regulator: core: Use bool for exclusivitity flag
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 /**
927  * set_machine_constraints - sets regulator constraints
928  * @rdev: regulator source
929  * @constraints: constraints to apply
930  *
931  * Allows platform initialisation code to define and constrain
932  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933  * Constraints *must* be set by platform code in order for some
934  * regulator operations to proceed i.e. set_voltage, set_current_limit,
935  * set_mode.
936  */
937 static int set_machine_constraints(struct regulator_dev *rdev,
938         const struct regulation_constraints *constraints)
939 {
940         int ret = 0;
941         struct regulator_ops *ops = rdev->desc->ops;
942
943         if (constraints)
944                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945                                             GFP_KERNEL);
946         else
947                 rdev->constraints = kzalloc(sizeof(*constraints),
948                                             GFP_KERNEL);
949         if (!rdev->constraints)
950                 return -ENOMEM;
951
952         ret = machine_constraints_voltage(rdev, rdev->constraints);
953         if (ret != 0)
954                 goto out;
955
956         /* do we need to setup our suspend state */
957         if (rdev->constraints->initial_state) {
958                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959                 if (ret < 0) {
960                         rdev_err(rdev, "failed to set suspend state\n");
961                         goto out;
962                 }
963         }
964
965         if (rdev->constraints->initial_mode) {
966                 if (!ops->set_mode) {
967                         rdev_err(rdev, "no set_mode operation\n");
968                         ret = -EINVAL;
969                         goto out;
970                 }
971
972                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973                 if (ret < 0) {
974                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975                         goto out;
976                 }
977         }
978
979         /* If the constraints say the regulator should be on at this point
980          * and we have control then make sure it is enabled.
981          */
982         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983             ops->enable) {
984                 ret = ops->enable(rdev);
985                 if (ret < 0) {
986                         rdev_err(rdev, "failed to enable\n");
987                         goto out;
988                 }
989         }
990
991         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
992                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
993                 if (ret < 0) {
994                         rdev_err(rdev, "failed to set ramp_delay\n");
995                         goto out;
996                 }
997         }
998
999         print_constraints(rdev);
1000         return 0;
1001 out:
1002         kfree(rdev->constraints);
1003         rdev->constraints = NULL;
1004         return ret;
1005 }
1006
1007 /**
1008  * set_supply - set regulator supply regulator
1009  * @rdev: regulator name
1010  * @supply_rdev: supply regulator name
1011  *
1012  * Called by platform initialisation code to set the supply regulator for this
1013  * regulator. This ensures that a regulators supply will also be enabled by the
1014  * core if it's child is enabled.
1015  */
1016 static int set_supply(struct regulator_dev *rdev,
1017                       struct regulator_dev *supply_rdev)
1018 {
1019         int err;
1020
1021         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1022
1023         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024         if (rdev->supply == NULL) {
1025                 err = -ENOMEM;
1026                 return err;
1027         }
1028         supply_rdev->open_count++;
1029
1030         return 0;
1031 }
1032
1033 /**
1034  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035  * @rdev:         regulator source
1036  * @consumer_dev_name: dev_name() string for device supply applies to
1037  * @supply:       symbolic name for supply
1038  *
1039  * Allows platform initialisation code to map physical regulator
1040  * sources to symbolic names for supplies for use by devices.  Devices
1041  * should use these symbolic names to request regulators, avoiding the
1042  * need to provide board-specific regulator names as platform data.
1043  */
1044 static int set_consumer_device_supply(struct regulator_dev *rdev,
1045                                       const char *consumer_dev_name,
1046                                       const char *supply)
1047 {
1048         struct regulator_map *node;
1049         int has_dev;
1050
1051         if (supply == NULL)
1052                 return -EINVAL;
1053
1054         if (consumer_dev_name != NULL)
1055                 has_dev = 1;
1056         else
1057                 has_dev = 0;
1058
1059         list_for_each_entry(node, &regulator_map_list, list) {
1060                 if (node->dev_name && consumer_dev_name) {
1061                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1062                                 continue;
1063                 } else if (node->dev_name || consumer_dev_name) {
1064                         continue;
1065                 }
1066
1067                 if (strcmp(node->supply, supply) != 0)
1068                         continue;
1069
1070                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1071                          consumer_dev_name,
1072                          dev_name(&node->regulator->dev),
1073                          node->regulator->desc->name,
1074                          supply,
1075                          dev_name(&rdev->dev), rdev_get_name(rdev));
1076                 return -EBUSY;
1077         }
1078
1079         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080         if (node == NULL)
1081                 return -ENOMEM;
1082
1083         node->regulator = rdev;
1084         node->supply = supply;
1085
1086         if (has_dev) {
1087                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088                 if (node->dev_name == NULL) {
1089                         kfree(node);
1090                         return -ENOMEM;
1091                 }
1092         }
1093
1094         list_add(&node->list, &regulator_map_list);
1095         return 0;
1096 }
1097
1098 static void unset_regulator_supplies(struct regulator_dev *rdev)
1099 {
1100         struct regulator_map *node, *n;
1101
1102         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1103                 if (rdev == node->regulator) {
1104                         list_del(&node->list);
1105                         kfree(node->dev_name);
1106                         kfree(node);
1107                 }
1108         }
1109 }
1110
1111 #define REG_STR_SIZE    64
1112
1113 static struct regulator *create_regulator(struct regulator_dev *rdev,
1114                                           struct device *dev,
1115                                           const char *supply_name)
1116 {
1117         struct regulator *regulator;
1118         char buf[REG_STR_SIZE];
1119         int err, size;
1120
1121         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122         if (regulator == NULL)
1123                 return NULL;
1124
1125         mutex_lock(&rdev->mutex);
1126         regulator->rdev = rdev;
1127         list_add(&regulator->list, &rdev->consumer_list);
1128
1129         if (dev) {
1130                 regulator->dev = dev;
1131
1132                 /* Add a link to the device sysfs entry */
1133                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134                                  dev->kobj.name, supply_name);
1135                 if (size >= REG_STR_SIZE)
1136                         goto overflow_err;
1137
1138                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139                 if (regulator->supply_name == NULL)
1140                         goto overflow_err;
1141
1142                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1143                                         buf);
1144                 if (err) {
1145                         rdev_warn(rdev, "could not add device link %s err %d\n",
1146                                   dev->kobj.name, err);
1147                         /* non-fatal */
1148                 }
1149         } else {
1150                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151                 if (regulator->supply_name == NULL)
1152                         goto overflow_err;
1153         }
1154
1155         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1156                                                 rdev->debugfs);
1157         if (!regulator->debugfs) {
1158                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1159         } else {
1160                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161                                    &regulator->uA_load);
1162                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163                                    &regulator->min_uV);
1164                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165                                    &regulator->max_uV);
1166         }
1167
1168         /*
1169          * Check now if the regulator is an always on regulator - if
1170          * it is then we don't need to do nearly so much work for
1171          * enable/disable calls.
1172          */
1173         if (!_regulator_can_change_status(rdev) &&
1174             _regulator_is_enabled(rdev))
1175                 regulator->always_on = true;
1176
1177         mutex_unlock(&rdev->mutex);
1178         return regulator;
1179 overflow_err:
1180         list_del(&regulator->list);
1181         kfree(regulator);
1182         mutex_unlock(&rdev->mutex);
1183         return NULL;
1184 }
1185
1186 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1187 {
1188         if (!rdev->desc->ops->enable_time)
1189                 return rdev->desc->enable_time;
1190         return rdev->desc->ops->enable_time(rdev);
1191 }
1192
1193 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194                                                   const char *supply,
1195                                                   int *ret)
1196 {
1197         struct regulator_dev *r;
1198         struct device_node *node;
1199         struct regulator_map *map;
1200         const char *devname = NULL;
1201
1202         /* first do a dt based lookup */
1203         if (dev && dev->of_node) {
1204                 node = of_get_regulator(dev, supply);
1205                 if (node) {
1206                         list_for_each_entry(r, &regulator_list, list)
1207                                 if (r->dev.parent &&
1208                                         node == r->dev.of_node)
1209                                         return r;
1210                 } else {
1211                         /*
1212                          * If we couldn't even get the node then it's
1213                          * not just that the device didn't register
1214                          * yet, there's no node and we'll never
1215                          * succeed.
1216                          */
1217                         *ret = -ENODEV;
1218                 }
1219         }
1220
1221         /* if not found, try doing it non-dt way */
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         list_for_each_entry(r, &regulator_list, list)
1226                 if (strcmp(rdev_get_name(r), supply) == 0)
1227                         return r;
1228
1229         list_for_each_entry(map, &regulator_map_list, list) {
1230                 /* If the mapping has a device set up it must match */
1231                 if (map->dev_name &&
1232                     (!devname || strcmp(map->dev_name, devname)))
1233                         continue;
1234
1235                 if (strcmp(map->supply, supply) == 0)
1236                         return map->regulator;
1237         }
1238
1239
1240         return NULL;
1241 }
1242
1243 /* Internal regulator request function */
1244 static struct regulator *_regulator_get(struct device *dev, const char *id,
1245                                         bool exclusive)
1246 {
1247         struct regulator_dev *rdev;
1248         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249         const char *devname = NULL;
1250         int ret = 0;
1251
1252         if (id == NULL) {
1253                 pr_err("get() with no identifier\n");
1254                 return regulator;
1255         }
1256
1257         if (dev)
1258                 devname = dev_name(dev);
1259
1260         mutex_lock(&regulator_list_mutex);
1261
1262         rdev = regulator_dev_lookup(dev, id, &ret);
1263         if (rdev)
1264                 goto found;
1265
1266         /*
1267          * If we have return value from dev_lookup fail, we do not expect to
1268          * succeed, so, quit with appropriate error value
1269          */
1270         if (ret) {
1271                 regulator = ERR_PTR(ret);
1272                 goto out;
1273         }
1274
1275         if (board_wants_dummy_regulator) {
1276                 rdev = dummy_regulator_rdev;
1277                 goto found;
1278         }
1279
1280 #ifdef CONFIG_REGULATOR_DUMMY
1281         if (!devname)
1282                 devname = "deviceless";
1283
1284         /* If the board didn't flag that it was fully constrained then
1285          * substitute in a dummy regulator so consumers can continue.
1286          */
1287         if (!has_full_constraints) {
1288                 pr_warn("%s supply %s not found, using dummy regulator\n",
1289                         devname, id);
1290                 rdev = dummy_regulator_rdev;
1291                 goto found;
1292         }
1293 #endif
1294
1295         mutex_unlock(&regulator_list_mutex);
1296         return regulator;
1297
1298 found:
1299         if (rdev->exclusive) {
1300                 regulator = ERR_PTR(-EPERM);
1301                 goto out;
1302         }
1303
1304         if (exclusive && rdev->open_count) {
1305                 regulator = ERR_PTR(-EBUSY);
1306                 goto out;
1307         }
1308
1309         if (!try_module_get(rdev->owner))
1310                 goto out;
1311
1312         regulator = create_regulator(rdev, dev, id);
1313         if (regulator == NULL) {
1314                 regulator = ERR_PTR(-ENOMEM);
1315                 module_put(rdev->owner);
1316                 goto out;
1317         }
1318
1319         rdev->open_count++;
1320         if (exclusive) {
1321                 rdev->exclusive = 1;
1322
1323                 ret = _regulator_is_enabled(rdev);
1324                 if (ret > 0)
1325                         rdev->use_count = 1;
1326                 else
1327                         rdev->use_count = 0;
1328         }
1329
1330 out:
1331         mutex_unlock(&regulator_list_mutex);
1332
1333         return regulator;
1334 }
1335
1336 /**
1337  * regulator_get - lookup and obtain a reference to a regulator.
1338  * @dev: device for regulator "consumer"
1339  * @id: Supply name or regulator ID.
1340  *
1341  * Returns a struct regulator corresponding to the regulator producer,
1342  * or IS_ERR() condition containing errno.
1343  *
1344  * Use of supply names configured via regulator_set_device_supply() is
1345  * strongly encouraged.  It is recommended that the supply name used
1346  * should match the name used for the supply and/or the relevant
1347  * device pins in the datasheet.
1348  */
1349 struct regulator *regulator_get(struct device *dev, const char *id)
1350 {
1351         return _regulator_get(dev, id, false);
1352 }
1353 EXPORT_SYMBOL_GPL(regulator_get);
1354
1355 static void devm_regulator_release(struct device *dev, void *res)
1356 {
1357         regulator_put(*(struct regulator **)res);
1358 }
1359
1360 /**
1361  * devm_regulator_get - Resource managed regulator_get()
1362  * @dev: device for regulator "consumer"
1363  * @id: Supply name or regulator ID.
1364  *
1365  * Managed regulator_get(). Regulators returned from this function are
1366  * automatically regulator_put() on driver detach. See regulator_get() for more
1367  * information.
1368  */
1369 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1370 {
1371         struct regulator **ptr, *regulator;
1372
1373         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1374         if (!ptr)
1375                 return ERR_PTR(-ENOMEM);
1376
1377         regulator = regulator_get(dev, id);
1378         if (!IS_ERR(regulator)) {
1379                 *ptr = regulator;
1380                 devres_add(dev, ptr);
1381         } else {
1382                 devres_free(ptr);
1383         }
1384
1385         return regulator;
1386 }
1387 EXPORT_SYMBOL_GPL(devm_regulator_get);
1388
1389 /**
1390  * regulator_get_exclusive - obtain exclusive access to a regulator.
1391  * @dev: device for regulator "consumer"
1392  * @id: Supply name or regulator ID.
1393  *
1394  * Returns a struct regulator corresponding to the regulator producer,
1395  * or IS_ERR() condition containing errno.  Other consumers will be
1396  * unable to obtain this reference is held and the use count for the
1397  * regulator will be initialised to reflect the current state of the
1398  * regulator.
1399  *
1400  * This is intended for use by consumers which cannot tolerate shared
1401  * use of the regulator such as those which need to force the
1402  * regulator off for correct operation of the hardware they are
1403  * controlling.
1404  *
1405  * Use of supply names configured via regulator_set_device_supply() is
1406  * strongly encouraged.  It is recommended that the supply name used
1407  * should match the name used for the supply and/or the relevant
1408  * device pins in the datasheet.
1409  */
1410 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1411 {
1412         return _regulator_get(dev, id, true);
1413 }
1414 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1415
1416 /* Locks held by regulator_put() */
1417 static void _regulator_put(struct regulator *regulator)
1418 {
1419         struct regulator_dev *rdev;
1420
1421         if (regulator == NULL || IS_ERR(regulator))
1422                 return;
1423
1424         rdev = regulator->rdev;
1425
1426         debugfs_remove_recursive(regulator->debugfs);
1427
1428         /* remove any sysfs entries */
1429         if (regulator->dev)
1430                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1431         kfree(regulator->supply_name);
1432         list_del(&regulator->list);
1433         kfree(regulator);
1434
1435         rdev->open_count--;
1436         rdev->exclusive = 0;
1437
1438         module_put(rdev->owner);
1439 }
1440
1441 /**
1442  * regulator_put - "free" the regulator source
1443  * @regulator: regulator source
1444  *
1445  * Note: drivers must ensure that all regulator_enable calls made on this
1446  * regulator source are balanced by regulator_disable calls prior to calling
1447  * this function.
1448  */
1449 void regulator_put(struct regulator *regulator)
1450 {
1451         mutex_lock(&regulator_list_mutex);
1452         _regulator_put(regulator);
1453         mutex_unlock(&regulator_list_mutex);
1454 }
1455 EXPORT_SYMBOL_GPL(regulator_put);
1456
1457 static int devm_regulator_match(struct device *dev, void *res, void *data)
1458 {
1459         struct regulator **r = res;
1460         if (!r || !*r) {
1461                 WARN_ON(!r || !*r);
1462                 return 0;
1463         }
1464         return *r == data;
1465 }
1466
1467 /**
1468  * devm_regulator_put - Resource managed regulator_put()
1469  * @regulator: regulator to free
1470  *
1471  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1472  * this function will not need to be called and the resource management
1473  * code will ensure that the resource is freed.
1474  */
1475 void devm_regulator_put(struct regulator *regulator)
1476 {
1477         int rc;
1478
1479         rc = devres_release(regulator->dev, devm_regulator_release,
1480                             devm_regulator_match, regulator);
1481         if (rc != 0)
1482                 WARN_ON(rc);
1483 }
1484 EXPORT_SYMBOL_GPL(devm_regulator_put);
1485
1486 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1487 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1488                                 const struct regulator_config *config)
1489 {
1490         struct regulator_enable_gpio *pin;
1491         int ret;
1492
1493         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1494                 if (pin->gpio == config->ena_gpio) {
1495                         rdev_dbg(rdev, "GPIO %d is already used\n",
1496                                 config->ena_gpio);
1497                         goto update_ena_gpio_to_rdev;
1498                 }
1499         }
1500
1501         ret = gpio_request_one(config->ena_gpio,
1502                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1503                                 rdev_get_name(rdev));
1504         if (ret)
1505                 return ret;
1506
1507         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1508         if (pin == NULL) {
1509                 gpio_free(config->ena_gpio);
1510                 return -ENOMEM;
1511         }
1512
1513         pin->gpio = config->ena_gpio;
1514         pin->ena_gpio_invert = config->ena_gpio_invert;
1515         list_add(&pin->list, &regulator_ena_gpio_list);
1516
1517 update_ena_gpio_to_rdev:
1518         pin->request_count++;
1519         rdev->ena_pin = pin;
1520         return 0;
1521 }
1522
1523 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1524 {
1525         struct regulator_enable_gpio *pin, *n;
1526
1527         if (!rdev->ena_pin)
1528                 return;
1529
1530         /* Free the GPIO only in case of no use */
1531         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1532                 if (pin->gpio == rdev->ena_pin->gpio) {
1533                         if (pin->request_count <= 1) {
1534                                 pin->request_count = 0;
1535                                 gpio_free(pin->gpio);
1536                                 list_del(&pin->list);
1537                                 kfree(pin);
1538                         } else {
1539                                 pin->request_count--;
1540                         }
1541                 }
1542         }
1543 }
1544
1545 /**
1546  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1547  * @rdev: regulator_dev structure
1548  * @enable: enable GPIO at initial use?
1549  *
1550  * GPIO is enabled in case of initial use. (enable_count is 0)
1551  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1552  */
1553 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1554 {
1555         struct regulator_enable_gpio *pin = rdev->ena_pin;
1556
1557         if (!pin)
1558                 return -EINVAL;
1559
1560         if (enable) {
1561                 /* Enable GPIO at initial use */
1562                 if (pin->enable_count == 0)
1563                         gpio_set_value_cansleep(pin->gpio,
1564                                                 !pin->ena_gpio_invert);
1565
1566                 pin->enable_count++;
1567         } else {
1568                 if (pin->enable_count > 1) {
1569                         pin->enable_count--;
1570                         return 0;
1571                 }
1572
1573                 /* Disable GPIO if not used */
1574                 if (pin->enable_count <= 1) {
1575                         gpio_set_value_cansleep(pin->gpio,
1576                                                 pin->ena_gpio_invert);
1577                         pin->enable_count = 0;
1578                 }
1579         }
1580
1581         return 0;
1582 }
1583
1584 static int _regulator_do_enable(struct regulator_dev *rdev)
1585 {
1586         int ret, delay;
1587
1588         /* Query before enabling in case configuration dependent.  */
1589         ret = _regulator_get_enable_time(rdev);
1590         if (ret >= 0) {
1591                 delay = ret;
1592         } else {
1593                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1594                 delay = 0;
1595         }
1596
1597         trace_regulator_enable(rdev_get_name(rdev));
1598
1599         if (rdev->ena_pin) {
1600                 ret = regulator_ena_gpio_ctrl(rdev, true);
1601                 if (ret < 0)
1602                         return ret;
1603                 rdev->ena_gpio_state = 1;
1604         } else if (rdev->desc->ops->enable) {
1605                 ret = rdev->desc->ops->enable(rdev);
1606                 if (ret < 0)
1607                         return ret;
1608         } else {
1609                 return -EINVAL;
1610         }
1611
1612         /* Allow the regulator to ramp; it would be useful to extend
1613          * this for bulk operations so that the regulators can ramp
1614          * together.  */
1615         trace_regulator_enable_delay(rdev_get_name(rdev));
1616
1617         if (delay >= 1000) {
1618                 mdelay(delay / 1000);
1619                 udelay(delay % 1000);
1620         } else if (delay) {
1621                 udelay(delay);
1622         }
1623
1624         trace_regulator_enable_complete(rdev_get_name(rdev));
1625
1626         return 0;
1627 }
1628
1629 /* locks held by regulator_enable() */
1630 static int _regulator_enable(struct regulator_dev *rdev)
1631 {
1632         int ret;
1633
1634         /* check voltage and requested load before enabling */
1635         if (rdev->constraints &&
1636             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1637                 drms_uA_update(rdev);
1638
1639         if (rdev->use_count == 0) {
1640                 /* The regulator may on if it's not switchable or left on */
1641                 ret = _regulator_is_enabled(rdev);
1642                 if (ret == -EINVAL || ret == 0) {
1643                         if (!_regulator_can_change_status(rdev))
1644                                 return -EPERM;
1645
1646                         ret = _regulator_do_enable(rdev);
1647                         if (ret < 0)
1648                                 return ret;
1649
1650                 } else if (ret < 0) {
1651                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1652                         return ret;
1653                 }
1654                 /* Fallthrough on positive return values - already enabled */
1655         }
1656
1657         rdev->use_count++;
1658
1659         return 0;
1660 }
1661
1662 /**
1663  * regulator_enable - enable regulator output
1664  * @regulator: regulator source
1665  *
1666  * Request that the regulator be enabled with the regulator output at
1667  * the predefined voltage or current value.  Calls to regulator_enable()
1668  * must be balanced with calls to regulator_disable().
1669  *
1670  * NOTE: the output value can be set by other drivers, boot loader or may be
1671  * hardwired in the regulator.
1672  */
1673 int regulator_enable(struct regulator *regulator)
1674 {
1675         struct regulator_dev *rdev = regulator->rdev;
1676         int ret = 0;
1677
1678         if (regulator->always_on)
1679                 return 0;
1680
1681         if (rdev->supply) {
1682                 ret = regulator_enable(rdev->supply);
1683                 if (ret != 0)
1684                         return ret;
1685         }
1686
1687         mutex_lock(&rdev->mutex);
1688         ret = _regulator_enable(rdev);
1689         mutex_unlock(&rdev->mutex);
1690
1691         if (ret != 0 && rdev->supply)
1692                 regulator_disable(rdev->supply);
1693
1694         return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_enable);
1697
1698 static int _regulator_do_disable(struct regulator_dev *rdev)
1699 {
1700         int ret;
1701
1702         trace_regulator_disable(rdev_get_name(rdev));
1703
1704         if (rdev->ena_pin) {
1705                 ret = regulator_ena_gpio_ctrl(rdev, false);
1706                 if (ret < 0)
1707                         return ret;
1708                 rdev->ena_gpio_state = 0;
1709
1710         } else if (rdev->desc->ops->disable) {
1711                 ret = rdev->desc->ops->disable(rdev);
1712                 if (ret != 0)
1713                         return ret;
1714         }
1715
1716         trace_regulator_disable_complete(rdev_get_name(rdev));
1717
1718         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1719                              NULL);
1720         return 0;
1721 }
1722
1723 /* locks held by regulator_disable() */
1724 static int _regulator_disable(struct regulator_dev *rdev)
1725 {
1726         int ret = 0;
1727
1728         if (WARN(rdev->use_count <= 0,
1729                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1730                 return -EIO;
1731
1732         /* are we the last user and permitted to disable ? */
1733         if (rdev->use_count == 1 &&
1734             (rdev->constraints && !rdev->constraints->always_on)) {
1735
1736                 /* we are last user */
1737                 if (_regulator_can_change_status(rdev)) {
1738                         ret = _regulator_do_disable(rdev);
1739                         if (ret < 0) {
1740                                 rdev_err(rdev, "failed to disable\n");
1741                                 return ret;
1742                         }
1743                 }
1744
1745                 rdev->use_count = 0;
1746         } else if (rdev->use_count > 1) {
1747
1748                 if (rdev->constraints &&
1749                         (rdev->constraints->valid_ops_mask &
1750                         REGULATOR_CHANGE_DRMS))
1751                         drms_uA_update(rdev);
1752
1753                 rdev->use_count--;
1754         }
1755
1756         return ret;
1757 }
1758
1759 /**
1760  * regulator_disable - disable regulator output
1761  * @regulator: regulator source
1762  *
1763  * Disable the regulator output voltage or current.  Calls to
1764  * regulator_enable() must be balanced with calls to
1765  * regulator_disable().
1766  *
1767  * NOTE: this will only disable the regulator output if no other consumer
1768  * devices have it enabled, the regulator device supports disabling and
1769  * machine constraints permit this operation.
1770  */
1771 int regulator_disable(struct regulator *regulator)
1772 {
1773         struct regulator_dev *rdev = regulator->rdev;
1774         int ret = 0;
1775
1776         if (regulator->always_on)
1777                 return 0;
1778
1779         mutex_lock(&rdev->mutex);
1780         ret = _regulator_disable(rdev);
1781         mutex_unlock(&rdev->mutex);
1782
1783         if (ret == 0 && rdev->supply)
1784                 regulator_disable(rdev->supply);
1785
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_disable);
1789
1790 /* locks held by regulator_force_disable() */
1791 static int _regulator_force_disable(struct regulator_dev *rdev)
1792 {
1793         int ret = 0;
1794
1795         /* force disable */
1796         if (rdev->desc->ops->disable) {
1797                 /* ah well, who wants to live forever... */
1798                 ret = rdev->desc->ops->disable(rdev);
1799                 if (ret < 0) {
1800                         rdev_err(rdev, "failed to force disable\n");
1801                         return ret;
1802                 }
1803                 /* notify other consumers that power has been forced off */
1804                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805                         REGULATOR_EVENT_DISABLE, NULL);
1806         }
1807
1808         return ret;
1809 }
1810
1811 /**
1812  * regulator_force_disable - force disable regulator output
1813  * @regulator: regulator source
1814  *
1815  * Forcibly disable the regulator output voltage or current.
1816  * NOTE: this *will* disable the regulator output even if other consumer
1817  * devices have it enabled. This should be used for situations when device
1818  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1819  */
1820 int regulator_force_disable(struct regulator *regulator)
1821 {
1822         struct regulator_dev *rdev = regulator->rdev;
1823         int ret;
1824
1825         mutex_lock(&rdev->mutex);
1826         regulator->uA_load = 0;
1827         ret = _regulator_force_disable(regulator->rdev);
1828         mutex_unlock(&rdev->mutex);
1829
1830         if (rdev->supply)
1831                 while (rdev->open_count--)
1832                         regulator_disable(rdev->supply);
1833
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(regulator_force_disable);
1837
1838 static void regulator_disable_work(struct work_struct *work)
1839 {
1840         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1841                                                   disable_work.work);
1842         int count, i, ret;
1843
1844         mutex_lock(&rdev->mutex);
1845
1846         BUG_ON(!rdev->deferred_disables);
1847
1848         count = rdev->deferred_disables;
1849         rdev->deferred_disables = 0;
1850
1851         for (i = 0; i < count; i++) {
1852                 ret = _regulator_disable(rdev);
1853                 if (ret != 0)
1854                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1855         }
1856
1857         mutex_unlock(&rdev->mutex);
1858
1859         if (rdev->supply) {
1860                 for (i = 0; i < count; i++) {
1861                         ret = regulator_disable(rdev->supply);
1862                         if (ret != 0) {
1863                                 rdev_err(rdev,
1864                                          "Supply disable failed: %d\n", ret);
1865                         }
1866                 }
1867         }
1868 }
1869
1870 /**
1871  * regulator_disable_deferred - disable regulator output with delay
1872  * @regulator: regulator source
1873  * @ms: miliseconds until the regulator is disabled
1874  *
1875  * Execute regulator_disable() on the regulator after a delay.  This
1876  * is intended for use with devices that require some time to quiesce.
1877  *
1878  * NOTE: this will only disable the regulator output if no other consumer
1879  * devices have it enabled, the regulator device supports disabling and
1880  * machine constraints permit this operation.
1881  */
1882 int regulator_disable_deferred(struct regulator *regulator, int ms)
1883 {
1884         struct regulator_dev *rdev = regulator->rdev;
1885         int ret;
1886
1887         if (regulator->always_on)
1888                 return 0;
1889
1890         if (!ms)
1891                 return regulator_disable(regulator);
1892
1893         mutex_lock(&rdev->mutex);
1894         rdev->deferred_disables++;
1895         mutex_unlock(&rdev->mutex);
1896
1897         ret = queue_delayed_work(system_power_efficient_wq,
1898                                  &rdev->disable_work,
1899                                  msecs_to_jiffies(ms));
1900         if (ret < 0)
1901                 return ret;
1902         else
1903                 return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1906
1907 /**
1908  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1909  *
1910  * @rdev: regulator to operate on
1911  *
1912  * Regulators that use regmap for their register I/O can set the
1913  * enable_reg and enable_mask fields in their descriptor and then use
1914  * this as their is_enabled operation, saving some code.
1915  */
1916 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1917 {
1918         unsigned int val;
1919         int ret;
1920
1921         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1922         if (ret != 0)
1923                 return ret;
1924
1925         if (rdev->desc->enable_is_inverted)
1926                 return (val & rdev->desc->enable_mask) == 0;
1927         else
1928                 return (val & rdev->desc->enable_mask) != 0;
1929 }
1930 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1931
1932 /**
1933  * regulator_enable_regmap - standard enable() for regmap users
1934  *
1935  * @rdev: regulator to operate on
1936  *
1937  * Regulators that use regmap for their register I/O can set the
1938  * enable_reg and enable_mask fields in their descriptor and then use
1939  * this as their enable() operation, saving some code.
1940  */
1941 int regulator_enable_regmap(struct regulator_dev *rdev)
1942 {
1943         unsigned int val;
1944
1945         if (rdev->desc->enable_is_inverted)
1946                 val = 0;
1947         else
1948                 val = rdev->desc->enable_mask;
1949
1950         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1951                                   rdev->desc->enable_mask, val);
1952 }
1953 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1954
1955 /**
1956  * regulator_disable_regmap - standard disable() for regmap users
1957  *
1958  * @rdev: regulator to operate on
1959  *
1960  * Regulators that use regmap for their register I/O can set the
1961  * enable_reg and enable_mask fields in their descriptor and then use
1962  * this as their disable() operation, saving some code.
1963  */
1964 int regulator_disable_regmap(struct regulator_dev *rdev)
1965 {
1966         unsigned int val;
1967
1968         if (rdev->desc->enable_is_inverted)
1969                 val = rdev->desc->enable_mask;
1970         else
1971                 val = 0;
1972
1973         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1974                                   rdev->desc->enable_mask, val);
1975 }
1976 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1977
1978 static int _regulator_is_enabled(struct regulator_dev *rdev)
1979 {
1980         /* A GPIO control always takes precedence */
1981         if (rdev->ena_pin)
1982                 return rdev->ena_gpio_state;
1983
1984         /* If we don't know then assume that the regulator is always on */
1985         if (!rdev->desc->ops->is_enabled)
1986                 return 1;
1987
1988         return rdev->desc->ops->is_enabled(rdev);
1989 }
1990
1991 /**
1992  * regulator_is_enabled - is the regulator output enabled
1993  * @regulator: regulator source
1994  *
1995  * Returns positive if the regulator driver backing the source/client
1996  * has requested that the device be enabled, zero if it hasn't, else a
1997  * negative errno code.
1998  *
1999  * Note that the device backing this regulator handle can have multiple
2000  * users, so it might be enabled even if regulator_enable() was never
2001  * called for this particular source.
2002  */
2003 int regulator_is_enabled(struct regulator *regulator)
2004 {
2005         int ret;
2006
2007         if (regulator->always_on)
2008                 return 1;
2009
2010         mutex_lock(&regulator->rdev->mutex);
2011         ret = _regulator_is_enabled(regulator->rdev);
2012         mutex_unlock(&regulator->rdev->mutex);
2013
2014         return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2017
2018 /**
2019  * regulator_can_change_voltage - check if regulator can change voltage
2020  * @regulator: regulator source
2021  *
2022  * Returns positive if the regulator driver backing the source/client
2023  * can change its voltage, false otherwise. Usefull for detecting fixed
2024  * or dummy regulators and disabling voltage change logic in the client
2025  * driver.
2026  */
2027 int regulator_can_change_voltage(struct regulator *regulator)
2028 {
2029         struct regulator_dev    *rdev = regulator->rdev;
2030
2031         if (rdev->constraints &&
2032             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2033                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2034                         return 1;
2035
2036                 if (rdev->desc->continuous_voltage_range &&
2037                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2038                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2039                         return 1;
2040         }
2041
2042         return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2045
2046 /**
2047  * regulator_count_voltages - count regulator_list_voltage() selectors
2048  * @regulator: regulator source
2049  *
2050  * Returns number of selectors, or negative errno.  Selectors are
2051  * numbered starting at zero, and typically correspond to bitfields
2052  * in hardware registers.
2053  */
2054 int regulator_count_voltages(struct regulator *regulator)
2055 {
2056         struct regulator_dev    *rdev = regulator->rdev;
2057
2058         return rdev->desc->n_voltages ? : -EINVAL;
2059 }
2060 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2061
2062 /**
2063  * regulator_list_voltage_linear - List voltages with simple calculation
2064  *
2065  * @rdev: Regulator device
2066  * @selector: Selector to convert into a voltage
2067  *
2068  * Regulators with a simple linear mapping between voltages and
2069  * selectors can set min_uV and uV_step in the regulator descriptor
2070  * and then use this function as their list_voltage() operation,
2071  */
2072 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2073                                   unsigned int selector)
2074 {
2075         if (selector >= rdev->desc->n_voltages)
2076                 return -EINVAL;
2077         if (selector < rdev->desc->linear_min_sel)
2078                 return 0;
2079
2080         selector -= rdev->desc->linear_min_sel;
2081
2082         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2083 }
2084 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2085
2086 /**
2087  * regulator_list_voltage_table - List voltages with table based mapping
2088  *
2089  * @rdev: Regulator device
2090  * @selector: Selector to convert into a voltage
2091  *
2092  * Regulators with table based mapping between voltages and
2093  * selectors can set volt_table in the regulator descriptor
2094  * and then use this function as their list_voltage() operation.
2095  */
2096 int regulator_list_voltage_table(struct regulator_dev *rdev,
2097                                  unsigned int selector)
2098 {
2099         if (!rdev->desc->volt_table) {
2100                 BUG_ON(!rdev->desc->volt_table);
2101                 return -EINVAL;
2102         }
2103
2104         if (selector >= rdev->desc->n_voltages)
2105                 return -EINVAL;
2106
2107         return rdev->desc->volt_table[selector];
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2110
2111 /**
2112  * regulator_list_voltage - enumerate supported voltages
2113  * @regulator: regulator source
2114  * @selector: identify voltage to list
2115  * Context: can sleep
2116  *
2117  * Returns a voltage that can be passed to @regulator_set_voltage(),
2118  * zero if this selector code can't be used on this system, or a
2119  * negative errno.
2120  */
2121 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2122 {
2123         struct regulator_dev    *rdev = regulator->rdev;
2124         struct regulator_ops    *ops = rdev->desc->ops;
2125         int                     ret;
2126
2127         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2128                 return -EINVAL;
2129
2130         mutex_lock(&rdev->mutex);
2131         ret = ops->list_voltage(rdev, selector);
2132         mutex_unlock(&rdev->mutex);
2133
2134         if (ret > 0) {
2135                 if (ret < rdev->constraints->min_uV)
2136                         ret = 0;
2137                 else if (ret > rdev->constraints->max_uV)
2138                         ret = 0;
2139         }
2140
2141         return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2144
2145 /**
2146  * regulator_get_linear_step - return the voltage step size between VSEL values
2147  * @regulator: regulator source
2148  *
2149  * Returns the voltage step size between VSEL values for linear
2150  * regulators, or return 0 if the regulator isn't a linear regulator.
2151  */
2152 unsigned int regulator_get_linear_step(struct regulator *regulator)
2153 {
2154         struct regulator_dev *rdev = regulator->rdev;
2155
2156         return rdev->desc->uV_step;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2159
2160 /**
2161  * regulator_is_supported_voltage - check if a voltage range can be supported
2162  *
2163  * @regulator: Regulator to check.
2164  * @min_uV: Minimum required voltage in uV.
2165  * @max_uV: Maximum required voltage in uV.
2166  *
2167  * Returns a boolean or a negative error code.
2168  */
2169 int regulator_is_supported_voltage(struct regulator *regulator,
2170                                    int min_uV, int max_uV)
2171 {
2172         struct regulator_dev *rdev = regulator->rdev;
2173         int i, voltages, ret;
2174
2175         /* If we can't change voltage check the current voltage */
2176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2177                 ret = regulator_get_voltage(regulator);
2178                 if (ret >= 0)
2179                         return (min_uV <= ret && ret <= max_uV);
2180                 else
2181                         return ret;
2182         }
2183
2184         /* Any voltage within constrains range is fine? */
2185         if (rdev->desc->continuous_voltage_range)
2186                 return min_uV >= rdev->constraints->min_uV &&
2187                                 max_uV <= rdev->constraints->max_uV;
2188
2189         ret = regulator_count_voltages(regulator);
2190         if (ret < 0)
2191                 return ret;
2192         voltages = ret;
2193
2194         for (i = 0; i < voltages; i++) {
2195                 ret = regulator_list_voltage(regulator, i);
2196
2197                 if (ret >= min_uV && ret <= max_uV)
2198                         return 1;
2199         }
2200
2201         return 0;
2202 }
2203 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2204
2205 /**
2206  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2207  *
2208  * @rdev: regulator to operate on
2209  *
2210  * Regulators that use regmap for their register I/O can set the
2211  * vsel_reg and vsel_mask fields in their descriptor and then use this
2212  * as their get_voltage_vsel operation, saving some code.
2213  */
2214 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2215 {
2216         unsigned int val;
2217         int ret;
2218
2219         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2220         if (ret != 0)
2221                 return ret;
2222
2223         val &= rdev->desc->vsel_mask;
2224         val >>= ffs(rdev->desc->vsel_mask) - 1;
2225
2226         return val;
2227 }
2228 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2229
2230 /**
2231  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2232  *
2233  * @rdev: regulator to operate on
2234  * @sel: Selector to set
2235  *
2236  * Regulators that use regmap for their register I/O can set the
2237  * vsel_reg and vsel_mask fields in their descriptor and then use this
2238  * as their set_voltage_vsel operation, saving some code.
2239  */
2240 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2241 {
2242         int ret;
2243
2244         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2245
2246         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2247                                   rdev->desc->vsel_mask, sel);
2248         if (ret)
2249                 return ret;
2250
2251         if (rdev->desc->apply_bit)
2252                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2253                                          rdev->desc->apply_bit,
2254                                          rdev->desc->apply_bit);
2255         return ret;
2256 }
2257 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2258
2259 /**
2260  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2261  *
2262  * @rdev: Regulator to operate on
2263  * @min_uV: Lower bound for voltage
2264  * @max_uV: Upper bound for voltage
2265  *
2266  * Drivers implementing set_voltage_sel() and list_voltage() can use
2267  * this as their map_voltage() operation.  It will find a suitable
2268  * voltage by calling list_voltage() until it gets something in bounds
2269  * for the requested voltages.
2270  */
2271 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2272                                   int min_uV, int max_uV)
2273 {
2274         int best_val = INT_MAX;
2275         int selector = 0;
2276         int i, ret;
2277
2278         /* Find the smallest voltage that falls within the specified
2279          * range.
2280          */
2281         for (i = 0; i < rdev->desc->n_voltages; i++) {
2282                 ret = rdev->desc->ops->list_voltage(rdev, i);
2283                 if (ret < 0)
2284                         continue;
2285
2286                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2287                         best_val = ret;
2288                         selector = i;
2289                 }
2290         }
2291
2292         if (best_val != INT_MAX)
2293                 return selector;
2294         else
2295                 return -EINVAL;
2296 }
2297 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2298
2299 /**
2300  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2301  *
2302  * @rdev: Regulator to operate on
2303  * @min_uV: Lower bound for voltage
2304  * @max_uV: Upper bound for voltage
2305  *
2306  * Drivers that have ascendant voltage list can use this as their
2307  * map_voltage() operation.
2308  */
2309 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2310                                  int min_uV, int max_uV)
2311 {
2312         int i, ret;
2313
2314         for (i = 0; i < rdev->desc->n_voltages; i++) {
2315                 ret = rdev->desc->ops->list_voltage(rdev, i);
2316                 if (ret < 0)
2317                         continue;
2318
2319                 if (ret > max_uV)
2320                         break;
2321
2322                 if (ret >= min_uV && ret <= max_uV)
2323                         return i;
2324         }
2325
2326         return -EINVAL;
2327 }
2328 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2329
2330 /**
2331  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2332  *
2333  * @rdev: Regulator to operate on
2334  * @min_uV: Lower bound for voltage
2335  * @max_uV: Upper bound for voltage
2336  *
2337  * Drivers providing min_uV and uV_step in their regulator_desc can
2338  * use this as their map_voltage() operation.
2339  */
2340 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2341                                  int min_uV, int max_uV)
2342 {
2343         int ret, voltage;
2344
2345         /* Allow uV_step to be 0 for fixed voltage */
2346         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2347                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2348                         return 0;
2349                 else
2350                         return -EINVAL;
2351         }
2352
2353         if (!rdev->desc->uV_step) {
2354                 BUG_ON(!rdev->desc->uV_step);
2355                 return -EINVAL;
2356         }
2357
2358         if (min_uV < rdev->desc->min_uV)
2359                 min_uV = rdev->desc->min_uV;
2360
2361         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2362         if (ret < 0)
2363                 return ret;
2364
2365         ret += rdev->desc->linear_min_sel;
2366
2367         /* Map back into a voltage to verify we're still in bounds */
2368         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2369         if (voltage < min_uV || voltage > max_uV)
2370                 return -EINVAL;
2371
2372         return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2375
2376 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2377                                      int min_uV, int max_uV)
2378 {
2379         int ret;
2380         int delay = 0;
2381         int best_val = 0;
2382         unsigned int selector;
2383         int old_selector = -1;
2384
2385         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2386
2387         min_uV += rdev->constraints->uV_offset;
2388         max_uV += rdev->constraints->uV_offset;
2389
2390         /*
2391          * If we can't obtain the old selector there is not enough
2392          * info to call set_voltage_time_sel().
2393          */
2394         if (_regulator_is_enabled(rdev) &&
2395             rdev->desc->ops->set_voltage_time_sel &&
2396             rdev->desc->ops->get_voltage_sel) {
2397                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2398                 if (old_selector < 0)
2399                         return old_selector;
2400         }
2401
2402         if (rdev->desc->ops->set_voltage) {
2403                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2404                                                    &selector);
2405
2406                 if (ret >= 0) {
2407                         if (rdev->desc->ops->list_voltage)
2408                                 best_val = rdev->desc->ops->list_voltage(rdev,
2409                                                                          selector);
2410                         else
2411                                 best_val = _regulator_get_voltage(rdev);
2412                 }
2413
2414         } else if (rdev->desc->ops->set_voltage_sel) {
2415                 if (rdev->desc->ops->map_voltage) {
2416                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2417                                                            max_uV);
2418                 } else {
2419                         if (rdev->desc->ops->list_voltage ==
2420                             regulator_list_voltage_linear)
2421                                 ret = regulator_map_voltage_linear(rdev,
2422                                                                 min_uV, max_uV);
2423                         else
2424                                 ret = regulator_map_voltage_iterate(rdev,
2425                                                                 min_uV, max_uV);
2426                 }
2427
2428                 if (ret >= 0) {
2429                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2430                         if (min_uV <= best_val && max_uV >= best_val) {
2431                                 selector = ret;
2432                                 if (old_selector == selector)
2433                                         ret = 0;
2434                                 else
2435                                         ret = rdev->desc->ops->set_voltage_sel(
2436                                                                 rdev, ret);
2437                         } else {
2438                                 ret = -EINVAL;
2439                         }
2440                 }
2441         } else {
2442                 ret = -EINVAL;
2443         }
2444
2445         /* Call set_voltage_time_sel if successfully obtained old_selector */
2446         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2447             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2448
2449                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2450                                                 old_selector, selector);
2451                 if (delay < 0) {
2452                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2453                                   delay);
2454                         delay = 0;
2455                 }
2456
2457                 /* Insert any necessary delays */
2458                 if (delay >= 1000) {
2459                         mdelay(delay / 1000);
2460                         udelay(delay % 1000);
2461                 } else if (delay) {
2462                         udelay(delay);
2463                 }
2464         }
2465
2466         if (ret == 0 && best_val >= 0) {
2467                 unsigned long data = best_val;
2468
2469                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2470                                      (void *)data);
2471         }
2472
2473         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2474
2475         return ret;
2476 }
2477
2478 /**
2479  * regulator_set_voltage - set regulator output voltage
2480  * @regulator: regulator source
2481  * @min_uV: Minimum required voltage in uV
2482  * @max_uV: Maximum acceptable voltage in uV
2483  *
2484  * Sets a voltage regulator to the desired output voltage. This can be set
2485  * during any regulator state. IOW, regulator can be disabled or enabled.
2486  *
2487  * If the regulator is enabled then the voltage will change to the new value
2488  * immediately otherwise if the regulator is disabled the regulator will
2489  * output at the new voltage when enabled.
2490  *
2491  * NOTE: If the regulator is shared between several devices then the lowest
2492  * request voltage that meets the system constraints will be used.
2493  * Regulator system constraints must be set for this regulator before
2494  * calling this function otherwise this call will fail.
2495  */
2496 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2497 {
2498         struct regulator_dev *rdev = regulator->rdev;
2499         int ret = 0;
2500         int old_min_uV, old_max_uV;
2501
2502         mutex_lock(&rdev->mutex);
2503
2504         /* If we're setting the same range as last time the change
2505          * should be a noop (some cpufreq implementations use the same
2506          * voltage for multiple frequencies, for example).
2507          */
2508         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2509                 goto out;
2510
2511         /* sanity check */
2512         if (!rdev->desc->ops->set_voltage &&
2513             !rdev->desc->ops->set_voltage_sel) {
2514                 ret = -EINVAL;
2515                 goto out;
2516         }
2517
2518         /* constraints check */
2519         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2520         if (ret < 0)
2521                 goto out;
2522         
2523         /* restore original values in case of error */
2524         old_min_uV = regulator->min_uV;
2525         old_max_uV = regulator->max_uV;
2526         regulator->min_uV = min_uV;
2527         regulator->max_uV = max_uV;
2528
2529         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2530         if (ret < 0)
2531                 goto out2;
2532
2533         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2534         if (ret < 0)
2535                 goto out2;
2536         
2537 out:
2538         mutex_unlock(&rdev->mutex);
2539         return ret;
2540 out2:
2541         regulator->min_uV = old_min_uV;
2542         regulator->max_uV = old_max_uV;
2543         mutex_unlock(&rdev->mutex);
2544         return ret;
2545 }
2546 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2547
2548 /**
2549  * regulator_set_voltage_time - get raise/fall time
2550  * @regulator: regulator source
2551  * @old_uV: starting voltage in microvolts
2552  * @new_uV: target voltage in microvolts
2553  *
2554  * Provided with the starting and ending voltage, this function attempts to
2555  * calculate the time in microseconds required to rise or fall to this new
2556  * voltage.
2557  */
2558 int regulator_set_voltage_time(struct regulator *regulator,
2559                                int old_uV, int new_uV)
2560 {
2561         struct regulator_dev    *rdev = regulator->rdev;
2562         struct regulator_ops    *ops = rdev->desc->ops;
2563         int old_sel = -1;
2564         int new_sel = -1;
2565         int voltage;
2566         int i;
2567
2568         /* Currently requires operations to do this */
2569         if (!ops->list_voltage || !ops->set_voltage_time_sel
2570             || !rdev->desc->n_voltages)
2571                 return -EINVAL;
2572
2573         for (i = 0; i < rdev->desc->n_voltages; i++) {
2574                 /* We only look for exact voltage matches here */
2575                 voltage = regulator_list_voltage(regulator, i);
2576                 if (voltage < 0)
2577                         return -EINVAL;
2578                 if (voltage == 0)
2579                         continue;
2580                 if (voltage == old_uV)
2581                         old_sel = i;
2582                 if (voltage == new_uV)
2583                         new_sel = i;
2584         }
2585
2586         if (old_sel < 0 || new_sel < 0)
2587                 return -EINVAL;
2588
2589         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2590 }
2591 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2592
2593 /**
2594  * regulator_set_voltage_time_sel - get raise/fall time
2595  * @rdev: regulator source device
2596  * @old_selector: selector for starting voltage
2597  * @new_selector: selector for target voltage
2598  *
2599  * Provided with the starting and target voltage selectors, this function
2600  * returns time in microseconds required to rise or fall to this new voltage
2601  *
2602  * Drivers providing ramp_delay in regulation_constraints can use this as their
2603  * set_voltage_time_sel() operation.
2604  */
2605 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2606                                    unsigned int old_selector,
2607                                    unsigned int new_selector)
2608 {
2609         unsigned int ramp_delay = 0;
2610         int old_volt, new_volt;
2611
2612         if (rdev->constraints->ramp_delay)
2613                 ramp_delay = rdev->constraints->ramp_delay;
2614         else if (rdev->desc->ramp_delay)
2615                 ramp_delay = rdev->desc->ramp_delay;
2616
2617         if (ramp_delay == 0) {
2618                 rdev_warn(rdev, "ramp_delay not set\n");
2619                 return 0;
2620         }
2621
2622         /* sanity check */
2623         if (!rdev->desc->ops->list_voltage)
2624                 return -EINVAL;
2625
2626         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2627         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2628
2629         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2630 }
2631 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2632
2633 /**
2634  * regulator_sync_voltage - re-apply last regulator output voltage
2635  * @regulator: regulator source
2636  *
2637  * Re-apply the last configured voltage.  This is intended to be used
2638  * where some external control source the consumer is cooperating with
2639  * has caused the configured voltage to change.
2640  */
2641 int regulator_sync_voltage(struct regulator *regulator)
2642 {
2643         struct regulator_dev *rdev = regulator->rdev;
2644         int ret, min_uV, max_uV;
2645
2646         mutex_lock(&rdev->mutex);
2647
2648         if (!rdev->desc->ops->set_voltage &&
2649             !rdev->desc->ops->set_voltage_sel) {
2650                 ret = -EINVAL;
2651                 goto out;
2652         }
2653
2654         /* This is only going to work if we've had a voltage configured. */
2655         if (!regulator->min_uV && !regulator->max_uV) {
2656                 ret = -EINVAL;
2657                 goto out;
2658         }
2659
2660         min_uV = regulator->min_uV;
2661         max_uV = regulator->max_uV;
2662
2663         /* This should be a paranoia check... */
2664         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2665         if (ret < 0)
2666                 goto out;
2667
2668         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2669         if (ret < 0)
2670                 goto out;
2671
2672         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2673
2674 out:
2675         mutex_unlock(&rdev->mutex);
2676         return ret;
2677 }
2678 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2679
2680 static int _regulator_get_voltage(struct regulator_dev *rdev)
2681 {
2682         int sel, ret;
2683
2684         if (rdev->desc->ops->get_voltage_sel) {
2685                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2686                 if (sel < 0)
2687                         return sel;
2688                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2689         } else if (rdev->desc->ops->get_voltage) {
2690                 ret = rdev->desc->ops->get_voltage(rdev);
2691         } else if (rdev->desc->ops->list_voltage) {
2692                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2693         } else {
2694                 return -EINVAL;
2695         }
2696
2697         if (ret < 0)
2698                 return ret;
2699         return ret - rdev->constraints->uV_offset;
2700 }
2701
2702 /**
2703  * regulator_get_voltage - get regulator output voltage
2704  * @regulator: regulator source
2705  *
2706  * This returns the current regulator voltage in uV.
2707  *
2708  * NOTE: If the regulator is disabled it will return the voltage value. This
2709  * function should not be used to determine regulator state.
2710  */
2711 int regulator_get_voltage(struct regulator *regulator)
2712 {
2713         int ret;
2714
2715         mutex_lock(&regulator->rdev->mutex);
2716
2717         ret = _regulator_get_voltage(regulator->rdev);
2718
2719         mutex_unlock(&regulator->rdev->mutex);
2720
2721         return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2724
2725 /**
2726  * regulator_set_current_limit - set regulator output current limit
2727  * @regulator: regulator source
2728  * @min_uA: Minimum supported current in uA
2729  * @max_uA: Maximum supported current in uA
2730  *
2731  * Sets current sink to the desired output current. This can be set during
2732  * any regulator state. IOW, regulator can be disabled or enabled.
2733  *
2734  * If the regulator is enabled then the current will change to the new value
2735  * immediately otherwise if the regulator is disabled the regulator will
2736  * output at the new current when enabled.
2737  *
2738  * NOTE: Regulator system constraints must be set for this regulator before
2739  * calling this function otherwise this call will fail.
2740  */
2741 int regulator_set_current_limit(struct regulator *regulator,
2742                                int min_uA, int max_uA)
2743 {
2744         struct regulator_dev *rdev = regulator->rdev;
2745         int ret;
2746
2747         mutex_lock(&rdev->mutex);
2748
2749         /* sanity check */
2750         if (!rdev->desc->ops->set_current_limit) {
2751                 ret = -EINVAL;
2752                 goto out;
2753         }
2754
2755         /* constraints check */
2756         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2757         if (ret < 0)
2758                 goto out;
2759
2760         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2761 out:
2762         mutex_unlock(&rdev->mutex);
2763         return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2766
2767 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2768 {
2769         int ret;
2770
2771         mutex_lock(&rdev->mutex);
2772
2773         /* sanity check */
2774         if (!rdev->desc->ops->get_current_limit) {
2775                 ret = -EINVAL;
2776                 goto out;
2777         }
2778
2779         ret = rdev->desc->ops->get_current_limit(rdev);
2780 out:
2781         mutex_unlock(&rdev->mutex);
2782         return ret;
2783 }
2784
2785 /**
2786  * regulator_get_current_limit - get regulator output current
2787  * @regulator: regulator source
2788  *
2789  * This returns the current supplied by the specified current sink in uA.
2790  *
2791  * NOTE: If the regulator is disabled it will return the current value. This
2792  * function should not be used to determine regulator state.
2793  */
2794 int regulator_get_current_limit(struct regulator *regulator)
2795 {
2796         return _regulator_get_current_limit(regulator->rdev);
2797 }
2798 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2799
2800 /**
2801  * regulator_set_mode - set regulator operating mode
2802  * @regulator: regulator source
2803  * @mode: operating mode - one of the REGULATOR_MODE constants
2804  *
2805  * Set regulator operating mode to increase regulator efficiency or improve
2806  * regulation performance.
2807  *
2808  * NOTE: Regulator system constraints must be set for this regulator before
2809  * calling this function otherwise this call will fail.
2810  */
2811 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2812 {
2813         struct regulator_dev *rdev = regulator->rdev;
2814         int ret;
2815         int regulator_curr_mode;
2816
2817         mutex_lock(&rdev->mutex);
2818
2819         /* sanity check */
2820         if (!rdev->desc->ops->set_mode) {
2821                 ret = -EINVAL;
2822                 goto out;
2823         }
2824
2825         /* return if the same mode is requested */
2826         if (rdev->desc->ops->get_mode) {
2827                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2828                 if (regulator_curr_mode == mode) {
2829                         ret = 0;
2830                         goto out;
2831                 }
2832         }
2833
2834         /* constraints check */
2835         ret = regulator_mode_constrain(rdev, &mode);
2836         if (ret < 0)
2837                 goto out;
2838
2839         ret = rdev->desc->ops->set_mode(rdev, mode);
2840 out:
2841         mutex_unlock(&rdev->mutex);
2842         return ret;
2843 }
2844 EXPORT_SYMBOL_GPL(regulator_set_mode);
2845
2846 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2847 {
2848         int ret;
2849
2850         mutex_lock(&rdev->mutex);
2851
2852         /* sanity check */
2853         if (!rdev->desc->ops->get_mode) {
2854                 ret = -EINVAL;
2855                 goto out;
2856         }
2857
2858         ret = rdev->desc->ops->get_mode(rdev);
2859 out:
2860         mutex_unlock(&rdev->mutex);
2861         return ret;
2862 }
2863
2864 /**
2865  * regulator_get_mode - get regulator operating mode
2866  * @regulator: regulator source
2867  *
2868  * Get the current regulator operating mode.
2869  */
2870 unsigned int regulator_get_mode(struct regulator *regulator)
2871 {
2872         return _regulator_get_mode(regulator->rdev);
2873 }
2874 EXPORT_SYMBOL_GPL(regulator_get_mode);
2875
2876 /**
2877  * regulator_set_optimum_mode - set regulator optimum operating mode
2878  * @regulator: regulator source
2879  * @uA_load: load current
2880  *
2881  * Notifies the regulator core of a new device load. This is then used by
2882  * DRMS (if enabled by constraints) to set the most efficient regulator
2883  * operating mode for the new regulator loading.
2884  *
2885  * Consumer devices notify their supply regulator of the maximum power
2886  * they will require (can be taken from device datasheet in the power
2887  * consumption tables) when they change operational status and hence power
2888  * state. Examples of operational state changes that can affect power
2889  * consumption are :-
2890  *
2891  *    o Device is opened / closed.
2892  *    o Device I/O is about to begin or has just finished.
2893  *    o Device is idling in between work.
2894  *
2895  * This information is also exported via sysfs to userspace.
2896  *
2897  * DRMS will sum the total requested load on the regulator and change
2898  * to the most efficient operating mode if platform constraints allow.
2899  *
2900  * Returns the new regulator mode or error.
2901  */
2902 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2903 {
2904         struct regulator_dev *rdev = regulator->rdev;
2905         struct regulator *consumer;
2906         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2907         unsigned int mode;
2908
2909         if (rdev->supply)
2910                 input_uV = regulator_get_voltage(rdev->supply);
2911
2912         mutex_lock(&rdev->mutex);
2913
2914         /*
2915          * first check to see if we can set modes at all, otherwise just
2916          * tell the consumer everything is OK.
2917          */
2918         regulator->uA_load = uA_load;
2919         ret = regulator_check_drms(rdev);
2920         if (ret < 0) {
2921                 ret = 0;
2922                 goto out;
2923         }
2924
2925         if (!rdev->desc->ops->get_optimum_mode)
2926                 goto out;
2927
2928         /*
2929          * we can actually do this so any errors are indicators of
2930          * potential real failure.
2931          */
2932         ret = -EINVAL;
2933
2934         if (!rdev->desc->ops->set_mode)
2935                 goto out;
2936
2937         /* get output voltage */
2938         output_uV = _regulator_get_voltage(rdev);
2939         if (output_uV <= 0) {
2940                 rdev_err(rdev, "invalid output voltage found\n");
2941                 goto out;
2942         }
2943
2944         /* No supply? Use constraint voltage */
2945         if (input_uV <= 0)
2946                 input_uV = rdev->constraints->input_uV;
2947         if (input_uV <= 0) {
2948                 rdev_err(rdev, "invalid input voltage found\n");
2949                 goto out;
2950         }
2951
2952         /* calc total requested load for this regulator */
2953         list_for_each_entry(consumer, &rdev->consumer_list, list)
2954                 total_uA_load += consumer->uA_load;
2955
2956         mode = rdev->desc->ops->get_optimum_mode(rdev,
2957                                                  input_uV, output_uV,
2958                                                  total_uA_load);
2959         ret = regulator_mode_constrain(rdev, &mode);
2960         if (ret < 0) {
2961                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2962                          total_uA_load, input_uV, output_uV);
2963                 goto out;
2964         }
2965
2966         ret = rdev->desc->ops->set_mode(rdev, mode);
2967         if (ret < 0) {
2968                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2969                 goto out;
2970         }
2971         ret = mode;
2972 out:
2973         mutex_unlock(&rdev->mutex);
2974         return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2977
2978 /**
2979  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2980  *
2981  * @rdev: device to operate on.
2982  * @enable: state to set.
2983  */
2984 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2985 {
2986         unsigned int val;
2987
2988         if (enable)
2989                 val = rdev->desc->bypass_mask;
2990         else
2991                 val = 0;
2992
2993         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2994                                   rdev->desc->bypass_mask, val);
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2997
2998 /**
2999  * regulator_get_bypass_regmap - Default get_bypass() using regmap
3000  *
3001  * @rdev: device to operate on.
3002  * @enable: current state.
3003  */
3004 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
3005 {
3006         unsigned int val;
3007         int ret;
3008
3009         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
3010         if (ret != 0)
3011                 return ret;
3012
3013         *enable = val & rdev->desc->bypass_mask;
3014
3015         return 0;
3016 }
3017 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3018
3019 /**
3020  * regulator_allow_bypass - allow the regulator to go into bypass mode
3021  *
3022  * @regulator: Regulator to configure
3023  * @enable: enable or disable bypass mode
3024  *
3025  * Allow the regulator to go into bypass mode if all other consumers
3026  * for the regulator also enable bypass mode and the machine
3027  * constraints allow this.  Bypass mode means that the regulator is
3028  * simply passing the input directly to the output with no regulation.
3029  */
3030 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3031 {
3032         struct regulator_dev *rdev = regulator->rdev;
3033         int ret = 0;
3034
3035         if (!rdev->desc->ops->set_bypass)
3036                 return 0;
3037
3038         if (rdev->constraints &&
3039             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3040                 return 0;
3041
3042         mutex_lock(&rdev->mutex);
3043
3044         if (enable && !regulator->bypass) {
3045                 rdev->bypass_count++;
3046
3047                 if (rdev->bypass_count == rdev->open_count) {
3048                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3049                         if (ret != 0)
3050                                 rdev->bypass_count--;
3051                 }
3052
3053         } else if (!enable && regulator->bypass) {
3054                 rdev->bypass_count--;
3055
3056                 if (rdev->bypass_count != rdev->open_count) {
3057                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3058                         if (ret != 0)
3059                                 rdev->bypass_count++;
3060                 }
3061         }
3062
3063         if (ret == 0)
3064                 regulator->bypass = enable;
3065
3066         mutex_unlock(&rdev->mutex);
3067
3068         return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3071
3072 /**
3073  * regulator_register_notifier - register regulator event notifier
3074  * @regulator: regulator source
3075  * @nb: notifier block
3076  *
3077  * Register notifier block to receive regulator events.
3078  */
3079 int regulator_register_notifier(struct regulator *regulator,
3080                               struct notifier_block *nb)
3081 {
3082         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3083                                                 nb);
3084 }
3085 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3086
3087 /**
3088  * regulator_unregister_notifier - unregister regulator event notifier
3089  * @regulator: regulator source
3090  * @nb: notifier block
3091  *
3092  * Unregister regulator event notifier block.
3093  */
3094 int regulator_unregister_notifier(struct regulator *regulator,
3095                                 struct notifier_block *nb)
3096 {
3097         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3098                                                   nb);
3099 }
3100 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3101
3102 /* notify regulator consumers and downstream regulator consumers.
3103  * Note mutex must be held by caller.
3104  */
3105 static void _notifier_call_chain(struct regulator_dev *rdev,
3106                                   unsigned long event, void *data)
3107 {
3108         /* call rdev chain first */
3109         blocking_notifier_call_chain(&rdev->notifier, event, data);
3110 }
3111
3112 /**
3113  * regulator_bulk_get - get multiple regulator consumers
3114  *
3115  * @dev:           Device to supply
3116  * @num_consumers: Number of consumers to register
3117  * @consumers:     Configuration of consumers; clients are stored here.
3118  *
3119  * @return 0 on success, an errno on failure.
3120  *
3121  * This helper function allows drivers to get several regulator
3122  * consumers in one operation.  If any of the regulators cannot be
3123  * acquired then any regulators that were allocated will be freed
3124  * before returning to the caller.
3125  */
3126 int regulator_bulk_get(struct device *dev, int num_consumers,
3127                        struct regulator_bulk_data *consumers)
3128 {
3129         int i;
3130         int ret;
3131
3132         for (i = 0; i < num_consumers; i++)
3133                 consumers[i].consumer = NULL;
3134
3135         for (i = 0; i < num_consumers; i++) {
3136                 consumers[i].consumer = regulator_get(dev,
3137                                                       consumers[i].supply);
3138                 if (IS_ERR(consumers[i].consumer)) {
3139                         ret = PTR_ERR(consumers[i].consumer);
3140                         dev_err(dev, "Failed to get supply '%s': %d\n",
3141                                 consumers[i].supply, ret);
3142                         consumers[i].consumer = NULL;
3143                         goto err;
3144                 }
3145         }
3146
3147         return 0;
3148
3149 err:
3150         while (--i >= 0)
3151                 regulator_put(consumers[i].consumer);
3152
3153         return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3156
3157 /**
3158  * devm_regulator_bulk_get - managed get multiple regulator consumers
3159  *
3160  * @dev:           Device to supply
3161  * @num_consumers: Number of consumers to register
3162  * @consumers:     Configuration of consumers; clients are stored here.
3163  *
3164  * @return 0 on success, an errno on failure.
3165  *
3166  * This helper function allows drivers to get several regulator
3167  * consumers in one operation with management, the regulators will
3168  * automatically be freed when the device is unbound.  If any of the
3169  * regulators cannot be acquired then any regulators that were
3170  * allocated will be freed before returning to the caller.
3171  */
3172 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3173                             struct regulator_bulk_data *consumers)
3174 {
3175         int i;
3176         int ret;
3177
3178         for (i = 0; i < num_consumers; i++)
3179                 consumers[i].consumer = NULL;
3180
3181         for (i = 0; i < num_consumers; i++) {
3182                 consumers[i].consumer = devm_regulator_get(dev,
3183                                                            consumers[i].supply);
3184                 if (IS_ERR(consumers[i].consumer)) {
3185                         ret = PTR_ERR(consumers[i].consumer);
3186                         dev_err(dev, "Failed to get supply '%s': %d\n",
3187                                 consumers[i].supply, ret);
3188                         consumers[i].consumer = NULL;
3189                         goto err;
3190                 }
3191         }
3192
3193         return 0;
3194
3195 err:
3196         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3197                 devm_regulator_put(consumers[i].consumer);
3198
3199         return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3202
3203 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3204 {
3205         struct regulator_bulk_data *bulk = data;
3206
3207         bulk->ret = regulator_enable(bulk->consumer);
3208 }
3209
3210 /**
3211  * regulator_bulk_enable - enable multiple regulator consumers
3212  *
3213  * @num_consumers: Number of consumers
3214  * @consumers:     Consumer data; clients are stored here.
3215  * @return         0 on success, an errno on failure
3216  *
3217  * This convenience API allows consumers to enable multiple regulator
3218  * clients in a single API call.  If any consumers cannot be enabled
3219  * then any others that were enabled will be disabled again prior to
3220  * return.
3221  */
3222 int regulator_bulk_enable(int num_consumers,
3223                           struct regulator_bulk_data *consumers)
3224 {
3225         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3226         int i;
3227         int ret = 0;
3228
3229         for (i = 0; i < num_consumers; i++) {
3230                 if (consumers[i].consumer->always_on)
3231                         consumers[i].ret = 0;
3232                 else
3233                         async_schedule_domain(regulator_bulk_enable_async,
3234                                               &consumers[i], &async_domain);
3235         }
3236
3237         async_synchronize_full_domain(&async_domain);
3238
3239         /* If any consumer failed we need to unwind any that succeeded */
3240         for (i = 0; i < num_consumers; i++) {
3241                 if (consumers[i].ret != 0) {
3242                         ret = consumers[i].ret;
3243                         goto err;
3244                 }
3245         }
3246
3247         return 0;
3248
3249 err:
3250         for (i = 0; i < num_consumers; i++) {
3251                 if (consumers[i].ret < 0)
3252                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3253                                consumers[i].ret);
3254                 else
3255                         regulator_disable(consumers[i].consumer);
3256         }
3257
3258         return ret;
3259 }
3260 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3261
3262 /**
3263  * regulator_bulk_disable - disable multiple regulator consumers
3264  *
3265  * @num_consumers: Number of consumers
3266  * @consumers:     Consumer data; clients are stored here.
3267  * @return         0 on success, an errno on failure
3268  *
3269  * This convenience API allows consumers to disable multiple regulator
3270  * clients in a single API call.  If any consumers cannot be disabled
3271  * then any others that were disabled will be enabled again prior to
3272  * return.
3273  */
3274 int regulator_bulk_disable(int num_consumers,
3275                            struct regulator_bulk_data *consumers)
3276 {
3277         int i;
3278         int ret, r;
3279
3280         for (i = num_consumers - 1; i >= 0; --i) {
3281                 ret = regulator_disable(consumers[i].consumer);
3282                 if (ret != 0)
3283                         goto err;
3284         }
3285
3286         return 0;
3287
3288 err:
3289         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3290         for (++i; i < num_consumers; ++i) {
3291                 r = regulator_enable(consumers[i].consumer);
3292                 if (r != 0)
3293                         pr_err("Failed to reename %s: %d\n",
3294                                consumers[i].supply, r);
3295         }
3296
3297         return ret;
3298 }
3299 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3300
3301 /**
3302  * regulator_bulk_force_disable - force disable multiple regulator consumers
3303  *
3304  * @num_consumers: Number of consumers
3305  * @consumers:     Consumer data; clients are stored here.
3306  * @return         0 on success, an errno on failure
3307  *
3308  * This convenience API allows consumers to forcibly disable multiple regulator
3309  * clients in a single API call.
3310  * NOTE: This should be used for situations when device damage will
3311  * likely occur if the regulators are not disabled (e.g. over temp).
3312  * Although regulator_force_disable function call for some consumers can
3313  * return error numbers, the function is called for all consumers.
3314  */
3315 int regulator_bulk_force_disable(int num_consumers,
3316                            struct regulator_bulk_data *consumers)
3317 {
3318         int i;
3319         int ret;
3320
3321         for (i = 0; i < num_consumers; i++)
3322                 consumers[i].ret =
3323                             regulator_force_disable(consumers[i].consumer);
3324
3325         for (i = 0; i < num_consumers; i++) {
3326                 if (consumers[i].ret != 0) {
3327                         ret = consumers[i].ret;
3328                         goto out;
3329                 }
3330         }
3331
3332         return 0;
3333 out:
3334         return ret;
3335 }
3336 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3337
3338 /**
3339  * regulator_bulk_free - free multiple regulator consumers
3340  *
3341  * @num_consumers: Number of consumers
3342  * @consumers:     Consumer data; clients are stored here.
3343  *
3344  * This convenience API allows consumers to free multiple regulator
3345  * clients in a single API call.
3346  */
3347 void regulator_bulk_free(int num_consumers,
3348                          struct regulator_bulk_data *consumers)
3349 {
3350         int i;
3351
3352         for (i = 0; i < num_consumers; i++) {
3353                 regulator_put(consumers[i].consumer);
3354                 consumers[i].consumer = NULL;
3355         }
3356 }
3357 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3358
3359 /**
3360  * regulator_notifier_call_chain - call regulator event notifier
3361  * @rdev: regulator source
3362  * @event: notifier block
3363  * @data: callback-specific data.
3364  *
3365  * Called by regulator drivers to notify clients a regulator event has
3366  * occurred. We also notify regulator clients downstream.
3367  * Note lock must be held by caller.
3368  */
3369 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3370                                   unsigned long event, void *data)
3371 {
3372         _notifier_call_chain(rdev, event, data);
3373         return NOTIFY_DONE;
3374
3375 }
3376 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3377
3378 /**
3379  * regulator_mode_to_status - convert a regulator mode into a status
3380  *
3381  * @mode: Mode to convert
3382  *
3383  * Convert a regulator mode into a status.
3384  */
3385 int regulator_mode_to_status(unsigned int mode)
3386 {
3387         switch (mode) {
3388         case REGULATOR_MODE_FAST:
3389                 return REGULATOR_STATUS_FAST;
3390         case REGULATOR_MODE_NORMAL:
3391                 return REGULATOR_STATUS_NORMAL;
3392         case REGULATOR_MODE_IDLE:
3393                 return REGULATOR_STATUS_IDLE;
3394         case REGULATOR_MODE_STANDBY:
3395                 return REGULATOR_STATUS_STANDBY;
3396         default:
3397                 return REGULATOR_STATUS_UNDEFINED;
3398         }
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3401
3402 /*
3403  * To avoid cluttering sysfs (and memory) with useless state, only
3404  * create attributes that can be meaningfully displayed.
3405  */
3406 static int add_regulator_attributes(struct regulator_dev *rdev)
3407 {
3408         struct device           *dev = &rdev->dev;
3409         struct regulator_ops    *ops = rdev->desc->ops;
3410         int                     status = 0;
3411
3412         /* some attributes need specific methods to be displayed */
3413         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3414             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3415             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3416                 status = device_create_file(dev, &dev_attr_microvolts);
3417                 if (status < 0)
3418                         return status;
3419         }
3420         if (ops->get_current_limit) {
3421                 status = device_create_file(dev, &dev_attr_microamps);
3422                 if (status < 0)
3423                         return status;
3424         }
3425         if (ops->get_mode) {
3426                 status = device_create_file(dev, &dev_attr_opmode);
3427                 if (status < 0)
3428                         return status;
3429         }
3430         if (rdev->ena_pin || ops->is_enabled) {
3431                 status = device_create_file(dev, &dev_attr_state);
3432                 if (status < 0)
3433                         return status;
3434         }
3435         if (ops->get_status) {
3436                 status = device_create_file(dev, &dev_attr_status);
3437                 if (status < 0)
3438                         return status;
3439         }
3440         if (ops->get_bypass) {
3441                 status = device_create_file(dev, &dev_attr_bypass);
3442                 if (status < 0)
3443                         return status;
3444         }
3445
3446         /* some attributes are type-specific */
3447         if (rdev->desc->type == REGULATOR_CURRENT) {
3448                 status = device_create_file(dev, &dev_attr_requested_microamps);
3449                 if (status < 0)
3450                         return status;
3451         }
3452
3453         /* all the other attributes exist to support constraints;
3454          * don't show them if there are no constraints, or if the
3455          * relevant supporting methods are missing.
3456          */
3457         if (!rdev->constraints)
3458                 return status;
3459
3460         /* constraints need specific supporting methods */
3461         if (ops->set_voltage || ops->set_voltage_sel) {
3462                 status = device_create_file(dev, &dev_attr_min_microvolts);
3463                 if (status < 0)
3464                         return status;
3465                 status = device_create_file(dev, &dev_attr_max_microvolts);
3466                 if (status < 0)
3467                         return status;
3468         }
3469         if (ops->set_current_limit) {
3470                 status = device_create_file(dev, &dev_attr_min_microamps);
3471                 if (status < 0)
3472                         return status;
3473                 status = device_create_file(dev, &dev_attr_max_microamps);
3474                 if (status < 0)
3475                         return status;
3476         }
3477
3478         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3479         if (status < 0)
3480                 return status;
3481         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3482         if (status < 0)
3483                 return status;
3484         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3485         if (status < 0)
3486                 return status;
3487
3488         if (ops->set_suspend_voltage) {
3489                 status = device_create_file(dev,
3490                                 &dev_attr_suspend_standby_microvolts);
3491                 if (status < 0)
3492                         return status;
3493                 status = device_create_file(dev,
3494                                 &dev_attr_suspend_mem_microvolts);
3495                 if (status < 0)
3496                         return status;
3497                 status = device_create_file(dev,
3498                                 &dev_attr_suspend_disk_microvolts);
3499                 if (status < 0)
3500                         return status;
3501         }
3502
3503         if (ops->set_suspend_mode) {
3504                 status = device_create_file(dev,
3505                                 &dev_attr_suspend_standby_mode);
3506                 if (status < 0)
3507                         return status;
3508                 status = device_create_file(dev,
3509                                 &dev_attr_suspend_mem_mode);
3510                 if (status < 0)
3511                         return status;
3512                 status = device_create_file(dev,
3513                                 &dev_attr_suspend_disk_mode);
3514                 if (status < 0)
3515                         return status;
3516         }
3517
3518         return status;
3519 }
3520
3521 static void rdev_init_debugfs(struct regulator_dev *rdev)
3522 {
3523         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3524         if (!rdev->debugfs) {
3525                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3526                 return;
3527         }
3528
3529         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3530                            &rdev->use_count);
3531         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3532                            &rdev->open_count);
3533         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3534                            &rdev->bypass_count);
3535 }
3536
3537 /**
3538  * regulator_register - register regulator
3539  * @regulator_desc: regulator to register
3540  * @config: runtime configuration for regulator
3541  *
3542  * Called by regulator drivers to register a regulator.
3543  * Returns a valid pointer to struct regulator_dev on success
3544  * or an ERR_PTR() on error.
3545  */
3546 struct regulator_dev *
3547 regulator_register(const struct regulator_desc *regulator_desc,
3548                    const struct regulator_config *config)
3549 {
3550         const struct regulation_constraints *constraints = NULL;
3551         const struct regulator_init_data *init_data;
3552         static atomic_t regulator_no = ATOMIC_INIT(0);
3553         struct regulator_dev *rdev;
3554         struct device *dev;
3555         int ret, i;
3556         const char *supply = NULL;
3557
3558         if (regulator_desc == NULL || config == NULL)
3559                 return ERR_PTR(-EINVAL);
3560
3561         dev = config->dev;
3562         WARN_ON(!dev);
3563
3564         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3565                 return ERR_PTR(-EINVAL);
3566
3567         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3568             regulator_desc->type != REGULATOR_CURRENT)
3569                 return ERR_PTR(-EINVAL);
3570
3571         /* Only one of each should be implemented */
3572         WARN_ON(regulator_desc->ops->get_voltage &&
3573                 regulator_desc->ops->get_voltage_sel);
3574         WARN_ON(regulator_desc->ops->set_voltage &&
3575                 regulator_desc->ops->set_voltage_sel);
3576
3577         /* If we're using selectors we must implement list_voltage. */
3578         if (regulator_desc->ops->get_voltage_sel &&
3579             !regulator_desc->ops->list_voltage) {
3580                 return ERR_PTR(-EINVAL);
3581         }
3582         if (regulator_desc->ops->set_voltage_sel &&
3583             !regulator_desc->ops->list_voltage) {
3584                 return ERR_PTR(-EINVAL);
3585         }
3586
3587         init_data = config->init_data;
3588
3589         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3590         if (rdev == NULL)
3591                 return ERR_PTR(-ENOMEM);
3592
3593         mutex_lock(&regulator_list_mutex);
3594
3595         mutex_init(&rdev->mutex);
3596         rdev->reg_data = config->driver_data;
3597         rdev->owner = regulator_desc->owner;
3598         rdev->desc = regulator_desc;
3599         if (config->regmap)
3600                 rdev->regmap = config->regmap;
3601         else if (dev_get_regmap(dev, NULL))
3602                 rdev->regmap = dev_get_regmap(dev, NULL);
3603         else if (dev->parent)
3604                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3605         INIT_LIST_HEAD(&rdev->consumer_list);
3606         INIT_LIST_HEAD(&rdev->list);
3607         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3608         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3609
3610         /* preform any regulator specific init */
3611         if (init_data && init_data->regulator_init) {
3612                 ret = init_data->regulator_init(rdev->reg_data);
3613                 if (ret < 0)
3614                         goto clean;
3615         }
3616
3617         /* register with sysfs */
3618         rdev->dev.class = &regulator_class;
3619         rdev->dev.of_node = config->of_node;
3620         rdev->dev.parent = dev;
3621         dev_set_name(&rdev->dev, "regulator.%d",
3622                      atomic_inc_return(&regulator_no) - 1);
3623         ret = device_register(&rdev->dev);
3624         if (ret != 0) {
3625                 put_device(&rdev->dev);
3626                 goto clean;
3627         }
3628
3629         dev_set_drvdata(&rdev->dev, rdev);
3630
3631         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3632                 ret = regulator_ena_gpio_request(rdev, config);
3633                 if (ret != 0) {
3634                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3635                                  config->ena_gpio, ret);
3636                         goto wash;
3637                 }
3638
3639                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3640                         rdev->ena_gpio_state = 1;
3641
3642                 if (config->ena_gpio_invert)
3643                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3644         }
3645
3646         /* set regulator constraints */
3647         if (init_data)
3648                 constraints = &init_data->constraints;
3649
3650         ret = set_machine_constraints(rdev, constraints);
3651         if (ret < 0)
3652                 goto scrub;
3653
3654         /* add attributes supported by this regulator */
3655         ret = add_regulator_attributes(rdev);
3656         if (ret < 0)
3657                 goto scrub;
3658
3659         if (init_data && init_data->supply_regulator)
3660                 supply = init_data->supply_regulator;
3661         else if (regulator_desc->supply_name)
3662                 supply = regulator_desc->supply_name;
3663
3664         if (supply) {
3665                 struct regulator_dev *r;
3666
3667                 r = regulator_dev_lookup(dev, supply, &ret);
3668
3669                 if (ret == -ENODEV) {
3670                         /*
3671                          * No supply was specified for this regulator and
3672                          * there will never be one.
3673                          */
3674                         ret = 0;
3675                         goto add_dev;
3676                 } else if (!r) {
3677                         dev_err(dev, "Failed to find supply %s\n", supply);
3678                         ret = -EPROBE_DEFER;
3679                         goto scrub;
3680                 }
3681
3682                 ret = set_supply(rdev, r);
3683                 if (ret < 0)
3684                         goto scrub;
3685
3686                 /* Enable supply if rail is enabled */
3687                 if (_regulator_is_enabled(rdev)) {
3688                         ret = regulator_enable(rdev->supply);
3689                         if (ret < 0)
3690                                 goto scrub;
3691                 }
3692         }
3693
3694 add_dev:
3695         /* add consumers devices */
3696         if (init_data) {
3697                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3698                         ret = set_consumer_device_supply(rdev,
3699                                 init_data->consumer_supplies[i].dev_name,
3700                                 init_data->consumer_supplies[i].supply);
3701                         if (ret < 0) {
3702                                 dev_err(dev, "Failed to set supply %s\n",
3703                                         init_data->consumer_supplies[i].supply);
3704                                 goto unset_supplies;
3705                         }
3706                 }
3707         }
3708
3709         list_add(&rdev->list, &regulator_list);
3710
3711         rdev_init_debugfs(rdev);
3712 out:
3713         mutex_unlock(&regulator_list_mutex);
3714         return rdev;
3715
3716 unset_supplies:
3717         unset_regulator_supplies(rdev);
3718
3719 scrub:
3720         if (rdev->supply)
3721                 _regulator_put(rdev->supply);
3722         regulator_ena_gpio_free(rdev);
3723         kfree(rdev->constraints);
3724 wash:
3725         device_unregister(&rdev->dev);
3726         /* device core frees rdev */
3727         rdev = ERR_PTR(ret);
3728         goto out;
3729
3730 clean:
3731         kfree(rdev);
3732         rdev = ERR_PTR(ret);
3733         goto out;
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_register);
3736
3737 /**
3738  * regulator_unregister - unregister regulator
3739  * @rdev: regulator to unregister
3740  *
3741  * Called by regulator drivers to unregister a regulator.
3742  */
3743 void regulator_unregister(struct regulator_dev *rdev)
3744 {
3745         if (rdev == NULL)
3746                 return;
3747
3748         if (rdev->supply) {
3749                 while (rdev->use_count--)
3750                         regulator_disable(rdev->supply);
3751                 regulator_put(rdev->supply);
3752         }
3753         mutex_lock(&regulator_list_mutex);
3754         debugfs_remove_recursive(rdev->debugfs);
3755         flush_work(&rdev->disable_work.work);
3756         WARN_ON(rdev->open_count);
3757         unset_regulator_supplies(rdev);
3758         list_del(&rdev->list);
3759         kfree(rdev->constraints);
3760         regulator_ena_gpio_free(rdev);
3761         device_unregister(&rdev->dev);
3762         mutex_unlock(&regulator_list_mutex);
3763 }
3764 EXPORT_SYMBOL_GPL(regulator_unregister);
3765
3766 /**
3767  * regulator_suspend_prepare - prepare regulators for system wide suspend
3768  * @state: system suspend state
3769  *
3770  * Configure each regulator with it's suspend operating parameters for state.
3771  * This will usually be called by machine suspend code prior to supending.
3772  */
3773 int regulator_suspend_prepare(suspend_state_t state)
3774 {
3775         struct regulator_dev *rdev;
3776         int ret = 0;
3777
3778         /* ON is handled by regulator active state */
3779         if (state == PM_SUSPEND_ON)
3780                 return -EINVAL;
3781
3782         mutex_lock(&regulator_list_mutex);
3783         list_for_each_entry(rdev, &regulator_list, list) {
3784
3785                 mutex_lock(&rdev->mutex);
3786                 ret = suspend_prepare(rdev, state);
3787                 mutex_unlock(&rdev->mutex);
3788
3789                 if (ret < 0) {
3790                         rdev_err(rdev, "failed to prepare\n");
3791                         goto out;
3792                 }
3793         }
3794 out:
3795         mutex_unlock(&regulator_list_mutex);
3796         return ret;
3797 }
3798 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3799
3800 /**
3801  * regulator_suspend_finish - resume regulators from system wide suspend
3802  *
3803  * Turn on regulators that might be turned off by regulator_suspend_prepare
3804  * and that should be turned on according to the regulators properties.
3805  */
3806 int regulator_suspend_finish(void)
3807 {
3808         struct regulator_dev *rdev;
3809         int ret = 0, error;
3810
3811         mutex_lock(&regulator_list_mutex);
3812         list_for_each_entry(rdev, &regulator_list, list) {
3813                 struct regulator_ops *ops = rdev->desc->ops;
3814
3815                 mutex_lock(&rdev->mutex);
3816                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3817                                 ops->enable) {
3818                         error = ops->enable(rdev);
3819                         if (error)
3820                                 ret = error;
3821                 } else {
3822                         if (!has_full_constraints)
3823                                 goto unlock;
3824                         if (!ops->disable)
3825                                 goto unlock;
3826                         if (!_regulator_is_enabled(rdev))
3827                                 goto unlock;
3828
3829                         error = ops->disable(rdev);
3830                         if (error)
3831                                 ret = error;
3832                 }
3833 unlock:
3834                 mutex_unlock(&rdev->mutex);
3835         }
3836         mutex_unlock(&regulator_list_mutex);
3837         return ret;
3838 }
3839 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3840
3841 /**
3842  * regulator_has_full_constraints - the system has fully specified constraints
3843  *
3844  * Calling this function will cause the regulator API to disable all
3845  * regulators which have a zero use count and don't have an always_on
3846  * constraint in a late_initcall.
3847  *
3848  * The intention is that this will become the default behaviour in a
3849  * future kernel release so users are encouraged to use this facility
3850  * now.
3851  */
3852 void regulator_has_full_constraints(void)
3853 {
3854         has_full_constraints = 1;
3855 }
3856 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3857
3858 /**
3859  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3860  *
3861  * Calling this function will cause the regulator API to provide a
3862  * dummy regulator to consumers if no physical regulator is found,
3863  * allowing most consumers to proceed as though a regulator were
3864  * configured.  This allows systems such as those with software
3865  * controllable regulators for the CPU core only to be brought up more
3866  * readily.
3867  */
3868 void regulator_use_dummy_regulator(void)
3869 {
3870         board_wants_dummy_regulator = true;
3871 }
3872 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3873
3874 /**
3875  * rdev_get_drvdata - get rdev regulator driver data
3876  * @rdev: regulator
3877  *
3878  * Get rdev regulator driver private data. This call can be used in the
3879  * regulator driver context.
3880  */
3881 void *rdev_get_drvdata(struct regulator_dev *rdev)
3882 {
3883         return rdev->reg_data;
3884 }
3885 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3886
3887 /**
3888  * regulator_get_drvdata - get regulator driver data
3889  * @regulator: regulator
3890  *
3891  * Get regulator driver private data. This call can be used in the consumer
3892  * driver context when non API regulator specific functions need to be called.
3893  */
3894 void *regulator_get_drvdata(struct regulator *regulator)
3895 {
3896         return regulator->rdev->reg_data;
3897 }
3898 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3899
3900 /**
3901  * regulator_set_drvdata - set regulator driver data
3902  * @regulator: regulator
3903  * @data: data
3904  */
3905 void regulator_set_drvdata(struct regulator *regulator, void *data)
3906 {
3907         regulator->rdev->reg_data = data;
3908 }
3909 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3910
3911 /**
3912  * regulator_get_id - get regulator ID
3913  * @rdev: regulator
3914  */
3915 int rdev_get_id(struct regulator_dev *rdev)
3916 {
3917         return rdev->desc->id;
3918 }
3919 EXPORT_SYMBOL_GPL(rdev_get_id);
3920
3921 struct device *rdev_get_dev(struct regulator_dev *rdev)
3922 {
3923         return &rdev->dev;
3924 }
3925 EXPORT_SYMBOL_GPL(rdev_get_dev);
3926
3927 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3928 {
3929         return reg_init_data->driver_data;
3930 }
3931 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3932
3933 #ifdef CONFIG_DEBUG_FS
3934 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3935                                     size_t count, loff_t *ppos)
3936 {
3937         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3938         ssize_t len, ret = 0;
3939         struct regulator_map *map;
3940
3941         if (!buf)
3942                 return -ENOMEM;
3943
3944         list_for_each_entry(map, &regulator_map_list, list) {
3945                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3946                                "%s -> %s.%s\n",
3947                                rdev_get_name(map->regulator), map->dev_name,
3948                                map->supply);
3949                 if (len >= 0)
3950                         ret += len;
3951                 if (ret > PAGE_SIZE) {
3952                         ret = PAGE_SIZE;
3953                         break;
3954                 }
3955         }
3956
3957         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3958
3959         kfree(buf);
3960
3961         return ret;
3962 }
3963 #endif
3964
3965 static const struct file_operations supply_map_fops = {
3966 #ifdef CONFIG_DEBUG_FS
3967         .read = supply_map_read_file,
3968         .llseek = default_llseek,
3969 #endif
3970 };
3971
3972 static int __init regulator_init(void)
3973 {
3974         int ret;
3975
3976         ret = class_register(&regulator_class);
3977
3978         debugfs_root = debugfs_create_dir("regulator", NULL);
3979         if (!debugfs_root)
3980                 pr_warn("regulator: Failed to create debugfs directory\n");
3981
3982         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3983                             &supply_map_fops);
3984
3985         regulator_dummy_init();
3986
3987         return ret;
3988 }
3989
3990 /* init early to allow our consumers to complete system booting */
3991 core_initcall(regulator_init);
3992
3993 static int __init regulator_init_complete(void)
3994 {
3995         struct regulator_dev *rdev;
3996         struct regulator_ops *ops;
3997         struct regulation_constraints *c;
3998         int enabled, ret;
3999
4000         /*
4001          * Since DT doesn't provide an idiomatic mechanism for
4002          * enabling full constraints and since it's much more natural
4003          * with DT to provide them just assume that a DT enabled
4004          * system has full constraints.
4005          */
4006         if (of_have_populated_dt())
4007                 has_full_constraints = true;
4008
4009         mutex_lock(&regulator_list_mutex);
4010
4011         /* If we have a full configuration then disable any regulators
4012          * which are not in use or always_on.  This will become the
4013          * default behaviour in the future.
4014          */
4015         list_for_each_entry(rdev, &regulator_list, list) {
4016                 ops = rdev->desc->ops;
4017                 c = rdev->constraints;
4018
4019                 if (!ops->disable || (c && c->always_on))
4020                         continue;
4021
4022                 mutex_lock(&rdev->mutex);
4023
4024                 if (rdev->use_count)
4025                         goto unlock;
4026
4027                 /* If we can't read the status assume it's on. */
4028                 if (ops->is_enabled)
4029                         enabled = ops->is_enabled(rdev);
4030                 else
4031                         enabled = 1;
4032
4033                 if (!enabled)
4034                         goto unlock;
4035
4036                 if (has_full_constraints) {
4037                         /* We log since this may kill the system if it
4038                          * goes wrong. */
4039                         rdev_info(rdev, "disabling\n");
4040                         ret = ops->disable(rdev);
4041                         if (ret != 0) {
4042                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4043                         }
4044                 } else {
4045                         /* The intention is that in future we will
4046                          * assume that full constraints are provided
4047                          * so warn even if we aren't going to do
4048                          * anything here.
4049                          */
4050                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4051                 }
4052
4053 unlock:
4054                 mutex_unlock(&rdev->mutex);
4055         }
4056
4057         mutex_unlock(&regulator_list_mutex);
4058
4059         return 0;
4060 }
4061 late_initcall(regulator_init_complete);