Merge tag 'v3.10.61' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327                              struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336         switch (mode) {
337         case REGULATOR_MODE_FAST:
338                 return sprintf(buf, "fast\n");
339         case REGULATOR_MODE_NORMAL:
340                 return sprintf(buf, "normal\n");
341         case REGULATOR_MODE_IDLE:
342                 return sprintf(buf, "idle\n");
343         case REGULATOR_MODE_STANDBY:
344                 return sprintf(buf, "standby\n");
345         }
346         return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350                                     struct device_attribute *attr, char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360         if (state > 0)
361                 return sprintf(buf, "enabled\n");
362         else if (state == 0)
363                 return sprintf(buf, "disabled\n");
364         else
365                 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         ssize_t ret;
373
374         mutex_lock(&rdev->mutex);
375         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376         mutex_unlock(&rdev->mutex);
377
378         return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383                                    struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         int status;
387         char *label;
388
389         status = rdev->desc->ops->get_status(rdev);
390         if (status < 0)
391                 return status;
392
393         switch (status) {
394         case REGULATOR_STATUS_OFF:
395                 label = "off";
396                 break;
397         case REGULATOR_STATUS_ON:
398                 label = "on";
399                 break;
400         case REGULATOR_STATUS_ERROR:
401                 label = "error";
402                 break;
403         case REGULATOR_STATUS_FAST:
404                 label = "fast";
405                 break;
406         case REGULATOR_STATUS_NORMAL:
407                 label = "normal";
408                 break;
409         case REGULATOR_STATUS_IDLE:
410                 label = "idle";
411                 break;
412         case REGULATOR_STATUS_STANDBY:
413                 label = "standby";
414                 break;
415         case REGULATOR_STATUS_BYPASS:
416                 label = "bypass";
417                 break;
418         case REGULATOR_STATUS_UNDEFINED:
419                 label = "undefined";
420                 break;
421         default:
422                 return -ERANGE;
423         }
424
425         return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430                                     struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434         if (!rdev->constraints)
435                 return sprintf(buf, "constraint not defined\n");
436
437         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442                                     struct device_attribute *attr, char *buf)
443 {
444         struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446         if (!rdev->constraints)
447                 return sprintf(buf, "constraint not defined\n");
448
449         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478                                       struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         struct regulator *regulator;
482         int uA = 0;
483
484         mutex_lock(&rdev->mutex);
485         list_for_each_entry(regulator, &rdev->consumer_list, list)
486                 uA += regulator->uA_load;
487         mutex_unlock(&rdev->mutex);
488         return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493                                       struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496         return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500                                   struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         switch (rdev->desc->type) {
505         case REGULATOR_VOLTAGE:
506                 return sprintf(buf, "voltage\n");
507         case REGULATOR_CURRENT:
508                 return sprintf(buf, "current\n");
509         }
510         return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514                                 struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521                 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531                 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541                 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return regulator_print_opmode(buf,
549                 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552                 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555                                 struct device_attribute *attr, char *buf)
556 {
557         struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559         return regulator_print_opmode(buf,
560                 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563                 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566                                 struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         return regulator_print_opmode(buf,
571                 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574                 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577                                    struct device_attribute *attr, char *buf)
578 {
579         struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581         return regulator_print_state(buf,
582                         rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585                 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588                                    struct device_attribute *attr, char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592         return regulator_print_state(buf,
593                         rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596                 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599                                    struct device_attribute *attr, char *buf)
600 {
601         struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603         return regulator_print_state(buf,
604                         rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607                 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610                                      struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613         const char *report;
614         bool bypass;
615         int ret;
616
617         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619         if (ret != 0)
620                 report = "unknown";
621         else if (bypass)
622                 report = "enabled";
623         else
624                 report = "disabled";
625
626         return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629                    regulator_bypass_show, NULL);
630
631 /*
632  * These are the only attributes are present for all regulators.
633  * Other attributes are a function of regulator functionality.
634  */
635 static struct device_attribute regulator_dev_attrs[] = {
636         __ATTR(name, 0444, regulator_name_show, NULL),
637         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638         __ATTR(type, 0444, regulator_type_show, NULL),
639         __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644         struct regulator_dev *rdev = dev_get_drvdata(dev);
645         kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649         .name = "regulator",
650         .dev_release = regulator_dev_release,
651         .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655  * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658         struct regulator *sibling;
659         int current_uA = 0, output_uV, input_uV, err;
660         unsigned int mode;
661
662         err = regulator_check_drms(rdev);
663         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664             (!rdev->desc->ops->get_voltage &&
665              !rdev->desc->ops->get_voltage_sel) ||
666             !rdev->desc->ops->set_mode)
667                 return;
668
669         /* get output voltage */
670         output_uV = _regulator_get_voltage(rdev);
671         if (output_uV <= 0)
672                 return;
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0)
681                 return;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         /* now get the optimum mode for our new total regulator load */
688         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                   output_uV, current_uA);
690
691         /* check the new mode is allowed */
692         err = regulator_mode_constrain(rdev, &mode);
693         if (err == 0)
694                 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698         struct regulator_state *rstate)
699 {
700         int ret = 0;
701
702         /* If we have no suspend mode configration don't set anything;
703          * only warn if the driver implements set_suspend_voltage or
704          * set_suspend_mode callback.
705          */
706         if (!rstate->enabled && !rstate->disabled) {
707                 if (rdev->desc->ops->set_suspend_voltage ||
708                     rdev->desc->ops->set_suspend_mode)
709                         rdev_warn(rdev, "No configuration\n");
710                 return 0;
711         }
712
713         if (rstate->enabled && rstate->disabled) {
714                 rdev_err(rdev, "invalid configuration\n");
715                 return -EINVAL;
716         }
717
718         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719                 ret = rdev->desc->ops->set_suspend_enable(rdev);
720         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721                 ret = rdev->desc->ops->set_suspend_disable(rdev);
722         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723                 ret = 0;
724
725         if (ret < 0) {
726                 rdev_err(rdev, "failed to enabled/disable\n");
727                 return ret;
728         }
729
730         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732                 if (ret < 0) {
733                         rdev_err(rdev, "failed to set voltage\n");
734                         return ret;
735                 }
736         }
737
738         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740                 if (ret < 0) {
741                         rdev_err(rdev, "failed to set mode\n");
742                         return ret;
743                 }
744         }
745         return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751         if (!rdev->constraints)
752                 return -EINVAL;
753
754         switch (state) {
755         case PM_SUSPEND_STANDBY:
756                 return suspend_set_state(rdev,
757                         &rdev->constraints->state_standby);
758         case PM_SUSPEND_MEM:
759                 return suspend_set_state(rdev,
760                         &rdev->constraints->state_mem);
761         case PM_SUSPEND_MAX:
762                 return suspend_set_state(rdev,
763                         &rdev->constraints->state_disk);
764         default:
765                 return -EINVAL;
766         }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771         struct regulation_constraints *constraints = rdev->constraints;
772         char buf[80] = "";
773         int count = 0;
774         int ret;
775
776         if (constraints->min_uV && constraints->max_uV) {
777                 if (constraints->min_uV == constraints->max_uV)
778                         count += sprintf(buf + count, "%d mV ",
779                                          constraints->min_uV / 1000);
780                 else
781                         count += sprintf(buf + count, "%d <--> %d mV ",
782                                          constraints->min_uV / 1000,
783                                          constraints->max_uV / 1000);
784         }
785
786         if (!constraints->min_uV ||
787             constraints->min_uV != constraints->max_uV) {
788                 ret = _regulator_get_voltage(rdev);
789                 if (ret > 0)
790                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
791         }
792
793         if (constraints->uV_offset)
794                 count += sprintf(buf, "%dmV offset ",
795                                  constraints->uV_offset / 1000);
796
797         if (constraints->min_uA && constraints->max_uA) {
798                 if (constraints->min_uA == constraints->max_uA)
799                         count += sprintf(buf + count, "%d mA ",
800                                          constraints->min_uA / 1000);
801                 else
802                         count += sprintf(buf + count, "%d <--> %d mA ",
803                                          constraints->min_uA / 1000,
804                                          constraints->max_uA / 1000);
805         }
806
807         if (!constraints->min_uA ||
808             constraints->min_uA != constraints->max_uA) {
809                 ret = _regulator_get_current_limit(rdev);
810                 if (ret > 0)
811                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
812         }
813
814         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815                 count += sprintf(buf + count, "fast ");
816         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817                 count += sprintf(buf + count, "normal ");
818         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819                 count += sprintf(buf + count, "idle ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821                 count += sprintf(buf + count, "standby");
822
823         if (!count)
824                 sprintf(buf, "no parameters");
825
826         rdev_info(rdev, "%s\n", buf);
827
828         if ((constraints->min_uV != constraints->max_uV) &&
829             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830                 rdev_warn(rdev,
831                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835         struct regulation_constraints *constraints)
836 {
837         struct regulator_ops *ops = rdev->desc->ops;
838         int ret;
839
840         /* do we need to apply the constraint voltage */
841         if (rdev->constraints->apply_uV &&
842             rdev->constraints->min_uV == rdev->constraints->max_uV) {
843                 ret = _regulator_do_set_voltage(rdev,
844                                                 rdev->constraints->min_uV,
845                                                 rdev->constraints->max_uV);
846                 if (ret < 0) {
847                         rdev_err(rdev, "failed to apply %duV constraint\n",
848                                  rdev->constraints->min_uV);
849                         return ret;
850                 }
851         }
852
853         /* constrain machine-level voltage specs to fit
854          * the actual range supported by this regulator.
855          */
856         if (ops->list_voltage && rdev->desc->n_voltages) {
857                 int     count = rdev->desc->n_voltages;
858                 int     i;
859                 int     min_uV = INT_MAX;
860                 int     max_uV = INT_MIN;
861                 int     cmin = constraints->min_uV;
862                 int     cmax = constraints->max_uV;
863
864                 /* it's safe to autoconfigure fixed-voltage supplies
865                    and the constraints are used by list_voltage. */
866                 if (count == 1 && !cmin) {
867                         cmin = 1;
868                         cmax = INT_MAX;
869                         constraints->min_uV = cmin;
870                         constraints->max_uV = cmax;
871                 }
872
873                 /* voltage constraints are optional */
874                 if ((cmin == 0) && (cmax == 0))
875                         return 0;
876
877                 /* else require explicit machine-level constraints */
878                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879                         rdev_err(rdev, "invalid voltage constraints\n");
880                         return -EINVAL;
881                 }
882
883                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884                 for (i = 0; i < count; i++) {
885                         int     value;
886
887                         value = ops->list_voltage(rdev, i);
888                         if (value <= 0)
889                                 continue;
890
891                         /* maybe adjust [min_uV..max_uV] */
892                         if (value >= cmin && value < min_uV)
893                                 min_uV = value;
894                         if (value <= cmax && value > max_uV)
895                                 max_uV = value;
896                 }
897
898                 /* final: [min_uV..max_uV] valid iff constraints valid */
899                 if (max_uV < min_uV) {
900                         rdev_err(rdev,
901                                  "unsupportable voltage constraints %u-%uuV\n",
902                                  min_uV, max_uV);
903                         return -EINVAL;
904                 }
905
906                 /* use regulator's subset of machine constraints */
907                 if (constraints->min_uV < min_uV) {
908                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909                                  constraints->min_uV, min_uV);
910                         constraints->min_uV = min_uV;
911                 }
912                 if (constraints->max_uV > max_uV) {
913                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914                                  constraints->max_uV, max_uV);
915                         constraints->max_uV = max_uV;
916                 }
917         }
918
919         return 0;
920 }
921
922 static int _regulator_do_enable(struct regulator_dev *rdev);
923
924 /**
925  * set_machine_constraints - sets regulator constraints
926  * @rdev: regulator source
927  * @constraints: constraints to apply
928  *
929  * Allows platform initialisation code to define and constrain
930  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
931  * Constraints *must* be set by platform code in order for some
932  * regulator operations to proceed i.e. set_voltage, set_current_limit,
933  * set_mode.
934  */
935 static int set_machine_constraints(struct regulator_dev *rdev,
936         const struct regulation_constraints *constraints)
937 {
938         int ret = 0;
939         struct regulator_ops *ops = rdev->desc->ops;
940
941         if (constraints)
942                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
943                                             GFP_KERNEL);
944         else
945                 rdev->constraints = kzalloc(sizeof(*constraints),
946                                             GFP_KERNEL);
947         if (!rdev->constraints)
948                 return -ENOMEM;
949
950         ret = machine_constraints_voltage(rdev, rdev->constraints);
951         if (ret != 0)
952                 goto out;
953
954         /* do we need to setup our suspend state */
955         if (rdev->constraints->initial_state) {
956                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
957                 if (ret < 0) {
958                         rdev_err(rdev, "failed to set suspend state\n");
959                         goto out;
960                 }
961         }
962
963         if (rdev->constraints->initial_mode) {
964                 if (!ops->set_mode) {
965                         rdev_err(rdev, "no set_mode operation\n");
966                         ret = -EINVAL;
967                         goto out;
968                 }
969
970                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
971                 if (ret < 0) {
972                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
973                         goto out;
974                 }
975         }
976
977         /* If the constraints say the regulator should be on at this point
978          * and we have control then make sure it is enabled.
979          */
980         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
981                 ret = _regulator_do_enable(rdev);
982                 if (ret < 0 && ret != -EINVAL) {
983                         rdev_err(rdev, "failed to enable\n");
984                         goto out;
985                 }
986         }
987
988         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
989                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
990                 if (ret < 0) {
991                         rdev_err(rdev, "failed to set ramp_delay\n");
992                         goto out;
993                 }
994         }
995
996         print_constraints(rdev);
997         return 0;
998 out:
999         kfree(rdev->constraints);
1000         rdev->constraints = NULL;
1001         return ret;
1002 }
1003
1004 /**
1005  * set_supply - set regulator supply regulator
1006  * @rdev: regulator name
1007  * @supply_rdev: supply regulator name
1008  *
1009  * Called by platform initialisation code to set the supply regulator for this
1010  * regulator. This ensures that a regulators supply will also be enabled by the
1011  * core if it's child is enabled.
1012  */
1013 static int set_supply(struct regulator_dev *rdev,
1014                       struct regulator_dev *supply_rdev)
1015 {
1016         int err;
1017
1018         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1019
1020         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1021         if (rdev->supply == NULL) {
1022                 err = -ENOMEM;
1023                 return err;
1024         }
1025         supply_rdev->open_count++;
1026
1027         return 0;
1028 }
1029
1030 /**
1031  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1032  * @rdev:         regulator source
1033  * @consumer_dev_name: dev_name() string for device supply applies to
1034  * @supply:       symbolic name for supply
1035  *
1036  * Allows platform initialisation code to map physical regulator
1037  * sources to symbolic names for supplies for use by devices.  Devices
1038  * should use these symbolic names to request regulators, avoiding the
1039  * need to provide board-specific regulator names as platform data.
1040  */
1041 static int set_consumer_device_supply(struct regulator_dev *rdev,
1042                                       const char *consumer_dev_name,
1043                                       const char *supply)
1044 {
1045         struct regulator_map *node;
1046         int has_dev;
1047
1048         if (supply == NULL)
1049                 return -EINVAL;
1050
1051         if (consumer_dev_name != NULL)
1052                 has_dev = 1;
1053         else
1054                 has_dev = 0;
1055
1056         list_for_each_entry(node, &regulator_map_list, list) {
1057                 if (node->dev_name && consumer_dev_name) {
1058                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1059                                 continue;
1060                 } else if (node->dev_name || consumer_dev_name) {
1061                         continue;
1062                 }
1063
1064                 if (strcmp(node->supply, supply) != 0)
1065                         continue;
1066
1067                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1068                          consumer_dev_name,
1069                          dev_name(&node->regulator->dev),
1070                          node->regulator->desc->name,
1071                          supply,
1072                          dev_name(&rdev->dev), rdev_get_name(rdev));
1073                 return -EBUSY;
1074         }
1075
1076         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1077         if (node == NULL)
1078                 return -ENOMEM;
1079
1080         node->regulator = rdev;
1081         node->supply = supply;
1082
1083         if (has_dev) {
1084                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1085                 if (node->dev_name == NULL) {
1086                         kfree(node);
1087                         return -ENOMEM;
1088                 }
1089         }
1090
1091         list_add(&node->list, &regulator_map_list);
1092         return 0;
1093 }
1094
1095 static void unset_regulator_supplies(struct regulator_dev *rdev)
1096 {
1097         struct regulator_map *node, *n;
1098
1099         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1100                 if (rdev == node->regulator) {
1101                         list_del(&node->list);
1102                         kfree(node->dev_name);
1103                         kfree(node);
1104                 }
1105         }
1106 }
1107
1108 #define REG_STR_SIZE    64
1109
1110 static struct regulator *create_regulator(struct regulator_dev *rdev,
1111                                           struct device *dev,
1112                                           const char *supply_name)
1113 {
1114         struct regulator *regulator;
1115         char buf[REG_STR_SIZE];
1116         int err, size;
1117
1118         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1119         if (regulator == NULL)
1120                 return NULL;
1121
1122         mutex_lock(&rdev->mutex);
1123         regulator->rdev = rdev;
1124         list_add(&regulator->list, &rdev->consumer_list);
1125
1126         if (dev) {
1127                 regulator->dev = dev;
1128
1129                 /* Add a link to the device sysfs entry */
1130                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131                                  dev->kobj.name, supply_name);
1132                 if (size >= REG_STR_SIZE)
1133                         goto overflow_err;
1134
1135                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136                 if (regulator->supply_name == NULL)
1137                         goto overflow_err;
1138
1139                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140                                         buf);
1141                 if (err) {
1142                         rdev_warn(rdev, "could not add device link %s err %d\n",
1143                                   dev->kobj.name, err);
1144                         /* non-fatal */
1145                 }
1146         } else {
1147                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148                 if (regulator->supply_name == NULL)
1149                         goto overflow_err;
1150         }
1151
1152         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153                                                 rdev->debugfs);
1154         if (!regulator->debugfs) {
1155                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1156         } else {
1157                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158                                    &regulator->uA_load);
1159                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160                                    &regulator->min_uV);
1161                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162                                    &regulator->max_uV);
1163         }
1164
1165         /*
1166          * Check now if the regulator is an always on regulator - if
1167          * it is then we don't need to do nearly so much work for
1168          * enable/disable calls.
1169          */
1170         if (!_regulator_can_change_status(rdev) &&
1171             _regulator_is_enabled(rdev))
1172                 regulator->always_on = true;
1173
1174         mutex_unlock(&rdev->mutex);
1175         return regulator;
1176 overflow_err:
1177         list_del(&regulator->list);
1178         kfree(regulator);
1179         mutex_unlock(&rdev->mutex);
1180         return NULL;
1181 }
1182
1183 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1184 {
1185         if (!rdev->desc->ops->enable_time)
1186                 return rdev->desc->enable_time;
1187         return rdev->desc->ops->enable_time(rdev);
1188 }
1189
1190 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1191                                                   const char *supply,
1192                                                   int *ret)
1193 {
1194         struct regulator_dev *r;
1195         struct device_node *node;
1196         struct regulator_map *map;
1197         const char *devname = NULL;
1198
1199         /* first do a dt based lookup */
1200         if (dev && dev->of_node) {
1201                 node = of_get_regulator(dev, supply);
1202                 if (node) {
1203                         list_for_each_entry(r, &regulator_list, list)
1204                                 if (r->dev.parent &&
1205                                         node == r->dev.of_node)
1206                                         return r;
1207                 } else {
1208                         /*
1209                          * If we couldn't even get the node then it's
1210                          * not just that the device didn't register
1211                          * yet, there's no node and we'll never
1212                          * succeed.
1213                          */
1214                         *ret = -ENODEV;
1215                 }
1216         }
1217
1218         /* if not found, try doing it non-dt way */
1219         if (dev)
1220                 devname = dev_name(dev);
1221
1222         list_for_each_entry(r, &regulator_list, list)
1223                 if (strcmp(rdev_get_name(r), supply) == 0)
1224                         return r;
1225
1226         list_for_each_entry(map, &regulator_map_list, list) {
1227                 /* If the mapping has a device set up it must match */
1228                 if (map->dev_name &&
1229                     (!devname || strcmp(map->dev_name, devname)))
1230                         continue;
1231
1232                 if (strcmp(map->supply, supply) == 0)
1233                         return map->regulator;
1234         }
1235
1236
1237         return NULL;
1238 }
1239
1240 /* Internal regulator request function */
1241 static struct regulator *_regulator_get(struct device *dev, const char *id,
1242                                         int exclusive)
1243 {
1244         struct regulator_dev *rdev;
1245         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1246         const char *devname = NULL;
1247         int ret = 0;
1248
1249         if (id == NULL) {
1250                 pr_err("get() with no identifier\n");
1251                 return regulator;
1252         }
1253
1254         if (dev)
1255                 devname = dev_name(dev);
1256
1257         mutex_lock(&regulator_list_mutex);
1258
1259         rdev = regulator_dev_lookup(dev, id, &ret);
1260         if (rdev)
1261                 goto found;
1262
1263         /*
1264          * If we have return value from dev_lookup fail, we do not expect to
1265          * succeed, so, quit with appropriate error value
1266          */
1267         if (ret) {
1268                 regulator = ERR_PTR(ret);
1269                 goto out;
1270         }
1271
1272         if (board_wants_dummy_regulator) {
1273                 rdev = dummy_regulator_rdev;
1274                 goto found;
1275         }
1276
1277 #ifdef CONFIG_REGULATOR_DUMMY
1278         if (!devname)
1279                 devname = "deviceless";
1280
1281         /* If the board didn't flag that it was fully constrained then
1282          * substitute in a dummy regulator so consumers can continue.
1283          */
1284         if (!has_full_constraints) {
1285                 pr_warn("%s supply %s not found, using dummy regulator\n",
1286                         devname, id);
1287                 rdev = dummy_regulator_rdev;
1288                 goto found;
1289         }
1290 #endif
1291
1292         mutex_unlock(&regulator_list_mutex);
1293         return regulator;
1294
1295 found:
1296         if (rdev->exclusive) {
1297                 regulator = ERR_PTR(-EPERM);
1298                 goto out;
1299         }
1300
1301         if (exclusive && rdev->open_count) {
1302                 regulator = ERR_PTR(-EBUSY);
1303                 goto out;
1304         }
1305
1306         if (!try_module_get(rdev->owner))
1307                 goto out;
1308
1309         regulator = create_regulator(rdev, dev, id);
1310         if (regulator == NULL) {
1311                 regulator = ERR_PTR(-ENOMEM);
1312                 module_put(rdev->owner);
1313                 goto out;
1314         }
1315
1316         rdev->open_count++;
1317         if (exclusive) {
1318                 rdev->exclusive = 1;
1319
1320                 ret = _regulator_is_enabled(rdev);
1321                 if (ret > 0)
1322                         rdev->use_count = 1;
1323                 else
1324                         rdev->use_count = 0;
1325         }
1326
1327 out:
1328         mutex_unlock(&regulator_list_mutex);
1329
1330         return regulator;
1331 }
1332
1333 /**
1334  * regulator_get - lookup and obtain a reference to a regulator.
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Returns a struct regulator corresponding to the regulator producer,
1339  * or IS_ERR() condition containing errno.
1340  *
1341  * Use of supply names configured via regulator_set_device_supply() is
1342  * strongly encouraged.  It is recommended that the supply name used
1343  * should match the name used for the supply and/or the relevant
1344  * device pins in the datasheet.
1345  */
1346 struct regulator *regulator_get(struct device *dev, const char *id)
1347 {
1348         return _regulator_get(dev, id, 0);
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_get);
1351
1352 static void devm_regulator_release(struct device *dev, void *res)
1353 {
1354         regulator_put(*(struct regulator **)res);
1355 }
1356
1357 /**
1358  * devm_regulator_get - Resource managed regulator_get()
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Managed regulator_get(). Regulators returned from this function are
1363  * automatically regulator_put() on driver detach. See regulator_get() for more
1364  * information.
1365  */
1366 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1367 {
1368         struct regulator **ptr, *regulator;
1369
1370         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1371         if (!ptr)
1372                 return ERR_PTR(-ENOMEM);
1373
1374         regulator = regulator_get(dev, id);
1375         if (!IS_ERR(regulator)) {
1376                 *ptr = regulator;
1377                 devres_add(dev, ptr);
1378         } else {
1379                 devres_free(ptr);
1380         }
1381
1382         return regulator;
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regulator_get);
1385
1386 /**
1387  * regulator_get_exclusive - obtain exclusive access to a regulator.
1388  * @dev: device for regulator "consumer"
1389  * @id: Supply name or regulator ID.
1390  *
1391  * Returns a struct regulator corresponding to the regulator producer,
1392  * or IS_ERR() condition containing errno.  Other consumers will be
1393  * unable to obtain this reference is held and the use count for the
1394  * regulator will be initialised to reflect the current state of the
1395  * regulator.
1396  *
1397  * This is intended for use by consumers which cannot tolerate shared
1398  * use of the regulator such as those which need to force the
1399  * regulator off for correct operation of the hardware they are
1400  * controlling.
1401  *
1402  * Use of supply names configured via regulator_set_device_supply() is
1403  * strongly encouraged.  It is recommended that the supply name used
1404  * should match the name used for the supply and/or the relevant
1405  * device pins in the datasheet.
1406  */
1407 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1408 {
1409         return _regulator_get(dev, id, 1);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1412
1413 /* Locks held by regulator_put() */
1414 static void _regulator_put(struct regulator *regulator)
1415 {
1416         struct regulator_dev *rdev;
1417
1418         if (regulator == NULL || IS_ERR(regulator))
1419                 return;
1420
1421         rdev = regulator->rdev;
1422
1423         debugfs_remove_recursive(regulator->debugfs);
1424
1425         /* remove any sysfs entries */
1426         if (regulator->dev)
1427                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1428         kfree(regulator->supply_name);
1429         list_del(&regulator->list);
1430         kfree(regulator);
1431
1432         rdev->open_count--;
1433         rdev->exclusive = 0;
1434
1435         module_put(rdev->owner);
1436 }
1437
1438 /**
1439  * regulator_put - "free" the regulator source
1440  * @regulator: regulator source
1441  *
1442  * Note: drivers must ensure that all regulator_enable calls made on this
1443  * regulator source are balanced by regulator_disable calls prior to calling
1444  * this function.
1445  */
1446 void regulator_put(struct regulator *regulator)
1447 {
1448         mutex_lock(&regulator_list_mutex);
1449         _regulator_put(regulator);
1450         mutex_unlock(&regulator_list_mutex);
1451 }
1452 EXPORT_SYMBOL_GPL(regulator_put);
1453
1454 static int devm_regulator_match(struct device *dev, void *res, void *data)
1455 {
1456         struct regulator **r = res;
1457         if (!r || !*r) {
1458                 WARN_ON(!r || !*r);
1459                 return 0;
1460         }
1461         return *r == data;
1462 }
1463
1464 /**
1465  * devm_regulator_put - Resource managed regulator_put()
1466  * @regulator: regulator to free
1467  *
1468  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1469  * this function will not need to be called and the resource management
1470  * code will ensure that the resource is freed.
1471  */
1472 void devm_regulator_put(struct regulator *regulator)
1473 {
1474         int rc;
1475
1476         rc = devres_release(regulator->dev, devm_regulator_release,
1477                             devm_regulator_match, regulator);
1478         if (rc != 0)
1479                 WARN_ON(rc);
1480 }
1481 EXPORT_SYMBOL_GPL(devm_regulator_put);
1482
1483 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1484 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1485                                 const struct regulator_config *config)
1486 {
1487         struct regulator_enable_gpio *pin;
1488         int ret;
1489
1490         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1491                 if (pin->gpio == config->ena_gpio) {
1492                         rdev_dbg(rdev, "GPIO %d is already used\n",
1493                                 config->ena_gpio);
1494                         goto update_ena_gpio_to_rdev;
1495                 }
1496         }
1497
1498         ret = gpio_request_one(config->ena_gpio,
1499                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1500                                 rdev_get_name(rdev));
1501         if (ret)
1502                 return ret;
1503
1504         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1505         if (pin == NULL) {
1506                 gpio_free(config->ena_gpio);
1507                 return -ENOMEM;
1508         }
1509
1510         pin->gpio = config->ena_gpio;
1511         pin->ena_gpio_invert = config->ena_gpio_invert;
1512         list_add(&pin->list, &regulator_ena_gpio_list);
1513
1514 update_ena_gpio_to_rdev:
1515         pin->request_count++;
1516         rdev->ena_pin = pin;
1517         return 0;
1518 }
1519
1520 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1521 {
1522         struct regulator_enable_gpio *pin, *n;
1523
1524         if (!rdev->ena_pin)
1525                 return;
1526
1527         /* Free the GPIO only in case of no use */
1528         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1529                 if (pin->gpio == rdev->ena_pin->gpio) {
1530                         if (pin->request_count <= 1) {
1531                                 pin->request_count = 0;
1532                                 gpio_free(pin->gpio);
1533                                 list_del(&pin->list);
1534                                 kfree(pin);
1535                         } else {
1536                                 pin->request_count--;
1537                         }
1538                 }
1539         }
1540 }
1541
1542 /**
1543  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1544  * @rdev: regulator_dev structure
1545  * @enable: enable GPIO at initial use?
1546  *
1547  * GPIO is enabled in case of initial use. (enable_count is 0)
1548  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1549  */
1550 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1551 {
1552         struct regulator_enable_gpio *pin = rdev->ena_pin;
1553
1554         if (!pin)
1555                 return -EINVAL;
1556
1557         if (enable) {
1558                 /* Enable GPIO at initial use */
1559                 if (pin->enable_count == 0)
1560                         gpio_set_value_cansleep(pin->gpio,
1561                                                 !pin->ena_gpio_invert);
1562
1563                 pin->enable_count++;
1564         } else {
1565                 if (pin->enable_count > 1) {
1566                         pin->enable_count--;
1567                         return 0;
1568                 }
1569
1570                 /* Disable GPIO if not used */
1571                 if (pin->enable_count <= 1) {
1572                         gpio_set_value_cansleep(pin->gpio,
1573                                                 pin->ena_gpio_invert);
1574                         pin->enable_count = 0;
1575                 }
1576         }
1577
1578         return 0;
1579 }
1580
1581 static int _regulator_do_enable(struct regulator_dev *rdev)
1582 {
1583         int ret, delay;
1584
1585         /* Query before enabling in case configuration dependent.  */
1586         ret = _regulator_get_enable_time(rdev);
1587         if (ret >= 0) {
1588                 delay = ret;
1589         } else {
1590                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1591                 delay = 0;
1592         }
1593
1594         trace_regulator_enable(rdev_get_name(rdev));
1595
1596         if (rdev->ena_pin) {
1597                 ret = regulator_ena_gpio_ctrl(rdev, true);
1598                 if (ret < 0)
1599                         return ret;
1600                 rdev->ena_gpio_state = 1;
1601         } else if (rdev->desc->ops->enable) {
1602                 ret = rdev->desc->ops->enable(rdev);
1603                 if (ret < 0)
1604                         return ret;
1605         } else {
1606                 return -EINVAL;
1607         }
1608
1609         /* Allow the regulator to ramp; it would be useful to extend
1610          * this for bulk operations so that the regulators can ramp
1611          * together.  */
1612         trace_regulator_enable_delay(rdev_get_name(rdev));
1613
1614         if (delay >= 1000) {
1615                 mdelay(delay / 1000);
1616                 udelay(delay % 1000);
1617         } else if (delay) {
1618                 udelay(delay);
1619         }
1620
1621         trace_regulator_enable_complete(rdev_get_name(rdev));
1622
1623         return 0;
1624 }
1625
1626 /* locks held by regulator_enable() */
1627 static int _regulator_enable(struct regulator_dev *rdev)
1628 {
1629         int ret;
1630
1631         /* check voltage and requested load before enabling */
1632         if (rdev->constraints &&
1633             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1634                 drms_uA_update(rdev);
1635
1636         if (rdev->use_count == 0) {
1637                 /* The regulator may on if it's not switchable or left on */
1638                 ret = _regulator_is_enabled(rdev);
1639                 if (ret == -EINVAL || ret == 0) {
1640                         if (!_regulator_can_change_status(rdev))
1641                                 return -EPERM;
1642
1643                         ret = _regulator_do_enable(rdev);
1644                         if (ret < 0)
1645                                 return ret;
1646
1647                 } else if (ret < 0) {
1648                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1649                         return ret;
1650                 }
1651                 /* Fallthrough on positive return values - already enabled */
1652         }
1653
1654         rdev->use_count++;
1655
1656         return 0;
1657 }
1658
1659 /**
1660  * regulator_enable - enable regulator output
1661  * @regulator: regulator source
1662  *
1663  * Request that the regulator be enabled with the regulator output at
1664  * the predefined voltage or current value.  Calls to regulator_enable()
1665  * must be balanced with calls to regulator_disable().
1666  *
1667  * NOTE: the output value can be set by other drivers, boot loader or may be
1668  * hardwired in the regulator.
1669  */
1670 int regulator_enable(struct regulator *regulator)
1671 {
1672         struct regulator_dev *rdev = regulator->rdev;
1673         int ret = 0;
1674
1675         if (regulator->always_on)
1676                 return 0;
1677
1678         if (rdev->supply) {
1679                 ret = regulator_enable(rdev->supply);
1680                 if (ret != 0)
1681                         return ret;
1682         }
1683
1684         mutex_lock(&rdev->mutex);
1685         ret = _regulator_enable(rdev);
1686         mutex_unlock(&rdev->mutex);
1687
1688         if (ret != 0 && rdev->supply)
1689                 regulator_disable(rdev->supply);
1690
1691         return ret;
1692 }
1693 EXPORT_SYMBOL_GPL(regulator_enable);
1694
1695 static int _regulator_do_disable(struct regulator_dev *rdev)
1696 {
1697         int ret;
1698
1699         trace_regulator_disable(rdev_get_name(rdev));
1700
1701         if (rdev->ena_pin) {
1702                 ret = regulator_ena_gpio_ctrl(rdev, false);
1703                 if (ret < 0)
1704                         return ret;
1705                 rdev->ena_gpio_state = 0;
1706
1707         } else if (rdev->desc->ops->disable) {
1708                 ret = rdev->desc->ops->disable(rdev);
1709                 if (ret != 0)
1710                         return ret;
1711         }
1712
1713         trace_regulator_disable_complete(rdev_get_name(rdev));
1714
1715         return 0;
1716 }
1717
1718 /* locks held by regulator_disable() */
1719 static int _regulator_disable(struct regulator_dev *rdev)
1720 {
1721         int ret = 0;
1722
1723         if (WARN(rdev->use_count <= 0,
1724                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1725                 return -EIO;
1726
1727         /* are we the last user and permitted to disable ? */
1728         if (rdev->use_count == 1 &&
1729             (rdev->constraints && !rdev->constraints->always_on)) {
1730
1731                 /* we are last user */
1732                 if (_regulator_can_change_status(rdev)) {
1733                         ret = _regulator_do_disable(rdev);
1734                         if (ret < 0) {
1735                                 rdev_err(rdev, "failed to disable\n");
1736                                 return ret;
1737                         }
1738                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1739                                         NULL);
1740                 }
1741
1742                 rdev->use_count = 0;
1743         } else if (rdev->use_count > 1) {
1744
1745                 if (rdev->constraints &&
1746                         (rdev->constraints->valid_ops_mask &
1747                         REGULATOR_CHANGE_DRMS))
1748                         drms_uA_update(rdev);
1749
1750                 rdev->use_count--;
1751         }
1752
1753         return ret;
1754 }
1755
1756 /**
1757  * regulator_disable - disable regulator output
1758  * @regulator: regulator source
1759  *
1760  * Disable the regulator output voltage or current.  Calls to
1761  * regulator_enable() must be balanced with calls to
1762  * regulator_disable().
1763  *
1764  * NOTE: this will only disable the regulator output if no other consumer
1765  * devices have it enabled, the regulator device supports disabling and
1766  * machine constraints permit this operation.
1767  */
1768 int regulator_disable(struct regulator *regulator)
1769 {
1770         struct regulator_dev *rdev = regulator->rdev;
1771         int ret = 0;
1772
1773         if (regulator->always_on)
1774                 return 0;
1775
1776         mutex_lock(&rdev->mutex);
1777         ret = _regulator_disable(rdev);
1778         mutex_unlock(&rdev->mutex);
1779
1780         if (ret == 0 && rdev->supply)
1781                 regulator_disable(rdev->supply);
1782
1783         return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(regulator_disable);
1786
1787 /* locks held by regulator_force_disable() */
1788 static int _regulator_force_disable(struct regulator_dev *rdev)
1789 {
1790         int ret = 0;
1791
1792         ret = _regulator_do_disable(rdev);
1793         if (ret < 0) {
1794                 rdev_err(rdev, "failed to force disable\n");
1795                 return ret;
1796         }
1797
1798         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1799                         REGULATOR_EVENT_DISABLE, NULL);
1800
1801         return 0;
1802 }
1803
1804 /**
1805  * regulator_force_disable - force disable regulator output
1806  * @regulator: regulator source
1807  *
1808  * Forcibly disable the regulator output voltage or current.
1809  * NOTE: this *will* disable the regulator output even if other consumer
1810  * devices have it enabled. This should be used for situations when device
1811  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1812  */
1813 int regulator_force_disable(struct regulator *regulator)
1814 {
1815         struct regulator_dev *rdev = regulator->rdev;
1816         int ret;
1817
1818         mutex_lock(&rdev->mutex);
1819         regulator->uA_load = 0;
1820         ret = _regulator_force_disable(regulator->rdev);
1821         mutex_unlock(&rdev->mutex);
1822
1823         if (rdev->supply)
1824                 while (rdev->open_count--)
1825                         regulator_disable(rdev->supply);
1826
1827         return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_force_disable);
1830
1831 static void regulator_disable_work(struct work_struct *work)
1832 {
1833         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1834                                                   disable_work.work);
1835         int count, i, ret;
1836
1837         mutex_lock(&rdev->mutex);
1838
1839         BUG_ON(!rdev->deferred_disables);
1840
1841         count = rdev->deferred_disables;
1842         rdev->deferred_disables = 0;
1843
1844         for (i = 0; i < count; i++) {
1845                 ret = _regulator_disable(rdev);
1846                 if (ret != 0)
1847                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1848         }
1849
1850         mutex_unlock(&rdev->mutex);
1851
1852         if (rdev->supply) {
1853                 for (i = 0; i < count; i++) {
1854                         ret = regulator_disable(rdev->supply);
1855                         if (ret != 0) {
1856                                 rdev_err(rdev,
1857                                          "Supply disable failed: %d\n", ret);
1858                         }
1859                 }
1860         }
1861 }
1862
1863 /**
1864  * regulator_disable_deferred - disable regulator output with delay
1865  * @regulator: regulator source
1866  * @ms: miliseconds until the regulator is disabled
1867  *
1868  * Execute regulator_disable() on the regulator after a delay.  This
1869  * is intended for use with devices that require some time to quiesce.
1870  *
1871  * NOTE: this will only disable the regulator output if no other consumer
1872  * devices have it enabled, the regulator device supports disabling and
1873  * machine constraints permit this operation.
1874  */
1875 int regulator_disable_deferred(struct regulator *regulator, int ms)
1876 {
1877         struct regulator_dev *rdev = regulator->rdev;
1878         int ret;
1879
1880         if (regulator->always_on)
1881                 return 0;
1882
1883         if (!ms)
1884                 return regulator_disable(regulator);
1885
1886         mutex_lock(&rdev->mutex);
1887         rdev->deferred_disables++;
1888         mutex_unlock(&rdev->mutex);
1889
1890         ret = queue_delayed_work(system_power_efficient_wq,
1891                                  &rdev->disable_work,
1892                                  msecs_to_jiffies(ms));
1893         if (ret < 0)
1894                 return ret;
1895         else
1896                 return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1899
1900 /**
1901  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1902  *
1903  * @rdev: regulator to operate on
1904  *
1905  * Regulators that use regmap for their register I/O can set the
1906  * enable_reg and enable_mask fields in their descriptor and then use
1907  * this as their is_enabled operation, saving some code.
1908  */
1909 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1910 {
1911         unsigned int val;
1912         int ret;
1913
1914         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1915         if (ret != 0)
1916                 return ret;
1917
1918         if (rdev->desc->enable_is_inverted)
1919                 return (val & rdev->desc->enable_mask) == 0;
1920         else
1921                 return (val & rdev->desc->enable_mask) != 0;
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1924
1925 /**
1926  * regulator_enable_regmap - standard enable() for regmap users
1927  *
1928  * @rdev: regulator to operate on
1929  *
1930  * Regulators that use regmap for their register I/O can set the
1931  * enable_reg and enable_mask fields in their descriptor and then use
1932  * this as their enable() operation, saving some code.
1933  */
1934 int regulator_enable_regmap(struct regulator_dev *rdev)
1935 {
1936         unsigned int val;
1937
1938         if (rdev->desc->enable_is_inverted)
1939                 val = 0;
1940         else
1941                 val = rdev->desc->enable_mask;
1942
1943         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1944                                   rdev->desc->enable_mask, val);
1945 }
1946 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1947
1948 /**
1949  * regulator_disable_regmap - standard disable() for regmap users
1950  *
1951  * @rdev: regulator to operate on
1952  *
1953  * Regulators that use regmap for their register I/O can set the
1954  * enable_reg and enable_mask fields in their descriptor and then use
1955  * this as their disable() operation, saving some code.
1956  */
1957 int regulator_disable_regmap(struct regulator_dev *rdev)
1958 {
1959         unsigned int val;
1960
1961         if (rdev->desc->enable_is_inverted)
1962                 val = rdev->desc->enable_mask;
1963         else
1964                 val = 0;
1965
1966         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1967                                   rdev->desc->enable_mask, val);
1968 }
1969 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1970
1971 static int _regulator_is_enabled(struct regulator_dev *rdev)
1972 {
1973         /* A GPIO control always takes precedence */
1974         if (rdev->ena_pin)
1975                 return rdev->ena_gpio_state;
1976
1977         /* If we don't know then assume that the regulator is always on */
1978         if (!rdev->desc->ops->is_enabled)
1979                 return 1;
1980
1981         return rdev->desc->ops->is_enabled(rdev);
1982 }
1983
1984 /**
1985  * regulator_is_enabled - is the regulator output enabled
1986  * @regulator: regulator source
1987  *
1988  * Returns positive if the regulator driver backing the source/client
1989  * has requested that the device be enabled, zero if it hasn't, else a
1990  * negative errno code.
1991  *
1992  * Note that the device backing this regulator handle can have multiple
1993  * users, so it might be enabled even if regulator_enable() was never
1994  * called for this particular source.
1995  */
1996 int regulator_is_enabled(struct regulator *regulator)
1997 {
1998         int ret;
1999
2000         if (regulator->always_on)
2001                 return 1;
2002
2003         mutex_lock(&regulator->rdev->mutex);
2004         ret = _regulator_is_enabled(regulator->rdev);
2005         mutex_unlock(&regulator->rdev->mutex);
2006
2007         return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2010
2011 /**
2012  * regulator_can_change_voltage - check if regulator can change voltage
2013  * @regulator: regulator source
2014  *
2015  * Returns positive if the regulator driver backing the source/client
2016  * can change its voltage, false otherwise. Usefull for detecting fixed
2017  * or dummy regulators and disabling voltage change logic in the client
2018  * driver.
2019  */
2020 int regulator_can_change_voltage(struct regulator *regulator)
2021 {
2022         struct regulator_dev    *rdev = regulator->rdev;
2023
2024         if (rdev->constraints &&
2025             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2026                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2027                         return 1;
2028
2029                 if (rdev->desc->continuous_voltage_range &&
2030                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2031                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2032                         return 1;
2033         }
2034
2035         return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2038
2039 /**
2040  * regulator_count_voltages - count regulator_list_voltage() selectors
2041  * @regulator: regulator source
2042  *
2043  * Returns number of selectors, or negative errno.  Selectors are
2044  * numbered starting at zero, and typically correspond to bitfields
2045  * in hardware registers.
2046  */
2047 int regulator_count_voltages(struct regulator *regulator)
2048 {
2049         struct regulator_dev    *rdev = regulator->rdev;
2050
2051         return rdev->desc->n_voltages ? : -EINVAL;
2052 }
2053 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2054
2055 /**
2056  * regulator_list_voltage_linear - List voltages with simple calculation
2057  *
2058  * @rdev: Regulator device
2059  * @selector: Selector to convert into a voltage
2060  *
2061  * Regulators with a simple linear mapping between voltages and
2062  * selectors can set min_uV and uV_step in the regulator descriptor
2063  * and then use this function as their list_voltage() operation,
2064  */
2065 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2066                                   unsigned int selector)
2067 {
2068         if (selector >= rdev->desc->n_voltages)
2069                 return -EINVAL;
2070         if (selector < rdev->desc->linear_min_sel)
2071                 return 0;
2072
2073         selector -= rdev->desc->linear_min_sel;
2074
2075         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2076 }
2077 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2078
2079 /**
2080  * regulator_list_voltage_table - List voltages with table based mapping
2081  *
2082  * @rdev: Regulator device
2083  * @selector: Selector to convert into a voltage
2084  *
2085  * Regulators with table based mapping between voltages and
2086  * selectors can set volt_table in the regulator descriptor
2087  * and then use this function as their list_voltage() operation.
2088  */
2089 int regulator_list_voltage_table(struct regulator_dev *rdev,
2090                                  unsigned int selector)
2091 {
2092         if (!rdev->desc->volt_table) {
2093                 BUG_ON(!rdev->desc->volt_table);
2094                 return -EINVAL;
2095         }
2096
2097         if (selector >= rdev->desc->n_voltages)
2098                 return -EINVAL;
2099
2100         return rdev->desc->volt_table[selector];
2101 }
2102 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2103
2104 /**
2105  * regulator_list_voltage - enumerate supported voltages
2106  * @regulator: regulator source
2107  * @selector: identify voltage to list
2108  * Context: can sleep
2109  *
2110  * Returns a voltage that can be passed to @regulator_set_voltage(),
2111  * zero if this selector code can't be used on this system, or a
2112  * negative errno.
2113  */
2114 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2115 {
2116         struct regulator_dev    *rdev = regulator->rdev;
2117         struct regulator_ops    *ops = rdev->desc->ops;
2118         int                     ret;
2119
2120         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2121                 return -EINVAL;
2122
2123         mutex_lock(&rdev->mutex);
2124         ret = ops->list_voltage(rdev, selector);
2125         mutex_unlock(&rdev->mutex);
2126
2127         if (ret > 0) {
2128                 if (ret < rdev->constraints->min_uV)
2129                         ret = 0;
2130                 else if (ret > rdev->constraints->max_uV)
2131                         ret = 0;
2132         }
2133
2134         return ret;
2135 }
2136 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2137
2138 /**
2139  * regulator_is_supported_voltage - check if a voltage range can be supported
2140  *
2141  * @regulator: Regulator to check.
2142  * @min_uV: Minimum required voltage in uV.
2143  * @max_uV: Maximum required voltage in uV.
2144  *
2145  * Returns a boolean or a negative error code.
2146  */
2147 int regulator_is_supported_voltage(struct regulator *regulator,
2148                                    int min_uV, int max_uV)
2149 {
2150         struct regulator_dev *rdev = regulator->rdev;
2151         int i, voltages, ret;
2152
2153         /* If we can't change voltage check the current voltage */
2154         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2155                 ret = regulator_get_voltage(regulator);
2156                 if (ret >= 0)
2157                         return (min_uV <= ret && ret <= max_uV);
2158                 else
2159                         return ret;
2160         }
2161
2162         /* Any voltage within constrains range is fine? */
2163         if (rdev->desc->continuous_voltage_range)
2164                 return min_uV >= rdev->constraints->min_uV &&
2165                                 max_uV <= rdev->constraints->max_uV;
2166
2167         ret = regulator_count_voltages(regulator);
2168         if (ret < 0)
2169                 return ret;
2170         voltages = ret;
2171
2172         for (i = 0; i < voltages; i++) {
2173                 ret = regulator_list_voltage(regulator, i);
2174
2175                 if (ret >= min_uV && ret <= max_uV)
2176                         return 1;
2177         }
2178
2179         return 0;
2180 }
2181 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2182
2183 /**
2184  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2185  *
2186  * @rdev: regulator to operate on
2187  *
2188  * Regulators that use regmap for their register I/O can set the
2189  * vsel_reg and vsel_mask fields in their descriptor and then use this
2190  * as their get_voltage_vsel operation, saving some code.
2191  */
2192 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2193 {
2194         unsigned int val;
2195         int ret;
2196
2197         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2198         if (ret != 0)
2199                 return ret;
2200
2201         val &= rdev->desc->vsel_mask;
2202         val >>= ffs(rdev->desc->vsel_mask) - 1;
2203
2204         return val;
2205 }
2206 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2207
2208 /**
2209  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2210  *
2211  * @rdev: regulator to operate on
2212  * @sel: Selector to set
2213  *
2214  * Regulators that use regmap for their register I/O can set the
2215  * vsel_reg and vsel_mask fields in their descriptor and then use this
2216  * as their set_voltage_vsel operation, saving some code.
2217  */
2218 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2219 {
2220         int ret;
2221
2222         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2223
2224         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2225                                   rdev->desc->vsel_mask, sel);
2226         if (ret)
2227                 return ret;
2228
2229         if (rdev->desc->apply_bit)
2230                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2231                                          rdev->desc->apply_bit,
2232                                          rdev->desc->apply_bit);
2233         return ret;
2234 }
2235 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2236
2237 /**
2238  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2239  *
2240  * @rdev: Regulator to operate on
2241  * @min_uV: Lower bound for voltage
2242  * @max_uV: Upper bound for voltage
2243  *
2244  * Drivers implementing set_voltage_sel() and list_voltage() can use
2245  * this as their map_voltage() operation.  It will find a suitable
2246  * voltage by calling list_voltage() until it gets something in bounds
2247  * for the requested voltages.
2248  */
2249 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2250                                   int min_uV, int max_uV)
2251 {
2252         int best_val = INT_MAX;
2253         int selector = 0;
2254         int i, ret;
2255
2256         /* Find the smallest voltage that falls within the specified
2257          * range.
2258          */
2259         for (i = 0; i < rdev->desc->n_voltages; i++) {
2260                 ret = rdev->desc->ops->list_voltage(rdev, i);
2261                 if (ret < 0)
2262                         continue;
2263
2264                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2265                         best_val = ret;
2266                         selector = i;
2267                 }
2268         }
2269
2270         if (best_val != INT_MAX)
2271                 return selector;
2272         else
2273                 return -EINVAL;
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2276
2277 /**
2278  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2279  *
2280  * @rdev: Regulator to operate on
2281  * @min_uV: Lower bound for voltage
2282  * @max_uV: Upper bound for voltage
2283  *
2284  * Drivers that have ascendant voltage list can use this as their
2285  * map_voltage() operation.
2286  */
2287 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2288                                  int min_uV, int max_uV)
2289 {
2290         int i, ret;
2291
2292         for (i = 0; i < rdev->desc->n_voltages; i++) {
2293                 ret = rdev->desc->ops->list_voltage(rdev, i);
2294                 if (ret < 0)
2295                         continue;
2296
2297                 if (ret > max_uV)
2298                         break;
2299
2300                 if (ret >= min_uV && ret <= max_uV)
2301                         return i;
2302         }
2303
2304         return -EINVAL;
2305 }
2306 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2307
2308 /**
2309  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2310  *
2311  * @rdev: Regulator to operate on
2312  * @min_uV: Lower bound for voltage
2313  * @max_uV: Upper bound for voltage
2314  *
2315  * Drivers providing min_uV and uV_step in their regulator_desc can
2316  * use this as their map_voltage() operation.
2317  */
2318 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2319                                  int min_uV, int max_uV)
2320 {
2321         int ret, voltage;
2322
2323         /* Allow uV_step to be 0 for fixed voltage */
2324         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2325                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2326                         return 0;
2327                 else
2328                         return -EINVAL;
2329         }
2330
2331         if (!rdev->desc->uV_step) {
2332                 BUG_ON(!rdev->desc->uV_step);
2333                 return -EINVAL;
2334         }
2335
2336         if (min_uV < rdev->desc->min_uV)
2337                 min_uV = rdev->desc->min_uV;
2338
2339         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2340         if (ret < 0)
2341                 return ret;
2342
2343         ret += rdev->desc->linear_min_sel;
2344
2345         /* Map back into a voltage to verify we're still in bounds */
2346         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2347         if (voltage < min_uV || voltage > max_uV)
2348                 return -EINVAL;
2349
2350         return ret;
2351 }
2352 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2353
2354 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2355                                      int min_uV, int max_uV)
2356 {
2357         int ret;
2358         int delay = 0;
2359         int best_val = 0;
2360         unsigned int selector;
2361         int old_selector = -1;
2362
2363         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2364
2365         min_uV += rdev->constraints->uV_offset;
2366         max_uV += rdev->constraints->uV_offset;
2367
2368         /*
2369          * If we can't obtain the old selector there is not enough
2370          * info to call set_voltage_time_sel().
2371          */
2372         if (_regulator_is_enabled(rdev) &&
2373             rdev->desc->ops->set_voltage_time_sel &&
2374             rdev->desc->ops->get_voltage_sel) {
2375                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2376                 if (old_selector < 0)
2377                         return old_selector;
2378         }
2379
2380         if (rdev->desc->ops->set_voltage) {
2381                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2382                                                    &selector);
2383
2384                 if (ret >= 0) {
2385                         if (rdev->desc->ops->list_voltage)
2386                                 best_val = rdev->desc->ops->list_voltage(rdev,
2387                                                                          selector);
2388                         else
2389                                 best_val = _regulator_get_voltage(rdev);
2390                 }
2391
2392         } else if (rdev->desc->ops->set_voltage_sel) {
2393                 if (rdev->desc->ops->map_voltage) {
2394                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2395                                                            max_uV);
2396                 } else {
2397                         if (rdev->desc->ops->list_voltage ==
2398                             regulator_list_voltage_linear)
2399                                 ret = regulator_map_voltage_linear(rdev,
2400                                                                 min_uV, max_uV);
2401                         else
2402                                 ret = regulator_map_voltage_iterate(rdev,
2403                                                                 min_uV, max_uV);
2404                 }
2405
2406                 if (ret >= 0) {
2407                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2408                         if (min_uV <= best_val && max_uV >= best_val) {
2409                                 selector = ret;
2410                                 if (old_selector == selector)
2411                                         ret = 0;
2412                                 else
2413                                         ret = rdev->desc->ops->set_voltage_sel(
2414                                                                 rdev, ret);
2415                         } else {
2416                                 ret = -EINVAL;
2417                         }
2418                 }
2419         } else {
2420                 ret = -EINVAL;
2421         }
2422
2423         /* Call set_voltage_time_sel if successfully obtained old_selector */
2424         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2425             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2426
2427                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2428                                                 old_selector, selector);
2429                 if (delay < 0) {
2430                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2431                                   delay);
2432                         delay = 0;
2433                 }
2434
2435                 /* Insert any necessary delays */
2436                 if (delay >= 1000) {
2437                         mdelay(delay / 1000);
2438                         udelay(delay % 1000);
2439                 } else if (delay) {
2440                         udelay(delay);
2441                 }
2442         }
2443
2444         if (ret == 0 && best_val >= 0) {
2445                 unsigned long data = best_val;
2446
2447                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2448                                      (void *)data);
2449         }
2450
2451         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2452
2453         return ret;
2454 }
2455
2456 /**
2457  * regulator_set_voltage - set regulator output voltage
2458  * @regulator: regulator source
2459  * @min_uV: Minimum required voltage in uV
2460  * @max_uV: Maximum acceptable voltage in uV
2461  *
2462  * Sets a voltage regulator to the desired output voltage. This can be set
2463  * during any regulator state. IOW, regulator can be disabled or enabled.
2464  *
2465  * If the regulator is enabled then the voltage will change to the new value
2466  * immediately otherwise if the regulator is disabled the regulator will
2467  * output at the new voltage when enabled.
2468  *
2469  * NOTE: If the regulator is shared between several devices then the lowest
2470  * request voltage that meets the system constraints will be used.
2471  * Regulator system constraints must be set for this regulator before
2472  * calling this function otherwise this call will fail.
2473  */
2474 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2475 {
2476         struct regulator_dev *rdev = regulator->rdev;
2477         int ret = 0;
2478         int old_min_uV, old_max_uV;
2479
2480         mutex_lock(&rdev->mutex);
2481
2482         /* If we're setting the same range as last time the change
2483          * should be a noop (some cpufreq implementations use the same
2484          * voltage for multiple frequencies, for example).
2485          */
2486         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2487                 goto out;
2488
2489         /* sanity check */
2490         if (!rdev->desc->ops->set_voltage &&
2491             !rdev->desc->ops->set_voltage_sel) {
2492                 ret = -EINVAL;
2493                 goto out;
2494         }
2495
2496         /* constraints check */
2497         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2498         if (ret < 0)
2499                 goto out;
2500         
2501         /* restore original values in case of error */
2502         old_min_uV = regulator->min_uV;
2503         old_max_uV = regulator->max_uV;
2504         regulator->min_uV = min_uV;
2505         regulator->max_uV = max_uV;
2506
2507         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2508         if (ret < 0)
2509                 goto out2;
2510
2511         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2512         if (ret < 0)
2513                 goto out2;
2514         
2515 out:
2516         mutex_unlock(&rdev->mutex);
2517         return ret;
2518 out2:
2519         regulator->min_uV = old_min_uV;
2520         regulator->max_uV = old_max_uV;
2521         mutex_unlock(&rdev->mutex);
2522         return ret;
2523 }
2524 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2525
2526 /**
2527  * regulator_set_voltage_time - get raise/fall time
2528  * @regulator: regulator source
2529  * @old_uV: starting voltage in microvolts
2530  * @new_uV: target voltage in microvolts
2531  *
2532  * Provided with the starting and ending voltage, this function attempts to
2533  * calculate the time in microseconds required to rise or fall to this new
2534  * voltage.
2535  */
2536 int regulator_set_voltage_time(struct regulator *regulator,
2537                                int old_uV, int new_uV)
2538 {
2539         struct regulator_dev    *rdev = regulator->rdev;
2540         struct regulator_ops    *ops = rdev->desc->ops;
2541         int old_sel = -1;
2542         int new_sel = -1;
2543         int voltage;
2544         int i;
2545
2546         /* Currently requires operations to do this */
2547         if (!ops->list_voltage || !ops->set_voltage_time_sel
2548             || !rdev->desc->n_voltages)
2549                 return -EINVAL;
2550
2551         for (i = 0; i < rdev->desc->n_voltages; i++) {
2552                 /* We only look for exact voltage matches here */
2553                 voltage = regulator_list_voltage(regulator, i);
2554                 if (voltage < 0)
2555                         return -EINVAL;
2556                 if (voltage == 0)
2557                         continue;
2558                 if (voltage == old_uV)
2559                         old_sel = i;
2560                 if (voltage == new_uV)
2561                         new_sel = i;
2562         }
2563
2564         if (old_sel < 0 || new_sel < 0)
2565                 return -EINVAL;
2566
2567         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2568 }
2569 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2570
2571 /**
2572  * regulator_set_voltage_time_sel - get raise/fall time
2573  * @rdev: regulator source device
2574  * @old_selector: selector for starting voltage
2575  * @new_selector: selector for target voltage
2576  *
2577  * Provided with the starting and target voltage selectors, this function
2578  * returns time in microseconds required to rise or fall to this new voltage
2579  *
2580  * Drivers providing ramp_delay in regulation_constraints can use this as their
2581  * set_voltage_time_sel() operation.
2582  */
2583 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2584                                    unsigned int old_selector,
2585                                    unsigned int new_selector)
2586 {
2587         unsigned int ramp_delay = 0;
2588         int old_volt, new_volt;
2589
2590         if (rdev->constraints->ramp_delay)
2591                 ramp_delay = rdev->constraints->ramp_delay;
2592         else if (rdev->desc->ramp_delay)
2593                 ramp_delay = rdev->desc->ramp_delay;
2594
2595         if (ramp_delay == 0) {
2596                 rdev_warn(rdev, "ramp_delay not set\n");
2597                 return 0;
2598         }
2599
2600         /* sanity check */
2601         if (!rdev->desc->ops->list_voltage)
2602                 return -EINVAL;
2603
2604         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2605         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2606
2607         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2608 }
2609 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2610
2611 /**
2612  * regulator_sync_voltage - re-apply last regulator output voltage
2613  * @regulator: regulator source
2614  *
2615  * Re-apply the last configured voltage.  This is intended to be used
2616  * where some external control source the consumer is cooperating with
2617  * has caused the configured voltage to change.
2618  */
2619 int regulator_sync_voltage(struct regulator *regulator)
2620 {
2621         struct regulator_dev *rdev = regulator->rdev;
2622         int ret, min_uV, max_uV;
2623
2624         mutex_lock(&rdev->mutex);
2625
2626         if (!rdev->desc->ops->set_voltage &&
2627             !rdev->desc->ops->set_voltage_sel) {
2628                 ret = -EINVAL;
2629                 goto out;
2630         }
2631
2632         /* This is only going to work if we've had a voltage configured. */
2633         if (!regulator->min_uV && !regulator->max_uV) {
2634                 ret = -EINVAL;
2635                 goto out;
2636         }
2637
2638         min_uV = regulator->min_uV;
2639         max_uV = regulator->max_uV;
2640
2641         /* This should be a paranoia check... */
2642         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2643         if (ret < 0)
2644                 goto out;
2645
2646         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2647         if (ret < 0)
2648                 goto out;
2649
2650         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2651
2652 out:
2653         mutex_unlock(&rdev->mutex);
2654         return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2657
2658 static int _regulator_get_voltage(struct regulator_dev *rdev)
2659 {
2660         int sel, ret;
2661
2662         if (rdev->desc->ops->get_voltage_sel) {
2663                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2664                 if (sel < 0)
2665                         return sel;
2666                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2667         } else if (rdev->desc->ops->get_voltage) {
2668                 ret = rdev->desc->ops->get_voltage(rdev);
2669         } else if (rdev->desc->ops->list_voltage) {
2670                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2671         } else {
2672                 return -EINVAL;
2673         }
2674
2675         if (ret < 0)
2676                 return ret;
2677         return ret - rdev->constraints->uV_offset;
2678 }
2679
2680 /**
2681  * regulator_get_voltage - get regulator output voltage
2682  * @regulator: regulator source
2683  *
2684  * This returns the current regulator voltage in uV.
2685  *
2686  * NOTE: If the regulator is disabled it will return the voltage value. This
2687  * function should not be used to determine regulator state.
2688  */
2689 int regulator_get_voltage(struct regulator *regulator)
2690 {
2691         int ret;
2692
2693         mutex_lock(&regulator->rdev->mutex);
2694
2695         ret = _regulator_get_voltage(regulator->rdev);
2696
2697         mutex_unlock(&regulator->rdev->mutex);
2698
2699         return ret;
2700 }
2701 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2702
2703 /**
2704  * regulator_set_current_limit - set regulator output current limit
2705  * @regulator: regulator source
2706  * @min_uA: Minimum supported current in uA
2707  * @max_uA: Maximum supported current in uA
2708  *
2709  * Sets current sink to the desired output current. This can be set during
2710  * any regulator state. IOW, regulator can be disabled or enabled.
2711  *
2712  * If the regulator is enabled then the current will change to the new value
2713  * immediately otherwise if the regulator is disabled the regulator will
2714  * output at the new current when enabled.
2715  *
2716  * NOTE: Regulator system constraints must be set for this regulator before
2717  * calling this function otherwise this call will fail.
2718  */
2719 int regulator_set_current_limit(struct regulator *regulator,
2720                                int min_uA, int max_uA)
2721 {
2722         struct regulator_dev *rdev = regulator->rdev;
2723         int ret;
2724
2725         mutex_lock(&rdev->mutex);
2726
2727         /* sanity check */
2728         if (!rdev->desc->ops->set_current_limit) {
2729                 ret = -EINVAL;
2730                 goto out;
2731         }
2732
2733         /* constraints check */
2734         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2735         if (ret < 0)
2736                 goto out;
2737
2738         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2739 out:
2740         mutex_unlock(&rdev->mutex);
2741         return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2744
2745 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2746 {
2747         int ret;
2748
2749         mutex_lock(&rdev->mutex);
2750
2751         /* sanity check */
2752         if (!rdev->desc->ops->get_current_limit) {
2753                 ret = -EINVAL;
2754                 goto out;
2755         }
2756
2757         ret = rdev->desc->ops->get_current_limit(rdev);
2758 out:
2759         mutex_unlock(&rdev->mutex);
2760         return ret;
2761 }
2762
2763 /**
2764  * regulator_get_current_limit - get regulator output current
2765  * @regulator: regulator source
2766  *
2767  * This returns the current supplied by the specified current sink in uA.
2768  *
2769  * NOTE: If the regulator is disabled it will return the current value. This
2770  * function should not be used to determine regulator state.
2771  */
2772 int regulator_get_current_limit(struct regulator *regulator)
2773 {
2774         return _regulator_get_current_limit(regulator->rdev);
2775 }
2776 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2777
2778 /**
2779  * regulator_set_mode - set regulator operating mode
2780  * @regulator: regulator source
2781  * @mode: operating mode - one of the REGULATOR_MODE constants
2782  *
2783  * Set regulator operating mode to increase regulator efficiency or improve
2784  * regulation performance.
2785  *
2786  * NOTE: Regulator system constraints must be set for this regulator before
2787  * calling this function otherwise this call will fail.
2788  */
2789 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2790 {
2791         struct regulator_dev *rdev = regulator->rdev;
2792         int ret;
2793         int regulator_curr_mode;
2794
2795         mutex_lock(&rdev->mutex);
2796
2797         /* sanity check */
2798         if (!rdev->desc->ops->set_mode) {
2799                 ret = -EINVAL;
2800                 goto out;
2801         }
2802
2803         /* return if the same mode is requested */
2804         if (rdev->desc->ops->get_mode) {
2805                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2806                 if (regulator_curr_mode == mode) {
2807                         ret = 0;
2808                         goto out;
2809                 }
2810         }
2811
2812         /* constraints check */
2813         ret = regulator_mode_constrain(rdev, &mode);
2814         if (ret < 0)
2815                 goto out;
2816
2817         ret = rdev->desc->ops->set_mode(rdev, mode);
2818 out:
2819         mutex_unlock(&rdev->mutex);
2820         return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(regulator_set_mode);
2823
2824 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2825 {
2826         int ret;
2827
2828         mutex_lock(&rdev->mutex);
2829
2830         /* sanity check */
2831         if (!rdev->desc->ops->get_mode) {
2832                 ret = -EINVAL;
2833                 goto out;
2834         }
2835
2836         ret = rdev->desc->ops->get_mode(rdev);
2837 out:
2838         mutex_unlock(&rdev->mutex);
2839         return ret;
2840 }
2841
2842 /**
2843  * regulator_get_mode - get regulator operating mode
2844  * @regulator: regulator source
2845  *
2846  * Get the current regulator operating mode.
2847  */
2848 unsigned int regulator_get_mode(struct regulator *regulator)
2849 {
2850         return _regulator_get_mode(regulator->rdev);
2851 }
2852 EXPORT_SYMBOL_GPL(regulator_get_mode);
2853
2854 /**
2855  * regulator_set_optimum_mode - set regulator optimum operating mode
2856  * @regulator: regulator source
2857  * @uA_load: load current
2858  *
2859  * Notifies the regulator core of a new device load. This is then used by
2860  * DRMS (if enabled by constraints) to set the most efficient regulator
2861  * operating mode for the new regulator loading.
2862  *
2863  * Consumer devices notify their supply regulator of the maximum power
2864  * they will require (can be taken from device datasheet in the power
2865  * consumption tables) when they change operational status and hence power
2866  * state. Examples of operational state changes that can affect power
2867  * consumption are :-
2868  *
2869  *    o Device is opened / closed.
2870  *    o Device I/O is about to begin or has just finished.
2871  *    o Device is idling in between work.
2872  *
2873  * This information is also exported via sysfs to userspace.
2874  *
2875  * DRMS will sum the total requested load on the regulator and change
2876  * to the most efficient operating mode if platform constraints allow.
2877  *
2878  * Returns the new regulator mode or error.
2879  */
2880 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2881 {
2882         struct regulator_dev *rdev = regulator->rdev;
2883         struct regulator *consumer;
2884         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2885         unsigned int mode;
2886
2887         if (rdev->supply)
2888                 input_uV = regulator_get_voltage(rdev->supply);
2889
2890         mutex_lock(&rdev->mutex);
2891
2892         /*
2893          * first check to see if we can set modes at all, otherwise just
2894          * tell the consumer everything is OK.
2895          */
2896         regulator->uA_load = uA_load;
2897         ret = regulator_check_drms(rdev);
2898         if (ret < 0) {
2899                 ret = 0;
2900                 goto out;
2901         }
2902
2903         if (!rdev->desc->ops->get_optimum_mode)
2904                 goto out;
2905
2906         /*
2907          * we can actually do this so any errors are indicators of
2908          * potential real failure.
2909          */
2910         ret = -EINVAL;
2911
2912         if (!rdev->desc->ops->set_mode)
2913                 goto out;
2914
2915         /* get output voltage */
2916         output_uV = _regulator_get_voltage(rdev);
2917         if (output_uV <= 0) {
2918                 rdev_err(rdev, "invalid output voltage found\n");
2919                 goto out;
2920         }
2921
2922         /* No supply? Use constraint voltage */
2923         if (input_uV <= 0)
2924                 input_uV = rdev->constraints->input_uV;
2925         if (input_uV <= 0) {
2926                 rdev_err(rdev, "invalid input voltage found\n");
2927                 goto out;
2928         }
2929
2930         /* calc total requested load for this regulator */
2931         list_for_each_entry(consumer, &rdev->consumer_list, list)
2932                 total_uA_load += consumer->uA_load;
2933
2934         mode = rdev->desc->ops->get_optimum_mode(rdev,
2935                                                  input_uV, output_uV,
2936                                                  total_uA_load);
2937         ret = regulator_mode_constrain(rdev, &mode);
2938         if (ret < 0) {
2939                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2940                          total_uA_load, input_uV, output_uV);
2941                 goto out;
2942         }
2943
2944         ret = rdev->desc->ops->set_mode(rdev, mode);
2945         if (ret < 0) {
2946                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2947                 goto out;
2948         }
2949         ret = mode;
2950 out:
2951         mutex_unlock(&rdev->mutex);
2952         return ret;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2955
2956 /**
2957  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2958  *
2959  * @rdev: device to operate on.
2960  * @enable: state to set.
2961  */
2962 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2963 {
2964         unsigned int val;
2965
2966         if (enable)
2967                 val = rdev->desc->bypass_mask;
2968         else
2969                 val = 0;
2970
2971         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2972                                   rdev->desc->bypass_mask, val);
2973 }
2974 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2975
2976 /**
2977  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2978  *
2979  * @rdev: device to operate on.
2980  * @enable: current state.
2981  */
2982 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2983 {
2984         unsigned int val;
2985         int ret;
2986
2987         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2988         if (ret != 0)
2989                 return ret;
2990
2991         *enable = val & rdev->desc->bypass_mask;
2992
2993         return 0;
2994 }
2995 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2996
2997 /**
2998  * regulator_allow_bypass - allow the regulator to go into bypass mode
2999  *
3000  * @regulator: Regulator to configure
3001  * @enable: enable or disable bypass mode
3002  *
3003  * Allow the regulator to go into bypass mode if all other consumers
3004  * for the regulator also enable bypass mode and the machine
3005  * constraints allow this.  Bypass mode means that the regulator is
3006  * simply passing the input directly to the output with no regulation.
3007  */
3008 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3009 {
3010         struct regulator_dev *rdev = regulator->rdev;
3011         int ret = 0;
3012
3013         if (!rdev->desc->ops->set_bypass)
3014                 return 0;
3015
3016         if (rdev->constraints &&
3017             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3018                 return 0;
3019
3020         mutex_lock(&rdev->mutex);
3021
3022         if (enable && !regulator->bypass) {
3023                 rdev->bypass_count++;
3024
3025                 if (rdev->bypass_count == rdev->open_count) {
3026                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3027                         if (ret != 0)
3028                                 rdev->bypass_count--;
3029                 }
3030
3031         } else if (!enable && regulator->bypass) {
3032                 rdev->bypass_count--;
3033
3034                 if (rdev->bypass_count != rdev->open_count) {
3035                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3036                         if (ret != 0)
3037                                 rdev->bypass_count++;
3038                 }
3039         }
3040
3041         if (ret == 0)
3042                 regulator->bypass = enable;
3043
3044         mutex_unlock(&rdev->mutex);
3045
3046         return ret;
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3049
3050 /**
3051  * regulator_register_notifier - register regulator event notifier
3052  * @regulator: regulator source
3053  * @nb: notifier block
3054  *
3055  * Register notifier block to receive regulator events.
3056  */
3057 int regulator_register_notifier(struct regulator *regulator,
3058                               struct notifier_block *nb)
3059 {
3060         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3061                                                 nb);
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3064
3065 /**
3066  * regulator_unregister_notifier - unregister regulator event notifier
3067  * @regulator: regulator source
3068  * @nb: notifier block
3069  *
3070  * Unregister regulator event notifier block.
3071  */
3072 int regulator_unregister_notifier(struct regulator *regulator,
3073                                 struct notifier_block *nb)
3074 {
3075         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3076                                                   nb);
3077 }
3078 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3079
3080 /* notify regulator consumers and downstream regulator consumers.
3081  * Note mutex must be held by caller.
3082  */
3083 static void _notifier_call_chain(struct regulator_dev *rdev,
3084                                   unsigned long event, void *data)
3085 {
3086         /* call rdev chain first */
3087         blocking_notifier_call_chain(&rdev->notifier, event, data);
3088 }
3089
3090 /**
3091  * regulator_bulk_get - get multiple regulator consumers
3092  *
3093  * @dev:           Device to supply
3094  * @num_consumers: Number of consumers to register
3095  * @consumers:     Configuration of consumers; clients are stored here.
3096  *
3097  * @return 0 on success, an errno on failure.
3098  *
3099  * This helper function allows drivers to get several regulator
3100  * consumers in one operation.  If any of the regulators cannot be
3101  * acquired then any regulators that were allocated will be freed
3102  * before returning to the caller.
3103  */
3104 int regulator_bulk_get(struct device *dev, int num_consumers,
3105                        struct regulator_bulk_data *consumers)
3106 {
3107         int i;
3108         int ret;
3109
3110         for (i = 0; i < num_consumers; i++)
3111                 consumers[i].consumer = NULL;
3112
3113         for (i = 0; i < num_consumers; i++) {
3114                 consumers[i].consumer = regulator_get(dev,
3115                                                       consumers[i].supply);
3116                 if (IS_ERR(consumers[i].consumer)) {
3117                         ret = PTR_ERR(consumers[i].consumer);
3118                         dev_err(dev, "Failed to get supply '%s': %d\n",
3119                                 consumers[i].supply, ret);
3120                         consumers[i].consumer = NULL;
3121                         goto err;
3122                 }
3123         }
3124
3125         return 0;
3126
3127 err:
3128         while (--i >= 0)
3129                 regulator_put(consumers[i].consumer);
3130
3131         return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3134
3135 /**
3136  * devm_regulator_bulk_get - managed get multiple regulator consumers
3137  *
3138  * @dev:           Device to supply
3139  * @num_consumers: Number of consumers to register
3140  * @consumers:     Configuration of consumers; clients are stored here.
3141  *
3142  * @return 0 on success, an errno on failure.
3143  *
3144  * This helper function allows drivers to get several regulator
3145  * consumers in one operation with management, the regulators will
3146  * automatically be freed when the device is unbound.  If any of the
3147  * regulators cannot be acquired then any regulators that were
3148  * allocated will be freed before returning to the caller.
3149  */
3150 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3151                             struct regulator_bulk_data *consumers)
3152 {
3153         int i;
3154         int ret;
3155
3156         for (i = 0; i < num_consumers; i++)
3157                 consumers[i].consumer = NULL;
3158
3159         for (i = 0; i < num_consumers; i++) {
3160                 consumers[i].consumer = devm_regulator_get(dev,
3161                                                            consumers[i].supply);
3162                 if (IS_ERR(consumers[i].consumer)) {
3163                         ret = PTR_ERR(consumers[i].consumer);
3164                         dev_err(dev, "Failed to get supply '%s': %d\n",
3165                                 consumers[i].supply, ret);
3166                         consumers[i].consumer = NULL;
3167                         goto err;
3168                 }
3169         }
3170
3171         return 0;
3172
3173 err:
3174         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3175                 devm_regulator_put(consumers[i].consumer);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3180
3181 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3182 {
3183         struct regulator_bulk_data *bulk = data;
3184
3185         bulk->ret = regulator_enable(bulk->consumer);
3186 }
3187
3188 /**
3189  * regulator_bulk_enable - enable multiple regulator consumers
3190  *
3191  * @num_consumers: Number of consumers
3192  * @consumers:     Consumer data; clients are stored here.
3193  * @return         0 on success, an errno on failure
3194  *
3195  * This convenience API allows consumers to enable multiple regulator
3196  * clients in a single API call.  If any consumers cannot be enabled
3197  * then any others that were enabled will be disabled again prior to
3198  * return.
3199  */
3200 int regulator_bulk_enable(int num_consumers,
3201                           struct regulator_bulk_data *consumers)
3202 {
3203         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3204         int i;
3205         int ret = 0;
3206
3207         for (i = 0; i < num_consumers; i++) {
3208                 if (consumers[i].consumer->always_on)
3209                         consumers[i].ret = 0;
3210                 else
3211                         async_schedule_domain(regulator_bulk_enable_async,
3212                                               &consumers[i], &async_domain);
3213         }
3214
3215         async_synchronize_full_domain(&async_domain);
3216
3217         /* If any consumer failed we need to unwind any that succeeded */
3218         for (i = 0; i < num_consumers; i++) {
3219                 if (consumers[i].ret != 0) {
3220                         ret = consumers[i].ret;
3221                         goto err;
3222                 }
3223         }
3224
3225         return 0;
3226
3227 err:
3228         for (i = 0; i < num_consumers; i++) {
3229                 if (consumers[i].ret < 0)
3230                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3231                                consumers[i].ret);
3232                 else
3233                         regulator_disable(consumers[i].consumer);
3234         }
3235
3236         return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3239
3240 /**
3241  * regulator_bulk_disable - disable multiple regulator consumers
3242  *
3243  * @num_consumers: Number of consumers
3244  * @consumers:     Consumer data; clients are stored here.
3245  * @return         0 on success, an errno on failure
3246  *
3247  * This convenience API allows consumers to disable multiple regulator
3248  * clients in a single API call.  If any consumers cannot be disabled
3249  * then any others that were disabled will be enabled again prior to
3250  * return.
3251  */
3252 int regulator_bulk_disable(int num_consumers,
3253                            struct regulator_bulk_data *consumers)
3254 {
3255         int i;
3256         int ret, r;
3257
3258         for (i = num_consumers - 1; i >= 0; --i) {
3259                 ret = regulator_disable(consumers[i].consumer);
3260                 if (ret != 0)
3261                         goto err;
3262         }
3263
3264         return 0;
3265
3266 err:
3267         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3268         for (++i; i < num_consumers; ++i) {
3269                 r = regulator_enable(consumers[i].consumer);
3270                 if (r != 0)
3271                         pr_err("Failed to reename %s: %d\n",
3272                                consumers[i].supply, r);
3273         }
3274
3275         return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3278
3279 /**
3280  * regulator_bulk_force_disable - force disable multiple regulator consumers
3281  *
3282  * @num_consumers: Number of consumers
3283  * @consumers:     Consumer data; clients are stored here.
3284  * @return         0 on success, an errno on failure
3285  *
3286  * This convenience API allows consumers to forcibly disable multiple regulator
3287  * clients in a single API call.
3288  * NOTE: This should be used for situations when device damage will
3289  * likely occur if the regulators are not disabled (e.g. over temp).
3290  * Although regulator_force_disable function call for some consumers can
3291  * return error numbers, the function is called for all consumers.
3292  */
3293 int regulator_bulk_force_disable(int num_consumers,
3294                            struct regulator_bulk_data *consumers)
3295 {
3296         int i;
3297         int ret;
3298
3299         for (i = 0; i < num_consumers; i++)
3300                 consumers[i].ret =
3301                             regulator_force_disable(consumers[i].consumer);
3302
3303         for (i = 0; i < num_consumers; i++) {
3304                 if (consumers[i].ret != 0) {
3305                         ret = consumers[i].ret;
3306                         goto out;
3307                 }
3308         }
3309
3310         return 0;
3311 out:
3312         return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3315
3316 /**
3317  * regulator_bulk_free - free multiple regulator consumers
3318  *
3319  * @num_consumers: Number of consumers
3320  * @consumers:     Consumer data; clients are stored here.
3321  *
3322  * This convenience API allows consumers to free multiple regulator
3323  * clients in a single API call.
3324  */
3325 void regulator_bulk_free(int num_consumers,
3326                          struct regulator_bulk_data *consumers)
3327 {
3328         int i;
3329
3330         for (i = 0; i < num_consumers; i++) {
3331                 regulator_put(consumers[i].consumer);
3332                 consumers[i].consumer = NULL;
3333         }
3334 }
3335 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3336
3337 /**
3338  * regulator_notifier_call_chain - call regulator event notifier
3339  * @rdev: regulator source
3340  * @event: notifier block
3341  * @data: callback-specific data.
3342  *
3343  * Called by regulator drivers to notify clients a regulator event has
3344  * occurred. We also notify regulator clients downstream.
3345  * Note lock must be held by caller.
3346  */
3347 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3348                                   unsigned long event, void *data)
3349 {
3350         _notifier_call_chain(rdev, event, data);
3351         return NOTIFY_DONE;
3352
3353 }
3354 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3355
3356 /**
3357  * regulator_mode_to_status - convert a regulator mode into a status
3358  *
3359  * @mode: Mode to convert
3360  *
3361  * Convert a regulator mode into a status.
3362  */
3363 int regulator_mode_to_status(unsigned int mode)
3364 {
3365         switch (mode) {
3366         case REGULATOR_MODE_FAST:
3367                 return REGULATOR_STATUS_FAST;
3368         case REGULATOR_MODE_NORMAL:
3369                 return REGULATOR_STATUS_NORMAL;
3370         case REGULATOR_MODE_IDLE:
3371                 return REGULATOR_STATUS_IDLE;
3372         case REGULATOR_MODE_STANDBY:
3373                 return REGULATOR_STATUS_STANDBY;
3374         default:
3375                 return REGULATOR_STATUS_UNDEFINED;
3376         }
3377 }
3378 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3379
3380 /*
3381  * To avoid cluttering sysfs (and memory) with useless state, only
3382  * create attributes that can be meaningfully displayed.
3383  */
3384 static int add_regulator_attributes(struct regulator_dev *rdev)
3385 {
3386         struct device           *dev = &rdev->dev;
3387         struct regulator_ops    *ops = rdev->desc->ops;
3388         int                     status = 0;
3389
3390         /* some attributes need specific methods to be displayed */
3391         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3392             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3393             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3394                 status = device_create_file(dev, &dev_attr_microvolts);
3395                 if (status < 0)
3396                         return status;
3397         }
3398         if (ops->get_current_limit) {
3399                 status = device_create_file(dev, &dev_attr_microamps);
3400                 if (status < 0)
3401                         return status;
3402         }
3403         if (ops->get_mode) {
3404                 status = device_create_file(dev, &dev_attr_opmode);
3405                 if (status < 0)
3406                         return status;
3407         }
3408         if (rdev->ena_pin || ops->is_enabled) {
3409                 status = device_create_file(dev, &dev_attr_state);
3410                 if (status < 0)
3411                         return status;
3412         }
3413         if (ops->get_status) {
3414                 status = device_create_file(dev, &dev_attr_status);
3415                 if (status < 0)
3416                         return status;
3417         }
3418         if (ops->get_bypass) {
3419                 status = device_create_file(dev, &dev_attr_bypass);
3420                 if (status < 0)
3421                         return status;
3422         }
3423
3424         /* some attributes are type-specific */
3425         if (rdev->desc->type == REGULATOR_CURRENT) {
3426                 status = device_create_file(dev, &dev_attr_requested_microamps);
3427                 if (status < 0)
3428                         return status;
3429         }
3430
3431         /* all the other attributes exist to support constraints;
3432          * don't show them if there are no constraints, or if the
3433          * relevant supporting methods are missing.
3434          */
3435         if (!rdev->constraints)
3436                 return status;
3437
3438         /* constraints need specific supporting methods */
3439         if (ops->set_voltage || ops->set_voltage_sel) {
3440                 status = device_create_file(dev, &dev_attr_min_microvolts);
3441                 if (status < 0)
3442                         return status;
3443                 status = device_create_file(dev, &dev_attr_max_microvolts);
3444                 if (status < 0)
3445                         return status;
3446         }
3447         if (ops->set_current_limit) {
3448                 status = device_create_file(dev, &dev_attr_min_microamps);
3449                 if (status < 0)
3450                         return status;
3451                 status = device_create_file(dev, &dev_attr_max_microamps);
3452                 if (status < 0)
3453                         return status;
3454         }
3455
3456         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3457         if (status < 0)
3458                 return status;
3459         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3460         if (status < 0)
3461                 return status;
3462         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3463         if (status < 0)
3464                 return status;
3465
3466         if (ops->set_suspend_voltage) {
3467                 status = device_create_file(dev,
3468                                 &dev_attr_suspend_standby_microvolts);
3469                 if (status < 0)
3470                         return status;
3471                 status = device_create_file(dev,
3472                                 &dev_attr_suspend_mem_microvolts);
3473                 if (status < 0)
3474                         return status;
3475                 status = device_create_file(dev,
3476                                 &dev_attr_suspend_disk_microvolts);
3477                 if (status < 0)
3478                         return status;
3479         }
3480
3481         if (ops->set_suspend_mode) {
3482                 status = device_create_file(dev,
3483                                 &dev_attr_suspend_standby_mode);
3484                 if (status < 0)
3485                         return status;
3486                 status = device_create_file(dev,
3487                                 &dev_attr_suspend_mem_mode);
3488                 if (status < 0)
3489                         return status;
3490                 status = device_create_file(dev,
3491                                 &dev_attr_suspend_disk_mode);
3492                 if (status < 0)
3493                         return status;
3494         }
3495
3496         return status;
3497 }
3498
3499 static void rdev_init_debugfs(struct regulator_dev *rdev)
3500 {
3501         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3502         if (!rdev->debugfs) {
3503                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3504                 return;
3505         }
3506
3507         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3508                            &rdev->use_count);
3509         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3510                            &rdev->open_count);
3511         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3512                            &rdev->bypass_count);
3513 }
3514
3515 /**
3516  * regulator_register - register regulator
3517  * @regulator_desc: regulator to register
3518  * @config: runtime configuration for regulator
3519  *
3520  * Called by regulator drivers to register a regulator.
3521  * Returns a valid pointer to struct regulator_dev on success
3522  * or an ERR_PTR() on error.
3523  */
3524 struct regulator_dev *
3525 regulator_register(const struct regulator_desc *regulator_desc,
3526                    const struct regulator_config *config)
3527 {
3528         const struct regulation_constraints *constraints = NULL;
3529         const struct regulator_init_data *init_data;
3530         static atomic_t regulator_no = ATOMIC_INIT(0);
3531         struct regulator_dev *rdev;
3532         struct device *dev;
3533         int ret, i;
3534         const char *supply = NULL;
3535
3536         if (regulator_desc == NULL || config == NULL)
3537                 return ERR_PTR(-EINVAL);
3538
3539         dev = config->dev;
3540         WARN_ON(!dev);
3541
3542         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3543                 return ERR_PTR(-EINVAL);
3544
3545         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3546             regulator_desc->type != REGULATOR_CURRENT)
3547                 return ERR_PTR(-EINVAL);
3548
3549         /* Only one of each should be implemented */
3550         WARN_ON(regulator_desc->ops->get_voltage &&
3551                 regulator_desc->ops->get_voltage_sel);
3552         WARN_ON(regulator_desc->ops->set_voltage &&
3553                 regulator_desc->ops->set_voltage_sel);
3554
3555         /* If we're using selectors we must implement list_voltage. */
3556         if (regulator_desc->ops->get_voltage_sel &&
3557             !regulator_desc->ops->list_voltage) {
3558                 return ERR_PTR(-EINVAL);
3559         }
3560         if (regulator_desc->ops->set_voltage_sel &&
3561             !regulator_desc->ops->list_voltage) {
3562                 return ERR_PTR(-EINVAL);
3563         }
3564
3565         init_data = config->init_data;
3566
3567         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3568         if (rdev == NULL)
3569                 return ERR_PTR(-ENOMEM);
3570
3571         mutex_lock(&regulator_list_mutex);
3572
3573         mutex_init(&rdev->mutex);
3574         rdev->reg_data = config->driver_data;
3575         rdev->owner = regulator_desc->owner;
3576         rdev->desc = regulator_desc;
3577         if (config->regmap)
3578                 rdev->regmap = config->regmap;
3579         else if (dev_get_regmap(dev, NULL))
3580                 rdev->regmap = dev_get_regmap(dev, NULL);
3581         else if (dev->parent)
3582                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3583         INIT_LIST_HEAD(&rdev->consumer_list);
3584         INIT_LIST_HEAD(&rdev->list);
3585         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3586         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3587
3588         /* preform any regulator specific init */
3589         if (init_data && init_data->regulator_init) {
3590                 ret = init_data->regulator_init(rdev->reg_data);
3591                 if (ret < 0)
3592                         goto clean;
3593         }
3594
3595         /* register with sysfs */
3596         rdev->dev.class = &regulator_class;
3597         rdev->dev.of_node = config->of_node;
3598         rdev->dev.parent = dev;
3599         dev_set_name(&rdev->dev, "regulator.%d",
3600                      atomic_inc_return(&regulator_no) - 1);
3601         ret = device_register(&rdev->dev);
3602         if (ret != 0) {
3603                 put_device(&rdev->dev);
3604                 goto clean;
3605         }
3606
3607         dev_set_drvdata(&rdev->dev, rdev);
3608
3609         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3610                 ret = regulator_ena_gpio_request(rdev, config);
3611                 if (ret != 0) {
3612                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3613                                  config->ena_gpio, ret);
3614                         goto wash;
3615                 }
3616
3617                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3618                         rdev->ena_gpio_state = 1;
3619
3620                 if (config->ena_gpio_invert)
3621                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3622         }
3623
3624         /* set regulator constraints */
3625         if (init_data)
3626                 constraints = &init_data->constraints;
3627
3628         ret = set_machine_constraints(rdev, constraints);
3629         if (ret < 0)
3630                 goto scrub;
3631
3632         /* add attributes supported by this regulator */
3633         ret = add_regulator_attributes(rdev);
3634         if (ret < 0)
3635                 goto scrub;
3636
3637         if (init_data && init_data->supply_regulator)
3638                 supply = init_data->supply_regulator;
3639         else if (regulator_desc->supply_name)
3640                 supply = regulator_desc->supply_name;
3641
3642         if (supply) {
3643                 struct regulator_dev *r;
3644
3645                 r = regulator_dev_lookup(dev, supply, &ret);
3646
3647                 if (ret == -ENODEV) {
3648                         /*
3649                          * No supply was specified for this regulator and
3650                          * there will never be one.
3651                          */
3652                         ret = 0;
3653                         goto add_dev;
3654                 } else if (!r) {
3655                         dev_err(dev, "Failed to find supply %s\n", supply);
3656                         ret = -EPROBE_DEFER;
3657                         goto scrub;
3658                 }
3659
3660                 ret = set_supply(rdev, r);
3661                 if (ret < 0)
3662                         goto scrub;
3663
3664                 /* Enable supply if rail is enabled */
3665                 if (_regulator_is_enabled(rdev)) {
3666                         ret = regulator_enable(rdev->supply);
3667                         if (ret < 0)
3668                                 goto scrub;
3669                 }
3670         }
3671
3672 add_dev:
3673         /* add consumers devices */
3674         if (init_data) {
3675                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3676                         ret = set_consumer_device_supply(rdev,
3677                                 init_data->consumer_supplies[i].dev_name,
3678                                 init_data->consumer_supplies[i].supply);
3679                         if (ret < 0) {
3680                                 dev_err(dev, "Failed to set supply %s\n",
3681                                         init_data->consumer_supplies[i].supply);
3682                                 goto unset_supplies;
3683                         }
3684                 }
3685         }
3686
3687         list_add(&rdev->list, &regulator_list);
3688
3689         rdev_init_debugfs(rdev);
3690 out:
3691         mutex_unlock(&regulator_list_mutex);
3692         return rdev;
3693
3694 unset_supplies:
3695         unset_regulator_supplies(rdev);
3696
3697 scrub:
3698         if (rdev->supply)
3699                 _regulator_put(rdev->supply);
3700         regulator_ena_gpio_free(rdev);
3701         kfree(rdev->constraints);
3702 wash:
3703         device_unregister(&rdev->dev);
3704         /* device core frees rdev */
3705         rdev = ERR_PTR(ret);
3706         goto out;
3707
3708 clean:
3709         kfree(rdev);
3710         rdev = ERR_PTR(ret);
3711         goto out;
3712 }
3713 EXPORT_SYMBOL_GPL(regulator_register);
3714
3715 /**
3716  * regulator_unregister - unregister regulator
3717  * @rdev: regulator to unregister
3718  *
3719  * Called by regulator drivers to unregister a regulator.
3720  */
3721 void regulator_unregister(struct regulator_dev *rdev)
3722 {
3723         if (rdev == NULL)
3724                 return;
3725
3726         if (rdev->supply)
3727                 regulator_put(rdev->supply);
3728         mutex_lock(&regulator_list_mutex);
3729         debugfs_remove_recursive(rdev->debugfs);
3730         flush_work(&rdev->disable_work.work);
3731         WARN_ON(rdev->open_count);
3732         unset_regulator_supplies(rdev);
3733         list_del(&rdev->list);
3734         kfree(rdev->constraints);
3735         regulator_ena_gpio_free(rdev);
3736         device_unregister(&rdev->dev);
3737         mutex_unlock(&regulator_list_mutex);
3738 }
3739 EXPORT_SYMBOL_GPL(regulator_unregister);
3740
3741 /**
3742  * regulator_suspend_prepare - prepare regulators for system wide suspend
3743  * @state: system suspend state
3744  *
3745  * Configure each regulator with it's suspend operating parameters for state.
3746  * This will usually be called by machine suspend code prior to supending.
3747  */
3748 int regulator_suspend_prepare(suspend_state_t state)
3749 {
3750         struct regulator_dev *rdev;
3751         int ret = 0;
3752
3753         /* ON is handled by regulator active state */
3754         if (state == PM_SUSPEND_ON)
3755                 return -EINVAL;
3756
3757         mutex_lock(&regulator_list_mutex);
3758         list_for_each_entry(rdev, &regulator_list, list) {
3759
3760                 mutex_lock(&rdev->mutex);
3761                 ret = suspend_prepare(rdev, state);
3762                 mutex_unlock(&rdev->mutex);
3763
3764                 if (ret < 0) {
3765                         rdev_err(rdev, "failed to prepare\n");
3766                         goto out;
3767                 }
3768         }
3769 out:
3770         mutex_unlock(&regulator_list_mutex);
3771         return ret;
3772 }
3773 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3774
3775 /**
3776  * regulator_suspend_finish - resume regulators from system wide suspend
3777  *
3778  * Turn on regulators that might be turned off by regulator_suspend_prepare
3779  * and that should be turned on according to the regulators properties.
3780  */
3781 int regulator_suspend_finish(void)
3782 {
3783         struct regulator_dev *rdev;
3784         int ret = 0, error;
3785
3786         mutex_lock(&regulator_list_mutex);
3787         list_for_each_entry(rdev, &regulator_list, list) {
3788                 mutex_lock(&rdev->mutex);
3789                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3790                         error = _regulator_do_enable(rdev);
3791                         if (error)
3792                                 ret = error;
3793                 } else {
3794                         if (!has_full_constraints)
3795                                 goto unlock;
3796                         if (!_regulator_is_enabled(rdev))
3797                                 goto unlock;
3798
3799                         error = _regulator_do_disable(rdev);
3800                         if (error)
3801                                 ret = error;
3802                 }
3803 unlock:
3804                 mutex_unlock(&rdev->mutex);
3805         }
3806         mutex_unlock(&regulator_list_mutex);
3807         return ret;
3808 }
3809 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3810
3811 /**
3812  * regulator_has_full_constraints - the system has fully specified constraints
3813  *
3814  * Calling this function will cause the regulator API to disable all
3815  * regulators which have a zero use count and don't have an always_on
3816  * constraint in a late_initcall.
3817  *
3818  * The intention is that this will become the default behaviour in a
3819  * future kernel release so users are encouraged to use this facility
3820  * now.
3821  */
3822 void regulator_has_full_constraints(void)
3823 {
3824         has_full_constraints = 1;
3825 }
3826 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3827
3828 /**
3829  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3830  *
3831  * Calling this function will cause the regulator API to provide a
3832  * dummy regulator to consumers if no physical regulator is found,
3833  * allowing most consumers to proceed as though a regulator were
3834  * configured.  This allows systems such as those with software
3835  * controllable regulators for the CPU core only to be brought up more
3836  * readily.
3837  */
3838 void regulator_use_dummy_regulator(void)
3839 {
3840         board_wants_dummy_regulator = true;
3841 }
3842 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3843
3844 /**
3845  * rdev_get_drvdata - get rdev regulator driver data
3846  * @rdev: regulator
3847  *
3848  * Get rdev regulator driver private data. This call can be used in the
3849  * regulator driver context.
3850  */
3851 void *rdev_get_drvdata(struct regulator_dev *rdev)
3852 {
3853         return rdev->reg_data;
3854 }
3855 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3856
3857 /**
3858  * regulator_get_drvdata - get regulator driver data
3859  * @regulator: regulator
3860  *
3861  * Get regulator driver private data. This call can be used in the consumer
3862  * driver context when non API regulator specific functions need to be called.
3863  */
3864 void *regulator_get_drvdata(struct regulator *regulator)
3865 {
3866         return regulator->rdev->reg_data;
3867 }
3868 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3869
3870 /**
3871  * regulator_set_drvdata - set regulator driver data
3872  * @regulator: regulator
3873  * @data: data
3874  */
3875 void regulator_set_drvdata(struct regulator *regulator, void *data)
3876 {
3877         regulator->rdev->reg_data = data;
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3880
3881 /**
3882  * regulator_get_id - get regulator ID
3883  * @rdev: regulator
3884  */
3885 int rdev_get_id(struct regulator_dev *rdev)
3886 {
3887         return rdev->desc->id;
3888 }
3889 EXPORT_SYMBOL_GPL(rdev_get_id);
3890
3891 struct device *rdev_get_dev(struct regulator_dev *rdev)
3892 {
3893         return &rdev->dev;
3894 }
3895 EXPORT_SYMBOL_GPL(rdev_get_dev);
3896
3897 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3898 {
3899         return reg_init_data->driver_data;
3900 }
3901 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3902
3903 #ifdef CONFIG_DEBUG_FS
3904 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3905                                     size_t count, loff_t *ppos)
3906 {
3907         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3908         ssize_t len, ret = 0;
3909         struct regulator_map *map;
3910
3911         if (!buf)
3912                 return -ENOMEM;
3913
3914         list_for_each_entry(map, &regulator_map_list, list) {
3915                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3916                                "%s -> %s.%s\n",
3917                                rdev_get_name(map->regulator), map->dev_name,
3918                                map->supply);
3919                 if (len >= 0)
3920                         ret += len;
3921                 if (ret > PAGE_SIZE) {
3922                         ret = PAGE_SIZE;
3923                         break;
3924                 }
3925         }
3926
3927         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3928
3929         kfree(buf);
3930
3931         return ret;
3932 }
3933 #endif
3934
3935 static const struct file_operations supply_map_fops = {
3936 #ifdef CONFIG_DEBUG_FS
3937         .read = supply_map_read_file,
3938         .llseek = default_llseek,
3939 #endif
3940 };
3941
3942 static int __init regulator_init(void)
3943 {
3944         int ret;
3945
3946         ret = class_register(&regulator_class);
3947
3948         debugfs_root = debugfs_create_dir("regulator", NULL);
3949         if (!debugfs_root)
3950                 pr_warn("regulator: Failed to create debugfs directory\n");
3951
3952         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3953                             &supply_map_fops);
3954
3955         regulator_dummy_init();
3956
3957         return ret;
3958 }
3959
3960 /* init early to allow our consumers to complete system booting */
3961 core_initcall(regulator_init);
3962
3963 static int __init regulator_init_complete(void)
3964 {
3965         struct regulator_dev *rdev;
3966         struct regulator_ops *ops;
3967         struct regulation_constraints *c;
3968         int enabled, ret;
3969
3970         /*
3971          * Since DT doesn't provide an idiomatic mechanism for
3972          * enabling full constraints and since it's much more natural
3973          * with DT to provide them just assume that a DT enabled
3974          * system has full constraints.
3975          */
3976         if (of_have_populated_dt())
3977                 has_full_constraints = true;
3978
3979         mutex_lock(&regulator_list_mutex);
3980
3981         /* If we have a full configuration then disable any regulators
3982          * which are not in use or always_on.  This will become the
3983          * default behaviour in the future.
3984          */
3985         list_for_each_entry(rdev, &regulator_list, list) {
3986                 ops = rdev->desc->ops;
3987                 c = rdev->constraints;
3988
3989                 if (c && c->always_on)
3990                         continue;
3991
3992                 mutex_lock(&rdev->mutex);
3993
3994                 if (rdev->use_count)
3995                         goto unlock;
3996
3997                 /* If we can't read the status assume it's on. */
3998                 if (ops->is_enabled)
3999                         enabled = ops->is_enabled(rdev);
4000                 else
4001                         enabled = 1;
4002
4003                 if (!enabled)
4004                         goto unlock;
4005
4006                 if (has_full_constraints) {
4007                         /* We log since this may kill the system if it
4008                          * goes wrong. */
4009                         rdev_info(rdev, "disabling\n");
4010                         ret = _regulator_do_disable(rdev);
4011                         if (ret != 0) {
4012                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4013                         }
4014                 } else {
4015                         /* The intention is that in future we will
4016                          * assume that full constraints are provided
4017                          * so warn even if we aren't going to do
4018                          * anything here.
4019                          */
4020                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4021                 }
4022
4023 unlock:
4024                 mutex_unlock(&rdev->mutex);
4025         }
4026
4027         mutex_unlock(&regulator_list_mutex);
4028
4029         return 0;
4030 }
4031 late_initcall(regulator_init_complete);