Revert "regulator: core: Fix nested locking of supplies"
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 /**
136  * regulator_lock_supply - lock a regulator and its supplies
137  * @rdev:         regulator source
138  */
139 static void regulator_lock_supply(struct regulator_dev *rdev)
140 {
141         int i;
142
143         for (i = 0; rdev->supply; rdev = rdev->supply->rdev, i++)
144                 mutex_lock_nested(&rdev->mutex, i);
145 }
146
147 /**
148  * regulator_unlock_supply - unlock a regulator and its supplies
149  * @rdev:         regulator source
150  */
151 static void regulator_unlock_supply(struct regulator_dev *rdev)
152 {
153         struct regulator *supply;
154
155         while (1) {
156                 mutex_unlock(&rdev->mutex);
157                 supply = rdev->supply;
158
159                 if (!rdev->supply)
160                         return;
161
162                 rdev = supply->rdev;
163         }
164 }
165
166 /**
167  * of_get_regulator - get a regulator device node based on supply name
168  * @dev: Device pointer for the consumer (of regulator) device
169  * @supply: regulator supply name
170  *
171  * Extract the regulator device node corresponding to the supply name.
172  * returns the device node corresponding to the regulator if found, else
173  * returns NULL.
174  */
175 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
176 {
177         struct device_node *regnode = NULL;
178         char prop_name[32]; /* 32 is max size of property name */
179
180         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
181
182         snprintf(prop_name, 32, "%s-supply", supply);
183         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
184
185         if (!regnode) {
186                 dev_dbg(dev, "Looking up %s property in node %s failed",
187                                 prop_name, dev->of_node->full_name);
188                 return NULL;
189         }
190         return regnode;
191 }
192
193 static int _regulator_can_change_status(struct regulator_dev *rdev)
194 {
195         if (!rdev->constraints)
196                 return 0;
197
198         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
199                 return 1;
200         else
201                 return 0;
202 }
203
204 /* Platform voltage constraint check */
205 static int regulator_check_voltage(struct regulator_dev *rdev,
206                                    int *min_uV, int *max_uV)
207 {
208         BUG_ON(*min_uV > *max_uV);
209
210         if (!rdev->constraints) {
211                 rdev_err(rdev, "no constraints\n");
212                 return -ENODEV;
213         }
214         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
215                 rdev_err(rdev, "voltage operation not allowed\n");
216                 return -EPERM;
217         }
218
219         if (*max_uV > rdev->constraints->max_uV)
220                 *max_uV = rdev->constraints->max_uV;
221         if (*min_uV < rdev->constraints->min_uV)
222                 *min_uV = rdev->constraints->min_uV;
223
224         if (*min_uV > *max_uV) {
225                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
226                          *min_uV, *max_uV);
227                 return -EINVAL;
228         }
229
230         return 0;
231 }
232
233 /* Make sure we select a voltage that suits the needs of all
234  * regulator consumers
235  */
236 static int regulator_check_consumers(struct regulator_dev *rdev,
237                                      int *min_uV, int *max_uV)
238 {
239         struct regulator *regulator;
240
241         list_for_each_entry(regulator, &rdev->consumer_list, list) {
242                 /*
243                  * Assume consumers that didn't say anything are OK
244                  * with anything in the constraint range.
245                  */
246                 if (!regulator->min_uV && !regulator->max_uV)
247                         continue;
248
249                 if (*max_uV > regulator->max_uV)
250                         *max_uV = regulator->max_uV;
251                 if (*min_uV < regulator->min_uV)
252                         *min_uV = regulator->min_uV;
253         }
254
255         if (*min_uV > *max_uV) {
256                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
257                         *min_uV, *max_uV);
258                 return -EINVAL;
259         }
260
261         return 0;
262 }
263
264 /* current constraint check */
265 static int regulator_check_current_limit(struct regulator_dev *rdev,
266                                         int *min_uA, int *max_uA)
267 {
268         BUG_ON(*min_uA > *max_uA);
269
270         if (!rdev->constraints) {
271                 rdev_err(rdev, "no constraints\n");
272                 return -ENODEV;
273         }
274         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
275                 rdev_err(rdev, "current operation not allowed\n");
276                 return -EPERM;
277         }
278
279         if (*max_uA > rdev->constraints->max_uA)
280                 *max_uA = rdev->constraints->max_uA;
281         if (*min_uA < rdev->constraints->min_uA)
282                 *min_uA = rdev->constraints->min_uA;
283
284         if (*min_uA > *max_uA) {
285                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
286                          *min_uA, *max_uA);
287                 return -EINVAL;
288         }
289
290         return 0;
291 }
292
293 /* operating mode constraint check */
294 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
295 {
296         switch (*mode) {
297         case REGULATOR_MODE_FAST:
298         case REGULATOR_MODE_NORMAL:
299         case REGULATOR_MODE_IDLE:
300         case REGULATOR_MODE_STANDBY:
301                 break;
302         default:
303                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
304                 return -EINVAL;
305         }
306
307         if (!rdev->constraints) {
308                 rdev_err(rdev, "no constraints\n");
309                 return -ENODEV;
310         }
311         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
312                 rdev_err(rdev, "mode operation not allowed\n");
313                 return -EPERM;
314         }
315
316         /* The modes are bitmasks, the most power hungry modes having
317          * the lowest values. If the requested mode isn't supported
318          * try higher modes. */
319         while (*mode) {
320                 if (rdev->constraints->valid_modes_mask & *mode)
321                         return 0;
322                 *mode /= 2;
323         }
324
325         return -EINVAL;
326 }
327
328 /* dynamic regulator mode switching constraint check */
329 static int regulator_check_drms(struct regulator_dev *rdev)
330 {
331         if (!rdev->constraints) {
332                 rdev_err(rdev, "no constraints\n");
333                 return -ENODEV;
334         }
335         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
336                 rdev_dbg(rdev, "drms operation not allowed\n");
337                 return -EPERM;
338         }
339         return 0;
340 }
341
342 static ssize_t regulator_uV_show(struct device *dev,
343                                 struct device_attribute *attr, char *buf)
344 {
345         struct regulator_dev *rdev = dev_get_drvdata(dev);
346         ssize_t ret;
347
348         mutex_lock(&rdev->mutex);
349         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
350         mutex_unlock(&rdev->mutex);
351
352         return ret;
353 }
354 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
355
356 static ssize_t regulator_uA_show(struct device *dev,
357                                 struct device_attribute *attr, char *buf)
358 {
359         struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
362 }
363 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
364
365 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
366                          char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         return sprintf(buf, "%s\n", rdev_get_name(rdev));
371 }
372 static DEVICE_ATTR_RO(name);
373
374 static ssize_t regulator_print_opmode(char *buf, int mode)
375 {
376         switch (mode) {
377         case REGULATOR_MODE_FAST:
378                 return sprintf(buf, "fast\n");
379         case REGULATOR_MODE_NORMAL:
380                 return sprintf(buf, "normal\n");
381         case REGULATOR_MODE_IDLE:
382                 return sprintf(buf, "idle\n");
383         case REGULATOR_MODE_STANDBY:
384                 return sprintf(buf, "standby\n");
385         }
386         return sprintf(buf, "unknown\n");
387 }
388
389 static ssize_t regulator_opmode_show(struct device *dev,
390                                     struct device_attribute *attr, char *buf)
391 {
392         struct regulator_dev *rdev = dev_get_drvdata(dev);
393
394         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
395 }
396 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
397
398 static ssize_t regulator_print_state(char *buf, int state)
399 {
400         if (state > 0)
401                 return sprintf(buf, "enabled\n");
402         else if (state == 0)
403                 return sprintf(buf, "disabled\n");
404         else
405                 return sprintf(buf, "unknown\n");
406 }
407
408 static ssize_t regulator_state_show(struct device *dev,
409                                    struct device_attribute *attr, char *buf)
410 {
411         struct regulator_dev *rdev = dev_get_drvdata(dev);
412         ssize_t ret;
413
414         mutex_lock(&rdev->mutex);
415         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
416         mutex_unlock(&rdev->mutex);
417
418         return ret;
419 }
420 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
421
422 static ssize_t regulator_status_show(struct device *dev,
423                                    struct device_attribute *attr, char *buf)
424 {
425         struct regulator_dev *rdev = dev_get_drvdata(dev);
426         int status;
427         char *label;
428
429         status = rdev->desc->ops->get_status(rdev);
430         if (status < 0)
431                 return status;
432
433         switch (status) {
434         case REGULATOR_STATUS_OFF:
435                 label = "off";
436                 break;
437         case REGULATOR_STATUS_ON:
438                 label = "on";
439                 break;
440         case REGULATOR_STATUS_ERROR:
441                 label = "error";
442                 break;
443         case REGULATOR_STATUS_FAST:
444                 label = "fast";
445                 break;
446         case REGULATOR_STATUS_NORMAL:
447                 label = "normal";
448                 break;
449         case REGULATOR_STATUS_IDLE:
450                 label = "idle";
451                 break;
452         case REGULATOR_STATUS_STANDBY:
453                 label = "standby";
454                 break;
455         case REGULATOR_STATUS_BYPASS:
456                 label = "bypass";
457                 break;
458         case REGULATOR_STATUS_UNDEFINED:
459                 label = "undefined";
460                 break;
461         default:
462                 return -ERANGE;
463         }
464
465         return sprintf(buf, "%s\n", label);
466 }
467 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
468
469 static ssize_t regulator_min_uA_show(struct device *dev,
470                                     struct device_attribute *attr, char *buf)
471 {
472         struct regulator_dev *rdev = dev_get_drvdata(dev);
473
474         if (!rdev->constraints)
475                 return sprintf(buf, "constraint not defined\n");
476
477         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
478 }
479 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
480
481 static ssize_t regulator_max_uA_show(struct device *dev,
482                                     struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         if (!rdev->constraints)
487                 return sprintf(buf, "constraint not defined\n");
488
489         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
490 }
491 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
492
493 static ssize_t regulator_min_uV_show(struct device *dev,
494                                     struct device_attribute *attr, char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497
498         if (!rdev->constraints)
499                 return sprintf(buf, "constraint not defined\n");
500
501         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
502 }
503 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
504
505 static ssize_t regulator_max_uV_show(struct device *dev,
506                                     struct device_attribute *attr, char *buf)
507 {
508         struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510         if (!rdev->constraints)
511                 return sprintf(buf, "constraint not defined\n");
512
513         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
514 }
515 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
516
517 static ssize_t regulator_total_uA_show(struct device *dev,
518                                       struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         struct regulator *regulator;
522         int uA = 0;
523
524         mutex_lock(&rdev->mutex);
525         list_for_each_entry(regulator, &rdev->consumer_list, list)
526                 uA += regulator->uA_load;
527         mutex_unlock(&rdev->mutex);
528         return sprintf(buf, "%d\n", uA);
529 }
530 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
531
532 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
533                               char *buf)
534 {
535         struct regulator_dev *rdev = dev_get_drvdata(dev);
536         return sprintf(buf, "%d\n", rdev->use_count);
537 }
538 static DEVICE_ATTR_RO(num_users);
539
540 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
541                          char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         switch (rdev->desc->type) {
546         case REGULATOR_VOLTAGE:
547                 return sprintf(buf, "voltage\n");
548         case REGULATOR_CURRENT:
549                 return sprintf(buf, "current\n");
550         }
551         return sprintf(buf, "unknown\n");
552 }
553 static DEVICE_ATTR_RO(type);
554
555 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
556                                 struct device_attribute *attr, char *buf)
557 {
558         struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
561 }
562 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
563                 regulator_suspend_mem_uV_show, NULL);
564
565 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
566                                 struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
571 }
572 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
573                 regulator_suspend_disk_uV_show, NULL);
574
575 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
576                                 struct device_attribute *attr, char *buf)
577 {
578         struct regulator_dev *rdev = dev_get_drvdata(dev);
579
580         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
581 }
582 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
583                 regulator_suspend_standby_uV_show, NULL);
584
585 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
586                                 struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590         return regulator_print_opmode(buf,
591                 rdev->constraints->state_mem.mode);
592 }
593 static DEVICE_ATTR(suspend_mem_mode, 0444,
594                 regulator_suspend_mem_mode_show, NULL);
595
596 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
597                                 struct device_attribute *attr, char *buf)
598 {
599         struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601         return regulator_print_opmode(buf,
602                 rdev->constraints->state_disk.mode);
603 }
604 static DEVICE_ATTR(suspend_disk_mode, 0444,
605                 regulator_suspend_disk_mode_show, NULL);
606
607 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
608                                 struct device_attribute *attr, char *buf)
609 {
610         struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612         return regulator_print_opmode(buf,
613                 rdev->constraints->state_standby.mode);
614 }
615 static DEVICE_ATTR(suspend_standby_mode, 0444,
616                 regulator_suspend_standby_mode_show, NULL);
617
618 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
619                                    struct device_attribute *attr, char *buf)
620 {
621         struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623         return regulator_print_state(buf,
624                         rdev->constraints->state_mem.enabled);
625 }
626 static DEVICE_ATTR(suspend_mem_state, 0444,
627                 regulator_suspend_mem_state_show, NULL);
628
629 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
630                                    struct device_attribute *attr, char *buf)
631 {
632         struct regulator_dev *rdev = dev_get_drvdata(dev);
633
634         return regulator_print_state(buf,
635                         rdev->constraints->state_disk.enabled);
636 }
637 static DEVICE_ATTR(suspend_disk_state, 0444,
638                 regulator_suspend_disk_state_show, NULL);
639
640 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
641                                    struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644
645         return regulator_print_state(buf,
646                         rdev->constraints->state_standby.enabled);
647 }
648 static DEVICE_ATTR(suspend_standby_state, 0444,
649                 regulator_suspend_standby_state_show, NULL);
650
651 static ssize_t regulator_bypass_show(struct device *dev,
652                                      struct device_attribute *attr, char *buf)
653 {
654         struct regulator_dev *rdev = dev_get_drvdata(dev);
655         const char *report;
656         bool bypass;
657         int ret;
658
659         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
660
661         if (ret != 0)
662                 report = "unknown";
663         else if (bypass)
664                 report = "enabled";
665         else
666                 report = "disabled";
667
668         return sprintf(buf, "%s\n", report);
669 }
670 static DEVICE_ATTR(bypass, 0444,
671                    regulator_bypass_show, NULL);
672
673 /* Calculate the new optimum regulator operating mode based on the new total
674  * consumer load. All locks held by caller */
675 static int drms_uA_update(struct regulator_dev *rdev)
676 {
677         struct regulator *sibling;
678         int current_uA = 0, output_uV, input_uV, err;
679         unsigned int mode;
680
681         lockdep_assert_held_once(&rdev->mutex);
682
683         /*
684          * first check to see if we can set modes at all, otherwise just
685          * tell the consumer everything is OK.
686          */
687         err = regulator_check_drms(rdev);
688         if (err < 0)
689                 return 0;
690
691         if (!rdev->desc->ops->get_optimum_mode &&
692             !rdev->desc->ops->set_load)
693                 return 0;
694
695         if (!rdev->desc->ops->set_mode &&
696             !rdev->desc->ops->set_load)
697                 return -EINVAL;
698
699         /* get output voltage */
700         output_uV = _regulator_get_voltage(rdev);
701         if (output_uV <= 0) {
702                 rdev_err(rdev, "invalid output voltage found\n");
703                 return -EINVAL;
704         }
705
706         /* get input voltage */
707         input_uV = 0;
708         if (rdev->supply)
709                 input_uV = regulator_get_voltage(rdev->supply);
710         if (input_uV <= 0)
711                 input_uV = rdev->constraints->input_uV;
712         if (input_uV <= 0) {
713                 rdev_err(rdev, "invalid input voltage found\n");
714                 return -EINVAL;
715         }
716
717         /* calc total requested load */
718         list_for_each_entry(sibling, &rdev->consumer_list, list)
719                 current_uA += sibling->uA_load;
720
721         current_uA += rdev->constraints->system_load;
722
723         if (rdev->desc->ops->set_load) {
724                 /* set the optimum mode for our new total regulator load */
725                 err = rdev->desc->ops->set_load(rdev, current_uA);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set load %d\n", current_uA);
728         } else {
729                 /* now get the optimum mode for our new total regulator load */
730                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
731                                                          output_uV, current_uA);
732
733                 /* check the new mode is allowed */
734                 err = regulator_mode_constrain(rdev, &mode);
735                 if (err < 0) {
736                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
737                                  current_uA, input_uV, output_uV);
738                         return err;
739                 }
740
741                 err = rdev->desc->ops->set_mode(rdev, mode);
742                 if (err < 0)
743                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
744         }
745
746         return err;
747 }
748
749 static int suspend_set_state(struct regulator_dev *rdev,
750         struct regulator_state *rstate)
751 {
752         int ret = 0;
753
754         /* If we have no suspend mode configration don't set anything;
755          * only warn if the driver implements set_suspend_voltage or
756          * set_suspend_mode callback.
757          */
758         if (!rstate->enabled && !rstate->disabled) {
759                 if (rdev->desc->ops->set_suspend_voltage ||
760                     rdev->desc->ops->set_suspend_mode)
761                         rdev_warn(rdev, "No configuration\n");
762                 return 0;
763         }
764
765         if (rstate->enabled && rstate->disabled) {
766                 rdev_err(rdev, "invalid configuration\n");
767                 return -EINVAL;
768         }
769
770         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
771                 ret = rdev->desc->ops->set_suspend_enable(rdev);
772         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
773                 ret = rdev->desc->ops->set_suspend_disable(rdev);
774         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
775                 ret = 0;
776
777         if (ret < 0) {
778                 rdev_err(rdev, "failed to enabled/disable\n");
779                 return ret;
780         }
781
782         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
783                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
784                 if (ret < 0) {
785                         rdev_err(rdev, "failed to set voltage\n");
786                         return ret;
787                 }
788         }
789
790         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
791                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set mode\n");
794                         return ret;
795                 }
796         }
797         return ret;
798 }
799
800 /* locks held by caller */
801 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
802 {
803         lockdep_assert_held_once(&rdev->mutex);
804
805         if (!rdev->constraints)
806                 return -EINVAL;
807
808         switch (state) {
809         case PM_SUSPEND_STANDBY:
810                 return suspend_set_state(rdev,
811                         &rdev->constraints->state_standby);
812         case PM_SUSPEND_MEM:
813                 return suspend_set_state(rdev,
814                         &rdev->constraints->state_mem);
815         case PM_SUSPEND_MAX:
816                 return suspend_set_state(rdev,
817                         &rdev->constraints->state_disk);
818         default:
819                 return -EINVAL;
820         }
821 }
822
823 static void print_constraints(struct regulator_dev *rdev)
824 {
825         struct regulation_constraints *constraints = rdev->constraints;
826         char buf[160] = "";
827         size_t len = sizeof(buf) - 1;
828         int count = 0;
829         int ret;
830
831         if (constraints->min_uV && constraints->max_uV) {
832                 if (constraints->min_uV == constraints->max_uV)
833                         count += scnprintf(buf + count, len - count, "%d mV ",
834                                            constraints->min_uV / 1000);
835                 else
836                         count += scnprintf(buf + count, len - count,
837                                            "%d <--> %d mV ",
838                                            constraints->min_uV / 1000,
839                                            constraints->max_uV / 1000);
840         }
841
842         if (!constraints->min_uV ||
843             constraints->min_uV != constraints->max_uV) {
844                 ret = _regulator_get_voltage(rdev);
845                 if (ret > 0)
846                         count += scnprintf(buf + count, len - count,
847                                            "at %d mV ", ret / 1000);
848         }
849
850         if (constraints->uV_offset)
851                 count += scnprintf(buf + count, len - count, "%dmV offset ",
852                                    constraints->uV_offset / 1000);
853
854         if (constraints->min_uA && constraints->max_uA) {
855                 if (constraints->min_uA == constraints->max_uA)
856                         count += scnprintf(buf + count, len - count, "%d mA ",
857                                            constraints->min_uA / 1000);
858                 else
859                         count += scnprintf(buf + count, len - count,
860                                            "%d <--> %d mA ",
861                                            constraints->min_uA / 1000,
862                                            constraints->max_uA / 1000);
863         }
864
865         if (!constraints->min_uA ||
866             constraints->min_uA != constraints->max_uA) {
867                 ret = _regulator_get_current_limit(rdev);
868                 if (ret > 0)
869                         count += scnprintf(buf + count, len - count,
870                                            "at %d mA ", ret / 1000);
871         }
872
873         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
874                 count += scnprintf(buf + count, len - count, "fast ");
875         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
876                 count += scnprintf(buf + count, len - count, "normal ");
877         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
878                 count += scnprintf(buf + count, len - count, "idle ");
879         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
880                 count += scnprintf(buf + count, len - count, "standby");
881
882         if (!count)
883                 scnprintf(buf, len, "no parameters");
884
885         rdev_dbg(rdev, "%s\n", buf);
886
887         if ((constraints->min_uV != constraints->max_uV) &&
888             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
889                 rdev_warn(rdev,
890                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
891 }
892
893 static int machine_constraints_voltage(struct regulator_dev *rdev,
894         struct regulation_constraints *constraints)
895 {
896         const struct regulator_ops *ops = rdev->desc->ops;
897         int ret;
898
899         /* do we need to apply the constraint voltage */
900         if (rdev->constraints->apply_uV &&
901             rdev->constraints->min_uV == rdev->constraints->max_uV) {
902                 int current_uV = _regulator_get_voltage(rdev);
903                 if (current_uV < 0) {
904                         rdev_err(rdev,
905                                  "failed to get the current voltage(%d)\n",
906                                  current_uV);
907                         return current_uV;
908                 }
909                 if (current_uV < rdev->constraints->min_uV ||
910                     current_uV > rdev->constraints->max_uV) {
911                         ret = _regulator_do_set_voltage(
912                                 rdev, rdev->constraints->min_uV,
913                                 rdev->constraints->max_uV);
914                         if (ret < 0) {
915                                 rdev_err(rdev,
916                                         "failed to apply %duV constraint(%d)\n",
917                                         rdev->constraints->min_uV, ret);
918                                 return ret;
919                         }
920                 }
921         }
922
923         /* constrain machine-level voltage specs to fit
924          * the actual range supported by this regulator.
925          */
926         if (ops->list_voltage && rdev->desc->n_voltages) {
927                 int     count = rdev->desc->n_voltages;
928                 int     i;
929                 int     min_uV = INT_MAX;
930                 int     max_uV = INT_MIN;
931                 int     cmin = constraints->min_uV;
932                 int     cmax = constraints->max_uV;
933
934                 /* it's safe to autoconfigure fixed-voltage supplies
935                    and the constraints are used by list_voltage. */
936                 if (count == 1 && !cmin) {
937                         cmin = 1;
938                         cmax = INT_MAX;
939                         constraints->min_uV = cmin;
940                         constraints->max_uV = cmax;
941                 }
942
943                 /* voltage constraints are optional */
944                 if ((cmin == 0) && (cmax == 0))
945                         return 0;
946
947                 /* else require explicit machine-level constraints */
948                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
949                         rdev_err(rdev, "invalid voltage constraints\n");
950                         return -EINVAL;
951                 }
952
953                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
954                 for (i = 0; i < count; i++) {
955                         int     value;
956
957                         value = ops->list_voltage(rdev, i);
958                         if (value <= 0)
959                                 continue;
960
961                         /* maybe adjust [min_uV..max_uV] */
962                         if (value >= cmin && value < min_uV)
963                                 min_uV = value;
964                         if (value <= cmax && value > max_uV)
965                                 max_uV = value;
966                 }
967
968                 /* final: [min_uV..max_uV] valid iff constraints valid */
969                 if (max_uV < min_uV) {
970                         rdev_err(rdev,
971                                  "unsupportable voltage constraints %u-%uuV\n",
972                                  min_uV, max_uV);
973                         return -EINVAL;
974                 }
975
976                 /* use regulator's subset of machine constraints */
977                 if (constraints->min_uV < min_uV) {
978                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
979                                  constraints->min_uV, min_uV);
980                         constraints->min_uV = min_uV;
981                 }
982                 if (constraints->max_uV > max_uV) {
983                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
984                                  constraints->max_uV, max_uV);
985                         constraints->max_uV = max_uV;
986                 }
987         }
988
989         return 0;
990 }
991
992 static int machine_constraints_current(struct regulator_dev *rdev,
993         struct regulation_constraints *constraints)
994 {
995         const struct regulator_ops *ops = rdev->desc->ops;
996         int ret;
997
998         if (!constraints->min_uA && !constraints->max_uA)
999                 return 0;
1000
1001         if (constraints->min_uA > constraints->max_uA) {
1002                 rdev_err(rdev, "Invalid current constraints\n");
1003                 return -EINVAL;
1004         }
1005
1006         if (!ops->set_current_limit || !ops->get_current_limit) {
1007                 rdev_warn(rdev, "Operation of current configuration missing\n");
1008                 return 0;
1009         }
1010
1011         /* Set regulator current in constraints range */
1012         ret = ops->set_current_limit(rdev, constraints->min_uA,
1013                         constraints->max_uA);
1014         if (ret < 0) {
1015                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1016                 return ret;
1017         }
1018
1019         return 0;
1020 }
1021
1022 static int _regulator_do_enable(struct regulator_dev *rdev);
1023
1024 /**
1025  * set_machine_constraints - sets regulator constraints
1026  * @rdev: regulator source
1027  * @constraints: constraints to apply
1028  *
1029  * Allows platform initialisation code to define and constrain
1030  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1031  * Constraints *must* be set by platform code in order for some
1032  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1033  * set_mode.
1034  */
1035 static int set_machine_constraints(struct regulator_dev *rdev,
1036         const struct regulation_constraints *constraints)
1037 {
1038         int ret = 0;
1039         const struct regulator_ops *ops = rdev->desc->ops;
1040
1041         if (constraints)
1042                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1043                                             GFP_KERNEL);
1044         else
1045                 rdev->constraints = kzalloc(sizeof(*constraints),
1046                                             GFP_KERNEL);
1047         if (!rdev->constraints)
1048                 return -ENOMEM;
1049
1050         ret = machine_constraints_voltage(rdev, rdev->constraints);
1051         if (ret != 0)
1052                 goto out;
1053
1054         ret = machine_constraints_current(rdev, rdev->constraints);
1055         if (ret != 0)
1056                 goto out;
1057
1058         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1059                 ret = ops->set_input_current_limit(rdev,
1060                                                    rdev->constraints->ilim_uA);
1061                 if (ret < 0) {
1062                         rdev_err(rdev, "failed to set input limit\n");
1063                         goto out;
1064                 }
1065         }
1066
1067         /* do we need to setup our suspend state */
1068         if (rdev->constraints->initial_state) {
1069                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1070                 if (ret < 0) {
1071                         rdev_err(rdev, "failed to set suspend state\n");
1072                         goto out;
1073                 }
1074         }
1075
1076         if (rdev->constraints->initial_mode) {
1077                 if (!ops->set_mode) {
1078                         rdev_err(rdev, "no set_mode operation\n");
1079                         ret = -EINVAL;
1080                         goto out;
1081                 }
1082
1083                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084                 if (ret < 0) {
1085                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086                         goto out;
1087                 }
1088         }
1089
1090         /* If the constraints say the regulator should be on at this point
1091          * and we have control then make sure it is enabled.
1092          */
1093         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094                 ret = _regulator_do_enable(rdev);
1095                 if (ret < 0 && ret != -EINVAL) {
1096                         rdev_err(rdev, "failed to enable\n");
1097                         goto out;
1098                 }
1099         }
1100
1101         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102                 && ops->set_ramp_delay) {
1103                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104                 if (ret < 0) {
1105                         rdev_err(rdev, "failed to set ramp_delay\n");
1106                         goto out;
1107                 }
1108         }
1109
1110         if (rdev->constraints->pull_down && ops->set_pull_down) {
1111                 ret = ops->set_pull_down(rdev);
1112                 if (ret < 0) {
1113                         rdev_err(rdev, "failed to set pull down\n");
1114                         goto out;
1115                 }
1116         }
1117
1118         if (rdev->constraints->soft_start && ops->set_soft_start) {
1119                 ret = ops->set_soft_start(rdev);
1120                 if (ret < 0) {
1121                         rdev_err(rdev, "failed to set soft start\n");
1122                         goto out;
1123                 }
1124         }
1125
1126         if (rdev->constraints->over_current_protection
1127                 && ops->set_over_current_protection) {
1128                 ret = ops->set_over_current_protection(rdev);
1129                 if (ret < 0) {
1130                         rdev_err(rdev, "failed to set over current protection\n");
1131                         goto out;
1132                 }
1133         }
1134
1135         print_constraints(rdev);
1136         return 0;
1137 out:
1138         kfree(rdev->constraints);
1139         rdev->constraints = NULL;
1140         return ret;
1141 }
1142
1143 /**
1144  * set_supply - set regulator supply regulator
1145  * @rdev: regulator name
1146  * @supply_rdev: supply regulator name
1147  *
1148  * Called by platform initialisation code to set the supply regulator for this
1149  * regulator. This ensures that a regulators supply will also be enabled by the
1150  * core if it's child is enabled.
1151  */
1152 static int set_supply(struct regulator_dev *rdev,
1153                       struct regulator_dev *supply_rdev)
1154 {
1155         int err;
1156
1157         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1158
1159         if (!try_module_get(supply_rdev->owner))
1160                 return -ENODEV;
1161
1162         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1163         if (rdev->supply == NULL) {
1164                 err = -ENOMEM;
1165                 return err;
1166         }
1167         supply_rdev->open_count++;
1168
1169         return 0;
1170 }
1171
1172 /**
1173  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1174  * @rdev:         regulator source
1175  * @consumer_dev_name: dev_name() string for device supply applies to
1176  * @supply:       symbolic name for supply
1177  *
1178  * Allows platform initialisation code to map physical regulator
1179  * sources to symbolic names for supplies for use by devices.  Devices
1180  * should use these symbolic names to request regulators, avoiding the
1181  * need to provide board-specific regulator names as platform data.
1182  */
1183 static int set_consumer_device_supply(struct regulator_dev *rdev,
1184                                       const char *consumer_dev_name,
1185                                       const char *supply)
1186 {
1187         struct regulator_map *node;
1188         int has_dev;
1189
1190         if (supply == NULL)
1191                 return -EINVAL;
1192
1193         if (consumer_dev_name != NULL)
1194                 has_dev = 1;
1195         else
1196                 has_dev = 0;
1197
1198         list_for_each_entry(node, &regulator_map_list, list) {
1199                 if (node->dev_name && consumer_dev_name) {
1200                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1201                                 continue;
1202                 } else if (node->dev_name || consumer_dev_name) {
1203                         continue;
1204                 }
1205
1206                 if (strcmp(node->supply, supply) != 0)
1207                         continue;
1208
1209                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1210                          consumer_dev_name,
1211                          dev_name(&node->regulator->dev),
1212                          node->regulator->desc->name,
1213                          supply,
1214                          dev_name(&rdev->dev), rdev_get_name(rdev));
1215                 return -EBUSY;
1216         }
1217
1218         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1219         if (node == NULL)
1220                 return -ENOMEM;
1221
1222         node->regulator = rdev;
1223         node->supply = supply;
1224
1225         if (has_dev) {
1226                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1227                 if (node->dev_name == NULL) {
1228                         kfree(node);
1229                         return -ENOMEM;
1230                 }
1231         }
1232
1233         list_add(&node->list, &regulator_map_list);
1234         return 0;
1235 }
1236
1237 static void unset_regulator_supplies(struct regulator_dev *rdev)
1238 {
1239         struct regulator_map *node, *n;
1240
1241         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1242                 if (rdev == node->regulator) {
1243                         list_del(&node->list);
1244                         kfree(node->dev_name);
1245                         kfree(node);
1246                 }
1247         }
1248 }
1249
1250 #define REG_STR_SIZE    64
1251
1252 static struct regulator *create_regulator(struct regulator_dev *rdev,
1253                                           struct device *dev,
1254                                           const char *supply_name)
1255 {
1256         struct regulator *regulator;
1257         char buf[REG_STR_SIZE];
1258         int err, size;
1259
1260         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1261         if (regulator == NULL)
1262                 return NULL;
1263
1264         mutex_lock(&rdev->mutex);
1265         regulator->rdev = rdev;
1266         list_add(&regulator->list, &rdev->consumer_list);
1267
1268         if (dev) {
1269                 regulator->dev = dev;
1270
1271                 /* Add a link to the device sysfs entry */
1272                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1273                                  dev->kobj.name, supply_name);
1274                 if (size >= REG_STR_SIZE)
1275                         goto overflow_err;
1276
1277                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1278                 if (regulator->supply_name == NULL)
1279                         goto overflow_err;
1280
1281                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1282                                         buf);
1283                 if (err) {
1284                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1285                                   dev->kobj.name, err);
1286                         /* non-fatal */
1287                 }
1288         } else {
1289                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1290                 if (regulator->supply_name == NULL)
1291                         goto overflow_err;
1292         }
1293
1294         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1295                                                 rdev->debugfs);
1296         if (!regulator->debugfs) {
1297                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1298         } else {
1299                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1300                                    &regulator->uA_load);
1301                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1302                                    &regulator->min_uV);
1303                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1304                                    &regulator->max_uV);
1305         }
1306
1307         /*
1308          * Check now if the regulator is an always on regulator - if
1309          * it is then we don't need to do nearly so much work for
1310          * enable/disable calls.
1311          */
1312         if (!_regulator_can_change_status(rdev) &&
1313             _regulator_is_enabled(rdev))
1314                 regulator->always_on = true;
1315
1316         mutex_unlock(&rdev->mutex);
1317         return regulator;
1318 overflow_err:
1319         list_del(&regulator->list);
1320         kfree(regulator);
1321         mutex_unlock(&rdev->mutex);
1322         return NULL;
1323 }
1324
1325 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1326 {
1327         if (rdev->constraints && rdev->constraints->enable_time)
1328                 return rdev->constraints->enable_time;
1329         if (!rdev->desc->ops->enable_time)
1330                 return rdev->desc->enable_time;
1331         return rdev->desc->ops->enable_time(rdev);
1332 }
1333
1334 static struct regulator_supply_alias *regulator_find_supply_alias(
1335                 struct device *dev, const char *supply)
1336 {
1337         struct regulator_supply_alias *map;
1338
1339         list_for_each_entry(map, &regulator_supply_alias_list, list)
1340                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1341                         return map;
1342
1343         return NULL;
1344 }
1345
1346 static void regulator_supply_alias(struct device **dev, const char **supply)
1347 {
1348         struct regulator_supply_alias *map;
1349
1350         map = regulator_find_supply_alias(*dev, *supply);
1351         if (map) {
1352                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1353                                 *supply, map->alias_supply,
1354                                 dev_name(map->alias_dev));
1355                 *dev = map->alias_dev;
1356                 *supply = map->alias_supply;
1357         }
1358 }
1359
1360 static int of_node_match(struct device *dev, const void *data)
1361 {
1362         return dev->of_node == data;
1363 }
1364
1365 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1366 {
1367         struct device *dev;
1368
1369         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1370
1371         return dev ? dev_to_rdev(dev) : NULL;
1372 }
1373
1374 static int regulator_match(struct device *dev, const void *data)
1375 {
1376         struct regulator_dev *r = dev_to_rdev(dev);
1377
1378         return strcmp(rdev_get_name(r), data) == 0;
1379 }
1380
1381 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1382 {
1383         struct device *dev;
1384
1385         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1386
1387         return dev ? dev_to_rdev(dev) : NULL;
1388 }
1389
1390 /**
1391  * regulator_dev_lookup - lookup a regulator device.
1392  * @dev: device for regulator "consumer".
1393  * @supply: Supply name or regulator ID.
1394  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1395  * lookup could succeed in the future.
1396  *
1397  * If successful, returns a struct regulator_dev that corresponds to the name
1398  * @supply and with the embedded struct device refcount incremented by one,
1399  * or NULL on failure. The refcount must be dropped by calling put_device().
1400  */
1401 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1402                                                   const char *supply,
1403                                                   int *ret)
1404 {
1405         struct regulator_dev *r;
1406         struct device_node *node;
1407         struct regulator_map *map;
1408         const char *devname = NULL;
1409
1410         regulator_supply_alias(&dev, &supply);
1411
1412         /* first do a dt based lookup */
1413         if (dev && dev->of_node) {
1414                 node = of_get_regulator(dev, supply);
1415                 if (node) {
1416                         r = of_find_regulator_by_node(node);
1417                         if (r)
1418                                 return r;
1419                         *ret = -EPROBE_DEFER;
1420                         return NULL;
1421                 } else {
1422                         /*
1423                          * If we couldn't even get the node then it's
1424                          * not just that the device didn't register
1425                          * yet, there's no node and we'll never
1426                          * succeed.
1427                          */
1428                         *ret = -ENODEV;
1429                 }
1430         }
1431
1432         /* if not found, try doing it non-dt way */
1433         if (dev)
1434                 devname = dev_name(dev);
1435
1436         r = regulator_lookup_by_name(supply);
1437         if (r)
1438                 return r;
1439
1440         mutex_lock(&regulator_list_mutex);
1441         list_for_each_entry(map, &regulator_map_list, list) {
1442                 /* If the mapping has a device set up it must match */
1443                 if (map->dev_name &&
1444                     (!devname || strcmp(map->dev_name, devname)))
1445                         continue;
1446
1447                 if (strcmp(map->supply, supply) == 0 &&
1448                     get_device(&map->regulator->dev)) {
1449                         mutex_unlock(&regulator_list_mutex);
1450                         return map->regulator;
1451                 }
1452         }
1453         mutex_unlock(&regulator_list_mutex);
1454
1455         return NULL;
1456 }
1457
1458 static int regulator_resolve_supply(struct regulator_dev *rdev)
1459 {
1460         struct regulator_dev *r;
1461         struct device *dev = rdev->dev.parent;
1462         int ret;
1463
1464         /* No supply to resovle? */
1465         if (!rdev->supply_name)
1466                 return 0;
1467
1468         /* Supply already resolved? */
1469         if (rdev->supply)
1470                 return 0;
1471
1472         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1473         if (!r) {
1474                 if (ret == -ENODEV) {
1475                         /*
1476                          * No supply was specified for this regulator and
1477                          * there will never be one.
1478                          */
1479                         return 0;
1480                 }
1481
1482                 /* Did the lookup explicitly defer for us? */
1483                 if (ret == -EPROBE_DEFER)
1484                         return ret;
1485
1486                 if (have_full_constraints()) {
1487                         r = dummy_regulator_rdev;
1488                         get_device(&r->dev);
1489                 } else {
1490                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1491                                 rdev->supply_name, rdev->desc->name);
1492                         return -EPROBE_DEFER;
1493                 }
1494         }
1495
1496         /* Recursively resolve the supply of the supply */
1497         ret = regulator_resolve_supply(r);
1498         if (ret < 0) {
1499                 put_device(&r->dev);
1500                 return ret;
1501         }
1502
1503         ret = set_supply(rdev, r);
1504         if (ret < 0) {
1505                 put_device(&r->dev);
1506                 return ret;
1507         }
1508
1509         /* Cascade always-on state to supply */
1510         if (_regulator_is_enabled(rdev) && rdev->supply) {
1511                 ret = regulator_enable(rdev->supply);
1512                 if (ret < 0) {
1513                         _regulator_put(rdev->supply);
1514                         return ret;
1515                 }
1516         }
1517
1518         return 0;
1519 }
1520
1521 /* Internal regulator request function */
1522 static struct regulator *_regulator_get(struct device *dev, const char *id,
1523                                         bool exclusive, bool allow_dummy)
1524 {
1525         struct regulator_dev *rdev;
1526         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1527         const char *devname = NULL;
1528         int ret;
1529
1530         if (id == NULL) {
1531                 pr_err("get() with no identifier\n");
1532                 return ERR_PTR(-EINVAL);
1533         }
1534
1535         if (dev)
1536                 devname = dev_name(dev);
1537
1538         if (have_full_constraints())
1539                 ret = -ENODEV;
1540         else
1541                 ret = -EPROBE_DEFER;
1542
1543         rdev = regulator_dev_lookup(dev, id, &ret);
1544         if (rdev)
1545                 goto found;
1546
1547         regulator = ERR_PTR(ret);
1548
1549         /*
1550          * If we have return value from dev_lookup fail, we do not expect to
1551          * succeed, so, quit with appropriate error value
1552          */
1553         if (ret && ret != -ENODEV)
1554                 return regulator;
1555
1556         if (!devname)
1557                 devname = "deviceless";
1558
1559         /*
1560          * Assume that a regulator is physically present and enabled
1561          * even if it isn't hooked up and just provide a dummy.
1562          */
1563         if (have_full_constraints() && allow_dummy) {
1564                 pr_warn("%s supply %s not found, using dummy regulator\n",
1565                         devname, id);
1566
1567                 rdev = dummy_regulator_rdev;
1568                 get_device(&rdev->dev);
1569                 goto found;
1570         /* Don't log an error when called from regulator_get_optional() */
1571         } else if (!have_full_constraints() || exclusive) {
1572                 dev_warn(dev, "dummy supplies not allowed\n");
1573         }
1574
1575         return regulator;
1576
1577 found:
1578         if (rdev->exclusive) {
1579                 regulator = ERR_PTR(-EPERM);
1580                 put_device(&rdev->dev);
1581                 return regulator;
1582         }
1583
1584         if (exclusive && rdev->open_count) {
1585                 regulator = ERR_PTR(-EBUSY);
1586                 put_device(&rdev->dev);
1587                 return regulator;
1588         }
1589
1590         ret = regulator_resolve_supply(rdev);
1591         if (ret < 0) {
1592                 regulator = ERR_PTR(ret);
1593                 put_device(&rdev->dev);
1594                 return regulator;
1595         }
1596
1597         if (!try_module_get(rdev->owner)) {
1598                 put_device(&rdev->dev);
1599                 return regulator;
1600         }
1601
1602         regulator = create_regulator(rdev, dev, id);
1603         if (regulator == NULL) {
1604                 regulator = ERR_PTR(-ENOMEM);
1605                 put_device(&rdev->dev);
1606                 module_put(rdev->owner);
1607                 return regulator;
1608         }
1609
1610         rdev->open_count++;
1611         if (exclusive) {
1612                 rdev->exclusive = 1;
1613
1614                 ret = _regulator_is_enabled(rdev);
1615                 if (ret > 0)
1616                         rdev->use_count = 1;
1617                 else
1618                         rdev->use_count = 0;
1619         }
1620
1621         return regulator;
1622 }
1623
1624 /**
1625  * regulator_get - lookup and obtain a reference to a regulator.
1626  * @dev: device for regulator "consumer"
1627  * @id: Supply name or regulator ID.
1628  *
1629  * Returns a struct regulator corresponding to the regulator producer,
1630  * or IS_ERR() condition containing errno.
1631  *
1632  * Use of supply names configured via regulator_set_device_supply() is
1633  * strongly encouraged.  It is recommended that the supply name used
1634  * should match the name used for the supply and/or the relevant
1635  * device pins in the datasheet.
1636  */
1637 struct regulator *regulator_get(struct device *dev, const char *id)
1638 {
1639         return _regulator_get(dev, id, false, true);
1640 }
1641 EXPORT_SYMBOL_GPL(regulator_get);
1642
1643 /**
1644  * regulator_get_exclusive - obtain exclusive access to a regulator.
1645  * @dev: device for regulator "consumer"
1646  * @id: Supply name or regulator ID.
1647  *
1648  * Returns a struct regulator corresponding to the regulator producer,
1649  * or IS_ERR() condition containing errno.  Other consumers will be
1650  * unable to obtain this regulator while this reference is held and the
1651  * use count for the regulator will be initialised to reflect the current
1652  * state of the regulator.
1653  *
1654  * This is intended for use by consumers which cannot tolerate shared
1655  * use of the regulator such as those which need to force the
1656  * regulator off for correct operation of the hardware they are
1657  * controlling.
1658  *
1659  * Use of supply names configured via regulator_set_device_supply() is
1660  * strongly encouraged.  It is recommended that the supply name used
1661  * should match the name used for the supply and/or the relevant
1662  * device pins in the datasheet.
1663  */
1664 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1665 {
1666         return _regulator_get(dev, id, true, false);
1667 }
1668 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1669
1670 /**
1671  * regulator_get_optional - obtain optional access to a regulator.
1672  * @dev: device for regulator "consumer"
1673  * @id: Supply name or regulator ID.
1674  *
1675  * Returns a struct regulator corresponding to the regulator producer,
1676  * or IS_ERR() condition containing errno.
1677  *
1678  * This is intended for use by consumers for devices which can have
1679  * some supplies unconnected in normal use, such as some MMC devices.
1680  * It can allow the regulator core to provide stub supplies for other
1681  * supplies requested using normal regulator_get() calls without
1682  * disrupting the operation of drivers that can handle absent
1683  * supplies.
1684  *
1685  * Use of supply names configured via regulator_set_device_supply() is
1686  * strongly encouraged.  It is recommended that the supply name used
1687  * should match the name used for the supply and/or the relevant
1688  * device pins in the datasheet.
1689  */
1690 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1691 {
1692         return _regulator_get(dev, id, false, false);
1693 }
1694 EXPORT_SYMBOL_GPL(regulator_get_optional);
1695
1696 /* regulator_list_mutex lock held by regulator_put() */
1697 static void _regulator_put(struct regulator *regulator)
1698 {
1699         struct regulator_dev *rdev;
1700
1701         if (IS_ERR_OR_NULL(regulator))
1702                 return;
1703
1704         lockdep_assert_held_once(&regulator_list_mutex);
1705
1706         rdev = regulator->rdev;
1707
1708         debugfs_remove_recursive(regulator->debugfs);
1709
1710         /* remove any sysfs entries */
1711         if (regulator->dev)
1712                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1713         mutex_lock(&rdev->mutex);
1714         list_del(&regulator->list);
1715
1716         rdev->open_count--;
1717         rdev->exclusive = 0;
1718         put_device(&rdev->dev);
1719         mutex_unlock(&rdev->mutex);
1720
1721         kfree(regulator->supply_name);
1722         kfree(regulator);
1723
1724         module_put(rdev->owner);
1725 }
1726
1727 /**
1728  * regulator_put - "free" the regulator source
1729  * @regulator: regulator source
1730  *
1731  * Note: drivers must ensure that all regulator_enable calls made on this
1732  * regulator source are balanced by regulator_disable calls prior to calling
1733  * this function.
1734  */
1735 void regulator_put(struct regulator *regulator)
1736 {
1737         mutex_lock(&regulator_list_mutex);
1738         _regulator_put(regulator);
1739         mutex_unlock(&regulator_list_mutex);
1740 }
1741 EXPORT_SYMBOL_GPL(regulator_put);
1742
1743 /**
1744  * regulator_register_supply_alias - Provide device alias for supply lookup
1745  *
1746  * @dev: device that will be given as the regulator "consumer"
1747  * @id: Supply name or regulator ID
1748  * @alias_dev: device that should be used to lookup the supply
1749  * @alias_id: Supply name or regulator ID that should be used to lookup the
1750  * supply
1751  *
1752  * All lookups for id on dev will instead be conducted for alias_id on
1753  * alias_dev.
1754  */
1755 int regulator_register_supply_alias(struct device *dev, const char *id,
1756                                     struct device *alias_dev,
1757                                     const char *alias_id)
1758 {
1759         struct regulator_supply_alias *map;
1760
1761         map = regulator_find_supply_alias(dev, id);
1762         if (map)
1763                 return -EEXIST;
1764
1765         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1766         if (!map)
1767                 return -ENOMEM;
1768
1769         map->src_dev = dev;
1770         map->src_supply = id;
1771         map->alias_dev = alias_dev;
1772         map->alias_supply = alias_id;
1773
1774         list_add(&map->list, &regulator_supply_alias_list);
1775
1776         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1777                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1778
1779         return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1782
1783 /**
1784  * regulator_unregister_supply_alias - Remove device alias
1785  *
1786  * @dev: device that will be given as the regulator "consumer"
1787  * @id: Supply name or regulator ID
1788  *
1789  * Remove a lookup alias if one exists for id on dev.
1790  */
1791 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1792 {
1793         struct regulator_supply_alias *map;
1794
1795         map = regulator_find_supply_alias(dev, id);
1796         if (map) {
1797                 list_del(&map->list);
1798                 kfree(map);
1799         }
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1802
1803 /**
1804  * regulator_bulk_register_supply_alias - register multiple aliases
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: List of supply names or regulator IDs
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: List of supply names or regulator IDs that should be used to
1810  * lookup the supply
1811  * @num_id: Number of aliases to register
1812  *
1813  * @return 0 on success, an errno on failure.
1814  *
1815  * This helper function allows drivers to register several supply
1816  * aliases in one operation.  If any of the aliases cannot be
1817  * registered any aliases that were registered will be removed
1818  * before returning to the caller.
1819  */
1820 int regulator_bulk_register_supply_alias(struct device *dev,
1821                                          const char *const *id,
1822                                          struct device *alias_dev,
1823                                          const char *const *alias_id,
1824                                          int num_id)
1825 {
1826         int i;
1827         int ret;
1828
1829         for (i = 0; i < num_id; ++i) {
1830                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1831                                                       alias_id[i]);
1832                 if (ret < 0)
1833                         goto err;
1834         }
1835
1836         return 0;
1837
1838 err:
1839         dev_err(dev,
1840                 "Failed to create supply alias %s,%s -> %s,%s\n",
1841                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1842
1843         while (--i >= 0)
1844                 regulator_unregister_supply_alias(dev, id[i]);
1845
1846         return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1849
1850 /**
1851  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1852  *
1853  * @dev: device that will be given as the regulator "consumer"
1854  * @id: List of supply names or regulator IDs
1855  * @num_id: Number of aliases to unregister
1856  *
1857  * This helper function allows drivers to unregister several supply
1858  * aliases in one operation.
1859  */
1860 void regulator_bulk_unregister_supply_alias(struct device *dev,
1861                                             const char *const *id,
1862                                             int num_id)
1863 {
1864         int i;
1865
1866         for (i = 0; i < num_id; ++i)
1867                 regulator_unregister_supply_alias(dev, id[i]);
1868 }
1869 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1870
1871
1872 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1873 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1874                                 const struct regulator_config *config)
1875 {
1876         struct regulator_enable_gpio *pin;
1877         struct gpio_desc *gpiod;
1878         int ret;
1879
1880         gpiod = gpio_to_desc(config->ena_gpio);
1881
1882         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1883                 if (pin->gpiod == gpiod) {
1884                         rdev_dbg(rdev, "GPIO %d is already used\n",
1885                                 config->ena_gpio);
1886                         goto update_ena_gpio_to_rdev;
1887                 }
1888         }
1889
1890         ret = gpio_request_one(config->ena_gpio,
1891                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1892                                 rdev_get_name(rdev));
1893         if (ret)
1894                 return ret;
1895
1896         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1897         if (pin == NULL) {
1898                 gpio_free(config->ena_gpio);
1899                 return -ENOMEM;
1900         }
1901
1902         pin->gpiod = gpiod;
1903         pin->ena_gpio_invert = config->ena_gpio_invert;
1904         list_add(&pin->list, &regulator_ena_gpio_list);
1905
1906 update_ena_gpio_to_rdev:
1907         pin->request_count++;
1908         rdev->ena_pin = pin;
1909         return 0;
1910 }
1911
1912 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1913 {
1914         struct regulator_enable_gpio *pin, *n;
1915
1916         if (!rdev->ena_pin)
1917                 return;
1918
1919         /* Free the GPIO only in case of no use */
1920         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1921                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1922                         if (pin->request_count <= 1) {
1923                                 pin->request_count = 0;
1924                                 gpiod_put(pin->gpiod);
1925                                 list_del(&pin->list);
1926                                 kfree(pin);
1927                                 rdev->ena_pin = NULL;
1928                                 return;
1929                         } else {
1930                                 pin->request_count--;
1931                         }
1932                 }
1933         }
1934 }
1935
1936 /**
1937  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1938  * @rdev: regulator_dev structure
1939  * @enable: enable GPIO at initial use?
1940  *
1941  * GPIO is enabled in case of initial use. (enable_count is 0)
1942  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1943  */
1944 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1945 {
1946         struct regulator_enable_gpio *pin = rdev->ena_pin;
1947
1948         if (!pin)
1949                 return -EINVAL;
1950
1951         if (enable) {
1952                 /* Enable GPIO at initial use */
1953                 if (pin->enable_count == 0)
1954                         gpiod_set_value_cansleep(pin->gpiod,
1955                                                  !pin->ena_gpio_invert);
1956
1957                 pin->enable_count++;
1958         } else {
1959                 if (pin->enable_count > 1) {
1960                         pin->enable_count--;
1961                         return 0;
1962                 }
1963
1964                 /* Disable GPIO if not used */
1965                 if (pin->enable_count <= 1) {
1966                         gpiod_set_value_cansleep(pin->gpiod,
1967                                                  pin->ena_gpio_invert);
1968                         pin->enable_count = 0;
1969                 }
1970         }
1971
1972         return 0;
1973 }
1974
1975 /**
1976  * _regulator_enable_delay - a delay helper function
1977  * @delay: time to delay in microseconds
1978  *
1979  * Delay for the requested amount of time as per the guidelines in:
1980  *
1981  *     Documentation/timers/timers-howto.txt
1982  *
1983  * The assumption here is that regulators will never be enabled in
1984  * atomic context and therefore sleeping functions can be used.
1985  */
1986 static void _regulator_enable_delay(unsigned int delay)
1987 {
1988         unsigned int ms = delay / 1000;
1989         unsigned int us = delay % 1000;
1990
1991         if (ms > 0) {
1992                 /*
1993                  * For small enough values, handle super-millisecond
1994                  * delays in the usleep_range() call below.
1995                  */
1996                 if (ms < 20)
1997                         us += ms * 1000;
1998                 else
1999                         msleep(ms);
2000         }
2001
2002         /*
2003          * Give the scheduler some room to coalesce with any other
2004          * wakeup sources. For delays shorter than 10 us, don't even
2005          * bother setting up high-resolution timers and just busy-
2006          * loop.
2007          */
2008         if (us >= 10)
2009                 usleep_range(us, us + 100);
2010         else
2011                 udelay(us);
2012 }
2013
2014 static int _regulator_do_enable(struct regulator_dev *rdev)
2015 {
2016         int ret, delay;
2017
2018         /* Query before enabling in case configuration dependent.  */
2019         ret = _regulator_get_enable_time(rdev);
2020         if (ret >= 0) {
2021                 delay = ret;
2022         } else {
2023                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2024                 delay = 0;
2025         }
2026
2027         trace_regulator_enable(rdev_get_name(rdev));
2028
2029         if (rdev->desc->off_on_delay) {
2030                 /* if needed, keep a distance of off_on_delay from last time
2031                  * this regulator was disabled.
2032                  */
2033                 unsigned long start_jiffy = jiffies;
2034                 unsigned long intended, max_delay, remaining;
2035
2036                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2037                 intended = rdev->last_off_jiffy + max_delay;
2038
2039                 if (time_before(start_jiffy, intended)) {
2040                         /* calc remaining jiffies to deal with one-time
2041                          * timer wrapping.
2042                          * in case of multiple timer wrapping, either it can be
2043                          * detected by out-of-range remaining, or it cannot be
2044                          * detected and we gets a panelty of
2045                          * _regulator_enable_delay().
2046                          */
2047                         remaining = intended - start_jiffy;
2048                         if (remaining <= max_delay)
2049                                 _regulator_enable_delay(
2050                                                 jiffies_to_usecs(remaining));
2051                 }
2052         }
2053
2054         if (rdev->ena_pin) {
2055                 if (!rdev->ena_gpio_state) {
2056                         ret = regulator_ena_gpio_ctrl(rdev, true);
2057                         if (ret < 0)
2058                                 return ret;
2059                         rdev->ena_gpio_state = 1;
2060                 }
2061         } else if (rdev->desc->ops->enable) {
2062                 ret = rdev->desc->ops->enable(rdev);
2063                 if (ret < 0)
2064                         return ret;
2065         } else {
2066                 return -EINVAL;
2067         }
2068
2069         /* Allow the regulator to ramp; it would be useful to extend
2070          * this for bulk operations so that the regulators can ramp
2071          * together.  */
2072         trace_regulator_enable_delay(rdev_get_name(rdev));
2073
2074         _regulator_enable_delay(delay);
2075
2076         trace_regulator_enable_complete(rdev_get_name(rdev));
2077
2078         return 0;
2079 }
2080
2081 /* locks held by regulator_enable() */
2082 static int _regulator_enable(struct regulator_dev *rdev)
2083 {
2084         int ret;
2085
2086         lockdep_assert_held_once(&rdev->mutex);
2087
2088         /* check voltage and requested load before enabling */
2089         if (rdev->constraints &&
2090             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2091                 drms_uA_update(rdev);
2092
2093         if (rdev->use_count == 0) {
2094                 /* The regulator may on if it's not switchable or left on */
2095                 ret = _regulator_is_enabled(rdev);
2096                 if (ret == -EINVAL || ret == 0) {
2097                         if (!_regulator_can_change_status(rdev))
2098                                 return -EPERM;
2099
2100                         ret = _regulator_do_enable(rdev);
2101                         if (ret < 0)
2102                                 return ret;
2103
2104                 } else if (ret < 0) {
2105                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2106                         return ret;
2107                 }
2108                 /* Fallthrough on positive return values - already enabled */
2109         }
2110
2111         rdev->use_count++;
2112
2113         return 0;
2114 }
2115
2116 /**
2117  * regulator_enable - enable regulator output
2118  * @regulator: regulator source
2119  *
2120  * Request that the regulator be enabled with the regulator output at
2121  * the predefined voltage or current value.  Calls to regulator_enable()
2122  * must be balanced with calls to regulator_disable().
2123  *
2124  * NOTE: the output value can be set by other drivers, boot loader or may be
2125  * hardwired in the regulator.
2126  */
2127 int regulator_enable(struct regulator *regulator)
2128 {
2129         struct regulator_dev *rdev = regulator->rdev;
2130         int ret = 0;
2131
2132         if (regulator->always_on)
2133                 return 0;
2134
2135         if (rdev->supply) {
2136                 ret = regulator_enable(rdev->supply);
2137                 if (ret != 0)
2138                         return ret;
2139         }
2140
2141         mutex_lock(&rdev->mutex);
2142         ret = _regulator_enable(rdev);
2143         mutex_unlock(&rdev->mutex);
2144
2145         if (ret != 0 && rdev->supply)
2146                 regulator_disable(rdev->supply);
2147
2148         return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(regulator_enable);
2151
2152 static int _regulator_do_disable(struct regulator_dev *rdev)
2153 {
2154         int ret;
2155
2156         trace_regulator_disable(rdev_get_name(rdev));
2157
2158         if (rdev->ena_pin) {
2159                 if (rdev->ena_gpio_state) {
2160                         ret = regulator_ena_gpio_ctrl(rdev, false);
2161                         if (ret < 0)
2162                                 return ret;
2163                         rdev->ena_gpio_state = 0;
2164                 }
2165
2166         } else if (rdev->desc->ops->disable) {
2167                 ret = rdev->desc->ops->disable(rdev);
2168                 if (ret != 0)
2169                         return ret;
2170         }
2171
2172         /* cares about last_off_jiffy only if off_on_delay is required by
2173          * device.
2174          */
2175         if (rdev->desc->off_on_delay)
2176                 rdev->last_off_jiffy = jiffies;
2177
2178         trace_regulator_disable_complete(rdev_get_name(rdev));
2179
2180         return 0;
2181 }
2182
2183 /* locks held by regulator_disable() */
2184 static int _regulator_disable(struct regulator_dev *rdev)
2185 {
2186         int ret = 0;
2187
2188         lockdep_assert_held_once(&rdev->mutex);
2189
2190         if (WARN(rdev->use_count <= 0,
2191                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2192                 return -EIO;
2193
2194         /* are we the last user and permitted to disable ? */
2195         if (rdev->use_count == 1 &&
2196             (rdev->constraints && !rdev->constraints->always_on)) {
2197
2198                 /* we are last user */
2199                 if (_regulator_can_change_status(rdev)) {
2200                         ret = _notifier_call_chain(rdev,
2201                                                    REGULATOR_EVENT_PRE_DISABLE,
2202                                                    NULL);
2203                         if (ret & NOTIFY_STOP_MASK)
2204                                 return -EINVAL;
2205
2206                         ret = _regulator_do_disable(rdev);
2207                         if (ret < 0) {
2208                                 rdev_err(rdev, "failed to disable\n");
2209                                 _notifier_call_chain(rdev,
2210                                                 REGULATOR_EVENT_ABORT_DISABLE,
2211                                                 NULL);
2212                                 return ret;
2213                         }
2214                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2215                                         NULL);
2216                 }
2217
2218                 rdev->use_count = 0;
2219         } else if (rdev->use_count > 1) {
2220
2221                 if (rdev->constraints &&
2222                         (rdev->constraints->valid_ops_mask &
2223                         REGULATOR_CHANGE_DRMS))
2224                         drms_uA_update(rdev);
2225
2226                 rdev->use_count--;
2227         }
2228
2229         return ret;
2230 }
2231
2232 /**
2233  * regulator_disable - disable regulator output
2234  * @regulator: regulator source
2235  *
2236  * Disable the regulator output voltage or current.  Calls to
2237  * regulator_enable() must be balanced with calls to
2238  * regulator_disable().
2239  *
2240  * NOTE: this will only disable the regulator output if no other consumer
2241  * devices have it enabled, the regulator device supports disabling and
2242  * machine constraints permit this operation.
2243  */
2244 int regulator_disable(struct regulator *regulator)
2245 {
2246         struct regulator_dev *rdev = regulator->rdev;
2247         int ret = 0;
2248
2249         if (regulator->always_on)
2250                 return 0;
2251
2252         mutex_lock(&rdev->mutex);
2253         ret = _regulator_disable(rdev);
2254         mutex_unlock(&rdev->mutex);
2255
2256         if (ret == 0 && rdev->supply)
2257                 regulator_disable(rdev->supply);
2258
2259         return ret;
2260 }
2261 EXPORT_SYMBOL_GPL(regulator_disable);
2262
2263 /* locks held by regulator_force_disable() */
2264 static int _regulator_force_disable(struct regulator_dev *rdev)
2265 {
2266         int ret = 0;
2267
2268         lockdep_assert_held_once(&rdev->mutex);
2269
2270         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2271                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2272         if (ret & NOTIFY_STOP_MASK)
2273                 return -EINVAL;
2274
2275         ret = _regulator_do_disable(rdev);
2276         if (ret < 0) {
2277                 rdev_err(rdev, "failed to force disable\n");
2278                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2279                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2280                 return ret;
2281         }
2282
2283         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2284                         REGULATOR_EVENT_DISABLE, NULL);
2285
2286         return 0;
2287 }
2288
2289 /**
2290  * regulator_force_disable - force disable regulator output
2291  * @regulator: regulator source
2292  *
2293  * Forcibly disable the regulator output voltage or current.
2294  * NOTE: this *will* disable the regulator output even if other consumer
2295  * devices have it enabled. This should be used for situations when device
2296  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2297  */
2298 int regulator_force_disable(struct regulator *regulator)
2299 {
2300         struct regulator_dev *rdev = regulator->rdev;
2301         int ret;
2302
2303         mutex_lock(&rdev->mutex);
2304         regulator->uA_load = 0;
2305         ret = _regulator_force_disable(regulator->rdev);
2306         mutex_unlock(&rdev->mutex);
2307
2308         if (rdev->supply)
2309                 while (rdev->open_count--)
2310                         regulator_disable(rdev->supply);
2311
2312         return ret;
2313 }
2314 EXPORT_SYMBOL_GPL(regulator_force_disable);
2315
2316 static void regulator_disable_work(struct work_struct *work)
2317 {
2318         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2319                                                   disable_work.work);
2320         int count, i, ret;
2321
2322         mutex_lock(&rdev->mutex);
2323
2324         BUG_ON(!rdev->deferred_disables);
2325
2326         count = rdev->deferred_disables;
2327         rdev->deferred_disables = 0;
2328
2329         for (i = 0; i < count; i++) {
2330                 ret = _regulator_disable(rdev);
2331                 if (ret != 0)
2332                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2333         }
2334
2335         mutex_unlock(&rdev->mutex);
2336
2337         if (rdev->supply) {
2338                 for (i = 0; i < count; i++) {
2339                         ret = regulator_disable(rdev->supply);
2340                         if (ret != 0) {
2341                                 rdev_err(rdev,
2342                                          "Supply disable failed: %d\n", ret);
2343                         }
2344                 }
2345         }
2346 }
2347
2348 /**
2349  * regulator_disable_deferred - disable regulator output with delay
2350  * @regulator: regulator source
2351  * @ms: miliseconds until the regulator is disabled
2352  *
2353  * Execute regulator_disable() on the regulator after a delay.  This
2354  * is intended for use with devices that require some time to quiesce.
2355  *
2356  * NOTE: this will only disable the regulator output if no other consumer
2357  * devices have it enabled, the regulator device supports disabling and
2358  * machine constraints permit this operation.
2359  */
2360 int regulator_disable_deferred(struct regulator *regulator, int ms)
2361 {
2362         struct regulator_dev *rdev = regulator->rdev;
2363         int ret;
2364
2365         if (regulator->always_on)
2366                 return 0;
2367
2368         if (!ms)
2369                 return regulator_disable(regulator);
2370
2371         mutex_lock(&rdev->mutex);
2372         rdev->deferred_disables++;
2373         mutex_unlock(&rdev->mutex);
2374
2375         ret = queue_delayed_work(system_power_efficient_wq,
2376                                  &rdev->disable_work,
2377                                  msecs_to_jiffies(ms));
2378         if (ret < 0)
2379                 return ret;
2380         else
2381                 return 0;
2382 }
2383 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2384
2385 static int _regulator_is_enabled(struct regulator_dev *rdev)
2386 {
2387         /* A GPIO control always takes precedence */
2388         if (rdev->ena_pin)
2389                 return rdev->ena_gpio_state;
2390
2391         /* If we don't know then assume that the regulator is always on */
2392         if (!rdev->desc->ops->is_enabled)
2393                 return 1;
2394
2395         return rdev->desc->ops->is_enabled(rdev);
2396 }
2397
2398 static int _regulator_list_voltage(struct regulator *regulator,
2399                                     unsigned selector, int lock)
2400 {
2401         struct regulator_dev *rdev = regulator->rdev;
2402         const struct regulator_ops *ops = rdev->desc->ops;
2403         int ret;
2404
2405         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2406                 return rdev->desc->fixed_uV;
2407
2408         if (ops->list_voltage) {
2409                 if (selector >= rdev->desc->n_voltages)
2410                         return -EINVAL;
2411                 if (lock)
2412                         mutex_lock(&rdev->mutex);
2413                 ret = ops->list_voltage(rdev, selector);
2414                 if (lock)
2415                         mutex_unlock(&rdev->mutex);
2416         } else if (rdev->supply) {
2417                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2418         } else {
2419                 return -EINVAL;
2420         }
2421
2422         if (ret > 0) {
2423                 if (ret < rdev->constraints->min_uV)
2424                         ret = 0;
2425                 else if (ret > rdev->constraints->max_uV)
2426                         ret = 0;
2427         }
2428
2429         return ret;
2430 }
2431
2432 /**
2433  * regulator_is_enabled - is the regulator output enabled
2434  * @regulator: regulator source
2435  *
2436  * Returns positive if the regulator driver backing the source/client
2437  * has requested that the device be enabled, zero if it hasn't, else a
2438  * negative errno code.
2439  *
2440  * Note that the device backing this regulator handle can have multiple
2441  * users, so it might be enabled even if regulator_enable() was never
2442  * called for this particular source.
2443  */
2444 int regulator_is_enabled(struct regulator *regulator)
2445 {
2446         int ret;
2447
2448         if (regulator->always_on)
2449                 return 1;
2450
2451         mutex_lock(&regulator->rdev->mutex);
2452         ret = _regulator_is_enabled(regulator->rdev);
2453         mutex_unlock(&regulator->rdev->mutex);
2454
2455         return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2458
2459 /**
2460  * regulator_can_change_voltage - check if regulator can change voltage
2461  * @regulator: regulator source
2462  *
2463  * Returns positive if the regulator driver backing the source/client
2464  * can change its voltage, false otherwise. Useful for detecting fixed
2465  * or dummy regulators and disabling voltage change logic in the client
2466  * driver.
2467  */
2468 int regulator_can_change_voltage(struct regulator *regulator)
2469 {
2470         struct regulator_dev    *rdev = regulator->rdev;
2471
2472         if (rdev->constraints &&
2473             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2474                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2475                         return 1;
2476
2477                 if (rdev->desc->continuous_voltage_range &&
2478                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2479                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2480                         return 1;
2481         }
2482
2483         return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2486
2487 /**
2488  * regulator_count_voltages - count regulator_list_voltage() selectors
2489  * @regulator: regulator source
2490  *
2491  * Returns number of selectors, or negative errno.  Selectors are
2492  * numbered starting at zero, and typically correspond to bitfields
2493  * in hardware registers.
2494  */
2495 int regulator_count_voltages(struct regulator *regulator)
2496 {
2497         struct regulator_dev    *rdev = regulator->rdev;
2498
2499         if (rdev->desc->n_voltages)
2500                 return rdev->desc->n_voltages;
2501
2502         if (!rdev->supply)
2503                 return -EINVAL;
2504
2505         return regulator_count_voltages(rdev->supply);
2506 }
2507 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2508
2509 /**
2510  * regulator_list_voltage - enumerate supported voltages
2511  * @regulator: regulator source
2512  * @selector: identify voltage to list
2513  * Context: can sleep
2514  *
2515  * Returns a voltage that can be passed to @regulator_set_voltage(),
2516  * zero if this selector code can't be used on this system, or a
2517  * negative errno.
2518  */
2519 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2520 {
2521         return _regulator_list_voltage(regulator, selector, 1);
2522 }
2523 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2524
2525 /**
2526  * regulator_get_regmap - get the regulator's register map
2527  * @regulator: regulator source
2528  *
2529  * Returns the register map for the given regulator, or an ERR_PTR value
2530  * if the regulator doesn't use regmap.
2531  */
2532 struct regmap *regulator_get_regmap(struct regulator *regulator)
2533 {
2534         struct regmap *map = regulator->rdev->regmap;
2535
2536         return map ? map : ERR_PTR(-EOPNOTSUPP);
2537 }
2538
2539 /**
2540  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2541  * @regulator: regulator source
2542  * @vsel_reg: voltage selector register, output parameter
2543  * @vsel_mask: mask for voltage selector bitfield, output parameter
2544  *
2545  * Returns the hardware register offset and bitmask used for setting the
2546  * regulator voltage. This might be useful when configuring voltage-scaling
2547  * hardware or firmware that can make I2C requests behind the kernel's back,
2548  * for example.
2549  *
2550  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2551  * and 0 is returned, otherwise a negative errno is returned.
2552  */
2553 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2554                                          unsigned *vsel_reg,
2555                                          unsigned *vsel_mask)
2556 {
2557         struct regulator_dev *rdev = regulator->rdev;
2558         const struct regulator_ops *ops = rdev->desc->ops;
2559
2560         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2561                 return -EOPNOTSUPP;
2562
2563          *vsel_reg = rdev->desc->vsel_reg;
2564          *vsel_mask = rdev->desc->vsel_mask;
2565
2566          return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2569
2570 /**
2571  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2572  * @regulator: regulator source
2573  * @selector: identify voltage to list
2574  *
2575  * Converts the selector to a hardware-specific voltage selector that can be
2576  * directly written to the regulator registers. The address of the voltage
2577  * register can be determined by calling @regulator_get_hardware_vsel_register.
2578  *
2579  * On error a negative errno is returned.
2580  */
2581 int regulator_list_hardware_vsel(struct regulator *regulator,
2582                                  unsigned selector)
2583 {
2584         struct regulator_dev *rdev = regulator->rdev;
2585         const struct regulator_ops *ops = rdev->desc->ops;
2586
2587         if (selector >= rdev->desc->n_voltages)
2588                 return -EINVAL;
2589         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2590                 return -EOPNOTSUPP;
2591
2592         return selector;
2593 }
2594 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2595
2596 /**
2597  * regulator_get_linear_step - return the voltage step size between VSEL values
2598  * @regulator: regulator source
2599  *
2600  * Returns the voltage step size between VSEL values for linear
2601  * regulators, or return 0 if the regulator isn't a linear regulator.
2602  */
2603 unsigned int regulator_get_linear_step(struct regulator *regulator)
2604 {
2605         struct regulator_dev *rdev = regulator->rdev;
2606
2607         return rdev->desc->uV_step;
2608 }
2609 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2610
2611 /**
2612  * regulator_is_supported_voltage - check if a voltage range can be supported
2613  *
2614  * @regulator: Regulator to check.
2615  * @min_uV: Minimum required voltage in uV.
2616  * @max_uV: Maximum required voltage in uV.
2617  *
2618  * Returns a boolean or a negative error code.
2619  */
2620 int regulator_is_supported_voltage(struct regulator *regulator,
2621                                    int min_uV, int max_uV)
2622 {
2623         struct regulator_dev *rdev = regulator->rdev;
2624         int i, voltages, ret;
2625
2626         /* If we can't change voltage check the current voltage */
2627         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2628                 ret = regulator_get_voltage(regulator);
2629                 if (ret >= 0)
2630                         return min_uV <= ret && ret <= max_uV;
2631                 else
2632                         return ret;
2633         }
2634
2635         /* Any voltage within constrains range is fine? */
2636         if (rdev->desc->continuous_voltage_range)
2637                 return min_uV >= rdev->constraints->min_uV &&
2638                                 max_uV <= rdev->constraints->max_uV;
2639
2640         ret = regulator_count_voltages(regulator);
2641         if (ret < 0)
2642                 return ret;
2643         voltages = ret;
2644
2645         for (i = 0; i < voltages; i++) {
2646                 ret = regulator_list_voltage(regulator, i);
2647
2648                 if (ret >= min_uV && ret <= max_uV)
2649                         return 1;
2650         }
2651
2652         return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2655
2656 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2657                                  int max_uV)
2658 {
2659         const struct regulator_desc *desc = rdev->desc;
2660
2661         if (desc->ops->map_voltage)
2662                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2663
2664         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2665                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2666
2667         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2668                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2669
2670         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2671 }
2672
2673 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2674                                        int min_uV, int max_uV,
2675                                        unsigned *selector)
2676 {
2677         struct pre_voltage_change_data data;
2678         int ret;
2679
2680         data.old_uV = _regulator_get_voltage(rdev);
2681         data.min_uV = min_uV;
2682         data.max_uV = max_uV;
2683         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2684                                    &data);
2685         if (ret & NOTIFY_STOP_MASK)
2686                 return -EINVAL;
2687
2688         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2689         if (ret >= 0)
2690                 return ret;
2691
2692         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2693                              (void *)data.old_uV);
2694
2695         return ret;
2696 }
2697
2698 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2699                                            int uV, unsigned selector)
2700 {
2701         struct pre_voltage_change_data data;
2702         int ret;
2703
2704         data.old_uV = _regulator_get_voltage(rdev);
2705         data.min_uV = uV;
2706         data.max_uV = uV;
2707         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2708                                    &data);
2709         if (ret & NOTIFY_STOP_MASK)
2710                 return -EINVAL;
2711
2712         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2713         if (ret >= 0)
2714                 return ret;
2715
2716         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2717                              (void *)data.old_uV);
2718
2719         return ret;
2720 }
2721
2722 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2723                                      int min_uV, int max_uV)
2724 {
2725         int ret;
2726         int delay = 0;
2727         int best_val = 0;
2728         unsigned int selector;
2729         int old_selector = -1;
2730
2731         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2732
2733         min_uV += rdev->constraints->uV_offset;
2734         max_uV += rdev->constraints->uV_offset;
2735
2736         /*
2737          * If we can't obtain the old selector there is not enough
2738          * info to call set_voltage_time_sel().
2739          */
2740         if (_regulator_is_enabled(rdev) &&
2741             rdev->desc->ops->set_voltage_time_sel &&
2742             rdev->desc->ops->get_voltage_sel) {
2743                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2744                 if (old_selector < 0)
2745                         return old_selector;
2746         }
2747
2748         if (rdev->desc->ops->set_voltage) {
2749                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2750                                                   &selector);
2751
2752                 if (ret >= 0) {
2753                         if (rdev->desc->ops->list_voltage)
2754                                 best_val = rdev->desc->ops->list_voltage(rdev,
2755                                                                          selector);
2756                         else
2757                                 best_val = _regulator_get_voltage(rdev);
2758                 }
2759
2760         } else if (rdev->desc->ops->set_voltage_sel) {
2761                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2762                 if (ret >= 0) {
2763                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2764                         if (min_uV <= best_val && max_uV >= best_val) {
2765                                 selector = ret;
2766                                 if (old_selector == selector)
2767                                         ret = 0;
2768                                 else
2769                                         ret = _regulator_call_set_voltage_sel(
2770                                                 rdev, best_val, selector);
2771                         } else {
2772                                 ret = -EINVAL;
2773                         }
2774                 }
2775         } else {
2776                 ret = -EINVAL;
2777         }
2778
2779         /* Call set_voltage_time_sel if successfully obtained old_selector */
2780         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2781                 && old_selector != selector) {
2782
2783                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2784                                                 old_selector, selector);
2785                 if (delay < 0) {
2786                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2787                                   delay);
2788                         delay = 0;
2789                 }
2790
2791                 /* Insert any necessary delays */
2792                 if (delay >= 1000) {
2793                         mdelay(delay / 1000);
2794                         udelay(delay % 1000);
2795                 } else if (delay) {
2796                         udelay(delay);
2797                 }
2798         }
2799
2800         if (ret == 0 && best_val >= 0) {
2801                 unsigned long data = best_val;
2802
2803                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2804                                      (void *)data);
2805         }
2806
2807         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2808
2809         return ret;
2810 }
2811
2812 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2813                                           int min_uV, int max_uV)
2814 {
2815         struct regulator_dev *rdev = regulator->rdev;
2816         int ret = 0;
2817         int old_min_uV, old_max_uV;
2818         int current_uV;
2819         int best_supply_uV = 0;
2820         int supply_change_uV = 0;
2821
2822         /* If we're setting the same range as last time the change
2823          * should be a noop (some cpufreq implementations use the same
2824          * voltage for multiple frequencies, for example).
2825          */
2826         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2827                 goto out;
2828
2829         /* If we're trying to set a range that overlaps the current voltage,
2830          * return successfully even though the regulator does not support
2831          * changing the voltage.
2832          */
2833         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2834                 current_uV = _regulator_get_voltage(rdev);
2835                 if (min_uV <= current_uV && current_uV <= max_uV) {
2836                         regulator->min_uV = min_uV;
2837                         regulator->max_uV = max_uV;
2838                         goto out;
2839                 }
2840         }
2841
2842         /* sanity check */
2843         if (!rdev->desc->ops->set_voltage &&
2844             !rdev->desc->ops->set_voltage_sel) {
2845                 ret = -EINVAL;
2846                 goto out;
2847         }
2848
2849         /* constraints check */
2850         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2851         if (ret < 0)
2852                 goto out;
2853
2854         /* restore original values in case of error */
2855         old_min_uV = regulator->min_uV;
2856         old_max_uV = regulator->max_uV;
2857         regulator->min_uV = min_uV;
2858         regulator->max_uV = max_uV;
2859
2860         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2861         if (ret < 0)
2862                 goto out2;
2863
2864         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2865                                 !rdev->desc->ops->get_voltage)) {
2866                 int current_supply_uV;
2867                 int selector;
2868
2869                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2870                 if (selector < 0) {
2871                         ret = selector;
2872                         goto out2;
2873                 }
2874
2875                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2876                 if (best_supply_uV < 0) {
2877                         ret = best_supply_uV;
2878                         goto out2;
2879                 }
2880
2881                 best_supply_uV += rdev->desc->min_dropout_uV;
2882
2883                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2884                 if (current_supply_uV < 0) {
2885                         ret = current_supply_uV;
2886                         goto out2;
2887                 }
2888
2889                 supply_change_uV = best_supply_uV - current_supply_uV;
2890         }
2891
2892         if (supply_change_uV > 0) {
2893                 ret = regulator_set_voltage_unlocked(rdev->supply,
2894                                 best_supply_uV, INT_MAX);
2895                 if (ret) {
2896                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2897                                         ret);
2898                         goto out2;
2899                 }
2900         }
2901
2902         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2903         if (ret < 0)
2904                 goto out2;
2905
2906         if (supply_change_uV < 0) {
2907                 ret = regulator_set_voltage_unlocked(rdev->supply,
2908                                 best_supply_uV, INT_MAX);
2909                 if (ret)
2910                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2911                                         ret);
2912                 /* No need to fail here */
2913                 ret = 0;
2914         }
2915
2916 out:
2917         return ret;
2918 out2:
2919         regulator->min_uV = old_min_uV;
2920         regulator->max_uV = old_max_uV;
2921
2922         return ret;
2923 }
2924
2925 /**
2926  * regulator_set_voltage - set regulator output voltage
2927  * @regulator: regulator source
2928  * @min_uV: Minimum required voltage in uV
2929  * @max_uV: Maximum acceptable voltage in uV
2930  *
2931  * Sets a voltage regulator to the desired output voltage. This can be set
2932  * during any regulator state. IOW, regulator can be disabled or enabled.
2933  *
2934  * If the regulator is enabled then the voltage will change to the new value
2935  * immediately otherwise if the regulator is disabled the regulator will
2936  * output at the new voltage when enabled.
2937  *
2938  * NOTE: If the regulator is shared between several devices then the lowest
2939  * request voltage that meets the system constraints will be used.
2940  * Regulator system constraints must be set for this regulator before
2941  * calling this function otherwise this call will fail.
2942  */
2943 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2944 {
2945         int ret = 0;
2946
2947         regulator_lock_supply(regulator->rdev);
2948
2949         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2950
2951         regulator_unlock_supply(regulator->rdev);
2952
2953         return ret;
2954 }
2955 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2956
2957 /**
2958  * regulator_set_voltage_time - get raise/fall time
2959  * @regulator: regulator source
2960  * @old_uV: starting voltage in microvolts
2961  * @new_uV: target voltage in microvolts
2962  *
2963  * Provided with the starting and ending voltage, this function attempts to
2964  * calculate the time in microseconds required to rise or fall to this new
2965  * voltage.
2966  */
2967 int regulator_set_voltage_time(struct regulator *regulator,
2968                                int old_uV, int new_uV)
2969 {
2970         struct regulator_dev *rdev = regulator->rdev;
2971         const struct regulator_ops *ops = rdev->desc->ops;
2972         int old_sel = -1;
2973         int new_sel = -1;
2974         int voltage;
2975         int i;
2976
2977         /* Currently requires operations to do this */
2978         if (!ops->list_voltage || !ops->set_voltage_time_sel
2979             || !rdev->desc->n_voltages)
2980                 return -EINVAL;
2981
2982         for (i = 0; i < rdev->desc->n_voltages; i++) {
2983                 /* We only look for exact voltage matches here */
2984                 voltage = regulator_list_voltage(regulator, i);
2985                 if (voltage < 0)
2986                         return -EINVAL;
2987                 if (voltage == 0)
2988                         continue;
2989                 if (voltage == old_uV)
2990                         old_sel = i;
2991                 if (voltage == new_uV)
2992                         new_sel = i;
2993         }
2994
2995         if (old_sel < 0 || new_sel < 0)
2996                 return -EINVAL;
2997
2998         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3001
3002 /**
3003  * regulator_set_voltage_time_sel - get raise/fall time
3004  * @rdev: regulator source device
3005  * @old_selector: selector for starting voltage
3006  * @new_selector: selector for target voltage
3007  *
3008  * Provided with the starting and target voltage selectors, this function
3009  * returns time in microseconds required to rise or fall to this new voltage
3010  *
3011  * Drivers providing ramp_delay in regulation_constraints can use this as their
3012  * set_voltage_time_sel() operation.
3013  */
3014 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3015                                    unsigned int old_selector,
3016                                    unsigned int new_selector)
3017 {
3018         unsigned int ramp_delay = 0;
3019         int old_volt, new_volt;
3020
3021         if (rdev->constraints->ramp_delay)
3022                 ramp_delay = rdev->constraints->ramp_delay;
3023         else if (rdev->desc->ramp_delay)
3024                 ramp_delay = rdev->desc->ramp_delay;
3025
3026         if (ramp_delay == 0) {
3027                 rdev_warn(rdev, "ramp_delay not set\n");
3028                 return 0;
3029         }
3030
3031         /* sanity check */
3032         if (!rdev->desc->ops->list_voltage)
3033                 return -EINVAL;
3034
3035         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3036         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3037
3038         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3039 }
3040 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3041
3042 /**
3043  * regulator_sync_voltage - re-apply last regulator output voltage
3044  * @regulator: regulator source
3045  *
3046  * Re-apply the last configured voltage.  This is intended to be used
3047  * where some external control source the consumer is cooperating with
3048  * has caused the configured voltage to change.
3049  */
3050 int regulator_sync_voltage(struct regulator *regulator)
3051 {
3052         struct regulator_dev *rdev = regulator->rdev;
3053         int ret, min_uV, max_uV;
3054
3055         mutex_lock(&rdev->mutex);
3056
3057         if (!rdev->desc->ops->set_voltage &&
3058             !rdev->desc->ops->set_voltage_sel) {
3059                 ret = -EINVAL;
3060                 goto out;
3061         }
3062
3063         /* This is only going to work if we've had a voltage configured. */
3064         if (!regulator->min_uV && !regulator->max_uV) {
3065                 ret = -EINVAL;
3066                 goto out;
3067         }
3068
3069         min_uV = regulator->min_uV;
3070         max_uV = regulator->max_uV;
3071
3072         /* This should be a paranoia check... */
3073         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3074         if (ret < 0)
3075                 goto out;
3076
3077         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3078         if (ret < 0)
3079                 goto out;
3080
3081         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3082
3083 out:
3084         mutex_unlock(&rdev->mutex);
3085         return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3088
3089 static int _regulator_get_voltage(struct regulator_dev *rdev)
3090 {
3091         int sel, ret;
3092
3093         if (rdev->desc->ops->get_voltage_sel) {
3094                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3095                 if (sel < 0)
3096                         return sel;
3097                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3098         } else if (rdev->desc->ops->get_voltage) {
3099                 ret = rdev->desc->ops->get_voltage(rdev);
3100         } else if (rdev->desc->ops->list_voltage) {
3101                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3102         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3103                 ret = rdev->desc->fixed_uV;
3104         } else if (rdev->supply) {
3105                 ret = _regulator_get_voltage(rdev->supply->rdev);
3106         } else {
3107                 return -EINVAL;
3108         }
3109
3110         if (ret < 0)
3111                 return ret;
3112         return ret - rdev->constraints->uV_offset;
3113 }
3114
3115 /**
3116  * regulator_get_voltage - get regulator output voltage
3117  * @regulator: regulator source
3118  *
3119  * This returns the current regulator voltage in uV.
3120  *
3121  * NOTE: If the regulator is disabled it will return the voltage value. This
3122  * function should not be used to determine regulator state.
3123  */
3124 int regulator_get_voltage(struct regulator *regulator)
3125 {
3126         int ret;
3127
3128         regulator_lock_supply(regulator->rdev);
3129
3130         ret = _regulator_get_voltage(regulator->rdev);
3131
3132         regulator_unlock_supply(regulator->rdev);
3133
3134         return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3137
3138 /**
3139  * regulator_set_current_limit - set regulator output current limit
3140  * @regulator: regulator source
3141  * @min_uA: Minimum supported current in uA
3142  * @max_uA: Maximum supported current in uA
3143  *
3144  * Sets current sink to the desired output current. This can be set during
3145  * any regulator state. IOW, regulator can be disabled or enabled.
3146  *
3147  * If the regulator is enabled then the current will change to the new value
3148  * immediately otherwise if the regulator is disabled the regulator will
3149  * output at the new current when enabled.
3150  *
3151  * NOTE: Regulator system constraints must be set for this regulator before
3152  * calling this function otherwise this call will fail.
3153  */
3154 int regulator_set_current_limit(struct regulator *regulator,
3155                                int min_uA, int max_uA)
3156 {
3157         struct regulator_dev *rdev = regulator->rdev;
3158         int ret;
3159
3160         mutex_lock(&rdev->mutex);
3161
3162         /* sanity check */
3163         if (!rdev->desc->ops->set_current_limit) {
3164                 ret = -EINVAL;
3165                 goto out;
3166         }
3167
3168         /* constraints check */
3169         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3170         if (ret < 0)
3171                 goto out;
3172
3173         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3174 out:
3175         mutex_unlock(&rdev->mutex);
3176         return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3179
3180 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3181 {
3182         int ret;
3183
3184         mutex_lock(&rdev->mutex);
3185
3186         /* sanity check */
3187         if (!rdev->desc->ops->get_current_limit) {
3188                 ret = -EINVAL;
3189                 goto out;
3190         }
3191
3192         ret = rdev->desc->ops->get_current_limit(rdev);
3193 out:
3194         mutex_unlock(&rdev->mutex);
3195         return ret;
3196 }
3197
3198 /**
3199  * regulator_get_current_limit - get regulator output current
3200  * @regulator: regulator source
3201  *
3202  * This returns the current supplied by the specified current sink in uA.
3203  *
3204  * NOTE: If the regulator is disabled it will return the current value. This
3205  * function should not be used to determine regulator state.
3206  */
3207 int regulator_get_current_limit(struct regulator *regulator)
3208 {
3209         return _regulator_get_current_limit(regulator->rdev);
3210 }
3211 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3212
3213 /**
3214  * regulator_set_mode - set regulator operating mode
3215  * @regulator: regulator source
3216  * @mode: operating mode - one of the REGULATOR_MODE constants
3217  *
3218  * Set regulator operating mode to increase regulator efficiency or improve
3219  * regulation performance.
3220  *
3221  * NOTE: Regulator system constraints must be set for this regulator before
3222  * calling this function otherwise this call will fail.
3223  */
3224 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3225 {
3226         struct regulator_dev *rdev = regulator->rdev;
3227         int ret;
3228         int regulator_curr_mode;
3229
3230         mutex_lock(&rdev->mutex);
3231
3232         /* sanity check */
3233         if (!rdev->desc->ops->set_mode) {
3234                 ret = -EINVAL;
3235                 goto out;
3236         }
3237
3238         /* return if the same mode is requested */
3239         if (rdev->desc->ops->get_mode) {
3240                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3241                 if (regulator_curr_mode == mode) {
3242                         ret = 0;
3243                         goto out;
3244                 }
3245         }
3246
3247         /* constraints check */
3248         ret = regulator_mode_constrain(rdev, &mode);
3249         if (ret < 0)
3250                 goto out;
3251
3252         ret = rdev->desc->ops->set_mode(rdev, mode);
3253 out:
3254         mutex_unlock(&rdev->mutex);
3255         return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(regulator_set_mode);
3258
3259 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3260 {
3261         int ret;
3262
3263         mutex_lock(&rdev->mutex);
3264
3265         /* sanity check */
3266         if (!rdev->desc->ops->get_mode) {
3267                 ret = -EINVAL;
3268                 goto out;
3269         }
3270
3271         ret = rdev->desc->ops->get_mode(rdev);
3272 out:
3273         mutex_unlock(&rdev->mutex);
3274         return ret;
3275 }
3276
3277 /**
3278  * regulator_get_mode - get regulator operating mode
3279  * @regulator: regulator source
3280  *
3281  * Get the current regulator operating mode.
3282  */
3283 unsigned int regulator_get_mode(struct regulator *regulator)
3284 {
3285         return _regulator_get_mode(regulator->rdev);
3286 }
3287 EXPORT_SYMBOL_GPL(regulator_get_mode);
3288
3289 /**
3290  * regulator_set_load - set regulator load
3291  * @regulator: regulator source
3292  * @uA_load: load current
3293  *
3294  * Notifies the regulator core of a new device load. This is then used by
3295  * DRMS (if enabled by constraints) to set the most efficient regulator
3296  * operating mode for the new regulator loading.
3297  *
3298  * Consumer devices notify their supply regulator of the maximum power
3299  * they will require (can be taken from device datasheet in the power
3300  * consumption tables) when they change operational status and hence power
3301  * state. Examples of operational state changes that can affect power
3302  * consumption are :-
3303  *
3304  *    o Device is opened / closed.
3305  *    o Device I/O is about to begin or has just finished.
3306  *    o Device is idling in between work.
3307  *
3308  * This information is also exported via sysfs to userspace.
3309  *
3310  * DRMS will sum the total requested load on the regulator and change
3311  * to the most efficient operating mode if platform constraints allow.
3312  *
3313  * On error a negative errno is returned.
3314  */
3315 int regulator_set_load(struct regulator *regulator, int uA_load)
3316 {
3317         struct regulator_dev *rdev = regulator->rdev;
3318         int ret;
3319
3320         mutex_lock(&rdev->mutex);
3321         regulator->uA_load = uA_load;
3322         ret = drms_uA_update(rdev);
3323         mutex_unlock(&rdev->mutex);
3324
3325         return ret;
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_set_load);
3328
3329 /**
3330  * regulator_allow_bypass - allow the regulator to go into bypass mode
3331  *
3332  * @regulator: Regulator to configure
3333  * @enable: enable or disable bypass mode
3334  *
3335  * Allow the regulator to go into bypass mode if all other consumers
3336  * for the regulator also enable bypass mode and the machine
3337  * constraints allow this.  Bypass mode means that the regulator is
3338  * simply passing the input directly to the output with no regulation.
3339  */
3340 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3341 {
3342         struct regulator_dev *rdev = regulator->rdev;
3343         int ret = 0;
3344
3345         if (!rdev->desc->ops->set_bypass)
3346                 return 0;
3347
3348         if (rdev->constraints &&
3349             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3350                 return 0;
3351
3352         mutex_lock(&rdev->mutex);
3353
3354         if (enable && !regulator->bypass) {
3355                 rdev->bypass_count++;
3356
3357                 if (rdev->bypass_count == rdev->open_count) {
3358                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3359                         if (ret != 0)
3360                                 rdev->bypass_count--;
3361                 }
3362
3363         } else if (!enable && regulator->bypass) {
3364                 rdev->bypass_count--;
3365
3366                 if (rdev->bypass_count != rdev->open_count) {
3367                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3368                         if (ret != 0)
3369                                 rdev->bypass_count++;
3370                 }
3371         }
3372
3373         if (ret == 0)
3374                 regulator->bypass = enable;
3375
3376         mutex_unlock(&rdev->mutex);
3377
3378         return ret;
3379 }
3380 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3381
3382 /**
3383  * regulator_register_notifier - register regulator event notifier
3384  * @regulator: regulator source
3385  * @nb: notifier block
3386  *
3387  * Register notifier block to receive regulator events.
3388  */
3389 int regulator_register_notifier(struct regulator *regulator,
3390                               struct notifier_block *nb)
3391 {
3392         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3393                                                 nb);
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3396
3397 /**
3398  * regulator_unregister_notifier - unregister regulator event notifier
3399  * @regulator: regulator source
3400  * @nb: notifier block
3401  *
3402  * Unregister regulator event notifier block.
3403  */
3404 int regulator_unregister_notifier(struct regulator *regulator,
3405                                 struct notifier_block *nb)
3406 {
3407         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3408                                                   nb);
3409 }
3410 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3411
3412 /* notify regulator consumers and downstream regulator consumers.
3413  * Note mutex must be held by caller.
3414  */
3415 static int _notifier_call_chain(struct regulator_dev *rdev,
3416                                   unsigned long event, void *data)
3417 {
3418         /* call rdev chain first */
3419         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3420 }
3421
3422 /**
3423  * regulator_bulk_get - get multiple regulator consumers
3424  *
3425  * @dev:           Device to supply
3426  * @num_consumers: Number of consumers to register
3427  * @consumers:     Configuration of consumers; clients are stored here.
3428  *
3429  * @return 0 on success, an errno on failure.
3430  *
3431  * This helper function allows drivers to get several regulator
3432  * consumers in one operation.  If any of the regulators cannot be
3433  * acquired then any regulators that were allocated will be freed
3434  * before returning to the caller.
3435  */
3436 int regulator_bulk_get(struct device *dev, int num_consumers,
3437                        struct regulator_bulk_data *consumers)
3438 {
3439         int i;
3440         int ret;
3441
3442         for (i = 0; i < num_consumers; i++)
3443                 consumers[i].consumer = NULL;
3444
3445         for (i = 0; i < num_consumers; i++) {
3446                 consumers[i].consumer = regulator_get(dev,
3447                                                       consumers[i].supply);
3448                 if (IS_ERR(consumers[i].consumer)) {
3449                         ret = PTR_ERR(consumers[i].consumer);
3450                         dev_err(dev, "Failed to get supply '%s': %d\n",
3451                                 consumers[i].supply, ret);
3452                         consumers[i].consumer = NULL;
3453                         goto err;
3454                 }
3455         }
3456
3457         return 0;
3458
3459 err:
3460         while (--i >= 0)
3461                 regulator_put(consumers[i].consumer);
3462
3463         return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3466
3467 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3468 {
3469         struct regulator_bulk_data *bulk = data;
3470
3471         bulk->ret = regulator_enable(bulk->consumer);
3472 }
3473
3474 /**
3475  * regulator_bulk_enable - enable multiple regulator consumers
3476  *
3477  * @num_consumers: Number of consumers
3478  * @consumers:     Consumer data; clients are stored here.
3479  * @return         0 on success, an errno on failure
3480  *
3481  * This convenience API allows consumers to enable multiple regulator
3482  * clients in a single API call.  If any consumers cannot be enabled
3483  * then any others that were enabled will be disabled again prior to
3484  * return.
3485  */
3486 int regulator_bulk_enable(int num_consumers,
3487                           struct regulator_bulk_data *consumers)
3488 {
3489         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3490         int i;
3491         int ret = 0;
3492
3493         for (i = 0; i < num_consumers; i++) {
3494                 if (consumers[i].consumer->always_on)
3495                         consumers[i].ret = 0;
3496                 else
3497                         async_schedule_domain(regulator_bulk_enable_async,
3498                                               &consumers[i], &async_domain);
3499         }
3500
3501         async_synchronize_full_domain(&async_domain);
3502
3503         /* If any consumer failed we need to unwind any that succeeded */
3504         for (i = 0; i < num_consumers; i++) {
3505                 if (consumers[i].ret != 0) {
3506                         ret = consumers[i].ret;
3507                         goto err;
3508                 }
3509         }
3510
3511         return 0;
3512
3513 err:
3514         for (i = 0; i < num_consumers; i++) {
3515                 if (consumers[i].ret < 0)
3516                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3517                                consumers[i].ret);
3518                 else
3519                         regulator_disable(consumers[i].consumer);
3520         }
3521
3522         return ret;
3523 }
3524 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3525
3526 /**
3527  * regulator_bulk_disable - disable multiple regulator consumers
3528  *
3529  * @num_consumers: Number of consumers
3530  * @consumers:     Consumer data; clients are stored here.
3531  * @return         0 on success, an errno on failure
3532  *
3533  * This convenience API allows consumers to disable multiple regulator
3534  * clients in a single API call.  If any consumers cannot be disabled
3535  * then any others that were disabled will be enabled again prior to
3536  * return.
3537  */
3538 int regulator_bulk_disable(int num_consumers,
3539                            struct regulator_bulk_data *consumers)
3540 {
3541         int i;
3542         int ret, r;
3543
3544         for (i = num_consumers - 1; i >= 0; --i) {
3545                 ret = regulator_disable(consumers[i].consumer);
3546                 if (ret != 0)
3547                         goto err;
3548         }
3549
3550         return 0;
3551
3552 err:
3553         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3554         for (++i; i < num_consumers; ++i) {
3555                 r = regulator_enable(consumers[i].consumer);
3556                 if (r != 0)
3557                         pr_err("Failed to reename %s: %d\n",
3558                                consumers[i].supply, r);
3559         }
3560
3561         return ret;
3562 }
3563 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3564
3565 /**
3566  * regulator_bulk_force_disable - force disable multiple regulator consumers
3567  *
3568  * @num_consumers: Number of consumers
3569  * @consumers:     Consumer data; clients are stored here.
3570  * @return         0 on success, an errno on failure
3571  *
3572  * This convenience API allows consumers to forcibly disable multiple regulator
3573  * clients in a single API call.
3574  * NOTE: This should be used for situations when device damage will
3575  * likely occur if the regulators are not disabled (e.g. over temp).
3576  * Although regulator_force_disable function call for some consumers can
3577  * return error numbers, the function is called for all consumers.
3578  */
3579 int regulator_bulk_force_disable(int num_consumers,
3580                            struct regulator_bulk_data *consumers)
3581 {
3582         int i;
3583         int ret;
3584
3585         for (i = 0; i < num_consumers; i++)
3586                 consumers[i].ret =
3587                             regulator_force_disable(consumers[i].consumer);
3588
3589         for (i = 0; i < num_consumers; i++) {
3590                 if (consumers[i].ret != 0) {
3591                         ret = consumers[i].ret;
3592                         goto out;
3593                 }
3594         }
3595
3596         return 0;
3597 out:
3598         return ret;
3599 }
3600 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3601
3602 /**
3603  * regulator_bulk_free - free multiple regulator consumers
3604  *
3605  * @num_consumers: Number of consumers
3606  * @consumers:     Consumer data; clients are stored here.
3607  *
3608  * This convenience API allows consumers to free multiple regulator
3609  * clients in a single API call.
3610  */
3611 void regulator_bulk_free(int num_consumers,
3612                          struct regulator_bulk_data *consumers)
3613 {
3614         int i;
3615
3616         for (i = 0; i < num_consumers; i++) {
3617                 regulator_put(consumers[i].consumer);
3618                 consumers[i].consumer = NULL;
3619         }
3620 }
3621 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3622
3623 /**
3624  * regulator_notifier_call_chain - call regulator event notifier
3625  * @rdev: regulator source
3626  * @event: notifier block
3627  * @data: callback-specific data.
3628  *
3629  * Called by regulator drivers to notify clients a regulator event has
3630  * occurred. We also notify regulator clients downstream.
3631  * Note lock must be held by caller.
3632  */
3633 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3634                                   unsigned long event, void *data)
3635 {
3636         lockdep_assert_held_once(&rdev->mutex);
3637
3638         _notifier_call_chain(rdev, event, data);
3639         return NOTIFY_DONE;
3640
3641 }
3642 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3643
3644 /**
3645  * regulator_mode_to_status - convert a regulator mode into a status
3646  *
3647  * @mode: Mode to convert
3648  *
3649  * Convert a regulator mode into a status.
3650  */
3651 int regulator_mode_to_status(unsigned int mode)
3652 {
3653         switch (mode) {
3654         case REGULATOR_MODE_FAST:
3655                 return REGULATOR_STATUS_FAST;
3656         case REGULATOR_MODE_NORMAL:
3657                 return REGULATOR_STATUS_NORMAL;
3658         case REGULATOR_MODE_IDLE:
3659                 return REGULATOR_STATUS_IDLE;
3660         case REGULATOR_MODE_STANDBY:
3661                 return REGULATOR_STATUS_STANDBY;
3662         default:
3663                 return REGULATOR_STATUS_UNDEFINED;
3664         }
3665 }
3666 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3667
3668 static struct attribute *regulator_dev_attrs[] = {
3669         &dev_attr_name.attr,
3670         &dev_attr_num_users.attr,
3671         &dev_attr_type.attr,
3672         &dev_attr_microvolts.attr,
3673         &dev_attr_microamps.attr,
3674         &dev_attr_opmode.attr,
3675         &dev_attr_state.attr,
3676         &dev_attr_status.attr,
3677         &dev_attr_bypass.attr,
3678         &dev_attr_requested_microamps.attr,
3679         &dev_attr_min_microvolts.attr,
3680         &dev_attr_max_microvolts.attr,
3681         &dev_attr_min_microamps.attr,
3682         &dev_attr_max_microamps.attr,
3683         &dev_attr_suspend_standby_state.attr,
3684         &dev_attr_suspend_mem_state.attr,
3685         &dev_attr_suspend_disk_state.attr,
3686         &dev_attr_suspend_standby_microvolts.attr,
3687         &dev_attr_suspend_mem_microvolts.attr,
3688         &dev_attr_suspend_disk_microvolts.attr,
3689         &dev_attr_suspend_standby_mode.attr,
3690         &dev_attr_suspend_mem_mode.attr,
3691         &dev_attr_suspend_disk_mode.attr,
3692         NULL
3693 };
3694
3695 /*
3696  * To avoid cluttering sysfs (and memory) with useless state, only
3697  * create attributes that can be meaningfully displayed.
3698  */
3699 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3700                                          struct attribute *attr, int idx)
3701 {
3702         struct device *dev = kobj_to_dev(kobj);
3703         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3704         const struct regulator_ops *ops = rdev->desc->ops;
3705         umode_t mode = attr->mode;
3706
3707         /* these three are always present */
3708         if (attr == &dev_attr_name.attr ||
3709             attr == &dev_attr_num_users.attr ||
3710             attr == &dev_attr_type.attr)
3711                 return mode;
3712
3713         /* some attributes need specific methods to be displayed */
3714         if (attr == &dev_attr_microvolts.attr) {
3715                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3716                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3717                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3718                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3719                         return mode;
3720                 return 0;
3721         }
3722
3723         if (attr == &dev_attr_microamps.attr)
3724                 return ops->get_current_limit ? mode : 0;
3725
3726         if (attr == &dev_attr_opmode.attr)
3727                 return ops->get_mode ? mode : 0;
3728
3729         if (attr == &dev_attr_state.attr)
3730                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3731
3732         if (attr == &dev_attr_status.attr)
3733                 return ops->get_status ? mode : 0;
3734
3735         if (attr == &dev_attr_bypass.attr)
3736                 return ops->get_bypass ? mode : 0;
3737
3738         /* some attributes are type-specific */
3739         if (attr == &dev_attr_requested_microamps.attr)
3740                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3741
3742         /* constraints need specific supporting methods */
3743         if (attr == &dev_attr_min_microvolts.attr ||
3744             attr == &dev_attr_max_microvolts.attr)
3745                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3746
3747         if (attr == &dev_attr_min_microamps.attr ||
3748             attr == &dev_attr_max_microamps.attr)
3749                 return ops->set_current_limit ? mode : 0;
3750
3751         if (attr == &dev_attr_suspend_standby_state.attr ||
3752             attr == &dev_attr_suspend_mem_state.attr ||
3753             attr == &dev_attr_suspend_disk_state.attr)
3754                 return mode;
3755
3756         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3757             attr == &dev_attr_suspend_mem_microvolts.attr ||
3758             attr == &dev_attr_suspend_disk_microvolts.attr)
3759                 return ops->set_suspend_voltage ? mode : 0;
3760
3761         if (attr == &dev_attr_suspend_standby_mode.attr ||
3762             attr == &dev_attr_suspend_mem_mode.attr ||
3763             attr == &dev_attr_suspend_disk_mode.attr)
3764                 return ops->set_suspend_mode ? mode : 0;
3765
3766         return mode;
3767 }
3768
3769 static const struct attribute_group regulator_dev_group = {
3770         .attrs = regulator_dev_attrs,
3771         .is_visible = regulator_attr_is_visible,
3772 };
3773
3774 static const struct attribute_group *regulator_dev_groups[] = {
3775         &regulator_dev_group,
3776         NULL
3777 };
3778
3779 static void regulator_dev_release(struct device *dev)
3780 {
3781         struct regulator_dev *rdev = dev_get_drvdata(dev);
3782
3783         kfree(rdev->constraints);
3784         of_node_put(rdev->dev.of_node);
3785         kfree(rdev);
3786 }
3787
3788 static struct class regulator_class = {
3789         .name = "regulator",
3790         .dev_release = regulator_dev_release,
3791         .dev_groups = regulator_dev_groups,
3792 };
3793
3794 static void rdev_init_debugfs(struct regulator_dev *rdev)
3795 {
3796         struct device *parent = rdev->dev.parent;
3797         const char *rname = rdev_get_name(rdev);
3798         char name[NAME_MAX];
3799
3800         /* Avoid duplicate debugfs directory names */
3801         if (parent && rname == rdev->desc->name) {
3802                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3803                          rname);
3804                 rname = name;
3805         }
3806
3807         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3808         if (!rdev->debugfs) {
3809                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3810                 return;
3811         }
3812
3813         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3814                            &rdev->use_count);
3815         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3816                            &rdev->open_count);
3817         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3818                            &rdev->bypass_count);
3819 }
3820
3821 /**
3822  * regulator_register - register regulator
3823  * @regulator_desc: regulator to register
3824  * @cfg: runtime configuration for regulator
3825  *
3826  * Called by regulator drivers to register a regulator.
3827  * Returns a valid pointer to struct regulator_dev on success
3828  * or an ERR_PTR() on error.
3829  */
3830 struct regulator_dev *
3831 regulator_register(const struct regulator_desc *regulator_desc,
3832                    const struct regulator_config *cfg)
3833 {
3834         const struct regulation_constraints *constraints = NULL;
3835         const struct regulator_init_data *init_data;
3836         struct regulator_config *config = NULL;
3837         static atomic_t regulator_no = ATOMIC_INIT(-1);
3838         struct regulator_dev *rdev;
3839         struct device *dev;
3840         int ret, i;
3841
3842         if (regulator_desc == NULL || cfg == NULL)
3843                 return ERR_PTR(-EINVAL);
3844
3845         dev = cfg->dev;
3846         WARN_ON(!dev);
3847
3848         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3849                 return ERR_PTR(-EINVAL);
3850
3851         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3852             regulator_desc->type != REGULATOR_CURRENT)
3853                 return ERR_PTR(-EINVAL);
3854
3855         /* Only one of each should be implemented */
3856         WARN_ON(regulator_desc->ops->get_voltage &&
3857                 regulator_desc->ops->get_voltage_sel);
3858         WARN_ON(regulator_desc->ops->set_voltage &&
3859                 regulator_desc->ops->set_voltage_sel);
3860
3861         /* If we're using selectors we must implement list_voltage. */
3862         if (regulator_desc->ops->get_voltage_sel &&
3863             !regulator_desc->ops->list_voltage) {
3864                 return ERR_PTR(-EINVAL);
3865         }
3866         if (regulator_desc->ops->set_voltage_sel &&
3867             !regulator_desc->ops->list_voltage) {
3868                 return ERR_PTR(-EINVAL);
3869         }
3870
3871         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3872         if (rdev == NULL)
3873                 return ERR_PTR(-ENOMEM);
3874
3875         /*
3876          * Duplicate the config so the driver could override it after
3877          * parsing init data.
3878          */
3879         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3880         if (config == NULL) {
3881                 kfree(rdev);
3882                 return ERR_PTR(-ENOMEM);
3883         }
3884
3885         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3886                                                &rdev->dev.of_node);
3887         if (!init_data) {
3888                 init_data = config->init_data;
3889                 rdev->dev.of_node = of_node_get(config->of_node);
3890         }
3891
3892         mutex_lock(&regulator_list_mutex);
3893
3894         mutex_init(&rdev->mutex);
3895         rdev->reg_data = config->driver_data;
3896         rdev->owner = regulator_desc->owner;
3897         rdev->desc = regulator_desc;
3898         if (config->regmap)
3899                 rdev->regmap = config->regmap;
3900         else if (dev_get_regmap(dev, NULL))
3901                 rdev->regmap = dev_get_regmap(dev, NULL);
3902         else if (dev->parent)
3903                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3904         INIT_LIST_HEAD(&rdev->consumer_list);
3905         INIT_LIST_HEAD(&rdev->list);
3906         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3907         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3908
3909         /* preform any regulator specific init */
3910         if (init_data && init_data->regulator_init) {
3911                 ret = init_data->regulator_init(rdev->reg_data);
3912                 if (ret < 0)
3913                         goto clean;
3914         }
3915
3916         /* register with sysfs */
3917         rdev->dev.class = &regulator_class;
3918         rdev->dev.parent = dev;
3919         dev_set_name(&rdev->dev, "regulator.%lu",
3920                     (unsigned long) atomic_inc_return(&regulator_no));
3921         ret = device_register(&rdev->dev);
3922         if (ret != 0) {
3923                 put_device(&rdev->dev);
3924                 goto clean;
3925         }
3926
3927         dev_set_drvdata(&rdev->dev, rdev);
3928
3929         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3930             gpio_is_valid(config->ena_gpio)) {
3931                 ret = regulator_ena_gpio_request(rdev, config);
3932                 if (ret != 0) {
3933                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3934                                  config->ena_gpio, ret);
3935                         goto wash;
3936                 }
3937         }
3938
3939         /* set regulator constraints */
3940         if (init_data)
3941                 constraints = &init_data->constraints;
3942
3943         ret = set_machine_constraints(rdev, constraints);
3944         if (ret < 0)
3945                 goto scrub;
3946
3947         if (init_data && init_data->supply_regulator)
3948                 rdev->supply_name = init_data->supply_regulator;
3949         else if (regulator_desc->supply_name)
3950                 rdev->supply_name = regulator_desc->supply_name;
3951
3952         /* add consumers devices */
3953         if (init_data) {
3954                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3955                         ret = set_consumer_device_supply(rdev,
3956                                 init_data->consumer_supplies[i].dev_name,
3957                                 init_data->consumer_supplies[i].supply);
3958                         if (ret < 0) {
3959                                 dev_err(dev, "Failed to set supply %s\n",
3960                                         init_data->consumer_supplies[i].supply);
3961                                 goto unset_supplies;
3962                         }
3963                 }
3964         }
3965
3966         rdev_init_debugfs(rdev);
3967 out:
3968         mutex_unlock(&regulator_list_mutex);
3969         kfree(config);
3970         return rdev;
3971
3972 unset_supplies:
3973         unset_regulator_supplies(rdev);
3974
3975 scrub:
3976         regulator_ena_gpio_free(rdev);
3977         kfree(rdev->constraints);
3978 wash:
3979         device_unregister(&rdev->dev);
3980         /* device core frees rdev */
3981         rdev = ERR_PTR(ret);
3982         goto out;
3983
3984 clean:
3985         kfree(rdev);
3986         rdev = ERR_PTR(ret);
3987         goto out;
3988 }
3989 EXPORT_SYMBOL_GPL(regulator_register);
3990
3991 /**
3992  * regulator_unregister - unregister regulator
3993  * @rdev: regulator to unregister
3994  *
3995  * Called by regulator drivers to unregister a regulator.
3996  */
3997 void regulator_unregister(struct regulator_dev *rdev)
3998 {
3999         if (rdev == NULL)
4000                 return;
4001
4002         if (rdev->supply) {
4003                 while (rdev->use_count--)
4004                         regulator_disable(rdev->supply);
4005                 regulator_put(rdev->supply);
4006         }
4007         mutex_lock(&regulator_list_mutex);
4008         debugfs_remove_recursive(rdev->debugfs);
4009         flush_work(&rdev->disable_work.work);
4010         WARN_ON(rdev->open_count);
4011         unset_regulator_supplies(rdev);
4012         list_del(&rdev->list);
4013         mutex_unlock(&regulator_list_mutex);
4014         regulator_ena_gpio_free(rdev);
4015         device_unregister(&rdev->dev);
4016 }
4017 EXPORT_SYMBOL_GPL(regulator_unregister);
4018
4019 static int _regulator_suspend_prepare(struct device *dev, void *data)
4020 {
4021         struct regulator_dev *rdev = dev_to_rdev(dev);
4022         const suspend_state_t *state = data;
4023         int ret;
4024
4025         mutex_lock(&rdev->mutex);
4026         ret = suspend_prepare(rdev, *state);
4027         mutex_unlock(&rdev->mutex);
4028
4029         return ret;
4030 }
4031
4032 /**
4033  * regulator_suspend_prepare - prepare regulators for system wide suspend
4034  * @state: system suspend state
4035  *
4036  * Configure each regulator with it's suspend operating parameters for state.
4037  * This will usually be called by machine suspend code prior to supending.
4038  */
4039 int regulator_suspend_prepare(suspend_state_t state)
4040 {
4041         /* ON is handled by regulator active state */
4042         if (state == PM_SUSPEND_ON)
4043                 return -EINVAL;
4044
4045         return class_for_each_device(&regulator_class, NULL, &state,
4046                                      _regulator_suspend_prepare);
4047 }
4048 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4049
4050 static int _regulator_suspend_finish(struct device *dev, void *data)
4051 {
4052         struct regulator_dev *rdev = dev_to_rdev(dev);
4053         int ret;
4054
4055         mutex_lock(&rdev->mutex);
4056         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4057                 if (!_regulator_is_enabled(rdev)) {
4058                         ret = _regulator_do_enable(rdev);
4059                         if (ret)
4060                                 dev_err(dev,
4061                                         "Failed to resume regulator %d\n",
4062                                         ret);
4063                 }
4064         } else {
4065                 if (!have_full_constraints())
4066                         goto unlock;
4067                 if (!_regulator_is_enabled(rdev))
4068                         goto unlock;
4069
4070                 ret = _regulator_do_disable(rdev);
4071                 if (ret)
4072                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4073         }
4074 unlock:
4075         mutex_unlock(&rdev->mutex);
4076
4077         /* Keep processing regulators in spite of any errors */
4078         return 0;
4079 }
4080
4081 /**
4082  * regulator_suspend_finish - resume regulators from system wide suspend
4083  *
4084  * Turn on regulators that might be turned off by regulator_suspend_prepare
4085  * and that should be turned on according to the regulators properties.
4086  */
4087 int regulator_suspend_finish(void)
4088 {
4089         return class_for_each_device(&regulator_class, NULL, NULL,
4090                                      _regulator_suspend_finish);
4091 }
4092 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4093
4094 /**
4095  * regulator_has_full_constraints - the system has fully specified constraints
4096  *
4097  * Calling this function will cause the regulator API to disable all
4098  * regulators which have a zero use count and don't have an always_on
4099  * constraint in a late_initcall.
4100  *
4101  * The intention is that this will become the default behaviour in a
4102  * future kernel release so users are encouraged to use this facility
4103  * now.
4104  */
4105 void regulator_has_full_constraints(void)
4106 {
4107         has_full_constraints = 1;
4108 }
4109 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4110
4111 /**
4112  * rdev_get_drvdata - get rdev regulator driver data
4113  * @rdev: regulator
4114  *
4115  * Get rdev regulator driver private data. This call can be used in the
4116  * regulator driver context.
4117  */
4118 void *rdev_get_drvdata(struct regulator_dev *rdev)
4119 {
4120         return rdev->reg_data;
4121 }
4122 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4123
4124 /**
4125  * regulator_get_drvdata - get regulator driver data
4126  * @regulator: regulator
4127  *
4128  * Get regulator driver private data. This call can be used in the consumer
4129  * driver context when non API regulator specific functions need to be called.
4130  */
4131 void *regulator_get_drvdata(struct regulator *regulator)
4132 {
4133         return regulator->rdev->reg_data;
4134 }
4135 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4136
4137 /**
4138  * regulator_set_drvdata - set regulator driver data
4139  * @regulator: regulator
4140  * @data: data
4141  */
4142 void regulator_set_drvdata(struct regulator *regulator, void *data)
4143 {
4144         regulator->rdev->reg_data = data;
4145 }
4146 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4147
4148 /**
4149  * regulator_get_id - get regulator ID
4150  * @rdev: regulator
4151  */
4152 int rdev_get_id(struct regulator_dev *rdev)
4153 {
4154         return rdev->desc->id;
4155 }
4156 EXPORT_SYMBOL_GPL(rdev_get_id);
4157
4158 struct device *rdev_get_dev(struct regulator_dev *rdev)
4159 {
4160         return &rdev->dev;
4161 }
4162 EXPORT_SYMBOL_GPL(rdev_get_dev);
4163
4164 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4165 {
4166         return reg_init_data->driver_data;
4167 }
4168 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4169
4170 #ifdef CONFIG_DEBUG_FS
4171 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4172                                     size_t count, loff_t *ppos)
4173 {
4174         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4175         ssize_t len, ret = 0;
4176         struct regulator_map *map;
4177
4178         if (!buf)
4179                 return -ENOMEM;
4180
4181         list_for_each_entry(map, &regulator_map_list, list) {
4182                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4183                                "%s -> %s.%s\n",
4184                                rdev_get_name(map->regulator), map->dev_name,
4185                                map->supply);
4186                 if (len >= 0)
4187                         ret += len;
4188                 if (ret > PAGE_SIZE) {
4189                         ret = PAGE_SIZE;
4190                         break;
4191                 }
4192         }
4193
4194         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4195
4196         kfree(buf);
4197
4198         return ret;
4199 }
4200 #endif
4201
4202 static const struct file_operations supply_map_fops = {
4203 #ifdef CONFIG_DEBUG_FS
4204         .read = supply_map_read_file,
4205         .llseek = default_llseek,
4206 #endif
4207 };
4208
4209 #ifdef CONFIG_DEBUG_FS
4210 struct summary_data {
4211         struct seq_file *s;
4212         struct regulator_dev *parent;
4213         int level;
4214 };
4215
4216 static void regulator_summary_show_subtree(struct seq_file *s,
4217                                            struct regulator_dev *rdev,
4218                                            int level);
4219
4220 static int regulator_summary_show_children(struct device *dev, void *data)
4221 {
4222         struct regulator_dev *rdev = dev_to_rdev(dev);
4223         struct summary_data *summary_data = data;
4224
4225         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4226                 regulator_summary_show_subtree(summary_data->s, rdev,
4227                                                summary_data->level + 1);
4228
4229         return 0;
4230 }
4231
4232 static void regulator_summary_show_subtree(struct seq_file *s,
4233                                            struct regulator_dev *rdev,
4234                                            int level)
4235 {
4236         struct regulation_constraints *c;
4237         struct regulator *consumer;
4238         struct summary_data summary_data;
4239
4240         if (!rdev)
4241                 return;
4242
4243         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4244                    level * 3 + 1, "",
4245                    30 - level * 3, rdev_get_name(rdev),
4246                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4247
4248         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4249         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4250
4251         c = rdev->constraints;
4252         if (c) {
4253                 switch (rdev->desc->type) {
4254                 case REGULATOR_VOLTAGE:
4255                         seq_printf(s, "%5dmV %5dmV ",
4256                                    c->min_uV / 1000, c->max_uV / 1000);
4257                         break;
4258                 case REGULATOR_CURRENT:
4259                         seq_printf(s, "%5dmA %5dmA ",
4260                                    c->min_uA / 1000, c->max_uA / 1000);
4261                         break;
4262                 }
4263         }
4264
4265         seq_puts(s, "\n");
4266
4267         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4268                 if (consumer->dev->class == &regulator_class)
4269                         continue;
4270
4271                 seq_printf(s, "%*s%-*s ",
4272                            (level + 1) * 3 + 1, "",
4273                            30 - (level + 1) * 3, dev_name(consumer->dev));
4274
4275                 switch (rdev->desc->type) {
4276                 case REGULATOR_VOLTAGE:
4277                         seq_printf(s, "%37dmV %5dmV",
4278                                    consumer->min_uV / 1000,
4279                                    consumer->max_uV / 1000);
4280                         break;
4281                 case REGULATOR_CURRENT:
4282                         break;
4283                 }
4284
4285                 seq_puts(s, "\n");
4286         }
4287
4288         summary_data.s = s;
4289         summary_data.level = level;
4290         summary_data.parent = rdev;
4291
4292         class_for_each_device(&regulator_class, NULL, &summary_data,
4293                               regulator_summary_show_children);
4294 }
4295
4296 static int regulator_summary_show_roots(struct device *dev, void *data)
4297 {
4298         struct regulator_dev *rdev = dev_to_rdev(dev);
4299         struct seq_file *s = data;
4300
4301         if (!rdev->supply)
4302                 regulator_summary_show_subtree(s, rdev, 0);
4303
4304         return 0;
4305 }
4306
4307 static int regulator_summary_show(struct seq_file *s, void *data)
4308 {
4309         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4310         seq_puts(s, "-------------------------------------------------------------------------------\n");
4311
4312         class_for_each_device(&regulator_class, NULL, s,
4313                               regulator_summary_show_roots);
4314
4315         return 0;
4316 }
4317
4318 static int regulator_summary_open(struct inode *inode, struct file *file)
4319 {
4320         return single_open(file, regulator_summary_show, inode->i_private);
4321 }
4322 #endif
4323
4324 static const struct file_operations regulator_summary_fops = {
4325 #ifdef CONFIG_DEBUG_FS
4326         .open           = regulator_summary_open,
4327         .read           = seq_read,
4328         .llseek         = seq_lseek,
4329         .release        = single_release,
4330 #endif
4331 };
4332
4333 static int __init regulator_init(void)
4334 {
4335         int ret;
4336
4337         ret = class_register(&regulator_class);
4338
4339         debugfs_root = debugfs_create_dir("regulator", NULL);
4340         if (!debugfs_root)
4341                 pr_warn("regulator: Failed to create debugfs directory\n");
4342
4343         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4344                             &supply_map_fops);
4345
4346         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4347                             NULL, &regulator_summary_fops);
4348
4349         regulator_dummy_init();
4350
4351         return ret;
4352 }
4353
4354 /* init early to allow our consumers to complete system booting */
4355 core_initcall(regulator_init);
4356
4357 static int __init regulator_late_cleanup(struct device *dev, void *data)
4358 {
4359         struct regulator_dev *rdev = dev_to_rdev(dev);
4360         const struct regulator_ops *ops = rdev->desc->ops;
4361         struct regulation_constraints *c = rdev->constraints;
4362         int enabled, ret;
4363
4364         if (c && c->always_on)
4365                 return 0;
4366
4367         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4368                 return 0;
4369
4370         mutex_lock(&rdev->mutex);
4371
4372         if (rdev->use_count)
4373                 goto unlock;
4374
4375         /* If we can't read the status assume it's on. */
4376         if (ops->is_enabled)
4377                 enabled = ops->is_enabled(rdev);
4378         else
4379                 enabled = 1;
4380
4381         if (!enabled)
4382                 goto unlock;
4383
4384         if (have_full_constraints()) {
4385                 /* We log since this may kill the system if it goes
4386                  * wrong. */
4387                 rdev_info(rdev, "disabling\n");
4388                 ret = _regulator_do_disable(rdev);
4389                 if (ret != 0)
4390                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4391         } else {
4392                 /* The intention is that in future we will
4393                  * assume that full constraints are provided
4394                  * so warn even if we aren't going to do
4395                  * anything here.
4396                  */
4397                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4398         }
4399
4400 unlock:
4401         mutex_unlock(&rdev->mutex);
4402
4403         return 0;
4404 }
4405
4406 static int __init regulator_init_complete(void)
4407 {
4408         /*
4409          * Since DT doesn't provide an idiomatic mechanism for
4410          * enabling full constraints and since it's much more natural
4411          * with DT to provide them just assume that a DT enabled
4412          * system has full constraints.
4413          */
4414         if (of_have_populated_dt())
4415                 has_full_constraints = true;
4416
4417         /* If we have a full configuration then disable any regulators
4418          * we have permission to change the status for and which are
4419          * not in use or always_on.  This is effectively the default
4420          * for DT and ACPI as they have full constraints.
4421          */
4422         class_for_each_device(&regulator_class, NULL, NULL,
4423                               regulator_late_cleanup);
4424
4425         return 0;
4426 }
4427 late_initcall_sync(regulator_init_complete);