Merge branch 'v3.10/topic/configs' of git://git.linaro.org/kernel/linux-linaro-stable...
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327                              struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336         switch (mode) {
337         case REGULATOR_MODE_FAST:
338                 return sprintf(buf, "fast\n");
339         case REGULATOR_MODE_NORMAL:
340                 return sprintf(buf, "normal\n");
341         case REGULATOR_MODE_IDLE:
342                 return sprintf(buf, "idle\n");
343         case REGULATOR_MODE_STANDBY:
344                 return sprintf(buf, "standby\n");
345         }
346         return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350                                     struct device_attribute *attr, char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360         if (state > 0)
361                 return sprintf(buf, "enabled\n");
362         else if (state == 0)
363                 return sprintf(buf, "disabled\n");
364         else
365                 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         ssize_t ret;
373
374         mutex_lock(&rdev->mutex);
375         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376         mutex_unlock(&rdev->mutex);
377
378         return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383                                    struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         int status;
387         char *label;
388
389         status = rdev->desc->ops->get_status(rdev);
390         if (status < 0)
391                 return status;
392
393         switch (status) {
394         case REGULATOR_STATUS_OFF:
395                 label = "off";
396                 break;
397         case REGULATOR_STATUS_ON:
398                 label = "on";
399                 break;
400         case REGULATOR_STATUS_ERROR:
401                 label = "error";
402                 break;
403         case REGULATOR_STATUS_FAST:
404                 label = "fast";
405                 break;
406         case REGULATOR_STATUS_NORMAL:
407                 label = "normal";
408                 break;
409         case REGULATOR_STATUS_IDLE:
410                 label = "idle";
411                 break;
412         case REGULATOR_STATUS_STANDBY:
413                 label = "standby";
414                 break;
415         case REGULATOR_STATUS_BYPASS:
416                 label = "bypass";
417                 break;
418         case REGULATOR_STATUS_UNDEFINED:
419                 label = "undefined";
420                 break;
421         default:
422                 return -ERANGE;
423         }
424
425         return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430                                     struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434         if (!rdev->constraints)
435                 return sprintf(buf, "constraint not defined\n");
436
437         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442                                     struct device_attribute *attr, char *buf)
443 {
444         struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446         if (!rdev->constraints)
447                 return sprintf(buf, "constraint not defined\n");
448
449         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478                                       struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         struct regulator *regulator;
482         int uA = 0;
483
484         mutex_lock(&rdev->mutex);
485         list_for_each_entry(regulator, &rdev->consumer_list, list)
486                 uA += regulator->uA_load;
487         mutex_unlock(&rdev->mutex);
488         return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493                                       struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496         return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500                                   struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         switch (rdev->desc->type) {
505         case REGULATOR_VOLTAGE:
506                 return sprintf(buf, "voltage\n");
507         case REGULATOR_CURRENT:
508                 return sprintf(buf, "current\n");
509         }
510         return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514                                 struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521                 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531                 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541                 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return regulator_print_opmode(buf,
549                 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552                 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555                                 struct device_attribute *attr, char *buf)
556 {
557         struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559         return regulator_print_opmode(buf,
560                 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563                 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566                                 struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         return regulator_print_opmode(buf,
571                 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574                 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577                                    struct device_attribute *attr, char *buf)
578 {
579         struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581         return regulator_print_state(buf,
582                         rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585                 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588                                    struct device_attribute *attr, char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592         return regulator_print_state(buf,
593                         rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596                 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599                                    struct device_attribute *attr, char *buf)
600 {
601         struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603         return regulator_print_state(buf,
604                         rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607                 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610                                      struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613         const char *report;
614         bool bypass;
615         int ret;
616
617         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619         if (ret != 0)
620                 report = "unknown";
621         else if (bypass)
622                 report = "enabled";
623         else
624                 report = "disabled";
625
626         return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629                    regulator_bypass_show, NULL);
630
631 /*
632  * These are the only attributes are present for all regulators.
633  * Other attributes are a function of regulator functionality.
634  */
635 static struct device_attribute regulator_dev_attrs[] = {
636         __ATTR(name, 0444, regulator_name_show, NULL),
637         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638         __ATTR(type, 0444, regulator_type_show, NULL),
639         __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644         struct regulator_dev *rdev = dev_get_drvdata(dev);
645         kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649         .name = "regulator",
650         .dev_release = regulator_dev_release,
651         .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655  * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658         struct regulator *sibling;
659         int current_uA = 0, output_uV, input_uV, err;
660         unsigned int mode;
661
662         err = regulator_check_drms(rdev);
663         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664             (!rdev->desc->ops->get_voltage &&
665              !rdev->desc->ops->get_voltage_sel) ||
666             !rdev->desc->ops->set_mode)
667                 return;
668
669         /* get output voltage */
670         output_uV = _regulator_get_voltage(rdev);
671         if (output_uV <= 0)
672                 return;
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0)
681                 return;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         /* now get the optimum mode for our new total regulator load */
688         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                   output_uV, current_uA);
690
691         /* check the new mode is allowed */
692         err = regulator_mode_constrain(rdev, &mode);
693         if (err == 0)
694                 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698         struct regulator_state *rstate)
699 {
700         int ret = 0;
701
702         /* If we have no suspend mode configration don't set anything;
703          * only warn if the driver implements set_suspend_voltage or
704          * set_suspend_mode callback.
705          */
706         if (!rstate->enabled && !rstate->disabled) {
707                 if (rdev->desc->ops->set_suspend_voltage ||
708                     rdev->desc->ops->set_suspend_mode)
709                         rdev_warn(rdev, "No configuration\n");
710                 return 0;
711         }
712
713         if (rstate->enabled && rstate->disabled) {
714                 rdev_err(rdev, "invalid configuration\n");
715                 return -EINVAL;
716         }
717
718         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719                 ret = rdev->desc->ops->set_suspend_enable(rdev);
720         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721                 ret = rdev->desc->ops->set_suspend_disable(rdev);
722         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723                 ret = 0;
724
725         if (ret < 0) {
726                 rdev_err(rdev, "failed to enabled/disable\n");
727                 return ret;
728         }
729
730         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732                 if (ret < 0) {
733                         rdev_err(rdev, "failed to set voltage\n");
734                         return ret;
735                 }
736         }
737
738         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740                 if (ret < 0) {
741                         rdev_err(rdev, "failed to set mode\n");
742                         return ret;
743                 }
744         }
745         return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751         if (!rdev->constraints)
752                 return -EINVAL;
753
754         switch (state) {
755         case PM_SUSPEND_STANDBY:
756                 return suspend_set_state(rdev,
757                         &rdev->constraints->state_standby);
758         case PM_SUSPEND_MEM:
759                 return suspend_set_state(rdev,
760                         &rdev->constraints->state_mem);
761         case PM_SUSPEND_MAX:
762                 return suspend_set_state(rdev,
763                         &rdev->constraints->state_disk);
764         default:
765                 return -EINVAL;
766         }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771         struct regulation_constraints *constraints = rdev->constraints;
772         char buf[80] = "";
773         int count = 0;
774         int ret;
775
776         if (constraints->min_uV && constraints->max_uV) {
777                 if (constraints->min_uV == constraints->max_uV)
778                         count += sprintf(buf + count, "%d mV ",
779                                          constraints->min_uV / 1000);
780                 else
781                         count += sprintf(buf + count, "%d <--> %d mV ",
782                                          constraints->min_uV / 1000,
783                                          constraints->max_uV / 1000);
784         }
785
786         if (!constraints->min_uV ||
787             constraints->min_uV != constraints->max_uV) {
788                 ret = _regulator_get_voltage(rdev);
789                 if (ret > 0)
790                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
791         }
792
793         if (constraints->uV_offset)
794                 count += sprintf(buf, "%dmV offset ",
795                                  constraints->uV_offset / 1000);
796
797         if (constraints->min_uA && constraints->max_uA) {
798                 if (constraints->min_uA == constraints->max_uA)
799                         count += sprintf(buf + count, "%d mA ",
800                                          constraints->min_uA / 1000);
801                 else
802                         count += sprintf(buf + count, "%d <--> %d mA ",
803                                          constraints->min_uA / 1000,
804                                          constraints->max_uA / 1000);
805         }
806
807         if (!constraints->min_uA ||
808             constraints->min_uA != constraints->max_uA) {
809                 ret = _regulator_get_current_limit(rdev);
810                 if (ret > 0)
811                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
812         }
813
814         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815                 count += sprintf(buf + count, "fast ");
816         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817                 count += sprintf(buf + count, "normal ");
818         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819                 count += sprintf(buf + count, "idle ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821                 count += sprintf(buf + count, "standby");
822
823         if (!count)
824                 sprintf(buf, "no parameters");
825
826         rdev_info(rdev, "%s\n", buf);
827
828         if ((constraints->min_uV != constraints->max_uV) &&
829             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830                 rdev_warn(rdev,
831                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835         struct regulation_constraints *constraints)
836 {
837         struct regulator_ops *ops = rdev->desc->ops;
838         int ret;
839
840         /* do we need to apply the constraint voltage */
841         if (rdev->constraints->apply_uV &&
842             rdev->constraints->min_uV == rdev->constraints->max_uV) {
843                 ret = _regulator_do_set_voltage(rdev,
844                                                 rdev->constraints->min_uV,
845                                                 rdev->constraints->max_uV);
846                 if (ret < 0) {
847                         rdev_err(rdev, "failed to apply %duV constraint\n",
848                                  rdev->constraints->min_uV);
849                         return ret;
850                 }
851         }
852
853         /* constrain machine-level voltage specs to fit
854          * the actual range supported by this regulator.
855          */
856         if (ops->list_voltage && rdev->desc->n_voltages) {
857                 int     count = rdev->desc->n_voltages;
858                 int     i;
859                 int     min_uV = INT_MAX;
860                 int     max_uV = INT_MIN;
861                 int     cmin = constraints->min_uV;
862                 int     cmax = constraints->max_uV;
863
864                 /* it's safe to autoconfigure fixed-voltage supplies
865                    and the constraints are used by list_voltage. */
866                 if (count == 1 && !cmin) {
867                         cmin = 1;
868                         cmax = INT_MAX;
869                         constraints->min_uV = cmin;
870                         constraints->max_uV = cmax;
871                 }
872
873                 /* voltage constraints are optional */
874                 if ((cmin == 0) && (cmax == 0))
875                         return 0;
876
877                 /* else require explicit machine-level constraints */
878                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879                         rdev_err(rdev, "invalid voltage constraints\n");
880                         return -EINVAL;
881                 }
882
883                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884                 for (i = 0; i < count; i++) {
885                         int     value;
886
887                         value = ops->list_voltage(rdev, i);
888                         if (value <= 0)
889                                 continue;
890
891                         /* maybe adjust [min_uV..max_uV] */
892                         if (value >= cmin && value < min_uV)
893                                 min_uV = value;
894                         if (value <= cmax && value > max_uV)
895                                 max_uV = value;
896                 }
897
898                 /* final: [min_uV..max_uV] valid iff constraints valid */
899                 if (max_uV < min_uV) {
900                         rdev_err(rdev,
901                                  "unsupportable voltage constraints %u-%uuV\n",
902                                  min_uV, max_uV);
903                         return -EINVAL;
904                 }
905
906                 /* use regulator's subset of machine constraints */
907                 if (constraints->min_uV < min_uV) {
908                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909                                  constraints->min_uV, min_uV);
910                         constraints->min_uV = min_uV;
911                 }
912                 if (constraints->max_uV > max_uV) {
913                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914                                  constraints->max_uV, max_uV);
915                         constraints->max_uV = max_uV;
916                 }
917         }
918
919         return 0;
920 }
921
922 static int _regulator_do_enable(struct regulator_dev *rdev);
923
924 /**
925  * set_machine_constraints - sets regulator constraints
926  * @rdev: regulator source
927  * @constraints: constraints to apply
928  *
929  * Allows platform initialisation code to define and constrain
930  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
931  * Constraints *must* be set by platform code in order for some
932  * regulator operations to proceed i.e. set_voltage, set_current_limit,
933  * set_mode.
934  */
935 static int set_machine_constraints(struct regulator_dev *rdev,
936         const struct regulation_constraints *constraints)
937 {
938         int ret = 0;
939         struct regulator_ops *ops = rdev->desc->ops;
940
941         if (constraints)
942                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
943                                             GFP_KERNEL);
944         else
945                 rdev->constraints = kzalloc(sizeof(*constraints),
946                                             GFP_KERNEL);
947         if (!rdev->constraints)
948                 return -ENOMEM;
949
950         ret = machine_constraints_voltage(rdev, rdev->constraints);
951         if (ret != 0)
952                 goto out;
953
954         /* do we need to setup our suspend state */
955         if (rdev->constraints->initial_state) {
956                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
957                 if (ret < 0) {
958                         rdev_err(rdev, "failed to set suspend state\n");
959                         goto out;
960                 }
961         }
962
963         if (rdev->constraints->initial_mode) {
964                 if (!ops->set_mode) {
965                         rdev_err(rdev, "no set_mode operation\n");
966                         ret = -EINVAL;
967                         goto out;
968                 }
969
970                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
971                 if (ret < 0) {
972                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
973                         goto out;
974                 }
975         }
976
977         /* If the constraints say the regulator should be on at this point
978          * and we have control then make sure it is enabled.
979          */
980         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
981                 ret = _regulator_do_enable(rdev);
982                 if (ret < 0 && ret != -EINVAL) {
983                         rdev_err(rdev, "failed to enable\n");
984                         goto out;
985                 }
986         }
987
988         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
989                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
990                 if (ret < 0) {
991                         rdev_err(rdev, "failed to set ramp_delay\n");
992                         goto out;
993                 }
994         }
995
996         print_constraints(rdev);
997         return 0;
998 out:
999         kfree(rdev->constraints);
1000         rdev->constraints = NULL;
1001         return ret;
1002 }
1003
1004 /**
1005  * set_supply - set regulator supply regulator
1006  * @rdev: regulator name
1007  * @supply_rdev: supply regulator name
1008  *
1009  * Called by platform initialisation code to set the supply regulator for this
1010  * regulator. This ensures that a regulators supply will also be enabled by the
1011  * core if it's child is enabled.
1012  */
1013 static int set_supply(struct regulator_dev *rdev,
1014                       struct regulator_dev *supply_rdev)
1015 {
1016         int err;
1017
1018         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1019
1020         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1021         if (rdev->supply == NULL) {
1022                 err = -ENOMEM;
1023                 return err;
1024         }
1025         supply_rdev->open_count++;
1026
1027         return 0;
1028 }
1029
1030 /**
1031  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1032  * @rdev:         regulator source
1033  * @consumer_dev_name: dev_name() string for device supply applies to
1034  * @supply:       symbolic name for supply
1035  *
1036  * Allows platform initialisation code to map physical regulator
1037  * sources to symbolic names for supplies for use by devices.  Devices
1038  * should use these symbolic names to request regulators, avoiding the
1039  * need to provide board-specific regulator names as platform data.
1040  */
1041 static int set_consumer_device_supply(struct regulator_dev *rdev,
1042                                       const char *consumer_dev_name,
1043                                       const char *supply)
1044 {
1045         struct regulator_map *node;
1046         int has_dev;
1047
1048         if (supply == NULL)
1049                 return -EINVAL;
1050
1051         if (consumer_dev_name != NULL)
1052                 has_dev = 1;
1053         else
1054                 has_dev = 0;
1055
1056         list_for_each_entry(node, &regulator_map_list, list) {
1057                 if (node->dev_name && consumer_dev_name) {
1058                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1059                                 continue;
1060                 } else if (node->dev_name || consumer_dev_name) {
1061                         continue;
1062                 }
1063
1064                 if (strcmp(node->supply, supply) != 0)
1065                         continue;
1066
1067                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1068                          consumer_dev_name,
1069                          dev_name(&node->regulator->dev),
1070                          node->regulator->desc->name,
1071                          supply,
1072                          dev_name(&rdev->dev), rdev_get_name(rdev));
1073                 return -EBUSY;
1074         }
1075
1076         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1077         if (node == NULL)
1078                 return -ENOMEM;
1079
1080         node->regulator = rdev;
1081         node->supply = supply;
1082
1083         if (has_dev) {
1084                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1085                 if (node->dev_name == NULL) {
1086                         kfree(node);
1087                         return -ENOMEM;
1088                 }
1089         }
1090
1091         list_add(&node->list, &regulator_map_list);
1092         return 0;
1093 }
1094
1095 static void unset_regulator_supplies(struct regulator_dev *rdev)
1096 {
1097         struct regulator_map *node, *n;
1098
1099         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1100                 if (rdev == node->regulator) {
1101                         list_del(&node->list);
1102                         kfree(node->dev_name);
1103                         kfree(node);
1104                 }
1105         }
1106 }
1107
1108 #define REG_STR_SIZE    64
1109
1110 static struct regulator *create_regulator(struct regulator_dev *rdev,
1111                                           struct device *dev,
1112                                           const char *supply_name)
1113 {
1114         struct regulator *regulator;
1115         char buf[REG_STR_SIZE];
1116         int err, size;
1117
1118         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1119         if (regulator == NULL)
1120                 return NULL;
1121
1122         mutex_lock(&rdev->mutex);
1123         regulator->rdev = rdev;
1124         list_add(&regulator->list, &rdev->consumer_list);
1125
1126         if (dev) {
1127                 regulator->dev = dev;
1128
1129                 /* Add a link to the device sysfs entry */
1130                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131                                  dev->kobj.name, supply_name);
1132                 if (size >= REG_STR_SIZE)
1133                         goto overflow_err;
1134
1135                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136                 if (regulator->supply_name == NULL)
1137                         goto overflow_err;
1138
1139                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140                                         buf);
1141                 if (err) {
1142                         rdev_warn(rdev, "could not add device link %s err %d\n",
1143                                   dev->kobj.name, err);
1144                         /* non-fatal */
1145                 }
1146         } else {
1147                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148                 if (regulator->supply_name == NULL)
1149                         goto overflow_err;
1150         }
1151
1152         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153                                                 rdev->debugfs);
1154         if (!regulator->debugfs) {
1155                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1156         } else {
1157                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158                                    &regulator->uA_load);
1159                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160                                    &regulator->min_uV);
1161                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162                                    &regulator->max_uV);
1163         }
1164
1165         /*
1166          * Check now if the regulator is an always on regulator - if
1167          * it is then we don't need to do nearly so much work for
1168          * enable/disable calls.
1169          */
1170         if (!_regulator_can_change_status(rdev) &&
1171             _regulator_is_enabled(rdev))
1172                 regulator->always_on = true;
1173
1174         mutex_unlock(&rdev->mutex);
1175         return regulator;
1176 overflow_err:
1177         list_del(&regulator->list);
1178         kfree(regulator);
1179         mutex_unlock(&rdev->mutex);
1180         return NULL;
1181 }
1182
1183 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1184 {
1185         if (!rdev->desc->ops->enable_time)
1186                 return rdev->desc->enable_time;
1187         return rdev->desc->ops->enable_time(rdev);
1188 }
1189
1190 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1191                                                   const char *supply,
1192                                                   int *ret)
1193 {
1194         struct regulator_dev *r;
1195         struct device_node *node;
1196         struct regulator_map *map;
1197         const char *devname = NULL;
1198
1199         /* first do a dt based lookup */
1200         if (dev && dev->of_node) {
1201                 node = of_get_regulator(dev, supply);
1202                 if (node) {
1203                         list_for_each_entry(r, &regulator_list, list)
1204                                 if (r->dev.parent &&
1205                                         node == r->dev.of_node)
1206                                         return r;
1207                 } else {
1208                         /*
1209                          * If we couldn't even get the node then it's
1210                          * not just that the device didn't register
1211                          * yet, there's no node and we'll never
1212                          * succeed.
1213                          */
1214                         *ret = -ENODEV;
1215                 }
1216         }
1217
1218         /* if not found, try doing it non-dt way */
1219         if (dev)
1220                 devname = dev_name(dev);
1221
1222         list_for_each_entry(r, &regulator_list, list)
1223                 if (strcmp(rdev_get_name(r), supply) == 0)
1224                         return r;
1225
1226         list_for_each_entry(map, &regulator_map_list, list) {
1227                 /* If the mapping has a device set up it must match */
1228                 if (map->dev_name &&
1229                     (!devname || strcmp(map->dev_name, devname)))
1230                         continue;
1231
1232                 if (strcmp(map->supply, supply) == 0)
1233                         return map->regulator;
1234         }
1235
1236
1237         return NULL;
1238 }
1239
1240 /* Internal regulator request function */
1241 static struct regulator *_regulator_get(struct device *dev, const char *id,
1242                                         int exclusive)
1243 {
1244         struct regulator_dev *rdev;
1245         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1246         const char *devname = NULL;
1247         int ret = 0;
1248
1249         if (id == NULL) {
1250                 pr_err("get() with no identifier\n");
1251                 return regulator;
1252         }
1253
1254         if (dev)
1255                 devname = dev_name(dev);
1256
1257         mutex_lock(&regulator_list_mutex);
1258
1259         rdev = regulator_dev_lookup(dev, id, &ret);
1260         if (rdev)
1261                 goto found;
1262
1263         /*
1264          * If we have return value from dev_lookup fail, we do not expect to
1265          * succeed, so, quit with appropriate error value
1266          */
1267         if (ret) {
1268                 regulator = ERR_PTR(ret);
1269                 goto out;
1270         }
1271
1272         if (board_wants_dummy_regulator) {
1273                 rdev = dummy_regulator_rdev;
1274                 goto found;
1275         }
1276
1277 #ifdef CONFIG_REGULATOR_DUMMY
1278         if (!devname)
1279                 devname = "deviceless";
1280
1281         /* If the board didn't flag that it was fully constrained then
1282          * substitute in a dummy regulator so consumers can continue.
1283          */
1284         if (!has_full_constraints) {
1285                 pr_warn("%s supply %s not found, using dummy regulator\n",
1286                         devname, id);
1287                 rdev = dummy_regulator_rdev;
1288                 goto found;
1289         }
1290 #endif
1291
1292         mutex_unlock(&regulator_list_mutex);
1293         return regulator;
1294
1295 found:
1296         if (rdev->exclusive) {
1297                 regulator = ERR_PTR(-EPERM);
1298                 goto out;
1299         }
1300
1301         if (exclusive && rdev->open_count) {
1302                 regulator = ERR_PTR(-EBUSY);
1303                 goto out;
1304         }
1305
1306         if (!try_module_get(rdev->owner))
1307                 goto out;
1308
1309         regulator = create_regulator(rdev, dev, id);
1310         if (regulator == NULL) {
1311                 regulator = ERR_PTR(-ENOMEM);
1312                 module_put(rdev->owner);
1313                 goto out;
1314         }
1315
1316         rdev->open_count++;
1317         if (exclusive) {
1318                 rdev->exclusive = 1;
1319
1320                 ret = _regulator_is_enabled(rdev);
1321                 if (ret > 0)
1322                         rdev->use_count = 1;
1323                 else
1324                         rdev->use_count = 0;
1325         }
1326
1327 out:
1328         mutex_unlock(&regulator_list_mutex);
1329
1330         return regulator;
1331 }
1332
1333 /**
1334  * regulator_get - lookup and obtain a reference to a regulator.
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Returns a struct regulator corresponding to the regulator producer,
1339  * or IS_ERR() condition containing errno.
1340  *
1341  * Use of supply names configured via regulator_set_device_supply() is
1342  * strongly encouraged.  It is recommended that the supply name used
1343  * should match the name used for the supply and/or the relevant
1344  * device pins in the datasheet.
1345  */
1346 struct regulator *regulator_get(struct device *dev, const char *id)
1347 {
1348         return _regulator_get(dev, id, 0);
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_get);
1351
1352 static void devm_regulator_release(struct device *dev, void *res)
1353 {
1354         regulator_put(*(struct regulator **)res);
1355 }
1356
1357 /**
1358  * devm_regulator_get - Resource managed regulator_get()
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Managed regulator_get(). Regulators returned from this function are
1363  * automatically regulator_put() on driver detach. See regulator_get() for more
1364  * information.
1365  */
1366 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1367 {
1368         struct regulator **ptr, *regulator;
1369
1370         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1371         if (!ptr)
1372                 return ERR_PTR(-ENOMEM);
1373
1374         regulator = regulator_get(dev, id);
1375         if (!IS_ERR(regulator)) {
1376                 *ptr = regulator;
1377                 devres_add(dev, ptr);
1378         } else {
1379                 devres_free(ptr);
1380         }
1381
1382         return regulator;
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regulator_get);
1385
1386 /**
1387  * regulator_get_exclusive - obtain exclusive access to a regulator.
1388  * @dev: device for regulator "consumer"
1389  * @id: Supply name or regulator ID.
1390  *
1391  * Returns a struct regulator corresponding to the regulator producer,
1392  * or IS_ERR() condition containing errno.  Other consumers will be
1393  * unable to obtain this reference is held and the use count for the
1394  * regulator will be initialised to reflect the current state of the
1395  * regulator.
1396  *
1397  * This is intended for use by consumers which cannot tolerate shared
1398  * use of the regulator such as those which need to force the
1399  * regulator off for correct operation of the hardware they are
1400  * controlling.
1401  *
1402  * Use of supply names configured via regulator_set_device_supply() is
1403  * strongly encouraged.  It is recommended that the supply name used
1404  * should match the name used for the supply and/or the relevant
1405  * device pins in the datasheet.
1406  */
1407 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1408 {
1409         return _regulator_get(dev, id, 1);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1412
1413 /* Locks held by regulator_put() */
1414 static void _regulator_put(struct regulator *regulator)
1415 {
1416         struct regulator_dev *rdev;
1417
1418         if (regulator == NULL || IS_ERR(regulator))
1419                 return;
1420
1421         rdev = regulator->rdev;
1422
1423         debugfs_remove_recursive(regulator->debugfs);
1424
1425         /* remove any sysfs entries */
1426         if (regulator->dev)
1427                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1428         kfree(regulator->supply_name);
1429         list_del(&regulator->list);
1430         kfree(regulator);
1431
1432         rdev->open_count--;
1433         rdev->exclusive = 0;
1434
1435         module_put(rdev->owner);
1436 }
1437
1438 /**
1439  * regulator_put - "free" the regulator source
1440  * @regulator: regulator source
1441  *
1442  * Note: drivers must ensure that all regulator_enable calls made on this
1443  * regulator source are balanced by regulator_disable calls prior to calling
1444  * this function.
1445  */
1446 void regulator_put(struct regulator *regulator)
1447 {
1448         mutex_lock(&regulator_list_mutex);
1449         _regulator_put(regulator);
1450         mutex_unlock(&regulator_list_mutex);
1451 }
1452 EXPORT_SYMBOL_GPL(regulator_put);
1453
1454 static int devm_regulator_match(struct device *dev, void *res, void *data)
1455 {
1456         struct regulator **r = res;
1457         if (!r || !*r) {
1458                 WARN_ON(!r || !*r);
1459                 return 0;
1460         }
1461         return *r == data;
1462 }
1463
1464 /**
1465  * devm_regulator_put - Resource managed regulator_put()
1466  * @regulator: regulator to free
1467  *
1468  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1469  * this function will not need to be called and the resource management
1470  * code will ensure that the resource is freed.
1471  */
1472 void devm_regulator_put(struct regulator *regulator)
1473 {
1474         int rc;
1475
1476         rc = devres_release(regulator->dev, devm_regulator_release,
1477                             devm_regulator_match, regulator);
1478         if (rc != 0)
1479                 WARN_ON(rc);
1480 }
1481 EXPORT_SYMBOL_GPL(devm_regulator_put);
1482
1483 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1484 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1485                                 const struct regulator_config *config)
1486 {
1487         struct regulator_enable_gpio *pin;
1488         int ret;
1489
1490         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1491                 if (pin->gpio == config->ena_gpio) {
1492                         rdev_dbg(rdev, "GPIO %d is already used\n",
1493                                 config->ena_gpio);
1494                         goto update_ena_gpio_to_rdev;
1495                 }
1496         }
1497
1498         ret = gpio_request_one(config->ena_gpio,
1499                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1500                                 rdev_get_name(rdev));
1501         if (ret)
1502                 return ret;
1503
1504         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1505         if (pin == NULL) {
1506                 gpio_free(config->ena_gpio);
1507                 return -ENOMEM;
1508         }
1509
1510         pin->gpio = config->ena_gpio;
1511         pin->ena_gpio_invert = config->ena_gpio_invert;
1512         list_add(&pin->list, &regulator_ena_gpio_list);
1513
1514 update_ena_gpio_to_rdev:
1515         pin->request_count++;
1516         rdev->ena_pin = pin;
1517         return 0;
1518 }
1519
1520 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1521 {
1522         struct regulator_enable_gpio *pin, *n;
1523
1524         if (!rdev->ena_pin)
1525                 return;
1526
1527         /* Free the GPIO only in case of no use */
1528         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1529                 if (pin->gpio == rdev->ena_pin->gpio) {
1530                         if (pin->request_count <= 1) {
1531                                 pin->request_count = 0;
1532                                 gpio_free(pin->gpio);
1533                                 list_del(&pin->list);
1534                                 kfree(pin);
1535                         } else {
1536                                 pin->request_count--;
1537                         }
1538                 }
1539         }
1540 }
1541
1542 /**
1543  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1544  * @rdev: regulator_dev structure
1545  * @enable: enable GPIO at initial use?
1546  *
1547  * GPIO is enabled in case of initial use. (enable_count is 0)
1548  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1549  */
1550 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1551 {
1552         struct regulator_enable_gpio *pin = rdev->ena_pin;
1553
1554         if (!pin)
1555                 return -EINVAL;
1556
1557         if (enable) {
1558                 /* Enable GPIO at initial use */
1559                 if (pin->enable_count == 0)
1560                         gpio_set_value_cansleep(pin->gpio,
1561                                                 !pin->ena_gpio_invert);
1562
1563                 pin->enable_count++;
1564         } else {
1565                 if (pin->enable_count > 1) {
1566                         pin->enable_count--;
1567                         return 0;
1568                 }
1569
1570                 /* Disable GPIO if not used */
1571                 if (pin->enable_count <= 1) {
1572                         gpio_set_value_cansleep(pin->gpio,
1573                                                 pin->ena_gpio_invert);
1574                         pin->enable_count = 0;
1575                 }
1576         }
1577
1578         return 0;
1579 }
1580
1581 static int _regulator_do_enable(struct regulator_dev *rdev)
1582 {
1583         int ret, delay;
1584
1585         /* Query before enabling in case configuration dependent.  */
1586         ret = _regulator_get_enable_time(rdev);
1587         if (ret >= 0) {
1588                 delay = ret;
1589         } else {
1590                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1591                 delay = 0;
1592         }
1593
1594         trace_regulator_enable(rdev_get_name(rdev));
1595
1596         if (rdev->ena_pin) {
1597                 ret = regulator_ena_gpio_ctrl(rdev, true);
1598                 if (ret < 0)
1599                         return ret;
1600                 rdev->ena_gpio_state = 1;
1601         } else if (rdev->desc->ops->enable) {
1602                 ret = rdev->desc->ops->enable(rdev);
1603                 if (ret < 0)
1604                         return ret;
1605         } else {
1606                 return -EINVAL;
1607         }
1608
1609         /* Allow the regulator to ramp; it would be useful to extend
1610          * this for bulk operations so that the regulators can ramp
1611          * together.  */
1612         trace_regulator_enable_delay(rdev_get_name(rdev));
1613
1614         if (delay >= 1000) {
1615                 mdelay(delay / 1000);
1616                 udelay(delay % 1000);
1617         } else if (delay) {
1618                 udelay(delay);
1619         }
1620
1621         trace_regulator_enable_complete(rdev_get_name(rdev));
1622
1623         return 0;
1624 }
1625
1626 /* locks held by regulator_enable() */
1627 static int _regulator_enable(struct regulator_dev *rdev)
1628 {
1629         int ret;
1630
1631         /* check voltage and requested load before enabling */
1632         if (rdev->constraints &&
1633             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1634                 drms_uA_update(rdev);
1635
1636         if (rdev->use_count == 0) {
1637                 /* The regulator may on if it's not switchable or left on */
1638                 ret = _regulator_is_enabled(rdev);
1639                 if (ret == -EINVAL || ret == 0) {
1640                         if (!_regulator_can_change_status(rdev))
1641                                 return -EPERM;
1642
1643                         ret = _regulator_do_enable(rdev);
1644                         if (ret < 0)
1645                                 return ret;
1646
1647                 } else if (ret < 0) {
1648                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1649                         return ret;
1650                 }
1651                 /* Fallthrough on positive return values - already enabled */
1652         }
1653
1654         rdev->use_count++;
1655
1656         return 0;
1657 }
1658
1659 /**
1660  * regulator_enable - enable regulator output
1661  * @regulator: regulator source
1662  *
1663  * Request that the regulator be enabled with the regulator output at
1664  * the predefined voltage or current value.  Calls to regulator_enable()
1665  * must be balanced with calls to regulator_disable().
1666  *
1667  * NOTE: the output value can be set by other drivers, boot loader or may be
1668  * hardwired in the regulator.
1669  */
1670 int regulator_enable(struct regulator *regulator)
1671 {
1672         struct regulator_dev *rdev = regulator->rdev;
1673         int ret = 0;
1674
1675         if (regulator->always_on)
1676                 return 0;
1677
1678         if (rdev->supply) {
1679                 ret = regulator_enable(rdev->supply);
1680                 if (ret != 0)
1681                         return ret;
1682         }
1683
1684         mutex_lock(&rdev->mutex);
1685         ret = _regulator_enable(rdev);
1686         mutex_unlock(&rdev->mutex);
1687
1688         if (ret != 0 && rdev->supply)
1689                 regulator_disable(rdev->supply);
1690
1691         return ret;
1692 }
1693 EXPORT_SYMBOL_GPL(regulator_enable);
1694
1695 static int _regulator_do_disable(struct regulator_dev *rdev)
1696 {
1697         int ret;
1698
1699         trace_regulator_disable(rdev_get_name(rdev));
1700
1701         if (rdev->ena_pin) {
1702                 ret = regulator_ena_gpio_ctrl(rdev, false);
1703                 if (ret < 0)
1704                         return ret;
1705                 rdev->ena_gpio_state = 0;
1706
1707         } else if (rdev->desc->ops->disable) {
1708                 ret = rdev->desc->ops->disable(rdev);
1709                 if (ret != 0)
1710                         return ret;
1711         }
1712
1713         trace_regulator_disable_complete(rdev_get_name(rdev));
1714
1715         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1716                              NULL);
1717         return 0;
1718 }
1719
1720 /* locks held by regulator_disable() */
1721 static int _regulator_disable(struct regulator_dev *rdev)
1722 {
1723         int ret = 0;
1724
1725         if (WARN(rdev->use_count <= 0,
1726                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1727                 return -EIO;
1728
1729         /* are we the last user and permitted to disable ? */
1730         if (rdev->use_count == 1 &&
1731             (rdev->constraints && !rdev->constraints->always_on)) {
1732
1733                 /* we are last user */
1734                 if (_regulator_can_change_status(rdev)) {
1735                         ret = _regulator_do_disable(rdev);
1736                         if (ret < 0) {
1737                                 rdev_err(rdev, "failed to disable\n");
1738                                 return ret;
1739                         }
1740                 }
1741
1742                 rdev->use_count = 0;
1743         } else if (rdev->use_count > 1) {
1744
1745                 if (rdev->constraints &&
1746                         (rdev->constraints->valid_ops_mask &
1747                         REGULATOR_CHANGE_DRMS))
1748                         drms_uA_update(rdev);
1749
1750                 rdev->use_count--;
1751         }
1752
1753         return ret;
1754 }
1755
1756 /**
1757  * regulator_disable - disable regulator output
1758  * @regulator: regulator source
1759  *
1760  * Disable the regulator output voltage or current.  Calls to
1761  * regulator_enable() must be balanced with calls to
1762  * regulator_disable().
1763  *
1764  * NOTE: this will only disable the regulator output if no other consumer
1765  * devices have it enabled, the regulator device supports disabling and
1766  * machine constraints permit this operation.
1767  */
1768 int regulator_disable(struct regulator *regulator)
1769 {
1770         struct regulator_dev *rdev = regulator->rdev;
1771         int ret = 0;
1772
1773         if (regulator->always_on)
1774                 return 0;
1775
1776         mutex_lock(&rdev->mutex);
1777         ret = _regulator_disable(rdev);
1778         mutex_unlock(&rdev->mutex);
1779
1780         if (ret == 0 && rdev->supply)
1781                 regulator_disable(rdev->supply);
1782
1783         return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(regulator_disable);
1786
1787 /* locks held by regulator_force_disable() */
1788 static int _regulator_force_disable(struct regulator_dev *rdev)
1789 {
1790         int ret = 0;
1791
1792         /* force disable */
1793         if (rdev->desc->ops->disable) {
1794                 /* ah well, who wants to live forever... */
1795                 ret = rdev->desc->ops->disable(rdev);
1796                 if (ret < 0) {
1797                         rdev_err(rdev, "failed to force disable\n");
1798                         return ret;
1799                 }
1800                 /* notify other consumers that power has been forced off */
1801                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1802                         REGULATOR_EVENT_DISABLE, NULL);
1803         }
1804
1805         return ret;
1806 }
1807
1808 /**
1809  * regulator_force_disable - force disable regulator output
1810  * @regulator: regulator source
1811  *
1812  * Forcibly disable the regulator output voltage or current.
1813  * NOTE: this *will* disable the regulator output even if other consumer
1814  * devices have it enabled. This should be used for situations when device
1815  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1816  */
1817 int regulator_force_disable(struct regulator *regulator)
1818 {
1819         struct regulator_dev *rdev = regulator->rdev;
1820         int ret;
1821
1822         mutex_lock(&rdev->mutex);
1823         regulator->uA_load = 0;
1824         ret = _regulator_force_disable(regulator->rdev);
1825         mutex_unlock(&rdev->mutex);
1826
1827         if (rdev->supply)
1828                 while (rdev->open_count--)
1829                         regulator_disable(rdev->supply);
1830
1831         return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(regulator_force_disable);
1834
1835 static void regulator_disable_work(struct work_struct *work)
1836 {
1837         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1838                                                   disable_work.work);
1839         int count, i, ret;
1840
1841         mutex_lock(&rdev->mutex);
1842
1843         BUG_ON(!rdev->deferred_disables);
1844
1845         count = rdev->deferred_disables;
1846         rdev->deferred_disables = 0;
1847
1848         for (i = 0; i < count; i++) {
1849                 ret = _regulator_disable(rdev);
1850                 if (ret != 0)
1851                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1852         }
1853
1854         mutex_unlock(&rdev->mutex);
1855
1856         if (rdev->supply) {
1857                 for (i = 0; i < count; i++) {
1858                         ret = regulator_disable(rdev->supply);
1859                         if (ret != 0) {
1860                                 rdev_err(rdev,
1861                                          "Supply disable failed: %d\n", ret);
1862                         }
1863                 }
1864         }
1865 }
1866
1867 /**
1868  * regulator_disable_deferred - disable regulator output with delay
1869  * @regulator: regulator source
1870  * @ms: miliseconds until the regulator is disabled
1871  *
1872  * Execute regulator_disable() on the regulator after a delay.  This
1873  * is intended for use with devices that require some time to quiesce.
1874  *
1875  * NOTE: this will only disable the regulator output if no other consumer
1876  * devices have it enabled, the regulator device supports disabling and
1877  * machine constraints permit this operation.
1878  */
1879 int regulator_disable_deferred(struct regulator *regulator, int ms)
1880 {
1881         struct regulator_dev *rdev = regulator->rdev;
1882         int ret;
1883
1884         if (regulator->always_on)
1885                 return 0;
1886
1887         if (!ms)
1888                 return regulator_disable(regulator);
1889
1890         mutex_lock(&rdev->mutex);
1891         rdev->deferred_disables++;
1892         mutex_unlock(&rdev->mutex);
1893
1894         ret = queue_delayed_work(system_power_efficient_wq,
1895                                  &rdev->disable_work,
1896                                  msecs_to_jiffies(ms));
1897         if (ret < 0)
1898                 return ret;
1899         else
1900                 return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1903
1904 /**
1905  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1906  *
1907  * @rdev: regulator to operate on
1908  *
1909  * Regulators that use regmap for their register I/O can set the
1910  * enable_reg and enable_mask fields in their descriptor and then use
1911  * this as their is_enabled operation, saving some code.
1912  */
1913 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1914 {
1915         unsigned int val;
1916         int ret;
1917
1918         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1919         if (ret != 0)
1920                 return ret;
1921
1922         if (rdev->desc->enable_is_inverted)
1923                 return (val & rdev->desc->enable_mask) == 0;
1924         else
1925                 return (val & rdev->desc->enable_mask) != 0;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1928
1929 /**
1930  * regulator_enable_regmap - standard enable() for regmap users
1931  *
1932  * @rdev: regulator to operate on
1933  *
1934  * Regulators that use regmap for their register I/O can set the
1935  * enable_reg and enable_mask fields in their descriptor and then use
1936  * this as their enable() operation, saving some code.
1937  */
1938 int regulator_enable_regmap(struct regulator_dev *rdev)
1939 {
1940         unsigned int val;
1941
1942         if (rdev->desc->enable_is_inverted)
1943                 val = 0;
1944         else
1945                 val = rdev->desc->enable_mask;
1946
1947         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1948                                   rdev->desc->enable_mask, val);
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1951
1952 /**
1953  * regulator_disable_regmap - standard disable() for regmap users
1954  *
1955  * @rdev: regulator to operate on
1956  *
1957  * Regulators that use regmap for their register I/O can set the
1958  * enable_reg and enable_mask fields in their descriptor and then use
1959  * this as their disable() operation, saving some code.
1960  */
1961 int regulator_disable_regmap(struct regulator_dev *rdev)
1962 {
1963         unsigned int val;
1964
1965         if (rdev->desc->enable_is_inverted)
1966                 val = rdev->desc->enable_mask;
1967         else
1968                 val = 0;
1969
1970         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1971                                   rdev->desc->enable_mask, val);
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1974
1975 static int _regulator_is_enabled(struct regulator_dev *rdev)
1976 {
1977         /* A GPIO control always takes precedence */
1978         if (rdev->ena_pin)
1979                 return rdev->ena_gpio_state;
1980
1981         /* If we don't know then assume that the regulator is always on */
1982         if (!rdev->desc->ops->is_enabled)
1983                 return 1;
1984
1985         return rdev->desc->ops->is_enabled(rdev);
1986 }
1987
1988 /**
1989  * regulator_is_enabled - is the regulator output enabled
1990  * @regulator: regulator source
1991  *
1992  * Returns positive if the regulator driver backing the source/client
1993  * has requested that the device be enabled, zero if it hasn't, else a
1994  * negative errno code.
1995  *
1996  * Note that the device backing this regulator handle can have multiple
1997  * users, so it might be enabled even if regulator_enable() was never
1998  * called for this particular source.
1999  */
2000 int regulator_is_enabled(struct regulator *regulator)
2001 {
2002         int ret;
2003
2004         if (regulator->always_on)
2005                 return 1;
2006
2007         mutex_lock(&regulator->rdev->mutex);
2008         ret = _regulator_is_enabled(regulator->rdev);
2009         mutex_unlock(&regulator->rdev->mutex);
2010
2011         return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2014
2015 /**
2016  * regulator_can_change_voltage - check if regulator can change voltage
2017  * @regulator: regulator source
2018  *
2019  * Returns positive if the regulator driver backing the source/client
2020  * can change its voltage, false otherwise. Usefull for detecting fixed
2021  * or dummy regulators and disabling voltage change logic in the client
2022  * driver.
2023  */
2024 int regulator_can_change_voltage(struct regulator *regulator)
2025 {
2026         struct regulator_dev    *rdev = regulator->rdev;
2027
2028         if (rdev->constraints &&
2029             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2030                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2031                         return 1;
2032
2033                 if (rdev->desc->continuous_voltage_range &&
2034                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2035                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2036                         return 1;
2037         }
2038
2039         return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2042
2043 /**
2044  * regulator_count_voltages - count regulator_list_voltage() selectors
2045  * @regulator: regulator source
2046  *
2047  * Returns number of selectors, or negative errno.  Selectors are
2048  * numbered starting at zero, and typically correspond to bitfields
2049  * in hardware registers.
2050  */
2051 int regulator_count_voltages(struct regulator *regulator)
2052 {
2053         struct regulator_dev    *rdev = regulator->rdev;
2054
2055         return rdev->desc->n_voltages ? : -EINVAL;
2056 }
2057 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2058
2059 /**
2060  * regulator_list_voltage_linear - List voltages with simple calculation
2061  *
2062  * @rdev: Regulator device
2063  * @selector: Selector to convert into a voltage
2064  *
2065  * Regulators with a simple linear mapping between voltages and
2066  * selectors can set min_uV and uV_step in the regulator descriptor
2067  * and then use this function as their list_voltage() operation,
2068  */
2069 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2070                                   unsigned int selector)
2071 {
2072         if (selector >= rdev->desc->n_voltages)
2073                 return -EINVAL;
2074         if (selector < rdev->desc->linear_min_sel)
2075                 return 0;
2076
2077         selector -= rdev->desc->linear_min_sel;
2078
2079         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2082
2083 /**
2084  * regulator_list_voltage_table - List voltages with table based mapping
2085  *
2086  * @rdev: Regulator device
2087  * @selector: Selector to convert into a voltage
2088  *
2089  * Regulators with table based mapping between voltages and
2090  * selectors can set volt_table in the regulator descriptor
2091  * and then use this function as their list_voltage() operation.
2092  */
2093 int regulator_list_voltage_table(struct regulator_dev *rdev,
2094                                  unsigned int selector)
2095 {
2096         if (!rdev->desc->volt_table) {
2097                 BUG_ON(!rdev->desc->volt_table);
2098                 return -EINVAL;
2099         }
2100
2101         if (selector >= rdev->desc->n_voltages)
2102                 return -EINVAL;
2103
2104         return rdev->desc->volt_table[selector];
2105 }
2106 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2107
2108 /**
2109  * regulator_list_voltage - enumerate supported voltages
2110  * @regulator: regulator source
2111  * @selector: identify voltage to list
2112  * Context: can sleep
2113  *
2114  * Returns a voltage that can be passed to @regulator_set_voltage(),
2115  * zero if this selector code can't be used on this system, or a
2116  * negative errno.
2117  */
2118 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2119 {
2120         struct regulator_dev    *rdev = regulator->rdev;
2121         struct regulator_ops    *ops = rdev->desc->ops;
2122         int                     ret;
2123
2124         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2125                 return -EINVAL;
2126
2127         mutex_lock(&rdev->mutex);
2128         ret = ops->list_voltage(rdev, selector);
2129         mutex_unlock(&rdev->mutex);
2130
2131         if (ret > 0) {
2132                 if (ret < rdev->constraints->min_uV)
2133                         ret = 0;
2134                 else if (ret > rdev->constraints->max_uV)
2135                         ret = 0;
2136         }
2137
2138         return ret;
2139 }
2140 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2141
2142 /**
2143  * regulator_is_supported_voltage - check if a voltage range can be supported
2144  *
2145  * @regulator: Regulator to check.
2146  * @min_uV: Minimum required voltage in uV.
2147  * @max_uV: Maximum required voltage in uV.
2148  *
2149  * Returns a boolean or a negative error code.
2150  */
2151 int regulator_is_supported_voltage(struct regulator *regulator,
2152                                    int min_uV, int max_uV)
2153 {
2154         struct regulator_dev *rdev = regulator->rdev;
2155         int i, voltages, ret;
2156
2157         /* If we can't change voltage check the current voltage */
2158         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2159                 ret = regulator_get_voltage(regulator);
2160                 if (ret >= 0)
2161                         return (min_uV <= ret && ret <= max_uV);
2162                 else
2163                         return ret;
2164         }
2165
2166         /* Any voltage within constrains range is fine? */
2167         if (rdev->desc->continuous_voltage_range)
2168                 return min_uV >= rdev->constraints->min_uV &&
2169                                 max_uV <= rdev->constraints->max_uV;
2170
2171         ret = regulator_count_voltages(regulator);
2172         if (ret < 0)
2173                 return ret;
2174         voltages = ret;
2175
2176         for (i = 0; i < voltages; i++) {
2177                 ret = regulator_list_voltage(regulator, i);
2178
2179                 if (ret >= min_uV && ret <= max_uV)
2180                         return 1;
2181         }
2182
2183         return 0;
2184 }
2185 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2186
2187 /**
2188  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2189  *
2190  * @rdev: regulator to operate on
2191  *
2192  * Regulators that use regmap for their register I/O can set the
2193  * vsel_reg and vsel_mask fields in their descriptor and then use this
2194  * as their get_voltage_vsel operation, saving some code.
2195  */
2196 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2197 {
2198         unsigned int val;
2199         int ret;
2200
2201         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2202         if (ret != 0)
2203                 return ret;
2204
2205         val &= rdev->desc->vsel_mask;
2206         val >>= ffs(rdev->desc->vsel_mask) - 1;
2207
2208         return val;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2211
2212 /**
2213  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2214  *
2215  * @rdev: regulator to operate on
2216  * @sel: Selector to set
2217  *
2218  * Regulators that use regmap for their register I/O can set the
2219  * vsel_reg and vsel_mask fields in their descriptor and then use this
2220  * as their set_voltage_vsel operation, saving some code.
2221  */
2222 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2223 {
2224         int ret;
2225
2226         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2227
2228         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2229                                   rdev->desc->vsel_mask, sel);
2230         if (ret)
2231                 return ret;
2232
2233         if (rdev->desc->apply_bit)
2234                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2235                                          rdev->desc->apply_bit,
2236                                          rdev->desc->apply_bit);
2237         return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2240
2241 /**
2242  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2243  *
2244  * @rdev: Regulator to operate on
2245  * @min_uV: Lower bound for voltage
2246  * @max_uV: Upper bound for voltage
2247  *
2248  * Drivers implementing set_voltage_sel() and list_voltage() can use
2249  * this as their map_voltage() operation.  It will find a suitable
2250  * voltage by calling list_voltage() until it gets something in bounds
2251  * for the requested voltages.
2252  */
2253 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2254                                   int min_uV, int max_uV)
2255 {
2256         int best_val = INT_MAX;
2257         int selector = 0;
2258         int i, ret;
2259
2260         /* Find the smallest voltage that falls within the specified
2261          * range.
2262          */
2263         for (i = 0; i < rdev->desc->n_voltages; i++) {
2264                 ret = rdev->desc->ops->list_voltage(rdev, i);
2265                 if (ret < 0)
2266                         continue;
2267
2268                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2269                         best_val = ret;
2270                         selector = i;
2271                 }
2272         }
2273
2274         if (best_val != INT_MAX)
2275                 return selector;
2276         else
2277                 return -EINVAL;
2278 }
2279 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2280
2281 /**
2282  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2283  *
2284  * @rdev: Regulator to operate on
2285  * @min_uV: Lower bound for voltage
2286  * @max_uV: Upper bound for voltage
2287  *
2288  * Drivers that have ascendant voltage list can use this as their
2289  * map_voltage() operation.
2290  */
2291 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2292                                  int min_uV, int max_uV)
2293 {
2294         int i, ret;
2295
2296         for (i = 0; i < rdev->desc->n_voltages; i++) {
2297                 ret = rdev->desc->ops->list_voltage(rdev, i);
2298                 if (ret < 0)
2299                         continue;
2300
2301                 if (ret > max_uV)
2302                         break;
2303
2304                 if (ret >= min_uV && ret <= max_uV)
2305                         return i;
2306         }
2307
2308         return -EINVAL;
2309 }
2310 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2311
2312 /**
2313  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2314  *
2315  * @rdev: Regulator to operate on
2316  * @min_uV: Lower bound for voltage
2317  * @max_uV: Upper bound for voltage
2318  *
2319  * Drivers providing min_uV and uV_step in their regulator_desc can
2320  * use this as their map_voltage() operation.
2321  */
2322 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2323                                  int min_uV, int max_uV)
2324 {
2325         int ret, voltage;
2326
2327         /* Allow uV_step to be 0 for fixed voltage */
2328         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2329                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2330                         return 0;
2331                 else
2332                         return -EINVAL;
2333         }
2334
2335         if (!rdev->desc->uV_step) {
2336                 BUG_ON(!rdev->desc->uV_step);
2337                 return -EINVAL;
2338         }
2339
2340         if (min_uV < rdev->desc->min_uV)
2341                 min_uV = rdev->desc->min_uV;
2342
2343         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2344         if (ret < 0)
2345                 return ret;
2346
2347         ret += rdev->desc->linear_min_sel;
2348
2349         /* Map back into a voltage to verify we're still in bounds */
2350         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2351         if (voltage < min_uV || voltage > max_uV)
2352                 return -EINVAL;
2353
2354         return ret;
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2357
2358 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2359                                      int min_uV, int max_uV)
2360 {
2361         int ret;
2362         int delay = 0;
2363         int best_val = 0;
2364         unsigned int selector;
2365         int old_selector = -1;
2366
2367         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2368
2369         min_uV += rdev->constraints->uV_offset;
2370         max_uV += rdev->constraints->uV_offset;
2371
2372         /*
2373          * If we can't obtain the old selector there is not enough
2374          * info to call set_voltage_time_sel().
2375          */
2376         if (_regulator_is_enabled(rdev) &&
2377             rdev->desc->ops->set_voltage_time_sel &&
2378             rdev->desc->ops->get_voltage_sel) {
2379                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2380                 if (old_selector < 0)
2381                         return old_selector;
2382         }
2383
2384         if (rdev->desc->ops->set_voltage) {
2385                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2386                                                    &selector);
2387
2388                 if (ret >= 0) {
2389                         if (rdev->desc->ops->list_voltage)
2390                                 best_val = rdev->desc->ops->list_voltage(rdev,
2391                                                                          selector);
2392                         else
2393                                 best_val = _regulator_get_voltage(rdev);
2394                 }
2395
2396         } else if (rdev->desc->ops->set_voltage_sel) {
2397                 if (rdev->desc->ops->map_voltage) {
2398                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2399                                                            max_uV);
2400                 } else {
2401                         if (rdev->desc->ops->list_voltage ==
2402                             regulator_list_voltage_linear)
2403                                 ret = regulator_map_voltage_linear(rdev,
2404                                                                 min_uV, max_uV);
2405                         else
2406                                 ret = regulator_map_voltage_iterate(rdev,
2407                                                                 min_uV, max_uV);
2408                 }
2409
2410                 if (ret >= 0) {
2411                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2412                         if (min_uV <= best_val && max_uV >= best_val) {
2413                                 selector = ret;
2414                                 if (old_selector == selector)
2415                                         ret = 0;
2416                                 else
2417                                         ret = rdev->desc->ops->set_voltage_sel(
2418                                                                 rdev, ret);
2419                         } else {
2420                                 ret = -EINVAL;
2421                         }
2422                 }
2423         } else {
2424                 ret = -EINVAL;
2425         }
2426
2427         /* Call set_voltage_time_sel if successfully obtained old_selector */
2428         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2429             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2430
2431                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2432                                                 old_selector, selector);
2433                 if (delay < 0) {
2434                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2435                                   delay);
2436                         delay = 0;
2437                 }
2438
2439                 /* Insert any necessary delays */
2440                 if (delay >= 1000) {
2441                         mdelay(delay / 1000);
2442                         udelay(delay % 1000);
2443                 } else if (delay) {
2444                         udelay(delay);
2445                 }
2446         }
2447
2448         if (ret == 0 && best_val >= 0) {
2449                 unsigned long data = best_val;
2450
2451                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2452                                      (void *)data);
2453         }
2454
2455         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2456
2457         return ret;
2458 }
2459
2460 /**
2461  * regulator_set_voltage - set regulator output voltage
2462  * @regulator: regulator source
2463  * @min_uV: Minimum required voltage in uV
2464  * @max_uV: Maximum acceptable voltage in uV
2465  *
2466  * Sets a voltage regulator to the desired output voltage. This can be set
2467  * during any regulator state. IOW, regulator can be disabled or enabled.
2468  *
2469  * If the regulator is enabled then the voltage will change to the new value
2470  * immediately otherwise if the regulator is disabled the regulator will
2471  * output at the new voltage when enabled.
2472  *
2473  * NOTE: If the regulator is shared between several devices then the lowest
2474  * request voltage that meets the system constraints will be used.
2475  * Regulator system constraints must be set for this regulator before
2476  * calling this function otherwise this call will fail.
2477  */
2478 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2479 {
2480         struct regulator_dev *rdev = regulator->rdev;
2481         int ret = 0;
2482         int old_min_uV, old_max_uV;
2483
2484         mutex_lock(&rdev->mutex);
2485
2486         /* If we're setting the same range as last time the change
2487          * should be a noop (some cpufreq implementations use the same
2488          * voltage for multiple frequencies, for example).
2489          */
2490         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2491                 goto out;
2492
2493         /* sanity check */
2494         if (!rdev->desc->ops->set_voltage &&
2495             !rdev->desc->ops->set_voltage_sel) {
2496                 ret = -EINVAL;
2497                 goto out;
2498         }
2499
2500         /* constraints check */
2501         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2502         if (ret < 0)
2503                 goto out;
2504         
2505         /* restore original values in case of error */
2506         old_min_uV = regulator->min_uV;
2507         old_max_uV = regulator->max_uV;
2508         regulator->min_uV = min_uV;
2509         regulator->max_uV = max_uV;
2510
2511         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2512         if (ret < 0)
2513                 goto out2;
2514
2515         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2516         if (ret < 0)
2517                 goto out2;
2518         
2519 out:
2520         mutex_unlock(&rdev->mutex);
2521         return ret;
2522 out2:
2523         regulator->min_uV = old_min_uV;
2524         regulator->max_uV = old_max_uV;
2525         mutex_unlock(&rdev->mutex);
2526         return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2529
2530 /**
2531  * regulator_set_voltage_time - get raise/fall time
2532  * @regulator: regulator source
2533  * @old_uV: starting voltage in microvolts
2534  * @new_uV: target voltage in microvolts
2535  *
2536  * Provided with the starting and ending voltage, this function attempts to
2537  * calculate the time in microseconds required to rise or fall to this new
2538  * voltage.
2539  */
2540 int regulator_set_voltage_time(struct regulator *regulator,
2541                                int old_uV, int new_uV)
2542 {
2543         struct regulator_dev    *rdev = regulator->rdev;
2544         struct regulator_ops    *ops = rdev->desc->ops;
2545         int old_sel = -1;
2546         int new_sel = -1;
2547         int voltage;
2548         int i;
2549
2550         /* Currently requires operations to do this */
2551         if (!ops->list_voltage || !ops->set_voltage_time_sel
2552             || !rdev->desc->n_voltages)
2553                 return -EINVAL;
2554
2555         for (i = 0; i < rdev->desc->n_voltages; i++) {
2556                 /* We only look for exact voltage matches here */
2557                 voltage = regulator_list_voltage(regulator, i);
2558                 if (voltage < 0)
2559                         return -EINVAL;
2560                 if (voltage == 0)
2561                         continue;
2562                 if (voltage == old_uV)
2563                         old_sel = i;
2564                 if (voltage == new_uV)
2565                         new_sel = i;
2566         }
2567
2568         if (old_sel < 0 || new_sel < 0)
2569                 return -EINVAL;
2570
2571         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2572 }
2573 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2574
2575 /**
2576  * regulator_set_voltage_time_sel - get raise/fall time
2577  * @rdev: regulator source device
2578  * @old_selector: selector for starting voltage
2579  * @new_selector: selector for target voltage
2580  *
2581  * Provided with the starting and target voltage selectors, this function
2582  * returns time in microseconds required to rise or fall to this new voltage
2583  *
2584  * Drivers providing ramp_delay in regulation_constraints can use this as their
2585  * set_voltage_time_sel() operation.
2586  */
2587 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2588                                    unsigned int old_selector,
2589                                    unsigned int new_selector)
2590 {
2591         unsigned int ramp_delay = 0;
2592         int old_volt, new_volt;
2593
2594         if (rdev->constraints->ramp_delay)
2595                 ramp_delay = rdev->constraints->ramp_delay;
2596         else if (rdev->desc->ramp_delay)
2597                 ramp_delay = rdev->desc->ramp_delay;
2598
2599         if (ramp_delay == 0) {
2600                 rdev_warn(rdev, "ramp_delay not set\n");
2601                 return 0;
2602         }
2603
2604         /* sanity check */
2605         if (!rdev->desc->ops->list_voltage)
2606                 return -EINVAL;
2607
2608         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2609         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2610
2611         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2614
2615 /**
2616  * regulator_sync_voltage - re-apply last regulator output voltage
2617  * @regulator: regulator source
2618  *
2619  * Re-apply the last configured voltage.  This is intended to be used
2620  * where some external control source the consumer is cooperating with
2621  * has caused the configured voltage to change.
2622  */
2623 int regulator_sync_voltage(struct regulator *regulator)
2624 {
2625         struct regulator_dev *rdev = regulator->rdev;
2626         int ret, min_uV, max_uV;
2627
2628         mutex_lock(&rdev->mutex);
2629
2630         if (!rdev->desc->ops->set_voltage &&
2631             !rdev->desc->ops->set_voltage_sel) {
2632                 ret = -EINVAL;
2633                 goto out;
2634         }
2635
2636         /* This is only going to work if we've had a voltage configured. */
2637         if (!regulator->min_uV && !regulator->max_uV) {
2638                 ret = -EINVAL;
2639                 goto out;
2640         }
2641
2642         min_uV = regulator->min_uV;
2643         max_uV = regulator->max_uV;
2644
2645         /* This should be a paranoia check... */
2646         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2647         if (ret < 0)
2648                 goto out;
2649
2650         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2651         if (ret < 0)
2652                 goto out;
2653
2654         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2655
2656 out:
2657         mutex_unlock(&rdev->mutex);
2658         return ret;
2659 }
2660 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2661
2662 static int _regulator_get_voltage(struct regulator_dev *rdev)
2663 {
2664         int sel, ret;
2665
2666         if (rdev->desc->ops->get_voltage_sel) {
2667                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2668                 if (sel < 0)
2669                         return sel;
2670                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2671         } else if (rdev->desc->ops->get_voltage) {
2672                 ret = rdev->desc->ops->get_voltage(rdev);
2673         } else if (rdev->desc->ops->list_voltage) {
2674                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2675         } else {
2676                 return -EINVAL;
2677         }
2678
2679         if (ret < 0)
2680                 return ret;
2681         return ret - rdev->constraints->uV_offset;
2682 }
2683
2684 /**
2685  * regulator_get_voltage - get regulator output voltage
2686  * @regulator: regulator source
2687  *
2688  * This returns the current regulator voltage in uV.
2689  *
2690  * NOTE: If the regulator is disabled it will return the voltage value. This
2691  * function should not be used to determine regulator state.
2692  */
2693 int regulator_get_voltage(struct regulator *regulator)
2694 {
2695         int ret;
2696
2697         mutex_lock(&regulator->rdev->mutex);
2698
2699         ret = _regulator_get_voltage(regulator->rdev);
2700
2701         mutex_unlock(&regulator->rdev->mutex);
2702
2703         return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2706
2707 /**
2708  * regulator_set_current_limit - set regulator output current limit
2709  * @regulator: regulator source
2710  * @min_uA: Minimum supported current in uA
2711  * @max_uA: Maximum supported current in uA
2712  *
2713  * Sets current sink to the desired output current. This can be set during
2714  * any regulator state. IOW, regulator can be disabled or enabled.
2715  *
2716  * If the regulator is enabled then the current will change to the new value
2717  * immediately otherwise if the regulator is disabled the regulator will
2718  * output at the new current when enabled.
2719  *
2720  * NOTE: Regulator system constraints must be set for this regulator before
2721  * calling this function otherwise this call will fail.
2722  */
2723 int regulator_set_current_limit(struct regulator *regulator,
2724                                int min_uA, int max_uA)
2725 {
2726         struct regulator_dev *rdev = regulator->rdev;
2727         int ret;
2728
2729         mutex_lock(&rdev->mutex);
2730
2731         /* sanity check */
2732         if (!rdev->desc->ops->set_current_limit) {
2733                 ret = -EINVAL;
2734                 goto out;
2735         }
2736
2737         /* constraints check */
2738         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2739         if (ret < 0)
2740                 goto out;
2741
2742         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2743 out:
2744         mutex_unlock(&rdev->mutex);
2745         return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2748
2749 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2750 {
2751         int ret;
2752
2753         mutex_lock(&rdev->mutex);
2754
2755         /* sanity check */
2756         if (!rdev->desc->ops->get_current_limit) {
2757                 ret = -EINVAL;
2758                 goto out;
2759         }
2760
2761         ret = rdev->desc->ops->get_current_limit(rdev);
2762 out:
2763         mutex_unlock(&rdev->mutex);
2764         return ret;
2765 }
2766
2767 /**
2768  * regulator_get_current_limit - get regulator output current
2769  * @regulator: regulator source
2770  *
2771  * This returns the current supplied by the specified current sink in uA.
2772  *
2773  * NOTE: If the regulator is disabled it will return the current value. This
2774  * function should not be used to determine regulator state.
2775  */
2776 int regulator_get_current_limit(struct regulator *regulator)
2777 {
2778         return _regulator_get_current_limit(regulator->rdev);
2779 }
2780 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2781
2782 /**
2783  * regulator_set_mode - set regulator operating mode
2784  * @regulator: regulator source
2785  * @mode: operating mode - one of the REGULATOR_MODE constants
2786  *
2787  * Set regulator operating mode to increase regulator efficiency or improve
2788  * regulation performance.
2789  *
2790  * NOTE: Regulator system constraints must be set for this regulator before
2791  * calling this function otherwise this call will fail.
2792  */
2793 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2794 {
2795         struct regulator_dev *rdev = regulator->rdev;
2796         int ret;
2797         int regulator_curr_mode;
2798
2799         mutex_lock(&rdev->mutex);
2800
2801         /* sanity check */
2802         if (!rdev->desc->ops->set_mode) {
2803                 ret = -EINVAL;
2804                 goto out;
2805         }
2806
2807         /* return if the same mode is requested */
2808         if (rdev->desc->ops->get_mode) {
2809                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2810                 if (regulator_curr_mode == mode) {
2811                         ret = 0;
2812                         goto out;
2813                 }
2814         }
2815
2816         /* constraints check */
2817         ret = regulator_mode_constrain(rdev, &mode);
2818         if (ret < 0)
2819                 goto out;
2820
2821         ret = rdev->desc->ops->set_mode(rdev, mode);
2822 out:
2823         mutex_unlock(&rdev->mutex);
2824         return ret;
2825 }
2826 EXPORT_SYMBOL_GPL(regulator_set_mode);
2827
2828 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2829 {
2830         int ret;
2831
2832         mutex_lock(&rdev->mutex);
2833
2834         /* sanity check */
2835         if (!rdev->desc->ops->get_mode) {
2836                 ret = -EINVAL;
2837                 goto out;
2838         }
2839
2840         ret = rdev->desc->ops->get_mode(rdev);
2841 out:
2842         mutex_unlock(&rdev->mutex);
2843         return ret;
2844 }
2845
2846 /**
2847  * regulator_get_mode - get regulator operating mode
2848  * @regulator: regulator source
2849  *
2850  * Get the current regulator operating mode.
2851  */
2852 unsigned int regulator_get_mode(struct regulator *regulator)
2853 {
2854         return _regulator_get_mode(regulator->rdev);
2855 }
2856 EXPORT_SYMBOL_GPL(regulator_get_mode);
2857
2858 /**
2859  * regulator_set_optimum_mode - set regulator optimum operating mode
2860  * @regulator: regulator source
2861  * @uA_load: load current
2862  *
2863  * Notifies the regulator core of a new device load. This is then used by
2864  * DRMS (if enabled by constraints) to set the most efficient regulator
2865  * operating mode for the new regulator loading.
2866  *
2867  * Consumer devices notify their supply regulator of the maximum power
2868  * they will require (can be taken from device datasheet in the power
2869  * consumption tables) when they change operational status and hence power
2870  * state. Examples of operational state changes that can affect power
2871  * consumption are :-
2872  *
2873  *    o Device is opened / closed.
2874  *    o Device I/O is about to begin or has just finished.
2875  *    o Device is idling in between work.
2876  *
2877  * This information is also exported via sysfs to userspace.
2878  *
2879  * DRMS will sum the total requested load on the regulator and change
2880  * to the most efficient operating mode if platform constraints allow.
2881  *
2882  * Returns the new regulator mode or error.
2883  */
2884 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2885 {
2886         struct regulator_dev *rdev = regulator->rdev;
2887         struct regulator *consumer;
2888         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2889         unsigned int mode;
2890
2891         if (rdev->supply)
2892                 input_uV = regulator_get_voltage(rdev->supply);
2893
2894         mutex_lock(&rdev->mutex);
2895
2896         /*
2897          * first check to see if we can set modes at all, otherwise just
2898          * tell the consumer everything is OK.
2899          */
2900         regulator->uA_load = uA_load;
2901         ret = regulator_check_drms(rdev);
2902         if (ret < 0) {
2903                 ret = 0;
2904                 goto out;
2905         }
2906
2907         if (!rdev->desc->ops->get_optimum_mode)
2908                 goto out;
2909
2910         /*
2911          * we can actually do this so any errors are indicators of
2912          * potential real failure.
2913          */
2914         ret = -EINVAL;
2915
2916         if (!rdev->desc->ops->set_mode)
2917                 goto out;
2918
2919         /* get output voltage */
2920         output_uV = _regulator_get_voltage(rdev);
2921         if (output_uV <= 0) {
2922                 rdev_err(rdev, "invalid output voltage found\n");
2923                 goto out;
2924         }
2925
2926         /* No supply? Use constraint voltage */
2927         if (input_uV <= 0)
2928                 input_uV = rdev->constraints->input_uV;
2929         if (input_uV <= 0) {
2930                 rdev_err(rdev, "invalid input voltage found\n");
2931                 goto out;
2932         }
2933
2934         /* calc total requested load for this regulator */
2935         list_for_each_entry(consumer, &rdev->consumer_list, list)
2936                 total_uA_load += consumer->uA_load;
2937
2938         mode = rdev->desc->ops->get_optimum_mode(rdev,
2939                                                  input_uV, output_uV,
2940                                                  total_uA_load);
2941         ret = regulator_mode_constrain(rdev, &mode);
2942         if (ret < 0) {
2943                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2944                          total_uA_load, input_uV, output_uV);
2945                 goto out;
2946         }
2947
2948         ret = rdev->desc->ops->set_mode(rdev, mode);
2949         if (ret < 0) {
2950                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2951                 goto out;
2952         }
2953         ret = mode;
2954 out:
2955         mutex_unlock(&rdev->mutex);
2956         return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2959
2960 /**
2961  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2962  *
2963  * @rdev: device to operate on.
2964  * @enable: state to set.
2965  */
2966 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2967 {
2968         unsigned int val;
2969
2970         if (enable)
2971                 val = rdev->desc->bypass_mask;
2972         else
2973                 val = 0;
2974
2975         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2976                                   rdev->desc->bypass_mask, val);
2977 }
2978 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2979
2980 /**
2981  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2982  *
2983  * @rdev: device to operate on.
2984  * @enable: current state.
2985  */
2986 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2987 {
2988         unsigned int val;
2989         int ret;
2990
2991         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2992         if (ret != 0)
2993                 return ret;
2994
2995         *enable = val & rdev->desc->bypass_mask;
2996
2997         return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3000
3001 /**
3002  * regulator_allow_bypass - allow the regulator to go into bypass mode
3003  *
3004  * @regulator: Regulator to configure
3005  * @enable: enable or disable bypass mode
3006  *
3007  * Allow the regulator to go into bypass mode if all other consumers
3008  * for the regulator also enable bypass mode and the machine
3009  * constraints allow this.  Bypass mode means that the regulator is
3010  * simply passing the input directly to the output with no regulation.
3011  */
3012 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3013 {
3014         struct regulator_dev *rdev = regulator->rdev;
3015         int ret = 0;
3016
3017         if (!rdev->desc->ops->set_bypass)
3018                 return 0;
3019
3020         if (rdev->constraints &&
3021             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3022                 return 0;
3023
3024         mutex_lock(&rdev->mutex);
3025
3026         if (enable && !regulator->bypass) {
3027                 rdev->bypass_count++;
3028
3029                 if (rdev->bypass_count == rdev->open_count) {
3030                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3031                         if (ret != 0)
3032                                 rdev->bypass_count--;
3033                 }
3034
3035         } else if (!enable && regulator->bypass) {
3036                 rdev->bypass_count--;
3037
3038                 if (rdev->bypass_count != rdev->open_count) {
3039                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3040                         if (ret != 0)
3041                                 rdev->bypass_count++;
3042                 }
3043         }
3044
3045         if (ret == 0)
3046                 regulator->bypass = enable;
3047
3048         mutex_unlock(&rdev->mutex);
3049
3050         return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3053
3054 /**
3055  * regulator_register_notifier - register regulator event notifier
3056  * @regulator: regulator source
3057  * @nb: notifier block
3058  *
3059  * Register notifier block to receive regulator events.
3060  */
3061 int regulator_register_notifier(struct regulator *regulator,
3062                               struct notifier_block *nb)
3063 {
3064         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3065                                                 nb);
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3068
3069 /**
3070  * regulator_unregister_notifier - unregister regulator event notifier
3071  * @regulator: regulator source
3072  * @nb: notifier block
3073  *
3074  * Unregister regulator event notifier block.
3075  */
3076 int regulator_unregister_notifier(struct regulator *regulator,
3077                                 struct notifier_block *nb)
3078 {
3079         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3080                                                   nb);
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3083
3084 /* notify regulator consumers and downstream regulator consumers.
3085  * Note mutex must be held by caller.
3086  */
3087 static void _notifier_call_chain(struct regulator_dev *rdev,
3088                                   unsigned long event, void *data)
3089 {
3090         /* call rdev chain first */
3091         blocking_notifier_call_chain(&rdev->notifier, event, data);
3092 }
3093
3094 /**
3095  * regulator_bulk_get - get multiple regulator consumers
3096  *
3097  * @dev:           Device to supply
3098  * @num_consumers: Number of consumers to register
3099  * @consumers:     Configuration of consumers; clients are stored here.
3100  *
3101  * @return 0 on success, an errno on failure.
3102  *
3103  * This helper function allows drivers to get several regulator
3104  * consumers in one operation.  If any of the regulators cannot be
3105  * acquired then any regulators that were allocated will be freed
3106  * before returning to the caller.
3107  */
3108 int regulator_bulk_get(struct device *dev, int num_consumers,
3109                        struct regulator_bulk_data *consumers)
3110 {
3111         int i;
3112         int ret;
3113
3114         for (i = 0; i < num_consumers; i++)
3115                 consumers[i].consumer = NULL;
3116
3117         for (i = 0; i < num_consumers; i++) {
3118                 consumers[i].consumer = regulator_get(dev,
3119                                                       consumers[i].supply);
3120                 if (IS_ERR(consumers[i].consumer)) {
3121                         ret = PTR_ERR(consumers[i].consumer);
3122                         dev_err(dev, "Failed to get supply '%s': %d\n",
3123                                 consumers[i].supply, ret);
3124                         consumers[i].consumer = NULL;
3125                         goto err;
3126                 }
3127         }
3128
3129         return 0;
3130
3131 err:
3132         while (--i >= 0)
3133                 regulator_put(consumers[i].consumer);
3134
3135         return ret;
3136 }
3137 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3138
3139 /**
3140  * devm_regulator_bulk_get - managed get multiple regulator consumers
3141  *
3142  * @dev:           Device to supply
3143  * @num_consumers: Number of consumers to register
3144  * @consumers:     Configuration of consumers; clients are stored here.
3145  *
3146  * @return 0 on success, an errno on failure.
3147  *
3148  * This helper function allows drivers to get several regulator
3149  * consumers in one operation with management, the regulators will
3150  * automatically be freed when the device is unbound.  If any of the
3151  * regulators cannot be acquired then any regulators that were
3152  * allocated will be freed before returning to the caller.
3153  */
3154 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3155                             struct regulator_bulk_data *consumers)
3156 {
3157         int i;
3158         int ret;
3159
3160         for (i = 0; i < num_consumers; i++)
3161                 consumers[i].consumer = NULL;
3162
3163         for (i = 0; i < num_consumers; i++) {
3164                 consumers[i].consumer = devm_regulator_get(dev,
3165                                                            consumers[i].supply);
3166                 if (IS_ERR(consumers[i].consumer)) {
3167                         ret = PTR_ERR(consumers[i].consumer);
3168                         dev_err(dev, "Failed to get supply '%s': %d\n",
3169                                 consumers[i].supply, ret);
3170                         consumers[i].consumer = NULL;
3171                         goto err;
3172                 }
3173         }
3174
3175         return 0;
3176
3177 err:
3178         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3179                 devm_regulator_put(consumers[i].consumer);
3180
3181         return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3184
3185 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3186 {
3187         struct regulator_bulk_data *bulk = data;
3188
3189         bulk->ret = regulator_enable(bulk->consumer);
3190 }
3191
3192 /**
3193  * regulator_bulk_enable - enable multiple regulator consumers
3194  *
3195  * @num_consumers: Number of consumers
3196  * @consumers:     Consumer data; clients are stored here.
3197  * @return         0 on success, an errno on failure
3198  *
3199  * This convenience API allows consumers to enable multiple regulator
3200  * clients in a single API call.  If any consumers cannot be enabled
3201  * then any others that were enabled will be disabled again prior to
3202  * return.
3203  */
3204 int regulator_bulk_enable(int num_consumers,
3205                           struct regulator_bulk_data *consumers)
3206 {
3207         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3208         int i;
3209         int ret = 0;
3210
3211         for (i = 0; i < num_consumers; i++) {
3212                 if (consumers[i].consumer->always_on)
3213                         consumers[i].ret = 0;
3214                 else
3215                         async_schedule_domain(regulator_bulk_enable_async,
3216                                               &consumers[i], &async_domain);
3217         }
3218
3219         async_synchronize_full_domain(&async_domain);
3220
3221         /* If any consumer failed we need to unwind any that succeeded */
3222         for (i = 0; i < num_consumers; i++) {
3223                 if (consumers[i].ret != 0) {
3224                         ret = consumers[i].ret;
3225                         goto err;
3226                 }
3227         }
3228
3229         return 0;
3230
3231 err:
3232         for (i = 0; i < num_consumers; i++) {
3233                 if (consumers[i].ret < 0)
3234                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3235                                consumers[i].ret);
3236                 else
3237                         regulator_disable(consumers[i].consumer);
3238         }
3239
3240         return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3243
3244 /**
3245  * regulator_bulk_disable - disable multiple regulator consumers
3246  *
3247  * @num_consumers: Number of consumers
3248  * @consumers:     Consumer data; clients are stored here.
3249  * @return         0 on success, an errno on failure
3250  *
3251  * This convenience API allows consumers to disable multiple regulator
3252  * clients in a single API call.  If any consumers cannot be disabled
3253  * then any others that were disabled will be enabled again prior to
3254  * return.
3255  */
3256 int regulator_bulk_disable(int num_consumers,
3257                            struct regulator_bulk_data *consumers)
3258 {
3259         int i;
3260         int ret, r;
3261
3262         for (i = num_consumers - 1; i >= 0; --i) {
3263                 ret = regulator_disable(consumers[i].consumer);
3264                 if (ret != 0)
3265                         goto err;
3266         }
3267
3268         return 0;
3269
3270 err:
3271         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3272         for (++i; i < num_consumers; ++i) {
3273                 r = regulator_enable(consumers[i].consumer);
3274                 if (r != 0)
3275                         pr_err("Failed to reename %s: %d\n",
3276                                consumers[i].supply, r);
3277         }
3278
3279         return ret;
3280 }
3281 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3282
3283 /**
3284  * regulator_bulk_force_disable - force disable multiple regulator consumers
3285  *
3286  * @num_consumers: Number of consumers
3287  * @consumers:     Consumer data; clients are stored here.
3288  * @return         0 on success, an errno on failure
3289  *
3290  * This convenience API allows consumers to forcibly disable multiple regulator
3291  * clients in a single API call.
3292  * NOTE: This should be used for situations when device damage will
3293  * likely occur if the regulators are not disabled (e.g. over temp).
3294  * Although regulator_force_disable function call for some consumers can
3295  * return error numbers, the function is called for all consumers.
3296  */
3297 int regulator_bulk_force_disable(int num_consumers,
3298                            struct regulator_bulk_data *consumers)
3299 {
3300         int i;
3301         int ret;
3302
3303         for (i = 0; i < num_consumers; i++)
3304                 consumers[i].ret =
3305                             regulator_force_disable(consumers[i].consumer);
3306
3307         for (i = 0; i < num_consumers; i++) {
3308                 if (consumers[i].ret != 0) {
3309                         ret = consumers[i].ret;
3310                         goto out;
3311                 }
3312         }
3313
3314         return 0;
3315 out:
3316         return ret;
3317 }
3318 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3319
3320 /**
3321  * regulator_bulk_free - free multiple regulator consumers
3322  *
3323  * @num_consumers: Number of consumers
3324  * @consumers:     Consumer data; clients are stored here.
3325  *
3326  * This convenience API allows consumers to free multiple regulator
3327  * clients in a single API call.
3328  */
3329 void regulator_bulk_free(int num_consumers,
3330                          struct regulator_bulk_data *consumers)
3331 {
3332         int i;
3333
3334         for (i = 0; i < num_consumers; i++) {
3335                 regulator_put(consumers[i].consumer);
3336                 consumers[i].consumer = NULL;
3337         }
3338 }
3339 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3340
3341 /**
3342  * regulator_notifier_call_chain - call regulator event notifier
3343  * @rdev: regulator source
3344  * @event: notifier block
3345  * @data: callback-specific data.
3346  *
3347  * Called by regulator drivers to notify clients a regulator event has
3348  * occurred. We also notify regulator clients downstream.
3349  * Note lock must be held by caller.
3350  */
3351 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3352                                   unsigned long event, void *data)
3353 {
3354         _notifier_call_chain(rdev, event, data);
3355         return NOTIFY_DONE;
3356
3357 }
3358 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3359
3360 /**
3361  * regulator_mode_to_status - convert a regulator mode into a status
3362  *
3363  * @mode: Mode to convert
3364  *
3365  * Convert a regulator mode into a status.
3366  */
3367 int regulator_mode_to_status(unsigned int mode)
3368 {
3369         switch (mode) {
3370         case REGULATOR_MODE_FAST:
3371                 return REGULATOR_STATUS_FAST;
3372         case REGULATOR_MODE_NORMAL:
3373                 return REGULATOR_STATUS_NORMAL;
3374         case REGULATOR_MODE_IDLE:
3375                 return REGULATOR_STATUS_IDLE;
3376         case REGULATOR_MODE_STANDBY:
3377                 return REGULATOR_STATUS_STANDBY;
3378         default:
3379                 return REGULATOR_STATUS_UNDEFINED;
3380         }
3381 }
3382 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3383
3384 /*
3385  * To avoid cluttering sysfs (and memory) with useless state, only
3386  * create attributes that can be meaningfully displayed.
3387  */
3388 static int add_regulator_attributes(struct regulator_dev *rdev)
3389 {
3390         struct device           *dev = &rdev->dev;
3391         struct regulator_ops    *ops = rdev->desc->ops;
3392         int                     status = 0;
3393
3394         /* some attributes need specific methods to be displayed */
3395         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3396             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3397             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3398                 status = device_create_file(dev, &dev_attr_microvolts);
3399                 if (status < 0)
3400                         return status;
3401         }
3402         if (ops->get_current_limit) {
3403                 status = device_create_file(dev, &dev_attr_microamps);
3404                 if (status < 0)
3405                         return status;
3406         }
3407         if (ops->get_mode) {
3408                 status = device_create_file(dev, &dev_attr_opmode);
3409                 if (status < 0)
3410                         return status;
3411         }
3412         if (rdev->ena_pin || ops->is_enabled) {
3413                 status = device_create_file(dev, &dev_attr_state);
3414                 if (status < 0)
3415                         return status;
3416         }
3417         if (ops->get_status) {
3418                 status = device_create_file(dev, &dev_attr_status);
3419                 if (status < 0)
3420                         return status;
3421         }
3422         if (ops->get_bypass) {
3423                 status = device_create_file(dev, &dev_attr_bypass);
3424                 if (status < 0)
3425                         return status;
3426         }
3427
3428         /* some attributes are type-specific */
3429         if (rdev->desc->type == REGULATOR_CURRENT) {
3430                 status = device_create_file(dev, &dev_attr_requested_microamps);
3431                 if (status < 0)
3432                         return status;
3433         }
3434
3435         /* all the other attributes exist to support constraints;
3436          * don't show them if there are no constraints, or if the
3437          * relevant supporting methods are missing.
3438          */
3439         if (!rdev->constraints)
3440                 return status;
3441
3442         /* constraints need specific supporting methods */
3443         if (ops->set_voltage || ops->set_voltage_sel) {
3444                 status = device_create_file(dev, &dev_attr_min_microvolts);
3445                 if (status < 0)
3446                         return status;
3447                 status = device_create_file(dev, &dev_attr_max_microvolts);
3448                 if (status < 0)
3449                         return status;
3450         }
3451         if (ops->set_current_limit) {
3452                 status = device_create_file(dev, &dev_attr_min_microamps);
3453                 if (status < 0)
3454                         return status;
3455                 status = device_create_file(dev, &dev_attr_max_microamps);
3456                 if (status < 0)
3457                         return status;
3458         }
3459
3460         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3461         if (status < 0)
3462                 return status;
3463         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3464         if (status < 0)
3465                 return status;
3466         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3467         if (status < 0)
3468                 return status;
3469
3470         if (ops->set_suspend_voltage) {
3471                 status = device_create_file(dev,
3472                                 &dev_attr_suspend_standby_microvolts);
3473                 if (status < 0)
3474                         return status;
3475                 status = device_create_file(dev,
3476                                 &dev_attr_suspend_mem_microvolts);
3477                 if (status < 0)
3478                         return status;
3479                 status = device_create_file(dev,
3480                                 &dev_attr_suspend_disk_microvolts);
3481                 if (status < 0)
3482                         return status;
3483         }
3484
3485         if (ops->set_suspend_mode) {
3486                 status = device_create_file(dev,
3487                                 &dev_attr_suspend_standby_mode);
3488                 if (status < 0)
3489                         return status;
3490                 status = device_create_file(dev,
3491                                 &dev_attr_suspend_mem_mode);
3492                 if (status < 0)
3493                         return status;
3494                 status = device_create_file(dev,
3495                                 &dev_attr_suspend_disk_mode);
3496                 if (status < 0)
3497                         return status;
3498         }
3499
3500         return status;
3501 }
3502
3503 static void rdev_init_debugfs(struct regulator_dev *rdev)
3504 {
3505         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3506         if (!rdev->debugfs) {
3507                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3508                 return;
3509         }
3510
3511         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3512                            &rdev->use_count);
3513         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3514                            &rdev->open_count);
3515         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3516                            &rdev->bypass_count);
3517 }
3518
3519 /**
3520  * regulator_register - register regulator
3521  * @regulator_desc: regulator to register
3522  * @config: runtime configuration for regulator
3523  *
3524  * Called by regulator drivers to register a regulator.
3525  * Returns a valid pointer to struct regulator_dev on success
3526  * or an ERR_PTR() on error.
3527  */
3528 struct regulator_dev *
3529 regulator_register(const struct regulator_desc *regulator_desc,
3530                    const struct regulator_config *config)
3531 {
3532         const struct regulation_constraints *constraints = NULL;
3533         const struct regulator_init_data *init_data;
3534         static atomic_t regulator_no = ATOMIC_INIT(0);
3535         struct regulator_dev *rdev;
3536         struct device *dev;
3537         int ret, i;
3538         const char *supply = NULL;
3539
3540         if (regulator_desc == NULL || config == NULL)
3541                 return ERR_PTR(-EINVAL);
3542
3543         dev = config->dev;
3544         WARN_ON(!dev);
3545
3546         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3547                 return ERR_PTR(-EINVAL);
3548
3549         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3550             regulator_desc->type != REGULATOR_CURRENT)
3551                 return ERR_PTR(-EINVAL);
3552
3553         /* Only one of each should be implemented */
3554         WARN_ON(regulator_desc->ops->get_voltage &&
3555                 regulator_desc->ops->get_voltage_sel);
3556         WARN_ON(regulator_desc->ops->set_voltage &&
3557                 regulator_desc->ops->set_voltage_sel);
3558
3559         /* If we're using selectors we must implement list_voltage. */
3560         if (regulator_desc->ops->get_voltage_sel &&
3561             !regulator_desc->ops->list_voltage) {
3562                 return ERR_PTR(-EINVAL);
3563         }
3564         if (regulator_desc->ops->set_voltage_sel &&
3565             !regulator_desc->ops->list_voltage) {
3566                 return ERR_PTR(-EINVAL);
3567         }
3568
3569         init_data = config->init_data;
3570
3571         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3572         if (rdev == NULL)
3573                 return ERR_PTR(-ENOMEM);
3574
3575         mutex_lock(&regulator_list_mutex);
3576
3577         mutex_init(&rdev->mutex);
3578         rdev->reg_data = config->driver_data;
3579         rdev->owner = regulator_desc->owner;
3580         rdev->desc = regulator_desc;
3581         if (config->regmap)
3582                 rdev->regmap = config->regmap;
3583         else if (dev_get_regmap(dev, NULL))
3584                 rdev->regmap = dev_get_regmap(dev, NULL);
3585         else if (dev->parent)
3586                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3587         INIT_LIST_HEAD(&rdev->consumer_list);
3588         INIT_LIST_HEAD(&rdev->list);
3589         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3590         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3591
3592         /* preform any regulator specific init */
3593         if (init_data && init_data->regulator_init) {
3594                 ret = init_data->regulator_init(rdev->reg_data);
3595                 if (ret < 0)
3596                         goto clean;
3597         }
3598
3599         /* register with sysfs */
3600         rdev->dev.class = &regulator_class;
3601         rdev->dev.of_node = config->of_node;
3602         rdev->dev.parent = dev;
3603         dev_set_name(&rdev->dev, "regulator.%d",
3604                      atomic_inc_return(&regulator_no) - 1);
3605         ret = device_register(&rdev->dev);
3606         if (ret != 0) {
3607                 put_device(&rdev->dev);
3608                 goto clean;
3609         }
3610
3611         dev_set_drvdata(&rdev->dev, rdev);
3612
3613         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3614                 ret = regulator_ena_gpio_request(rdev, config);
3615                 if (ret != 0) {
3616                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3617                                  config->ena_gpio, ret);
3618                         goto wash;
3619                 }
3620
3621                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3622                         rdev->ena_gpio_state = 1;
3623
3624                 if (config->ena_gpio_invert)
3625                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3626         }
3627
3628         /* set regulator constraints */
3629         if (init_data)
3630                 constraints = &init_data->constraints;
3631
3632         ret = set_machine_constraints(rdev, constraints);
3633         if (ret < 0)
3634                 goto scrub;
3635
3636         /* add attributes supported by this regulator */
3637         ret = add_regulator_attributes(rdev);
3638         if (ret < 0)
3639                 goto scrub;
3640
3641         if (init_data && init_data->supply_regulator)
3642                 supply = init_data->supply_regulator;
3643         else if (regulator_desc->supply_name)
3644                 supply = regulator_desc->supply_name;
3645
3646         if (supply) {
3647                 struct regulator_dev *r;
3648
3649                 r = regulator_dev_lookup(dev, supply, &ret);
3650
3651                 if (ret == -ENODEV) {
3652                         /*
3653                          * No supply was specified for this regulator and
3654                          * there will never be one.
3655                          */
3656                         ret = 0;
3657                         goto add_dev;
3658                 } else if (!r) {
3659                         dev_err(dev, "Failed to find supply %s\n", supply);
3660                         ret = -EPROBE_DEFER;
3661                         goto scrub;
3662                 }
3663
3664                 ret = set_supply(rdev, r);
3665                 if (ret < 0)
3666                         goto scrub;
3667
3668                 /* Enable supply if rail is enabled */
3669                 if (_regulator_is_enabled(rdev)) {
3670                         ret = regulator_enable(rdev->supply);
3671                         if (ret < 0)
3672                                 goto scrub;
3673                 }
3674         }
3675
3676 add_dev:
3677         /* add consumers devices */
3678         if (init_data) {
3679                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3680                         ret = set_consumer_device_supply(rdev,
3681                                 init_data->consumer_supplies[i].dev_name,
3682                                 init_data->consumer_supplies[i].supply);
3683                         if (ret < 0) {
3684                                 dev_err(dev, "Failed to set supply %s\n",
3685                                         init_data->consumer_supplies[i].supply);
3686                                 goto unset_supplies;
3687                         }
3688                 }
3689         }
3690
3691         list_add(&rdev->list, &regulator_list);
3692
3693         rdev_init_debugfs(rdev);
3694 out:
3695         mutex_unlock(&regulator_list_mutex);
3696         return rdev;
3697
3698 unset_supplies:
3699         unset_regulator_supplies(rdev);
3700
3701 scrub:
3702         if (rdev->supply)
3703                 _regulator_put(rdev->supply);
3704         regulator_ena_gpio_free(rdev);
3705         kfree(rdev->constraints);
3706 wash:
3707         device_unregister(&rdev->dev);
3708         /* device core frees rdev */
3709         rdev = ERR_PTR(ret);
3710         goto out;
3711
3712 clean:
3713         kfree(rdev);
3714         rdev = ERR_PTR(ret);
3715         goto out;
3716 }
3717 EXPORT_SYMBOL_GPL(regulator_register);
3718
3719 /**
3720  * regulator_unregister - unregister regulator
3721  * @rdev: regulator to unregister
3722  *
3723  * Called by regulator drivers to unregister a regulator.
3724  */
3725 void regulator_unregister(struct regulator_dev *rdev)
3726 {
3727         if (rdev == NULL)
3728                 return;
3729
3730         if (rdev->supply)
3731                 regulator_put(rdev->supply);
3732         mutex_lock(&regulator_list_mutex);
3733         debugfs_remove_recursive(rdev->debugfs);
3734         flush_work(&rdev->disable_work.work);
3735         WARN_ON(rdev->open_count);
3736         unset_regulator_supplies(rdev);
3737         list_del(&rdev->list);
3738         kfree(rdev->constraints);
3739         regulator_ena_gpio_free(rdev);
3740         device_unregister(&rdev->dev);
3741         mutex_unlock(&regulator_list_mutex);
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_unregister);
3744
3745 /**
3746  * regulator_suspend_prepare - prepare regulators for system wide suspend
3747  * @state: system suspend state
3748  *
3749  * Configure each regulator with it's suspend operating parameters for state.
3750  * This will usually be called by machine suspend code prior to supending.
3751  */
3752 int regulator_suspend_prepare(suspend_state_t state)
3753 {
3754         struct regulator_dev *rdev;
3755         int ret = 0;
3756
3757         /* ON is handled by regulator active state */
3758         if (state == PM_SUSPEND_ON)
3759                 return -EINVAL;
3760
3761         mutex_lock(&regulator_list_mutex);
3762         list_for_each_entry(rdev, &regulator_list, list) {
3763
3764                 mutex_lock(&rdev->mutex);
3765                 ret = suspend_prepare(rdev, state);
3766                 mutex_unlock(&rdev->mutex);
3767
3768                 if (ret < 0) {
3769                         rdev_err(rdev, "failed to prepare\n");
3770                         goto out;
3771                 }
3772         }
3773 out:
3774         mutex_unlock(&regulator_list_mutex);
3775         return ret;
3776 }
3777 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3778
3779 /**
3780  * regulator_suspend_finish - resume regulators from system wide suspend
3781  *
3782  * Turn on regulators that might be turned off by regulator_suspend_prepare
3783  * and that should be turned on according to the regulators properties.
3784  */
3785 int regulator_suspend_finish(void)
3786 {
3787         struct regulator_dev *rdev;
3788         int ret = 0, error;
3789
3790         mutex_lock(&regulator_list_mutex);
3791         list_for_each_entry(rdev, &regulator_list, list) {
3792                 struct regulator_ops *ops = rdev->desc->ops;
3793
3794                 mutex_lock(&rdev->mutex);
3795                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3796                         error = _regulator_do_enable(rdev);
3797                         if (error)
3798                                 ret = error;
3799                 } else {
3800                         if (!has_full_constraints)
3801                                 goto unlock;
3802                         if (!ops->disable)
3803                                 goto unlock;
3804                         if (!_regulator_is_enabled(rdev))
3805                                 goto unlock;
3806
3807                         error = ops->disable(rdev);
3808                         if (error)
3809                                 ret = error;
3810                 }
3811 unlock:
3812                 mutex_unlock(&rdev->mutex);
3813         }
3814         mutex_unlock(&regulator_list_mutex);
3815         return ret;
3816 }
3817 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3818
3819 /**
3820  * regulator_has_full_constraints - the system has fully specified constraints
3821  *
3822  * Calling this function will cause the regulator API to disable all
3823  * regulators which have a zero use count and don't have an always_on
3824  * constraint in a late_initcall.
3825  *
3826  * The intention is that this will become the default behaviour in a
3827  * future kernel release so users are encouraged to use this facility
3828  * now.
3829  */
3830 void regulator_has_full_constraints(void)
3831 {
3832         has_full_constraints = 1;
3833 }
3834 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3835
3836 /**
3837  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3838  *
3839  * Calling this function will cause the regulator API to provide a
3840  * dummy regulator to consumers if no physical regulator is found,
3841  * allowing most consumers to proceed as though a regulator were
3842  * configured.  This allows systems such as those with software
3843  * controllable regulators for the CPU core only to be brought up more
3844  * readily.
3845  */
3846 void regulator_use_dummy_regulator(void)
3847 {
3848         board_wants_dummy_regulator = true;
3849 }
3850 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3851
3852 /**
3853  * rdev_get_drvdata - get rdev regulator driver data
3854  * @rdev: regulator
3855  *
3856  * Get rdev regulator driver private data. This call can be used in the
3857  * regulator driver context.
3858  */
3859 void *rdev_get_drvdata(struct regulator_dev *rdev)
3860 {
3861         return rdev->reg_data;
3862 }
3863 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3864
3865 /**
3866  * regulator_get_drvdata - get regulator driver data
3867  * @regulator: regulator
3868  *
3869  * Get regulator driver private data. This call can be used in the consumer
3870  * driver context when non API regulator specific functions need to be called.
3871  */
3872 void *regulator_get_drvdata(struct regulator *regulator)
3873 {
3874         return regulator->rdev->reg_data;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3877
3878 /**
3879  * regulator_set_drvdata - set regulator driver data
3880  * @regulator: regulator
3881  * @data: data
3882  */
3883 void regulator_set_drvdata(struct regulator *regulator, void *data)
3884 {
3885         regulator->rdev->reg_data = data;
3886 }
3887 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3888
3889 /**
3890  * regulator_get_id - get regulator ID
3891  * @rdev: regulator
3892  */
3893 int rdev_get_id(struct regulator_dev *rdev)
3894 {
3895         return rdev->desc->id;
3896 }
3897 EXPORT_SYMBOL_GPL(rdev_get_id);
3898
3899 struct device *rdev_get_dev(struct regulator_dev *rdev)
3900 {
3901         return &rdev->dev;
3902 }
3903 EXPORT_SYMBOL_GPL(rdev_get_dev);
3904
3905 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3906 {
3907         return reg_init_data->driver_data;
3908 }
3909 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3910
3911 #ifdef CONFIG_DEBUG_FS
3912 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3913                                     size_t count, loff_t *ppos)
3914 {
3915         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3916         ssize_t len, ret = 0;
3917         struct regulator_map *map;
3918
3919         if (!buf)
3920                 return -ENOMEM;
3921
3922         list_for_each_entry(map, &regulator_map_list, list) {
3923                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3924                                "%s -> %s.%s\n",
3925                                rdev_get_name(map->regulator), map->dev_name,
3926                                map->supply);
3927                 if (len >= 0)
3928                         ret += len;
3929                 if (ret > PAGE_SIZE) {
3930                         ret = PAGE_SIZE;
3931                         break;
3932                 }
3933         }
3934
3935         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3936
3937         kfree(buf);
3938
3939         return ret;
3940 }
3941 #endif
3942
3943 static const struct file_operations supply_map_fops = {
3944 #ifdef CONFIG_DEBUG_FS
3945         .read = supply_map_read_file,
3946         .llseek = default_llseek,
3947 #endif
3948 };
3949
3950 static int __init regulator_init(void)
3951 {
3952         int ret;
3953
3954         ret = class_register(&regulator_class);
3955
3956         debugfs_root = debugfs_create_dir("regulator", NULL);
3957         if (!debugfs_root)
3958                 pr_warn("regulator: Failed to create debugfs directory\n");
3959
3960         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3961                             &supply_map_fops);
3962
3963         regulator_dummy_init();
3964
3965         return ret;
3966 }
3967
3968 /* init early to allow our consumers to complete system booting */
3969 core_initcall(regulator_init);
3970
3971 static int __init regulator_init_complete(void)
3972 {
3973         struct regulator_dev *rdev;
3974         struct regulator_ops *ops;
3975         struct regulation_constraints *c;
3976         int enabled, ret;
3977
3978         /*
3979          * Since DT doesn't provide an idiomatic mechanism for
3980          * enabling full constraints and since it's much more natural
3981          * with DT to provide them just assume that a DT enabled
3982          * system has full constraints.
3983          */
3984         if (of_have_populated_dt())
3985                 has_full_constraints = true;
3986
3987         mutex_lock(&regulator_list_mutex);
3988
3989         /* If we have a full configuration then disable any regulators
3990          * which are not in use or always_on.  This will become the
3991          * default behaviour in the future.
3992          */
3993         list_for_each_entry(rdev, &regulator_list, list) {
3994                 ops = rdev->desc->ops;
3995                 c = rdev->constraints;
3996
3997                 if (!ops->disable || (c && c->always_on))
3998                         continue;
3999
4000                 mutex_lock(&rdev->mutex);
4001
4002                 if (rdev->use_count)
4003                         goto unlock;
4004
4005                 /* If we can't read the status assume it's on. */
4006                 if (ops->is_enabled)
4007                         enabled = ops->is_enabled(rdev);
4008                 else
4009                         enabled = 1;
4010
4011                 if (!enabled)
4012                         goto unlock;
4013
4014                 if (has_full_constraints) {
4015                         /* We log since this may kill the system if it
4016                          * goes wrong. */
4017                         rdev_info(rdev, "disabling\n");
4018                         ret = ops->disable(rdev);
4019                         if (ret != 0) {
4020                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4021                         }
4022                 } else {
4023                         /* The intention is that in future we will
4024                          * assume that full constraints are provided
4025                          * so warn even if we aren't going to do
4026                          * anything here.
4027                          */
4028                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4029                 }
4030
4031 unlock:
4032                 mutex_unlock(&rdev->mutex);
4033         }
4034
4035         mutex_unlock(&regulator_list_mutex);
4036
4037         return 0;
4038 }
4039 late_initcall(regulator_init_complete);