2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
58 static struct dentry *debugfs_root;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
69 struct regulator_dev *regulator;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio {
78 struct list_head list;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
88 * One for each consumer device.
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
115 const char *supply_name);
117 static const char *rdev_get_name(struct regulator_dev *rdev)
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 if (!rdev->constraints)
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 BUG_ON(*min_uV > *max_uV);
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
200 struct regulator *regulator;
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator->min_uV && !regulator->max_uV)
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
229 BUG_ON(*min_uA > *max_uA);
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev->constraints->valid_modes_mask & *mode)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 static DEVICE_ATTR_RO(name);
335 static ssize_t regulator_print_opmode(char *buf, int mode)
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
347 return sprintf(buf, "unknown\n");
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 static ssize_t regulator_print_state(char *buf, int state)
362 return sprintf(buf, "enabled\n");
364 return sprintf(buf, "disabled\n");
366 return sprintf(buf, "unknown\n");
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
390 status = rdev->desc->ops->get_status(rdev);
395 case REGULATOR_STATUS_OFF:
398 case REGULATOR_STATUS_ON:
401 case REGULATOR_STATUS_ERROR:
404 case REGULATOR_STATUS_FAST:
407 case REGULATOR_STATUS_NORMAL:
410 case REGULATOR_STATUS_IDLE:
413 case REGULATOR_STATUS_STANDBY:
416 case REGULATOR_STATUS_BYPASS:
419 case REGULATOR_STATUS_UNDEFINED:
426 return sprintf(buf, "%s\n", label);
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
499 static DEVICE_ATTR_RO(num_users);
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
512 return sprintf(buf, "unknown\n");
514 static DEVICE_ATTR_RO(type);
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
629 return sprintf(buf, "%s\n", report);
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute *regulator_dev_attrs[] = {
640 &dev_attr_num_users.attr,
644 ATTRIBUTE_GROUPS(regulator_dev);
646 static void regulator_dev_release(struct device *dev)
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
652 static struct class regulator_class = {
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
678 /* get input voltage */
681 input_uV = regulator_get_voltage(rdev->supply);
683 input_uV = rdev->constraints->input_uV;
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
698 rdev->desc->ops->set_mode(rdev, mode);
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev, "failed to enabled/disable\n");
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737 rdev_err(rdev, "failed to set voltage\n");
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745 rdev_err(rdev, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 if (!rdev->constraints)
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
773 static void print_constraints(struct regulator_dev *rdev)
775 struct regulation_constraints *constraints = rdev->constraints;
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
828 sprintf(buf, "no parameters");
830 rdev_info(rdev, "%s\n", buf);
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
841 struct regulator_ops *ops = rdev->desc->ops;
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
891 value = ops->list_voltage(rdev, i);
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
898 if (value <= cmax && value > max_uV)
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
905 "unsupportable voltage constraints %u-%uuV\n",
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
927 * set_machine_constraints - sets regulator constraints
928 * @rdev: regulator source
929 * @constraints: constraints to apply
931 * Allows platform initialisation code to define and constrain
932 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
933 * Constraints *must* be set by platform code in order for some
934 * regulator operations to proceed i.e. set_voltage, set_current_limit,
937 static int set_machine_constraints(struct regulator_dev *rdev,
938 const struct regulation_constraints *constraints)
941 struct regulator_ops *ops = rdev->desc->ops;
944 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
947 rdev->constraints = kzalloc(sizeof(*constraints),
949 if (!rdev->constraints)
952 ret = machine_constraints_voltage(rdev, rdev->constraints);
956 /* do we need to setup our suspend state */
957 if (rdev->constraints->initial_state) {
958 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
960 rdev_err(rdev, "failed to set suspend state\n");
965 if (rdev->constraints->initial_mode) {
966 if (!ops->set_mode) {
967 rdev_err(rdev, "no set_mode operation\n");
972 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
974 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
979 /* If the constraints say the regulator should be on at this point
980 * and we have control then make sure it is enabled.
982 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
984 ret = ops->enable(rdev);
986 rdev_err(rdev, "failed to enable\n");
991 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
992 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
994 rdev_err(rdev, "failed to set ramp_delay\n");
999 print_constraints(rdev);
1002 kfree(rdev->constraints);
1003 rdev->constraints = NULL;
1008 * set_supply - set regulator supply regulator
1009 * @rdev: regulator name
1010 * @supply_rdev: supply regulator name
1012 * Called by platform initialisation code to set the supply regulator for this
1013 * regulator. This ensures that a regulators supply will also be enabled by the
1014 * core if it's child is enabled.
1016 static int set_supply(struct regulator_dev *rdev,
1017 struct regulator_dev *supply_rdev)
1021 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1023 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024 if (rdev->supply == NULL) {
1028 supply_rdev->open_count++;
1034 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035 * @rdev: regulator source
1036 * @consumer_dev_name: dev_name() string for device supply applies to
1037 * @supply: symbolic name for supply
1039 * Allows platform initialisation code to map physical regulator
1040 * sources to symbolic names for supplies for use by devices. Devices
1041 * should use these symbolic names to request regulators, avoiding the
1042 * need to provide board-specific regulator names as platform data.
1044 static int set_consumer_device_supply(struct regulator_dev *rdev,
1045 const char *consumer_dev_name,
1048 struct regulator_map *node;
1054 if (consumer_dev_name != NULL)
1059 list_for_each_entry(node, ®ulator_map_list, list) {
1060 if (node->dev_name && consumer_dev_name) {
1061 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1063 } else if (node->dev_name || consumer_dev_name) {
1067 if (strcmp(node->supply, supply) != 0)
1070 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1072 dev_name(&node->regulator->dev),
1073 node->regulator->desc->name,
1075 dev_name(&rdev->dev), rdev_get_name(rdev));
1079 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1083 node->regulator = rdev;
1084 node->supply = supply;
1087 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088 if (node->dev_name == NULL) {
1094 list_add(&node->list, ®ulator_map_list);
1098 static void unset_regulator_supplies(struct regulator_dev *rdev)
1100 struct regulator_map *node, *n;
1102 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1103 if (rdev == node->regulator) {
1104 list_del(&node->list);
1105 kfree(node->dev_name);
1111 #define REG_STR_SIZE 64
1113 static struct regulator *create_regulator(struct regulator_dev *rdev,
1115 const char *supply_name)
1117 struct regulator *regulator;
1118 char buf[REG_STR_SIZE];
1121 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122 if (regulator == NULL)
1125 mutex_lock(&rdev->mutex);
1126 regulator->rdev = rdev;
1127 list_add(®ulator->list, &rdev->consumer_list);
1130 regulator->dev = dev;
1132 /* Add a link to the device sysfs entry */
1133 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134 dev->kobj.name, supply_name);
1135 if (size >= REG_STR_SIZE)
1138 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139 if (regulator->supply_name == NULL)
1142 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1145 rdev_warn(rdev, "could not add device link %s err %d\n",
1146 dev->kobj.name, err);
1150 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151 if (regulator->supply_name == NULL)
1155 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1157 if (!regulator->debugfs) {
1158 rdev_warn(rdev, "Failed to create debugfs directory\n");
1160 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161 ®ulator->uA_load);
1162 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163 ®ulator->min_uV);
1164 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165 ®ulator->max_uV);
1169 * Check now if the regulator is an always on regulator - if
1170 * it is then we don't need to do nearly so much work for
1171 * enable/disable calls.
1173 if (!_regulator_can_change_status(rdev) &&
1174 _regulator_is_enabled(rdev))
1175 regulator->always_on = true;
1177 mutex_unlock(&rdev->mutex);
1180 list_del(®ulator->list);
1182 mutex_unlock(&rdev->mutex);
1186 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1188 if (!rdev->desc->ops->enable_time)
1189 return rdev->desc->enable_time;
1190 return rdev->desc->ops->enable_time(rdev);
1193 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1197 struct regulator_dev *r;
1198 struct device_node *node;
1199 struct regulator_map *map;
1200 const char *devname = NULL;
1202 /* first do a dt based lookup */
1203 if (dev && dev->of_node) {
1204 node = of_get_regulator(dev, supply);
1206 list_for_each_entry(r, ®ulator_list, list)
1207 if (r->dev.parent &&
1208 node == r->dev.of_node)
1212 * If we couldn't even get the node then it's
1213 * not just that the device didn't register
1214 * yet, there's no node and we'll never
1221 /* if not found, try doing it non-dt way */
1223 devname = dev_name(dev);
1225 list_for_each_entry(r, ®ulator_list, list)
1226 if (strcmp(rdev_get_name(r), supply) == 0)
1229 list_for_each_entry(map, ®ulator_map_list, list) {
1230 /* If the mapping has a device set up it must match */
1231 if (map->dev_name &&
1232 (!devname || strcmp(map->dev_name, devname)))
1235 if (strcmp(map->supply, supply) == 0)
1236 return map->regulator;
1243 /* Internal regulator request function */
1244 static struct regulator *_regulator_get(struct device *dev, const char *id,
1247 struct regulator_dev *rdev;
1248 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249 const char *devname = NULL;
1253 pr_err("get() with no identifier\n");
1258 devname = dev_name(dev);
1260 mutex_lock(®ulator_list_mutex);
1262 rdev = regulator_dev_lookup(dev, id, &ret);
1267 * If we have return value from dev_lookup fail, we do not expect to
1268 * succeed, so, quit with appropriate error value
1271 regulator = ERR_PTR(ret);
1275 if (board_wants_dummy_regulator) {
1276 rdev = dummy_regulator_rdev;
1280 #ifdef CONFIG_REGULATOR_DUMMY
1282 devname = "deviceless";
1284 /* If the board didn't flag that it was fully constrained then
1285 * substitute in a dummy regulator so consumers can continue.
1287 if (!has_full_constraints) {
1288 pr_warn("%s supply %s not found, using dummy regulator\n",
1290 rdev = dummy_regulator_rdev;
1295 mutex_unlock(®ulator_list_mutex);
1299 if (rdev->exclusive) {
1300 regulator = ERR_PTR(-EPERM);
1304 if (exclusive && rdev->open_count) {
1305 regulator = ERR_PTR(-EBUSY);
1309 if (!try_module_get(rdev->owner))
1312 regulator = create_regulator(rdev, dev, id);
1313 if (regulator == NULL) {
1314 regulator = ERR_PTR(-ENOMEM);
1315 module_put(rdev->owner);
1321 rdev->exclusive = 1;
1323 ret = _regulator_is_enabled(rdev);
1325 rdev->use_count = 1;
1327 rdev->use_count = 0;
1331 mutex_unlock(®ulator_list_mutex);
1337 * regulator_get - lookup and obtain a reference to a regulator.
1338 * @dev: device for regulator "consumer"
1339 * @id: Supply name or regulator ID.
1341 * Returns a struct regulator corresponding to the regulator producer,
1342 * or IS_ERR() condition containing errno.
1344 * Use of supply names configured via regulator_set_device_supply() is
1345 * strongly encouraged. It is recommended that the supply name used
1346 * should match the name used for the supply and/or the relevant
1347 * device pins in the datasheet.
1349 struct regulator *regulator_get(struct device *dev, const char *id)
1351 return _regulator_get(dev, id, false);
1353 EXPORT_SYMBOL_GPL(regulator_get);
1355 static void devm_regulator_release(struct device *dev, void *res)
1357 regulator_put(*(struct regulator **)res);
1361 * devm_regulator_get - Resource managed regulator_get()
1362 * @dev: device for regulator "consumer"
1363 * @id: Supply name or regulator ID.
1365 * Managed regulator_get(). Regulators returned from this function are
1366 * automatically regulator_put() on driver detach. See regulator_get() for more
1369 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1371 struct regulator **ptr, *regulator;
1373 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1375 return ERR_PTR(-ENOMEM);
1377 regulator = regulator_get(dev, id);
1378 if (!IS_ERR(regulator)) {
1380 devres_add(dev, ptr);
1387 EXPORT_SYMBOL_GPL(devm_regulator_get);
1390 * regulator_get_exclusive - obtain exclusive access to a regulator.
1391 * @dev: device for regulator "consumer"
1392 * @id: Supply name or regulator ID.
1394 * Returns a struct regulator corresponding to the regulator producer,
1395 * or IS_ERR() condition containing errno. Other consumers will be
1396 * unable to obtain this reference is held and the use count for the
1397 * regulator will be initialised to reflect the current state of the
1400 * This is intended for use by consumers which cannot tolerate shared
1401 * use of the regulator such as those which need to force the
1402 * regulator off for correct operation of the hardware they are
1405 * Use of supply names configured via regulator_set_device_supply() is
1406 * strongly encouraged. It is recommended that the supply name used
1407 * should match the name used for the supply and/or the relevant
1408 * device pins in the datasheet.
1410 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1412 return _regulator_get(dev, id, true);
1414 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1416 /* Locks held by regulator_put() */
1417 static void _regulator_put(struct regulator *regulator)
1419 struct regulator_dev *rdev;
1421 if (regulator == NULL || IS_ERR(regulator))
1424 rdev = regulator->rdev;
1426 debugfs_remove_recursive(regulator->debugfs);
1428 /* remove any sysfs entries */
1430 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1431 kfree(regulator->supply_name);
1432 list_del(®ulator->list);
1436 rdev->exclusive = 0;
1438 module_put(rdev->owner);
1442 * regulator_put - "free" the regulator source
1443 * @regulator: regulator source
1445 * Note: drivers must ensure that all regulator_enable calls made on this
1446 * regulator source are balanced by regulator_disable calls prior to calling
1449 void regulator_put(struct regulator *regulator)
1451 mutex_lock(®ulator_list_mutex);
1452 _regulator_put(regulator);
1453 mutex_unlock(®ulator_list_mutex);
1455 EXPORT_SYMBOL_GPL(regulator_put);
1457 static int devm_regulator_match(struct device *dev, void *res, void *data)
1459 struct regulator **r = res;
1468 * devm_regulator_put - Resource managed regulator_put()
1469 * @regulator: regulator to free
1471 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1472 * this function will not need to be called and the resource management
1473 * code will ensure that the resource is freed.
1475 void devm_regulator_put(struct regulator *regulator)
1479 rc = devres_release(regulator->dev, devm_regulator_release,
1480 devm_regulator_match, regulator);
1484 EXPORT_SYMBOL_GPL(devm_regulator_put);
1486 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1487 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1488 const struct regulator_config *config)
1490 struct regulator_enable_gpio *pin;
1493 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1494 if (pin->gpio == config->ena_gpio) {
1495 rdev_dbg(rdev, "GPIO %d is already used\n",
1497 goto update_ena_gpio_to_rdev;
1501 ret = gpio_request_one(config->ena_gpio,
1502 GPIOF_DIR_OUT | config->ena_gpio_flags,
1503 rdev_get_name(rdev));
1507 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1509 gpio_free(config->ena_gpio);
1513 pin->gpio = config->ena_gpio;
1514 pin->ena_gpio_invert = config->ena_gpio_invert;
1515 list_add(&pin->list, ®ulator_ena_gpio_list);
1517 update_ena_gpio_to_rdev:
1518 pin->request_count++;
1519 rdev->ena_pin = pin;
1523 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1525 struct regulator_enable_gpio *pin, *n;
1530 /* Free the GPIO only in case of no use */
1531 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1532 if (pin->gpio == rdev->ena_pin->gpio) {
1533 if (pin->request_count <= 1) {
1534 pin->request_count = 0;
1535 gpio_free(pin->gpio);
1536 list_del(&pin->list);
1539 pin->request_count--;
1546 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1547 * @rdev: regulator_dev structure
1548 * @enable: enable GPIO at initial use?
1550 * GPIO is enabled in case of initial use. (enable_count is 0)
1551 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1553 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1555 struct regulator_enable_gpio *pin = rdev->ena_pin;
1561 /* Enable GPIO at initial use */
1562 if (pin->enable_count == 0)
1563 gpio_set_value_cansleep(pin->gpio,
1564 !pin->ena_gpio_invert);
1566 pin->enable_count++;
1568 if (pin->enable_count > 1) {
1569 pin->enable_count--;
1573 /* Disable GPIO if not used */
1574 if (pin->enable_count <= 1) {
1575 gpio_set_value_cansleep(pin->gpio,
1576 pin->ena_gpio_invert);
1577 pin->enable_count = 0;
1584 static int _regulator_do_enable(struct regulator_dev *rdev)
1588 /* Query before enabling in case configuration dependent. */
1589 ret = _regulator_get_enable_time(rdev);
1593 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1597 trace_regulator_enable(rdev_get_name(rdev));
1599 if (rdev->ena_pin) {
1600 ret = regulator_ena_gpio_ctrl(rdev, true);
1603 rdev->ena_gpio_state = 1;
1604 } else if (rdev->desc->ops->enable) {
1605 ret = rdev->desc->ops->enable(rdev);
1612 /* Allow the regulator to ramp; it would be useful to extend
1613 * this for bulk operations so that the regulators can ramp
1615 trace_regulator_enable_delay(rdev_get_name(rdev));
1617 if (delay >= 1000) {
1618 mdelay(delay / 1000);
1619 udelay(delay % 1000);
1624 trace_regulator_enable_complete(rdev_get_name(rdev));
1629 /* locks held by regulator_enable() */
1630 static int _regulator_enable(struct regulator_dev *rdev)
1634 /* check voltage and requested load before enabling */
1635 if (rdev->constraints &&
1636 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1637 drms_uA_update(rdev);
1639 if (rdev->use_count == 0) {
1640 /* The regulator may on if it's not switchable or left on */
1641 ret = _regulator_is_enabled(rdev);
1642 if (ret == -EINVAL || ret == 0) {
1643 if (!_regulator_can_change_status(rdev))
1646 ret = _regulator_do_enable(rdev);
1650 } else if (ret < 0) {
1651 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1654 /* Fallthrough on positive return values - already enabled */
1663 * regulator_enable - enable regulator output
1664 * @regulator: regulator source
1666 * Request that the regulator be enabled with the regulator output at
1667 * the predefined voltage or current value. Calls to regulator_enable()
1668 * must be balanced with calls to regulator_disable().
1670 * NOTE: the output value can be set by other drivers, boot loader or may be
1671 * hardwired in the regulator.
1673 int regulator_enable(struct regulator *regulator)
1675 struct regulator_dev *rdev = regulator->rdev;
1678 if (regulator->always_on)
1682 ret = regulator_enable(rdev->supply);
1687 mutex_lock(&rdev->mutex);
1688 ret = _regulator_enable(rdev);
1689 mutex_unlock(&rdev->mutex);
1691 if (ret != 0 && rdev->supply)
1692 regulator_disable(rdev->supply);
1696 EXPORT_SYMBOL_GPL(regulator_enable);
1698 static int _regulator_do_disable(struct regulator_dev *rdev)
1702 trace_regulator_disable(rdev_get_name(rdev));
1704 if (rdev->ena_pin) {
1705 ret = regulator_ena_gpio_ctrl(rdev, false);
1708 rdev->ena_gpio_state = 0;
1710 } else if (rdev->desc->ops->disable) {
1711 ret = rdev->desc->ops->disable(rdev);
1716 trace_regulator_disable_complete(rdev_get_name(rdev));
1718 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1723 /* locks held by regulator_disable() */
1724 static int _regulator_disable(struct regulator_dev *rdev)
1728 if (WARN(rdev->use_count <= 0,
1729 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1732 /* are we the last user and permitted to disable ? */
1733 if (rdev->use_count == 1 &&
1734 (rdev->constraints && !rdev->constraints->always_on)) {
1736 /* we are last user */
1737 if (_regulator_can_change_status(rdev)) {
1738 ret = _regulator_do_disable(rdev);
1740 rdev_err(rdev, "failed to disable\n");
1745 rdev->use_count = 0;
1746 } else if (rdev->use_count > 1) {
1748 if (rdev->constraints &&
1749 (rdev->constraints->valid_ops_mask &
1750 REGULATOR_CHANGE_DRMS))
1751 drms_uA_update(rdev);
1760 * regulator_disable - disable regulator output
1761 * @regulator: regulator source
1763 * Disable the regulator output voltage or current. Calls to
1764 * regulator_enable() must be balanced with calls to
1765 * regulator_disable().
1767 * NOTE: this will only disable the regulator output if no other consumer
1768 * devices have it enabled, the regulator device supports disabling and
1769 * machine constraints permit this operation.
1771 int regulator_disable(struct regulator *regulator)
1773 struct regulator_dev *rdev = regulator->rdev;
1776 if (regulator->always_on)
1779 mutex_lock(&rdev->mutex);
1780 ret = _regulator_disable(rdev);
1781 mutex_unlock(&rdev->mutex);
1783 if (ret == 0 && rdev->supply)
1784 regulator_disable(rdev->supply);
1788 EXPORT_SYMBOL_GPL(regulator_disable);
1790 /* locks held by regulator_force_disable() */
1791 static int _regulator_force_disable(struct regulator_dev *rdev)
1796 if (rdev->desc->ops->disable) {
1797 /* ah well, who wants to live forever... */
1798 ret = rdev->desc->ops->disable(rdev);
1800 rdev_err(rdev, "failed to force disable\n");
1803 /* notify other consumers that power has been forced off */
1804 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805 REGULATOR_EVENT_DISABLE, NULL);
1812 * regulator_force_disable - force disable regulator output
1813 * @regulator: regulator source
1815 * Forcibly disable the regulator output voltage or current.
1816 * NOTE: this *will* disable the regulator output even if other consumer
1817 * devices have it enabled. This should be used for situations when device
1818 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1820 int regulator_force_disable(struct regulator *regulator)
1822 struct regulator_dev *rdev = regulator->rdev;
1825 mutex_lock(&rdev->mutex);
1826 regulator->uA_load = 0;
1827 ret = _regulator_force_disable(regulator->rdev);
1828 mutex_unlock(&rdev->mutex);
1831 while (rdev->open_count--)
1832 regulator_disable(rdev->supply);
1836 EXPORT_SYMBOL_GPL(regulator_force_disable);
1838 static void regulator_disable_work(struct work_struct *work)
1840 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1844 mutex_lock(&rdev->mutex);
1846 BUG_ON(!rdev->deferred_disables);
1848 count = rdev->deferred_disables;
1849 rdev->deferred_disables = 0;
1851 for (i = 0; i < count; i++) {
1852 ret = _regulator_disable(rdev);
1854 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1857 mutex_unlock(&rdev->mutex);
1860 for (i = 0; i < count; i++) {
1861 ret = regulator_disable(rdev->supply);
1864 "Supply disable failed: %d\n", ret);
1871 * regulator_disable_deferred - disable regulator output with delay
1872 * @regulator: regulator source
1873 * @ms: miliseconds until the regulator is disabled
1875 * Execute regulator_disable() on the regulator after a delay. This
1876 * is intended for use with devices that require some time to quiesce.
1878 * NOTE: this will only disable the regulator output if no other consumer
1879 * devices have it enabled, the regulator device supports disabling and
1880 * machine constraints permit this operation.
1882 int regulator_disable_deferred(struct regulator *regulator, int ms)
1884 struct regulator_dev *rdev = regulator->rdev;
1887 if (regulator->always_on)
1891 return regulator_disable(regulator);
1893 mutex_lock(&rdev->mutex);
1894 rdev->deferred_disables++;
1895 mutex_unlock(&rdev->mutex);
1897 ret = queue_delayed_work(system_power_efficient_wq,
1898 &rdev->disable_work,
1899 msecs_to_jiffies(ms));
1905 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1908 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1910 * @rdev: regulator to operate on
1912 * Regulators that use regmap for their register I/O can set the
1913 * enable_reg and enable_mask fields in their descriptor and then use
1914 * this as their is_enabled operation, saving some code.
1916 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1921 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1925 if (rdev->desc->enable_is_inverted)
1926 return (val & rdev->desc->enable_mask) == 0;
1928 return (val & rdev->desc->enable_mask) != 0;
1930 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1933 * regulator_enable_regmap - standard enable() for regmap users
1935 * @rdev: regulator to operate on
1937 * Regulators that use regmap for their register I/O can set the
1938 * enable_reg and enable_mask fields in their descriptor and then use
1939 * this as their enable() operation, saving some code.
1941 int regulator_enable_regmap(struct regulator_dev *rdev)
1945 if (rdev->desc->enable_is_inverted)
1948 val = rdev->desc->enable_mask;
1950 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1951 rdev->desc->enable_mask, val);
1953 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1956 * regulator_disable_regmap - standard disable() for regmap users
1958 * @rdev: regulator to operate on
1960 * Regulators that use regmap for their register I/O can set the
1961 * enable_reg and enable_mask fields in their descriptor and then use
1962 * this as their disable() operation, saving some code.
1964 int regulator_disable_regmap(struct regulator_dev *rdev)
1968 if (rdev->desc->enable_is_inverted)
1969 val = rdev->desc->enable_mask;
1973 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1974 rdev->desc->enable_mask, val);
1976 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1978 static int _regulator_is_enabled(struct regulator_dev *rdev)
1980 /* A GPIO control always takes precedence */
1982 return rdev->ena_gpio_state;
1984 /* If we don't know then assume that the regulator is always on */
1985 if (!rdev->desc->ops->is_enabled)
1988 return rdev->desc->ops->is_enabled(rdev);
1992 * regulator_is_enabled - is the regulator output enabled
1993 * @regulator: regulator source
1995 * Returns positive if the regulator driver backing the source/client
1996 * has requested that the device be enabled, zero if it hasn't, else a
1997 * negative errno code.
1999 * Note that the device backing this regulator handle can have multiple
2000 * users, so it might be enabled even if regulator_enable() was never
2001 * called for this particular source.
2003 int regulator_is_enabled(struct regulator *regulator)
2007 if (regulator->always_on)
2010 mutex_lock(®ulator->rdev->mutex);
2011 ret = _regulator_is_enabled(regulator->rdev);
2012 mutex_unlock(®ulator->rdev->mutex);
2016 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2019 * regulator_can_change_voltage - check if regulator can change voltage
2020 * @regulator: regulator source
2022 * Returns positive if the regulator driver backing the source/client
2023 * can change its voltage, false otherwise. Usefull for detecting fixed
2024 * or dummy regulators and disabling voltage change logic in the client
2027 int regulator_can_change_voltage(struct regulator *regulator)
2029 struct regulator_dev *rdev = regulator->rdev;
2031 if (rdev->constraints &&
2032 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2033 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2036 if (rdev->desc->continuous_voltage_range &&
2037 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2038 rdev->constraints->min_uV != rdev->constraints->max_uV)
2044 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2047 * regulator_count_voltages - count regulator_list_voltage() selectors
2048 * @regulator: regulator source
2050 * Returns number of selectors, or negative errno. Selectors are
2051 * numbered starting at zero, and typically correspond to bitfields
2052 * in hardware registers.
2054 int regulator_count_voltages(struct regulator *regulator)
2056 struct regulator_dev *rdev = regulator->rdev;
2058 return rdev->desc->n_voltages ? : -EINVAL;
2060 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2063 * regulator_list_voltage_linear - List voltages with simple calculation
2065 * @rdev: Regulator device
2066 * @selector: Selector to convert into a voltage
2068 * Regulators with a simple linear mapping between voltages and
2069 * selectors can set min_uV and uV_step in the regulator descriptor
2070 * and then use this function as their list_voltage() operation,
2072 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2073 unsigned int selector)
2075 if (selector >= rdev->desc->n_voltages)
2077 if (selector < rdev->desc->linear_min_sel)
2080 selector -= rdev->desc->linear_min_sel;
2082 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2084 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2087 * regulator_list_voltage_linear_range - List voltages for linear ranges
2089 * @rdev: Regulator device
2090 * @selector: Selector to convert into a voltage
2092 * Regulators with a series of simple linear mappings between voltages
2093 * and selectors can set linear_ranges in the regulator descriptor and
2094 * then use this function as their list_voltage() operation,
2096 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
2097 unsigned int selector)
2099 const struct regulator_linear_range *range;
2102 if (!rdev->desc->n_linear_ranges) {
2103 BUG_ON(!rdev->desc->n_linear_ranges);
2107 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
2108 range = &rdev->desc->linear_ranges[i];
2110 if (!(selector >= range->min_sel &&
2111 selector <= range->max_sel))
2114 selector -= range->min_sel;
2116 return range->min_uV + (range->uV_step * selector);
2121 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
2124 * regulator_list_voltage_table - List voltages with table based mapping
2126 * @rdev: Regulator device
2127 * @selector: Selector to convert into a voltage
2129 * Regulators with table based mapping between voltages and
2130 * selectors can set volt_table in the regulator descriptor
2131 * and then use this function as their list_voltage() operation.
2133 int regulator_list_voltage_table(struct regulator_dev *rdev,
2134 unsigned int selector)
2136 if (!rdev->desc->volt_table) {
2137 BUG_ON(!rdev->desc->volt_table);
2141 if (selector >= rdev->desc->n_voltages)
2144 return rdev->desc->volt_table[selector];
2146 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2149 * regulator_list_voltage - enumerate supported voltages
2150 * @regulator: regulator source
2151 * @selector: identify voltage to list
2152 * Context: can sleep
2154 * Returns a voltage that can be passed to @regulator_set_voltage(),
2155 * zero if this selector code can't be used on this system, or a
2158 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2160 struct regulator_dev *rdev = regulator->rdev;
2161 struct regulator_ops *ops = rdev->desc->ops;
2164 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2167 mutex_lock(&rdev->mutex);
2168 ret = ops->list_voltage(rdev, selector);
2169 mutex_unlock(&rdev->mutex);
2172 if (ret < rdev->constraints->min_uV)
2174 else if (ret > rdev->constraints->max_uV)
2180 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2183 * regulator_get_linear_step - return the voltage step size between VSEL values
2184 * @regulator: regulator source
2186 * Returns the voltage step size between VSEL values for linear
2187 * regulators, or return 0 if the regulator isn't a linear regulator.
2189 unsigned int regulator_get_linear_step(struct regulator *regulator)
2191 struct regulator_dev *rdev = regulator->rdev;
2193 return rdev->desc->uV_step;
2195 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2198 * regulator_is_supported_voltage - check if a voltage range can be supported
2200 * @regulator: Regulator to check.
2201 * @min_uV: Minimum required voltage in uV.
2202 * @max_uV: Maximum required voltage in uV.
2204 * Returns a boolean or a negative error code.
2206 int regulator_is_supported_voltage(struct regulator *regulator,
2207 int min_uV, int max_uV)
2209 struct regulator_dev *rdev = regulator->rdev;
2210 int i, voltages, ret;
2212 /* If we can't change voltage check the current voltage */
2213 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2214 ret = regulator_get_voltage(regulator);
2216 return (min_uV <= ret && ret <= max_uV);
2221 /* Any voltage within constrains range is fine? */
2222 if (rdev->desc->continuous_voltage_range)
2223 return min_uV >= rdev->constraints->min_uV &&
2224 max_uV <= rdev->constraints->max_uV;
2226 ret = regulator_count_voltages(regulator);
2231 for (i = 0; i < voltages; i++) {
2232 ret = regulator_list_voltage(regulator, i);
2234 if (ret >= min_uV && ret <= max_uV)
2240 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2243 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2245 * @rdev: regulator to operate on
2247 * Regulators that use regmap for their register I/O can set the
2248 * vsel_reg and vsel_mask fields in their descriptor and then use this
2249 * as their get_voltage_vsel operation, saving some code.
2251 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2256 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2260 val &= rdev->desc->vsel_mask;
2261 val >>= ffs(rdev->desc->vsel_mask) - 1;
2265 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2268 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2270 * @rdev: regulator to operate on
2271 * @sel: Selector to set
2273 * Regulators that use regmap for their register I/O can set the
2274 * vsel_reg and vsel_mask fields in their descriptor and then use this
2275 * as their set_voltage_vsel operation, saving some code.
2277 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2281 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2283 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2284 rdev->desc->vsel_mask, sel);
2288 if (rdev->desc->apply_bit)
2289 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2290 rdev->desc->apply_bit,
2291 rdev->desc->apply_bit);
2294 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2297 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2299 * @rdev: Regulator to operate on
2300 * @min_uV: Lower bound for voltage
2301 * @max_uV: Upper bound for voltage
2303 * Drivers implementing set_voltage_sel() and list_voltage() can use
2304 * this as their map_voltage() operation. It will find a suitable
2305 * voltage by calling list_voltage() until it gets something in bounds
2306 * for the requested voltages.
2308 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2309 int min_uV, int max_uV)
2311 int best_val = INT_MAX;
2315 /* Find the smallest voltage that falls within the specified
2318 for (i = 0; i < rdev->desc->n_voltages; i++) {
2319 ret = rdev->desc->ops->list_voltage(rdev, i);
2323 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2329 if (best_val != INT_MAX)
2334 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2337 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2339 * @rdev: Regulator to operate on
2340 * @min_uV: Lower bound for voltage
2341 * @max_uV: Upper bound for voltage
2343 * Drivers that have ascendant voltage list can use this as their
2344 * map_voltage() operation.
2346 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2347 int min_uV, int max_uV)
2351 for (i = 0; i < rdev->desc->n_voltages; i++) {
2352 ret = rdev->desc->ops->list_voltage(rdev, i);
2359 if (ret >= min_uV && ret <= max_uV)
2365 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2368 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2370 * @rdev: Regulator to operate on
2371 * @min_uV: Lower bound for voltage
2372 * @max_uV: Upper bound for voltage
2374 * Drivers providing min_uV and uV_step in their regulator_desc can
2375 * use this as their map_voltage() operation.
2377 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2378 int min_uV, int max_uV)
2382 /* Allow uV_step to be 0 for fixed voltage */
2383 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2384 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2390 if (!rdev->desc->uV_step) {
2391 BUG_ON(!rdev->desc->uV_step);
2395 if (min_uV < rdev->desc->min_uV)
2396 min_uV = rdev->desc->min_uV;
2398 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2402 ret += rdev->desc->linear_min_sel;
2404 /* Map back into a voltage to verify we're still in bounds */
2405 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2406 if (voltage < min_uV || voltage > max_uV)
2411 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2414 * regulator_map_voltage_linear - map_voltage() for multiple linear ranges
2416 * @rdev: Regulator to operate on
2417 * @min_uV: Lower bound for voltage
2418 * @max_uV: Upper bound for voltage
2420 * Drivers providing linear_ranges in their descriptor can use this as
2421 * their map_voltage() callback.
2423 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
2424 int min_uV, int max_uV)
2426 const struct regulator_linear_range *range;
2430 if (!rdev->desc->n_linear_ranges) {
2431 BUG_ON(!rdev->desc->n_linear_ranges);
2435 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
2436 range = &rdev->desc->linear_ranges[i];
2438 if (!(min_uV <= range->max_uV && max_uV >= range->min_uV))
2441 if (min_uV <= range->min_uV)
2442 min_uV = range->min_uV;
2444 /* range->uV_step == 0 means fixed voltage range */
2445 if (range->uV_step == 0) {
2448 ret = DIV_ROUND_UP(min_uV - range->min_uV,
2454 ret += range->min_sel;
2459 if (i == rdev->desc->n_linear_ranges)
2462 /* Map back into a voltage to verify we're still in bounds */
2463 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2464 if (voltage < min_uV || voltage > max_uV)
2469 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
2471 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2472 int min_uV, int max_uV)
2477 unsigned int selector;
2478 int old_selector = -1;
2480 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2482 min_uV += rdev->constraints->uV_offset;
2483 max_uV += rdev->constraints->uV_offset;
2486 * If we can't obtain the old selector there is not enough
2487 * info to call set_voltage_time_sel().
2489 if (_regulator_is_enabled(rdev) &&
2490 rdev->desc->ops->set_voltage_time_sel &&
2491 rdev->desc->ops->get_voltage_sel) {
2492 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2493 if (old_selector < 0)
2494 return old_selector;
2497 if (rdev->desc->ops->set_voltage) {
2498 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2502 if (rdev->desc->ops->list_voltage)
2503 best_val = rdev->desc->ops->list_voltage(rdev,
2506 best_val = _regulator_get_voltage(rdev);
2509 } else if (rdev->desc->ops->set_voltage_sel) {
2510 if (rdev->desc->ops->map_voltage) {
2511 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2514 if (rdev->desc->ops->list_voltage ==
2515 regulator_list_voltage_linear)
2516 ret = regulator_map_voltage_linear(rdev,
2519 ret = regulator_map_voltage_iterate(rdev,
2524 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2525 if (min_uV <= best_val && max_uV >= best_val) {
2527 if (old_selector == selector)
2530 ret = rdev->desc->ops->set_voltage_sel(
2540 /* Call set_voltage_time_sel if successfully obtained old_selector */
2541 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2542 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2544 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2545 old_selector, selector);
2547 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2552 /* Insert any necessary delays */
2553 if (delay >= 1000) {
2554 mdelay(delay / 1000);
2555 udelay(delay % 1000);
2561 if (ret == 0 && best_val >= 0) {
2562 unsigned long data = best_val;
2564 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2568 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2574 * regulator_set_voltage - set regulator output voltage
2575 * @regulator: regulator source
2576 * @min_uV: Minimum required voltage in uV
2577 * @max_uV: Maximum acceptable voltage in uV
2579 * Sets a voltage regulator to the desired output voltage. This can be set
2580 * during any regulator state. IOW, regulator can be disabled or enabled.
2582 * If the regulator is enabled then the voltage will change to the new value
2583 * immediately otherwise if the regulator is disabled the regulator will
2584 * output at the new voltage when enabled.
2586 * NOTE: If the regulator is shared between several devices then the lowest
2587 * request voltage that meets the system constraints will be used.
2588 * Regulator system constraints must be set for this regulator before
2589 * calling this function otherwise this call will fail.
2591 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2593 struct regulator_dev *rdev = regulator->rdev;
2595 int old_min_uV, old_max_uV;
2597 mutex_lock(&rdev->mutex);
2599 /* If we're setting the same range as last time the change
2600 * should be a noop (some cpufreq implementations use the same
2601 * voltage for multiple frequencies, for example).
2603 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2607 if (!rdev->desc->ops->set_voltage &&
2608 !rdev->desc->ops->set_voltage_sel) {
2613 /* constraints check */
2614 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2618 /* restore original values in case of error */
2619 old_min_uV = regulator->min_uV;
2620 old_max_uV = regulator->max_uV;
2621 regulator->min_uV = min_uV;
2622 regulator->max_uV = max_uV;
2624 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2628 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2633 mutex_unlock(&rdev->mutex);
2636 regulator->min_uV = old_min_uV;
2637 regulator->max_uV = old_max_uV;
2638 mutex_unlock(&rdev->mutex);
2641 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2644 * regulator_set_voltage_time - get raise/fall time
2645 * @regulator: regulator source
2646 * @old_uV: starting voltage in microvolts
2647 * @new_uV: target voltage in microvolts
2649 * Provided with the starting and ending voltage, this function attempts to
2650 * calculate the time in microseconds required to rise or fall to this new
2653 int regulator_set_voltage_time(struct regulator *regulator,
2654 int old_uV, int new_uV)
2656 struct regulator_dev *rdev = regulator->rdev;
2657 struct regulator_ops *ops = rdev->desc->ops;
2663 /* Currently requires operations to do this */
2664 if (!ops->list_voltage || !ops->set_voltage_time_sel
2665 || !rdev->desc->n_voltages)
2668 for (i = 0; i < rdev->desc->n_voltages; i++) {
2669 /* We only look for exact voltage matches here */
2670 voltage = regulator_list_voltage(regulator, i);
2675 if (voltage == old_uV)
2677 if (voltage == new_uV)
2681 if (old_sel < 0 || new_sel < 0)
2684 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2686 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2689 * regulator_set_voltage_time_sel - get raise/fall time
2690 * @rdev: regulator source device
2691 * @old_selector: selector for starting voltage
2692 * @new_selector: selector for target voltage
2694 * Provided with the starting and target voltage selectors, this function
2695 * returns time in microseconds required to rise or fall to this new voltage
2697 * Drivers providing ramp_delay in regulation_constraints can use this as their
2698 * set_voltage_time_sel() operation.
2700 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2701 unsigned int old_selector,
2702 unsigned int new_selector)
2704 unsigned int ramp_delay = 0;
2705 int old_volt, new_volt;
2707 if (rdev->constraints->ramp_delay)
2708 ramp_delay = rdev->constraints->ramp_delay;
2709 else if (rdev->desc->ramp_delay)
2710 ramp_delay = rdev->desc->ramp_delay;
2712 if (ramp_delay == 0) {
2713 rdev_warn(rdev, "ramp_delay not set\n");
2718 if (!rdev->desc->ops->list_voltage)
2721 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2722 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2724 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2726 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2729 * regulator_sync_voltage - re-apply last regulator output voltage
2730 * @regulator: regulator source
2732 * Re-apply the last configured voltage. This is intended to be used
2733 * where some external control source the consumer is cooperating with
2734 * has caused the configured voltage to change.
2736 int regulator_sync_voltage(struct regulator *regulator)
2738 struct regulator_dev *rdev = regulator->rdev;
2739 int ret, min_uV, max_uV;
2741 mutex_lock(&rdev->mutex);
2743 if (!rdev->desc->ops->set_voltage &&
2744 !rdev->desc->ops->set_voltage_sel) {
2749 /* This is only going to work if we've had a voltage configured. */
2750 if (!regulator->min_uV && !regulator->max_uV) {
2755 min_uV = regulator->min_uV;
2756 max_uV = regulator->max_uV;
2758 /* This should be a paranoia check... */
2759 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2763 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2767 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2770 mutex_unlock(&rdev->mutex);
2773 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2775 static int _regulator_get_voltage(struct regulator_dev *rdev)
2779 if (rdev->desc->ops->get_voltage_sel) {
2780 sel = rdev->desc->ops->get_voltage_sel(rdev);
2783 ret = rdev->desc->ops->list_voltage(rdev, sel);
2784 } else if (rdev->desc->ops->get_voltage) {
2785 ret = rdev->desc->ops->get_voltage(rdev);
2786 } else if (rdev->desc->ops->list_voltage) {
2787 ret = rdev->desc->ops->list_voltage(rdev, 0);
2794 return ret - rdev->constraints->uV_offset;
2798 * regulator_get_voltage - get regulator output voltage
2799 * @regulator: regulator source
2801 * This returns the current regulator voltage in uV.
2803 * NOTE: If the regulator is disabled it will return the voltage value. This
2804 * function should not be used to determine regulator state.
2806 int regulator_get_voltage(struct regulator *regulator)
2810 mutex_lock(®ulator->rdev->mutex);
2812 ret = _regulator_get_voltage(regulator->rdev);
2814 mutex_unlock(®ulator->rdev->mutex);
2818 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2821 * regulator_set_current_limit - set regulator output current limit
2822 * @regulator: regulator source
2823 * @min_uA: Minimum supported current in uA
2824 * @max_uA: Maximum supported current in uA
2826 * Sets current sink to the desired output current. This can be set during
2827 * any regulator state. IOW, regulator can be disabled or enabled.
2829 * If the regulator is enabled then the current will change to the new value
2830 * immediately otherwise if the regulator is disabled the regulator will
2831 * output at the new current when enabled.
2833 * NOTE: Regulator system constraints must be set for this regulator before
2834 * calling this function otherwise this call will fail.
2836 int regulator_set_current_limit(struct regulator *regulator,
2837 int min_uA, int max_uA)
2839 struct regulator_dev *rdev = regulator->rdev;
2842 mutex_lock(&rdev->mutex);
2845 if (!rdev->desc->ops->set_current_limit) {
2850 /* constraints check */
2851 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2855 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2857 mutex_unlock(&rdev->mutex);
2860 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2862 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2866 mutex_lock(&rdev->mutex);
2869 if (!rdev->desc->ops->get_current_limit) {
2874 ret = rdev->desc->ops->get_current_limit(rdev);
2876 mutex_unlock(&rdev->mutex);
2881 * regulator_get_current_limit - get regulator output current
2882 * @regulator: regulator source
2884 * This returns the current supplied by the specified current sink in uA.
2886 * NOTE: If the regulator is disabled it will return the current value. This
2887 * function should not be used to determine regulator state.
2889 int regulator_get_current_limit(struct regulator *regulator)
2891 return _regulator_get_current_limit(regulator->rdev);
2893 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2896 * regulator_set_mode - set regulator operating mode
2897 * @regulator: regulator source
2898 * @mode: operating mode - one of the REGULATOR_MODE constants
2900 * Set regulator operating mode to increase regulator efficiency or improve
2901 * regulation performance.
2903 * NOTE: Regulator system constraints must be set for this regulator before
2904 * calling this function otherwise this call will fail.
2906 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2908 struct regulator_dev *rdev = regulator->rdev;
2910 int regulator_curr_mode;
2912 mutex_lock(&rdev->mutex);
2915 if (!rdev->desc->ops->set_mode) {
2920 /* return if the same mode is requested */
2921 if (rdev->desc->ops->get_mode) {
2922 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2923 if (regulator_curr_mode == mode) {
2929 /* constraints check */
2930 ret = regulator_mode_constrain(rdev, &mode);
2934 ret = rdev->desc->ops->set_mode(rdev, mode);
2936 mutex_unlock(&rdev->mutex);
2939 EXPORT_SYMBOL_GPL(regulator_set_mode);
2941 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2945 mutex_lock(&rdev->mutex);
2948 if (!rdev->desc->ops->get_mode) {
2953 ret = rdev->desc->ops->get_mode(rdev);
2955 mutex_unlock(&rdev->mutex);
2960 * regulator_get_mode - get regulator operating mode
2961 * @regulator: regulator source
2963 * Get the current regulator operating mode.
2965 unsigned int regulator_get_mode(struct regulator *regulator)
2967 return _regulator_get_mode(regulator->rdev);
2969 EXPORT_SYMBOL_GPL(regulator_get_mode);
2972 * regulator_set_optimum_mode - set regulator optimum operating mode
2973 * @regulator: regulator source
2974 * @uA_load: load current
2976 * Notifies the regulator core of a new device load. This is then used by
2977 * DRMS (if enabled by constraints) to set the most efficient regulator
2978 * operating mode for the new regulator loading.
2980 * Consumer devices notify their supply regulator of the maximum power
2981 * they will require (can be taken from device datasheet in the power
2982 * consumption tables) when they change operational status and hence power
2983 * state. Examples of operational state changes that can affect power
2984 * consumption are :-
2986 * o Device is opened / closed.
2987 * o Device I/O is about to begin or has just finished.
2988 * o Device is idling in between work.
2990 * This information is also exported via sysfs to userspace.
2992 * DRMS will sum the total requested load on the regulator and change
2993 * to the most efficient operating mode if platform constraints allow.
2995 * Returns the new regulator mode or error.
2997 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2999 struct regulator_dev *rdev = regulator->rdev;
3000 struct regulator *consumer;
3001 int ret, output_uV, input_uV = 0, total_uA_load = 0;
3005 input_uV = regulator_get_voltage(rdev->supply);
3007 mutex_lock(&rdev->mutex);
3010 * first check to see if we can set modes at all, otherwise just
3011 * tell the consumer everything is OK.
3013 regulator->uA_load = uA_load;
3014 ret = regulator_check_drms(rdev);
3020 if (!rdev->desc->ops->get_optimum_mode)
3024 * we can actually do this so any errors are indicators of
3025 * potential real failure.
3029 if (!rdev->desc->ops->set_mode)
3032 /* get output voltage */
3033 output_uV = _regulator_get_voltage(rdev);
3034 if (output_uV <= 0) {
3035 rdev_err(rdev, "invalid output voltage found\n");
3039 /* No supply? Use constraint voltage */
3041 input_uV = rdev->constraints->input_uV;
3042 if (input_uV <= 0) {
3043 rdev_err(rdev, "invalid input voltage found\n");
3047 /* calc total requested load for this regulator */
3048 list_for_each_entry(consumer, &rdev->consumer_list, list)
3049 total_uA_load += consumer->uA_load;
3051 mode = rdev->desc->ops->get_optimum_mode(rdev,
3052 input_uV, output_uV,
3054 ret = regulator_mode_constrain(rdev, &mode);
3056 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3057 total_uA_load, input_uV, output_uV);
3061 ret = rdev->desc->ops->set_mode(rdev, mode);
3063 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3068 mutex_unlock(&rdev->mutex);
3071 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3074 * regulator_set_bypass_regmap - Default set_bypass() using regmap
3076 * @rdev: device to operate on.
3077 * @enable: state to set.
3079 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
3084 val = rdev->desc->bypass_mask;
3088 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
3089 rdev->desc->bypass_mask, val);
3091 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
3094 * regulator_get_bypass_regmap - Default get_bypass() using regmap
3096 * @rdev: device to operate on.
3097 * @enable: current state.
3099 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
3104 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
3108 *enable = val & rdev->desc->bypass_mask;
3112 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3115 * regulator_allow_bypass - allow the regulator to go into bypass mode
3117 * @regulator: Regulator to configure
3118 * @enable: enable or disable bypass mode
3120 * Allow the regulator to go into bypass mode if all other consumers
3121 * for the regulator also enable bypass mode and the machine
3122 * constraints allow this. Bypass mode means that the regulator is
3123 * simply passing the input directly to the output with no regulation.
3125 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3127 struct regulator_dev *rdev = regulator->rdev;
3130 if (!rdev->desc->ops->set_bypass)
3133 if (rdev->constraints &&
3134 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3137 mutex_lock(&rdev->mutex);
3139 if (enable && !regulator->bypass) {
3140 rdev->bypass_count++;
3142 if (rdev->bypass_count == rdev->open_count) {
3143 ret = rdev->desc->ops->set_bypass(rdev, enable);
3145 rdev->bypass_count--;
3148 } else if (!enable && regulator->bypass) {
3149 rdev->bypass_count--;
3151 if (rdev->bypass_count != rdev->open_count) {
3152 ret = rdev->desc->ops->set_bypass(rdev, enable);
3154 rdev->bypass_count++;
3159 regulator->bypass = enable;
3161 mutex_unlock(&rdev->mutex);
3165 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3168 * regulator_register_notifier - register regulator event notifier
3169 * @regulator: regulator source
3170 * @nb: notifier block
3172 * Register notifier block to receive regulator events.
3174 int regulator_register_notifier(struct regulator *regulator,
3175 struct notifier_block *nb)
3177 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3180 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3183 * regulator_unregister_notifier - unregister regulator event notifier
3184 * @regulator: regulator source
3185 * @nb: notifier block
3187 * Unregister regulator event notifier block.
3189 int regulator_unregister_notifier(struct regulator *regulator,
3190 struct notifier_block *nb)
3192 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3195 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3197 /* notify regulator consumers and downstream regulator consumers.
3198 * Note mutex must be held by caller.
3200 static void _notifier_call_chain(struct regulator_dev *rdev,
3201 unsigned long event, void *data)
3203 /* call rdev chain first */
3204 blocking_notifier_call_chain(&rdev->notifier, event, data);
3208 * regulator_bulk_get - get multiple regulator consumers
3210 * @dev: Device to supply
3211 * @num_consumers: Number of consumers to register
3212 * @consumers: Configuration of consumers; clients are stored here.
3214 * @return 0 on success, an errno on failure.
3216 * This helper function allows drivers to get several regulator
3217 * consumers in one operation. If any of the regulators cannot be
3218 * acquired then any regulators that were allocated will be freed
3219 * before returning to the caller.
3221 int regulator_bulk_get(struct device *dev, int num_consumers,
3222 struct regulator_bulk_data *consumers)
3227 for (i = 0; i < num_consumers; i++)
3228 consumers[i].consumer = NULL;
3230 for (i = 0; i < num_consumers; i++) {
3231 consumers[i].consumer = regulator_get(dev,
3232 consumers[i].supply);
3233 if (IS_ERR(consumers[i].consumer)) {
3234 ret = PTR_ERR(consumers[i].consumer);
3235 dev_err(dev, "Failed to get supply '%s': %d\n",
3236 consumers[i].supply, ret);
3237 consumers[i].consumer = NULL;
3246 regulator_put(consumers[i].consumer);
3250 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3253 * devm_regulator_bulk_get - managed get multiple regulator consumers
3255 * @dev: Device to supply
3256 * @num_consumers: Number of consumers to register
3257 * @consumers: Configuration of consumers; clients are stored here.
3259 * @return 0 on success, an errno on failure.
3261 * This helper function allows drivers to get several regulator
3262 * consumers in one operation with management, the regulators will
3263 * automatically be freed when the device is unbound. If any of the
3264 * regulators cannot be acquired then any regulators that were
3265 * allocated will be freed before returning to the caller.
3267 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3268 struct regulator_bulk_data *consumers)
3273 for (i = 0; i < num_consumers; i++)
3274 consumers[i].consumer = NULL;
3276 for (i = 0; i < num_consumers; i++) {
3277 consumers[i].consumer = devm_regulator_get(dev,
3278 consumers[i].supply);
3279 if (IS_ERR(consumers[i].consumer)) {
3280 ret = PTR_ERR(consumers[i].consumer);
3281 dev_err(dev, "Failed to get supply '%s': %d\n",
3282 consumers[i].supply, ret);
3283 consumers[i].consumer = NULL;
3291 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3292 devm_regulator_put(consumers[i].consumer);
3296 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3298 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3300 struct regulator_bulk_data *bulk = data;
3302 bulk->ret = regulator_enable(bulk->consumer);
3306 * regulator_bulk_enable - enable multiple regulator consumers
3308 * @num_consumers: Number of consumers
3309 * @consumers: Consumer data; clients are stored here.
3310 * @return 0 on success, an errno on failure
3312 * This convenience API allows consumers to enable multiple regulator
3313 * clients in a single API call. If any consumers cannot be enabled
3314 * then any others that were enabled will be disabled again prior to
3317 int regulator_bulk_enable(int num_consumers,
3318 struct regulator_bulk_data *consumers)
3320 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3324 for (i = 0; i < num_consumers; i++) {
3325 if (consumers[i].consumer->always_on)
3326 consumers[i].ret = 0;
3328 async_schedule_domain(regulator_bulk_enable_async,
3329 &consumers[i], &async_domain);
3332 async_synchronize_full_domain(&async_domain);
3334 /* If any consumer failed we need to unwind any that succeeded */
3335 for (i = 0; i < num_consumers; i++) {
3336 if (consumers[i].ret != 0) {
3337 ret = consumers[i].ret;
3345 for (i = 0; i < num_consumers; i++) {
3346 if (consumers[i].ret < 0)
3347 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3350 regulator_disable(consumers[i].consumer);
3355 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3358 * regulator_bulk_disable - disable multiple regulator consumers
3360 * @num_consumers: Number of consumers
3361 * @consumers: Consumer data; clients are stored here.
3362 * @return 0 on success, an errno on failure
3364 * This convenience API allows consumers to disable multiple regulator
3365 * clients in a single API call. If any consumers cannot be disabled
3366 * then any others that were disabled will be enabled again prior to
3369 int regulator_bulk_disable(int num_consumers,
3370 struct regulator_bulk_data *consumers)
3375 for (i = num_consumers - 1; i >= 0; --i) {
3376 ret = regulator_disable(consumers[i].consumer);
3384 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3385 for (++i; i < num_consumers; ++i) {
3386 r = regulator_enable(consumers[i].consumer);
3388 pr_err("Failed to reename %s: %d\n",
3389 consumers[i].supply, r);
3394 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3397 * regulator_bulk_force_disable - force disable multiple regulator consumers
3399 * @num_consumers: Number of consumers
3400 * @consumers: Consumer data; clients are stored here.
3401 * @return 0 on success, an errno on failure
3403 * This convenience API allows consumers to forcibly disable multiple regulator
3404 * clients in a single API call.
3405 * NOTE: This should be used for situations when device damage will
3406 * likely occur if the regulators are not disabled (e.g. over temp).
3407 * Although regulator_force_disable function call for some consumers can
3408 * return error numbers, the function is called for all consumers.
3410 int regulator_bulk_force_disable(int num_consumers,
3411 struct regulator_bulk_data *consumers)
3416 for (i = 0; i < num_consumers; i++)
3418 regulator_force_disable(consumers[i].consumer);
3420 for (i = 0; i < num_consumers; i++) {
3421 if (consumers[i].ret != 0) {
3422 ret = consumers[i].ret;
3431 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3434 * regulator_bulk_free - free multiple regulator consumers
3436 * @num_consumers: Number of consumers
3437 * @consumers: Consumer data; clients are stored here.
3439 * This convenience API allows consumers to free multiple regulator
3440 * clients in a single API call.
3442 void regulator_bulk_free(int num_consumers,
3443 struct regulator_bulk_data *consumers)
3447 for (i = 0; i < num_consumers; i++) {
3448 regulator_put(consumers[i].consumer);
3449 consumers[i].consumer = NULL;
3452 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3455 * regulator_notifier_call_chain - call regulator event notifier
3456 * @rdev: regulator source
3457 * @event: notifier block
3458 * @data: callback-specific data.
3460 * Called by regulator drivers to notify clients a regulator event has
3461 * occurred. We also notify regulator clients downstream.
3462 * Note lock must be held by caller.
3464 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3465 unsigned long event, void *data)
3467 _notifier_call_chain(rdev, event, data);
3471 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3474 * regulator_mode_to_status - convert a regulator mode into a status
3476 * @mode: Mode to convert
3478 * Convert a regulator mode into a status.
3480 int regulator_mode_to_status(unsigned int mode)
3483 case REGULATOR_MODE_FAST:
3484 return REGULATOR_STATUS_FAST;
3485 case REGULATOR_MODE_NORMAL:
3486 return REGULATOR_STATUS_NORMAL;
3487 case REGULATOR_MODE_IDLE:
3488 return REGULATOR_STATUS_IDLE;
3489 case REGULATOR_MODE_STANDBY:
3490 return REGULATOR_STATUS_STANDBY;
3492 return REGULATOR_STATUS_UNDEFINED;
3495 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3498 * To avoid cluttering sysfs (and memory) with useless state, only
3499 * create attributes that can be meaningfully displayed.
3501 static int add_regulator_attributes(struct regulator_dev *rdev)
3503 struct device *dev = &rdev->dev;
3504 struct regulator_ops *ops = rdev->desc->ops;
3507 /* some attributes need specific methods to be displayed */
3508 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3509 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3510 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3511 status = device_create_file(dev, &dev_attr_microvolts);
3515 if (ops->get_current_limit) {
3516 status = device_create_file(dev, &dev_attr_microamps);
3520 if (ops->get_mode) {
3521 status = device_create_file(dev, &dev_attr_opmode);
3525 if (rdev->ena_pin || ops->is_enabled) {
3526 status = device_create_file(dev, &dev_attr_state);
3530 if (ops->get_status) {
3531 status = device_create_file(dev, &dev_attr_status);
3535 if (ops->get_bypass) {
3536 status = device_create_file(dev, &dev_attr_bypass);
3541 /* some attributes are type-specific */
3542 if (rdev->desc->type == REGULATOR_CURRENT) {
3543 status = device_create_file(dev, &dev_attr_requested_microamps);
3548 /* all the other attributes exist to support constraints;
3549 * don't show them if there are no constraints, or if the
3550 * relevant supporting methods are missing.
3552 if (!rdev->constraints)
3555 /* constraints need specific supporting methods */
3556 if (ops->set_voltage || ops->set_voltage_sel) {
3557 status = device_create_file(dev, &dev_attr_min_microvolts);
3560 status = device_create_file(dev, &dev_attr_max_microvolts);
3564 if (ops->set_current_limit) {
3565 status = device_create_file(dev, &dev_attr_min_microamps);
3568 status = device_create_file(dev, &dev_attr_max_microamps);
3573 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3576 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3579 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3583 if (ops->set_suspend_voltage) {
3584 status = device_create_file(dev,
3585 &dev_attr_suspend_standby_microvolts);
3588 status = device_create_file(dev,
3589 &dev_attr_suspend_mem_microvolts);
3592 status = device_create_file(dev,
3593 &dev_attr_suspend_disk_microvolts);
3598 if (ops->set_suspend_mode) {
3599 status = device_create_file(dev,
3600 &dev_attr_suspend_standby_mode);
3603 status = device_create_file(dev,
3604 &dev_attr_suspend_mem_mode);
3607 status = device_create_file(dev,
3608 &dev_attr_suspend_disk_mode);
3616 static void rdev_init_debugfs(struct regulator_dev *rdev)
3618 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3619 if (!rdev->debugfs) {
3620 rdev_warn(rdev, "Failed to create debugfs directory\n");
3624 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3626 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3628 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3629 &rdev->bypass_count);
3633 * regulator_register - register regulator
3634 * @regulator_desc: regulator to register
3635 * @config: runtime configuration for regulator
3637 * Called by regulator drivers to register a regulator.
3638 * Returns a valid pointer to struct regulator_dev on success
3639 * or an ERR_PTR() on error.
3641 struct regulator_dev *
3642 regulator_register(const struct regulator_desc *regulator_desc,
3643 const struct regulator_config *config)
3645 const struct regulation_constraints *constraints = NULL;
3646 const struct regulator_init_data *init_data;
3647 static atomic_t regulator_no = ATOMIC_INIT(0);
3648 struct regulator_dev *rdev;
3651 const char *supply = NULL;
3653 if (regulator_desc == NULL || config == NULL)
3654 return ERR_PTR(-EINVAL);
3659 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3660 return ERR_PTR(-EINVAL);
3662 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3663 regulator_desc->type != REGULATOR_CURRENT)
3664 return ERR_PTR(-EINVAL);
3666 /* Only one of each should be implemented */
3667 WARN_ON(regulator_desc->ops->get_voltage &&
3668 regulator_desc->ops->get_voltage_sel);
3669 WARN_ON(regulator_desc->ops->set_voltage &&
3670 regulator_desc->ops->set_voltage_sel);
3672 /* If we're using selectors we must implement list_voltage. */
3673 if (regulator_desc->ops->get_voltage_sel &&
3674 !regulator_desc->ops->list_voltage) {
3675 return ERR_PTR(-EINVAL);
3677 if (regulator_desc->ops->set_voltage_sel &&
3678 !regulator_desc->ops->list_voltage) {
3679 return ERR_PTR(-EINVAL);
3682 init_data = config->init_data;
3684 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3686 return ERR_PTR(-ENOMEM);
3688 mutex_lock(®ulator_list_mutex);
3690 mutex_init(&rdev->mutex);
3691 rdev->reg_data = config->driver_data;
3692 rdev->owner = regulator_desc->owner;
3693 rdev->desc = regulator_desc;
3695 rdev->regmap = config->regmap;
3696 else if (dev_get_regmap(dev, NULL))
3697 rdev->regmap = dev_get_regmap(dev, NULL);
3698 else if (dev->parent)
3699 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3700 INIT_LIST_HEAD(&rdev->consumer_list);
3701 INIT_LIST_HEAD(&rdev->list);
3702 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3703 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3705 /* preform any regulator specific init */
3706 if (init_data && init_data->regulator_init) {
3707 ret = init_data->regulator_init(rdev->reg_data);
3712 /* register with sysfs */
3713 rdev->dev.class = ®ulator_class;
3714 rdev->dev.of_node = config->of_node;
3715 rdev->dev.parent = dev;
3716 dev_set_name(&rdev->dev, "regulator.%d",
3717 atomic_inc_return(®ulator_no) - 1);
3718 ret = device_register(&rdev->dev);
3720 put_device(&rdev->dev);
3724 dev_set_drvdata(&rdev->dev, rdev);
3726 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3727 ret = regulator_ena_gpio_request(rdev, config);
3729 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3730 config->ena_gpio, ret);
3734 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3735 rdev->ena_gpio_state = 1;
3737 if (config->ena_gpio_invert)
3738 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3741 /* set regulator constraints */
3743 constraints = &init_data->constraints;
3745 ret = set_machine_constraints(rdev, constraints);
3749 /* add attributes supported by this regulator */
3750 ret = add_regulator_attributes(rdev);
3754 if (init_data && init_data->supply_regulator)
3755 supply = init_data->supply_regulator;
3756 else if (regulator_desc->supply_name)
3757 supply = regulator_desc->supply_name;
3760 struct regulator_dev *r;
3762 r = regulator_dev_lookup(dev, supply, &ret);
3764 if (ret == -ENODEV) {
3766 * No supply was specified for this regulator and
3767 * there will never be one.
3772 dev_err(dev, "Failed to find supply %s\n", supply);
3773 ret = -EPROBE_DEFER;
3777 ret = set_supply(rdev, r);
3781 /* Enable supply if rail is enabled */
3782 if (_regulator_is_enabled(rdev)) {
3783 ret = regulator_enable(rdev->supply);
3790 /* add consumers devices */
3792 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3793 ret = set_consumer_device_supply(rdev,
3794 init_data->consumer_supplies[i].dev_name,
3795 init_data->consumer_supplies[i].supply);
3797 dev_err(dev, "Failed to set supply %s\n",
3798 init_data->consumer_supplies[i].supply);
3799 goto unset_supplies;
3804 list_add(&rdev->list, ®ulator_list);
3806 rdev_init_debugfs(rdev);
3808 mutex_unlock(®ulator_list_mutex);
3812 unset_regulator_supplies(rdev);
3816 _regulator_put(rdev->supply);
3817 regulator_ena_gpio_free(rdev);
3818 kfree(rdev->constraints);
3820 device_unregister(&rdev->dev);
3821 /* device core frees rdev */
3822 rdev = ERR_PTR(ret);
3827 rdev = ERR_PTR(ret);
3830 EXPORT_SYMBOL_GPL(regulator_register);
3833 * regulator_unregister - unregister regulator
3834 * @rdev: regulator to unregister
3836 * Called by regulator drivers to unregister a regulator.
3838 void regulator_unregister(struct regulator_dev *rdev)
3844 while (rdev->use_count--)
3845 regulator_disable(rdev->supply);
3846 regulator_put(rdev->supply);
3848 mutex_lock(®ulator_list_mutex);
3849 debugfs_remove_recursive(rdev->debugfs);
3850 flush_work(&rdev->disable_work.work);
3851 WARN_ON(rdev->open_count);
3852 unset_regulator_supplies(rdev);
3853 list_del(&rdev->list);
3854 kfree(rdev->constraints);
3855 regulator_ena_gpio_free(rdev);
3856 device_unregister(&rdev->dev);
3857 mutex_unlock(®ulator_list_mutex);
3859 EXPORT_SYMBOL_GPL(regulator_unregister);
3862 * regulator_suspend_prepare - prepare regulators for system wide suspend
3863 * @state: system suspend state
3865 * Configure each regulator with it's suspend operating parameters for state.
3866 * This will usually be called by machine suspend code prior to supending.
3868 int regulator_suspend_prepare(suspend_state_t state)
3870 struct regulator_dev *rdev;
3873 /* ON is handled by regulator active state */
3874 if (state == PM_SUSPEND_ON)
3877 mutex_lock(®ulator_list_mutex);
3878 list_for_each_entry(rdev, ®ulator_list, list) {
3880 mutex_lock(&rdev->mutex);
3881 ret = suspend_prepare(rdev, state);
3882 mutex_unlock(&rdev->mutex);
3885 rdev_err(rdev, "failed to prepare\n");
3890 mutex_unlock(®ulator_list_mutex);
3893 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3896 * regulator_suspend_finish - resume regulators from system wide suspend
3898 * Turn on regulators that might be turned off by regulator_suspend_prepare
3899 * and that should be turned on according to the regulators properties.
3901 int regulator_suspend_finish(void)
3903 struct regulator_dev *rdev;
3906 mutex_lock(®ulator_list_mutex);
3907 list_for_each_entry(rdev, ®ulator_list, list) {
3908 struct regulator_ops *ops = rdev->desc->ops;
3910 mutex_lock(&rdev->mutex);
3911 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3913 error = ops->enable(rdev);
3917 if (!has_full_constraints)
3921 if (!_regulator_is_enabled(rdev))
3924 error = ops->disable(rdev);
3929 mutex_unlock(&rdev->mutex);
3931 mutex_unlock(®ulator_list_mutex);
3934 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3937 * regulator_has_full_constraints - the system has fully specified constraints
3939 * Calling this function will cause the regulator API to disable all
3940 * regulators which have a zero use count and don't have an always_on
3941 * constraint in a late_initcall.
3943 * The intention is that this will become the default behaviour in a
3944 * future kernel release so users are encouraged to use this facility
3947 void regulator_has_full_constraints(void)
3949 has_full_constraints = 1;
3951 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3954 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3956 * Calling this function will cause the regulator API to provide a
3957 * dummy regulator to consumers if no physical regulator is found,
3958 * allowing most consumers to proceed as though a regulator were
3959 * configured. This allows systems such as those with software
3960 * controllable regulators for the CPU core only to be brought up more
3963 void regulator_use_dummy_regulator(void)
3965 board_wants_dummy_regulator = true;
3967 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3970 * rdev_get_drvdata - get rdev regulator driver data
3973 * Get rdev regulator driver private data. This call can be used in the
3974 * regulator driver context.
3976 void *rdev_get_drvdata(struct regulator_dev *rdev)
3978 return rdev->reg_data;
3980 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3983 * regulator_get_drvdata - get regulator driver data
3984 * @regulator: regulator
3986 * Get regulator driver private data. This call can be used in the consumer
3987 * driver context when non API regulator specific functions need to be called.
3989 void *regulator_get_drvdata(struct regulator *regulator)
3991 return regulator->rdev->reg_data;
3993 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3996 * regulator_set_drvdata - set regulator driver data
3997 * @regulator: regulator
4000 void regulator_set_drvdata(struct regulator *regulator, void *data)
4002 regulator->rdev->reg_data = data;
4004 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4007 * regulator_get_id - get regulator ID
4010 int rdev_get_id(struct regulator_dev *rdev)
4012 return rdev->desc->id;
4014 EXPORT_SYMBOL_GPL(rdev_get_id);
4016 struct device *rdev_get_dev(struct regulator_dev *rdev)
4020 EXPORT_SYMBOL_GPL(rdev_get_dev);
4022 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4024 return reg_init_data->driver_data;
4026 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4028 #ifdef CONFIG_DEBUG_FS
4029 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4030 size_t count, loff_t *ppos)
4032 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4033 ssize_t len, ret = 0;
4034 struct regulator_map *map;
4039 list_for_each_entry(map, ®ulator_map_list, list) {
4040 len = snprintf(buf + ret, PAGE_SIZE - ret,
4042 rdev_get_name(map->regulator), map->dev_name,
4046 if (ret > PAGE_SIZE) {
4052 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4060 static const struct file_operations supply_map_fops = {
4061 #ifdef CONFIG_DEBUG_FS
4062 .read = supply_map_read_file,
4063 .llseek = default_llseek,
4067 static int __init regulator_init(void)
4071 ret = class_register(®ulator_class);
4073 debugfs_root = debugfs_create_dir("regulator", NULL);
4075 pr_warn("regulator: Failed to create debugfs directory\n");
4077 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4080 regulator_dummy_init();
4085 /* init early to allow our consumers to complete system booting */
4086 core_initcall(regulator_init);
4088 static int __init regulator_init_complete(void)
4090 struct regulator_dev *rdev;
4091 struct regulator_ops *ops;
4092 struct regulation_constraints *c;
4096 * Since DT doesn't provide an idiomatic mechanism for
4097 * enabling full constraints and since it's much more natural
4098 * with DT to provide them just assume that a DT enabled
4099 * system has full constraints.
4101 if (of_have_populated_dt())
4102 has_full_constraints = true;
4104 mutex_lock(®ulator_list_mutex);
4106 /* If we have a full configuration then disable any regulators
4107 * which are not in use or always_on. This will become the
4108 * default behaviour in the future.
4110 list_for_each_entry(rdev, ®ulator_list, list) {
4111 ops = rdev->desc->ops;
4112 c = rdev->constraints;
4114 if (!ops->disable || (c && c->always_on))
4117 mutex_lock(&rdev->mutex);
4119 if (rdev->use_count)
4122 /* If we can't read the status assume it's on. */
4123 if (ops->is_enabled)
4124 enabled = ops->is_enabled(rdev);
4131 if (has_full_constraints) {
4132 /* We log since this may kill the system if it
4134 rdev_info(rdev, "disabling\n");
4135 ret = ops->disable(rdev);
4137 rdev_err(rdev, "couldn't disable: %d\n", ret);
4140 /* The intention is that in future we will
4141 * assume that full constraints are provided
4142 * so warn even if we aren't going to do
4145 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4149 mutex_unlock(&rdev->mutex);
4152 mutex_unlock(®ulator_list_mutex);
4156 late_initcall(regulator_init_complete);