case CMD_PROTOCOL_ERR:
2527                 cmd->result = DID_ERROR << 16;
2528                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2529                                 cp->Request.CDB);
2530                 break;
2531         case CMD_HARDWARE_ERR:
2532                 cmd->result = DID_ERROR << 16;
2533                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2534                         cp->Request.CDB);
2535                 break;
2536         case CMD_CONNECTION_LOST:
2537                 cmd->result = DID_ERROR << 16;
2538                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2539                         cp->Request.CDB);
2540                 break;
2541         case CMD_ABORTED:
2542                 /* Return now to avoid calling scsi_done(). */
2543                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2544         case CMD_ABORT_FAILED:
2545                 cmd->result = DID_ERROR << 16;
2546                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2547                         cp->Request.CDB);
2548                 break;
2549         case CMD_UNSOLICITED_ABORT:
2550                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2551                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2552                         cp->Request.CDB);
2553                 break;
2554         case CMD_TIMEOUT:
2555                 cmd->result = DID_TIME_OUT << 16;
2556                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2557                         cp->Request.CDB);
2558                 break;
2559         case CMD_UNABORTABLE:
2560                 cmd->result = DID_ERROR << 16;
2561                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2562                 break;
2563         case CMD_TMF_STATUS:
2564                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2565                         cmd->result = DID_ERROR << 16;
2566                 break;
2567         case CMD_IOACCEL_DISABLED:
2568                 /* This only handles the direct pass-through case since RAID
2569                  * offload is handled above.  Just attempt a retry.
2570                  */
2571                 cmd->result = DID_SOFT_ERROR << 16;
2572                 dev_warn(&h->pdev->dev,
2573                                 "cp %p had HP SSD Smart Path error\n", cp);
2574                 break;
2575         default:
2576                 cmd->result = DID_ERROR << 16;
2577                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2578                                 cp, ei->CommandStatus);
2579         }
2580
2581         return hpsa_cmd_free_and_done(h, cp, cmd);
2582 }
2583
2584 static void hpsa_pci_unmap(struct pci_dev *pdev,
2585         struct CommandList *c, int sg_used, int data_direction)
2586 {
2587         int i;
2588
2589         for (i = 0; i < sg_used; i++)
2590                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2591                                 le32_to_cpu(c->SG[i].Len),
2592                                 data_direction);
2593 }
2594
2595 static int hpsa_map_one(struct pci_dev *pdev,
2596                 struct CommandList *cp,
2597                 unsigned char *buf,
2598                 size_t buflen,
2599                 int data_direction)
2600 {
2601         u64 addr64;
2602
2603         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2604                 cp->Header.SGList = 0;
2605                 cp->Header.SGTotal = cpu_to_le16(0);
2606                 return 0;
2607         }
2608
2609         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2610         if (dma_mapping_error(&pdev->dev, addr64)) {
2611                 /* Prevent subsequent unmap of something never mapped */
2612                 cp->Header.SGList = 0;
2613                 cp->Header.SGTotal = cpu_to_le16(0);
2614                 return -1;
2615         }
2616         cp->SG[0].Addr = cpu_to_le64(addr64);
2617         cp->SG[0].Len = cpu_to_le32(buflen);
2618         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2619         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2620         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2621         return 0;
2622 }
2623
2624 #define NO_TIMEOUT ((unsigned long) -1)
2625 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2626 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2627         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2628 {
2629         DECLARE_COMPLETION_ONSTACK(wait);
2630
2631         c->waiting = &wait;
2632         __enqueue_cmd_and_start_io(h, c, reply_queue);
2633         if (timeout_msecs == NO_TIMEOUT) {
2634                 /* TODO: get rid of this no-timeout thing */
2635                 wait_for_completion_io(&wait);
2636                 return IO_OK;
2637         }
2638         if (!wait_for_completion_io_timeout(&wait,
2639                                         msecs_to_jiffies(timeout_msecs))) {
2640                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2641                 return -ETIMEDOUT;
2642         }
2643         return IO_OK;
2644 }
2645
2646 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2647                                    int reply_queue, unsigned long timeout_msecs)
2648 {
2649         if (unlikely(lockup_detected(h))) {
2650                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2651                 return IO_OK;
2652         }
2653         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2654 }
2655
2656 static u32 lockup_detected(struct ctlr_info *h)
2657 {
2658         int cpu;
2659         u32 rc, *lockup_detected;
2660
2661         cpu = get_cpu();
2662         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2663         rc = *lockup_detected;
2664         put_cpu();
2665         return rc;
2666 }
2667
2668 #define MAX_DRIVER_CMD_RETRIES 25
2669 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2670         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2671 {
2672         int backoff_time = 10, retry_count = 0;
2673         int rc;
2674
2675         do {
2676                 memset(c->err_info, 0, sizeof(*c->err_info));
2677                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2678                                                   timeout_msecs);
2679                 if (rc)
2680                         break;
2681                 retry_count++;
2682                 if (retry_count > 3) {
2683                         msleep(backoff_time);
2684                         if (backoff_time < 1000)
2685                                 backoff_time *= 2;
2686                 }
2687         } while ((check_for_unit_attention(h, c) ||
2688                         check_for_busy(h, c)) &&
2689                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2690         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2691         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2692                 rc = -EIO;
2693         return rc;
2694 }
2695
2696 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2697                                 struct CommandList *c)
2698 {
2699         const u8 *cdb = c->Request.CDB;
2700         const u8 *lun = c->Header.LUN.LunAddrBytes;
2701
2702         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2703         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2704                 txt, lun[0], lun[1], lun[2], lun[3],
2705                 lun[4], lun[5], lun[6], lun[7],
2706                 cdb[0], cdb[1], cdb[2], cdb[3],
2707                 cdb[4], cdb[5], cdb[6], cdb[7],
2708                 cdb[8], cdb[9], cdb[10], cdb[11],
2709                 cdb[12], cdb[13], cdb[14], cdb[15]);
2710 }
2711
2712 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2713                         struct CommandList *cp)
2714 {
2715         const struct ErrorInfo *ei = cp->err_info;
2716         struct device *d = &cp->h->pdev->dev;
2717         u8 sense_key, asc, ascq;
2718         int sense_len;
2719
2720         switch (ei->CommandStatus) {
2721         case CMD_TARGET_STATUS:
2722                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2723                         sense_len = sizeof(ei->SenseInfo);
2724                 else
2725                         sense_len = ei->SenseLen;
2726                 decode_sense_data(ei->SenseInfo, sense_len,
2727                                         &sense_key, &asc, &ascq);
2728                 hpsa_print_cmd(h, "SCSI status", cp);
2729                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2730                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2731                                 sense_key, asc, ascq);
2732                 else
2733                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2734                 if (ei->ScsiStatus == 0)
2735                         dev_warn(d, "SCSI status is abnormally zero.  "
2736                         "(probably indicates selection timeout "
2737                         "reported incorrectly due to a known "
2738                         "firmware bug, circa July, 2001.)\n");
2739                 break;
2740         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2741                 break;
2742         case CMD_DATA_OVERRUN:
2743                 hpsa_print_cmd(h, "overrun condition", cp);
2744                 break;
2745         case CMD_INVALID: {
2746                 /* controller unfortunately reports SCSI passthru's
2747                  * to non-existent targets as invalid commands.
2748                  */
2749                 hpsa_print_cmd(h, "invalid command", cp);
2750                 dev_warn(d, "probably means device no longer present\n");
2751                 }
2752                 break;
2753         case CMD_PROTOCOL_ERR:
2754                 hpsa_print_cmd(h, "protocol error", cp);
2755                 break;
2756         case CMD_HARDWARE_ERR:
2757                 hpsa_print_cmd(h, "hardware error", cp);
2758                 break;
2759         case CMD_CONNECTION_LOST:
2760                 hpsa_print_cmd(h, "connection lost", cp);
2761                 break;
2762         case CMD_ABORTED:
2763                 hpsa_print_cmd(h, "aborted", cp);
2764                 break;
2765         case CMD_ABORT_FAILED:
2766                 hpsa_print_cmd(h, "abort failed", cp);
2767                 break;
2768         case CMD_UNSOLICITED_ABORT:
2769                 hpsa_print_cmd(h, "unsolicited abort", cp);
2770                 break;
2771         case CMD_TIMEOUT:
2772                 hpsa_print_cmd(h, "timed out", cp);
2773                 break;
2774         case CMD_UNABORTABLE:
2775                 hpsa_print_cmd(h, "unabortable", cp);
2776                 break;
2777         case CMD_CTLR_LOCKUP:
2778                 hpsa_print_cmd(h, "controller lockup detected", cp);
2779                 break;
2780         default:
2781                 hpsa_print_cmd(h, "unknown status", cp);
2782                 dev_warn(d, "Unknown command status %x\n",
2783                                 ei->CommandStatus);
2784         }
2785 }
2786
2787 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2788                         u16 page, unsigned char *buf,
2789                         unsigned char bufsize)
2790 {
2791         int rc = IO_OK;
2792         struct CommandList *c;
2793         struct ErrorInfo *ei;
2794
2795         c = cmd_alloc(h);
2796
2797         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2798                         page, scsi3addr, TYPE_CMD)) {
2799                 rc = -1;
2800                 goto out;
2801         }
2802         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2803                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2804         if (rc)
2805                 goto out;
2806         ei = c->err_info;
2807         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2808                 hpsa_scsi_interpret_error(h, c);
2809                 rc = -1;
2810         }
2811 out:
2812         cmd_free(h, c);
2813         return rc;
2814 }
2815
2816 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2817         u8 reset_type, int reply_queue)
2818 {
2819         int rc = IO_OK;
2820         struct CommandList *c;
2821         struct ErrorInfo *ei;
2822
2823         c = cmd_alloc(h);
2824
2825
2826         /* fill_cmd can't fail here, no data buffer to map. */
2827         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2828                         scsi3addr, TYPE_MSG);
2829         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2830         if (rc) {
2831                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2832                 goto out;
2833         }
2834         /* no unmap needed here because no data xfer. */
2835
2836         ei = c->err_info;
2837         if (ei->CommandStatus != 0) {
2838                 hpsa_scsi_interpret_error(h, c);
2839                 rc = -1;
2840         }
2841 out:
2842         cmd_free(h, c);
2843         return rc;
2844 }
2845
2846 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2847                                struct hpsa_scsi_dev_t *dev,
2848                                unsigned char *scsi3addr)
2849 {
2850         int i;
2851         bool match = false;
2852         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2853         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2854
2855         if (hpsa_is_cmd_idle(c))
2856                 return false;
2857
2858         switch (c->cmd_type) {
2859         case CMD_SCSI:
2860         case CMD_IOCTL_PEND:
2861                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2862                                 sizeof(c->Header.LUN.LunAddrBytes));
2863                 break;
2864
2865         case CMD_IOACCEL1:
2866         case CMD_IOACCEL2:
2867                 if (c->phys_disk == dev) {
2868                         /* HBA mode match */
2869                         match = true;
2870                 } else {
2871                         /* Possible RAID mode -- check each phys dev. */
2872                         /* FIXME:  Do we need to take out a lock here?  If
2873                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2874                          * instead. */
2875                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2876                                 /* FIXME: an alternate test might be
2877                                  *
2878                                  * match = dev->phys_disk[i]->ioaccel_handle
2879                                  *              == c2->scsi_nexus;      */
2880                                 match = dev->phys_disk[i] == c->phys_disk;
2881                         }
2882                 }
2883                 break;
2884
2885         case IOACCEL2_TMF:
2886                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2887                         match = dev->phys_disk[i]->ioaccel_handle ==
2888                                         le32_to_cpu(ac->it_nexus);
2889                 }
2890                 break;
2891
2892         case 0:         /* The command is in the middle of being initialized. */
2893                 match = false;
2894                 break;
2895
2896         default:
2897                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2898                         c->cmd_type);
2899                 BUG();
2900         }
2901
2902         return match;
2903 }
2904
2905 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2906         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2907 {
2908         int i;
2909         int rc = 0;
2910
2911         /* We can really only handle one reset at a time */
2912         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2913                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2914                 return -EINTR;
2915         }
2916
2917         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2918
2919         for (i = 0; i < h->nr_cmds; i++) {
2920                 struct CommandList *c = h->cmd_pool + i;
2921                 int refcount = atomic_inc_return(&c->refcount);
2922
2923                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2924                         unsigned long flags;
2925
2926                         /*
2927                          * Mark the target command as having a reset pending,
2928                          * then lock a lock so that the command cannot complete
2929                          * while we're considering it.  If the command is not
2930                          * idle then count it; otherwise revoke the event.
2931                          */
2932                         c->reset_pending = dev;
2933                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2934                         if (!hpsa_is_cmd_idle(c))
2935                                 atomic_inc(&dev->reset_cmds_out);
2936                         else
2937                                 c->reset_pending = NULL;
2938                         spin_unlock_irqrestore(&h->lock, flags);
2939                 }
2940
2941                 cmd_free(h, c);
2942         }
2943
2944         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2945         if (!rc)
2946                 wait_event(h->event_sync_wait_queue,
2947                         atomic_read(&dev->reset_cmds_out) == 0 ||
2948                         lockup_detected(h));
2949
2950         if (unlikely(lockup_detected(h))) {
2951                 dev_warn(&h->pdev->dev,
2952                          "Controller lockup detected during reset wait\n");
2953                 rc = -ENODEV;
2954         }
2955
2956         if (unlikely(rc))
2957                 atomic_set(&dev->reset_cmds_out, 0);
2958
2959         mutex_unlock(&h->reset_mutex);
2960         return rc;
2961 }
2962
2963 static void hpsa_get_raid_level(struct ctlr_info *h,
2964         unsigned char *scsi3addr, unsigned char *raid_level)
2965 {
2966         int rc;
2967         unsigned char *buf;
2968
2969         *raid_level = RAID_UNKNOWN;
2970         buf = kzalloc(64, GFP_KERNEL);
2971         if (!buf)
2972                 return;
2973         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2974         if (rc == 0)
2975                 *raid_level = buf[8];
2976         if (*raid_level > RAID_UNKNOWN)
2977                 *raid_level = RAID_UNKNOWN;
2978         kfree(buf);
2979         return;
2980 }
2981
2982 #define HPSA_MAP_DEBUG
2983 #ifdef HPSA_MAP_DEBUG
2984 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2985                                 struct raid_map_data *map_buff)
2986 {
2987         struct raid_map_disk_data *dd = &map_buff->data[0];
2988         int map, row, col;
2989         u16 map_cnt, row_cnt, disks_per_row;
2990
2991         if (rc != 0)
2992                 return;
2993
2994         /* Show details only if debugging has been activated. */
2995         if (h->raid_offload_debug < 2)
2996                 return;
2997
2998         dev_info(&h->pdev->dev, "structure_size = %u\n",
2999                                 le32_to_cpu(map_buff->structure_size));
3000         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3001                         le32_to_cpu(map_buff->volume_blk_size));
3002         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3003                         le64_to_cpu(map_buff->volume_blk_cnt));
3004         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3005                         map_buff->phys_blk_shift);
3006         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3007                         map_buff->parity_rotation_shift);
3008         dev_info(&h->pdev->dev, "strip_size = %u\n",
3009                         le16_to_cpu(map_buff->strip_size));
3010         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3011                         le64_to_cpu(map_buff->disk_starting_blk));
3012         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3013                         le64_to_cpu(map_buff->disk_blk_cnt));
3014         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3015                         le16_to_cpu(map_buff->data_disks_per_row));
3016         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3017                         le16_to_cpu(map_buff->metadata_disks_per_row));
3018         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3019                         le16_to_cpu(map_buff->row_cnt));
3020         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3021                         le16_to_cpu(map_buff->layout_map_count));
3022         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3023                         le16_to_cpu(map_buff->flags));
3024         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3025                         le16_to_cpu(map_buff->flags) &
3026                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3027         dev_info(&h->pdev->dev, "dekindex = %u\n",
3028                         le16_to_cpu(map_buff->dekindex));
3029         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3030         for (map = 0; map < map_cnt; map++) {
3031                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3032                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3033                 for (row = 0; row < row_cnt; row++) {
3034                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3035                         disks_per_row =
3036                                 le16_to_cpu(map_buff->data_disks_per_row);
3037                         for (col = 0; col < disks_per_row; col++, dd++)
3038                                 dev_info(&h->pdev->dev,
3039                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3040                                         col, dd->ioaccel_handle,
3041                                         dd->xor_mult[0], dd->xor_mult[1]);
3042                         disks_per_row =
3043                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3044                         for (col = 0; col < disks_per_row; col++, dd++)
3045                                 dev_info(&h->pdev->dev,
3046                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3047                                         col, dd->ioaccel_handle,
3048                                         dd->xor_mult[0], dd->xor_mult[1]);
3049                 }
3050         }
3051 }
3052 #else
3053 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3054                         __attribute__((unused)) int rc,
3055                         __attribute__((unused)) struct raid_map_data *map_buff)
3056 {
3057 }
3058 #endif
3059
3060 static int hpsa_get_raid_map(struct ctlr_info *h,
3061         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3062 {
3063         int rc = 0;
3064         struct CommandList *c;
3065         struct ErrorInfo *ei;
3066
3067         c = cmd_alloc(h);
3068
3069         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3070                         sizeof(this_device->raid_map), 0,
3071                         scsi3addr, TYPE_CMD)) {
3072                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3073                 cmd_free(h, c);
3074                 return -1;
3075         }
3076         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3077                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3078         if (rc)
3079                 goto out;
3080         ei = c->err_info;
3081         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3082                 hpsa_scsi_interpret_error(h, c);
3083                 rc = -1;
3084                 goto out;
3085         }
3086         cmd_free(h, c);
3087
3088         /* @todo in the future, dynamically allocate RAID map memory */
3089         if (le32_to_cpu(this_device->raid_map.structure_size) >
3090                                 sizeof(this_device->raid_map)) {
3091                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3092                 rc = -1;
3093         }
3094         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3095         return rc;
3096 out:
3097         cmd_free(h, c);
3098         return rc;
3099 }
3100
3101 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3102                 unsigned char scsi3addr[], u16 bmic_device_index,
3103                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3104 {
3105         int rc = IO_OK;
3106         struct CommandList *c;
3107         struct ErrorInfo *ei;
3108
3109         c = cmd_alloc(h);
3110
3111         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3112                 0, RAID_CTLR_LUNID, TYPE_CMD);
3113         if (rc)
3114                 goto out;
3115
3116         c->Request.CDB[2] = bmic_device_index & 0xff;
3117         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3118
3119         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3120                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3121         if (rc)
3122                 goto out;
3123         ei = c->err_info;
3124         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3125                 hpsa_scsi_interpret_error(h, c);
3126                 rc = -1;
3127         }
3128 out:
3129         cmd_free(h, c);
3130         return rc;
3131 }
3132
3133 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3134         struct bmic_identify_controller *buf, size_t bufsize)
3135 {
3136         int rc = IO_OK;
3137         struct CommandList *c;
3138         struct ErrorInfo *ei;
3139
3140         c = cmd_alloc(h);
3141
3142         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3143                 0, RAID_CTLR_LUNID, TYPE_CMD);
3144         if (rc)
3145                 goto out;
3146
3147         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3148                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3149         if (rc)
3150                 goto out;
3151         ei = c->err_info;
3152         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3153                 hpsa_scsi_interpret_error(h, c);
3154                 rc = -1;
3155         }
3156 out:
3157         cmd_free(h, c);
3158         return rc;
3159 }
3160
3161 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3162                 unsigned char scsi3addr[], u16 bmic_device_index,
3163                 struct bmic_identify_physical_device *buf, size_t bufsize)
3164 {
3165         int rc = IO_OK;
3166         struct CommandList *c;
3167         struct ErrorInfo *ei;
3168
3169         c = cmd_alloc(h);
3170         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3171                 0, RAID_CTLR_LUNID, TYPE_CMD);
3172         if (rc)
3173                 goto out;
3174
3175         c->Request.CDB[2] = bmic_device_index & 0xff;
3176         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3177
3178         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3179                                                 NO_TIMEOUT);
3180         ei = c->err_info;
3181         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3182                 hpsa_scsi_interpret_error(h, c);
3183                 rc = -1;
3184         }
3185 out:
3186         cmd_free(h, c);
3187
3188         return rc;
3189 }
3190
3191 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3192                                                 unsigned char *scsi3addr)
3193 {
3194         struct ReportExtendedLUNdata *physdev;
3195         u32 nphysicals;
3196         u64 sa = 0;
3197         int i;
3198
3199         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3200         if (!physdev)
3201                 return 0;
3202
3203         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3204                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3205                 kfree(physdev);
3206                 return 0;
3207         }
3208         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3209
3210         for (i = 0; i < nphysicals; i++)
3211                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3212                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3213                         break;
3214                 }
3215
3216         kfree(physdev);
3217
3218         return sa;
3219 }
3220
3221 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3222                                         struct hpsa_scsi_dev_t *dev)
3223 {
3224         int rc;
3225         u64 sa = 0;
3226
3227         if (is_hba_lunid(scsi3addr)) {
3228                 struct bmic_sense_subsystem_info *ssi;
3229
3230                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3231                 if (ssi == NULL) {
3232                         dev_warn(&h->pdev->dev,
3233                                 "%s: out of memory\n", __func__);
3234                         return;
3235                 }
3236
3237                 rc = hpsa_bmic_sense_subsystem_information(h,
3238                                         scsi3addr, 0, ssi, sizeof(*ssi));
3239                 if (rc == 0) {
3240                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3241                         h->sas_address = sa;
3242                 }
3243
3244                 kfree(ssi);
3245         } else
3246                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3247
3248         dev->sas_address = sa;
3249 }
3250
3251 /* Get a device id from inquiry page 0x83 */
3252 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3253         unsigned char scsi3addr[], u8 page)
3254 {
3255         int rc;
3256         int i;
3257         int pages;
3258         unsigned char *buf, bufsize;
3259
3260         buf = kzalloc(256, GFP_KERNEL);
3261         if (!buf)
3262                 return 0;
3263
3264         /* Get the size of the page list first */
3265         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3266                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3267                                 buf, HPSA_VPD_HEADER_SZ);
3268         if (rc != 0)
3269                 goto exit_unsupported;
3270         pages = buf[3];
3271         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3272                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3273         else
3274                 bufsize = 255;
3275
3276         /* Get the whole VPD page list */
3277         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3278                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3279                                 buf, bufsize);
3280         if (rc != 0)
3281                 goto exit_unsupported;
3282
3283         pages = buf[3];
3284         for (i = 1; i <= pages; i++)
3285                 if (buf[3 + i] == page)
3286                         goto exit_supported;
3287 exit_unsupported:
3288         kfree(buf);
3289         return 0;
3290 exit_supported:
3291         kfree(buf);
3292         return 1;
3293 }
3294
3295 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3296         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3297 {
3298         int rc;
3299         unsigned char *buf;
3300         u8 ioaccel_status;
3301
3302         this_device->offload_config = 0;
3303         this_device->offload_enabled = 0;
3304         this_device->offload_to_be_enabled = 0;
3305
3306         buf = kzalloc(64, GFP_KERNEL);
3307         if (!buf)
3308                 return;
3309         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3310                 goto out;
3311         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3312                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3313         if (rc != 0)
3314                 goto out;
3315
3316 #define IOACCEL_STATUS_BYTE 4
3317 #define OFFLOAD_CONFIGURED_BIT 0x01
3318 #define OFFLOAD_ENABLED_BIT 0x02
3319         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3320         this_device->offload_config =
3321                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3322         if (this_device->offload_config) {
3323                 this_device->offload_enabled =
3324                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3325                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3326                         this_device->offload_enabled = 0;
3327         }
3328         this_device->offload_to_be_enabled = this_device->offload_enabled;
3329 out:
3330         kfree(buf);
3331         return;
3332 }
3333
3334 /* Get the device id from inquiry page 0x83 */
3335 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3336         unsigned char *device_id, int index, int buflen)
3337 {
3338         int rc;
3339         unsigned char *buf;
3340
3341         if (buflen > 16)
3342                 buflen = 16;
3343         buf = kzalloc(64, GFP_KERNEL);
3344         if (!buf)
3345                 return -ENOMEM;
3346         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3347         if (rc == 0)
3348                 memcpy(device_id, &buf[index], buflen);
3349
3350         kfree(buf);
3351
3352         return rc != 0;
3353 }
3354
3355 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3356                 void *buf, int bufsize,
3357                 int extended_response)
3358 {
3359         int rc = IO_OK;
3360         struct CommandList *c;
3361         unsigned char scsi3addr[8];
3362         struct ErrorInfo *ei;
3363
3364         c = cmd_alloc(h);
3365
3366         /* address the controller */
3367         memset(scsi3addr, 0, sizeof(scsi3addr));
3368         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3369                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3370                 rc = -1;
3371                 goto out;
3372         }
3373         if (extended_response)
3374                 c->Request.CDB[1] = extended_response;
3375         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3376                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3377         if (rc)
3378                 goto out;
3379         ei = c->err_info;
3380         if (ei->CommandStatus != 0 &&
3381             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3382                 hpsa_scsi_interpret_error(h, c);
3383                 rc = -1;
3384         } else {
3385                 struct ReportLUNdata *rld = buf;
3386
3387                 if (rld->extended_response_flag != extended_response) {
3388                         dev_err(&h->pdev->dev,
3389                                 "report luns requested format %u, got %u\n",
3390                                 extended_response,
3391                                 rld->extended_response_flag);
3392                         rc = -1;
3393                 }
3394         }
3395 out:
3396         cmd_free(h, c);
3397         return rc;
3398 }
3399
3400 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3401                 struct ReportExtendedLUNdata *buf, int bufsize)
3402 {
3403         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3404                                                 HPSA_REPORT_PHYS_EXTENDED);
3405 }
3406
3407 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3408                 struct ReportLUNdata *buf, int bufsize)
3409 {
3410         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3411 }
3412
3413 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3414         int bus, int target, int lun)
3415 {
3416         device->bus = bus;
3417         device->target = target;
3418         device->lun = lun;
3419 }
3420
3421 /* Use VPD inquiry to get details of volume status */
3422 static int hpsa_get_volume_status(struct ctlr_info *h,
3423                                         unsigned char scsi3addr[])
3424 {
3425         int rc;
3426         int status;
3427         int size;
3428         unsigned char *buf;
3429
3430         buf = kzalloc(64, GFP_KERNEL);
3431         if (!buf)
3432                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3433
3434         /* Does controller have VPD for logical volume status? */
3435         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3436                 goto exit_failed;
3437
3438         /* Get the size of the VPD return buffer */
3439         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3440                                         buf, HPSA_VPD_HEADER_SZ);
3441         if (rc != 0)
3442                 goto exit_failed;
3443         size = buf[3];
3444
3445         /* Now get the whole VPD buffer */
3446         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3447                                         buf, size + HPSA_VPD_HEADER_SZ);
3448         if (rc != 0)
3449                 goto exit_failed;
3450         status = buf[4]; /* status byte */
3451
3452         kfree(buf);
3453         return status;
3454 exit_failed:
3455         kfree(buf);
3456         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3457 }
3458
3459 /* Determine offline status of a volume.
3460  * Return either:
3461  *  0 (not offline)
3462  *  0xff (offline for unknown reasons)
3463  *  # (integer code indicating one of several NOT READY states
3464  *     describing why a volume is to be kept offline)
3465  */
3466 static int hpsa_volume_offline(struct ctlr_info *h,
3467                                         unsigned char scsi3addr[])
3468 {
3469         struct CommandList *c;
3470         unsigned char *sense;
3471         u8 sense_key, asc, ascq;
3472         int sense_len;
3473         int rc, ldstat = 0;
3474         u16 cmd_status;
3475         u8 scsi_status;
3476 #define ASC_LUN_NOT_READY 0x04
3477 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3478 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3479
3480         c = cmd_alloc(h);
3481
3482         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3483         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3484         if (rc) {
3485                 cmd_free(h, c);
3486                 return 0;
3487         }
3488         sense = c->err_info->SenseInfo;
3489         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3490                 sense_len = sizeof(c->err_info->SenseInfo);
3491         else
3492                 sense_len = c->err_info->SenseLen;
3493         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3494         cmd_status = c->err_info->CommandStatus;
3495         scsi_status = c->err_info->ScsiStatus;
3496         cmd_free(h, c);
3497         /* Is the volume 'not ready'? */
3498         if (cmd_status != CMD_TARGET_STATUS ||
3499                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3500                 sense_key != NOT_READY ||
3501                 asc != ASC_LUN_NOT_READY)  {
3502                 return 0;
3503         }
3504
3505         /* Determine the reason for not ready state */
3506         ldstat = hpsa_get_volume_status(h, scsi3addr);
3507
3508         /* Keep volume offline in certain cases: */
3509         switch (ldstat) {
3510         case HPSA_LV_UNDERGOING_ERASE:
3511         case HPSA_LV_NOT_AVAILABLE:
3512         case HPSA_LV_UNDERGOING_RPI:
3513         case HPSA_LV_PENDING_RPI:
3514         case HPSA_LV_ENCRYPTED_NO_KEY:
3515         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3516         case HPSA_LV_UNDERGOING_ENCRYPTION:
3517         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3518         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3519                 return ldstat;
3520         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3521                 /* If VPD status page isn't available,
3522                  * use ASC/ASCQ to determine state
3523                  */
3524                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3525                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3526                         return ldstat;
3527                 break;
3528         default:
3529                 break;
3530         }
3531         return 0;
3532 }
3533
3534 /*
3535  * Find out if a logical device supports aborts by simply trying one.
3536  * Smart Array may claim not to support aborts on logical drives, but
3537  * if a MSA2000 * is connected, the drives on that will be presented
3538  * by the Smart Array as logical drives, and aborts may be sent to
3539  * those devices successfully.  So the simplest way to find out is
3540  * to simply try an abort and see how the device responds.
3541  */
3542 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3543                                         unsigned char *scsi3addr)
3544 {
3545         struct CommandList *c;
3546         struct ErrorInfo *ei;
3547         int rc = 0;
3548
3549         u64 tag = (u64) -1; /* bogus tag */
3550
3551         /* Assume that physical devices support aborts */
3552         if (!is_logical_dev_addr_mode(scsi3addr))
3553                 return 1;
3554
3555         c = cmd_alloc(h);
3556
3557         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3558         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3559         /* no unmap needed here because no data xfer. */
3560         ei = c->err_info;
3561         switch (ei->CommandStatus) {
3562         case CMD_INVALID:
3563                 rc = 0;
3564                 break;
3565         case CMD_UNABORTABLE:
3566         case CMD_ABORT_FAILED:
3567                 rc = 1;
3568                 break;
3569         case CMD_TMF_STATUS:
3570                 rc = hpsa_evaluate_tmf_status(h, c);
3571                 break;
3572         default:
3573                 rc = 0;
3574                 break;
3575         }
3576         cmd_free(h, c);
3577         return rc;
3578 }
3579
3580 static void sanitize_inquiry_string(unsigned char *s, int len)
3581 {
3582         bool terminated = false;
3583
3584         for (; len > 0; (--len, ++s)) {
3585                 if (*s == 0)
3586                         terminated = true;
3587                 if (terminated || *s < 0x20 || *s > 0x7e)
3588                         *s = ' ';
3589         }
3590 }
3591
3592 static int hpsa_update_device_info(struct ctlr_info *h,
3593         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3594         unsigned char *is_OBDR_device)
3595 {
3596
3597 #define OBDR_SIG_OFFSET 43
3598 #define OBDR_TAPE_SIG "$DR-10"
3599 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3600 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3601
3602         unsigned char *inq_buff;
3603         unsigned char *obdr_sig;
3604         int rc = 0;
3605
3606         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3607         if (!inq_buff) {
3608                 rc = -ENOMEM;
3609                 goto bail_out;
3610         }
3611
3612         /* Do an inquiry to the device to see what it is. */
3613         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3614                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3615                 /* Inquiry failed (msg printed already) */
3616                 dev_err(&h->pdev->dev,
3617                         "hpsa_update_device_info: inquiry failed\n");
3618                 rc = -EIO;
3619                 goto bail_out;
3620         }
3621
3622         sanitize_inquiry_string(&inq_buff[8], 8);
3623         sanitize_inquiry_string(&inq_buff[16], 16);
3624
3625         this_device->devtype = (inq_buff[0] & 0x1f);
3626         memcpy(this_device->scsi3addr, scsi3addr, 8);
3627         memcpy(this_device->vendor, &inq_buff[8],
3628                 sizeof(this_device->vendor));
3629         memcpy(this_device->model, &inq_buff[16],
3630                 sizeof(this_device->model));
3631         memset(this_device->device_id, 0,
3632                 sizeof(this_device->device_id));
3633         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3634                 sizeof(this_device->device_id));
3635
3636         if (this_device->devtype == TYPE_DISK &&
3637                 is_logical_dev_addr_mode(scsi3addr)) {
3638                 int volume_offline;
3639
3640                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3641                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3642                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3643                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3644                 if (volume_offline < 0 || volume_offline > 0xff)
3645                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3646                 this_device->volume_offline = volume_offline & 0xff;
3647         } else {
3648                 this_device->raid_level = RAID_UNKNOWN;
3649                 this_device->offload_config = 0;
3650                 this_device->offload_enabled = 0;
3651                 this_device->offload_to_be_enabled = 0;
3652                 this_device->hba_ioaccel_enabled = 0;
3653                 this_device->volume_offline = 0;
3654                 this_device->queue_depth = h->nr_cmds;
3655         }
3656
3657         if (is_OBDR_device) {
3658                 /* See if this is a One-Button-Disaster-Recovery device
3659                  * by looking for "$DR-10" at offset 43 in inquiry data.
3660                  */
3661                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3662                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3663                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3664                                                 OBDR_SIG_LEN) == 0);
3665         }
3666         kfree(inq_buff);
3667         return 0;
3668
3669 bail_out:
3670         kfree(inq_buff);
3671         return rc;
3672 }
3673
3674 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3675                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3676 {
3677         unsigned long flags;
3678         int rc, entry;
3679         /*
3680          * See if this device supports aborts.  If we already know
3681          * the device, we already know if it supports aborts, otherwise
3682          * we have to find out if it supports aborts by trying one.
3683          */
3684         spin_lock_irqsave(&h->devlock, flags);
3685         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3686         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3687                 entry >= 0 && entry < h->ndevices) {
3688                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3689                 spin_unlock_irqrestore(&h->devlock, flags);
3690         } else {
3691                 spin_unlock_irqrestore(&h->devlock, flags);
3692                 dev->supports_aborts =
3693                                 hpsa_device_supports_aborts(h, scsi3addr);
3694                 if (dev->supports_aborts < 0)
3695                         dev->supports_aborts = 0;
3696         }
3697 }
3698
3699 /*
3700  * Helper function to assign bus, target, lun mapping of devices.
3701  * Logical drive target and lun are assigned at this time, but
3702  * physical device lun and target assignment are deferred (assigned
3703  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3704 */
3705 static void figure_bus_target_lun(struct ctlr_info *h,
3706         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3707 {
3708         u32 lunid = get_unaligned_le32(lunaddrbytes);
3709
3710         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3711                 /* physical device, target and lun filled in later */
3712                 if (is_hba_lunid(lunaddrbytes))
3713                         hpsa_set_bus_target_lun(device,
3714                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3715                 else
3716                         /* defer target, lun assignment for physical devices */
3717                         hpsa_set_bus_target_lun(device,
3718                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3719                 return;
3720         }
3721         /* It's a logical device */
3722         if (device->external) {
3723                 hpsa_set_bus_target_lun(device,
3724                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3725                         lunid & 0x00ff);
3726                 return;
3727         }
3728         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3729                                 0, lunid & 0x3fff);
3730 }
3731
3732
3733 /*
3734  * Get address of physical disk used for an ioaccel2 mode command:
3735  *      1. Extract ioaccel2 handle from the command.
3736  *      2. Find a matching ioaccel2 handle from list of physical disks.
3737  *      3. Return:
3738  *              1 and set scsi3addr to address of matching physical
3739  *              0 if no matching physical disk was found.
3740  */
3741 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3742         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3743 {
3744         struct io_accel2_cmd *c2 =
3745                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3746         unsigned long flags;
3747         int i;
3748
3749         spin_lock_irqsave(&h->devlock, flags);
3750         for (i = 0; i < h->ndevices; i++)
3751                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3752                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3753                                 sizeof(h->dev[i]->scsi3addr));
3754                         spin_unlock_irqrestore(&h->devlock, flags);
3755                         return 1;
3756                 }
3757         spin_unlock_irqrestore(&h->devlock, flags);
3758         return 0;
3759 }
3760
3761 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3762         int i, int nphysicals, int nlocal_logicals)
3763 {
3764         /* In report logicals, local logicals are listed first,
3765         * then any externals.
3766         */
3767         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3768
3769         if (i == raid_ctlr_position)
3770                 return 0;
3771
3772         if (i < logicals_start)
3773                 return 0;
3774
3775         /* i is in logicals range, but still within local logicals */
3776         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3777                 return 0;
3778
3779         return 1; /* it's an external lun */
3780 }
3781
3782 /*
3783  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3784  * logdev.  The number of luns in physdev and logdev are returned in
3785  * *nphysicals and *nlogicals, respectively.
3786  * Returns 0 on success, -1 otherwise.
3787  */
3788 static int hpsa_gather_lun_info(struct ctlr_info *h,
3789         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3790         struct ReportLUNdata *logdev, u32 *nlogicals)
3791 {
3792         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3793                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3794                 return -1;
3795         }
3796         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3797         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3798                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3799                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3800                 *nphysicals = HPSA_MAX_PHYS_LUN;
3801         }
3802         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3803                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3804                 return -1;
3805         }
3806         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3807         /* Reject Logicals in excess of our max capability. */
3808         if (*nlogicals > HPSA_MAX_LUN) {
3809                 dev_warn(&h->pdev->dev,
3810                         "maximum logical LUNs (%d) exceeded.  "
3811                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3812                         *nlogicals - HPSA_MAX_LUN);
3813                         *nlogicals = HPSA_MAX_LUN;
3814         }
3815         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3816                 dev_warn(&h->pdev->dev,
3817                         "maximum logical + physical LUNs (%d) exceeded. "
3818                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3819                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3820                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3821         }
3822         return 0;
3823 }
3824
3825 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3826         int i, int nphysicals, int nlogicals,
3827         struct ReportExtendedLUNdata *physdev_list,
3828         struct ReportLUNdata *logdev_list)
3829 {
3830         /* Helper function, figure out where the LUN ID info is coming from
3831          * given index i, lists of physical and logical devices, where in
3832          * the list the raid controller is supposed to appear (first or last)
3833          */
3834
3835         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3836         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3837
3838         if (i == raid_ctlr_position)
3839                 return RAID_CTLR_LUNID;
3840
3841         if (i < logicals_start)
3842                 return &physdev_list->LUN[i -
3843                                 (raid_ctlr_position == 0)].lunid[0];
3844
3845         if (i < last_device)
3846                 return &logdev_list->LUN[i - nphysicals -
3847                         (raid_ctlr_position == 0)][0];
3848         BUG();
3849         return NULL;
3850 }
3851
3852 /* get physical drive ioaccel handle and queue depth */
3853 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3854                 struct hpsa_scsi_dev_t *dev,
3855                 struct ReportExtendedLUNdata *rlep, int rle_index,
3856                 struct bmic_identify_physical_device *id_phys)
3857 {
3858         int rc;
3859         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3860
3861         dev->ioaccel_handle = rle->ioaccel_handle;
3862         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3863                 dev->hba_ioaccel_enabled = 1;
3864         memset(id_phys, 0, sizeof(*id_phys));
3865         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3866                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3867                         sizeof(*id_phys));
3868         if (!rc)
3869                 /* Reserve space for FW operations */
3870 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3871 #define DRIVE_QUEUE_DEPTH 7
3872                 dev->queue_depth =
3873                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3874                                 DRIVE_CMDS_RESERVED_FOR_FW;
3875         else
3876                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3877 }
3878
3879 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3880         struct ReportExtendedLUNdata *rlep, int rle_index,
3881         struct bmic_identify_physical_device *id_phys)
3882 {
3883         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3884
3885         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3886                 this_device->hba_ioaccel_enabled = 1;
3887
3888         memcpy(&this_device->active_path_index,
3889                 &id_phys->active_path_number,
3890                 sizeof(this_device->active_path_index));
3891         memcpy(&this_device->path_map,
3892                 &id_phys->redundant_path_present_map,
3893                 sizeof(this_device->path_map));
3894         memcpy(&this_device->box,
3895                 &id_phys->alternate_paths_phys_box_on_port,
3896                 sizeof(this_device->box));
3897         memcpy(&this_device->phys_connector,
3898                 &id_phys->alternate_paths_phys_connector,
3899                 sizeof(this_device->phys_connector));
3900         memcpy(&this_device->bay,
3901                 &id_phys->phys_bay_in_box,
3902                 sizeof(this_device->bay));
3903 }
3904
3905 /* get number of local logical disks. */
3906 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3907         struct bmic_identify_controller *id_ctlr,
3908         u32 *nlocals)
3909 {
3910         int rc;
3911
3912         if (!id_ctlr) {
3913                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3914                         __func__);
3915                 return -ENOMEM;
3916         }
3917         memset(id_ctlr, 0, sizeof(*id_ctlr));
3918         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3919         if (!rc)
3920                 if (id_ctlr->configured_logical_drive_count < 256)
3921                         *nlocals = id_ctlr->configured_logical_drive_count;
3922                 else
3923                         *nlocals = le16_to_cpu(
3924                                         id_ctlr->extended_logical_unit_count);
3925         else
3926                 *nlocals = -1;
3927         return rc;
3928 }
3929
3930
3931 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3932 {
3933         /* the idea here is we could get notified
3934          * that some devices have changed, so we do a report
3935          * physical luns and report logical luns cmd, and adjust
3936          * our list of devices accordingly.
3937          *
3938          * The scsi3addr's of devices won't change so long as the
3939          * adapter is not reset.  That means we can rescan and
3940          * tell which devices we already know about, vs. new
3941          * devices, vs.  disappearing devices.
3942          */
3943         struct ReportExtendedLUNdata *physdev_list = NULL;
3944         struct ReportLUNdata *logdev_list = NULL;
3945         struct bmic_identify_physical_device *id_phys = NULL;
3946         struct bmic_identify_controller *id_ctlr = NULL;
3947         u32 nphysicals = 0;
3948         u32 nlogicals = 0;
3949         u32 nlocal_logicals = 0;
3950         u32 ndev_allocated = 0;
3951         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3952         int ncurrent = 0;
3953         int i, n_ext_target_devs, ndevs_to_allocate;
3954         int raid_ctlr_position;
3955         bool physical_device;
3956         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3957
3958         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3959         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3960         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3961         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3962         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3963         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3964
3965         if (!currentsd || !physdev_list || !logdev_list ||
3966                 !tmpdevice || !id_phys || !id_ctlr) {
3967                 dev_err(&h->pdev->dev, "out of memory\n");
3968                 goto out;
3969         }
3970         memset(lunzerobits, 0, sizeof(lunzerobits));
3971
3972         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3973
3974         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3975                         logdev_list, &nlogicals)) {
3976                 h->drv_req_rescan = 1;
3977                 goto out;
3978         }
3979
3980         /* Set number of local logicals (non PTRAID) */
3981         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3982                 dev_warn(&h->pdev->dev,
3983                         "%s: Can't determine number of local logical devices.\n",
3984                         __func__);
3985         }
3986
3987         /* We might see up to the maximum number of logical and physical disks
3988          * plus external target devices, and a device for the local RAID
3989          * controller.
3990          */
3991         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3992
3993         /* Allocate the per device structures */
3994         for (i = 0; i < ndevs_to_allocate; i++) {
3995                 if (i >= HPSA_MAX_DEVICES) {
3996                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3997                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3998                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3999                         break;
4000                 }
4001
4002                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4003                 if (!currentsd[i]) {
4004                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4005                                 __FILE__, __LINE__);
4006                         h->drv_req_rescan = 1;
4007                         goto out;
4008                 }
4009                 ndev_allocated++;
4010         }
4011
4012         if (is_scsi_rev_5(h))
4013                 raid_ctlr_position = 0;
4014         else
4015                 raid_ctlr_position = nphysicals + nlogicals;
4016
4017         /* adjust our table of devices */
4018         n_ext_target_devs = 0;
4019         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4020                 u8 *lunaddrbytes, is_OBDR = 0;
4021                 int rc = 0;
4022                 int phys_dev_index = i - (raid_ctlr_position == 0);
4023
4024                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4025
4026                 /* Figure out where the LUN ID info is coming from */
4027                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4028                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4029
4030                 /* skip masked non-disk devices */
4031                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4032                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4033                         continue;
4034
4035                 /* Get device type, vendor, model, device id */
4036                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4037                                                         &is_OBDR);
4038                 if (rc == -ENOMEM) {
4039                         dev_warn(&h->pdev->dev,
4040                                 "Out of memory, rescan deferred.\n");
4041                         h->drv_req_rescan = 1;
4042                         goto out;
4043                 }
4044                 if (rc) {
4045                         dev_warn(&h->pdev->dev,
4046                                 "Inquiry failed, skipping device.\n");
4047                         continue;
4048                 }
4049
4050                 /* Determine if this is a lun from an external target array */
4051                 tmpdevice->external =
4052                         figure_external_status(h, raid_ctlr_position, i,
4053                                                 nphysicals, nlocal_logicals);
4054
4055                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4056                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4057                 this_device = currentsd[ncurrent];
4058
4059                 /* Turn on discovery_polling if there are ext target devices.
4060                  * Event-based change notification is unreliable for those.
4061                  */
4062                 if (!h->discovery_polling) {
4063                         if (tmpdevice->external) {
4064                                 h->discovery_polling = 1;
4065                                 dev_info(&h->pdev->dev,
4066                                         "External target, activate discovery polling.\n");
4067                         }
4068                 }
4069
4070
4071                 *this_device = *tmpdevice;
4072                 this_device->physical_device = physical_device;
4073
4074                 /*
4075                  * Expose all devices except for physical devices that
4076                  * are masked.
4077                  */
4078                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4079                         this_device->expose_device = 0;
4080                 else
4081                         this_device->expose_device = 1;
4082
4083
4084                 /*
4085                  * Get the SAS address for physical devices that are exposed.
4086                  */
4087                 if (this_device->physical_device && this_device->expose_device)
4088                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4089
4090                 switch (this_device->devtype) {
4091                 case TYPE_ROM:
4092                         /* We don't *really* support actual CD-ROM devices,
4093                          * just "One Button Disaster Recovery" tape drive
4094                          * which temporarily pretends to be a CD-ROM drive.
4095                          * So we check that the device is really an OBDR tape
4096                          * device by checking for "$DR-10" in bytes 43-48 of
4097                          * the inquiry data.
4098                          */
4099                         if (is_OBDR)
4100                                 ncurrent++;
4101                         break;
4102                 case TYPE_DISK:
4103                         if (this_device->physical_device) {
4104                                 /* The disk is in HBA mode. */
4105                                 /* Never use RAID mapper in HBA mode. */
4106                                 this_device->offload_enabled = 0;
4107                                 hpsa_get_ioaccel_drive_info(h, this_device,
4108                                         physdev_list, phys_dev_index, id_phys);
4109                                 hpsa_get_path_info(this_device,
4110                                         physdev_list, phys_dev_index, id_phys);
4111                         }
4112                         ncurrent++;
4113                         break;
4114                 case TYPE_TAPE:
4115                 case TYPE_MEDIUM_CHANGER:
4116                 case TYPE_ENCLOSURE:
4117                         ncurrent++;
4118                         break;
4119                 case TYPE_RAID:
4120                         /* Only present the Smartarray HBA as a RAID controller.
4121                          * If it's a RAID controller other than the HBA itself
4122                          * (an external RAID controller, MSA500 or similar)
4123                          * don't present it.
4124                          */
4125                         if (!is_hba_lunid(lunaddrbytes))
4126                                 break;
4127                         ncurrent++;
4128                         break;
4129                 default:
4130                         break;
4131                 }
4132                 if (ncurrent >= HPSA_MAX_DEVICES)
4133                         break;
4134         }
4135
4136         if (h->sas_host == NULL) {
4137                 int rc = 0;
4138
4139                 rc = hpsa_add_sas_host(h);
4140                 if (rc) {
4141                         dev_warn(&h->pdev->dev,
4142                                 "Could not add sas host %d\n", rc);
4143                         goto out;
4144                 }
4145         }
4146
4147         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4148 out:
4149         kfree(tmpdevice);
4150         for (i = 0; i < ndev_allocated; i++)
4151                 kfree(currentsd[i]);
4152         kfree(currentsd);
4153         kfree(physdev_list);
4154         kfree(logdev_list);
4155         kfree(id_ctlr);
4156         kfree(id_phys);
4157 }
4158
4159 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4160                                    struct scatterlist *sg)
4161 {
4162         u64 addr64 = (u64) sg_dma_address(sg);
4163         unsigned int len = sg_dma_len(sg);
4164
4165         desc->Addr = cpu_to_le64(addr64);
4166         desc->Len = cpu_to_le32(len);
4167         desc->Ext = 0;
4168 }
4169
4170 /*
4171  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4172  * dma mapping  and fills in the scatter gather entries of the
4173  * hpsa command, cp.
4174  */
4175 static int hpsa_scatter_gather(struct ctlr_info *h,
4176                 struct CommandList *cp,
4177                 struct scsi_cmnd *cmd)
4178 {
4179         struct scatterlist *sg;
4180         int use_sg, i, sg_limit, chained, last_sg;
4181         struct SGDescriptor *curr_sg;
4182
4183         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4184
4185         use_sg = scsi_dma_map(cmd);
4186         if (use_sg < 0)
4187                 return use_sg;
4188
4189         if (!use_sg)
4190                 goto sglist_finished;
4191
4192         /*
4193          * If the number of entries is greater than the max for a single list,
4194          * then we have a chained list; we will set up all but one entry in the
4195          * first list (the last entry is saved for link information);
4196          * otherwise, we don't have a chained list and we'll set up at each of
4197          * the entries in the one list.
4198          */
4199         curr_sg = cp->SG;
4200         chained = use_sg > h->max_cmd_sg_entries;
4201         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4202         last_sg = scsi_sg_count(cmd) - 1;
4203         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4204                 hpsa_set_sg_descriptor(curr_sg, sg);
4205                 curr_sg++;
4206         }
4207
4208         if (chained) {
4209                 /*
4210                  * Continue with the chained list.  Set curr_sg to the chained
4211                  * list.  Modify the limit to the total count less the entries
4212                  * we've already set up.  Resume the scan at the list entry
4213                  * where the previous loop left off.
4214                  */
4215                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4216                 sg_limit = use_sg - sg_limit;
4217                 for_each_sg(sg, sg, sg_limit, i) {
4218                         hpsa_set_sg_descriptor(curr_sg, sg);
4219                         curr_sg++;
4220                 }
4221         }
4222
4223         /* Back the pointer up to the last entry and mark it as "last". */
4224         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4225
4226         if (use_sg + chained > h->maxSG)
4227                 h->maxSG = use_sg + chained;
4228
4229         if (chained) {
4230                 cp->Header.SGList = h->max_cmd_sg_entries;
4231                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4232                 if (hpsa_map_sg_chain_block(h, cp)) {
4233                         scsi_dma_unmap(cmd);
4234                         return -1;
4235                 }
4236                 return 0;
4237         }
4238
4239 sglist_finished:
4240
4241         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4242         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4243         return 0;
4244 }
4245
4246 #define IO_ACCEL_INELIGIBLE (1)
4247 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4248 {
4249         int is_write = 0;
4250         u32 block;
4251         u32 block_cnt;
4252
4253         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4254         switch (cdb[0]) {
4255         case WRITE_6:
4256         case WRITE_12:
4257                 is_write = 1;
4258         case READ_6:
4259         case READ_12:
4260                 if (*cdb_len == 6) {
4261                         block = get_unaligned_be16(&cdb[2]);
4262                         block_cnt = cdb[4];
4263                         if (block_cnt == 0)
4264                                 block_cnt = 256;
4265                 } else {
4266                         BUG_ON(*cdb_len != 12);
4267                         block = get_unaligned_be32(&cdb[2]);
4268                         block_cnt = get_unaligned_be32(&cdb[6]);
4269                 }
4270                 if (block_cnt > 0xffff)
4271                         return IO_ACCEL_INELIGIBLE;
4272
4273                 cdb[0] = is_write ? WRITE_10 : READ_10;
4274                 cdb[1] = 0;
4275                 cdb[2] = (u8) (block >> 24);
4276                 cdb[3] = (u8) (block >> 16);
4277                 cdb[4] = (u8) (block >> 8);
4278                 cdb[5] = (u8) (block);
4279                 cdb[6] = 0;
4280                 cdb[7] = (u8) (block_cnt >> 8);
4281                 cdb[8] = (u8) (block_cnt);
4282                 cdb[9] = 0;
4283                 *cdb_len = 10;
4284                 break;
4285         }
4286         return 0;
4287 }
4288
4289 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4290         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4291         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4292 {
4293         struct scsi_cmnd *cmd = c->scsi_cmd;
4294         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4295         unsigned int len;
4296         unsigned int total_len = 0;
4297         struct scatterlist *sg;
4298         u64 addr64;
4299         int use_sg, i;
4300         struct SGDescriptor *curr_sg;
4301         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4302
4303         /* TODO: implement chaining support */
4304         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4305                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4306                 return IO_ACCEL_INELIGIBLE;
4307         }
4308
4309         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4310
4311         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4312                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4313                 return IO_ACCEL_INELIGIBLE;
4314         }
4315
4316         c->cmd_type = CMD_IOACCEL1;
4317
4318         /* Adjust the DMA address to point to the accelerated command buffer */
4319         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4320                                 (c->cmdindex * sizeof(*cp));
4321         BUG_ON(c->busaddr & 0x0000007F);
4322
4323         use_sg = scsi_dma_map(cmd);
4324         if (use_sg < 0) {
4325                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4326                 return use_sg;
4327         }
4328
4329         if (use_sg) {
4330                 curr_sg = cp->SG;
4331                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4332                         addr64 = (u64) sg_dma_address(sg);
4333                         len  = sg_dma_len(sg);
4334                         total_len += len;
4335                         curr_sg->Addr = cpu_to_le64(addr64);
4336                         curr_sg->Len = cpu_to_le32(len);
4337                         curr_sg->Ext = cpu_to_le32(0);
4338                         curr_sg++;
4339                 }
4340                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4341
4342                 switch (cmd->sc_data_direction) {
4343                 case DMA_TO_DEVICE:
4344                         control |= IOACCEL1_CONTROL_DATA_OUT;
4345                         break;
4346                 case DMA_FROM_DEVICE:
4347                         control |= IOACCEL1_CONTROL_DATA_IN;
4348                         break;
4349                 case DMA_NONE:
4350                         control |= IOACCEL1_CONTROL_NODATAXFER;
4351                         break;
4352                 default:
4353                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4354                         cmd->sc_data_direction);
4355                         BUG();
4356                         break;
4357                 }
4358         } else {
4359                 control |= IOACCEL1_CONTROL_NODATAXFER;
4360         }
4361
4362         c->Header.SGList = use_sg;
4363         /* Fill out the command structure to submit */
4364         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4365         cp->transfer_len = cpu_to_le32(total_len);
4366         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4367                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4368         cp->control = cpu_to_le32(control);
4369         memcpy(cp->CDB, cdb, cdb_len);
4370         memcpy(cp->CISS_LUN, scsi3addr, 8);
4371         /* Tag was already set at init time. */
4372         enqueue_cmd_and_start_io(h, c);
4373         return 0;
4374 }
4375
4376 /*
4377  * Queue a command directly to a device behind the controller using the
4378  * I/O accelerator path.
4379  */
4380 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4381         struct CommandList *c)
4382 {
4383         struct scsi_cmnd *cmd = c->scsi_cmd;
4384         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4385
4386         c->phys_disk = dev;
4387
4388         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4389                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4390 }
4391
4392 /*
4393  * Set encryption parameters for the ioaccel2 request
4394  */
4395 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4396         struct CommandList *c, struct io_accel2_cmd *cp)
4397 {
4398         struct scsi_cmnd *cmd = c->scsi_cmd;
4399         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4400         struct raid_map_data *map = &dev->raid_map;
4401         u64 first_block;
4402
4403         /* Are we doing encryption on this device */
4404         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4405                 return;
4406         /* Set the data encryption key index. */
4407         cp->dekindex = map->dekindex;
4408
4409         /* Set the encryption enable flag, encoded into direction field. */
4410         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4411
4412         /* Set encryption tweak values based on logical block address
4413          * If block size is 512, tweak value is LBA.
4414          * For other block sizes, tweak is (LBA * block size)/ 512)
4415          */
4416         switch (cmd->cmnd[0]) {
4417         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4418         case WRITE_6:
4419         case READ_6:
4420                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4421                 break;
4422         case WRITE_10:
4423         case READ_10:
4424         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4425         case WRITE_12:
4426         case READ_12:
4427                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4428                 break;
4429         case WRITE_16:
4430         case READ_16:
4431                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4432                 break;
4433         default:
4434                 dev_err(&h->pdev->dev,
4435                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4436                         __func__, cmd->cmnd[0]);
4437                 BUG();
4438                 break;
4439         }
4440
4441         if (le32_to_cpu(map->volume_blk_size) != 512)
4442                 first_block = first_block *
4443                                 le32_to_cpu(map->volume_blk_size)/512;
4444
4445         cp->tweak_lower = cpu_to_le32(first_block);
4446         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4447 }
4448
4449 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4450         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4451         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4452 {
4453         struct scsi_cmnd *cmd = c->scsi_cmd;
4454         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4455         struct ioaccel2_sg_element *curr_sg;
4456         int use_sg, i;
4457         struct scatterlist *sg;
4458         u64 addr64;
4459         u32 len;
4460         u32 total_len = 0;
4461
4462         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4463
4464         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4465                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4466                 return IO_ACCEL_INELIGIBLE;
4467         }
4468
4469         c->cmd_type = CMD_IOACCEL2;
4470         /* Adjust the DMA address to point to the accelerated command buffer */
4471         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4472                                 (c->cmdindex * sizeof(*cp));
4473         BUG_ON(c->busaddr & 0x0000007F);
4474
4475         memset(cp, 0, sizeof(*cp));
4476         cp->IU_type = IOACCEL2_IU_TYPE;
4477
4478         use_sg = scsi_dma_map(cmd);
4479         if (use_sg < 0) {
4480                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4481                 return use_sg;
4482         }
4483
4484         if (use_sg) {
4485                 curr_sg = cp->sg;
4486                 if (use_sg > h->ioaccel_maxsg) {
4487                         addr64 = le64_to_cpu(
4488                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4489                         curr_sg->address = cpu_to_le64(addr64);
4490                         curr_sg->length = 0;
4491                         curr_sg->reserved[0] = 0;
4492                         curr_sg->reserved[1] = 0;
4493                         curr_sg->reserved[2] = 0;
4494                         curr_sg->chain_indicator = 0x80;
4495
4496                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4497                 }
4498                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4499                         addr64 = (u64) sg_dma_address(sg);
4500                         len  = sg_dma_len(sg);
4501                         total_len += len;
4502                         curr_sg->address = cpu_to_le64(addr64);
4503                         curr_sg->length = cpu_to_le32(len);
4504                         curr_sg->reserved[0] = 0;
4505                         curr_sg->reserved[1] = 0;
4506                         curr_sg->reserved[2] = 0;
4507                         curr_sg->chain_indicator = 0;
4508                         curr_sg++;
4509                 }
4510
4511                 switch (cmd->sc_data_direction) {
4512                 case DMA_TO_DEVICE:
4513                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4514                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4515                         break;
4516                 case DMA_FROM_DEVICE:
4517                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4518                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4519                         break;
4520                 case DMA_NONE:
4521                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4522                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4523                         break;
4524                 default:
4525                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4526                                 cmd->sc_data_direction);
4527                         BUG();
4528                         break;
4529                 }
4530         } else {
4531                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4532                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4533         }
4534
4535         /* Set encryption parameters, if necessary */
4536         set_encrypt_ioaccel2(h, c, cp);
4537
4538         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4539         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4540         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4541
4542         cp->data_len = cpu_to_le32(total_len);
4543         cp->err_ptr = cpu_to_le64(c->busaddr +
4544                         offsetof(struct io_accel2_cmd, error_data));
4545         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4546
4547         /* fill in sg elements */
4548         if (use_sg > h->ioaccel_maxsg) {
4549                 cp->sg_count = 1;
4550                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4551                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4552                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4553                         scsi_dma_unmap(cmd);
4554                         return -1;
4555                 }
4556         } else
4557                 cp->sg_count = (u8) use_sg;
4558
4559         enqueue_cmd_and_start_io(h, c);
4560         return 0;
4561 }
4562
4563 /*
4564  * Queue a command to the correct I/O accelerator path.
4565  */
4566 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4567         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4568         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4569 {
4570         /* Try to honor the device's queue depth */
4571         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4572                                         phys_disk->queue_depth) {
4573                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4574                 return IO_ACCEL_INELIGIBLE;
4575         }
4576         if (h->transMethod & CFGTBL_Trans_io_accel1)
4577                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4578                                                 cdb, cdb_len, scsi3addr,
4579                                                 phys_disk);
4580         else
4581                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4582                                                 cdb, cdb_len, scsi3addr,
4583                                                 phys_disk);
4584 }
4585
4586 static void raid_map_helper(struct raid_map_data *map,
4587                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4588 {
4589         if (offload_to_mirror == 0)  {
4590                 /* use physical disk in the first mirrored group. */
4591                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4592                 return;
4593         }
4594         do {
4595                 /* determine mirror group that *map_index indicates */
4596                 *current_group = *map_index /
4597                         le16_to_cpu(map->data_disks_per_row);
4598                 if (offload_to_mirror == *current_group)
4599                         continue;
4600                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4601                         /* select map index from next group */
4602                         *map_index += le16_to_cpu(map->data_disks_per_row);
4603                         (*current_group)++;
4604                 } else {
4605                         /* select map index from first group */
4606                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4607                         *current_group = 0;
4608                 }
4609         } while (offload_to_mirror != *current_group);
4610 }
4611
4612 /*
4613  * Attempt to perform offload RAID mapping for a logical volume I/O.
4614  */
4615 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4616         struct CommandList *c)
4617 {
4618         struct scsi_cmnd *cmd = c->scsi_cmd;
4619         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4620         struct raid_map_data *map = &dev->raid_map;
4621         struct raid_map_disk_data *dd = &map->data[0];
4622         int is_write = 0;
4623         u32 map_index;
4624         u64 first_block, last_block;
4625         u32 block_cnt;
4626         u32 blocks_per_row;
4627         u64 first_row, last_row;
4628         u32 first_row_offset, last_row_offset;
4629         u32 first_column, last_column;
4630         u64 r0_first_row, r0_last_row;
4631         u32 r5or6_blocks_per_row;
4632         u64 r5or6_first_row, r5or6_last_row;
4633         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4634         u32 r5or6_first_column, r5or6_last_column;
4635         u32 total_disks_per_row;
4636         u32 stripesize;
4637         u32 first_group, last_group, current_group;
4638         u32 map_row;
4639         u32 disk_handle;
4640         u64 disk_block;
4641         u32 disk_block_cnt;
4642         u8 cdb[16];
4643         u8 cdb_len;
4644         u16 strip_size;
4645 #if BITS_PER_LONG == 32
4646         u64 tmpdiv;
4647 #endif
4648         int offload_to_mirror;
4649
4650         /* check for valid opcode, get LBA and block count */
4651         switch (cmd->cmnd[0]) {
4652         case WRITE_6:
4653                 is_write = 1;
4654         case READ_6:
4655                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4656                 block_cnt = cmd->cmnd[4];
4657                 if (block_cnt == 0)
4658                         block_cnt = 256;
4659                 break;
4660         case WRITE_10:
4661                 is_write = 1;
4662         case READ_10:
4663                 first_block =
4664                         (((u64) cmd->cmnd[2]) << 24) |
4665                         (((u64) cmd->cmnd[3]) << 16) |
4666                         (((u64) cmd->cmnd[4]) << 8) |
4667                         cmd->cmnd[5];
4668                 block_cnt =
4669                         (((u32) cmd->cmnd[7]) << 8) |
4670                         cmd->cmnd[8];
4671                 break;
4672         case WRITE_12:
4673                 is_write = 1;
4674         case READ_12:
4675                 first_block =
4676                         (((u64) cmd->cmnd[2]) << 24) |
4677                         (((u64) cmd->cmnd[3]) << 16) |
4678                         (((u64) cmd->cmnd[4]) << 8) |
4679                         cmd->cmnd[5];
4680                 block_cnt =
4681                         (((u32) cmd->cmnd[6]) << 24) |
4682                         (((u32) cmd->cmnd[7]) << 16) |
4683                         (((u32) cmd->cmnd[8]) << 8) |
4684                 cmd->cmnd[9];
4685                 break;
4686         case WRITE_16:
4687                 is_write = 1;
4688         case READ_16:
4689                 first_block =
4690                         (((u64) cmd->cmnd[2]) << 56) |
4691                         (((u64) cmd->cmnd[3]) << 48) |
4692                         (((u64) cmd->cmnd[4]) << 40) |
4693                         (((u64) cmd->cmnd[5]) << 32) |
4694                         (((u64) cmd->cmnd[6]) << 24) |
4695                         (((u64) cmd->cmnd[7]) << 16) |
4696                         (((u64) cmd->cmnd[8]) << 8) |
4697                         cmd->cmnd[9];
4698                 block_cnt =
4699                         (((u32) cmd->cmnd[10]) << 24) |
4700                         (((u32) cmd->cmnd[11]) << 16) |
4701                         (((u32) cmd->cmnd[12]) << 8) |
4702                         cmd->cmnd[13];
4703                 break;
4704         default:
4705                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4706         }
4707         last_block = first_block + block_cnt - 1;
4708
4709         /* check for write to non-RAID-0 */
4710         if (is_write && dev->raid_level != 0)
4711                 return IO_ACCEL_INELIGIBLE;
4712
4713         /* check for invalid block or wraparound */
4714         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4715                 last_block < first_block)
4716                 return IO_ACCEL_INELIGIBLE;
4717
4718         /* calculate stripe information for the request */
4719         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4720                                 le16_to_cpu(map->strip_size);
4721         strip_size = le16_to_cpu(map->strip_size);
4722 #if BITS_PER_LONG == 32
4723         tmpdiv = first_block;
4724         (void) do_div(tmpdiv, blocks_per_row);
4725         first_row = tmpdiv;
4726         tmpdiv = last_block;
4727         (void) do_div(tmpdiv, blocks_per_row);
4728         last_row = tmpdiv;
4729         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4730         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4731         tmpdiv = first_row_offset;
4732         (void) do_div(tmpdiv, strip_size);
4733         first_column = tmpdiv;
4734         tmpdiv = last_row_offset;
4735         (void) do_div(tmpdiv, strip_size);
4736         last_column = tmpdiv;
4737 #else
4738         first_row = first_block / blocks_per_row;
4739         last_row = last_block / blocks_per_row;
4740         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4741         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4742         first_column = first_row_offset / strip_size;
4743         last_column = last_row_offset / strip_size;
4744 #endif
4745
4746         /* if this isn't a single row/column then give to the controller */
4747         if ((first_row != last_row) || (first_column != last_column))
4748                 return IO_ACCEL_INELIGIBLE;
4749
4750         /* proceeding with driver mapping */
4751         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4752                                 le16_to_cpu(map->metadata_disks_per_row);
4753         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4754                                 le16_to_cpu(map->row_cnt);
4755         map_index = (map_row * total_disks_per_row) + first_column;
4756
4757         switch (dev->raid_level) {
4758         case HPSA_RAID_0:
4759                 break; /* nothing special to do */
4760         case HPSA_RAID_1:
4761                 /* Handles load balance across RAID 1 members.
4762                  * (2-drive R1 and R10 with even # of drives.)
4763                  * Appropriate for SSDs, not optimal for HDDs
4764                  */
4765                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4766                 if (dev->offload_to_mirror)
4767                         map_index += le16_to_cpu(map->data_disks_per_row);
4768                 dev->offload_to_mirror = !dev->offload_to_mirror;
4769                 break;
4770         case HPSA_RAID_ADM:
4771                 /* Handles N-way mirrors  (R1-ADM)
4772                  * and R10 with # of drives divisible by 3.)
4773                  */
4774                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4775
4776                 offload_to_mirror = dev->offload_to_mirror;
4777                 raid_map_helper(map, offload_to_mirror,
4778                                 &map_index, &current_group);
4779                 /* set mirror group to use next time */
4780                 offload_to_mirror =
4781                         (offload_to_mirror >=
4782                         le16_to_cpu(map->layout_map_count) - 1)
4783                         ? 0 : offload_to_mirror + 1;
4784                 dev->offload_to_mirror = offload_to_mirror;
4785                 /* Avoid direct use of dev->offload_to_mirror within this
4786                  * function since multiple threads might simultaneously
4787                  * increment it beyond the range of dev->layout_map_count -1.
4788                  */
4789                 break;
4790         case HPSA_RAID_5:
4791         case HPSA_RAID_6:
4792                 if (le16_to_cpu(map->layout_map_count) <= 1)
4793                         break;
4794
4795                 /* Verify first and last block are in same RAID group */
4796                 r5or6_blocks_per_row =
4797                         le16_to_cpu(map->strip_size) *
4798                         le16_to_cpu(map->data_disks_per_row);
4799                 BUG_ON(r5or6_blocks_per_row == 0);
4800                 stripesize = r5or6_blocks_per_row *
4801                         le16_to_cpu(map->layout_map_count);
4802 #if BITS_PER_LONG == 32
4803                 tmpdiv = first_block;
4804                 first_group = do_div(tmpdiv, stripesize);
4805                 tmpdiv = first_group;
4806                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4807                 first_group = tmpdiv;
4808                 tmpdiv = last_block;
4809                 last_group = do_div(tmpdiv, stripesize);
4810                 tmpdiv = last_group;
4811                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4812                 last_group = tmpdiv;
4813 #else
4814                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4815                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4816 #endif
4817                 if (first_group != last_group)
4818                         return IO_ACCEL_INELIGIBLE;
4819
4820                 /* Verify request is in a single row of RAID 5/6 */
4821 #if BITS_PER_LONG == 32
4822                 tmpdiv = first_block;
4823                 (void) do_div(tmpdiv, stripesize);
4824                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4825                 tmpdiv = last_block;
4826                 (void) do_div(tmpdiv, stripesize);
4827                 r5or6_last_row = r0_last_row = tmpdiv;
4828 #else
4829                 first_row = r5or6_first_row = r0_first_row =
4830                                                 first_block / stripesize;
4831                 r5or6_last_row = r0_last_row = last_block / stripesize;
4832 #endif
4833                 if (r5or6_first_row != r5or6_last_row)
4834                         return IO_ACCEL_INELIGIBLE;
4835
4836
4837                 /* Verify request is in a single column */
4838 #if BITS_PER_LONG == 32
4839                 tmpdiv = first_block;
4840                 first_row_offset = do_div(tmpdiv, stripesize);
4841                 tmpdiv = first_row_offset;
4842                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4843                 r5or6_first_row_offset = first_row_offset;
4844                 tmpdiv = last_block;
4845                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4846                 tmpdiv = r5or6_last_row_offset;
4847                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4848                 tmpdiv = r5or6_first_row_offset;
4849                 (void) do_div(tmpdiv, map->strip_size);
4850                 first_column = r5or6_first_column = tmpdiv;
4851                 tmpdiv = r5or6_last_row_offset;
4852                 (void) do_div(tmpdiv, map->strip_size);
4853                 r5or6_last_column = tmpdiv;
4854 #else
4855                 first_row_offset = r5or6_first_row_offset =
4856                         (u32)((first_block % stripesize) %
4857                                                 r5or6_blocks_per_row);
4858
4859                 r5or6_last_row_offset =
4860                         (u32)((last_block % stripesize) %
4861                                                 r5or6_blocks_per_row);
4862
4863                 first_column = r5or6_first_column =
4864                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4865                 r5or6_last_column =
4866                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4867 #endif
4868                 if (r5or6_first_column != r5or6_last_column)
4869                         return IO_ACCEL_INELIGIBLE;
4870
4871                 /* Request is eligible */
4872                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4873                         le16_to_cpu(map->row_cnt);
4874
4875                 map_index = (first_group *
4876                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4877                         (map_row * total_disks_per_row) + first_column;
4878                 break;
4879         default:
4880                 return IO_ACCEL_INELIGIBLE;
4881         }
4882
4883         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4884                 return IO_ACCEL_INELIGIBLE;
4885
4886         c->phys_disk = dev->phys_disk[map_index];
4887
4888         disk_handle = dd[map_index].ioaccel_handle;
4889         disk_block = le64_to_cpu(map->disk_starting_blk) +
4890                         first_row * le16_to_cpu(map->strip_size) +
4891                         (first_row_offset - first_column *
4892                         le16_to_cpu(map->strip_size));
4893         disk_block_cnt = block_cnt;
4894
4895         /* handle differing logical/physical block sizes */
4896         if (map->phys_blk_shift) {
4897                 disk_block <<= map->phys_blk_shift;
4898                 disk_block_cnt <<= map->phys_blk_shift;
4899         }
4900         BUG_ON(disk_block_cnt > 0xffff);
4901
4902         /* build the new CDB for the physical disk I/O */
4903         if (disk_block > 0xffffffff) {
4904                 cdb[0] = is_write ? WRITE_16 : READ_16;
4905                 cdb[1] = 0;
4906                 cdb[2] = (u8) (disk_block >> 56);
4907                 cdb[3] = (u8) (disk_block >> 48);
4908                 cdb[4] = (u8) (disk_block >> 40);
4909                 cdb[5] = (u8) (disk_block >> 32);
4910                 cdb[6] = (u8) (disk_block >> 24);
4911                 cdb[7] = (u8) (disk_block >> 16);
4912                 cdb[8] = (u8) (disk_block >> 8);
4913                 cdb[9] = (u8) (disk_block);
4914                 cdb[10] = (u8) (disk_block_cnt >> 24);
4915                 cdb[11] = (u8) (disk_block_cnt >> 16);
4916                 cdb[12] = (u8) (disk_block_cnt >> 8);
4917                 cdb[13] = (u8) (disk_block_cnt);
4918                 cdb[14] = 0;
4919                 cdb[15] = 0;
4920                 cdb_len = 16;
4921         } else {
4922                 cdb[0] = is_write ? WRITE_10 : READ_10;
4923                 cdb[1] = 0;
4924                 cdb[2] = (u8) (disk_block >> 24);
4925                 cdb[3] = (u8) (disk_block >> 16);
4926                 cdb[4] = (u8) (disk_block >> 8);
4927                 cdb[5] = (u8) (disk_block);
4928                 cdb[6] = 0;
4929                 cdb[7] = (u8) (disk_block_cnt >> 8);
4930                 cdb[8] = (u8) (disk_block_cnt);
4931                 cdb[9] = 0;
4932                 cdb_len = 10;
4933         }
4934         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4935                                                 dev->scsi3addr,
4936                                                 dev->phys_disk[map_index]);
4937 }
4938
4939 /*
4940  * Submit commands down the "normal" RAID stack path
4941  * All callers to hpsa_ciss_submit must check lockup_detected
4942  * beforehand, before (opt.) and after calling cmd_alloc
4943  */
4944 static int hpsa_ciss_submit(struct ctlr_info *h,
4945         struct CommandList *c, struct scsi_cmnd *cmd,
4946         unsigned char scsi3addr[])
4947 {
4948         cmd->host_scribble = (unsigned char *) c;
4949         c->cmd_type = CMD_SCSI;
4950         c->scsi_cmd = cmd;
4951         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4952         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4953         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4954
4955         /* Fill in the request block... */
4956
4957         c->Request.Timeout = 0;
4958         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4959         c->Request.CDBLen = cmd->cmd_len;
4960         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4961         switch (cmd->sc_data_direction) {
4962         case DMA_TO_DEVICE:
4963                 c->Request.type_attr_dir =
4964                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4965                 break;
4966         case DMA_FROM_DEVICE:
4967                 c->Request.type_attr_dir =
4968                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4969                 break;
4970         case DMA_NONE:
4971                 c->Request.type_attr_dir =
4972                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4973                 break;
4974         case DMA_BIDIRECTIONAL:
4975                 /* This can happen if a buggy application does a scsi passthru
4976                  * and sets both inlen and outlen to non-zero. ( see
4977                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4978                  */
4979
4980                 c->Request.type_attr_dir =
4981                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4982                 /* This is technically wrong, and hpsa controllers should
4983                  * reject it with CMD_INVALID, which is the most correct
4984                  * response, but non-fibre backends appear to let it
4985                  * slide by, and give the same results as if this field
4986                  * were set correctly.  Either way is acceptable for
4987                  * our purposes here.
4988                  */
4989
4990                 break;
4991
4992         default:
4993                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4994                         cmd->sc_data_direction);
4995                 BUG();
4996                 break;
4997         }
4998
4999         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5000                 hpsa_cmd_resolve_and_free(h, c);
5001                 return SCSI_MLQUEUE_HOST_BUSY;
5002         }
5003         enqueue_cmd_and_start_io(h, c);
5004         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5005         return 0;
5006 }
5007
5008 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5009                                 struct CommandList *c)
5010 {
5011         dma_addr_t cmd_dma_handle, err_dma_handle;
5012
5013         /* Zero out all of commandlist except the last field, refcount */
5014         memset(c, 0, offsetof(struct CommandList, refcount));
5015         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5016         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5017         c->err_info = h->errinfo_pool + index;
5018         memset(c->err_info, 0, sizeof(*c->err_info));
5019         err_dma_handle = h->errinfo_pool_dhandle
5020             + index * sizeof(*c->err_info);
5021         c->cmdindex = index;
5022         c->busaddr = (u32) cmd_dma_handle;
5023         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5024         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5025         c->h = h;
5026         c->scsi_cmd = SCSI_CMD_IDLE;
5027 }
5028
5029 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5030 {
5031         int i;
5032
5033         for (i = 0; i < h->nr_cmds; i++) {
5034                 struct CommandList *c = h->cmd_pool + i;
5035
5036                 hpsa_cmd_init(h, i, c);
5037                 atomic_set(&c->refcount, 0);
5038         }
5039 }
5040
5041 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5042                                 struct CommandList *c)
5043 {
5044         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5045
5046         BUG_ON(c->cmdindex != index);
5047
5048         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5049         memset(c->err_info, 0, sizeof(*c->err_info));
5050         c->busaddr = (u32) cmd_dma_handle;
5051 }
5052
5053 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5054                 struct CommandList *c, struct scsi_cmnd *cmd,
5055                 unsigned char *scsi3addr)
5056 {
5057         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5058         int rc = IO_ACCEL_INELIGIBLE;
5059
5060         cmd->host_scribble = (unsigned char *) c;
5061
5062         if (dev->offload_enabled) {
5063                 hpsa_cmd_init(h, c->cmdindex, c);
5064                 c->cmd_type = CMD_SCSI;
5065                 c->scsi_cmd = cmd;
5066                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5067                 if (rc < 0)     /* scsi_dma_map failed. */
5068                         rc = SCSI_MLQUEUE_HOST_BUSY;
5069         } else if (dev->hba_ioaccel_enabled) {
5070                 hpsa_cmd_init(h, c->cmdindex, c);
5071                 c->cmd_type = CMD_SCSI;
5072                 c->scsi_cmd = cmd;
5073                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5074                 if (rc < 0)     /* scsi_dma_map failed. */
5075                         rc = SCSI_MLQUEUE_HOST_BUSY;
5076         }
5077         return rc;
5078 }
5079
5080 static void hpsa_command_resubmit_worker(struct work_struct *work)
5081 {
5082         struct scsi_cmnd *cmd;
5083         struct hpsa_scsi_dev_t *dev;
5084         struct CommandList *c = container_of(work, struct CommandList, work);
5085
5086         cmd = c->scsi_cmd;
5087         dev = cmd->device->hostdata;
5088         if (!dev) {
5089                 cmd->result = DID_NO_CONNECT << 16;
5090                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5091         }
5092         if (c->reset_pending)
5093                 return hpsa_cmd_resolve_and_free(c->h, c);
5094         if (c->abort_pending)
5095                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5096         if (c->cmd_type == CMD_IOACCEL2) {
5097                 struct ctlr_info *h = c->h;
5098                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5099                 int rc;
5100
5101                 if (c2->error_data.serv_response ==
5102                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5103                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5104                         if (rc == 0)
5105                                 return;
5106                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5107                                 /*
5108                                  * If we get here, it means dma mapping failed.
5109                                  * Try again via scsi mid layer, which will
5110                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5111                                  */
5112                                 cmd->result = DID_IMM_RETRY << 16;
5113                                 return hpsa_cmd_free_and_done(h, c, cmd);
5114                         }
5115                         /* else, fall thru and resubmit down CISS path */
5116                 }
5117         }
5118         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5119         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5120                 /*
5121                  * If we get here, it means dma mapping failed. Try
5122                  * again via scsi mid layer, which will then get
5123                  * SCSI_MLQUEUE_HOST_BUSY.
5124                  *
5125                  * hpsa_ciss_submit will have already freed c
5126                  * if it encountered a dma mapping failure.
5127                  */
5128                 cmd->result = DID_IMM_RETRY << 16;
5129                 cmd->scsi_done(cmd);
5130         }
5131 }
5132
5133 /* Running in struct Scsi_Host->host_lock less mode */
5134 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5135 {
5136         struct ctlr_info *h;
5137         struct hpsa_scsi_dev_t *dev;
5138         unsigned char scsi3addr[8];
5139         struct CommandList *c;
5140         int rc = 0;
5141
5142         /* Get the ptr to our adapter structure out of cmd->host. */
5143         h = sdev_to_hba(cmd->device);
5144
5145         BUG_ON(cmd->request->tag < 0);
5146
5147         dev = cmd->device->hostdata;
5148         if (!dev) {
5149                 cmd->result = DID_NO_CONNECT << 16;
5150                 cmd->scsi_done(cmd);
5151                 return 0;
5152         }
5153
5154         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5155
5156         if (unlikely(lockup_detected(h))) {
5157                 cmd->result = DID_NO_CONNECT << 16;
5158                 cmd->scsi_done(cmd);
5159                 return 0;
5160         }
5161         c = cmd_tagged_alloc(h, cmd);
5162
5163         /*
5164          * Call alternate submit routine for I/O accelerated commands.
5165          * Retries always go down the normal I/O path.
5166          */
5167         if (likely(cmd->retries == 0 &&
5168                 cmd->request->cmd_type == REQ_TYPE_FS &&
5169                 h->acciopath_status)) {
5170                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5171                 if (rc == 0)
5172                         return 0;
5173                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5174                         hpsa_cmd_resolve_and_free(h, c);
5175                         return SCSI_MLQUEUE_HOST_BUSY;
5176                 }
5177         }
5178         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5179 }
5180
5181 static void hpsa_scan_complete(struct ctlr_info *h)
5182 {
5183         unsigned long flags;
5184
5185         spin_lock_irqsave(&h->scan_lock, flags);
5186         h->scan_finished = 1;
5187         wake_up_all(&h->scan_wait_queue);
5188         spin_unlock_irqrestore(&h->scan_lock, flags);
5189 }
5190
5191 static void hpsa_scan_start(struct Scsi_Host *sh)
5192 {
5193         struct ctlr_info *h = shost_to_hba(sh);
5194         unsigned long flags;
5195
5196         /*
5197          * Don't let rescans be initiated on a controller known to be locked
5198          * up.  If the controller locks up *during* a rescan, that thread is
5199          * probably hosed, but at least we can prevent new rescan threads from
5200          * piling up on a locked up controller.
5201          */
5202         if (unlikely(lockup_detected(h)))
5203                 return hpsa_scan_complete(h);
5204
5205         /* wait until any scan already in progress is finished. */
5206         while (1) {
5207                 spin_lock_irqsave(&h->scan_lock, flags);
5208                 if (h->scan_finished)
5209                         break;
5210                 spin_unlock_irqrestore(&h->scan_lock, flags);
5211                 wait_event(h->scan_wait_queue, h->scan_finished);
5212                 /* Note: We don't need to worry about a race between this
5213                  * thread and driver unload because the midlayer will
5214                  * have incremented the reference count, so unload won't
5215                  * happen if we're in here.
5216                  */
5217         }
5218         h->scan_finished = 0; /* mark scan as in progress */
5219         spin_unlock_irqrestore(&h->scan_lock, flags);
5220
5221         if (unlikely(lockup_detected(h)))
5222                 return hpsa_scan_complete(h);
5223
5224         hpsa_update_scsi_devices(h);
5225
5226         hpsa_scan_complete(h);
5227 }
5228
5229 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5230 {
5231         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5232
5233         if (!logical_drive)
5234                 return -ENODEV;
5235
5236         if (qdepth < 1)
5237                 qdepth = 1;
5238         else if (qdepth > logical_drive->queue_depth)
5239                 qdepth = logical_drive->queue_depth;
5240
5241         return scsi_change_queue_depth(sdev, qdepth);
5242 }
5243
5244 static int hpsa_scan_finished(struct Scsi_Host *sh,
5245         unsigned long elapsed_time)
5246 {
5247         struct ctlr_info *h = shost_to_hba(sh);
5248         unsigned long flags;
5249         int finished;
5250
5251         spin_lock_irqsave(&h->scan_lock, flags);
5252         finished = h->scan_finished;
5253         spin_unlock_irqrestore(&h->scan_lock, flags);
5254         return finished;
5255 }
5256
5257 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5258 {
5259         struct Scsi_Host *sh;
5260         int error;
5261
5262         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5263         if (sh == NULL) {
5264                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5265                 return -ENOMEM;
5266         }
5267
5268         sh->io_port = 0;
5269         sh->n_io_port = 0;
5270         sh->this_id = -1;
5271         sh->max_channel = 3;
5272         sh->max_cmd_len = MAX_COMMAND_SIZE;
5273         sh->max_lun = HPSA_MAX_LUN;
5274         sh->max_id = HPSA_MAX_LUN;
5275         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5276         sh->cmd_per_lun = sh->can_queue;
5277         sh->sg_tablesize = h->maxsgentries;
5278         sh->transportt = hpsa_sas_transport_template;
5279         sh->hostdata[0] = (unsigned long) h;
5280         sh->irq = h->intr[h->intr_mode];
5281         sh->unique_id = sh->irq;
5282         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5283         if (error) {
5284                 dev_err(&h->pdev->dev,
5285                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5286                         __func__, h->ctlr);
5287                         scsi_host_put(sh);
5288                         return error;
5289         }
5290         h->scsi_host = sh;
5291         return 0;
5292 }
5293
5294 static int hpsa_scsi_add_host(struct ctlr_info *h)
5295 {
5296         int rv;
5297
5298         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5299         if (rv) {
5300                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5301                 return rv;
5302         }
5303         scsi_scan_host(h->scsi_host);
5304         return 0;
5305 }
5306
5307 /*
5308  * The block layer has already gone to the trouble of picking out a unique,
5309  * small-integer tag for this request.  We use an offset from that value as
5310  * an index to select our command block.  (The offset allows us to reserve the
5311  * low-numbered entries for our own uses.)
5312  */
5313 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5314 {
5315         int idx = scmd->request->tag;
5316
5317         if (idx < 0)
5318                 return idx;
5319
5320         /* Offset to leave space for internal cmds. */
5321         return idx += HPSA_NRESERVED_CMDS;
5322 }
5323
5324 /*
5325  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5326  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5327  */
5328 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5329                                 struct CommandList *c, unsigned char lunaddr[],
5330                                 int reply_queue)
5331 {
5332         int rc;
5333
5334         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5335         (void) fill_cmd(c, TEST_UNIT_READY, h,
5336                         NULL, 0, 0, lunaddr, TYPE_CMD);
5337         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5338         if (rc)
5339                 return rc;
5340         /* no unmap needed here because no data xfer. */
5341
5342         /* Check if the unit is already ready. */
5343         if (c->err_info->CommandStatus == CMD_SUCCESS)
5344                 return 0;
5345
5346         /*
5347          * The first command sent after reset will receive "unit attention" to
5348          * indicate that the LUN has been reset...this is actually what we're
5349          * looking for (but, success is good too).
5350          */
5351         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5352                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5353                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5354                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5355                 return 0;
5356
5357         return 1;
5358 }
5359
5360 /*
5361  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5362  * returns zero when the unit is ready, and non-zero when giving up.
5363  */
5364 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5365                                 struct CommandList *c,
5366                                 unsigned char lunaddr[], int reply_queue)
5367 {
5368         int rc;
5369         int count = 0;
5370         int waittime = 1; /* seconds */
5371
5372         /* Send test unit ready until device ready, or give up. */
5373         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5374
5375                 /*
5376                  * Wait for a bit.  do this first, because if we send
5377                  * the TUR right away, the reset will just abort it.
5378                  */
5379                 msleep(1000 * waittime);
5380
5381                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5382                 if (!rc)
5383                         break;
5384
5385                 /* Increase wait time with each try, up to a point. */
5386                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5387                         waittime *= 2;
5388
5389                 dev_warn(&h->pdev->dev,
5390                          "waiting %d secs for device to become ready.\n",
5391                          waittime);
5392         }
5393
5394         return rc;
5395 }
5396
5397 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5398                                            unsigned char lunaddr[],
5399                                            int reply_queue)
5400 {
5401         int first_queue;
5402         int last_queue;
5403         int rq;
5404         int rc = 0;
5405         struct CommandList *c;
5406
5407         c = cmd_alloc(h);
5408
5409         /*
5410          * If no specific reply queue was requested, then send the TUR
5411          * repeatedly, requesting a reply on each reply queue; otherwise execute
5412          * the loop exactly once using only the specified queue.
5413          */
5414         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5415                 first_queue = 0;
5416                 last_queue = h->nreply_queues - 1;
5417         } else {
5418                 first_queue = reply_queue;
5419                 last_queue = reply_queue;
5420         }
5421
5422         for (rq = first_queue; rq <= last_queue; rq++) {
5423                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5424                 if (rc)
5425                         break;
5426         }
5427
5428         if (rc)
5429                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5430         else
5431                 dev_warn(&h->pdev->dev, "device is ready.\n");
5432
5433         cmd_free(h, c);
5434         return rc;
5435 }
5436
5437 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5438  * complaining.  Doing a host- or bus-reset can't do anything good here.
5439  */
5440 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5441 {
5442         int rc;
5443         struct ctlr_info *h;
5444         struct hpsa_scsi_dev_t *dev;
5445         u8 reset_type;
5446         char msg[48];
5447
5448         /* find the controller to which the command to be aborted was sent */
5449         h = sdev_to_hba(scsicmd->device);
5450         if (h == NULL) /* paranoia */
5451                 return FAILED;
5452
5453         if (lockup_detected(h))
5454                 return FAILED;
5455
5456         dev = scsicmd->device->hostdata;
5457         if (!dev) {
5458                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5459                 return FAILED;
5460         }
5461
5462         /* if controller locked up, we can guarantee command won't complete */
5463         if (lockup_detected(h)) {
5464                 snprintf(msg, sizeof(msg),
5465                          "cmd %d RESET FAILED, lockup detected",
5466                          hpsa_get_cmd_index(scsicmd));
5467                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5468                 return FAILED;
5469         }
5470
5471         /* this reset request might be the result of a lockup; check */
5472         if (detect_controller_lockup(h)) {
5473                 snprintf(msg, sizeof(msg),
5474                          "cmd %d RESET FAILED, new lockup detected",
5475                          hpsa_get_cmd_index(scsicmd));
5476                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5477                 return FAILED;
5478         }
5479
5480         /* Do not attempt on controller */
5481         if (is_hba_lunid(dev->scsi3addr))
5482                 return SUCCESS;
5483
5484         if (is_logical_dev_addr_mode(dev->scsi3addr))
5485                 reset_type = HPSA_DEVICE_RESET_MSG;
5486         else
5487                 reset_type = HPSA_PHYS_TARGET_RESET;
5488
5489         sprintf(msg, "resetting %s",
5490                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5491         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5492
5493         h->reset_in_progress = 1;
5494
5495         /* send a reset to the SCSI LUN which the command was sent to */
5496         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5497                            DEFAULT_REPLY_QUEUE);
5498         sprintf(msg, "reset %s %s",
5499                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5500                 rc == 0 ? "completed successfully" : "failed");
5501         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5502         h->reset_in_progress = 0;
5503         return rc == 0 ? SUCCESS : FAILED;
5504 }
5505
5506 static void swizzle_abort_tag(u8 *tag)
5507 {
5508         u8 original_tag[8];
5509
5510         memcpy(original_tag, tag, 8);
5511         tag[0] = original_tag[3];
5512         tag[1] = original_tag[2];
5513         tag[2] = original_tag[1];
5514         tag[3] = original_tag[0];
5515         tag[4] = original_tag[7];
5516         tag[5] = original_tag[6];
5517         tag[6] = original_tag[5];
5518         tag[7] = original_tag[4];
5519 }
5520
5521 static void hpsa_get_tag(struct ctlr_info *h,
5522         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5523 {
5524         u64 tag;
5525         if (c->cmd_type == CMD_IOACCEL1) {
5526                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5527                         &h->ioaccel_cmd_pool[c->cmdindex];
5528                 tag = le64_to_cpu(cm1->tag);
5529                 *tagupper = cpu_to_le32(tag >> 32);
5530                 *taglower = cpu_to_le32(tag);
5531                 return;
5532         }
5533         if (c->cmd_type == CMD_IOACCEL2) {
5534                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5535                         &h->ioaccel2_cmd_pool[c->cmdindex];
5536                 /* upper tag not used in ioaccel2 mode */
5537                 memset(tagupper, 0, sizeof(*tagupper));
5538                 *taglower = cm2->Tag;
5539                 return;
5540         }
5541         tag = le64_to_cpu(c->Header.tag);
5542         *tagupper = cpu_to_le32(tag >> 32);
5543         *taglower = cpu_to_le32(tag);
5544 }
5545
5546 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5547         struct CommandList *abort, int reply_queue)
5548 {
5549         int rc = IO_OK;
5550         struct CommandList *c;
5551         struct ErrorInfo *ei;
5552         __le32 tagupper, taglower;
5553
5554         c = cmd_alloc(h);
5555
5556         /* fill_cmd can't fail here, no buffer to map */
5557         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5558                 0, 0, scsi3addr, TYPE_MSG);
5559         if (h->needs_abort_tags_swizzled)
5560                 swizzle_abort_tag(&c->Request.CDB[4]);
5561         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5562         hpsa_get_tag(h, abort, &taglower, &tagupper);
5563         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5564                 __func__, tagupper, taglower);
5565         /* no unmap needed here because no data xfer. */
5566
5567         ei = c->err_info;
5568         switch (ei->CommandStatus) {
5569         case CMD_SUCCESS:
5570                 break;
5571         case CMD_TMF_STATUS:
5572                 rc = hpsa_evaluate_tmf_status(h, c);
5573                 break;
5574         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5575                 rc = -1;
5576                 break;
5577         default:
5578                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5579                         __func__, tagupper, taglower);
5580                 hpsa_scsi_interpret_error(h, c);
5581                 rc = -1;
5582                 break;
5583         }
5584         cmd_free(h, c);
5585         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5586                 __func__, tagupper, taglower);
5587         return rc;
5588 }
5589
5590 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5591         struct CommandList *command_to_abort, int reply_queue)
5592 {
5593         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5594         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5595         struct io_accel2_cmd *c2a =
5596                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5597         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5598         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5599
5600         /*
5601          * We're overlaying struct hpsa_tmf_struct on top of something which
5602          * was allocated as a struct io_accel2_cmd, so we better be sure it
5603          * actually fits, and doesn't overrun the error info space.
5604          */
5605         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5606                         sizeof(struct io_accel2_cmd));
5607         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5608                         offsetof(struct hpsa_tmf_struct, error_len) +
5609                                 sizeof(ac->error_len));
5610
5611         c->cmd_type = IOACCEL2_TMF;
5612         c->scsi_cmd = SCSI_CMD_BUSY;
5613
5614         /* Adjust the DMA address to point to the accelerated command buffer */
5615         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5616                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5617         BUG_ON(c->busaddr & 0x0000007F);
5618
5619         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5620         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5621         ac->reply_queue = reply_queue;
5622         ac->tmf = IOACCEL2_TMF_ABORT;
5623         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5624         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5625         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5626         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5627         ac->error_ptr = cpu_to_le64(c->busaddr +
5628                         offsetof(struct io_accel2_cmd, error_data));
5629         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5630 }
5631
5632 /* ioaccel2 path firmware cannot handle abort task requests.
5633  * Change abort requests to physical target reset, and send to the
5634  * address of the physical disk used for the ioaccel 2 command.
5635  * Return 0 on success (IO_OK)
5636  *       -1 on failure
5637  */
5638
5639 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5640         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5641 {
5642         int rc = IO_OK;
5643         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5644         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5645         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5646         unsigned char *psa = &phys_scsi3addr[0];
5647
5648         /* Get a pointer to the hpsa logical device. */
5649         scmd = abort->scsi_cmd;
5650         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5651         if (dev == NULL) {
5652                 dev_warn(&h->pdev->dev,
5653                         "Cannot abort: no device pointer for command.\n");
5654                         return -1; /* not abortable */
5655         }
5656
5657         if (h->raid_offload_debug > 0)
5658                 dev_info(&h->pdev->dev,
5659                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5660                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5661                         "Reset as abort",
5662                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5663                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5664
5665         if (!dev->offload_enabled) {
5666                 dev_warn(&h->pdev->dev,
5667                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5668                 return -1; /* not abortable */
5669         }
5670
5671         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5672         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5673                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5674                 return -1; /* not abortable */
5675         }
5676
5677         /* send the reset */
5678         if (h->raid_offload_debug > 0)
5679                 dev_info(&h->pdev->dev,
5680                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5681                         psa[0], psa[1], psa[2], psa[3],
5682                         psa[4], psa[5], psa[6], psa[7]);
5683         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5684         if (rc != 0) {
5685                 dev_warn(&h->pdev->dev,
5686                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5687                         psa[0], psa[1], psa[2], psa[3],
5688                         psa[4], psa[5], psa[6], psa[7]);
5689                 return rc; /* failed to reset */
5690         }
5691
5692         /* wait for device to recover */
5693         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5694                 dev_warn(&h->pdev->dev,
5695                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5696                         psa[0], psa[1], psa[2], psa[3],
5697                         psa[4], psa[5], psa[6], psa[7]);
5698                 return -1;  /* failed to recover */
5699         }
5700
5701         /* device recovered */
5702         dev_info(&h->pdev->dev,
5703                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5704                 psa[0], psa[1], psa[2], psa[3],
5705                 psa[4], psa[5], psa[6], psa[7]);
5706
5707         return rc; /* success */
5708 }
5709
5710 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5711         struct CommandList *abort, int reply_queue)
5712 {
5713         int rc = IO_OK;
5714         struct CommandList *c;
5715         __le32 taglower, tagupper;
5716         struct hpsa_scsi_dev_t *dev;
5717         struct io_accel2_cmd *c2;
5718
5719         dev = abort->scsi_cmd->device->hostdata;
5720         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5721                 return -1;
5722
5723         c = cmd_alloc(h);
5724         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5725         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5726         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5727         hpsa_get_tag(h, abort, &taglower, &tagupper);
5728         dev_dbg(&h->pdev->dev,
5729                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5730                 __func__, tagupper, taglower);
5731         /* no unmap needed here because no data xfer. */
5732
5733         dev_dbg(&h->pdev->dev,
5734                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5735                 __func__, tagupper, taglower, c2->error_data.serv_response);
5736         switch (c2->error_data.serv_response) {
5737         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5738         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5739                 rc = 0;
5740                 break;
5741         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5742         case IOACCEL2_SERV_RESPONSE_FAILURE:
5743         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5744                 rc = -1;
5745                 break;
5746         default:
5747                 dev_warn(&h->pdev->dev,
5748                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5749                         __func__, tagupper, taglower,
5750                         c2->error_data.serv_response);
5751                 rc = -1;
5752         }
5753         cmd_free(h, c);
5754         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5755                 tagupper, taglower);
5756         return rc;
5757 }
5758
5759 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5760         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5761 {
5762         /*
5763          * ioccelerator mode 2 commands should be aborted via the
5764          * accelerated path, since RAID path is unaware of these commands,
5765          * but not all underlying firmware can handle abort TMF.
5766          * Change abort to physical device reset when abort TMF is unsupported.
5767          */
5768         if (abort->cmd_type == CMD_IOACCEL2) {
5769                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5770                         return hpsa_send_abort_ioaccel2(h, abort,
5771                                                 reply_queue);
5772                 else
5773                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5774                                                         abort, reply_queue);
5775         }
5776         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5777 }
5778
5779 /* Find out which reply queue a command was meant to return on */
5780 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5781                                         struct CommandList *c)
5782 {
5783         if (c->cmd_type == CMD_IOACCEL2)
5784                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5785         return c->Header.ReplyQueue;
5786 }
5787
5788 /*
5789  * Limit concurrency of abort commands to prevent
5790  * over-subscription of commands
5791  */
5792 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5793 {
5794 #define ABORT_CMD_WAIT_MSECS 5000
5795         return !wait_event_timeout(h->abort_cmd_wait_queue,
5796                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5797                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5798 }
5799
5800 /* Send an abort for the specified command.
5801  *      If the device and controller support it,
5802  *              send a task abort request.
5803  */
5804 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5805 {
5806
5807         int rc;
5808         struct ctlr_info *h;
5809         struct hpsa_scsi_dev_t *dev;
5810         struct CommandList *abort; /* pointer to command to be aborted */
5811         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5812         char msg[256];          /* For debug messaging. */
5813         int ml = 0;
5814         __le32 tagupper, taglower;
5815         int refcount, reply_queue;
5816
5817         if (sc == NULL)
5818                 return FAILED;
5819
5820         if (sc->device == NULL)
5821                 return FAILED;
5822
5823         /* Find the controller of the command to be aborted */
5824         h = sdev_to_hba(sc->device);
5825         if (h == NULL)
5826                 return FAILED;
5827
5828         /* Find the device of the command to be aborted */
5829         dev = sc->device->hostdata;
5830         if (!dev) {
5831                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5832                                 msg);
5833                 return FAILED;
5834         }
5835
5836         /* If controller locked up, we can guarantee command won't complete */
5837         if (lockup_detected(h)) {
5838                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5839                                         "ABORT FAILED, lockup detected");
5840                 return FAILED;
5841         }
5842
5843         /* This is a good time to check if controller lockup has occurred */
5844         if (detect_controller_lockup(h)) {
5845                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5846                                         "ABORT FAILED, new lockup detected");
5847                 return FAILED;
5848         }
5849
5850         /* Check that controller supports some kind of task abort */
5851         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5852                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5853                 return FAILED;
5854
5855         memset(msg, 0, sizeof(msg));
5856         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5857                 h->scsi_host->host_no, sc->device->channel,
5858                 sc->device->id, sc->device->lun,
5859                 "Aborting command", sc);
5860
5861         /* Get SCSI command to be aborted */
5862         abort = (struct CommandList *) sc->host_scribble;
5863         if (abort == NULL) {
5864                 /* This can happen if the command already completed. */
5865                 return SUCCESS;
5866         }
5867         refcount = atomic_inc_return(&abort->refcount);
5868         if (refcount == 1) { /* Command is done already. */
5869                 cmd_free(h, abort);
5870                 return SUCCESS;
5871         }
5872
5873         /* Don't bother trying the abort if we know it won't work. */
5874         if (abort->cmd_type != CMD_IOACCEL2 &&
5875                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5876                 cmd_free(h, abort);
5877                 return FAILED;
5878         }
5879
5880         /*
5881          * Check that we're aborting the right command.
5882          * It's possible the CommandList already completed and got re-used.
5883          */
5884         if (abort->scsi_cmd != sc) {
5885                 cmd_free(h, abort);
5886                 return SUCCESS;
5887         }
5888
5889         abort->abort_pending = true;
5890         hpsa_get_tag(h, abort, &taglower, &tagupper);
5891         reply_queue = hpsa_extract_reply_queue(h, abort);
5892         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5893         as  = abort->scsi_cmd;
5894         if (as != NULL)
5895                 ml += sprintf(msg+ml,
5896                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5897                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5898                         as->serial_number);
5899         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5900         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5901
5902         /*
5903          * Command is in flight, or possibly already completed
5904          * by the firmware (but not to the scsi mid layer) but we can't
5905          * distinguish which.  Send the abort down.
5906          */
5907         if (wait_for_available_abort_cmd(h)) {
5908                 dev_warn(&h->pdev->dev,
5909                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5910                         msg);
5911                 cmd_free(h, abort);
5912                 return FAILED;
5913         }
5914         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5915         atomic_inc(&h->abort_cmds_available);
5916         wake_up_all(&h->abort_cmd_wait_queue);
5917         if (rc != 0) {
5918                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5919                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5920                                 "FAILED to abort command");
5921                 cmd_free(h, abort);
5922                 return FAILED;
5923         }
5924         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5925         wait_event(h->event_sync_wait_queue,
5926                    abort->scsi_cmd != sc || lockup_detected(h));
5927         cmd_free(h, abort);
5928         return !lockup_detected(h) ? SUCCESS : FAILED;
5929 }
5930
5931 /*
5932  * For operations with an associated SCSI command, a command block is allocated
5933  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5934  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5935  * the complement, although cmd_free() may be called instead.
5936  */
5937 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5938                                             struct scsi_cmnd *scmd)
5939 {
5940         int idx = hpsa_get_cmd_index(scmd);
5941         struct CommandList *c = h->cmd_pool + idx;
5942
5943         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5944                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5945                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5946                 /* The index value comes from the block layer, so if it's out of
5947                  * bounds, it's probably not our bug.
5948                  */
5949                 BUG();
5950         }
5951
5952         atomic_inc(&c->refcount);
5953         if (unlikely(!hpsa_is_cmd_idle(c))) {
5954                 /*
5955                  * We expect that the SCSI layer will hand us a unique tag
5956                  * value.  Thus, there should never be a collision here between
5957                  * two requests...because if the selected command isn't idle
5958                  * then someone is going to be very disappointed.
5959                  */
5960                 dev_err(&h->pdev->dev,
5961                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5962                         idx);
5963                 if (c->scsi_cmd != NULL)
5964                         scsi_print_command(c->scsi_cmd);
5965                 scsi_print_command(scmd);
5966         }
5967
5968         hpsa_cmd_partial_init(h, idx, c);
5969         return c;
5970 }
5971
5972 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5973 {
5974         /*
5975          * Release our reference to the block.  We don't need to do anything
5976          * else to free it, because it is accessed by index.  (There's no point
5977          * in checking the result of the decrement, since we cannot guarantee
5978          * that there isn't a concurrent abort which is also accessing it.)
5979          */
5980         (void)atomic_dec(&c->refcount);
5981 }
5982
5983 /*
5984  * For operations that cannot sleep, a command block is allocated at init,
5985  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5986  * which ones are free or in use.  Lock must be held when calling this.
5987  * cmd_free() is the complement.
5988  * This function never gives up and returns NULL.  If it hangs,
5989  * another thread must call cmd_free() to free some tags.
5990  */
5991
5992 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5993 {
5994         struct CommandList *c;
5995         int refcount, i;
5996         int offset = 0;
5997
5998         /*
5999          * There is some *extremely* small but non-zero chance that that
6000          * multiple threads could get in here, and one thread could
6001          * be scanning through the list of bits looking for a free
6002          * one, but the free ones are always behind him, and other
6003          * threads sneak in behind him and eat them before he can
6004          * get to them, so that while there is always a free one, a
6005          * very unlucky thread might be starved anyway, never able to
6006          * beat the other threads.  In reality, this happens so
6007          * infrequently as to be indistinguishable from never.
6008          *
6009          * Note that we start allocating commands before the SCSI host structure
6010          * is initialized.  Since the search starts at bit zero, this
6011          * all works, since we have at least one command structure available;
6012          * however, it means that the structures with the low indexes have to be
6013          * reserved for driver-initiated requests, while requests from the block
6014          * layer will use the higher indexes.
6015          */
6016
6017         for (;;) {
6018                 i = find_next_zero_bit(h->cmd_pool_bits,
6019                                         HPSA_NRESERVED_CMDS,
6020                                         offset);
6021                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6022                         offset = 0;
6023                         continue;
6024                 }
6025                 c = h->cmd_pool + i;
6026                 refcount = atomic_inc_return(&c->refcount);
6027                 if (unlikely(refcount > 1)) {
6028                         cmd_free(h, c); /* already in use */
6029                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6030                         continue;
6031                 }
6032                 set_bit(i & (BITS_PER_LONG - 1),
6033                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6034                 break; /* it's ours now. */
6035         }
6036         hpsa_cmd_partial_init(h, i, c);
6037         return c;
6038 }
6039
6040 /*
6041  * This is the complementary operation to cmd_alloc().  Note, however, in some
6042  * corner cases it may also be used to free blocks allocated by
6043  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6044  * the clear-bit is harmless.
6045  */
6046 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6047 {
6048         if (atomic_dec_and_test(&c->refcount)) {
6049                 int i;
6050
6051                 i = c - h->cmd_pool;
6052                 clear_bit(i & (BITS_PER_LONG - 1),
6053                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6054         }
6055 }
6056
6057 #ifdef CONFIG_COMPAT
6058
6059 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6060         void __user *arg)
6061 {
6062         IOCTL32_Command_struct __user *arg32 =
6063             (IOCTL32_Command_struct __user *) arg;
6064         IOCTL_Command_struct arg64;
6065         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6066         int err;
6067         u32 cp;
6068
6069         memset(&arg64, 0, sizeof(arg64));
6070         err = 0;
6071         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6072                            sizeof(arg64.LUN_info));
6073         err |= copy_from_user(&arg64.Request, &arg32->Request,
6074                            sizeof(arg64.Request));
6075         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6076                            sizeof(arg64.error_info));
6077         err |= get_user(arg64.buf_size, &arg32->buf_size);
6078         err |= get_user(cp, &arg32->buf);
6079         arg64.buf = compat_ptr(cp);
6080         err |= copy_to_user(p, &arg64, sizeof(arg64));
6081
6082         if (err)
6083                 return -EFAULT;
6084
6085         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6086         if (err)
6087                 return err;
6088         err |= copy_in_user(&arg32->error_info, &p->error_info,
6089                          sizeof(arg32->error_info));
6090         if (err)
6091                 return -EFAULT;
6092         return err;
6093 }
6094
6095 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6096         int cmd, void __user *arg)
6097 {
6098         BIG_IOCTL32_Command_struct __user *arg32 =
6099             (BIG_IOCTL32_Command_struct __user *) arg;
6100         BIG_IOCTL_Command_struct arg64;
6101         BIG_IOCTL_Command_struct __user *p =
6102             compat_alloc_user_space(sizeof(arg64));
6103         int err;
6104         u32 cp;
6105
6106         memset(&arg64, 0, sizeof(arg64));
6107         err = 0;
6108         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6109                            sizeof(arg64.LUN_info));
6110         err |= copy_from_user(&arg64.Request, &arg32->Request,
6111                            sizeof(arg64.Request));
6112         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6113                            sizeof(arg64.error_info));
6114         err |= get_user(arg64.buf_size, &arg32->buf_size);
6115         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6116         err |= get_user(cp, &arg32->buf);
6117         arg64.buf = compat_ptr(cp);
6118         err |= copy_to_user(p, &arg64, sizeof(arg64));
6119
6120         if (err)
6121                 return -EFAULT;
6122
6123         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6124         if (err)
6125                 return err;
6126         err |= copy_in_user(&arg32->error_info, &p->error_info,
6127                          sizeof(arg32->error_info));
6128         if (err)
6129                 return -EFAULT;
6130         return err;
6131 }
6132
6133 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6134 {
6135         switch (cmd) {
6136         case CCISS_GETPCIINFO:
6137         case CCISS_GETINTINFO:
6138         case CCISS_SETINTINFO:
6139         case CCISS_GETNODENAME:
6140         case CCISS_SETNODENAME:
6141         case CCISS_GETHEARTBEAT:
6142         case CCISS_GETBUSTYPES:
6143         case CCISS_GETFIRMVER:
6144         case CCISS_GETDRIVVER:
6145         case CCISS_REVALIDVOLS:
6146         case CCISS_DEREGDISK:
6147         case CCISS_REGNEWDISK:
6148         case CCISS_REGNEWD:
6149         case CCISS_RESCANDISK:
6150         case CCISS_GETLUNINFO:
6151                 return hpsa_ioctl(dev, cmd, arg);
6152
6153         case CCISS_PASSTHRU32:
6154                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6155         case CCISS_BIG_PASSTHRU32:
6156                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6157
6158         default:
6159                 return -ENOIOCTLCMD;
6160         }
6161 }
6162 #endif
6163
6164 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6165 {
6166         struct hpsa_pci_info pciinfo;
6167
6168         if (!argp)
6169                 return -EINVAL;
6170         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6171         pciinfo.bus = h->pdev->bus->number;
6172         pciinfo.dev_fn = h->pdev->devfn;
6173         pciinfo.board_id = h->board_id;
6174         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6175                 return -EFAULT;
6176         return 0;
6177 }
6178
6179 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6180 {
6181         DriverVer_type DriverVer;
6182         unsigned char vmaj, vmin, vsubmin;
6183         int rc;
6184
6185         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6186                 &vmaj, &vmin, &vsubmin);
6187         if (rc != 3) {
6188                 dev_info(&h->pdev->dev, "driver version string '%s' "
6189                         "unrecognized.", HPSA_DRIVER_VERSION);
6190                 vmaj = 0;
6191                 vmin = 0;
6192                 vsubmin = 0;
6193         }
6194         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6195         if (!argp)
6196                 return -EINVAL;
6197         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6198                 return -EFAULT;
6199         return 0;
6200 }
6201
6202 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6203 {
6204         IOCTL_Command_struct iocommand;
6205         struct CommandList *c;
6206         char *buff = NULL;
6207         u64 temp64;
6208         int rc = 0;
6209
6210         if (!argp)
6211                 return -EINVAL;
6212         if (!capable(CAP_SYS_RAWIO))
6213                 return -EPERM;
6214         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6215                 return -EFAULT;
6216         if ((iocommand.buf_size < 1) &&
6217             (iocommand.Request.Type.Direction != XFER_NONE)) {
6218                 return -EINVAL;
6219         }
6220         if (iocommand.buf_size > 0) {
6221                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6222                 if (buff == NULL)
6223                         return -ENOMEM;
6224                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6225                         /* Copy the data into the buffer we created */
6226                         if (copy_from_user(buff, iocommand.buf,
6227                                 iocommand.buf_size)) {
6228                                 rc = -EFAULT;
6229                                 goto out_kfree;
6230                         }
6231                 } else {
6232                         memset(buff, 0, iocommand.buf_size);
6233                 }
6234         }
6235         c = cmd_alloc(h);
6236
6237         /* Fill in the command type */
6238         c->cmd_type = CMD_IOCTL_PEND;
6239         c->scsi_cmd = SCSI_CMD_BUSY;
6240         /* Fill in Command Header */
6241         c->Header.ReplyQueue = 0; /* unused in simple mode */
6242         if (iocommand.buf_size > 0) {   /* buffer to fill */
6243                 c->Header.SGList = 1;
6244                 c->Header.SGTotal = cpu_to_le16(1);
6245         } else  { /* no buffers to fill */
6246                 c->Header.SGList = 0;
6247                 c->Header.SGTotal = cpu_to_le16(0);
6248         }
6249         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6250
6251         /* Fill in Request block */
6252         memcpy(&c->Request, &iocommand.Request,
6253                 sizeof(c->Request));
6254
6255         /* Fill in the scatter gather information */
6256         if (iocommand.buf_size > 0) {
6257                 temp64 = pci_map_single(h->pdev, buff,
6258                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6259                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6260                         c->SG[0].Addr = cpu_to_le64(0);
6261                         c->SG[0].Len = cpu_to_le32(0);
6262                         rc = -ENOMEM;
6263                         goto out;
6264                 }
6265                 c->SG[0].Addr = cpu_to_le64(temp64);
6266                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6267                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6268         }
6269         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6270         if (iocommand.buf_size > 0)
6271                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6272         check_ioctl_unit_attention(h, c);
6273         if (rc) {
6274                 rc = -EIO;
6275                 goto out;
6276         }
6277
6278         /* Copy the error information out */
6279         memcpy(&iocommand.error_info, c->err_info,
6280                 sizeof(iocommand.error_info));
6281         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6282                 rc = -EFAULT;
6283                 goto out;
6284         }
6285         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6286                 iocommand.buf_size > 0) {
6287                 /* Copy the data out of the buffer we created */
6288                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6289                         rc = -EFAULT;
6290                         goto out;
6291                 }
6292         }
6293 out:
6294         cmd_free(h, c);
6295 out_kfree:
6296         kfree(buff);
6297         return rc;
6298 }
6299
6300 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6301 {
6302         BIG_IOCTL_Command_struct *ioc;
6303         struct CommandList *c;
6304         unsigned char **buff = NULL;
6305         int *buff_size = NULL;
6306         u64 temp64;
6307         BYTE sg_used = 0;
6308         int status = 0;
6309         u32 left;
6310         u32 sz;
6311         BYTE __user *data_ptr;
6312
6313         if (!argp)
6314                 return -EINVAL;
6315         if (!capable(CAP_SYS_RAWIO))
6316                 return -EPERM;
6317         ioc = (BIG_IOCTL_Command_struct *)
6318             kmalloc(sizeof(*ioc), GFP_KERNEL);
6319         if (!ioc) {
6320                 status = -ENOMEM;
6321                 goto cleanup1;
6322         }
6323         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6324                 status = -EFAULT;
6325                 goto cleanup1;
6326         }
6327         if ((ioc->buf_size < 1) &&
6328             (ioc->Request.Type.Direction != XFER_NONE)) {
6329                 status = -EINVAL;
6330                 goto cleanup1;
6331         }
6332         /* Check kmalloc limits  using all SGs */
6333         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6334                 status = -EINVAL;
6335                 goto cleanup1;
6336         }
6337         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6338                 status = -EINVAL;
6339                 goto cleanup1;
6340         }
6341         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6342         if (!buff) {
6343                 status = -ENOMEM;
6344                 goto cleanup1;
6345         }
6346         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6347         if (!buff_size) {
6348                 status = -ENOMEM;
6349                 goto cleanup1;
6350         }
6351         left = ioc->buf_size;
6352         data_ptr = ioc->buf;
6353         while (left) {
6354                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6355                 buff_size[sg_used] = sz;
6356                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6357                 if (buff[sg_used] == NULL) {
6358                         status = -ENOMEM;
6359                         goto cleanup1;
6360                 }
6361                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6362                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6363                                 status = -EFAULT;
6364                                 goto cleanup1;
6365                         }
6366                 } else
6367                         memset(buff[sg_used], 0, sz);
6368                 left -= sz;
6369                 data_ptr += sz;
6370                 sg_used++;
6371         }
6372         c = cmd_alloc(h);
6373
6374         c->cmd_type = CMD_IOCTL_PEND;
6375         c->scsi_cmd = SCSI_CMD_BUSY;
6376         c->Header.ReplyQueue = 0;
6377         c->Header.SGList = (u8) sg_used;
6378         c->Header.SGTotal = cpu_to_le16(sg_used);
6379         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6380         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6381         if (ioc->buf_size > 0) {
6382                 int i;
6383                 for (i = 0; i < sg_used; i++) {
6384                         temp64 = pci_map_single(h->pdev, buff[i],
6385                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6386                         if (dma_mapping_error(&h->pdev->dev,
6387                                                         (dma_addr_t) temp64)) {
6388                                 c->SG[i].Addr = cpu_to_le64(0);
6389                                 c->SG[i].Len = cpu_to_le32(0);
6390                                 hpsa_pci_unmap(h->pdev, c, i,
6391                                         PCI_DMA_BIDIRECTIONAL);
6392                                 status = -ENOMEM;
6393                                 goto cleanup0;
6394                         }
6395                         c->SG[i].Addr = cpu_to_le64(temp64);
6396                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6397                         c->SG[i].Ext = cpu_to_le32(0);
6398                 }
6399                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6400         }
6401         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6402         if (sg_used)
6403                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6404         check_ioctl_unit_attention(h, c);
6405         if (status) {
6406                 status = -EIO;
6407                 goto cleanup0;
6408         }
6409
6410         /* Copy the error information out */
6411         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6412         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6413                 status = -EFAULT;
6414                 goto cleanup0;
6415         }
6416         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6417                 int i;
6418
6419                 /* Copy the data out of the buffer we created */
6420                 BYTE __user *ptr = ioc->buf;
6421                 for (i = 0; i < sg_used; i++) {
6422                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6423                                 status = -EFAULT;
6424                                 goto cleanup0;
6425                         }
6426                         ptr += buff_size[i];
6427                 }
6428         }
6429         status = 0;
6430 cleanup0:
6431         cmd_free(h, c);
6432 cleanup1:
6433         if (buff) {
6434                 int i;
6435
6436                 for (i = 0; i < sg_used; i++)
6437                         kfree(buff[i]);
6438                 kfree(buff);
6439         }
6440         kfree(buff_size);
6441         kfree(ioc);
6442         return status;
6443 }
6444
6445 static void check_ioctl_unit_attention(struct ctlr_info *h,
6446         struct CommandList *c)
6447 {
6448         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6449                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6450                 (void) check_for_unit_attention(h, c);
6451 }
6452
6453 /*
6454  * ioctl
6455  */
6456 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6457 {
6458         struct ctlr_info *h;
6459         void __user *argp = (void __user *)arg;
6460         int rc;
6461
6462         h = sdev_to_hba(dev);
6463
6464         switch (cmd) {
6465         case CCISS_DEREGDISK:
6466         case CCISS_REGNEWDISK:
6467         case CCISS_REGNEWD:
6468                 hpsa_scan_start(h->scsi_host);
6469                 return 0;
6470         case CCISS_GETPCIINFO:
6471                 return hpsa_getpciinfo_ioctl(h, argp);
6472         case CCISS_GETDRIVVER:
6473                 return hpsa_getdrivver_ioctl(h, argp);
6474         case CCISS_PASSTHRU:
6475                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6476                         return -EAGAIN;
6477                 rc = hpsa_passthru_ioctl(h, argp);
6478                 atomic_inc(&h->passthru_cmds_avail);
6479                 return rc;
6480         case CCISS_BIG_PASSTHRU:
6481                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6482                         return -EAGAIN;
6483                 rc = hpsa_big_passthru_ioctl(h, argp);
6484                 atomic_inc(&h->passthru_cmds_avail);
6485                 return rc;
6486         default:
6487                 return -ENOTTY;
6488         }
6489 }
6490
6491 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6492                                 u8 reset_type)
6493 {
6494         struct CommandList *c;
6495
6496         c = cmd_alloc(h);
6497
6498         /* fill_cmd can't fail here, no data buffer to map */
6499         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6500                 RAID_CTLR_LUNID, TYPE_MSG);
6501         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6502         c->waiting = NULL;
6503         enqueue_cmd_and_start_io(h, c);
6504         /* Don't wait for completion, the reset won't complete.  Don't free
6505          * the command either.  This is the last command we will send before
6506          * re-initializing everything, so it doesn't matter and won't leak.
6507          */
6508         return;
6509 }
6510
6511 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6512         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6513         int cmd_type)
6514 {
6515         int pci_dir = XFER_NONE;
6516         u64 tag; /* for commands to be aborted */
6517
6518         c->cmd_type = CMD_IOCTL_PEND;
6519         c->scsi_cmd = SCSI_CMD_BUSY;
6520         c->Header.ReplyQueue = 0;
6521         if (buff != NULL && size > 0) {
6522                 c->Header.SGList = 1;
6523                 c->Header.SGTotal = cpu_to_le16(1);
6524         } else {
6525                 c->Header.SGList = 0;
6526                 c->Header.SGTotal = cpu_to_le16(0);
6527         }
6528         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6529
6530         if (cmd_type == TYPE_CMD) {
6531                 switch (cmd) {
6532                 case HPSA_INQUIRY:
6533                         /* are we trying to read a vital product page */
6534                         if (page_code & VPD_PAGE) {
6535                                 c->Request.CDB[1] = 0x01;
6536                                 c->Request.CDB[2] = (page_code & 0xff);
6537                         }
6538                         c->Request.CDBLen = 6;
6539                         c->Request.type_attr_dir =
6540                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6541                         c->Request.Timeout = 0;
6542                         c->Request.CDB[0] = HPSA_INQUIRY;
6543                         c->Request.CDB[4] = size & 0xFF;
6544                         break;
6545                 case HPSA_REPORT_LOG:
6546                 case HPSA_REPORT_PHYS:
6547                         /* Talking to controller so It's a physical command
6548                            mode = 00 target = 0.  Nothing to write.
6549                          */
6550                         c->Request.CDBLen = 12;
6551                         c->Request.type_attr_dir =
6552                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6553                         c->Request.Timeout = 0;
6554                         c->Request.CDB[0] = cmd;
6555                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6556                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6557                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6558                         c->Request.CDB[9] = size & 0xFF;
6559                         break;
6560                 case BMIC_SENSE_DIAG_OPTIONS:
6561                         c->Request.CDBLen = 16;
6562                         c->Request.type_attr_dir =
6563                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6564                         c->Request.Timeout = 0;
6565                         /* Spec says this should be BMIC_WRITE */
6566                         c->Request.CDB[0] = BMIC_READ;
6567                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6568                         break;
6569                 case BMIC_SET_DIAG_OPTIONS:
6570                         c->Request.CDBLen = 16;
6571                         c->Request.type_attr_dir =
6572                                         TYPE_ATTR_DIR(cmd_type,
6573                                                 ATTR_SIMPLE, XFER_WRITE);
6574                         c->Request.Timeout = 0;
6575                         c->Request.CDB[0] = BMIC_WRITE;
6576                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6577                         break;
6578                 case HPSA_CACHE_FLUSH:
6579                         c->Request.CDBLen = 12;
6580                         c->Request.type_attr_dir =
6581                                         TYPE_ATTR_DIR(cmd_type,
6582                                                 ATTR_SIMPLE, XFER_WRITE);
6583                         c->Request.Timeout = 0;
6584                         c->Request.CDB[0] = BMIC_WRITE;
6585                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6586                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6587                         c->Request.CDB[8] = size & 0xFF;
6588                         break;
6589                 case TEST_UNIT_READY:
6590                         c->Request.CDBLen = 6;
6591                         c->Request.type_attr_dir =
6592                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6593                         c->Request.Timeout = 0;
6594                         break;
6595                 case HPSA_GET_RAID_MAP:
6596                         c->Request.CDBLen = 12;
6597                         c->Request.type_attr_dir =
6598                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6599                         c->Request.Timeout = 0;
6600                         c->Request.CDB[0] = HPSA_CISS_READ;
6601                         c->Request.CDB[1] = cmd;
6602                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6603                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6604                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6605                         c->Request.CDB[9] = size & 0xFF;
6606                         break;
6607                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6608                         c->Request.CDBLen = 10;
6609                         c->Request.type_attr_dir =
6610                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6611                         c->Request.Timeout = 0;
6612                         c->Request.CDB[0] = BMIC_READ;
6613                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6614                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6615                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6616                         break;
6617                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6618                         c->Request.CDBLen = 10;
6619                         c->Request.type_attr_dir =
6620                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6621                         c->Request.Timeout = 0;
6622                         c->Request.CDB[0] = BMIC_READ;
6623                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6624                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6625                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6626                         break;
6627                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6628                         c->Request.CDBLen = 10;
6629                         c->Request.type_attr_dir =
6630                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631                         c->Request.Timeout = 0;
6632                         c->Request.CDB[0] = BMIC_READ;
6633                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6634                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6635                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6636                         break;
6637                 case BMIC_IDENTIFY_CONTROLLER:
6638                         c->Request.CDBLen = 10;
6639                         c->Request.type_attr_dir =
6640                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6641                         c->Request.Timeout = 0;
6642                         c->Request.CDB[0] = BMIC_READ;
6643                         c->Request.CDB[1] = 0;
6644                         c->Request.CDB[2] = 0;
6645                         c->Request.CDB[3] = 0;
6646                         c->Request.CDB[4] = 0;
6647                         c->Request.CDB[5] = 0;
6648                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6649                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6650                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6651                         c->Request.CDB[9] = 0;
6652                         break;
6653                 default:
6654                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6655                         BUG();
6656                         return -1;
6657                 }
6658         } else if (cmd_type == TYPE_MSG) {
6659                 switch (cmd) {
6660
6661                 case  HPSA_PHYS_TARGET_RESET:
6662                         c->Request.CDBLen = 16;
6663                         c->Request.type_attr_dir =
6664                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6665                         c->Request.Timeout = 0; /* Don't time out */
6666                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6667                         c->Request.CDB[0] = HPSA_RESET;
6668                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6669                         /* Physical target reset needs no control bytes 4-7*/
6670                         c->Request.CDB[4] = 0x00;
6671                         c->Request.CDB[5] = 0x00;
6672                         c->Request.CDB[6] = 0x00;
6673                         c->Request.CDB[7] = 0x00;
6674                         break;
6675                 case  HPSA_DEVICE_RESET_MSG:
6676                         c->Request.CDBLen = 16;
6677                         c->Request.type_attr_dir =
6678                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6679                         c->Request.Timeout = 0; /* Don't time out */
6680                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6681                         c->Request.CDB[0] =  cmd;
6682                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6683                         /* If bytes 4-7 are zero, it means reset the */
6684                         /* LunID device */
6685                         c->Request.CDB[4] = 0x00;
6686                         c->Request.CDB[5] = 0x00;
6687                         c->Request.CDB[6] = 0x00;
6688                         c->Request.CDB[7] = 0x00;
6689                         break;
6690                 case  HPSA_ABORT_MSG:
6691                         memcpy(&tag, buff, sizeof(tag));
6692                         dev_dbg(&h->pdev->dev,
6693                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6694                                 tag, c->Header.tag);
6695                         c->Request.CDBLen = 16;
6696                         c->Request.type_attr_dir =
6697                                         TYPE_ATTR_DIR(cmd_type,
6698                                                 ATTR_SIMPLE, XFER_WRITE);
6699                         c->Request.Timeout = 0; /* Don't time out */
6700                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6701                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6702                         c->Request.CDB[2] = 0x00; /* reserved */
6703                         c->Request.CDB[3] = 0x00; /* reserved */
6704                         /* Tag to abort goes in CDB[4]-CDB[11] */
6705                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6706                         c->Request.CDB[12] = 0x00; /* reserved */
6707                         c->Request.CDB[13] = 0x00; /* reserved */
6708                         c->Request.CDB[14] = 0x00; /* reserved */
6709                         c->Request.CDB[15] = 0x00; /* reserved */
6710                 break;
6711                 default:
6712                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6713                                 cmd);
6714                         BUG();
6715                 }
6716         } else {
6717                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6718                 BUG();
6719         }
6720
6721         switch (GET_DIR(c->Request.type_attr_dir)) {
6722         case XFER_READ:
6723                 pci_dir = PCI_DMA_FROMDEVICE;
6724                 break;
6725         case XFER_WRITE:
6726                 pci_dir = PCI_DMA_TODEVICE;
6727                 break;
6728         case XFER_NONE:
6729                 pci_dir = PCI_DMA_NONE;
6730                 break;
6731         default:
6732                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6733         }
6734         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6735                 return -1;
6736         return 0;
6737 }
6738
6739 /*
6740  * Map (physical) PCI mem into (virtual) kernel space
6741  */
6742 static void __iomem *remap_pci_mem(ulong base, ulong size)
6743 {
6744         ulong page_base = ((ulong) base) & PAGE_MASK;
6745         ulong page_offs = ((ulong) base) - page_base;
6746         void __iomem *page_remapped = ioremap_nocache(page_base,
6747                 page_offs + size);
6748
6749         return page_remapped ? (page_remapped + page_offs) : NULL;
6750 }
6751
6752 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6753 {
6754         return h->access.command_completed(h, q);
6755 }
6756
6757 static inline bool interrupt_pending(struct ctlr_info *h)
6758 {
6759         return h->access.intr_pending(h);
6760 }
6761
6762 static inline long interrupt_not_for_us(struct ctlr_info *h)
6763 {
6764         return (h->access.intr_pending(h) == 0) ||
6765                 (h->interrupts_enabled == 0);
6766 }
6767
6768 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6769         u32 raw_tag)
6770 {
6771         if (unlikely(tag_index >= h->nr_cmds)) {
6772                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6773                 return 1;
6774         }
6775         return 0;
6776 }
6777
6778 static inline void finish_cmd(struct CommandList *c)
6779 {
6780         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6781         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6782                         || c->cmd_type == CMD_IOACCEL2))
6783                 complete_scsi_command(c);
6784         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6785                 complete(c->waiting);
6786 }
6787
6788 /* process completion of an indexed ("direct lookup") command */
6789 static inline void process_indexed_cmd(struct ctlr_info *h,
6790         u32 raw_tag)
6791 {
6792         u32 tag_index;
6793         struct CommandList *c;
6794
6795         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6796         if (!bad_tag(h, tag_index, raw_tag)) {
6797                 c = h->cmd_pool + tag_index;
6798                 finish_cmd(c);
6799         }
6800 }
6801
6802 /* Some controllers, like p400, will give us one interrupt
6803  * after a soft reset, even if we turned interrupts off.
6804  * Only need to check for this in the hpsa_xxx_discard_completions
6805  * functions.
6806  */
6807 static int ignore_bogus_interrupt(struct ctlr_info *h)
6808 {
6809         if (likely(!reset_devices))
6810                 return 0;
6811
6812         if (likely(h->interrupts_enabled))
6813                 return 0;
6814
6815         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6816                 "(known firmware bug.)  Ignoring.\n");
6817
6818         return 1;
6819 }
6820
6821 /*
6822  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6823  * Relies on (h-q[x] == x) being true for x such that
6824  * 0 <= x < MAX_REPLY_QUEUES.
6825  */
6826 static struct ctlr_info *queue_to_hba(u8 *queue)
6827 {
6828         return container_of((queue - *queue), struct ctlr_info, q[0]);
6829 }
6830
6831 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6832 {
6833         struct ctlr_info *h = queue_to_hba(queue);
6834         u8 q = *(u8 *) queue;
6835         u32 raw_tag;
6836
6837         if (ignore_bogus_interrupt(h))
6838                 return IRQ_NONE;
6839
6840         if (interrupt_not_for_us(h))
6841                 return IRQ_NONE;
6842         h->last_intr_timestamp = get_jiffies_64();
6843         while (interrupt_pending(h)) {
6844                 raw_tag = get_next_completion(h, q);
6845                 while (raw_tag != FIFO_EMPTY)
6846                         raw_tag = next_command(h, q);
6847         }
6848         return IRQ_HANDLED;
6849 }
6850
6851 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6852 {
6853         struct ctlr_info *h = queue_to_hba(queue);
6854         u32 raw_tag;
6855         u8 q = *(u8 *) queue;
6856
6857         if (ignore_bogus_interrupt(h))
6858                 return IRQ_NONE;
6859
6860         h->last_intr_timestamp = get_jiffies_64();
6861         raw_tag = get_next_completion(h, q);
6862         while (raw_tag != FIFO_EMPTY)
6863                 raw_tag = next_command(h, q);
6864         return IRQ_HANDLED;
6865 }
6866
6867 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6868 {
6869         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6870         u32 raw_tag;
6871         u8 q = *(u8 *) queue;
6872
6873         if (interrupt_not_for_us(h))
6874                 return IRQ_NONE;
6875         h->last_intr_timestamp = get_jiffies_64();
6876         while (interrupt_pending(h)) {
6877                 raw_tag = get_next_completion(h, q);
6878                 while (raw_tag != FIFO_EMPTY) {
6879                         process_indexed_cmd(h, raw_tag);
6880                         raw_tag = next_command(h, q);
6881                 }
6882         }
6883         return IRQ_HANDLED;
6884 }
6885
6886 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6887 {
6888         struct ctlr_info *h = queue_to_hba(queue);
6889         u32 raw_tag;
6890         u8 q = *(u8 *) queue;
6891
6892         h->last_intr_timestamp = get_jiffies_64();
6893         raw_tag = get_next_completion(h, q);
6894         while (raw_tag != FIFO_EMPTY) {
6895                 process_indexed_cmd(h, raw_tag);
6896                 raw_tag = next_command(h, q);
6897         }
6898         return IRQ_HANDLED;
6899 }
6900
6901 /* Send a message CDB to the firmware. Careful, this only works
6902  * in simple mode, not performant mode due to the tag lookup.
6903  * We only ever use this immediately after a controller reset.
6904  */
6905 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6906                         unsigned char type)
6907 {
6908         struct Command {
6909                 struct CommandListHeader CommandHeader;
6910                 struct RequestBlock Request;
6911                 struct ErrDescriptor ErrorDescriptor;
6912         };
6913         struct Command *cmd;
6914         static const size_t cmd_sz = sizeof(*cmd) +
6915                                         sizeof(cmd->ErrorDescriptor);
6916         dma_addr_t paddr64;
6917         __le32 paddr32;
6918         u32 tag;
6919         void __iomem *vaddr;
6920         int i, err;
6921
6922         vaddr = pci_ioremap_bar(pdev, 0);
6923         if (vaddr == NULL)
6924                 return -ENOMEM;
6925
6926         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6927          * CCISS commands, so they must be allocated from the lower 4GiB of
6928          * memory.
6929          */
6930         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6931         if (err) {
6932                 iounmap(vaddr);
6933                 return err;
6934         }
6935
6936         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6937         if (cmd == NULL) {
6938                 iounmap(vaddr);
6939                 return -ENOMEM;
6940         }
6941
6942         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6943          * although there's no guarantee, we assume that the address is at
6944          * least 4-byte aligned (most likely, it's page-aligned).
6945          */
6946         paddr32 = cpu_to_le32(paddr64);
6947
6948         cmd->CommandHeader.ReplyQueue = 0;
6949         cmd->CommandHeader.SGList = 0;
6950         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6951         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6952         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6953
6954         cmd->Request.CDBLen = 16;
6955         cmd->Request.type_attr_dir =
6956                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6957         cmd->Request.Timeout = 0; /* Don't time out */
6958         cmd->Request.CDB[0] = opcode;
6959         cmd->Request.CDB[1] = type;
6960         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6961         cmd->ErrorDescriptor.Addr =
6962                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6963         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6964
6965         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6966
6967         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6968                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6969                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6970                         break;
6971                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6972         }
6973
6974         iounmap(vaddr);
6975
6976         /* we leak the DMA buffer here ... no choice since the controller could
6977          *  still complete the command.
6978          */
6979         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6980                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6981                         opcode, type);
6982                 return -ETIMEDOUT;
6983         }
6984
6985         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6986
6987         if (tag & HPSA_ERROR_BIT) {
6988                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6989                         opcode, type);
6990                 return -EIO;
6991         }
6992
6993         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6994                 opcode, type);
6995         return 0;
6996 }
6997
6998 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6999
7000 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7001         void __iomem *vaddr, u32 use_doorbell)
7002 {
7003
7004         if (use_doorbell) {
7005                 /* For everything after the P600, the PCI power state method
7006                  * of resetting the controller doesn't work, so we have this
7007                  * other way using the doorbell register.
7008                  */
7009                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7010                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7011
7012                 /* PMC hardware guys tell us we need a 10 second delay after
7013                  * doorbell reset and before any attempt to talk to the board
7014                  * at all to ensure that this actually works and doesn't fall
7015                  * over in some weird corner cases.
7016                  */
7017                 msleep(10000);
7018         } else { /* Try to do it the PCI power state way */
7019
7020                 /* Quoting from the Open CISS Specification: "The Power
7021                  * Management Control/Status Register (CSR) controls the power
7022                  * state of the device.  The normal operating state is D0,
7023                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7024                  * the controller, place the interface device in D3 then to D0,
7025                  * this causes a secondary PCI reset which will reset the
7026                  * controller." */
7027
7028                 int rc = 0;
7029
7030                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7031
7032                 /* enter the D3hot power management state */
7033                 rc = pci_set_power_state(pdev, PCI_D3hot);
7034                 if (rc)
7035                         return rc;
7036
7037                 msleep(500);
7038
7039                 /* enter the D0 power management state */
7040                 rc = pci_set_power_state(pdev, PCI_D0);
7041                 if (rc)
7042                         return rc;
7043
7044                 /*
7045                  * The P600 requires a small delay when changing states.
7046                  * Otherwise we may think the board did not reset and we bail.
7047                  * This for kdump only and is particular to the P600.
7048                  */
7049                 msleep(500);
7050         }
7051         return 0;
7052 }
7053
7054 static void init_driver_version(char *driver_version, int len)
7055 {
7056         memset(driver_version, 0, len);
7057         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7058 }
7059
7060 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7061 {
7062         char *driver_version;
7063         int i, size = sizeof(cfgtable->driver_version);
7064
7065         driver_version = kmalloc(size, GFP_KERNEL);
7066         if (!driver_version)
7067                 return -ENOMEM;
7068
7069         init_driver_version(driver_version, size);
7070         for (i = 0; i < size; i++)
7071                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7072         kfree(driver_version);
7073         return 0;
7074 }
7075
7076 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7077                                           unsigned char *driver_ver)
7078 {
7079         int i;
7080
7081         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7082                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7083 }
7084
7085 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7086 {
7087
7088         char *driver_ver, *old_driver_ver;
7089         int rc, size = sizeof(cfgtable->driver_version);
7090
7091         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7092         if (!old_driver_ver)
7093                 return -ENOMEM;
7094         driver_ver = old_driver_ver + size;
7095
7096         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7097          * should have been changed, otherwise we know the reset failed.
7098          */
7099         init_driver_version(old_driver_ver, size);
7100         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7101         rc = !memcmp(driver_ver, old_driver_ver, size);
7102         kfree(old_driver_ver);
7103         return rc;
7104 }
7105 /* This does a hard reset of the controller using PCI power management
7106  * states or the using the doorbell register.
7107  */
7108 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7109 {
7110         u64 cfg_offset;
7111         u32 cfg_base_addr;
7112         u64 cfg_base_addr_index;
7113         void __iomem *vaddr;
7114         unsigned long paddr;
7115         u32 misc_fw_support;
7116         int rc;
7117         struct CfgTable __iomem *cfgtable;
7118         u32 use_doorbell;
7119         u16 command_register;
7120
7121         /* For controllers as old as the P600, this is very nearly
7122          * the same thing as
7123          *
7124          * pci_save_state(pci_dev);
7125          * pci_set_power_state(pci_dev, PCI_D3hot);
7126          * pci_set_power_state(pci_dev, PCI_D0);
7127          * pci_restore_state(pci_dev);
7128          *
7129          * For controllers newer than the P600, the pci power state
7130          * method of resetting doesn't work so we have another way
7131          * using the doorbell register.
7132          */
7133
7134         if (!ctlr_is_resettable(board_id)) {
7135                 dev_warn(&pdev->dev, "Controller not resettable\n");
7136                 return -ENODEV;
7137         }
7138
7139         /* if controller is soft- but not hard resettable... */
7140         if (!ctlr_is_hard_resettable(board_id))
7141                 return -ENOTSUPP; /* try soft reset later. */
7142
7143         /* Save the PCI command register */
7144         pci_read_config_word(pdev, 4, &command_register);
7145         pci_save_state(pdev);
7146
7147         /* find the first memory BAR, so we can find the cfg table */
7148         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7149         if (rc)
7150                 return rc;
7151         vaddr = remap_pci_mem(paddr, 0x250);
7152         if (!vaddr)
7153                 return -ENOMEM;
7154
7155         /* find cfgtable in order to check if reset via doorbell is supported */
7156         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7157                                         &cfg_base_addr_index, &cfg_offset);
7158         if (rc)
7159                 goto unmap_vaddr;
7160         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7161                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7162         if (!cfgtable) {
7163                 rc = -ENOMEM;
7164                 goto unmap_vaddr;
7165         }
7166         rc = write_driver_ver_to_cfgtable(cfgtable);
7167         if (rc)
7168                 goto unmap_cfgtable;
7169
7170         /* If reset via doorbell register is supported, use that.
7171          * There are two such methods.  Favor the newest method.
7172          */
7173         misc_fw_support = readl(&cfgtable->misc_fw_support);
7174         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7175         if (use_doorbell) {
7176                 use_doorbell = DOORBELL_CTLR_RESET2;
7177         } else {
7178                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7179                 if (use_doorbell) {
7180                         dev_warn(&pdev->dev,
7181                                 "Soft reset not supported. Firmware update is required.\n");
7182                         rc = -ENOTSUPP; /* try soft reset */
7183                         goto unmap_cfgtable;
7184                 }
7185         }
7186
7187         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7188         if (rc)
7189                 goto unmap_cfgtable;
7190
7191         pci_restore_state(pdev);
7192         pci_write_config_word(pdev, 4, command_register);
7193
7194         /* Some devices (notably the HP Smart Array 5i Controller)
7195            need a little pause here */
7196         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7197
7198         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7199         if (rc) {
7200                 dev_warn(&pdev->dev,
7201                         "Failed waiting for board to become ready after hard reset\n");
7202                 goto unmap_cfgtable;
7203         }
7204
7205         rc = controller_reset_failed(vaddr);
7206         if (rc < 0)
7207                 goto unmap_cfgtable;
7208         if (rc) {
7209                 dev_warn(&pdev->dev, "Unable to successfully reset "
7210                         "controller. Will try soft reset.\n");
7211                 rc = -ENOTSUPP;
7212         } else {
7213                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7214         }
7215
7216 unmap_cfgtable:
7217         iounmap(cfgtable);
7218
7219 unmap_vaddr:
7220         iounmap(vaddr);
7221         return rc;
7222 }
7223
7224 /*
7225  *  We cannot read the structure directly, for portability we must use
7226  *   the io functions.
7227  *   This is for debug only.
7228  */
7229 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7230 {
7231 #ifdef HPSA_DEBUG
7232         int i;
7233         char temp_name[17];
7234
7235         dev_info(dev, "Controller Configuration information\n");
7236         dev_info(dev, "------------------------------------\n");
7237         for (i = 0; i < 4; i++)
7238                 temp_name[i] = readb(&(tb->Signature[i]));
7239         temp_name[4] = '\0';
7240         dev_info(dev, "   Signature = %s\n", temp_name);
7241         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7242         dev_info(dev, "   Transport methods supported = 0x%x\n",
7243                readl(&(tb->TransportSupport)));
7244         dev_info(dev, "   Transport methods active = 0x%x\n",
7245                readl(&(tb->TransportActive)));
7246         dev_info(dev, "   Requested transport Method = 0x%x\n",
7247                readl(&(tb->HostWrite.TransportRequest)));
7248         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7249                readl(&(tb->HostWrite.CoalIntDelay)));
7250         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7251                readl(&(tb->HostWrite.CoalIntCount)));
7252         dev_info(dev, "   Max outstanding commands = %d\n",
7253                readl(&(tb->CmdsOutMax)));
7254         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7255         for (i = 0; i < 16; i++)
7256                 temp_name[i] = readb(&(tb->ServerName[i]));
7257         temp_name[16] = '\0';
7258         dev_info(dev, "   Server Name = %s\n", temp_name);
7259         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7260                 readl(&(tb->HeartBeat)));
7261 #endif                          /* HPSA_DEBUG */
7262 }
7263
7264 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7265 {
7266         int i, offset, mem_type, bar_type;
7267
7268         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7269                 return 0;
7270         offset = 0;
7271         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7272                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7273                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7274                         offset += 4;
7275                 else {
7276                         mem_type = pci_resource_flags(pdev, i) &
7277                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7278                         switch (mem_type) {
7279                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7280                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7281                                 offset += 4;    /* 32 bit */
7282                                 break;
7283                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7284                                 offset += 8;
7285                                 break;
7286                         default:        /* reserved in PCI 2.2 */
7287                                 dev_warn(&pdev->dev,
7288                                        "base address is invalid\n");
7289                                 return -1;
7290                                 break;
7291                         }
7292                 }
7293                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7294                         return i + 1;
7295         }
7296         return -1;
7297 }
7298
7299 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7300 {
7301         if (h->msix_vector) {
7302                 if (h->pdev->msix_enabled)
7303                         pci_disable_msix(h->pdev);
7304                 h->msix_vector = 0;
7305         } else if (h->msi_vector) {
7306                 if (h->pdev->msi_enabled)
7307                         pci_disable_msi(h->pdev);
7308                 h->msi_vector = 0;
7309         }
7310 }
7311
7312 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7313  * controllers that are capable. If not, we use legacy INTx mode.
7314  */
7315 static void hpsa_interrupt_mode(struct ctlr_info *h)
7316 {
7317 #ifdef CONFIG_PCI_MSI
7318         int err, i;
7319         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7320
7321         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7322                 hpsa_msix_entries[i].vector = 0;
7323                 hpsa_msix_entries[i].entry = i;
7324         }
7325
7326         /* Some boards advertise MSI but don't really support it */
7327         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7328             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7329                 goto default_int_mode;
7330         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7331                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7332                 h->msix_vector = MAX_REPLY_QUEUES;
7333                 if (h->msix_vector > num_online_cpus())
7334                         h->msix_vector = num_online_cpus();
7335                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7336                                             1, h->msix_vector);
7337                 if (err < 0) {
7338                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7339                         h->msix_vector = 0;
7340                         goto single_msi_mode;
7341                 } else if (err < h->msix_vector) {
7342                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7343                                "available\n", err);
7344                 }
7345                 h->msix_vector = err;
7346                 for (i = 0; i < h->msix_vector; i++)
7347                         h->intr[i] = hpsa_msix_entries[i].vector;
7348                 return;
7349         }
7350 single_msi_mode:
7351         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7352                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7353                 if (!pci_enable_msi(h->pdev))
7354                         h->msi_vector = 1;
7355                 else
7356                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7357         }
7358 default_int_mode:
7359 #endif                          /* CONFIG_PCI_MSI */
7360         /* if we get here we're going to use the default interrupt mode */
7361         h->intr[h->intr_mode] = h->pdev->irq;
7362 }
7363
7364 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7365 {
7366         int i;
7367         u32 subsystem_vendor_id, subsystem_device_id;
7368
7369         subsystem_vendor_id = pdev->subsystem_vendor;
7370         subsystem_device_id = pdev->subsystem_device;
7371         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7372                     subsystem_vendor_id;
7373
7374         for (i = 0; i < ARRAY_SIZE(products); i++)
7375                 if (*board_id == products[i].board_id)
7376                         return i;
7377
7378         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7379                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7380                 !hpsa_allow_any) {
7381                 dev_warn(&pdev->dev, "unrecognized board ID: "
7382                         "0x%08x, ignoring.\n", *board_id);
7383                         return -ENODEV;
7384         }
7385         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7386 }
7387
7388 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7389                                     unsigned long *memory_bar)
7390 {
7391         int i;
7392
7393         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7394                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7395                         /* addressing mode bits already removed */
7396                         *memory_bar = pci_resource_start(pdev, i);
7397                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7398                                 *memory_bar);
7399                         return 0;
7400                 }
7401         dev_warn(&pdev->dev, "no memory BAR found\n");
7402         return -ENODEV;
7403 }
7404
7405 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7406                                      int wait_for_ready)
7407 {
7408         int i, iterations;
7409         u32 scratchpad;
7410         if (wait_for_ready)
7411                 iterations = HPSA_BOARD_READY_ITERATIONS;
7412         else
7413                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7414
7415         for (i = 0; i < iterations; i++) {
7416                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7417                 if (wait_for_ready) {
7418                         if (scratchpad == HPSA_FIRMWARE_READY)
7419                                 return 0;
7420                 } else {
7421                         if (scratchpad != HPSA_FIRMWARE_READY)
7422                                 return 0;
7423                 }
7424                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7425         }
7426         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7427         return -ENODEV;
7428 }
7429
7430 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7431                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7432                                u64 *cfg_offset)
7433 {
7434         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7435         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7436         *cfg_base_addr &= (u32) 0x0000ffff;
7437         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7438         if (*cfg_base_addr_index == -1) {
7439                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7440                 return -ENODEV;
7441         }
7442         return 0;
7443 }
7444
7445 static void hpsa_free_cfgtables(struct ctlr_info *h)
7446 {
7447         if (h->transtable) {
7448                 iounmap(h->transtable);
7449                 h->transtable = NULL;
7450         }
7451         if (h->cfgtable) {
7452                 iounmap(h->cfgtable);
7453                 h->cfgtable = NULL;
7454         }
7455 }
7456
7457 /* Find and map CISS config table and transfer table
7458 + * several items must be unmapped (freed) later
7459 + * */
7460 static int hpsa_find_cfgtables(struct ctlr_info *h)
7461 {
7462         u64 cfg_offset;
7463         u32 cfg_base_addr;
7464         u64 cfg_base_addr_index;
7465         u32 trans_offset;
7466         int rc;
7467
7468         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7469                 &cfg_base_addr_index, &cfg_offset);
7470         if (rc)
7471                 return rc;
7472         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7473                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7474         if (!h->cfgtable) {
7475                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7476                 return -ENOMEM;
7477         }
7478         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7479         if (rc)
7480                 return rc;
7481         /* Find performant mode table. */
7482         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7483         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7484                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7485                                 sizeof(*h->transtable));
7486         if (!h->transtable) {
7487                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7488                 hpsa_free_cfgtables(h);
7489                 return -ENOMEM;
7490         }
7491         return 0;
7492 }
7493
7494 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7495 {
7496 #define MIN_MAX_COMMANDS 16
7497         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7498
7499         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7500
7501         /* Limit commands in memory limited kdump scenario. */
7502         if (reset_devices && h->max_commands > 32)
7503                 h->max_commands = 32;
7504
7505         if (h->max_commands < MIN_MAX_COMMANDS) {
7506                 dev_warn(&h->pdev->dev,
7507                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7508                         h->max_commands,
7509                         MIN_MAX_COMMANDS);
7510                 h->max_commands = MIN_MAX_COMMANDS;
7511         }
7512 }
7513
7514 /* If the controller reports that the total max sg entries is greater than 512,
7515  * then we know that chained SG blocks work.  (Original smart arrays did not
7516  * support chained SG blocks and would return zero for max sg entries.)
7517  */
7518 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7519 {
7520         return h->maxsgentries > 512;
7521 }
7522
7523 /* Interrogate the hardware for some limits:
7524  * max commands, max SG elements without chaining, and with chaining,
7525  * SG chain block size, etc.
7526  */
7527 static void hpsa_find_board_params(struct ctlr_info *h)
7528 {
7529         hpsa_get_max_perf_mode_cmds(h);
7530         h->nr_cmds = h->max_commands;
7531         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7532         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7533         if (hpsa_supports_chained_sg_blocks(h)) {
7534                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7535                 h->max_cmd_sg_entries = 32;
7536                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7537                 h->maxsgentries--; /* save one for chain pointer */
7538         } else {
7539                 /*
7540                  * Original smart arrays supported at most 31 s/g entries
7541                  * embedded inline in the command (trying to use more
7542                  * would lock up the controller)
7543                  */
7544                 h->max_cmd_sg_entries = 31;
7545                 h->maxsgentries = 31; /* default to traditional values */
7546                 h->chainsize = 0;
7547         }
7548
7549         /* Find out what task management functions are supported and cache */
7550         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7551         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7552                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7553         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7554                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7555         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7556                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7557 }
7558
7559 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7560 {
7561         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7562                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7563                 return false;
7564         }
7565         return true;
7566 }
7567
7568 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7569 {
7570         u32 driver_support;
7571
7572         driver_support = readl(&(h->cfgtable->driver_support));
7573         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7574 #ifdef CONFIG_X86
7575         driver_support |= ENABLE_SCSI_PREFETCH;
7576 #endif
7577         driver_support |= ENABLE_UNIT_ATTN;
7578         writel(driver_support, &(h->cfgtable->driver_support));
7579 }
7580
7581 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7582  * in a prefetch beyond physical memory.
7583  */
7584 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7585 {
7586         u32 dma_prefetch;
7587
7588         if (h->board_id != 0x3225103C)
7589                 return;
7590         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7591         dma_prefetch |= 0x8000;
7592         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7593 }
7594
7595 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7596 {
7597         int i;
7598         u32 doorbell_value;
7599         unsigned long flags;
7600         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7601         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7602                 spin_lock_irqsave(&h->lock, flags);
7603                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7604                 spin_unlock_irqrestore(&h->lock, flags);
7605                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7606                         goto done;
7607                 /* delay and try again */
7608                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7609         }
7610         return -ENODEV;
7611 done:
7612         return 0;
7613 }
7614
7615 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7616 {
7617         int i;
7618         u32 doorbell_value;
7619         unsigned long flags;
7620
7621         /* under certain very rare conditions, this can take awhile.
7622          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7623          * as we enter this code.)
7624          */
7625         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7626                 if (h->remove_in_progress)
7627                         goto done;
7628                 spin_lock_irqsave(&h->lock, flags);
7629                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7630                 spin_unlock_irqrestore(&h->lock, flags);
7631                 if (!(doorbell_value & CFGTBL_ChangeReq))
7632                         goto done;
7633                 /* delay and try again */
7634                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7635         }
7636         return -ENODEV;
7637 done:
7638         return 0;
7639 }
7640
7641 /* return -ENODEV or other reason on error, 0 on success */
7642 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7643 {
7644         u32 trans_support;
7645
7646         trans_support = readl(&(h->cfgtable->TransportSupport));
7647         if (!(trans_support & SIMPLE_MODE))
7648                 return -ENOTSUPP;
7649
7650         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7651
7652         /* Update the field, and then ring the doorbell */
7653         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7654         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7655         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7656         if (hpsa_wait_for_mode_change_ack(h))
7657                 goto error;
7658         print_cfg_table(&h->pdev->dev, h->cfgtable);
7659         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7660                 goto error;
7661         h->transMethod = CFGTBL_Trans_Simple;
7662         return 0;
7663 error:
7664         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7665         return -ENODEV;
7666 }
7667
7668 /* free items allocated or mapped by hpsa_pci_init */
7669 static void hpsa_free_pci_init(struct ctlr_info *h)
7670 {
7671         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7672         iounmap(h->vaddr);                      /* pci_init 3 */
7673         h->vaddr = NULL;
7674         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7675         /*
7676          * call pci_disable_device before pci_release_regions per
7677          * Documentation/PCI/pci.txt
7678          */
7679         pci_disable_device(h->pdev);            /* pci_init 1 */
7680         pci_release_regions(h->pdev);           /* pci_init 2 */
7681 }
7682
7683 /* several items must be freed later */
7684 static int hpsa_pci_init(struct ctlr_info *h)
7685 {
7686         int prod_index, err;
7687
7688         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7689         if (prod_index < 0)
7690                 return prod_index;
7691         h->product_name = products[prod_index].product_name;
7692         h->access = *(products[prod_index].access);
7693
7694         h->needs_abort_tags_swizzled =
7695                 ctlr_needs_abort_tags_swizzled(h->board_id);
7696
7697         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7698                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7699
7700         err = pci_enable_device(h->pdev);
7701         if (err) {
7702                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7703                 pci_disable_device(h->pdev);
7704                 return err;
7705         }
7706
7707         err = pci_request_regions(h->pdev, HPSA);
7708         if (err) {
7709                 dev_err(&h->pdev->dev,
7710                         "failed to obtain PCI resources\n");
7711                 pci_disable_device(h->pdev);
7712                 return err;
7713         }
7714
7715         pci_set_master(h->pdev);
7716
7717         hpsa_interrupt_mode(h);
7718         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7719         if (err)
7720                 goto clean2;    /* intmode+region, pci */
7721         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7722         if (!h->vaddr) {
7723                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7724                 err = -ENOMEM;
7725                 goto clean2;    /* intmode+region, pci */
7726         }
7727         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7728         if (err)
7729                 goto clean3;    /* vaddr, intmode+region, pci */
7730         err = hpsa_find_cfgtables(h);
7731         if (err)
7732                 goto clean3;    /* vaddr, intmode+region, pci */
7733         hpsa_find_board_params(h);
7734
7735         if (!hpsa_CISS_signature_present(h)) {
7736                 err = -ENODEV;
7737                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7738         }
7739         hpsa_set_driver_support_bits(h);
7740         hpsa_p600_dma_prefetch_quirk(h);
7741         err = hpsa_enter_simple_mode(h);
7742         if (err)
7743                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7744         return 0;
7745
7746 clean4: /* cfgtables, vaddr, intmode+region, pci */
7747         hpsa_free_cfgtables(h);
7748 clean3: /* vaddr, intmode+region, pci */
7749         iounmap(h->vaddr);
7750         h->vaddr = NULL;
7751 clean2: /* intmode+region, pci */
7752         hpsa_disable_interrupt_mode(h);
7753         /*
7754          * call pci_disable_device before pci_release_regions per
7755          * Documentation/PCI/pci.txt
7756          */
7757         pci_disable_device(h->pdev);
7758         pci_release_regions(h->pdev);
7759         return err;
7760 }
7761
7762 static void hpsa_hba_inquiry(struct ctlr_info *h)
7763 {
7764         int rc;
7765
7766 #define HBA_INQUIRY_BYTE_COUNT 64
7767         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7768         if (!h->hba_inquiry_data)
7769                 return;
7770         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7771                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7772         if (rc != 0) {
7773                 kfree(h->hba_inquiry_data);
7774                 h->hba_inquiry_data = NULL;
7775         }
7776 }
7777
7778 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7779 {
7780         int rc, i;
7781         void __iomem *vaddr;
7782
7783         if (!reset_devices)
7784                 return 0;
7785
7786         /* kdump kernel is loading, we don't know in which state is
7787          * the pci interface. The dev->enable_cnt is equal zero
7788          * so we call enable+disable, wait a while and switch it on.
7789          */
7790         rc = pci_enable_device(pdev);
7791         if (rc) {
7792                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7793                 return -ENODEV;
7794         }
7795         pci_disable_device(pdev);
7796         msleep(260);                    /* a randomly chosen number */
7797         rc = pci_enable_device(pdev);
7798         if (rc) {
7799                 dev_warn(&pdev->dev, "failed to enable device.\n");
7800                 return -ENODEV;
7801         }
7802
7803         pci_set_master(pdev);
7804
7805         vaddr = pci_ioremap_bar(pdev, 0);
7806         if (vaddr == NULL) {
7807                 rc = -ENOMEM;
7808                 goto out_disable;
7809         }
7810         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7811         iounmap(vaddr);
7812
7813         /* Reset the controller with a PCI power-cycle or via doorbell */
7814         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7815
7816         /* -ENOTSUPP here means we cannot reset the controller
7817          * but it's already (and still) up and running in
7818          * "performant mode".  Or, it might be 640x, which can't reset
7819          * due to concerns about shared bbwc between 6402/6404 pair.
7820          */
7821         if (rc)
7822                 goto out_disable;
7823
7824         /* Now try to get the controller to respond to a no-op */
7825         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7826         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7827                 if (hpsa_noop(pdev) == 0)
7828                         break;
7829                 else
7830                         dev_warn(&pdev->dev, "no-op failed%s\n",
7831                                         (i < 11 ? "; re-trying" : ""));
7832         }
7833
7834 out_disable:
7835
7836         pci_disable_device(pdev);
7837         return rc;
7838 }
7839
7840 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7841 {
7842         kfree(h->cmd_pool_bits);
7843         h->cmd_pool_bits = NULL;
7844         if (h->cmd_pool) {
7845                 pci_free_consistent(h->pdev,
7846                                 h->nr_cmds * sizeof(struct CommandList),
7847                                 h->cmd_pool,
7848                                 h->cmd_pool_dhandle);
7849                 h->cmd_pool = NULL;
7850                 h->cmd_pool_dhandle = 0;
7851         }
7852         if (h->errinfo_pool) {
7853                 pci_free_consistent(h->pdev,
7854                                 h->nr_cmds * sizeof(struct ErrorInfo),
7855                                 h->errinfo_pool,
7856                                 h->errinfo_pool_dhandle);
7857                 h->errinfo_pool = NULL;
7858                 h->errinfo_pool_dhandle = 0;
7859         }
7860 }
7861
7862 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7863 {
7864         h->cmd_pool_bits = kzalloc(
7865                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7866                 sizeof(unsigned long), GFP_KERNEL);
7867         h->cmd_pool = pci_alloc_consistent(h->pdev,
7868                     h->nr_cmds * sizeof(*h->cmd_pool),
7869                     &(h->cmd_pool_dhandle));
7870         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7871                     h->nr_cmds * sizeof(*h->errinfo_pool),
7872                     &(h->errinfo_pool_dhandle));
7873         if ((h->cmd_pool_bits == NULL)
7874             || (h->cmd_pool == NULL)
7875             || (h->errinfo_pool == NULL)) {
7876                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7877                 goto clean_up;
7878         }
7879         hpsa_preinitialize_commands(h);
7880         return 0;
7881 clean_up:
7882         hpsa_free_cmd_pool(h);
7883         return -ENOMEM;
7884 }
7885
7886 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7887 {
7888         int i, cpu;
7889
7890         cpu = cpumask_first(cpu_online_mask);
7891         for (i = 0; i < h->msix_vector; i++) {
7892                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7893                 cpu = cpumask_next(cpu, cpu_online_mask);
7894         }
7895 }
7896
7897 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7898 static void hpsa_free_irqs(struct ctlr_info *h)
7899 {
7900         int i;
7901
7902         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7903                 /* Single reply queue, only one irq to free */
7904                 i = h->intr_mode;
7905                 irq_set_affinity_hint(h->intr[i], NULL);
7906                 free_irq(h->intr[i], &h->q[i]);
7907                 h->q[i] = 0;
7908                 return;
7909         }
7910
7911         for (i = 0; i < h->msix_vector; i++) {
7912                 irq_set_affinity_hint(h->intr[i], NULL);
7913                 free_irq(h->intr[i], &h->q[i]);
7914                 h->q[i] = 0;
7915         }
7916         for (; i < MAX_REPLY_QUEUES; i++)
7917                 h->q[i] = 0;
7918 }
7919
7920 /* returns 0 on success; cleans up and returns -Enn on error */
7921 static int hpsa_request_irqs(struct ctlr_info *h,
7922         irqreturn_t (*msixhandler)(int, void *),
7923         irqreturn_t (*intxhandler)(int, void *))
7924 {
7925         int rc, i;
7926
7927         /*
7928          * initialize h->q[x] = x so that interrupt handlers know which
7929          * queue to process.
7930          */
7931         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7932                 h->q[i] = (u8) i;
7933
7934         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7935                 /* If performant mode and MSI-X, use multiple reply queues */
7936                 for (i = 0; i < h->msix_vector; i++) {
7937                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7938                         rc = request_irq(h->intr[i], msixhandler,
7939                                         0, h->intrname[i],
7940                                         &h->q[i]);
7941                         if (rc) {
7942                                 int j;
7943
7944                                 dev_err(&h->pdev->dev,
7945                                         "failed to get irq %d for %s\n",
7946                                        h->intr[i], h->devname);
7947                                 for (j = 0; j < i; j++) {
7948                                         free_irq(h->intr[j], &h->q[j]);
7949                                         h->q[j] = 0;
7950                                 }
7951                                 for (; j < MAX_REPLY_QUEUES; j++)
7952                                         h->q[j] = 0;
7953                                 return rc;
7954                         }
7955                 }
7956                 hpsa_irq_affinity_hints(h);
7957         } else {
7958                 /* Use single reply pool */
7959                 if (h->msix_vector > 0 || h->msi_vector) {
7960                         if (h->msix_vector)
7961                                 sprintf(h->intrname[h->intr_mode],
7962                                         "%s-msix", h->devname);
7963                         else
7964                                 sprintf(h->intrname[h->intr_mode],
7965                                         "%s-msi", h->devname);
7966                         rc = request_irq(h->intr[h->intr_mode],
7967                                 msixhandler, 0,
7968                                 h->intrname[h->intr_mode],
7969                                 &h->q[h->intr_mode]);
7970                 } else {
7971                         sprintf(h->intrname[h->intr_mode],
7972                                 "%s-intx", h->devname);
7973                         rc = request_irq(h->intr[h->intr_mode],
7974                                 intxhandler, IRQF_SHARED,
7975                                 h->intrname[h->intr_mode],
7976                                 &h->q[h->intr_mode]);
7977                 }
7978                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7979         }
7980         if (rc) {
7981                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7982                        h->intr[h->intr_mode], h->devname);
7983                 hpsa_free_irqs(h);
7984                 return -ENODEV;
7985         }
7986         return 0;
7987 }
7988
7989 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7990 {
7991         int rc;
7992         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7993
7994         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7995         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7996         if (rc) {
7997                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7998                 return rc;
7999         }
8000
8001         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8002         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8003         if (rc) {
8004                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8005                         "after soft reset.\n");
8006                 return rc;
8007         }
8008
8009         return 0;
8010 }
8011
8012 static void hpsa_free_reply_queues(struct ctlr_info *h)
8013 {
8014         int i;
8015
8016         for (i = 0; i < h->nreply_queues; i++) {
8017                 if (!h->reply_queue[i].head)
8018                         continue;
8019                 pci_free_consistent(h->pdev,
8020                                         h->reply_queue_size,
8021                                         h->reply_queue[i].head,
8022                                         h->reply_queue[i].busaddr);
8023                 h->reply_queue[i].head = NULL;
8024                 h->reply_queue[i].busaddr = 0;
8025         }
8026         h->reply_queue_size = 0;
8027 }
8028
8029 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8030 {
8031         hpsa_free_performant_mode(h);           /* init_one 7 */
8032         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8033         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8034         hpsa_free_irqs(h);                      /* init_one 4 */
8035         scsi_host_put(h->scsi_host);            /* init_one 3 */
8036         h->scsi_host = NULL;                    /* init_one 3 */
8037         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8038         free_percpu(h->lockup_detected);        /* init_one 2 */
8039         h->lockup_detected = NULL;              /* init_one 2 */
8040         if (h->resubmit_wq) {
8041                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8042                 h->resubmit_wq = NULL;
8043         }
8044         if (h->rescan_ctlr_wq) {
8045                 destroy_workqueue(h->rescan_ctlr_wq);
8046                 h->rescan_ctlr_wq = NULL;
8047         }
8048         kfree(h);                               /* init_one 1 */
8049 }
8050
8051 /* Called when controller lockup detected. */
8052 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8053 {
8054         int i, refcount;
8055         struct CommandList *c;
8056         int failcount = 0;
8057
8058         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8059         for (i = 0; i < h->nr_cmds; i++) {
8060                 c = h->cmd_pool + i;
8061                 refcount = atomic_inc_return(&c->refcount);
8062                 if (refcount > 1) {
8063                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8064                         finish_cmd(c);
8065                         atomic_dec(&h->commands_outstanding);
8066                         failcount++;
8067                 }
8068                 cmd_free(h, c);
8069         }
8070         dev_warn(&h->pdev->dev,
8071                 "failed %d commands in fail_all\n", failcount);
8072 }
8073
8074 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8075 {
8076         int cpu;
8077
8078         for_each_online_cpu(cpu) {
8079                 u32 *lockup_detected;
8080                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8081                 *lockup_detected = value;
8082         }
8083         wmb(); /* be sure the per-cpu variables are out to memory */
8084 }
8085
8086 static void controller_lockup_detected(struct ctlr_info *h)
8087 {
8088         unsigned long flags;
8089         u32 lockup_detected;
8090
8091         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8092         spin_lock_irqsave(&h->lock, flags);
8093         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8094         if (!lockup_detected) {
8095                 /* no heartbeat, but controller gave us a zero. */
8096                 dev_warn(&h->pdev->dev,
8097                         "lockup detected after %d but scratchpad register is zero\n",
8098                         h->heartbeat_sample_interval / HZ);
8099                 lockup_detected = 0xffffffff;
8100         }
8101         set_lockup_detected_for_all_cpus(h, lockup_detected);
8102         spin_unlock_irqrestore(&h->lock, flags);
8103         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8104                         lockup_detected, h->heartbeat_sample_interval / HZ);
8105         pci_disable_device(h->pdev);
8106         fail_all_outstanding_cmds(h);
8107 }
8108
8109 static int detect_controller_lockup(struct ctlr_info *h)
8110 {
8111         u64 now;
8112         u32 heartbeat;
8113         unsigned long flags;
8114
8115         now = get_jiffies_64();
8116         /* If we've received an interrupt recently, we're ok. */
8117         if (time_after64(h->last_intr_timestamp +
8118                                 (h->heartbeat_sample_interval), now))
8119                 return false;
8120
8121         /*
8122          * If we've already checked the heartbeat recently, we're ok.
8123          * This could happen if someone sends us a signal. We
8124          * otherwise don't care about signals in this thread.
8125          */
8126         if (time_after64(h->last_heartbeat_timestamp +
8127                                 (h->heartbeat_sample_interval), now))
8128                 return false;
8129
8130         /* If heartbeat has not changed since we last looked, we're not ok. */
8131         spin_lock_irqsave(&h->lock, flags);
8132         heartbeat = readl(&h->cfgtable->HeartBeat);
8133         spin_unlock_irqrestore(&h->lock, flags);
8134         if (h->last_heartbeat == heartbeat) {
8135                 controller_lockup_detected(h);
8136                 return true;
8137         }
8138
8139         /* We're ok. */
8140         h->last_heartbeat = heartbeat;
8141         h->last_heartbeat_timestamp = now;
8142         return false;
8143 }
8144
8145 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8146 {
8147         int i;
8148         char *event_type;
8149
8150         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8151                 return;
8152
8153         /* Ask the controller to clear the events we're handling. */
8154         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8155                         | CFGTBL_Trans_io_accel2)) &&
8156                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8157                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8158
8159                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8160                         event_type = "state change";
8161                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8162                         event_type = "configuration change";
8163                 /* Stop sending new RAID offload reqs via the IO accelerator */
8164                 scsi_block_requests(h->scsi_host);
8165                 for (i = 0; i < h->ndevices; i++)
8166                         h->dev[i]->offload_enabled = 0;
8167                 hpsa_drain_accel_commands(h);
8168                 /* Set 'accelerator path config change' bit */
8169                 dev_warn(&h->pdev->dev,
8170                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8171                         h->events, event_type);
8172                 writel(h->events, &(h->cfgtable->clear_event_notify));
8173                 /* Set the "clear event notify field update" bit 6 */
8174                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8175                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8176                 hpsa_wait_for_clear_event_notify_ack(h);
8177                 scsi_unblock_requests(h->scsi_host);
8178         } else {
8179                 /* Acknowledge controller notification events. */
8180                 writel(h->events, &(h->cfgtable->clear_event_notify));
8181                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8182                 hpsa_wait_for_clear_event_notify_ack(h);
8183 #if 0
8184                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8185                 hpsa_wait_for_mode_change_ack(h);
8186 #endif
8187         }
8188         return;
8189 }
8190
8191 /* Check a register on the controller to see if there are configuration
8192  * changes (added/changed/removed logical drives, etc.) which mean that
8193  * we should rescan the controller for devices.
8194  * Also check flag for driver-initiated rescan.
8195  */
8196 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8197 {
8198         if (h->drv_req_rescan) {
8199                 h->drv_req_rescan = 0;
8200                 return 1;
8201         }
8202
8203         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8204                 return 0;
8205
8206         h->events = readl(&(h->cfgtable->event_notify));
8207         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8208 }
8209
8210 /*
8211  * Check if any of the offline devices have become ready
8212  */
8213 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8214 {
8215         unsigned long flags;
8216         struct offline_device_entry *d;
8217         struct list_head *this, *tmp;
8218
8219         spin_lock_irqsave(&h->offline_device_lock, flags);
8220         list_for_each_safe(this, tmp, &h->offline_device_list) {
8221                 d = list_entry(this, struct offline_device_entry,
8222                                 offline_list);
8223                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8224                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8225                         spin_lock_irqsave(&h->offline_device_lock, flags);
8226                         list_del(&d->offline_list);
8227                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8228                         return 1;
8229                 }
8230                 spin_lock_irqsave(&h->offline_device_lock, flags);
8231         }
8232         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8233         return 0;
8234 }
8235
8236 static int hpsa_luns_changed(struct ctlr_info *h)
8237 {
8238         int rc = 1; /* assume there are changes */
8239         struct ReportLUNdata *logdev = NULL;
8240
8241         /* if we can't find out if lun data has changed,
8242          * assume that it has.
8243          */
8244
8245         if (!h->lastlogicals)
8246                 goto out;
8247
8248         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8249         if (!logdev) {
8250                 dev_warn(&h->pdev->dev,
8251                         "Out of memory, can't track lun changes.\n");
8252                 goto out;
8253         }
8254         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8255                 dev_warn(&h->pdev->dev,
8256                         "report luns failed, can't track lun changes.\n");
8257                 goto out;
8258         }
8259         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8260                 dev_info(&h->pdev->dev,
8261                         "Lun changes detected.\n");
8262                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8263                 goto out;
8264         } else
8265                 rc = 0; /* no changes detected. */
8266 out:
8267         kfree(logdev);
8268         return rc;
8269 }
8270
8271 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8272 {
8273         unsigned long flags;
8274         struct ctlr_info *h = container_of(to_delayed_work(work),
8275                                         struct ctlr_info, rescan_ctlr_work);
8276
8277
8278         if (h->remove_in_progress)
8279                 return;
8280
8281         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8282                 scsi_host_get(h->scsi_host);
8283                 hpsa_ack_ctlr_events(h);
8284                 hpsa_scan_start(h->scsi_host);
8285                 scsi_host_put(h->scsi_host);
8286         } else if (h->discovery_polling) {
8287                 hpsa_disable_rld_caching(h);
8288                 if (hpsa_luns_changed(h)) {
8289                         struct Scsi_Host *sh = NULL;
8290
8291                         dev_info(&h->pdev->dev,
8292                                 "driver discovery polling rescan.\n");
8293                         sh = scsi_host_get(h->scsi_host);
8294                         if (sh != NULL) {
8295                                 hpsa_scan_start(sh);
8296                                 scsi_host_put(sh);
8297                         }
8298                 }
8299         }
8300         spin_lock_irqsave(&h->lock, flags);
8301         if (!h->remove_in_progress)
8302                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8303                                 h->heartbeat_sample_interval);
8304         spin_unlock_irqrestore(&h->lock, flags);
8305 }
8306
8307 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8308 {
8309         unsigned long flags;
8310         struct ctlr_info *h = container_of(to_delayed_work(work),
8311                                         struct ctlr_info, monitor_ctlr_work);
8312
8313         detect_controller_lockup(h);
8314         if (lockup_detected(h))
8315                 return;
8316
8317         spin_lock_irqsave(&h->lock, flags);
8318         if (!h->remove_in_progress)
8319                 schedule_delayed_work(&h->monitor_ctlr_work,
8320                                 h->heartbeat_sample_interval);
8321         spin_unlock_irqrestore(&h->lock, flags);
8322 }
8323
8324 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8325                                                 char *name)
8326 {
8327         struct workqueue_struct *wq = NULL;
8328
8329         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8330         if (!wq)
8331                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8332
8333         return wq;
8334 }
8335
8336 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8337 {
8338         int dac, rc;
8339         struct ctlr_info *h;
8340         int try_soft_reset = 0;
8341         unsigned long flags;
8342         u32 board_id;
8343
8344         if (number_of_controllers == 0)
8345                 printk(KERN_INFO DRIVER_NAME "\n");
8346
8347         rc = hpsa_lookup_board_id(pdev, &board_id);
8348         if (rc < 0) {
8349                 dev_warn(&pdev->dev, "Board ID not found\n");
8350                 return rc;
8351         }
8352
8353         rc = hpsa_init_reset_devices(pdev, board_id);
8354         if (rc) {
8355                 if (rc != -ENOTSUPP)
8356                         return rc;
8357                 /* If the reset fails in a particular way (it has no way to do
8358                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8359                  * a soft reset once we get the controller configured up to the
8360                  * point that it can accept a command.
8361                  */
8362                 try_soft_reset = 1;
8363                 rc = 0;
8364         }
8365
8366 reinit_after_soft_reset:
8367
8368         /* Command structures must be aligned on a 32-byte boundary because
8369          * the 5 lower bits of the address are used by the hardware. and by
8370          * the driver.  See comments in hpsa.h for more info.
8371          */
8372         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8373         h = kzalloc(sizeof(*h), GFP_KERNEL);
8374         if (!h) {
8375                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8376                 return -ENOMEM;
8377         }
8378
8379         h->pdev = pdev;
8380
8381         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8382         INIT_LIST_HEAD(&h->offline_device_list);
8383         spin_lock_init(&h->lock);
8384         spin_lock_init(&h->offline_device_lock);
8385         spin_lock_init(&h->scan_lock);
8386         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8387         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8388
8389         /* Allocate and clear per-cpu variable lockup_detected */
8390         h->lockup_detected = alloc_percpu(u32);
8391         if (!h->lockup_detected) {
8392                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8393                 rc = -ENOMEM;
8394                 goto clean1;    /* aer/h */
8395         }
8396         set_lockup_detected_for_all_cpus(h, 0);
8397
8398         rc = hpsa_pci_init(h);
8399         if (rc)
8400                 goto clean2;    /* lu, aer/h */
8401
8402         /* relies on h-> settings made by hpsa_pci_init, including
8403          * interrupt_mode h->intr */
8404         rc = hpsa_scsi_host_alloc(h);
8405         if (rc)
8406                 goto clean2_5;  /* pci, lu, aer/h */
8407
8408         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8409         h->ctlr = number_of_controllers;
8410         number_of_controllers++;
8411
8412         /* configure PCI DMA stuff */
8413         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8414         if (rc == 0) {
8415                 dac = 1;
8416         } else {
8417                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8418                 if (rc == 0) {
8419                         dac = 0;
8420                 } else {
8421                         dev_err(&pdev->dev, "no suitable DMA available\n");
8422                         goto clean3;    /* shost, pci, lu, aer/h */
8423                 }
8424         }
8425
8426         /* make sure the board interrupts are off */
8427         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8428
8429         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8430         if (rc)
8431                 goto clean3;    /* shost, pci, lu, aer/h */
8432         rc = hpsa_alloc_cmd_pool(h);
8433         if (rc)
8434                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8435         rc = hpsa_alloc_sg_chain_blocks(h);
8436         if (rc)
8437                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8438         init_waitqueue_head(&h->scan_wait_queue);
8439         init_waitqueue_head(&h->abort_cmd_wait_queue);
8440         init_waitqueue_head(&h->event_sync_wait_queue);
8441         mutex_init(&h->reset_mutex);
8442         h->scan_finished = 1; /* no scan currently in progress */
8443
8444         pci_set_drvdata(pdev, h);
8445         h->ndevices = 0;
8446
8447         spin_lock_init(&h->devlock);
8448         rc = hpsa_put_ctlr_into_performant_mode(h);
8449         if (rc)
8450                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8451
8452         /* hook into SCSI subsystem */
8453         rc = hpsa_scsi_add_host(h);
8454         if (rc)
8455                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8456
8457         /* create the resubmit workqueue */
8458         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8459         if (!h->rescan_ctlr_wq) {
8460                 rc = -ENOMEM;
8461                 goto clean7;
8462         }
8463
8464         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8465         if (!h->resubmit_wq) {
8466                 rc = -ENOMEM;
8467                 goto clean7;    /* aer/h */
8468         }
8469
8470         /*
8471          * At this point, the controller is ready to take commands.
8472          * Now, if reset_devices and the hard reset didn't work, try
8473          * the soft reset and see if that works.
8474          */
8475         if (try_soft_reset) {
8476
8477                 /* This is kind of gross.  We may or may not get a completion
8478                  * from the soft reset command, and if we do, then the value
8479                  * from the fifo may or may not be valid.  So, we wait 10 secs
8480                  * after the reset throwing away any completions we get during
8481                  * that time.  Unregister the interrupt handler and register
8482                  * fake ones to scoop up any residual completions.
8483                  */
8484                 spin_lock_irqsave(&h->lock, flags);
8485                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8486                 spin_unlock_irqrestore(&h->lock, flags);
8487                 hpsa_free_irqs(h);
8488                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8489                                         hpsa_intx_discard_completions);
8490                 if (rc) {
8491                         dev_warn(&h->pdev->dev,
8492                                 "Failed to request_irq after soft reset.\n");
8493                         /*
8494                          * cannot goto clean7 or free_irqs will be called
8495                          * again. Instead, do its work
8496                          */
8497                         hpsa_free_performant_mode(h);   /* clean7 */
8498                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8499                         hpsa_free_cmd_pool(h);          /* clean5 */
8500                         /*
8501                          * skip hpsa_free_irqs(h) clean4 since that
8502                          * was just called before request_irqs failed
8503                          */
8504                         goto clean3;
8505                 }
8506
8507                 rc = hpsa_kdump_soft_reset(h);
8508                 if (rc)
8509                         /* Neither hard nor soft reset worked, we're hosed. */
8510                         goto clean7;
8511
8512                 dev_info(&h->pdev->dev, "Board READY.\n");
8513                 dev_info(&h->pdev->dev,
8514                         "Waiting for stale completions to drain.\n");
8515                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8516                 msleep(10000);
8517                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8518
8519                 rc = controller_reset_failed(h->cfgtable);
8520                 if (rc)
8521                         dev_info(&h->pdev->dev,
8522                                 "Soft reset appears to have failed.\n");
8523
8524                 /* since the controller's reset, we have to go back and re-init
8525                  * everything.  Easiest to just forget what we've done and do it
8526                  * all over again.
8527                  */
8528                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8529                 try_soft_reset = 0;
8530                 if (rc)
8531                         /* don't goto clean, we already unallocated */
8532                         return -ENODEV;
8533
8534                 goto reinit_after_soft_reset;
8535         }
8536
8537         /* Enable Accelerated IO path at driver layer */
8538         h->acciopath_status = 1;
8539         /* Disable discovery polling.*/
8540         h->discovery_polling = 0;
8541
8542
8543         /* Turn the interrupts on so we can service requests */
8544         h->access.set_intr_mask(h, HPSA_INTR_ON);
8545
8546         hpsa_hba_inquiry(h);
8547
8548         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8549         if (!h->lastlogicals)
8550                 dev_info(&h->pdev->dev,
8551                         "Can't track change to report lun data\n");
8552
8553         /* Monitor the controller for firmware lockups */
8554         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8555         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8556         schedule_delayed_work(&h->monitor_ctlr_work,
8557                                 h->heartbeat_sample_interval);
8558         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8559         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8560                                 h->heartbeat_sample_interval);
8561         return 0;
8562
8563 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8564         hpsa_free_performant_mode(h);
8565         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8566 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8567         hpsa_free_sg_chain_blocks(h);
8568 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8569         hpsa_free_cmd_pool(h);
8570 clean4: /* irq, shost, pci, lu, aer/h */
8571         hpsa_free_irqs(h);
8572 clean3: /* shost, pci, lu, aer/h */
8573         scsi_host_put(h->scsi_host);
8574         h->scsi_host = NULL;
8575 clean2_5: /* pci, lu, aer/h */
8576         hpsa_free_pci_init(h);
8577 clean2: /* lu, aer/h */
8578         if (h->lockup_detected) {
8579                 free_percpu(h->lockup_detected);
8580                 h->lockup_detected = NULL;
8581         }
8582 clean1: /* wq/aer/h */
8583         if (h->resubmit_wq) {
8584                 destroy_workqueue(h->resubmit_wq);
8585                 h->resubmit_wq = NULL;
8586         }
8587         if (h->rescan_ctlr_wq) {
8588                 destroy_workqueue(h->rescan_ctlr_wq);
8589                 h->rescan_ctlr_wq = NULL;
8590         }
8591         kfree(h);
8592         return rc;
8593 }
8594
8595 static void hpsa_flush_cache(struct ctlr_info *h)
8596 {
8597         char *flush_buf;
8598         struct CommandList *c;
8599         int rc;
8600
8601         if (unlikely(lockup_detected(h)))
8602                 return;
8603         flush_buf = kzalloc(4, GFP_KERNEL);
8604         if (!flush_buf)
8605                 return;
8606
8607         c = cmd_alloc(h);
8608
8609         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8610                 RAID_CTLR_LUNID, TYPE_CMD)) {
8611                 goto out;
8612         }
8613         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8614                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8615         if (rc)
8616                 goto out;
8617         if (c->err_info->CommandStatus != 0)
8618 out:
8619                 dev_warn(&h->pdev->dev,
8620                         "error flushing cache on controller\n");
8621         cmd_free(h, c);
8622         kfree(flush_buf);
8623 }
8624
8625 /* Make controller gather fresh report lun data each time we
8626  * send down a report luns request
8627  */
8628 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8629 {
8630         u32 *options;
8631         struct CommandList *c;
8632         int rc;
8633
8634         /* Don't bother trying to set diag options if locked up */
8635         if (unlikely(h->lockup_detected))
8636                 return;
8637
8638         options = kzalloc(sizeof(*options), GFP_KERNEL);
8639         if (!options) {
8640                 dev_err(&h->pdev->dev,
8641                         "Error: failed to disable rld caching, during alloc.\n");
8642                 return;
8643         }
8644
8645         c = cmd_alloc(h);
8646
8647         /* first, get the current diag options settings */
8648         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8649                 RAID_CTLR_LUNID, TYPE_CMD))
8650                 goto errout;
8651
8652         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8653                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8654         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8655                 goto errout;
8656
8657         /* Now, set the bit for disabling the RLD caching */
8658         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8659
8660         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8661                 RAID_CTLR_LUNID, TYPE_CMD))
8662                 goto errout;
8663
8664         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8665                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8666         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8667                 goto errout;
8668
8669         /* Now verify that it got set: */
8670         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8671                 RAID_CTLR_LUNID, TYPE_CMD))
8672                 goto errout;
8673
8674         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8675                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8676         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8677                 goto errout;
8678
8679         if (*options && HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8680                 goto out;
8681
8682 errout:
8683         dev_err(&h->pdev->dev,
8684                         "Error: failed to disable report lun data caching.\n");
8685 out:
8686         cmd_free(h, c);
8687         kfree(options);
8688 }
8689
8690 static void hpsa_shutdown(struct pci_dev *pdev)
8691 {
8692         struct ctlr_info *h;
8693
8694         h = pci_get_drvdata(pdev);
8695         /* Turn board interrupts off  and send the flush cache command
8696          * sendcmd will turn off interrupt, and send the flush...
8697          * To write all data in the battery backed cache to disks
8698          */
8699         hpsa_flush_cache(h);
8700         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8701         hpsa_free_irqs(h);                      /* init_one 4 */
8702         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8703 }
8704
8705 static void hpsa_free_device_info(struct ctlr_info *h)
8706 {
8707         int i;
8708
8709         for (i = 0; i < h->ndevices; i++) {
8710                 kfree(h->dev[i]);
8711                 h->dev[i] = NULL;
8712         }
8713 }
8714
8715 static void hpsa_remove_one(struct pci_dev *pdev)
8716 {
8717         struct ctlr_info *h;
8718         unsigned long flags;
8719
8720         if (pci_get_drvdata(pdev) == NULL) {
8721                 dev_err(&pdev->dev, "unable to remove device\n");
8722                 return;
8723         }
8724         h = pci_get_drvdata(pdev);
8725
8726         /* Get rid of any controller monitoring work items */
8727         spin_lock_irqsave(&h->lock, flags);
8728         h->remove_in_progress = 1;
8729         spin_unlock_irqrestore(&h->lock, flags);
8730         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8731         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8732         destroy_workqueue(h->rescan_ctlr_wq);
8733         destroy_workqueue(h->resubmit_wq);
8734
8735         /*
8736          * Call before disabling interrupts.
8737          * scsi_remove_host can trigger I/O operations especially
8738          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8739          * operations which cannot complete and will hang the system.
8740          */
8741         if (h->scsi_host)
8742                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8743         /* includes hpsa_free_irqs - init_one 4 */
8744         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8745         hpsa_shutdown(pdev);
8746
8747         hpsa_free_device_info(h);               /* scan */
8748
8749         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8750         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8751         hpsa_free_ioaccel2_sg_chain_blocks(h);
8752         hpsa_free_performant_mode(h);                   /* init_one 7 */
8753         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8754         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8755         kfree(h->lastlogicals);
8756
8757         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8758
8759         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8760         h->scsi_host = NULL;                            /* init_one 3 */
8761
8762         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8763         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8764
8765         free_percpu(h->lockup_detected);                /* init_one 2 */
8766         h->lockup_detected = NULL;                      /* init_one 2 */
8767         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8768
8769         hpsa_delete_sas_host(h);
8770
8771         kfree(h);                                       /* init_one 1 */
8772 }
8773
8774 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8775         __attribute__((unused)) pm_message_t state)
8776 {
8777         return -ENOSYS;
8778 }
8779
8780 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8781 {
8782         return -ENOSYS;
8783 }
8784
8785 static struct pci_driver hpsa_pci_driver = {
8786         .name = HPSA,
8787         .probe = hpsa_init_one,
8788         .remove = hpsa_remove_one,
8789         .id_table = hpsa_pci_device_id, /* id_table */
8790         .shutdown = hpsa_shutdown,
8791         .suspend = hpsa_suspend,
8792         .resume = hpsa_resume,
8793 };
8794
8795 /* Fill in bucket_map[], given nsgs (the max number of
8796  * scatter gather elements supported) and bucket[],
8797  * which is an array of 8 integers.  The bucket[] array
8798  * contains 8 different DMA transfer sizes (in 16
8799  * byte increments) which the controller uses to fetch
8800  * commands.  This function fills in bucket_map[], which
8801  * maps a given number of scatter gather elements to one of
8802  * the 8 DMA transfer sizes.  The point of it is to allow the
8803  * controller to only do as much DMA as needed to fetch the
8804  * command, with the DMA transfer size encoded in the lower
8805  * bits of the command address.
8806  */
8807 static void  calc_bucket_map(int bucket[], int num_buckets,
8808         int nsgs, int min_blocks, u32 *bucket_map)
8809 {
8810         int i, j, b, size;
8811
8812         /* Note, bucket_map must have nsgs+1 entries. */
8813         for (i = 0; i <= nsgs; i++) {
8814                 /* Compute size of a command with i SG entries */
8815                 size = i + min_blocks;
8816                 b = num_buckets; /* Assume the biggest bucket */
8817                 /* Find the bucket that is just big enough */
8818                 for (j = 0; j < num_buckets; j++) {
8819                         if (bucket[j] >= size) {
8820                                 b = j;
8821                                 break;
8822                         }
8823                 }
8824                 /* for a command with i SG entries, use bucket b. */
8825                 bucket_map[i] = b;
8826         }
8827 }
8828
8829 /*
8830  * return -ENODEV on err, 0 on success (or no action)
8831  * allocates numerous items that must be freed later
8832  */
8833 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8834 {
8835         int i;
8836         unsigned long register_value;
8837         unsigned long transMethod = CFGTBL_Trans_Performant |
8838                         (trans_support & CFGTBL_Trans_use_short_tags) |
8839                                 CFGTBL_Trans_enable_directed_msix |
8840                         (trans_support & (CFGTBL_Trans_io_accel1 |
8841                                 CFGTBL_Trans_io_accel2));
8842         struct access_method access = SA5_performant_access;
8843
8844         /* This is a bit complicated.  There are 8 registers on
8845          * the controller which we write to to tell it 8 different
8846          * sizes of commands which there may be.  It's a way of
8847          * reducing the DMA done to fetch each command.  Encoded into
8848          * each command's tag are 3 bits which communicate to the controller
8849          * which of the eight sizes that command fits within.  The size of
8850          * each command depends on how many scatter gather entries there are.
8851          * Each SG entry requires 16 bytes.  The eight registers are programmed
8852          * with the number of 16-byte blocks a command of that size requires.
8853          * The smallest command possible requires 5 such 16 byte blocks.
8854          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8855          * blocks.  Note, this only extends to the SG entries contained
8856          * within the command block, and does not extend to chained blocks
8857          * of SG elements.   bft[] contains the eight values we write to
8858          * the registers.  They are not evenly distributed, but have more
8859          * sizes for small commands, and fewer sizes for larger commands.
8860          */
8861         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8862 #define MIN_IOACCEL2_BFT_ENTRY 5
8863 #define HPSA_IOACCEL2_HEADER_SZ 4
8864         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8865                         13, 14, 15, 16, 17, 18, 19,
8866                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8867         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8868         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8869         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8870                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8871         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8872         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8873         /*  5 = 1 s/g entry or 4k
8874          *  6 = 2 s/g entry or 8k
8875          *  8 = 4 s/g entry or 16k
8876          * 10 = 6 s/g entry or 24k
8877          */
8878
8879         /* If the controller supports either ioaccel method then
8880          * we can also use the RAID stack submit path that does not
8881          * perform the superfluous readl() after each command submission.
8882          */
8883         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8884                 access = SA5_performant_access_no_read;
8885
8886         /* Controller spec: zero out this buffer. */
8887         for (i = 0; i < h->nreply_queues; i++)
8888                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8889
8890         bft[7] = SG_ENTRIES_IN_CMD + 4;
8891         calc_bucket_map(bft, ARRAY_SIZE(bft),
8892                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8893         for (i = 0; i < 8; i++)
8894                 writel(bft[i], &h->transtable->BlockFetch[i]);
8895
8896         /* size of controller ring buffer */
8897         writel(h->max_commands, &h->transtable->RepQSize);
8898         writel(h->nreply_queues, &h->transtable->RepQCount);
8899         writel(0, &h->transtable->RepQCtrAddrLow32);
8900         writel(0, &h->transtable->RepQCtrAddrHigh32);
8901
8902         for (i = 0; i < h->nreply_queues; i++) {
8903                 writel(0, &h->transtable->RepQAddr[i].upper);
8904                 writel(h->reply_queue[i].busaddr,
8905                         &h->transtable->RepQAddr[i].lower);
8906         }
8907
8908         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8909         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8910         /*
8911          * enable outbound interrupt coalescing in accelerator mode;
8912          */
8913         if (trans_support & CFGTBL_Trans_io_accel1) {
8914                 access = SA5_ioaccel_mode1_access;
8915                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8916                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8917         } else {
8918                 if (trans_support & CFGTBL_Trans_io_accel2) {
8919                         access = SA5_ioaccel_mode2_access;
8920                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8921                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8922                 }
8923         }
8924         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8925         if (hpsa_wait_for_mode_change_ack(h)) {
8926                 dev_err(&h->pdev->dev,
8927                         "performant mode problem - doorbell timeout\n");
8928                 return -ENODEV;
8929         }
8930         register_value = readl(&(h->cfgtable->TransportActive));
8931         if (!(register_value & CFGTBL_Trans_Performant)) {
8932                 dev_err(&h->pdev->dev,
8933                         "performant mode problem - transport not active\n");
8934                 return -ENODEV;
8935         }
8936         /* Change the access methods to the performant access methods */
8937         h->access = access;
8938         h->transMethod = transMethod;
8939
8940         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8941                 (trans_support & CFGTBL_Trans_io_accel2)))
8942                 return 0;
8943
8944         if (trans_support & CFGTBL_Trans_io_accel1) {
8945                 /* Set up I/O accelerator mode */
8946                 for (i = 0; i < h->nreply_queues; i++) {
8947                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8948                         h->reply_queue[i].current_entry =
8949                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8950                 }
8951                 bft[7] = h->ioaccel_maxsg + 8;
8952                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8953                                 h->ioaccel1_blockFetchTable);
8954
8955                 /* initialize all reply queue entries to unused */
8956                 for (i = 0; i < h->nreply_queues; i++)
8957                         memset(h->reply_queue[i].head,
8958                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8959                                 h->reply_queue_size);
8960
8961                 /* set all the constant fields in the accelerator command
8962                  * frames once at init time to save CPU cycles later.
8963                  */
8964                 for (i = 0; i < h->nr_cmds; i++) {
8965                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8966
8967                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8968                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8969                                         (i * sizeof(struct ErrorInfo)));
8970                         cp->err_info_len = sizeof(struct ErrorInfo);
8971                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8972                         cp->host_context_flags =
8973                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8974                         cp->timeout_sec = 0;
8975                         cp->ReplyQueue = 0;
8976                         cp->tag =
8977                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8978                         cp->host_addr =
8979                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8980                                         (i * sizeof(struct io_accel1_cmd)));
8981                 }
8982         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8983                 u64 cfg_offset, cfg_base_addr_index;
8984                 u32 bft2_offset, cfg_base_addr;
8985                 int rc;
8986
8987                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8988                         &cfg_base_addr_index, &cfg_offset);
8989                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8990                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8991                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8992                                 4, h->ioaccel2_blockFetchTable);
8993                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8994                 BUILD_BUG_ON(offsetof(struct CfgTable,
8995                                 io_accel_request_size_offset) != 0xb8);
8996                 h->ioaccel2_bft2_regs =
8997                         remap_pci_mem(pci_resource_start(h->pdev,
8998                                         cfg_base_addr_index) +
8999                                         cfg_offset + bft2_offset,
9000                                         ARRAY_SIZE(bft2) *
9001                                         sizeof(*h->ioaccel2_bft2_regs));
9002                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9003                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9004         }
9005         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9006         if (hpsa_wait_for_mode_change_ack(h)) {
9007                 dev_err(&h->pdev->dev,
9008                         "performant mode problem - enabling ioaccel mode\n");
9009                 return -ENODEV;
9010         }
9011         return 0;
9012 }
9013
9014 /* Free ioaccel1 mode command blocks and block fetch table */
9015 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9016 {
9017         if (h->ioaccel_cmd_pool) {
9018                 pci_free_consistent(h->pdev,
9019                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9020                         h->ioaccel_cmd_pool,
9021                         h->ioaccel_cmd_pool_dhandle);
9022                 h->ioaccel_cmd_pool = NULL;
9023                 h->ioaccel_cmd_pool_dhandle = 0;
9024         }
9025         kfree(h->ioaccel1_blockFetchTable);
9026         h->ioaccel1_blockFetchTable = NULL;
9027 }
9028
9029 /* Allocate ioaccel1 mode command blocks and block fetch table */
9030 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9031 {
9032         h->ioaccel_maxsg =
9033                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9034         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9035                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9036
9037         /* Command structures must be aligned on a 128-byte boundary
9038          * because the 7 lower bits of the address are used by the
9039          * hardware.
9040          */
9041         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9042                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9043         h->ioaccel_cmd_pool =
9044                 pci_alloc_consistent(h->pdev,
9045                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9046                         &(h->ioaccel_cmd_pool_dhandle));
9047
9048         h->ioaccel1_blockFetchTable =
9049                 kmalloc(((h->ioaccel_maxsg + 1) *
9050                                 sizeof(u32)), GFP_KERNEL);
9051
9052         if ((h->ioaccel_cmd_pool == NULL) ||
9053                 (h->ioaccel1_blockFetchTable == NULL))
9054                 goto clean_up;
9055
9056         memset(h->ioaccel_cmd_pool, 0,
9057                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9058         return 0;
9059
9060 clean_up:
9061         hpsa_free_ioaccel1_cmd_and_bft(h);
9062         return -ENOMEM;
9063 }
9064
9065 /* Free ioaccel2 mode command blocks and block fetch table */
9066 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9067 {
9068         hpsa_free_ioaccel2_sg_chain_blocks(h);
9069
9070         if (h->ioaccel2_cmd_pool) {
9071                 pci_free_consistent(h->pdev,
9072                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9073                         h->ioaccel2_cmd_pool,
9074                         h->ioaccel2_cmd_pool_dhandle);
9075                 h->ioaccel2_cmd_pool = NULL;
9076                 h->ioaccel2_cmd_pool_dhandle = 0;
9077         }
9078         kfree(h->ioaccel2_blockFetchTable);
9079         h->ioaccel2_blockFetchTable = NULL;
9080 }
9081
9082 /* Allocate ioaccel2 mode command blocks and block fetch table */
9083 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9084 {
9085         int rc;
9086
9087         /* Allocate ioaccel2 mode command blocks and block fetch table */
9088
9089         h->ioaccel_maxsg =
9090                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9091         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9092                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9093
9094         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9095                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9096         h->ioaccel2_cmd_pool =
9097                 pci_alloc_consistent(h->pdev,
9098                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9099                         &(h->ioaccel2_cmd_pool_dhandle));
9100
9101         h->ioaccel2_blockFetchTable =
9102                 kmalloc(((h->ioaccel_maxsg + 1) *
9103                                 sizeof(u32)), GFP_KERNEL);
9104
9105         if ((h->ioaccel2_cmd_pool == NULL) ||
9106                 (h->ioaccel2_blockFetchTable == NULL)) {
9107                 rc = -ENOMEM;
9108                 goto clean_up;
9109         }
9110
9111         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9112         if (rc)
9113                 goto clean_up;
9114
9115         memset(h->ioaccel2_cmd_pool, 0,
9116                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9117         return 0;
9118
9119 clean_up:
9120         hpsa_free_ioaccel2_cmd_and_bft(h);
9121         return rc;
9122 }
9123
9124 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9125 static void hpsa_free_performant_mode(struct ctlr_info *h)
9126 {
9127         kfree(h->blockFetchTable);
9128         h->blockFetchTable = NULL;
9129         hpsa_free_reply_queues(h);
9130         hpsa_free_ioaccel1_cmd_and_bft(h);
9131         hpsa_free_ioaccel2_cmd_and_bft(h);
9132 }
9133
9134 /* return -ENODEV on error, 0 on success (or no action)
9135  * allocates numerous items that must be freed later
9136  */
9137 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9138 {
9139         u32 trans_support;
9140         unsigned long transMethod = CFGTBL_Trans_Performant |
9141                                         CFGTBL_Trans_use_short_tags;
9142         int i, rc;
9143
9144         if (hpsa_simple_mode)
9145                 return 0;
9146
9147         trans_support = readl(&(h->cfgtable->TransportSupport));
9148         if (!(trans_support & PERFORMANT_MODE))
9149                 return 0;
9150
9151         /* Check for I/O accelerator mode support */
9152         if (trans_support & CFGTBL_Trans_io_accel1) {
9153                 transMethod |= CFGTBL_Trans_io_accel1 |
9154                                 CFGTBL_Trans_enable_directed_msix;
9155                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9156                 if (rc)
9157                         return rc;
9158         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9159                 transMethod |= CFGTBL_Trans_io_accel2 |
9160                                 CFGTBL_Trans_enable_directed_msix;
9161                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9162                 if (rc)
9163                         return rc;
9164         }
9165
9166         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9167         hpsa_get_max_perf_mode_cmds(h);
9168         /* Performant mode ring buffer and supporting data structures */
9169         h->reply_queue_size = h->max_commands * sizeof(u64);
9170
9171         for (i = 0; i < h->nreply_queues; i++) {
9172                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9173                                                 h->reply_queue_size,
9174                                                 &(h->reply_queue[i].busaddr));
9175                 if (!h->reply_queue[i].head) {
9176                         rc = -ENOMEM;
9177                         goto clean1;    /* rq, ioaccel */
9178                 }
9179                 h->reply_queue[i].size = h->max_commands;
9180                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9181                 h->reply_queue[i].current_entry = 0;
9182         }
9183
9184         /* Need a block fetch table for performant mode */
9185         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9186                                 sizeof(u32)), GFP_KERNEL);
9187         if (!h->blockFetchTable) {
9188                 rc = -ENOMEM;
9189                 goto clean1;    /* rq, ioaccel */
9190         }
9191
9192         rc = hpsa_enter_performant_mode(h, trans_support);
9193         if (rc)
9194                 goto clean2;    /* bft, rq, ioaccel */
9195         return 0;
9196
9197 clean2: /* bft, rq, ioaccel */
9198         kfree(h->blockFetchTable);
9199         h->blockFetchTable = NULL;
9200 clean1: /* rq, ioaccel */
9201         hpsa_free_reply_queues(h);
9202         hpsa_free_ioaccel1_cmd_and_bft(h);
9203         hpsa_free_ioaccel2_cmd_and_bft(h);
9204         return rc;
9205 }
9206
9207 static int is_accelerated_cmd(struct CommandList *c)
9208 {
9209         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9210 }
9211
9212 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9213 {
9214         struct CommandList *c = NULL;
9215         int i, accel_cmds_out;
9216         int refcount;
9217
9218         do { /* wait for all outstanding ioaccel commands to drain out */
9219                 accel_cmds_out = 0;
9220                 for (i = 0; i < h->nr_cmds; i++) {
9221                         c = h->cmd_pool + i;
9222                         refcount = atomic_inc_return(&c->refcount);
9223                         if (refcount > 1) /* Command is allocated */
9224                                 accel_cmds_out += is_accelerated_cmd(c);
9225                         cmd_free(h, c);
9226                 }
9227                 if (accel_cmds_out <= 0)
9228                         break;
9229                 msleep(100);
9230         } while (1);
9231 }
9232
9233 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9234                                 struct hpsa_sas_port *hpsa_sas_port)
9235 {
9236         struct hpsa_sas_phy *hpsa_sas_phy;
9237         struct sas_phy *phy;
9238
9239         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9240         if (!hpsa_sas_phy)
9241                 return NULL;
9242
9243         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9244                 hpsa_sas_port->next_phy_index);
9245         if (!phy) {
9246                 kfree(hpsa_sas_phy);
9247                 return NULL;
9248         }
9249
9250         hpsa_sas_port->next_phy_index++;
9251         hpsa_sas_phy->phy = phy;
9252         hpsa_sas_phy->parent_port = hpsa_sas_port;
9253
9254         return hpsa_sas_phy;
9255 }
9256
9257 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9258 {
9259         struct sas_phy *phy = hpsa_sas_phy->phy;
9260
9261         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9262         sas_phy_free(phy);
9263         if (hpsa_sas_phy->added_to_port)
9264                 list_del(&hpsa_sas_phy->phy_list_entry);
9265         kfree(hpsa_sas_phy);
9266 }
9267
9268 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9269 {
9270         int rc;
9271         struct hpsa_sas_port *hpsa_sas_port;
9272         struct sas_phy *phy;
9273         struct sas_identify *identify;
9274
9275         hpsa_sas_port = hpsa_sas_phy->parent_port;
9276         phy = hpsa_sas_phy->phy;
9277
9278         identify = &phy->identify;
9279         memset(identify, 0, sizeof(*identify));
9280         identify->sas_address = hpsa_sas_port->sas_address;
9281         identify->device_type = SAS_END_DEVICE;
9282         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9283         identify->target_port_protocols = SAS_PROTOCOL_STP;
9284         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9285         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9286         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9287         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9288         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9289
9290         rc = sas_phy_add(hpsa_sas_phy->phy);
9291         if (rc)
9292                 return rc;
9293
9294         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9295         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9296                         &hpsa_sas_port->phy_list_head);
9297         hpsa_sas_phy->added_to_port = true;
9298
9299         return 0;
9300 }
9301
9302 static int
9303         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9304                                 struct sas_rphy *rphy)
9305 {
9306         struct sas_identify *identify;
9307
9308         identify = &rphy->identify;
9309         identify->sas_address = hpsa_sas_port->sas_address;
9310         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9311         identify->target_port_protocols = SAS_PROTOCOL_STP;
9312
9313         return sas_rphy_add(rphy);
9314 }
9315
9316 static struct hpsa_sas_port
9317         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9318                                 u64 sas_address)
9319 {
9320         int rc;
9321         struct hpsa_sas_port *hpsa_sas_port;
9322         struct sas_port *port;
9323
9324         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9325         if (!hpsa_sas_port)
9326                 return NULL;
9327
9328         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9329         hpsa_sas_port->parent_node = hpsa_sas_node;
9330
9331         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9332         if (!port)
9333                 goto free_hpsa_port;
9334
9335         rc = sas_port_add(port);
9336         if (rc)
9337                 goto free_sas_port;
9338
9339         hpsa_sas_port->port = port;
9340         hpsa_sas_port->sas_address = sas_address;
9341         list_add_tail(&hpsa_sas_port->port_list_entry,
9342                         &hpsa_sas_node->port_list_head);
9343
9344         return hpsa_sas_port;
9345
9346 free_sas_port:
9347         sas_port_free(port);
9348 free_hpsa_port:
9349         kfree(hpsa_sas_port);
9350
9351         return NULL;
9352 }
9353
9354 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9355 {
9356         struct hpsa_sas_phy *hpsa_sas_phy;
9357         struct hpsa_sas_phy *next;
9358
9359         list_for_each_entry_safe(hpsa_sas_phy, next,
9360                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9361                 hpsa_free_sas_phy(hpsa_sas_phy);
9362
9363         sas_port_delete(hpsa_sas_port->port);
9364         list_del(&hpsa_sas_port->port_list_entry);
9365         kfree(hpsa_sas_port);
9366 }
9367
9368 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9369 {
9370         struct hpsa_sas_node *hpsa_sas_node;
9371
9372         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9373         if (hpsa_sas_node) {
9374                 hpsa_sas_node->parent_dev = parent_dev;
9375                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9376         }
9377
9378         return hpsa_sas_node;
9379 }
9380
9381 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9382 {
9383         struct hpsa_sas_port *hpsa_sas_port;
9384         struct hpsa_sas_port *next;
9385
9386         if (!hpsa_sas_node)
9387                 return;
9388
9389         list_for_each_entry_safe(hpsa_sas_port, next,
9390                         &hpsa_sas_node->port_list_head, port_list_entry)
9391                 hpsa_free_sas_port(hpsa_sas_port);
9392
9393         kfree(hpsa_sas_node);
9394 }
9395
9396 static struct hpsa_scsi_dev_t
9397         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9398                                         struct sas_rphy *rphy)
9399 {
9400         int i;
9401         struct hpsa_scsi_dev_t *device;
9402
9403         for (i = 0; i < h->ndevices; i++) {
9404                 device = h->dev[i];
9405                 if (!device->sas_port)
9406                         continue;
9407                 if (device->sas_port->rphy == rphy)
9408                         return device;
9409         }
9410
9411         return NULL;
9412 }
9413
9414 static int hpsa_add_sas_host(struct ctlr_info *h)
9415 {
9416         int rc;
9417         struct device *parent_dev;
9418         struct hpsa_sas_node *hpsa_sas_node;
9419         struct hpsa_sas_port *hpsa_sas_port;
9420         struct hpsa_sas_phy *hpsa_sas_phy;
9421
9422         parent_dev = &h->scsi_host->shost_gendev;
9423
9424         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9425         if (!hpsa_sas_node)
9426                 return -ENOMEM;
9427
9428         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9429         if (!hpsa_sas_port) {
9430                 rc = -ENODEV;
9431                 goto free_sas_node;
9432         }
9433
9434         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9435         if (!hpsa_sas_phy) {
9436                 rc = -ENODEV;
9437                 goto free_sas_port;
9438         }
9439
9440         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9441         if (rc)
9442                 goto free_sas_phy;
9443
9444         h->sas_host = hpsa_sas_node;
9445
9446         return 0;
9447
9448 free_sas_phy:
9449         hpsa_free_sas_phy(hpsa_sas_phy);
9450 free_sas_port:
9451         hpsa_free_sas_port(hpsa_sas_port);
9452 free_sas_node:
9453         hpsa_free_sas_node(hpsa_sas_node);
9454
9455         return rc;
9456 }
9457
9458 static void hpsa_delete_sas_host(struct ctlr_info *h)
9459 {
9460         hpsa_free_sas_node(h->sas_host);
9461 }
9462
9463 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9464                                 struct hpsa_scsi_dev_t *device)
9465 {
9466         int rc;
9467         struct hpsa_sas_port *hpsa_sas_port;
9468         struct sas_rphy *rphy;
9469
9470         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9471         if (!hpsa_sas_port)
9472                 return -ENOMEM;
9473
9474         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9475         if (!rphy) {
9476                 rc = -ENODEV;
9477                 goto free_sas_port;
9478         }
9479
9480         hpsa_sas_port->rphy = rphy;
9481         device->sas_port = hpsa_sas_port;
9482
9483         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9484         if (rc)
9485                 goto free_sas_port;
9486
9487         return 0;
9488
9489 free_sas_port:
9490         hpsa_free_sas_port(hpsa_sas_port);
9491         device->sas_port = NULL;
9492
9493         return rc;
9494 }
9495
9496 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9497 {
9498         if (device->sas_port) {
9499                 hpsa_free_sas_port(device->sas_port);
9500                 device->sas_port = NULL;
9501         }
9502 }
9503
9504 static int
9505 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9506 {
9507         return 0;
9508 }
9509
9510 static int
9511 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9512 {
9513         return 0;
9514 }
9515
9516 static int
9517 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9518 {
9519         return -ENXIO;
9520 }
9521
9522 static int
9523 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9524 {
9525         return 0;
9526 }
9527
9528 static int
9529 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9530 {
9531         return 0;
9532 }
9533
9534 static int
9535 hpsa_sas_phy_setup(struct sas_phy *phy)
9536 {
9537         return 0;
9538 }
9539
9540 static void
9541 hpsa_sas_phy_release(struct sas_phy *phy)
9542 {
9543 }
9544
9545 static int
9546 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9547 {
9548         return -EINVAL;
9549 }
9550
9551 /* SMP = Serial Management Protocol */
9552 static int
9553 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9554 struct request *req)
9555 {
9556         return -EINVAL;
9557 }
9558
9559 static struct sas_function_template hpsa_sas_transport_functions = {
9560         .get_linkerrors = hpsa_sas_get_linkerrors,
9561         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9562         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9563         .phy_reset = hpsa_sas_phy_reset,
9564         .phy_enable = hpsa_sas_phy_enable,
9565         .phy_setup = hpsa_sas_phy_setup,
9566         .phy_release = hpsa_sas_phy_release,
9567         .set_phy_speed = hpsa_sas_phy_speed,
9568         .smp_handler = hpsa_sas_smp_handler,
9569 };
9570
9571 /*
9572  *  This is it.  Register the PCI driver information for the cards we control
9573  *  the OS will call our registered routines when it finds one of our cards.
9574  */
9575 static int __init hpsa_init(void)
9576 {
9577         int rc;
9578
9579         hpsa_sas_transport_template =
9580                 sas_attach_transport(&hpsa_sas_transport_functions);
9581         if (!hpsa_sas_transport_template)
9582                 return -ENODEV;
9583
9584         rc = pci_register_driver(&hpsa_pci_driver);
9585
9586         if (rc)
9587                 sas_release_transport(hpsa_sas_transport_template);
9588
9589         return rc;
9590 }
9591
9592 static void __exit hpsa_cleanup(void)
9593 {
9594         pci_unregister_driver(&hpsa_pci_driver);
9595         sas_release_transport(hpsa_sas_transport_template);
9596 }
9597
9598 static void __attribute__((unused)) verify_offsets(void)
9599 {
9600 #define VERIFY_OFFSET(member, offset) \
9601         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9602
9603         VERIFY_OFFSET(structure_size, 0);
9604         VERIFY_OFFSET(volume_blk_size, 4);
9605         VERIFY_OFFSET(volume_blk_cnt, 8);
9606         VERIFY_OFFSET(phys_blk_shift, 16);
9607         VERIFY_OFFSET(parity_rotation_shift, 17);
9608         VERIFY_OFFSET(strip_size, 18);
9609         VERIFY_OFFSET(disk_starting_blk, 20);
9610         VERIFY_OFFSET(disk_blk_cnt, 28);
9611         VERIFY_OFFSET(data_disks_per_row, 36);
9612         VERIFY_OFFSET(metadata_disks_per_row, 38);
9613         VERIFY_OFFSET(row_cnt, 40);
9614         VERIFY_OFFSET(layout_map_count, 42);
9615         VERIFY_OFFSET(flags, 44);
9616         VERIFY_OFFSET(dekindex, 46);
9617         /* VERIFY_OFFSET(reserved, 48 */
9618         VERIFY_OFFSET(data, 64);
9619
9620 #undef VERIFY_OFFSET
9621
9622 #define VERIFY_OFFSET(member, offset) \
9623         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9624
9625         VERIFY_OFFSET(IU_type, 0);
9626         VERIFY_OFFSET(direction, 1);
9627         VERIFY_OFFSET(reply_queue, 2);
9628         /* VERIFY_OFFSET(reserved1, 3);  */
9629         VERIFY_OFFSET(scsi_nexus, 4);
9630         VERIFY_OFFSET(Tag, 8);
9631         VERIFY_OFFSET(cdb, 16);
9632         VERIFY_OFFSET(cciss_lun, 32);
9633         VERIFY_OFFSET(data_len, 40);
9634         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9635         VERIFY_OFFSET(sg_count, 45);
9636         /* VERIFY_OFFSET(reserved3 */
9637         VERIFY_OFFSET(err_ptr, 48);
9638         VERIFY_OFFSET(err_len, 56);
9639         /* VERIFY_OFFSET(reserved4  */
9640         VERIFY_OFFSET(sg, 64);
9641
9642 #undef VERIFY_OFFSET
9643
9644 #define VERIFY_OFFSET(member, offset) \
9645         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9646
9647         VERIFY_OFFSET(dev_handle, 0x00);
9648         VERIFY_OFFSET(reserved1, 0x02);
9649         VERIFY_OFFSET(function, 0x03);
9650         VERIFY_OFFSET(reserved2, 0x04);
9651         VERIFY_OFFSET(err_info, 0x0C);
9652         VERIFY_OFFSET(reserved3, 0x10);
9653         VERIFY_OFFSET(err_info_len, 0x12);
9654         VERIFY_OFFSET(reserved4, 0x13);
9655         VERIFY_OFFSET(sgl_offset, 0x14);
9656         VERIFY_OFFSET(reserved5, 0x15);
9657         VERIFY_OFFSET(transfer_len, 0x1C);
9658         VERIFY_OFFSET(reserved6, 0x20);
9659         VERIFY_OFFSET(io_flags, 0x24);
9660         VERIFY_OFFSET(reserved7, 0x26);
9661         VERIFY_OFFSET(LUN, 0x34);
9662         VERIFY_OFFSET(control, 0x3C);
9663         VERIFY_OFFSET(CDB, 0x40);
9664         VERIFY_OFFSET(reserved8, 0x50);
9665         VERIFY_OFFSET(host_context_flags, 0x60);
9666         VERIFY_OFFSET(timeout_sec, 0x62);
9667         VERIFY_OFFSET(ReplyQueue, 0x64);
9668         VERIFY_OFFSET(reserved9, 0x65);
9669         VERIFY_OFFSET(tag, 0x68);
9670         VERIFY_OFFSET(host_addr, 0x70);
9671         VERIFY_OFFSET(CISS_LUN, 0x78);
9672         VERIFY_OFFSET(SG, 0x78 + 8);
9673 #undef VERIFY_OFFSET
9674 }
9675
9676 module_init(hpsa_init);
9677 module_exit(hpsa_cleanup);