Merge remote-tracking branches 'regulator/topic/core', 'regulator/topic/regmap' and...
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/of_regulator.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/regulator/driver.h>
31 #include <linux/regulator/machine.h>
32 #include <linux/module.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/regulator.h>
36
37 #include "dummy.h"
38
39 #define rdev_crit(rdev, fmt, ...)                                       \
40         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_err(rdev, fmt, ...)                                        \
42         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_warn(rdev, fmt, ...)                                       \
44         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_info(rdev, fmt, ...)                                       \
46         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_dbg(rdev, fmt, ...)                                        \
48         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50 static DEFINE_MUTEX(regulator_list_mutex);
51 static LIST_HEAD(regulator_list);
52 static LIST_HEAD(regulator_map_list);
53 static bool has_full_constraints;
54 static bool board_wants_dummy_regulator;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator
72  *
73  * One for each consumer device.
74  */
75 struct regulator {
76         struct device *dev;
77         struct list_head list;
78         unsigned int always_on:1;
79         int uA_load;
80         int min_uV;
81         int max_uV;
82         char *supply_name;
83         struct device_attribute dev_attr;
84         struct regulator_dev *rdev;
85         struct dentry *debugfs;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94                                   unsigned long event, void *data);
95 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96                                      int min_uV, int max_uV);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98                                           struct device *dev,
99                                           const char *supply_name);
100
101 static const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110
111 /* gets the regulator for a given consumer device */
112 static struct regulator *get_device_regulator(struct device *dev)
113 {
114         struct regulator *regulator = NULL;
115         struct regulator_dev *rdev;
116
117         mutex_lock(&regulator_list_mutex);
118         list_for_each_entry(rdev, &regulator_list, list) {
119                 mutex_lock(&rdev->mutex);
120                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
121                         if (regulator->dev == dev) {
122                                 mutex_unlock(&rdev->mutex);
123                                 mutex_unlock(&regulator_list_mutex);
124                                 return regulator;
125                         }
126                 }
127                 mutex_unlock(&rdev->mutex);
128         }
129         mutex_unlock(&regulator_list_mutex);
130         return NULL;
131 }
132
133 /**
134  * of_get_regulator - get a regulator device node based on supply name
135  * @dev: Device pointer for the consumer (of regulator) device
136  * @supply: regulator supply name
137  *
138  * Extract the regulator device node corresponding to the supply name.
139  * retruns the device node corresponding to the regulator if found, else
140  * returns NULL.
141  */
142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144         struct device_node *regnode = NULL;
145         char prop_name[32]; /* 32 is max size of property name */
146
147         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149         snprintf(prop_name, 32, "%s-supply", supply);
150         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152         if (!regnode) {
153                 dev_dbg(dev, "Looking up %s property in node %s failed",
154                                 prop_name, dev->of_node->full_name);
155                 return NULL;
156         }
157         return regnode;
158 }
159
160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162         if (!rdev->constraints)
163                 return 0;
164
165         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166                 return 1;
167         else
168                 return 0;
169 }
170
171 /* Platform voltage constraint check */
172 static int regulator_check_voltage(struct regulator_dev *rdev,
173                                    int *min_uV, int *max_uV)
174 {
175         BUG_ON(*min_uV > *max_uV);
176
177         if (!rdev->constraints) {
178                 rdev_err(rdev, "no constraints\n");
179                 return -ENODEV;
180         }
181         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182                 rdev_err(rdev, "operation not allowed\n");
183                 return -EPERM;
184         }
185
186         if (*max_uV > rdev->constraints->max_uV)
187                 *max_uV = rdev->constraints->max_uV;
188         if (*min_uV < rdev->constraints->min_uV)
189                 *min_uV = rdev->constraints->min_uV;
190
191         if (*min_uV > *max_uV) {
192                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193                          *min_uV, *max_uV);
194                 return -EINVAL;
195         }
196
197         return 0;
198 }
199
200 /* Make sure we select a voltage that suits the needs of all
201  * regulator consumers
202  */
203 static int regulator_check_consumers(struct regulator_dev *rdev,
204                                      int *min_uV, int *max_uV)
205 {
206         struct regulator *regulator;
207
208         list_for_each_entry(regulator, &rdev->consumer_list, list) {
209                 /*
210                  * Assume consumers that didn't say anything are OK
211                  * with anything in the constraint range.
212                  */
213                 if (!regulator->min_uV && !regulator->max_uV)
214                         continue;
215
216                 if (*max_uV > regulator->max_uV)
217                         *max_uV = regulator->max_uV;
218                 if (*min_uV < regulator->min_uV)
219                         *min_uV = regulator->min_uV;
220         }
221
222         if (*min_uV > *max_uV)
223                 return -EINVAL;
224
225         return 0;
226 }
227
228 /* current constraint check */
229 static int regulator_check_current_limit(struct regulator_dev *rdev,
230                                         int *min_uA, int *max_uA)
231 {
232         BUG_ON(*min_uA > *max_uA);
233
234         if (!rdev->constraints) {
235                 rdev_err(rdev, "no constraints\n");
236                 return -ENODEV;
237         }
238         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239                 rdev_err(rdev, "operation not allowed\n");
240                 return -EPERM;
241         }
242
243         if (*max_uA > rdev->constraints->max_uA)
244                 *max_uA = rdev->constraints->max_uA;
245         if (*min_uA < rdev->constraints->min_uA)
246                 *min_uA = rdev->constraints->min_uA;
247
248         if (*min_uA > *max_uA) {
249                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250                          *min_uA, *max_uA);
251                 return -EINVAL;
252         }
253
254         return 0;
255 }
256
257 /* operating mode constraint check */
258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 {
260         switch (*mode) {
261         case REGULATOR_MODE_FAST:
262         case REGULATOR_MODE_NORMAL:
263         case REGULATOR_MODE_IDLE:
264         case REGULATOR_MODE_STANDBY:
265                 break;
266         default:
267                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
268                 return -EINVAL;
269         }
270
271         if (!rdev->constraints) {
272                 rdev_err(rdev, "no constraints\n");
273                 return -ENODEV;
274         }
275         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276                 rdev_err(rdev, "operation not allowed\n");
277                 return -EPERM;
278         }
279
280         /* The modes are bitmasks, the most power hungry modes having
281          * the lowest values. If the requested mode isn't supported
282          * try higher modes. */
283         while (*mode) {
284                 if (rdev->constraints->valid_modes_mask & *mode)
285                         return 0;
286                 *mode /= 2;
287         }
288
289         return -EINVAL;
290 }
291
292 /* dynamic regulator mode switching constraint check */
293 static int regulator_check_drms(struct regulator_dev *rdev)
294 {
295         if (!rdev->constraints) {
296                 rdev_err(rdev, "no constraints\n");
297                 return -ENODEV;
298         }
299         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300                 rdev_err(rdev, "operation not allowed\n");
301                 return -EPERM;
302         }
303         return 0;
304 }
305
306 static ssize_t device_requested_uA_show(struct device *dev,
307                              struct device_attribute *attr, char *buf)
308 {
309         struct regulator *regulator;
310
311         regulator = get_device_regulator(dev);
312         if (regulator == NULL)
313                 return 0;
314
315         return sprintf(buf, "%d\n", regulator->uA_load);
316 }
317
318 static ssize_t regulator_uV_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322         ssize_t ret;
323
324         mutex_lock(&rdev->mutex);
325         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326         mutex_unlock(&rdev->mutex);
327
328         return ret;
329 }
330 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332 static ssize_t regulator_uA_show(struct device *dev,
333                                 struct device_attribute *attr, char *buf)
334 {
335         struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338 }
339 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341 static ssize_t regulator_name_show(struct device *dev,
342                              struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%s\n", rdev_get_name(rdev));
347 }
348
349 static ssize_t regulator_print_opmode(char *buf, int mode)
350 {
351         switch (mode) {
352         case REGULATOR_MODE_FAST:
353                 return sprintf(buf, "fast\n");
354         case REGULATOR_MODE_NORMAL:
355                 return sprintf(buf, "normal\n");
356         case REGULATOR_MODE_IDLE:
357                 return sprintf(buf, "idle\n");
358         case REGULATOR_MODE_STANDBY:
359                 return sprintf(buf, "standby\n");
360         }
361         return sprintf(buf, "unknown\n");
362 }
363
364 static ssize_t regulator_opmode_show(struct device *dev,
365                                     struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370 }
371 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373 static ssize_t regulator_print_state(char *buf, int state)
374 {
375         if (state > 0)
376                 return sprintf(buf, "enabled\n");
377         else if (state == 0)
378                 return sprintf(buf, "disabled\n");
379         else
380                 return sprintf(buf, "unknown\n");
381 }
382
383 static ssize_t regulator_state_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         ssize_t ret;
388
389         mutex_lock(&rdev->mutex);
390         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391         mutex_unlock(&rdev->mutex);
392
393         return ret;
394 }
395 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397 static ssize_t regulator_status_show(struct device *dev,
398                                    struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         int status;
402         char *label;
403
404         status = rdev->desc->ops->get_status(rdev);
405         if (status < 0)
406                 return status;
407
408         switch (status) {
409         case REGULATOR_STATUS_OFF:
410                 label = "off";
411                 break;
412         case REGULATOR_STATUS_ON:
413                 label = "on";
414                 break;
415         case REGULATOR_STATUS_ERROR:
416                 label = "error";
417                 break;
418         case REGULATOR_STATUS_FAST:
419                 label = "fast";
420                 break;
421         case REGULATOR_STATUS_NORMAL:
422                 label = "normal";
423                 break;
424         case REGULATOR_STATUS_IDLE:
425                 label = "idle";
426                 break;
427         case REGULATOR_STATUS_STANDBY:
428                 label = "standby";
429                 break;
430         default:
431                 return -ERANGE;
432         }
433
434         return sprintf(buf, "%s\n", label);
435 }
436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438 static ssize_t regulator_min_uA_show(struct device *dev,
439                                     struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         if (!rdev->constraints)
444                 return sprintf(buf, "constraint not defined\n");
445
446         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447 }
448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450 static ssize_t regulator_max_uA_show(struct device *dev,
451                                     struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         if (!rdev->constraints)
456                 return sprintf(buf, "constraint not defined\n");
457
458         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459 }
460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462 static ssize_t regulator_min_uV_show(struct device *dev,
463                                     struct device_attribute *attr, char *buf)
464 {
465         struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467         if (!rdev->constraints)
468                 return sprintf(buf, "constraint not defined\n");
469
470         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471 }
472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474 static ssize_t regulator_max_uV_show(struct device *dev,
475                                     struct device_attribute *attr, char *buf)
476 {
477         struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479         if (!rdev->constraints)
480                 return sprintf(buf, "constraint not defined\n");
481
482         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483 }
484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486 static ssize_t regulator_total_uA_show(struct device *dev,
487                                       struct device_attribute *attr, char *buf)
488 {
489         struct regulator_dev *rdev = dev_get_drvdata(dev);
490         struct regulator *regulator;
491         int uA = 0;
492
493         mutex_lock(&rdev->mutex);
494         list_for_each_entry(regulator, &rdev->consumer_list, list)
495                 uA += regulator->uA_load;
496         mutex_unlock(&rdev->mutex);
497         return sprintf(buf, "%d\n", uA);
498 }
499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501 static ssize_t regulator_num_users_show(struct device *dev,
502                                       struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505         return sprintf(buf, "%d\n", rdev->use_count);
506 }
507
508 static ssize_t regulator_type_show(struct device *dev,
509                                   struct device_attribute *attr, char *buf)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513         switch (rdev->desc->type) {
514         case REGULATOR_VOLTAGE:
515                 return sprintf(buf, "voltage\n");
516         case REGULATOR_CURRENT:
517                 return sprintf(buf, "current\n");
518         }
519         return sprintf(buf, "unknown\n");
520 }
521
522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523                                 struct device_attribute *attr, char *buf)
524 {
525         struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530                 regulator_suspend_mem_uV_show, NULL);
531
532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533                                 struct device_attribute *attr, char *buf)
534 {
535         struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540                 regulator_suspend_disk_uV_show, NULL);
541
542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543                                 struct device_attribute *attr, char *buf)
544 {
545         struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550                 regulator_suspend_standby_uV_show, NULL);
551
552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553                                 struct device_attribute *attr, char *buf)
554 {
555         struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557         return regulator_print_opmode(buf,
558                 rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561                 regulator_suspend_mem_mode_show, NULL);
562
563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return regulator_print_opmode(buf,
569                 rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572                 regulator_suspend_disk_mode_show, NULL);
573
574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575                                 struct device_attribute *attr, char *buf)
576 {
577         struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579         return regulator_print_opmode(buf,
580                 rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583                 regulator_suspend_standby_mode_show, NULL);
584
585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586                                    struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590         return regulator_print_state(buf,
591                         rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594                 regulator_suspend_mem_state_show, NULL);
595
596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597                                    struct device_attribute *attr, char *buf)
598 {
599         struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601         return regulator_print_state(buf,
602                         rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605                 regulator_suspend_disk_state_show, NULL);
606
607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608                                    struct device_attribute *attr, char *buf)
609 {
610         struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612         return regulator_print_state(buf,
613                         rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616                 regulator_suspend_standby_state_show, NULL);
617
618
619 /*
620  * These are the only attributes are present for all regulators.
621  * Other attributes are a function of regulator functionality.
622  */
623 static struct device_attribute regulator_dev_attrs[] = {
624         __ATTR(name, 0444, regulator_name_show, NULL),
625         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
626         __ATTR(type, 0444, regulator_type_show, NULL),
627         __ATTR_NULL,
628 };
629
630 static void regulator_dev_release(struct device *dev)
631 {
632         struct regulator_dev *rdev = dev_get_drvdata(dev);
633         kfree(rdev);
634 }
635
636 static struct class regulator_class = {
637         .name = "regulator",
638         .dev_release = regulator_dev_release,
639         .dev_attrs = regulator_dev_attrs,
640 };
641
642 /* Calculate the new optimum regulator operating mode based on the new total
643  * consumer load. All locks held by caller */
644 static void drms_uA_update(struct regulator_dev *rdev)
645 {
646         struct regulator *sibling;
647         int current_uA = 0, output_uV, input_uV, err;
648         unsigned int mode;
649
650         err = regulator_check_drms(rdev);
651         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652             (!rdev->desc->ops->get_voltage &&
653              !rdev->desc->ops->get_voltage_sel) ||
654             !rdev->desc->ops->set_mode)
655                 return;
656
657         /* get output voltage */
658         output_uV = _regulator_get_voltage(rdev);
659         if (output_uV <= 0)
660                 return;
661
662         /* get input voltage */
663         input_uV = 0;
664         if (rdev->supply)
665                 input_uV = regulator_get_voltage(rdev->supply);
666         if (input_uV <= 0)
667                 input_uV = rdev->constraints->input_uV;
668         if (input_uV <= 0)
669                 return;
670
671         /* calc total requested load */
672         list_for_each_entry(sibling, &rdev->consumer_list, list)
673                 current_uA += sibling->uA_load;
674
675         /* now get the optimum mode for our new total regulator load */
676         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677                                                   output_uV, current_uA);
678
679         /* check the new mode is allowed */
680         err = regulator_mode_constrain(rdev, &mode);
681         if (err == 0)
682                 rdev->desc->ops->set_mode(rdev, mode);
683 }
684
685 static int suspend_set_state(struct regulator_dev *rdev,
686         struct regulator_state *rstate)
687 {
688         int ret = 0;
689
690         /* If we have no suspend mode configration don't set anything;
691          * only warn if the driver implements set_suspend_voltage or
692          * set_suspend_mode callback.
693          */
694         if (!rstate->enabled && !rstate->disabled) {
695                 if (rdev->desc->ops->set_suspend_voltage ||
696                     rdev->desc->ops->set_suspend_mode)
697                         rdev_warn(rdev, "No configuration\n");
698                 return 0;
699         }
700
701         if (rstate->enabled && rstate->disabled) {
702                 rdev_err(rdev, "invalid configuration\n");
703                 return -EINVAL;
704         }
705
706         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707                 ret = rdev->desc->ops->set_suspend_enable(rdev);
708         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709                 ret = rdev->desc->ops->set_suspend_disable(rdev);
710         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711                 ret = 0;
712
713         if (ret < 0) {
714                 rdev_err(rdev, "failed to enabled/disable\n");
715                 return ret;
716         }
717
718         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720                 if (ret < 0) {
721                         rdev_err(rdev, "failed to set voltage\n");
722                         return ret;
723                 }
724         }
725
726         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728                 if (ret < 0) {
729                         rdev_err(rdev, "failed to set mode\n");
730                         return ret;
731                 }
732         }
733         return ret;
734 }
735
736 /* locks held by caller */
737 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738 {
739         if (!rdev->constraints)
740                 return -EINVAL;
741
742         switch (state) {
743         case PM_SUSPEND_STANDBY:
744                 return suspend_set_state(rdev,
745                         &rdev->constraints->state_standby);
746         case PM_SUSPEND_MEM:
747                 return suspend_set_state(rdev,
748                         &rdev->constraints->state_mem);
749         case PM_SUSPEND_MAX:
750                 return suspend_set_state(rdev,
751                         &rdev->constraints->state_disk);
752         default:
753                 return -EINVAL;
754         }
755 }
756
757 static void print_constraints(struct regulator_dev *rdev)
758 {
759         struct regulation_constraints *constraints = rdev->constraints;
760         char buf[80] = "";
761         int count = 0;
762         int ret;
763
764         if (constraints->min_uV && constraints->max_uV) {
765                 if (constraints->min_uV == constraints->max_uV)
766                         count += sprintf(buf + count, "%d mV ",
767                                          constraints->min_uV / 1000);
768                 else
769                         count += sprintf(buf + count, "%d <--> %d mV ",
770                                          constraints->min_uV / 1000,
771                                          constraints->max_uV / 1000);
772         }
773
774         if (!constraints->min_uV ||
775             constraints->min_uV != constraints->max_uV) {
776                 ret = _regulator_get_voltage(rdev);
777                 if (ret > 0)
778                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
779         }
780
781         if (constraints->uV_offset)
782                 count += sprintf(buf, "%dmV offset ",
783                                  constraints->uV_offset / 1000);
784
785         if (constraints->min_uA && constraints->max_uA) {
786                 if (constraints->min_uA == constraints->max_uA)
787                         count += sprintf(buf + count, "%d mA ",
788                                          constraints->min_uA / 1000);
789                 else
790                         count += sprintf(buf + count, "%d <--> %d mA ",
791                                          constraints->min_uA / 1000,
792                                          constraints->max_uA / 1000);
793         }
794
795         if (!constraints->min_uA ||
796             constraints->min_uA != constraints->max_uA) {
797                 ret = _regulator_get_current_limit(rdev);
798                 if (ret > 0)
799                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
800         }
801
802         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803                 count += sprintf(buf + count, "fast ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805                 count += sprintf(buf + count, "normal ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807                 count += sprintf(buf + count, "idle ");
808         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809                 count += sprintf(buf + count, "standby");
810
811         rdev_info(rdev, "%s\n", buf);
812
813         if ((constraints->min_uV != constraints->max_uV) &&
814             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815                 rdev_warn(rdev,
816                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817 }
818
819 static int machine_constraints_voltage(struct regulator_dev *rdev,
820         struct regulation_constraints *constraints)
821 {
822         struct regulator_ops *ops = rdev->desc->ops;
823         int ret;
824
825         /* do we need to apply the constraint voltage */
826         if (rdev->constraints->apply_uV &&
827             rdev->constraints->min_uV == rdev->constraints->max_uV) {
828                 ret = _regulator_do_set_voltage(rdev,
829                                                 rdev->constraints->min_uV,
830                                                 rdev->constraints->max_uV);
831                 if (ret < 0) {
832                         rdev_err(rdev, "failed to apply %duV constraint\n",
833                                  rdev->constraints->min_uV);
834                         return ret;
835                 }
836         }
837
838         /* constrain machine-level voltage specs to fit
839          * the actual range supported by this regulator.
840          */
841         if (ops->list_voltage && rdev->desc->n_voltages) {
842                 int     count = rdev->desc->n_voltages;
843                 int     i;
844                 int     min_uV = INT_MAX;
845                 int     max_uV = INT_MIN;
846                 int     cmin = constraints->min_uV;
847                 int     cmax = constraints->max_uV;
848
849                 /* it's safe to autoconfigure fixed-voltage supplies
850                    and the constraints are used by list_voltage. */
851                 if (count == 1 && !cmin) {
852                         cmin = 1;
853                         cmax = INT_MAX;
854                         constraints->min_uV = cmin;
855                         constraints->max_uV = cmax;
856                 }
857
858                 /* voltage constraints are optional */
859                 if ((cmin == 0) && (cmax == 0))
860                         return 0;
861
862                 /* else require explicit machine-level constraints */
863                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864                         rdev_err(rdev, "invalid voltage constraints\n");
865                         return -EINVAL;
866                 }
867
868                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869                 for (i = 0; i < count; i++) {
870                         int     value;
871
872                         value = ops->list_voltage(rdev, i);
873                         if (value <= 0)
874                                 continue;
875
876                         /* maybe adjust [min_uV..max_uV] */
877                         if (value >= cmin && value < min_uV)
878                                 min_uV = value;
879                         if (value <= cmax && value > max_uV)
880                                 max_uV = value;
881                 }
882
883                 /* final: [min_uV..max_uV] valid iff constraints valid */
884                 if (max_uV < min_uV) {
885                         rdev_err(rdev, "unsupportable voltage constraints\n");
886                         return -EINVAL;
887                 }
888
889                 /* use regulator's subset of machine constraints */
890                 if (constraints->min_uV < min_uV) {
891                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892                                  constraints->min_uV, min_uV);
893                         constraints->min_uV = min_uV;
894                 }
895                 if (constraints->max_uV > max_uV) {
896                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897                                  constraints->max_uV, max_uV);
898                         constraints->max_uV = max_uV;
899                 }
900         }
901
902         return 0;
903 }
904
905 /**
906  * set_machine_constraints - sets regulator constraints
907  * @rdev: regulator source
908  * @constraints: constraints to apply
909  *
910  * Allows platform initialisation code to define and constrain
911  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912  * Constraints *must* be set by platform code in order for some
913  * regulator operations to proceed i.e. set_voltage, set_current_limit,
914  * set_mode.
915  */
916 static int set_machine_constraints(struct regulator_dev *rdev,
917         const struct regulation_constraints *constraints)
918 {
919         int ret = 0;
920         struct regulator_ops *ops = rdev->desc->ops;
921
922         if (constraints)
923                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924                                             GFP_KERNEL);
925         else
926                 rdev->constraints = kzalloc(sizeof(*constraints),
927                                             GFP_KERNEL);
928         if (!rdev->constraints)
929                 return -ENOMEM;
930
931         ret = machine_constraints_voltage(rdev, rdev->constraints);
932         if (ret != 0)
933                 goto out;
934
935         /* do we need to setup our suspend state */
936         if (rdev->constraints->initial_state) {
937                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938                 if (ret < 0) {
939                         rdev_err(rdev, "failed to set suspend state\n");
940                         goto out;
941                 }
942         }
943
944         if (rdev->constraints->initial_mode) {
945                 if (!ops->set_mode) {
946                         rdev_err(rdev, "no set_mode operation\n");
947                         ret = -EINVAL;
948                         goto out;
949                 }
950
951                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952                 if (ret < 0) {
953                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954                         goto out;
955                 }
956         }
957
958         /* If the constraints say the regulator should be on at this point
959          * and we have control then make sure it is enabled.
960          */
961         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962             ops->enable) {
963                 ret = ops->enable(rdev);
964                 if (ret < 0) {
965                         rdev_err(rdev, "failed to enable\n");
966                         goto out;
967                 }
968         }
969
970         print_constraints(rdev);
971         return 0;
972 out:
973         kfree(rdev->constraints);
974         rdev->constraints = NULL;
975         return ret;
976 }
977
978 /**
979  * set_supply - set regulator supply regulator
980  * @rdev: regulator name
981  * @supply_rdev: supply regulator name
982  *
983  * Called by platform initialisation code to set the supply regulator for this
984  * regulator. This ensures that a regulators supply will also be enabled by the
985  * core if it's child is enabled.
986  */
987 static int set_supply(struct regulator_dev *rdev,
988                       struct regulator_dev *supply_rdev)
989 {
990         int err;
991
992         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995         if (rdev->supply == NULL) {
996                 err = -ENOMEM;
997                 return err;
998         }
999
1000         return 0;
1001 }
1002
1003 /**
1004  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005  * @rdev:         regulator source
1006  * @consumer_dev_name: dev_name() string for device supply applies to
1007  * @supply:       symbolic name for supply
1008  *
1009  * Allows platform initialisation code to map physical regulator
1010  * sources to symbolic names for supplies for use by devices.  Devices
1011  * should use these symbolic names to request regulators, avoiding the
1012  * need to provide board-specific regulator names as platform data.
1013  */
1014 static int set_consumer_device_supply(struct regulator_dev *rdev,
1015                                       const char *consumer_dev_name,
1016                                       const char *supply)
1017 {
1018         struct regulator_map *node;
1019         int has_dev;
1020
1021         if (supply == NULL)
1022                 return -EINVAL;
1023
1024         if (consumer_dev_name != NULL)
1025                 has_dev = 1;
1026         else
1027                 has_dev = 0;
1028
1029         list_for_each_entry(node, &regulator_map_list, list) {
1030                 if (node->dev_name && consumer_dev_name) {
1031                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032                                 continue;
1033                 } else if (node->dev_name || consumer_dev_name) {
1034                         continue;
1035                 }
1036
1037                 if (strcmp(node->supply, supply) != 0)
1038                         continue;
1039
1040                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041                          consumer_dev_name,
1042                          dev_name(&node->regulator->dev),
1043                          node->regulator->desc->name,
1044                          supply,
1045                          dev_name(&rdev->dev), rdev_get_name(rdev));
1046                 return -EBUSY;
1047         }
1048
1049         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050         if (node == NULL)
1051                 return -ENOMEM;
1052
1053         node->regulator = rdev;
1054         node->supply = supply;
1055
1056         if (has_dev) {
1057                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058                 if (node->dev_name == NULL) {
1059                         kfree(node);
1060                         return -ENOMEM;
1061                 }
1062         }
1063
1064         list_add(&node->list, &regulator_map_list);
1065         return 0;
1066 }
1067
1068 static void unset_regulator_supplies(struct regulator_dev *rdev)
1069 {
1070         struct regulator_map *node, *n;
1071
1072         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073                 if (rdev == node->regulator) {
1074                         list_del(&node->list);
1075                         kfree(node->dev_name);
1076                         kfree(node);
1077                 }
1078         }
1079 }
1080
1081 #define REG_STR_SIZE    64
1082
1083 static struct regulator *create_regulator(struct regulator_dev *rdev,
1084                                           struct device *dev,
1085                                           const char *supply_name)
1086 {
1087         struct regulator *regulator;
1088         char buf[REG_STR_SIZE];
1089         int err, size;
1090
1091         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092         if (regulator == NULL)
1093                 return NULL;
1094
1095         mutex_lock(&rdev->mutex);
1096         regulator->rdev = rdev;
1097         list_add(&regulator->list, &rdev->consumer_list);
1098
1099         if (dev) {
1100                 /* create a 'requested_microamps_name' sysfs entry */
1101                 size = scnprintf(buf, REG_STR_SIZE,
1102                                  "microamps_requested_%s-%s",
1103                                  dev_name(dev), supply_name);
1104                 if (size >= REG_STR_SIZE)
1105                         goto overflow_err;
1106
1107                 regulator->dev = dev;
1108                 sysfs_attr_init(&regulator->dev_attr.attr);
1109                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110                 if (regulator->dev_attr.attr.name == NULL)
1111                         goto attr_name_err;
1112
1113                 regulator->dev_attr.attr.mode = 0444;
1114                 regulator->dev_attr.show = device_requested_uA_show;
1115                 err = device_create_file(dev, &regulator->dev_attr);
1116                 if (err < 0) {
1117                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118                         goto attr_name_err;
1119                 }
1120
1121                 /* also add a link to the device sysfs entry */
1122                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123                                  dev->kobj.name, supply_name);
1124                 if (size >= REG_STR_SIZE)
1125                         goto attr_err;
1126
1127                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128                 if (regulator->supply_name == NULL)
1129                         goto attr_err;
1130
1131                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132                                         buf);
1133                 if (err) {
1134                         rdev_warn(rdev, "could not add device link %s err %d\n",
1135                                   dev->kobj.name, err);
1136                         goto link_name_err;
1137                 }
1138         } else {
1139                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140                 if (regulator->supply_name == NULL)
1141                         goto attr_err;
1142         }
1143
1144         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145                                                 rdev->debugfs);
1146         if (!regulator->debugfs) {
1147                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1148         } else {
1149                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150                                    &regulator->uA_load);
1151                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152                                    &regulator->min_uV);
1153                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154                                    &regulator->max_uV);
1155         }
1156
1157         /*
1158          * Check now if the regulator is an always on regulator - if
1159          * it is then we don't need to do nearly so much work for
1160          * enable/disable calls.
1161          */
1162         if (!_regulator_can_change_status(rdev) &&
1163             _regulator_is_enabled(rdev))
1164                 regulator->always_on = true;
1165
1166         mutex_unlock(&rdev->mutex);
1167         return regulator;
1168 link_name_err:
1169         kfree(regulator->supply_name);
1170 attr_err:
1171         device_remove_file(regulator->dev, &regulator->dev_attr);
1172 attr_name_err:
1173         kfree(regulator->dev_attr.attr.name);
1174 overflow_err:
1175         list_del(&regulator->list);
1176         kfree(regulator);
1177         mutex_unlock(&rdev->mutex);
1178         return NULL;
1179 }
1180
1181 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182 {
1183         if (!rdev->desc->ops->enable_time)
1184                 return 0;
1185         return rdev->desc->ops->enable_time(rdev);
1186 }
1187
1188 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189                                                   const char *supply,
1190                                                   int *ret)
1191 {
1192         struct regulator_dev *r;
1193         struct device_node *node;
1194         struct regulator_map *map;
1195         const char *devname = NULL;
1196
1197         /* first do a dt based lookup */
1198         if (dev && dev->of_node) {
1199                 node = of_get_regulator(dev, supply);
1200                 if (node) {
1201                         list_for_each_entry(r, &regulator_list, list)
1202                                 if (r->dev.parent &&
1203                                         node == r->dev.of_node)
1204                                         return r;
1205                 } else {
1206                         /*
1207                          * If we couldn't even get the node then it's
1208                          * not just that the device didn't register
1209                          * yet, there's no node and we'll never
1210                          * succeed.
1211                          */
1212                         *ret = -ENODEV;
1213                 }
1214         }
1215
1216         /* if not found, try doing it non-dt way */
1217         if (dev)
1218                 devname = dev_name(dev);
1219
1220         list_for_each_entry(r, &regulator_list, list)
1221                 if (strcmp(rdev_get_name(r), supply) == 0)
1222                         return r;
1223
1224         list_for_each_entry(map, &regulator_map_list, list) {
1225                 /* If the mapping has a device set up it must match */
1226                 if (map->dev_name &&
1227                     (!devname || strcmp(map->dev_name, devname)))
1228                         continue;
1229
1230                 if (strcmp(map->supply, supply) == 0)
1231                         return map->regulator;
1232         }
1233
1234
1235         return NULL;
1236 }
1237
1238 /* Internal regulator request function */
1239 static struct regulator *_regulator_get(struct device *dev, const char *id,
1240                                         int exclusive)
1241 {
1242         struct regulator_dev *rdev;
1243         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244         const char *devname = NULL;
1245         int ret;
1246
1247         if (id == NULL) {
1248                 pr_err("get() with no identifier\n");
1249                 return regulator;
1250         }
1251
1252         if (dev)
1253                 devname = dev_name(dev);
1254
1255         mutex_lock(&regulator_list_mutex);
1256
1257         rdev = regulator_dev_lookup(dev, id, &ret);
1258         if (rdev)
1259                 goto found;
1260
1261         if (board_wants_dummy_regulator) {
1262                 rdev = dummy_regulator_rdev;
1263                 goto found;
1264         }
1265
1266 #ifdef CONFIG_REGULATOR_DUMMY
1267         if (!devname)
1268                 devname = "deviceless";
1269
1270         /* If the board didn't flag that it was fully constrained then
1271          * substitute in a dummy regulator so consumers can continue.
1272          */
1273         if (!has_full_constraints) {
1274                 pr_warn("%s supply %s not found, using dummy regulator\n",
1275                         devname, id);
1276                 rdev = dummy_regulator_rdev;
1277                 goto found;
1278         }
1279 #endif
1280
1281         mutex_unlock(&regulator_list_mutex);
1282         return regulator;
1283
1284 found:
1285         if (rdev->exclusive) {
1286                 regulator = ERR_PTR(-EPERM);
1287                 goto out;
1288         }
1289
1290         if (exclusive && rdev->open_count) {
1291                 regulator = ERR_PTR(-EBUSY);
1292                 goto out;
1293         }
1294
1295         if (!try_module_get(rdev->owner))
1296                 goto out;
1297
1298         regulator = create_regulator(rdev, dev, id);
1299         if (regulator == NULL) {
1300                 regulator = ERR_PTR(-ENOMEM);
1301                 module_put(rdev->owner);
1302                 goto out;
1303         }
1304
1305         rdev->open_count++;
1306         if (exclusive) {
1307                 rdev->exclusive = 1;
1308
1309                 ret = _regulator_is_enabled(rdev);
1310                 if (ret > 0)
1311                         rdev->use_count = 1;
1312                 else
1313                         rdev->use_count = 0;
1314         }
1315
1316 out:
1317         mutex_unlock(&regulator_list_mutex);
1318
1319         return regulator;
1320 }
1321
1322 /**
1323  * regulator_get - lookup and obtain a reference to a regulator.
1324  * @dev: device for regulator "consumer"
1325  * @id: Supply name or regulator ID.
1326  *
1327  * Returns a struct regulator corresponding to the regulator producer,
1328  * or IS_ERR() condition containing errno.
1329  *
1330  * Use of supply names configured via regulator_set_device_supply() is
1331  * strongly encouraged.  It is recommended that the supply name used
1332  * should match the name used for the supply and/or the relevant
1333  * device pins in the datasheet.
1334  */
1335 struct regulator *regulator_get(struct device *dev, const char *id)
1336 {
1337         return _regulator_get(dev, id, 0);
1338 }
1339 EXPORT_SYMBOL_GPL(regulator_get);
1340
1341 static void devm_regulator_release(struct device *dev, void *res)
1342 {
1343         regulator_put(*(struct regulator **)res);
1344 }
1345
1346 /**
1347  * devm_regulator_get - Resource managed regulator_get()
1348  * @dev: device for regulator "consumer"
1349  * @id: Supply name or regulator ID.
1350  *
1351  * Managed regulator_get(). Regulators returned from this function are
1352  * automatically regulator_put() on driver detach. See regulator_get() for more
1353  * information.
1354  */
1355 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356 {
1357         struct regulator **ptr, *regulator;
1358
1359         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360         if (!ptr)
1361                 return ERR_PTR(-ENOMEM);
1362
1363         regulator = regulator_get(dev, id);
1364         if (!IS_ERR(regulator)) {
1365                 *ptr = regulator;
1366                 devres_add(dev, ptr);
1367         } else {
1368                 devres_free(ptr);
1369         }
1370
1371         return regulator;
1372 }
1373 EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375 /**
1376  * regulator_get_exclusive - obtain exclusive access to a regulator.
1377  * @dev: device for regulator "consumer"
1378  * @id: Supply name or regulator ID.
1379  *
1380  * Returns a struct regulator corresponding to the regulator producer,
1381  * or IS_ERR() condition containing errno.  Other consumers will be
1382  * unable to obtain this reference is held and the use count for the
1383  * regulator will be initialised to reflect the current state of the
1384  * regulator.
1385  *
1386  * This is intended for use by consumers which cannot tolerate shared
1387  * use of the regulator such as those which need to force the
1388  * regulator off for correct operation of the hardware they are
1389  * controlling.
1390  *
1391  * Use of supply names configured via regulator_set_device_supply() is
1392  * strongly encouraged.  It is recommended that the supply name used
1393  * should match the name used for the supply and/or the relevant
1394  * device pins in the datasheet.
1395  */
1396 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397 {
1398         return _regulator_get(dev, id, 1);
1399 }
1400 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402 /**
1403  * regulator_put - "free" the regulator source
1404  * @regulator: regulator source
1405  *
1406  * Note: drivers must ensure that all regulator_enable calls made on this
1407  * regulator source are balanced by regulator_disable calls prior to calling
1408  * this function.
1409  */
1410 void regulator_put(struct regulator *regulator)
1411 {
1412         struct regulator_dev *rdev;
1413
1414         if (regulator == NULL || IS_ERR(regulator))
1415                 return;
1416
1417         mutex_lock(&regulator_list_mutex);
1418         rdev = regulator->rdev;
1419
1420         debugfs_remove_recursive(regulator->debugfs);
1421
1422         /* remove any sysfs entries */
1423         if (regulator->dev) {
1424                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425                 device_remove_file(regulator->dev, &regulator->dev_attr);
1426                 kfree(regulator->dev_attr.attr.name);
1427         }
1428         kfree(regulator->supply_name);
1429         list_del(&regulator->list);
1430         kfree(regulator);
1431
1432         rdev->open_count--;
1433         rdev->exclusive = 0;
1434
1435         module_put(rdev->owner);
1436         mutex_unlock(&regulator_list_mutex);
1437 }
1438 EXPORT_SYMBOL_GPL(regulator_put);
1439
1440 static int devm_regulator_match(struct device *dev, void *res, void *data)
1441 {
1442         struct regulator **r = res;
1443         if (!r || !*r) {
1444                 WARN_ON(!r || !*r);
1445                 return 0;
1446         }
1447         return *r == data;
1448 }
1449
1450 /**
1451  * devm_regulator_put - Resource managed regulator_put()
1452  * @regulator: regulator to free
1453  *
1454  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455  * this function will not need to be called and the resource management
1456  * code will ensure that the resource is freed.
1457  */
1458 void devm_regulator_put(struct regulator *regulator)
1459 {
1460         int rc;
1461
1462         rc = devres_destroy(regulator->dev, devm_regulator_release,
1463                             devm_regulator_match, regulator);
1464         WARN_ON(rc);
1465 }
1466 EXPORT_SYMBOL_GPL(devm_regulator_put);
1467
1468 /* locks held by regulator_enable() */
1469 static int _regulator_enable(struct regulator_dev *rdev)
1470 {
1471         int ret, delay;
1472
1473         /* check voltage and requested load before enabling */
1474         if (rdev->constraints &&
1475             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1476                 drms_uA_update(rdev);
1477
1478         if (rdev->use_count == 0) {
1479                 /* The regulator may on if it's not switchable or left on */
1480                 ret = _regulator_is_enabled(rdev);
1481                 if (ret == -EINVAL || ret == 0) {
1482                         if (!_regulator_can_change_status(rdev))
1483                                 return -EPERM;
1484
1485                         if (!rdev->desc->ops->enable)
1486                                 return -EINVAL;
1487
1488                         /* Query before enabling in case configuration
1489                          * dependent.  */
1490                         ret = _regulator_get_enable_time(rdev);
1491                         if (ret >= 0) {
1492                                 delay = ret;
1493                         } else {
1494                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1495                                            ret);
1496                                 delay = 0;
1497                         }
1498
1499                         trace_regulator_enable(rdev_get_name(rdev));
1500
1501                         /* Allow the regulator to ramp; it would be useful
1502                          * to extend this for bulk operations so that the
1503                          * regulators can ramp together.  */
1504                         ret = rdev->desc->ops->enable(rdev);
1505                         if (ret < 0)
1506                                 return ret;
1507
1508                         trace_regulator_enable_delay(rdev_get_name(rdev));
1509
1510                         if (delay >= 1000) {
1511                                 mdelay(delay / 1000);
1512                                 udelay(delay % 1000);
1513                         } else if (delay) {
1514                                 udelay(delay);
1515                         }
1516
1517                         trace_regulator_enable_complete(rdev_get_name(rdev));
1518
1519                 } else if (ret < 0) {
1520                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521                         return ret;
1522                 }
1523                 /* Fallthrough on positive return values - already enabled */
1524         }
1525
1526         rdev->use_count++;
1527
1528         return 0;
1529 }
1530
1531 /**
1532  * regulator_enable - enable regulator output
1533  * @regulator: regulator source
1534  *
1535  * Request that the regulator be enabled with the regulator output at
1536  * the predefined voltage or current value.  Calls to regulator_enable()
1537  * must be balanced with calls to regulator_disable().
1538  *
1539  * NOTE: the output value can be set by other drivers, boot loader or may be
1540  * hardwired in the regulator.
1541  */
1542 int regulator_enable(struct regulator *regulator)
1543 {
1544         struct regulator_dev *rdev = regulator->rdev;
1545         int ret = 0;
1546
1547         if (regulator->always_on)
1548                 return 0;
1549
1550         if (rdev->supply) {
1551                 ret = regulator_enable(rdev->supply);
1552                 if (ret != 0)
1553                         return ret;
1554         }
1555
1556         mutex_lock(&rdev->mutex);
1557         ret = _regulator_enable(rdev);
1558         mutex_unlock(&rdev->mutex);
1559
1560         if (ret != 0 && rdev->supply)
1561                 regulator_disable(rdev->supply);
1562
1563         return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567 /* locks held by regulator_disable() */
1568 static int _regulator_disable(struct regulator_dev *rdev)
1569 {
1570         int ret = 0;
1571
1572         if (WARN(rdev->use_count <= 0,
1573                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1574                 return -EIO;
1575
1576         /* are we the last user and permitted to disable ? */
1577         if (rdev->use_count == 1 &&
1578             (rdev->constraints && !rdev->constraints->always_on)) {
1579
1580                 /* we are last user */
1581                 if (_regulator_can_change_status(rdev) &&
1582                     rdev->desc->ops->disable) {
1583                         trace_regulator_disable(rdev_get_name(rdev));
1584
1585                         ret = rdev->desc->ops->disable(rdev);
1586                         if (ret < 0) {
1587                                 rdev_err(rdev, "failed to disable\n");
1588                                 return ret;
1589                         }
1590
1591                         trace_regulator_disable_complete(rdev_get_name(rdev));
1592
1593                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1594                                              NULL);
1595                 }
1596
1597                 rdev->use_count = 0;
1598         } else if (rdev->use_count > 1) {
1599
1600                 if (rdev->constraints &&
1601                         (rdev->constraints->valid_ops_mask &
1602                         REGULATOR_CHANGE_DRMS))
1603                         drms_uA_update(rdev);
1604
1605                 rdev->use_count--;
1606         }
1607
1608         return ret;
1609 }
1610
1611 /**
1612  * regulator_disable - disable regulator output
1613  * @regulator: regulator source
1614  *
1615  * Disable the regulator output voltage or current.  Calls to
1616  * regulator_enable() must be balanced with calls to
1617  * regulator_disable().
1618  *
1619  * NOTE: this will only disable the regulator output if no other consumer
1620  * devices have it enabled, the regulator device supports disabling and
1621  * machine constraints permit this operation.
1622  */
1623 int regulator_disable(struct regulator *regulator)
1624 {
1625         struct regulator_dev *rdev = regulator->rdev;
1626         int ret = 0;
1627
1628         if (regulator->always_on)
1629                 return 0;
1630
1631         mutex_lock(&rdev->mutex);
1632         ret = _regulator_disable(rdev);
1633         mutex_unlock(&rdev->mutex);
1634
1635         if (ret == 0 && rdev->supply)
1636                 regulator_disable(rdev->supply);
1637
1638         return ret;
1639 }
1640 EXPORT_SYMBOL_GPL(regulator_disable);
1641
1642 /* locks held by regulator_force_disable() */
1643 static int _regulator_force_disable(struct regulator_dev *rdev)
1644 {
1645         int ret = 0;
1646
1647         /* force disable */
1648         if (rdev->desc->ops->disable) {
1649                 /* ah well, who wants to live forever... */
1650                 ret = rdev->desc->ops->disable(rdev);
1651                 if (ret < 0) {
1652                         rdev_err(rdev, "failed to force disable\n");
1653                         return ret;
1654                 }
1655                 /* notify other consumers that power has been forced off */
1656                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1657                         REGULATOR_EVENT_DISABLE, NULL);
1658         }
1659
1660         return ret;
1661 }
1662
1663 /**
1664  * regulator_force_disable - force disable regulator output
1665  * @regulator: regulator source
1666  *
1667  * Forcibly disable the regulator output voltage or current.
1668  * NOTE: this *will* disable the regulator output even if other consumer
1669  * devices have it enabled. This should be used for situations when device
1670  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1671  */
1672 int regulator_force_disable(struct regulator *regulator)
1673 {
1674         struct regulator_dev *rdev = regulator->rdev;
1675         int ret;
1676
1677         mutex_lock(&rdev->mutex);
1678         regulator->uA_load = 0;
1679         ret = _regulator_force_disable(regulator->rdev);
1680         mutex_unlock(&rdev->mutex);
1681
1682         if (rdev->supply)
1683                 while (rdev->open_count--)
1684                         regulator_disable(rdev->supply);
1685
1686         return ret;
1687 }
1688 EXPORT_SYMBOL_GPL(regulator_force_disable);
1689
1690 static void regulator_disable_work(struct work_struct *work)
1691 {
1692         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1693                                                   disable_work.work);
1694         int count, i, ret;
1695
1696         mutex_lock(&rdev->mutex);
1697
1698         BUG_ON(!rdev->deferred_disables);
1699
1700         count = rdev->deferred_disables;
1701         rdev->deferred_disables = 0;
1702
1703         for (i = 0; i < count; i++) {
1704                 ret = _regulator_disable(rdev);
1705                 if (ret != 0)
1706                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1707         }
1708
1709         mutex_unlock(&rdev->mutex);
1710
1711         if (rdev->supply) {
1712                 for (i = 0; i < count; i++) {
1713                         ret = regulator_disable(rdev->supply);
1714                         if (ret != 0) {
1715                                 rdev_err(rdev,
1716                                          "Supply disable failed: %d\n", ret);
1717                         }
1718                 }
1719         }
1720 }
1721
1722 /**
1723  * regulator_disable_deferred - disable regulator output with delay
1724  * @regulator: regulator source
1725  * @ms: miliseconds until the regulator is disabled
1726  *
1727  * Execute regulator_disable() on the regulator after a delay.  This
1728  * is intended for use with devices that require some time to quiesce.
1729  *
1730  * NOTE: this will only disable the regulator output if no other consumer
1731  * devices have it enabled, the regulator device supports disabling and
1732  * machine constraints permit this operation.
1733  */
1734 int regulator_disable_deferred(struct regulator *regulator, int ms)
1735 {
1736         struct regulator_dev *rdev = regulator->rdev;
1737         int ret;
1738
1739         if (regulator->always_on)
1740                 return 0;
1741
1742         mutex_lock(&rdev->mutex);
1743         rdev->deferred_disables++;
1744         mutex_unlock(&rdev->mutex);
1745
1746         ret = schedule_delayed_work(&rdev->disable_work,
1747                                     msecs_to_jiffies(ms));
1748         if (ret < 0)
1749                 return ret;
1750         else
1751                 return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1754
1755 /**
1756  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1757  *
1758  * @rdev: regulator to operate on
1759  *
1760  * Regulators that use regmap for their register I/O can set the
1761  * enable_reg and enable_mask fields in their descriptor and then use
1762  * this as their is_enabled operation, saving some code.
1763  */
1764 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1765 {
1766         unsigned int val;
1767         int ret;
1768
1769         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1770         if (ret != 0)
1771                 return ret;
1772
1773         return (val & rdev->desc->enable_mask) != 0;
1774 }
1775 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1776
1777 /**
1778  * regulator_enable_regmap - standard enable() for regmap users
1779  *
1780  * @rdev: regulator to operate on
1781  *
1782  * Regulators that use regmap for their register I/O can set the
1783  * enable_reg and enable_mask fields in their descriptor and then use
1784  * this as their enable() operation, saving some code.
1785  */
1786 int regulator_enable_regmap(struct regulator_dev *rdev)
1787 {
1788         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1789                                   rdev->desc->enable_mask,
1790                                   rdev->desc->enable_mask);
1791 }
1792 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1793
1794 /**
1795  * regulator_disable_regmap - standard disable() for regmap users
1796  *
1797  * @rdev: regulator to operate on
1798  *
1799  * Regulators that use regmap for their register I/O can set the
1800  * enable_reg and enable_mask fields in their descriptor and then use
1801  * this as their disable() operation, saving some code.
1802  */
1803 int regulator_disable_regmap(struct regulator_dev *rdev)
1804 {
1805         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1806                                   rdev->desc->enable_mask, 0);
1807 }
1808 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1809
1810 static int _regulator_is_enabled(struct regulator_dev *rdev)
1811 {
1812         /* If we don't know then assume that the regulator is always on */
1813         if (!rdev->desc->ops->is_enabled)
1814                 return 1;
1815
1816         return rdev->desc->ops->is_enabled(rdev);
1817 }
1818
1819 /**
1820  * regulator_is_enabled - is the regulator output enabled
1821  * @regulator: regulator source
1822  *
1823  * Returns positive if the regulator driver backing the source/client
1824  * has requested that the device be enabled, zero if it hasn't, else a
1825  * negative errno code.
1826  *
1827  * Note that the device backing this regulator handle can have multiple
1828  * users, so it might be enabled even if regulator_enable() was never
1829  * called for this particular source.
1830  */
1831 int regulator_is_enabled(struct regulator *regulator)
1832 {
1833         int ret;
1834
1835         if (regulator->always_on)
1836                 return 1;
1837
1838         mutex_lock(&regulator->rdev->mutex);
1839         ret = _regulator_is_enabled(regulator->rdev);
1840         mutex_unlock(&regulator->rdev->mutex);
1841
1842         return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1845
1846 /**
1847  * regulator_count_voltages - count regulator_list_voltage() selectors
1848  * @regulator: regulator source
1849  *
1850  * Returns number of selectors, or negative errno.  Selectors are
1851  * numbered starting at zero, and typically correspond to bitfields
1852  * in hardware registers.
1853  */
1854 int regulator_count_voltages(struct regulator *regulator)
1855 {
1856         struct regulator_dev    *rdev = regulator->rdev;
1857
1858         return rdev->desc->n_voltages ? : -EINVAL;
1859 }
1860 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1861
1862 /**
1863  * regulator_list_voltage - enumerate supported voltages
1864  * @regulator: regulator source
1865  * @selector: identify voltage to list
1866  * Context: can sleep
1867  *
1868  * Returns a voltage that can be passed to @regulator_set_voltage(),
1869  * zero if this selector code can't be used on this system, or a
1870  * negative errno.
1871  */
1872 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1873 {
1874         struct regulator_dev    *rdev = regulator->rdev;
1875         struct regulator_ops    *ops = rdev->desc->ops;
1876         int                     ret;
1877
1878         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1879                 return -EINVAL;
1880
1881         mutex_lock(&rdev->mutex);
1882         ret = ops->list_voltage(rdev, selector);
1883         mutex_unlock(&rdev->mutex);
1884
1885         if (ret > 0) {
1886                 if (ret < rdev->constraints->min_uV)
1887                         ret = 0;
1888                 else if (ret > rdev->constraints->max_uV)
1889                         ret = 0;
1890         }
1891
1892         return ret;
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1895
1896 /**
1897  * regulator_is_supported_voltage - check if a voltage range can be supported
1898  *
1899  * @regulator: Regulator to check.
1900  * @min_uV: Minimum required voltage in uV.
1901  * @max_uV: Maximum required voltage in uV.
1902  *
1903  * Returns a boolean or a negative error code.
1904  */
1905 int regulator_is_supported_voltage(struct regulator *regulator,
1906                                    int min_uV, int max_uV)
1907 {
1908         int i, voltages, ret;
1909
1910         ret = regulator_count_voltages(regulator);
1911         if (ret < 0)
1912                 return ret;
1913         voltages = ret;
1914
1915         for (i = 0; i < voltages; i++) {
1916                 ret = regulator_list_voltage(regulator, i);
1917
1918                 if (ret >= min_uV && ret <= max_uV)
1919                         return 1;
1920         }
1921
1922         return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1925
1926 /**
1927  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1928  *
1929  * @rdev: regulator to operate on
1930  *
1931  * Regulators that use regmap for their register I/O can set the
1932  * vsel_reg and vsel_mask fields in their descriptor and then use this
1933  * as their get_voltage_vsel operation, saving some code.
1934  */
1935 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1936 {
1937         unsigned int val;
1938         int ret;
1939
1940         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1941         if (ret != 0)
1942                 return ret;
1943
1944         val &= rdev->desc->vsel_mask;
1945         val >>= ffs(rdev->desc->vsel_mask) - 1;
1946
1947         return val;
1948 }
1949 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1950
1951 /**
1952  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1953  *
1954  * @rdev: regulator to operate on
1955  * @sel: Selector to set
1956  *
1957  * Regulators that use regmap for their register I/O can set the
1958  * vsel_reg and vsel_mask fields in their descriptor and then use this
1959  * as their set_voltage_vsel operation, saving some code.
1960  */
1961 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1962 {
1963         sel <<= ffs(rdev->desc->vsel_mask) - 1;
1964
1965         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1966                                   rdev->desc->vsel_mask, sel);
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1969
1970 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1971                                      int min_uV, int max_uV)
1972 {
1973         int ret;
1974         int delay = 0;
1975         unsigned int selector;
1976         int old_selector = -1;
1977         int best_val = INT_MAX;
1978
1979         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1980
1981         min_uV += rdev->constraints->uV_offset;
1982         max_uV += rdev->constraints->uV_offset;
1983
1984         /*
1985          * If we can't obtain the old selector there is not enough
1986          * info to call set_voltage_time_sel().
1987          */
1988         if (rdev->desc->ops->set_voltage_time_sel &&
1989             rdev->desc->ops->get_voltage_sel) {
1990                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
1991                 if (old_selector < 0)
1992                         return old_selector;
1993         }
1994
1995         if (rdev->desc->ops->set_voltage) {
1996                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1997                                                    &selector);
1998
1999                 if (rdev->desc->ops->list_voltage)
2000                         best_val = rdev->desc->ops->list_voltage(rdev,
2001                                                                  selector);
2002                 else
2003                         best_val = -1;
2004         } else if (rdev->desc->ops->set_voltage_sel) {
2005                 int i;
2006
2007                 selector = 0;
2008
2009                 /* Find the smallest voltage that falls within the specified
2010                  * range.
2011                  */
2012                 for (i = 0; i < rdev->desc->n_voltages; i++) {
2013                         ret = rdev->desc->ops->list_voltage(rdev, i);
2014                         if (ret < 0)
2015                                 continue;
2016
2017                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2018                                 best_val = ret;
2019                                 selector = i;
2020                         }
2021                 }
2022
2023                 if (best_val != INT_MAX)
2024                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2025                 else
2026                         ret = -EINVAL;
2027         } else {
2028                 ret = -EINVAL;
2029         }
2030
2031         /* Call set_voltage_time_sel if successfully obtained old_selector */
2032         if (ret == 0 && old_selector >= 0 &&
2033             rdev->desc->ops->set_voltage_time_sel) {
2034
2035                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2036                                                 old_selector, selector);
2037                 if (delay < 0) {
2038                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2039                                   delay);
2040                         delay = 0;
2041                 }
2042         }
2043
2044         /* Insert any necessary delays */
2045         if (delay >= 1000) {
2046                 mdelay(delay / 1000);
2047                 udelay(delay % 1000);
2048         } else if (delay) {
2049                 udelay(delay);
2050         }
2051
2052         if (ret == 0)
2053                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2054                                      NULL);
2055
2056         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2057
2058         return ret;
2059 }
2060
2061 /**
2062  * regulator_set_voltage - set regulator output voltage
2063  * @regulator: regulator source
2064  * @min_uV: Minimum required voltage in uV
2065  * @max_uV: Maximum acceptable voltage in uV
2066  *
2067  * Sets a voltage regulator to the desired output voltage. This can be set
2068  * during any regulator state. IOW, regulator can be disabled or enabled.
2069  *
2070  * If the regulator is enabled then the voltage will change to the new value
2071  * immediately otherwise if the regulator is disabled the regulator will
2072  * output at the new voltage when enabled.
2073  *
2074  * NOTE: If the regulator is shared between several devices then the lowest
2075  * request voltage that meets the system constraints will be used.
2076  * Regulator system constraints must be set for this regulator before
2077  * calling this function otherwise this call will fail.
2078  */
2079 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2080 {
2081         struct regulator_dev *rdev = regulator->rdev;
2082         int ret = 0;
2083
2084         mutex_lock(&rdev->mutex);
2085
2086         /* If we're setting the same range as last time the change
2087          * should be a noop (some cpufreq implementations use the same
2088          * voltage for multiple frequencies, for example).
2089          */
2090         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2091                 goto out;
2092
2093         /* sanity check */
2094         if (!rdev->desc->ops->set_voltage &&
2095             !rdev->desc->ops->set_voltage_sel) {
2096                 ret = -EINVAL;
2097                 goto out;
2098         }
2099
2100         /* constraints check */
2101         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2102         if (ret < 0)
2103                 goto out;
2104         regulator->min_uV = min_uV;
2105         regulator->max_uV = max_uV;
2106
2107         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2108         if (ret < 0)
2109                 goto out;
2110
2111         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2112
2113 out:
2114         mutex_unlock(&rdev->mutex);
2115         return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2118
2119 /**
2120  * regulator_set_voltage_time - get raise/fall time
2121  * @regulator: regulator source
2122  * @old_uV: starting voltage in microvolts
2123  * @new_uV: target voltage in microvolts
2124  *
2125  * Provided with the starting and ending voltage, this function attempts to
2126  * calculate the time in microseconds required to rise or fall to this new
2127  * voltage.
2128  */
2129 int regulator_set_voltage_time(struct regulator *regulator,
2130                                int old_uV, int new_uV)
2131 {
2132         struct regulator_dev    *rdev = regulator->rdev;
2133         struct regulator_ops    *ops = rdev->desc->ops;
2134         int old_sel = -1;
2135         int new_sel = -1;
2136         int voltage;
2137         int i;
2138
2139         /* Currently requires operations to do this */
2140         if (!ops->list_voltage || !ops->set_voltage_time_sel
2141             || !rdev->desc->n_voltages)
2142                 return -EINVAL;
2143
2144         for (i = 0; i < rdev->desc->n_voltages; i++) {
2145                 /* We only look for exact voltage matches here */
2146                 voltage = regulator_list_voltage(regulator, i);
2147                 if (voltage < 0)
2148                         return -EINVAL;
2149                 if (voltage == 0)
2150                         continue;
2151                 if (voltage == old_uV)
2152                         old_sel = i;
2153                 if (voltage == new_uV)
2154                         new_sel = i;
2155         }
2156
2157         if (old_sel < 0 || new_sel < 0)
2158                 return -EINVAL;
2159
2160         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2163
2164 /**
2165  * regulator_sync_voltage - re-apply last regulator output voltage
2166  * @regulator: regulator source
2167  *
2168  * Re-apply the last configured voltage.  This is intended to be used
2169  * where some external control source the consumer is cooperating with
2170  * has caused the configured voltage to change.
2171  */
2172 int regulator_sync_voltage(struct regulator *regulator)
2173 {
2174         struct regulator_dev *rdev = regulator->rdev;
2175         int ret, min_uV, max_uV;
2176
2177         mutex_lock(&rdev->mutex);
2178
2179         if (!rdev->desc->ops->set_voltage &&
2180             !rdev->desc->ops->set_voltage_sel) {
2181                 ret = -EINVAL;
2182                 goto out;
2183         }
2184
2185         /* This is only going to work if we've had a voltage configured. */
2186         if (!regulator->min_uV && !regulator->max_uV) {
2187                 ret = -EINVAL;
2188                 goto out;
2189         }
2190
2191         min_uV = regulator->min_uV;
2192         max_uV = regulator->max_uV;
2193
2194         /* This should be a paranoia check... */
2195         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2196         if (ret < 0)
2197                 goto out;
2198
2199         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2200         if (ret < 0)
2201                 goto out;
2202
2203         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2204
2205 out:
2206         mutex_unlock(&rdev->mutex);
2207         return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2210
2211 static int _regulator_get_voltage(struct regulator_dev *rdev)
2212 {
2213         int sel, ret;
2214
2215         if (rdev->desc->ops->get_voltage_sel) {
2216                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2217                 if (sel < 0)
2218                         return sel;
2219                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2220         } else if (rdev->desc->ops->get_voltage) {
2221                 ret = rdev->desc->ops->get_voltage(rdev);
2222         } else {
2223                 return -EINVAL;
2224         }
2225
2226         if (ret < 0)
2227                 return ret;
2228         return ret - rdev->constraints->uV_offset;
2229 }
2230
2231 /**
2232  * regulator_get_voltage - get regulator output voltage
2233  * @regulator: regulator source
2234  *
2235  * This returns the current regulator voltage in uV.
2236  *
2237  * NOTE: If the regulator is disabled it will return the voltage value. This
2238  * function should not be used to determine regulator state.
2239  */
2240 int regulator_get_voltage(struct regulator *regulator)
2241 {
2242         int ret;
2243
2244         mutex_lock(&regulator->rdev->mutex);
2245
2246         ret = _regulator_get_voltage(regulator->rdev);
2247
2248         mutex_unlock(&regulator->rdev->mutex);
2249
2250         return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2253
2254 /**
2255  * regulator_set_current_limit - set regulator output current limit
2256  * @regulator: regulator source
2257  * @min_uA: Minimuum supported current in uA
2258  * @max_uA: Maximum supported current in uA
2259  *
2260  * Sets current sink to the desired output current. This can be set during
2261  * any regulator state. IOW, regulator can be disabled or enabled.
2262  *
2263  * If the regulator is enabled then the current will change to the new value
2264  * immediately otherwise if the regulator is disabled the regulator will
2265  * output at the new current when enabled.
2266  *
2267  * NOTE: Regulator system constraints must be set for this regulator before
2268  * calling this function otherwise this call will fail.
2269  */
2270 int regulator_set_current_limit(struct regulator *regulator,
2271                                int min_uA, int max_uA)
2272 {
2273         struct regulator_dev *rdev = regulator->rdev;
2274         int ret;
2275
2276         mutex_lock(&rdev->mutex);
2277
2278         /* sanity check */
2279         if (!rdev->desc->ops->set_current_limit) {
2280                 ret = -EINVAL;
2281                 goto out;
2282         }
2283
2284         /* constraints check */
2285         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2286         if (ret < 0)
2287                 goto out;
2288
2289         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2290 out:
2291         mutex_unlock(&rdev->mutex);
2292         return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2295
2296 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2297 {
2298         int ret;
2299
2300         mutex_lock(&rdev->mutex);
2301
2302         /* sanity check */
2303         if (!rdev->desc->ops->get_current_limit) {
2304                 ret = -EINVAL;
2305                 goto out;
2306         }
2307
2308         ret = rdev->desc->ops->get_current_limit(rdev);
2309 out:
2310         mutex_unlock(&rdev->mutex);
2311         return ret;
2312 }
2313
2314 /**
2315  * regulator_get_current_limit - get regulator output current
2316  * @regulator: regulator source
2317  *
2318  * This returns the current supplied by the specified current sink in uA.
2319  *
2320  * NOTE: If the regulator is disabled it will return the current value. This
2321  * function should not be used to determine regulator state.
2322  */
2323 int regulator_get_current_limit(struct regulator *regulator)
2324 {
2325         return _regulator_get_current_limit(regulator->rdev);
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2328
2329 /**
2330  * regulator_set_mode - set regulator operating mode
2331  * @regulator: regulator source
2332  * @mode: operating mode - one of the REGULATOR_MODE constants
2333  *
2334  * Set regulator operating mode to increase regulator efficiency or improve
2335  * regulation performance.
2336  *
2337  * NOTE: Regulator system constraints must be set for this regulator before
2338  * calling this function otherwise this call will fail.
2339  */
2340 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2341 {
2342         struct regulator_dev *rdev = regulator->rdev;
2343         int ret;
2344         int regulator_curr_mode;
2345
2346         mutex_lock(&rdev->mutex);
2347
2348         /* sanity check */
2349         if (!rdev->desc->ops->set_mode) {
2350                 ret = -EINVAL;
2351                 goto out;
2352         }
2353
2354         /* return if the same mode is requested */
2355         if (rdev->desc->ops->get_mode) {
2356                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2357                 if (regulator_curr_mode == mode) {
2358                         ret = 0;
2359                         goto out;
2360                 }
2361         }
2362
2363         /* constraints check */
2364         ret = regulator_mode_constrain(rdev, &mode);
2365         if (ret < 0)
2366                 goto out;
2367
2368         ret = rdev->desc->ops->set_mode(rdev, mode);
2369 out:
2370         mutex_unlock(&rdev->mutex);
2371         return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(regulator_set_mode);
2374
2375 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2376 {
2377         int ret;
2378
2379         mutex_lock(&rdev->mutex);
2380
2381         /* sanity check */
2382         if (!rdev->desc->ops->get_mode) {
2383                 ret = -EINVAL;
2384                 goto out;
2385         }
2386
2387         ret = rdev->desc->ops->get_mode(rdev);
2388 out:
2389         mutex_unlock(&rdev->mutex);
2390         return ret;
2391 }
2392
2393 /**
2394  * regulator_get_mode - get regulator operating mode
2395  * @regulator: regulator source
2396  *
2397  * Get the current regulator operating mode.
2398  */
2399 unsigned int regulator_get_mode(struct regulator *regulator)
2400 {
2401         return _regulator_get_mode(regulator->rdev);
2402 }
2403 EXPORT_SYMBOL_GPL(regulator_get_mode);
2404
2405 /**
2406  * regulator_set_optimum_mode - set regulator optimum operating mode
2407  * @regulator: regulator source
2408  * @uA_load: load current
2409  *
2410  * Notifies the regulator core of a new device load. This is then used by
2411  * DRMS (if enabled by constraints) to set the most efficient regulator
2412  * operating mode for the new regulator loading.
2413  *
2414  * Consumer devices notify their supply regulator of the maximum power
2415  * they will require (can be taken from device datasheet in the power
2416  * consumption tables) when they change operational status and hence power
2417  * state. Examples of operational state changes that can affect power
2418  * consumption are :-
2419  *
2420  *    o Device is opened / closed.
2421  *    o Device I/O is about to begin or has just finished.
2422  *    o Device is idling in between work.
2423  *
2424  * This information is also exported via sysfs to userspace.
2425  *
2426  * DRMS will sum the total requested load on the regulator and change
2427  * to the most efficient operating mode if platform constraints allow.
2428  *
2429  * Returns the new regulator mode or error.
2430  */
2431 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2432 {
2433         struct regulator_dev *rdev = regulator->rdev;
2434         struct regulator *consumer;
2435         int ret, output_uV, input_uV, total_uA_load = 0;
2436         unsigned int mode;
2437
2438         mutex_lock(&rdev->mutex);
2439
2440         /*
2441          * first check to see if we can set modes at all, otherwise just
2442          * tell the consumer everything is OK.
2443          */
2444         regulator->uA_load = uA_load;
2445         ret = regulator_check_drms(rdev);
2446         if (ret < 0) {
2447                 ret = 0;
2448                 goto out;
2449         }
2450
2451         if (!rdev->desc->ops->get_optimum_mode)
2452                 goto out;
2453
2454         /*
2455          * we can actually do this so any errors are indicators of
2456          * potential real failure.
2457          */
2458         ret = -EINVAL;
2459
2460         if (!rdev->desc->ops->set_mode)
2461                 goto out;
2462
2463         /* get output voltage */
2464         output_uV = _regulator_get_voltage(rdev);
2465         if (output_uV <= 0) {
2466                 rdev_err(rdev, "invalid output voltage found\n");
2467                 goto out;
2468         }
2469
2470         /* get input voltage */
2471         input_uV = 0;
2472         if (rdev->supply)
2473                 input_uV = regulator_get_voltage(rdev->supply);
2474         if (input_uV <= 0)
2475                 input_uV = rdev->constraints->input_uV;
2476         if (input_uV <= 0) {
2477                 rdev_err(rdev, "invalid input voltage found\n");
2478                 goto out;
2479         }
2480
2481         /* calc total requested load for this regulator */
2482         list_for_each_entry(consumer, &rdev->consumer_list, list)
2483                 total_uA_load += consumer->uA_load;
2484
2485         mode = rdev->desc->ops->get_optimum_mode(rdev,
2486                                                  input_uV, output_uV,
2487                                                  total_uA_load);
2488         ret = regulator_mode_constrain(rdev, &mode);
2489         if (ret < 0) {
2490                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2491                          total_uA_load, input_uV, output_uV);
2492                 goto out;
2493         }
2494
2495         ret = rdev->desc->ops->set_mode(rdev, mode);
2496         if (ret < 0) {
2497                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2498                 goto out;
2499         }
2500         ret = mode;
2501 out:
2502         mutex_unlock(&rdev->mutex);
2503         return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2506
2507 /**
2508  * regulator_register_notifier - register regulator event notifier
2509  * @regulator: regulator source
2510  * @nb: notifier block
2511  *
2512  * Register notifier block to receive regulator events.
2513  */
2514 int regulator_register_notifier(struct regulator *regulator,
2515                               struct notifier_block *nb)
2516 {
2517         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2518                                                 nb);
2519 }
2520 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2521
2522 /**
2523  * regulator_unregister_notifier - unregister regulator event notifier
2524  * @regulator: regulator source
2525  * @nb: notifier block
2526  *
2527  * Unregister regulator event notifier block.
2528  */
2529 int regulator_unregister_notifier(struct regulator *regulator,
2530                                 struct notifier_block *nb)
2531 {
2532         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2533                                                   nb);
2534 }
2535 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2536
2537 /* notify regulator consumers and downstream regulator consumers.
2538  * Note mutex must be held by caller.
2539  */
2540 static void _notifier_call_chain(struct regulator_dev *rdev,
2541                                   unsigned long event, void *data)
2542 {
2543         /* call rdev chain first */
2544         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2545 }
2546
2547 /**
2548  * regulator_bulk_get - get multiple regulator consumers
2549  *
2550  * @dev:           Device to supply
2551  * @num_consumers: Number of consumers to register
2552  * @consumers:     Configuration of consumers; clients are stored here.
2553  *
2554  * @return 0 on success, an errno on failure.
2555  *
2556  * This helper function allows drivers to get several regulator
2557  * consumers in one operation.  If any of the regulators cannot be
2558  * acquired then any regulators that were allocated will be freed
2559  * before returning to the caller.
2560  */
2561 int regulator_bulk_get(struct device *dev, int num_consumers,
2562                        struct regulator_bulk_data *consumers)
2563 {
2564         int i;
2565         int ret;
2566
2567         for (i = 0; i < num_consumers; i++)
2568                 consumers[i].consumer = NULL;
2569
2570         for (i = 0; i < num_consumers; i++) {
2571                 consumers[i].consumer = regulator_get(dev,
2572                                                       consumers[i].supply);
2573                 if (IS_ERR(consumers[i].consumer)) {
2574                         ret = PTR_ERR(consumers[i].consumer);
2575                         dev_err(dev, "Failed to get supply '%s': %d\n",
2576                                 consumers[i].supply, ret);
2577                         consumers[i].consumer = NULL;
2578                         goto err;
2579                 }
2580         }
2581
2582         return 0;
2583
2584 err:
2585         while (--i >= 0)
2586                 regulator_put(consumers[i].consumer);
2587
2588         return ret;
2589 }
2590 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2591
2592 /**
2593  * devm_regulator_bulk_get - managed get multiple regulator consumers
2594  *
2595  * @dev:           Device to supply
2596  * @num_consumers: Number of consumers to register
2597  * @consumers:     Configuration of consumers; clients are stored here.
2598  *
2599  * @return 0 on success, an errno on failure.
2600  *
2601  * This helper function allows drivers to get several regulator
2602  * consumers in one operation with management, the regulators will
2603  * automatically be freed when the device is unbound.  If any of the
2604  * regulators cannot be acquired then any regulators that were
2605  * allocated will be freed before returning to the caller.
2606  */
2607 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2608                             struct regulator_bulk_data *consumers)
2609 {
2610         int i;
2611         int ret;
2612
2613         for (i = 0; i < num_consumers; i++)
2614                 consumers[i].consumer = NULL;
2615
2616         for (i = 0; i < num_consumers; i++) {
2617                 consumers[i].consumer = devm_regulator_get(dev,
2618                                                            consumers[i].supply);
2619                 if (IS_ERR(consumers[i].consumer)) {
2620                         ret = PTR_ERR(consumers[i].consumer);
2621                         dev_err(dev, "Failed to get supply '%s': %d\n",
2622                                 consumers[i].supply, ret);
2623                         consumers[i].consumer = NULL;
2624                         goto err;
2625                 }
2626         }
2627
2628         return 0;
2629
2630 err:
2631         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2632                 devm_regulator_put(consumers[i].consumer);
2633
2634         return ret;
2635 }
2636 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2637
2638 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2639 {
2640         struct regulator_bulk_data *bulk = data;
2641
2642         bulk->ret = regulator_enable(bulk->consumer);
2643 }
2644
2645 /**
2646  * regulator_bulk_enable - enable multiple regulator consumers
2647  *
2648  * @num_consumers: Number of consumers
2649  * @consumers:     Consumer data; clients are stored here.
2650  * @return         0 on success, an errno on failure
2651  *
2652  * This convenience API allows consumers to enable multiple regulator
2653  * clients in a single API call.  If any consumers cannot be enabled
2654  * then any others that were enabled will be disabled again prior to
2655  * return.
2656  */
2657 int regulator_bulk_enable(int num_consumers,
2658                           struct regulator_bulk_data *consumers)
2659 {
2660         LIST_HEAD(async_domain);
2661         int i;
2662         int ret = 0;
2663
2664         for (i = 0; i < num_consumers; i++) {
2665                 if (consumers[i].consumer->always_on)
2666                         consumers[i].ret = 0;
2667                 else
2668                         async_schedule_domain(regulator_bulk_enable_async,
2669                                               &consumers[i], &async_domain);
2670         }
2671
2672         async_synchronize_full_domain(&async_domain);
2673
2674         /* If any consumer failed we need to unwind any that succeeded */
2675         for (i = 0; i < num_consumers; i++) {
2676                 if (consumers[i].ret != 0) {
2677                         ret = consumers[i].ret;
2678                         goto err;
2679                 }
2680         }
2681
2682         return 0;
2683
2684 err:
2685         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2686         while (--i >= 0)
2687                 regulator_disable(consumers[i].consumer);
2688
2689         return ret;
2690 }
2691 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2692
2693 /**
2694  * regulator_bulk_disable - disable multiple regulator consumers
2695  *
2696  * @num_consumers: Number of consumers
2697  * @consumers:     Consumer data; clients are stored here.
2698  * @return         0 on success, an errno on failure
2699  *
2700  * This convenience API allows consumers to disable multiple regulator
2701  * clients in a single API call.  If any consumers cannot be disabled
2702  * then any others that were disabled will be enabled again prior to
2703  * return.
2704  */
2705 int regulator_bulk_disable(int num_consumers,
2706                            struct regulator_bulk_data *consumers)
2707 {
2708         int i;
2709         int ret, r;
2710
2711         for (i = num_consumers - 1; i >= 0; --i) {
2712                 ret = regulator_disable(consumers[i].consumer);
2713                 if (ret != 0)
2714                         goto err;
2715         }
2716
2717         return 0;
2718
2719 err:
2720         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2721         for (++i; i < num_consumers; ++i) {
2722                 r = regulator_enable(consumers[i].consumer);
2723                 if (r != 0)
2724                         pr_err("Failed to reename %s: %d\n",
2725                                consumers[i].supply, r);
2726         }
2727
2728         return ret;
2729 }
2730 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2731
2732 /**
2733  * regulator_bulk_force_disable - force disable multiple regulator consumers
2734  *
2735  * @num_consumers: Number of consumers
2736  * @consumers:     Consumer data; clients are stored here.
2737  * @return         0 on success, an errno on failure
2738  *
2739  * This convenience API allows consumers to forcibly disable multiple regulator
2740  * clients in a single API call.
2741  * NOTE: This should be used for situations when device damage will
2742  * likely occur if the regulators are not disabled (e.g. over temp).
2743  * Although regulator_force_disable function call for some consumers can
2744  * return error numbers, the function is called for all consumers.
2745  */
2746 int regulator_bulk_force_disable(int num_consumers,
2747                            struct regulator_bulk_data *consumers)
2748 {
2749         int i;
2750         int ret;
2751
2752         for (i = 0; i < num_consumers; i++)
2753                 consumers[i].ret =
2754                             regulator_force_disable(consumers[i].consumer);
2755
2756         for (i = 0; i < num_consumers; i++) {
2757                 if (consumers[i].ret != 0) {
2758                         ret = consumers[i].ret;
2759                         goto out;
2760                 }
2761         }
2762
2763         return 0;
2764 out:
2765         return ret;
2766 }
2767 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2768
2769 /**
2770  * regulator_bulk_free - free multiple regulator consumers
2771  *
2772  * @num_consumers: Number of consumers
2773  * @consumers:     Consumer data; clients are stored here.
2774  *
2775  * This convenience API allows consumers to free multiple regulator
2776  * clients in a single API call.
2777  */
2778 void regulator_bulk_free(int num_consumers,
2779                          struct regulator_bulk_data *consumers)
2780 {
2781         int i;
2782
2783         for (i = 0; i < num_consumers; i++) {
2784                 regulator_put(consumers[i].consumer);
2785                 consumers[i].consumer = NULL;
2786         }
2787 }
2788 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2789
2790 /**
2791  * regulator_notifier_call_chain - call regulator event notifier
2792  * @rdev: regulator source
2793  * @event: notifier block
2794  * @data: callback-specific data.
2795  *
2796  * Called by regulator drivers to notify clients a regulator event has
2797  * occurred. We also notify regulator clients downstream.
2798  * Note lock must be held by caller.
2799  */
2800 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2801                                   unsigned long event, void *data)
2802 {
2803         _notifier_call_chain(rdev, event, data);
2804         return NOTIFY_DONE;
2805
2806 }
2807 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2808
2809 /**
2810  * regulator_mode_to_status - convert a regulator mode into a status
2811  *
2812  * @mode: Mode to convert
2813  *
2814  * Convert a regulator mode into a status.
2815  */
2816 int regulator_mode_to_status(unsigned int mode)
2817 {
2818         switch (mode) {
2819         case REGULATOR_MODE_FAST:
2820                 return REGULATOR_STATUS_FAST;
2821         case REGULATOR_MODE_NORMAL:
2822                 return REGULATOR_STATUS_NORMAL;
2823         case REGULATOR_MODE_IDLE:
2824                 return REGULATOR_STATUS_IDLE;
2825         case REGULATOR_STATUS_STANDBY:
2826                 return REGULATOR_STATUS_STANDBY;
2827         default:
2828                 return 0;
2829         }
2830 }
2831 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2832
2833 /*
2834  * To avoid cluttering sysfs (and memory) with useless state, only
2835  * create attributes that can be meaningfully displayed.
2836  */
2837 static int add_regulator_attributes(struct regulator_dev *rdev)
2838 {
2839         struct device           *dev = &rdev->dev;
2840         struct regulator_ops    *ops = rdev->desc->ops;
2841         int                     status = 0;
2842
2843         /* some attributes need specific methods to be displayed */
2844         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2845             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2846                 status = device_create_file(dev, &dev_attr_microvolts);
2847                 if (status < 0)
2848                         return status;
2849         }
2850         if (ops->get_current_limit) {
2851                 status = device_create_file(dev, &dev_attr_microamps);
2852                 if (status < 0)
2853                         return status;
2854         }
2855         if (ops->get_mode) {
2856                 status = device_create_file(dev, &dev_attr_opmode);
2857                 if (status < 0)
2858                         return status;
2859         }
2860         if (ops->is_enabled) {
2861                 status = device_create_file(dev, &dev_attr_state);
2862                 if (status < 0)
2863                         return status;
2864         }
2865         if (ops->get_status) {
2866                 status = device_create_file(dev, &dev_attr_status);
2867                 if (status < 0)
2868                         return status;
2869         }
2870
2871         /* some attributes are type-specific */
2872         if (rdev->desc->type == REGULATOR_CURRENT) {
2873                 status = device_create_file(dev, &dev_attr_requested_microamps);
2874                 if (status < 0)
2875                         return status;
2876         }
2877
2878         /* all the other attributes exist to support constraints;
2879          * don't show them if there are no constraints, or if the
2880          * relevant supporting methods are missing.
2881          */
2882         if (!rdev->constraints)
2883                 return status;
2884
2885         /* constraints need specific supporting methods */
2886         if (ops->set_voltage || ops->set_voltage_sel) {
2887                 status = device_create_file(dev, &dev_attr_min_microvolts);
2888                 if (status < 0)
2889                         return status;
2890                 status = device_create_file(dev, &dev_attr_max_microvolts);
2891                 if (status < 0)
2892                         return status;
2893         }
2894         if (ops->set_current_limit) {
2895                 status = device_create_file(dev, &dev_attr_min_microamps);
2896                 if (status < 0)
2897                         return status;
2898                 status = device_create_file(dev, &dev_attr_max_microamps);
2899                 if (status < 0)
2900                         return status;
2901         }
2902
2903         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2904         if (status < 0)
2905                 return status;
2906         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2907         if (status < 0)
2908                 return status;
2909         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2910         if (status < 0)
2911                 return status;
2912
2913         if (ops->set_suspend_voltage) {
2914                 status = device_create_file(dev,
2915                                 &dev_attr_suspend_standby_microvolts);
2916                 if (status < 0)
2917                         return status;
2918                 status = device_create_file(dev,
2919                                 &dev_attr_suspend_mem_microvolts);
2920                 if (status < 0)
2921                         return status;
2922                 status = device_create_file(dev,
2923                                 &dev_attr_suspend_disk_microvolts);
2924                 if (status < 0)
2925                         return status;
2926         }
2927
2928         if (ops->set_suspend_mode) {
2929                 status = device_create_file(dev,
2930                                 &dev_attr_suspend_standby_mode);
2931                 if (status < 0)
2932                         return status;
2933                 status = device_create_file(dev,
2934                                 &dev_attr_suspend_mem_mode);
2935                 if (status < 0)
2936                         return status;
2937                 status = device_create_file(dev,
2938                                 &dev_attr_suspend_disk_mode);
2939                 if (status < 0)
2940                         return status;
2941         }
2942
2943         return status;
2944 }
2945
2946 static void rdev_init_debugfs(struct regulator_dev *rdev)
2947 {
2948         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2949         if (!rdev->debugfs) {
2950                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2951                 return;
2952         }
2953
2954         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2955                            &rdev->use_count);
2956         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2957                            &rdev->open_count);
2958 }
2959
2960 /**
2961  * regulator_register - register regulator
2962  * @regulator_desc: regulator to register
2963  * @config: runtime configuration for regulator
2964  *
2965  * Called by regulator drivers to register a regulator.
2966  * Returns 0 on success.
2967  */
2968 struct regulator_dev *
2969 regulator_register(const struct regulator_desc *regulator_desc,
2970                    const struct regulator_config *config)
2971 {
2972         const struct regulation_constraints *constraints = NULL;
2973         const struct regulator_init_data *init_data;
2974         static atomic_t regulator_no = ATOMIC_INIT(0);
2975         struct regulator_dev *rdev;
2976         struct device *dev;
2977         int ret, i;
2978         const char *supply = NULL;
2979
2980         if (regulator_desc == NULL || config == NULL)
2981                 return ERR_PTR(-EINVAL);
2982
2983         dev = config->dev;
2984         WARN_ON(!dev);
2985
2986         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2987                 return ERR_PTR(-EINVAL);
2988
2989         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2990             regulator_desc->type != REGULATOR_CURRENT)
2991                 return ERR_PTR(-EINVAL);
2992
2993         /* Only one of each should be implemented */
2994         WARN_ON(regulator_desc->ops->get_voltage &&
2995                 regulator_desc->ops->get_voltage_sel);
2996         WARN_ON(regulator_desc->ops->set_voltage &&
2997                 regulator_desc->ops->set_voltage_sel);
2998
2999         /* If we're using selectors we must implement list_voltage. */
3000         if (regulator_desc->ops->get_voltage_sel &&
3001             !regulator_desc->ops->list_voltage) {
3002                 return ERR_PTR(-EINVAL);
3003         }
3004         if (regulator_desc->ops->set_voltage_sel &&
3005             !regulator_desc->ops->list_voltage) {
3006                 return ERR_PTR(-EINVAL);
3007         }
3008
3009         init_data = config->init_data;
3010
3011         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3012         if (rdev == NULL)
3013                 return ERR_PTR(-ENOMEM);
3014
3015         mutex_lock(&regulator_list_mutex);
3016
3017         mutex_init(&rdev->mutex);
3018         rdev->reg_data = config->driver_data;
3019         rdev->owner = regulator_desc->owner;
3020         rdev->desc = regulator_desc;
3021         rdev->regmap = config->regmap;
3022         INIT_LIST_HEAD(&rdev->consumer_list);
3023         INIT_LIST_HEAD(&rdev->list);
3024         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3025         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3026
3027         /* preform any regulator specific init */
3028         if (init_data && init_data->regulator_init) {
3029                 ret = init_data->regulator_init(rdev->reg_data);
3030                 if (ret < 0)
3031                         goto clean;
3032         }
3033
3034         /* register with sysfs */
3035         rdev->dev.class = &regulator_class;
3036         rdev->dev.of_node = config->of_node;
3037         rdev->dev.parent = dev;
3038         dev_set_name(&rdev->dev, "regulator.%d",
3039                      atomic_inc_return(&regulator_no) - 1);
3040         ret = device_register(&rdev->dev);
3041         if (ret != 0) {
3042                 put_device(&rdev->dev);
3043                 goto clean;
3044         }
3045
3046         dev_set_drvdata(&rdev->dev, rdev);
3047
3048         /* set regulator constraints */
3049         if (init_data)
3050                 constraints = &init_data->constraints;
3051
3052         ret = set_machine_constraints(rdev, constraints);
3053         if (ret < 0)
3054                 goto scrub;
3055
3056         /* add attributes supported by this regulator */
3057         ret = add_regulator_attributes(rdev);
3058         if (ret < 0)
3059                 goto scrub;
3060
3061         if (init_data && init_data->supply_regulator)
3062                 supply = init_data->supply_regulator;
3063         else if (regulator_desc->supply_name)
3064                 supply = regulator_desc->supply_name;
3065
3066         if (supply) {
3067                 struct regulator_dev *r;
3068
3069                 r = regulator_dev_lookup(dev, supply, &ret);
3070
3071                 if (!r) {
3072                         dev_err(dev, "Failed to find supply %s\n", supply);
3073                         ret = -EPROBE_DEFER;
3074                         goto scrub;
3075                 }
3076
3077                 ret = set_supply(rdev, r);
3078                 if (ret < 0)
3079                         goto scrub;
3080
3081                 /* Enable supply if rail is enabled */
3082                 if (rdev->desc->ops->is_enabled &&
3083                                 rdev->desc->ops->is_enabled(rdev)) {
3084                         ret = regulator_enable(rdev->supply);
3085                         if (ret < 0)
3086                                 goto scrub;
3087                 }
3088         }
3089
3090         /* add consumers devices */
3091         if (init_data) {
3092                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3093                         ret = set_consumer_device_supply(rdev,
3094                                 init_data->consumer_supplies[i].dev_name,
3095                                 init_data->consumer_supplies[i].supply);
3096                         if (ret < 0) {
3097                                 dev_err(dev, "Failed to set supply %s\n",
3098                                         init_data->consumer_supplies[i].supply);
3099                                 goto unset_supplies;
3100                         }
3101                 }
3102         }
3103
3104         list_add(&rdev->list, &regulator_list);
3105
3106         rdev_init_debugfs(rdev);
3107 out:
3108         mutex_unlock(&regulator_list_mutex);
3109         return rdev;
3110
3111 unset_supplies:
3112         unset_regulator_supplies(rdev);
3113
3114 scrub:
3115         kfree(rdev->constraints);
3116         device_unregister(&rdev->dev);
3117         /* device core frees rdev */
3118         rdev = ERR_PTR(ret);
3119         goto out;
3120
3121 clean:
3122         kfree(rdev);
3123         rdev = ERR_PTR(ret);
3124         goto out;
3125 }
3126 EXPORT_SYMBOL_GPL(regulator_register);
3127
3128 /**
3129  * regulator_unregister - unregister regulator
3130  * @rdev: regulator to unregister
3131  *
3132  * Called by regulator drivers to unregister a regulator.
3133  */
3134 void regulator_unregister(struct regulator_dev *rdev)
3135 {
3136         if (rdev == NULL)
3137                 return;
3138
3139         if (rdev->supply)
3140                 regulator_put(rdev->supply);
3141         mutex_lock(&regulator_list_mutex);
3142         debugfs_remove_recursive(rdev->debugfs);
3143         flush_work_sync(&rdev->disable_work.work);
3144         WARN_ON(rdev->open_count);
3145         unset_regulator_supplies(rdev);
3146         list_del(&rdev->list);
3147         kfree(rdev->constraints);
3148         device_unregister(&rdev->dev);
3149         mutex_unlock(&regulator_list_mutex);
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_unregister);
3152
3153 /**
3154  * regulator_suspend_prepare - prepare regulators for system wide suspend
3155  * @state: system suspend state
3156  *
3157  * Configure each regulator with it's suspend operating parameters for state.
3158  * This will usually be called by machine suspend code prior to supending.
3159  */
3160 int regulator_suspend_prepare(suspend_state_t state)
3161 {
3162         struct regulator_dev *rdev;
3163         int ret = 0;
3164
3165         /* ON is handled by regulator active state */
3166         if (state == PM_SUSPEND_ON)
3167                 return -EINVAL;
3168
3169         mutex_lock(&regulator_list_mutex);
3170         list_for_each_entry(rdev, &regulator_list, list) {
3171
3172                 mutex_lock(&rdev->mutex);
3173                 ret = suspend_prepare(rdev, state);
3174                 mutex_unlock(&rdev->mutex);
3175
3176                 if (ret < 0) {
3177                         rdev_err(rdev, "failed to prepare\n");
3178                         goto out;
3179                 }
3180         }
3181 out:
3182         mutex_unlock(&regulator_list_mutex);
3183         return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3186
3187 /**
3188  * regulator_suspend_finish - resume regulators from system wide suspend
3189  *
3190  * Turn on regulators that might be turned off by regulator_suspend_prepare
3191  * and that should be turned on according to the regulators properties.
3192  */
3193 int regulator_suspend_finish(void)
3194 {
3195         struct regulator_dev *rdev;
3196         int ret = 0, error;
3197
3198         mutex_lock(&regulator_list_mutex);
3199         list_for_each_entry(rdev, &regulator_list, list) {
3200                 struct regulator_ops *ops = rdev->desc->ops;
3201
3202                 mutex_lock(&rdev->mutex);
3203                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3204                                 ops->enable) {
3205                         error = ops->enable(rdev);
3206                         if (error)
3207                                 ret = error;
3208                 } else {
3209                         if (!has_full_constraints)
3210                                 goto unlock;
3211                         if (!ops->disable)
3212                                 goto unlock;
3213                         if (ops->is_enabled && !ops->is_enabled(rdev))
3214                                 goto unlock;
3215
3216                         error = ops->disable(rdev);
3217                         if (error)
3218                                 ret = error;
3219                 }
3220 unlock:
3221                 mutex_unlock(&rdev->mutex);
3222         }
3223         mutex_unlock(&regulator_list_mutex);
3224         return ret;
3225 }
3226 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3227
3228 /**
3229  * regulator_has_full_constraints - the system has fully specified constraints
3230  *
3231  * Calling this function will cause the regulator API to disable all
3232  * regulators which have a zero use count and don't have an always_on
3233  * constraint in a late_initcall.
3234  *
3235  * The intention is that this will become the default behaviour in a
3236  * future kernel release so users are encouraged to use this facility
3237  * now.
3238  */
3239 void regulator_has_full_constraints(void)
3240 {
3241         has_full_constraints = 1;
3242 }
3243 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3244
3245 /**
3246  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3247  *
3248  * Calling this function will cause the regulator API to provide a
3249  * dummy regulator to consumers if no physical regulator is found,
3250  * allowing most consumers to proceed as though a regulator were
3251  * configured.  This allows systems such as those with software
3252  * controllable regulators for the CPU core only to be brought up more
3253  * readily.
3254  */
3255 void regulator_use_dummy_regulator(void)
3256 {
3257         board_wants_dummy_regulator = true;
3258 }
3259 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3260
3261 /**
3262  * rdev_get_drvdata - get rdev regulator driver data
3263  * @rdev: regulator
3264  *
3265  * Get rdev regulator driver private data. This call can be used in the
3266  * regulator driver context.
3267  */
3268 void *rdev_get_drvdata(struct regulator_dev *rdev)
3269 {
3270         return rdev->reg_data;
3271 }
3272 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3273
3274 /**
3275  * regulator_get_drvdata - get regulator driver data
3276  * @regulator: regulator
3277  *
3278  * Get regulator driver private data. This call can be used in the consumer
3279  * driver context when non API regulator specific functions need to be called.
3280  */
3281 void *regulator_get_drvdata(struct regulator *regulator)
3282 {
3283         return regulator->rdev->reg_data;
3284 }
3285 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3286
3287 /**
3288  * regulator_set_drvdata - set regulator driver data
3289  * @regulator: regulator
3290  * @data: data
3291  */
3292 void regulator_set_drvdata(struct regulator *regulator, void *data)
3293 {
3294         regulator->rdev->reg_data = data;
3295 }
3296 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3297
3298 /**
3299  * regulator_get_id - get regulator ID
3300  * @rdev: regulator
3301  */
3302 int rdev_get_id(struct regulator_dev *rdev)
3303 {
3304         return rdev->desc->id;
3305 }
3306 EXPORT_SYMBOL_GPL(rdev_get_id);
3307
3308 struct device *rdev_get_dev(struct regulator_dev *rdev)
3309 {
3310         return &rdev->dev;
3311 }
3312 EXPORT_SYMBOL_GPL(rdev_get_dev);
3313
3314 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3315 {
3316         return reg_init_data->driver_data;
3317 }
3318 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3319
3320 #ifdef CONFIG_DEBUG_FS
3321 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3322                                     size_t count, loff_t *ppos)
3323 {
3324         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3325         ssize_t len, ret = 0;
3326         struct regulator_map *map;
3327
3328         if (!buf)
3329                 return -ENOMEM;
3330
3331         list_for_each_entry(map, &regulator_map_list, list) {
3332                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3333                                "%s -> %s.%s\n",
3334                                rdev_get_name(map->regulator), map->dev_name,
3335                                map->supply);
3336                 if (len >= 0)
3337                         ret += len;
3338                 if (ret > PAGE_SIZE) {
3339                         ret = PAGE_SIZE;
3340                         break;
3341                 }
3342         }
3343
3344         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3345
3346         kfree(buf);
3347
3348         return ret;
3349 }
3350 #endif
3351
3352 static const struct file_operations supply_map_fops = {
3353 #ifdef CONFIG_DEBUG_FS
3354         .read = supply_map_read_file,
3355         .llseek = default_llseek,
3356 #endif
3357 };
3358
3359 static int __init regulator_init(void)
3360 {
3361         int ret;
3362
3363         ret = class_register(&regulator_class);
3364
3365         debugfs_root = debugfs_create_dir("regulator", NULL);
3366         if (!debugfs_root)
3367                 pr_warn("regulator: Failed to create debugfs directory\n");
3368
3369         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3370                             &supply_map_fops);
3371
3372         regulator_dummy_init();
3373
3374         return ret;
3375 }
3376
3377 /* init early to allow our consumers to complete system booting */
3378 core_initcall(regulator_init);
3379
3380 static int __init regulator_init_complete(void)
3381 {
3382         struct regulator_dev *rdev;
3383         struct regulator_ops *ops;
3384         struct regulation_constraints *c;
3385         int enabled, ret;
3386
3387         mutex_lock(&regulator_list_mutex);
3388
3389         /* If we have a full configuration then disable any regulators
3390          * which are not in use or always_on.  This will become the
3391          * default behaviour in the future.
3392          */
3393         list_for_each_entry(rdev, &regulator_list, list) {
3394                 ops = rdev->desc->ops;
3395                 c = rdev->constraints;
3396
3397                 if (!ops->disable || (c && c->always_on))
3398                         continue;
3399
3400                 mutex_lock(&rdev->mutex);
3401
3402                 if (rdev->use_count)
3403                         goto unlock;
3404
3405                 /* If we can't read the status assume it's on. */
3406                 if (ops->is_enabled)
3407                         enabled = ops->is_enabled(rdev);
3408                 else
3409                         enabled = 1;
3410
3411                 if (!enabled)
3412                         goto unlock;
3413
3414                 if (has_full_constraints) {
3415                         /* We log since this may kill the system if it
3416                          * goes wrong. */
3417                         rdev_info(rdev, "disabling\n");
3418                         ret = ops->disable(rdev);
3419                         if (ret != 0) {
3420                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3421                         }
3422                 } else {
3423                         /* The intention is that in future we will
3424                          * assume that full constraints are provided
3425                          * so warn even if we aren't going to do
3426                          * anything here.
3427                          */
3428                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3429                 }
3430
3431 unlock:
3432                 mutex_unlock(&rdev->mutex);
3433         }
3434
3435         mutex_unlock(&regulator_list_mutex);
3436
3437         return 0;
3438 }
3439 late_initcall(regulator_init_complete);