Linux 3.10.81
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327                              struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336         switch (mode) {
337         case REGULATOR_MODE_FAST:
338                 return sprintf(buf, "fast\n");
339         case REGULATOR_MODE_NORMAL:
340                 return sprintf(buf, "normal\n");
341         case REGULATOR_MODE_IDLE:
342                 return sprintf(buf, "idle\n");
343         case REGULATOR_MODE_STANDBY:
344                 return sprintf(buf, "standby\n");
345         }
346         return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350                                     struct device_attribute *attr, char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360         if (state > 0)
361                 return sprintf(buf, "enabled\n");
362         else if (state == 0)
363                 return sprintf(buf, "disabled\n");
364         else
365                 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         ssize_t ret;
373
374         mutex_lock(&rdev->mutex);
375         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376         mutex_unlock(&rdev->mutex);
377
378         return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383                                    struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         int status;
387         char *label;
388
389         status = rdev->desc->ops->get_status(rdev);
390         if (status < 0)
391                 return status;
392
393         switch (status) {
394         case REGULATOR_STATUS_OFF:
395                 label = "off";
396                 break;
397         case REGULATOR_STATUS_ON:
398                 label = "on";
399                 break;
400         case REGULATOR_STATUS_ERROR:
401                 label = "error";
402                 break;
403         case REGULATOR_STATUS_FAST:
404                 label = "fast";
405                 break;
406         case REGULATOR_STATUS_NORMAL:
407                 label = "normal";
408                 break;
409         case REGULATOR_STATUS_IDLE:
410                 label = "idle";
411                 break;
412         case REGULATOR_STATUS_STANDBY:
413                 label = "standby";
414                 break;
415         case REGULATOR_STATUS_BYPASS:
416                 label = "bypass";
417                 break;
418         case REGULATOR_STATUS_UNDEFINED:
419                 label = "undefined";
420                 break;
421         default:
422                 return -ERANGE;
423         }
424
425         return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430                                     struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434         if (!rdev->constraints)
435                 return sprintf(buf, "constraint not defined\n");
436
437         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442                                     struct device_attribute *attr, char *buf)
443 {
444         struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446         if (!rdev->constraints)
447                 return sprintf(buf, "constraint not defined\n");
448
449         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478                                       struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         struct regulator *regulator;
482         int uA = 0;
483
484         mutex_lock(&rdev->mutex);
485         list_for_each_entry(regulator, &rdev->consumer_list, list)
486                 uA += regulator->uA_load;
487         mutex_unlock(&rdev->mutex);
488         return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493                                       struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496         return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500                                   struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         switch (rdev->desc->type) {
505         case REGULATOR_VOLTAGE:
506                 return sprintf(buf, "voltage\n");
507         case REGULATOR_CURRENT:
508                 return sprintf(buf, "current\n");
509         }
510         return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514                                 struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521                 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531                 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541                 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return regulator_print_opmode(buf,
549                 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552                 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555                                 struct device_attribute *attr, char *buf)
556 {
557         struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559         return regulator_print_opmode(buf,
560                 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563                 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566                                 struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         return regulator_print_opmode(buf,
571                 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574                 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577                                    struct device_attribute *attr, char *buf)
578 {
579         struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581         return regulator_print_state(buf,
582                         rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585                 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588                                    struct device_attribute *attr, char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592         return regulator_print_state(buf,
593                         rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596                 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599                                    struct device_attribute *attr, char *buf)
600 {
601         struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603         return regulator_print_state(buf,
604                         rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607                 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610                                      struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613         const char *report;
614         bool bypass;
615         int ret;
616
617         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619         if (ret != 0)
620                 report = "unknown";
621         else if (bypass)
622                 report = "enabled";
623         else
624                 report = "disabled";
625
626         return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629                    regulator_bypass_show, NULL);
630
631 /*
632  * These are the only attributes are present for all regulators.
633  * Other attributes are a function of regulator functionality.
634  */
635 static struct device_attribute regulator_dev_attrs[] = {
636         __ATTR(name, 0444, regulator_name_show, NULL),
637         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638         __ATTR(type, 0444, regulator_type_show, NULL),
639         __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644         struct regulator_dev *rdev = dev_get_drvdata(dev);
645         kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649         .name = "regulator",
650         .dev_release = regulator_dev_release,
651         .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655  * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658         struct regulator *sibling;
659         int current_uA = 0, output_uV, input_uV, err;
660         unsigned int mode;
661
662         err = regulator_check_drms(rdev);
663         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664             (!rdev->desc->ops->get_voltage &&
665              !rdev->desc->ops->get_voltage_sel) ||
666             !rdev->desc->ops->set_mode)
667                 return;
668
669         /* get output voltage */
670         output_uV = _regulator_get_voltage(rdev);
671         if (output_uV <= 0)
672                 return;
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0)
681                 return;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         /* now get the optimum mode for our new total regulator load */
688         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                   output_uV, current_uA);
690
691         /* check the new mode is allowed */
692         err = regulator_mode_constrain(rdev, &mode);
693         if (err == 0)
694                 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698         struct regulator_state *rstate)
699 {
700         int ret = 0;
701
702         /* If we have no suspend mode configration don't set anything;
703          * only warn if the driver implements set_suspend_voltage or
704          * set_suspend_mode callback.
705          */
706         if (!rstate->enabled && !rstate->disabled) {
707                 if (rdev->desc->ops->set_suspend_voltage ||
708                     rdev->desc->ops->set_suspend_mode)
709                         rdev_warn(rdev, "No configuration\n");
710                 return 0;
711         }
712
713         if (rstate->enabled && rstate->disabled) {
714                 rdev_err(rdev, "invalid configuration\n");
715                 return -EINVAL;
716         }
717
718         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719                 ret = rdev->desc->ops->set_suspend_enable(rdev);
720         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721                 ret = rdev->desc->ops->set_suspend_disable(rdev);
722         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723                 ret = 0;
724
725         if (ret < 0) {
726                 rdev_err(rdev, "failed to enabled/disable\n");
727                 return ret;
728         }
729
730         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732                 if (ret < 0) {
733                         rdev_err(rdev, "failed to set voltage\n");
734                         return ret;
735                 }
736         }
737
738         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740                 if (ret < 0) {
741                         rdev_err(rdev, "failed to set mode\n");
742                         return ret;
743                 }
744         }
745         return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751         if (!rdev->constraints)
752                 return -EINVAL;
753
754         switch (state) {
755         case PM_SUSPEND_STANDBY:
756                 return suspend_set_state(rdev,
757                         &rdev->constraints->state_standby);
758         case PM_SUSPEND_MEM:
759                 return suspend_set_state(rdev,
760                         &rdev->constraints->state_mem);
761         case PM_SUSPEND_MAX:
762                 return suspend_set_state(rdev,
763                         &rdev->constraints->state_disk);
764         default:
765                 return -EINVAL;
766         }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771         struct regulation_constraints *constraints = rdev->constraints;
772         char buf[80] = "";
773         int count = 0;
774         int ret;
775
776         if (constraints->min_uV && constraints->max_uV) {
777                 if (constraints->min_uV == constraints->max_uV)
778                         count += sprintf(buf + count, "%d mV ",
779                                          constraints->min_uV / 1000);
780                 else
781                         count += sprintf(buf + count, "%d <--> %d mV ",
782                                          constraints->min_uV / 1000,
783                                          constraints->max_uV / 1000);
784         }
785
786         if (!constraints->min_uV ||
787             constraints->min_uV != constraints->max_uV) {
788                 ret = _regulator_get_voltage(rdev);
789                 if (ret > 0)
790                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
791         }
792
793         if (constraints->uV_offset)
794                 count += sprintf(buf, "%dmV offset ",
795                                  constraints->uV_offset / 1000);
796
797         if (constraints->min_uA && constraints->max_uA) {
798                 if (constraints->min_uA == constraints->max_uA)
799                         count += sprintf(buf + count, "%d mA ",
800                                          constraints->min_uA / 1000);
801                 else
802                         count += sprintf(buf + count, "%d <--> %d mA ",
803                                          constraints->min_uA / 1000,
804                                          constraints->max_uA / 1000);
805         }
806
807         if (!constraints->min_uA ||
808             constraints->min_uA != constraints->max_uA) {
809                 ret = _regulator_get_current_limit(rdev);
810                 if (ret > 0)
811                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
812         }
813
814         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815                 count += sprintf(buf + count, "fast ");
816         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817                 count += sprintf(buf + count, "normal ");
818         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819                 count += sprintf(buf + count, "idle ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821                 count += sprintf(buf + count, "standby");
822
823         if (!count)
824                 sprintf(buf, "no parameters");
825
826         rdev_info(rdev, "%s\n", buf);
827
828         if ((constraints->min_uV != constraints->max_uV) &&
829             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830                 rdev_warn(rdev,
831                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835         struct regulation_constraints *constraints)
836 {
837         struct regulator_ops *ops = rdev->desc->ops;
838         int ret;
839
840         /* do we need to apply the constraint voltage */
841         if (rdev->constraints->apply_uV &&
842             rdev->constraints->min_uV == rdev->constraints->max_uV) {
843                 ret = _regulator_do_set_voltage(rdev,
844                                                 rdev->constraints->min_uV,
845                                                 rdev->constraints->max_uV);
846                 if (ret < 0) {
847                         rdev_err(rdev, "failed to apply %duV constraint\n",
848                                  rdev->constraints->min_uV);
849                         return ret;
850                 }
851         }
852
853         /* constrain machine-level voltage specs to fit
854          * the actual range supported by this regulator.
855          */
856         if (ops->list_voltage && rdev->desc->n_voltages) {
857                 int     count = rdev->desc->n_voltages;
858                 int     i;
859                 int     min_uV = INT_MAX;
860                 int     max_uV = INT_MIN;
861                 int     cmin = constraints->min_uV;
862                 int     cmax = constraints->max_uV;
863
864                 /* it's safe to autoconfigure fixed-voltage supplies
865                    and the constraints are used by list_voltage. */
866                 if (count == 1 && !cmin) {
867                         cmin = 1;
868                         cmax = INT_MAX;
869                         constraints->min_uV = cmin;
870                         constraints->max_uV = cmax;
871                 }
872
873                 /* voltage constraints are optional */
874                 if ((cmin == 0) && (cmax == 0))
875                         return 0;
876
877                 /* else require explicit machine-level constraints */
878                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879                         rdev_err(rdev, "invalid voltage constraints\n");
880                         return -EINVAL;
881                 }
882
883                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884                 for (i = 0; i < count; i++) {
885                         int     value;
886
887                         value = ops->list_voltage(rdev, i);
888                         if (value <= 0)
889                                 continue;
890
891                         /* maybe adjust [min_uV..max_uV] */
892                         if (value >= cmin && value < min_uV)
893                                 min_uV = value;
894                         if (value <= cmax && value > max_uV)
895                                 max_uV = value;
896                 }
897
898                 /* final: [min_uV..max_uV] valid iff constraints valid */
899                 if (max_uV < min_uV) {
900                         rdev_err(rdev,
901                                  "unsupportable voltage constraints %u-%uuV\n",
902                                  min_uV, max_uV);
903                         return -EINVAL;
904                 }
905
906                 /* use regulator's subset of machine constraints */
907                 if (constraints->min_uV < min_uV) {
908                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909                                  constraints->min_uV, min_uV);
910                         constraints->min_uV = min_uV;
911                 }
912                 if (constraints->max_uV > max_uV) {
913                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914                                  constraints->max_uV, max_uV);
915                         constraints->max_uV = max_uV;
916                 }
917         }
918
919         return 0;
920 }
921
922 static int _regulator_do_enable(struct regulator_dev *rdev);
923
924 /**
925  * set_machine_constraints - sets regulator constraints
926  * @rdev: regulator source
927  * @constraints: constraints to apply
928  *
929  * Allows platform initialisation code to define and constrain
930  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
931  * Constraints *must* be set by platform code in order for some
932  * regulator operations to proceed i.e. set_voltage, set_current_limit,
933  * set_mode.
934  */
935 static int set_machine_constraints(struct regulator_dev *rdev,
936         const struct regulation_constraints *constraints)
937 {
938         int ret = 0;
939         struct regulator_ops *ops = rdev->desc->ops;
940
941         if (constraints)
942                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
943                                             GFP_KERNEL);
944         else
945                 rdev->constraints = kzalloc(sizeof(*constraints),
946                                             GFP_KERNEL);
947         if (!rdev->constraints)
948                 return -ENOMEM;
949
950         ret = machine_constraints_voltage(rdev, rdev->constraints);
951         if (ret != 0)
952                 goto out;
953
954         /* do we need to setup our suspend state */
955         if (rdev->constraints->initial_state) {
956                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
957                 if (ret < 0) {
958                         rdev_err(rdev, "failed to set suspend state\n");
959                         goto out;
960                 }
961         }
962
963         if (rdev->constraints->initial_mode) {
964                 if (!ops->set_mode) {
965                         rdev_err(rdev, "no set_mode operation\n");
966                         ret = -EINVAL;
967                         goto out;
968                 }
969
970                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
971                 if (ret < 0) {
972                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
973                         goto out;
974                 }
975         }
976
977         /* If the constraints say the regulator should be on at this point
978          * and we have control then make sure it is enabled.
979          */
980         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
981                 ret = _regulator_do_enable(rdev);
982                 if (ret < 0 && ret != -EINVAL) {
983                         rdev_err(rdev, "failed to enable\n");
984                         goto out;
985                 }
986         }
987
988         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
989                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
990                 if (ret < 0) {
991                         rdev_err(rdev, "failed to set ramp_delay\n");
992                         goto out;
993                 }
994         }
995
996         print_constraints(rdev);
997         return 0;
998 out:
999         kfree(rdev->constraints);
1000         rdev->constraints = NULL;
1001         return ret;
1002 }
1003
1004 /**
1005  * set_supply - set regulator supply regulator
1006  * @rdev: regulator name
1007  * @supply_rdev: supply regulator name
1008  *
1009  * Called by platform initialisation code to set the supply regulator for this
1010  * regulator. This ensures that a regulators supply will also be enabled by the
1011  * core if it's child is enabled.
1012  */
1013 static int set_supply(struct regulator_dev *rdev,
1014                       struct regulator_dev *supply_rdev)
1015 {
1016         int err;
1017
1018         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1019
1020         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1021         if (rdev->supply == NULL) {
1022                 err = -ENOMEM;
1023                 return err;
1024         }
1025         supply_rdev->open_count++;
1026
1027         return 0;
1028 }
1029
1030 /**
1031  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1032  * @rdev:         regulator source
1033  * @consumer_dev_name: dev_name() string for device supply applies to
1034  * @supply:       symbolic name for supply
1035  *
1036  * Allows platform initialisation code to map physical regulator
1037  * sources to symbolic names for supplies for use by devices.  Devices
1038  * should use these symbolic names to request regulators, avoiding the
1039  * need to provide board-specific regulator names as platform data.
1040  */
1041 static int set_consumer_device_supply(struct regulator_dev *rdev,
1042                                       const char *consumer_dev_name,
1043                                       const char *supply)
1044 {
1045         struct regulator_map *node;
1046         int has_dev;
1047
1048         if (supply == NULL)
1049                 return -EINVAL;
1050
1051         if (consumer_dev_name != NULL)
1052                 has_dev = 1;
1053         else
1054                 has_dev = 0;
1055
1056         list_for_each_entry(node, &regulator_map_list, list) {
1057                 if (node->dev_name && consumer_dev_name) {
1058                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1059                                 continue;
1060                 } else if (node->dev_name || consumer_dev_name) {
1061                         continue;
1062                 }
1063
1064                 if (strcmp(node->supply, supply) != 0)
1065                         continue;
1066
1067                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1068                          consumer_dev_name,
1069                          dev_name(&node->regulator->dev),
1070                          node->regulator->desc->name,
1071                          supply,
1072                          dev_name(&rdev->dev), rdev_get_name(rdev));
1073                 return -EBUSY;
1074         }
1075
1076         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1077         if (node == NULL)
1078                 return -ENOMEM;
1079
1080         node->regulator = rdev;
1081         node->supply = supply;
1082
1083         if (has_dev) {
1084                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1085                 if (node->dev_name == NULL) {
1086                         kfree(node);
1087                         return -ENOMEM;
1088                 }
1089         }
1090
1091         list_add(&node->list, &regulator_map_list);
1092         return 0;
1093 }
1094
1095 static void unset_regulator_supplies(struct regulator_dev *rdev)
1096 {
1097         struct regulator_map *node, *n;
1098
1099         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1100                 if (rdev == node->regulator) {
1101                         list_del(&node->list);
1102                         kfree(node->dev_name);
1103                         kfree(node);
1104                 }
1105         }
1106 }
1107
1108 #define REG_STR_SIZE    64
1109
1110 static struct regulator *create_regulator(struct regulator_dev *rdev,
1111                                           struct device *dev,
1112                                           const char *supply_name)
1113 {
1114         struct regulator *regulator;
1115         char buf[REG_STR_SIZE];
1116         int err, size;
1117
1118         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1119         if (regulator == NULL)
1120                 return NULL;
1121
1122         mutex_lock(&rdev->mutex);
1123         regulator->rdev = rdev;
1124         list_add(&regulator->list, &rdev->consumer_list);
1125
1126         if (dev) {
1127                 regulator->dev = dev;
1128
1129                 /* Add a link to the device sysfs entry */
1130                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131                                  dev->kobj.name, supply_name);
1132                 if (size >= REG_STR_SIZE)
1133                         goto overflow_err;
1134
1135                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136                 if (regulator->supply_name == NULL)
1137                         goto overflow_err;
1138
1139                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140                                         buf);
1141                 if (err) {
1142                         rdev_warn(rdev, "could not add device link %s err %d\n",
1143                                   dev->kobj.name, err);
1144                         /* non-fatal */
1145                 }
1146         } else {
1147                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148                 if (regulator->supply_name == NULL)
1149                         goto overflow_err;
1150         }
1151
1152         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153                                                 rdev->debugfs);
1154         if (!regulator->debugfs) {
1155                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1156         } else {
1157                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158                                    &regulator->uA_load);
1159                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160                                    &regulator->min_uV);
1161                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162                                    &regulator->max_uV);
1163         }
1164
1165         /*
1166          * Check now if the regulator is an always on regulator - if
1167          * it is then we don't need to do nearly so much work for
1168          * enable/disable calls.
1169          */
1170         if (!_regulator_can_change_status(rdev) &&
1171             _regulator_is_enabled(rdev))
1172                 regulator->always_on = true;
1173
1174         mutex_unlock(&rdev->mutex);
1175         return regulator;
1176 overflow_err:
1177         list_del(&regulator->list);
1178         kfree(regulator);
1179         mutex_unlock(&rdev->mutex);
1180         return NULL;
1181 }
1182
1183 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1184 {
1185         if (!rdev->desc->ops->enable_time)
1186                 return rdev->desc->enable_time;
1187         return rdev->desc->ops->enable_time(rdev);
1188 }
1189
1190 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1191                                                   const char *supply,
1192                                                   int *ret)
1193 {
1194         struct regulator_dev *r;
1195         struct device_node *node;
1196         struct regulator_map *map;
1197         const char *devname = NULL;
1198
1199         /* first do a dt based lookup */
1200         if (dev && dev->of_node) {
1201                 node = of_get_regulator(dev, supply);
1202                 if (node) {
1203                         list_for_each_entry(r, &regulator_list, list)
1204                                 if (r->dev.parent &&
1205                                         node == r->dev.of_node)
1206                                         return r;
1207                 } else {
1208                         /*
1209                          * If we couldn't even get the node then it's
1210                          * not just that the device didn't register
1211                          * yet, there's no node and we'll never
1212                          * succeed.
1213                          */
1214                         *ret = -ENODEV;
1215                 }
1216         }
1217
1218         /* if not found, try doing it non-dt way */
1219         if (dev)
1220                 devname = dev_name(dev);
1221
1222         list_for_each_entry(r, &regulator_list, list)
1223                 if (strcmp(rdev_get_name(r), supply) == 0)
1224                         return r;
1225
1226         list_for_each_entry(map, &regulator_map_list, list) {
1227                 /* If the mapping has a device set up it must match */
1228                 if (map->dev_name &&
1229                     (!devname || strcmp(map->dev_name, devname)))
1230                         continue;
1231
1232                 if (strcmp(map->supply, supply) == 0)
1233                         return map->regulator;
1234         }
1235
1236
1237         return NULL;
1238 }
1239
1240 /* Internal regulator request function */
1241 static struct regulator *_regulator_get(struct device *dev, const char *id,
1242                                         int exclusive)
1243 {
1244         struct regulator_dev *rdev;
1245         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1246         const char *devname = NULL;
1247         int ret = 0;
1248
1249         if (id == NULL) {
1250                 pr_err("get() with no identifier\n");
1251                 return regulator;
1252         }
1253
1254         if (dev)
1255                 devname = dev_name(dev);
1256
1257         mutex_lock(&regulator_list_mutex);
1258
1259         rdev = regulator_dev_lookup(dev, id, &ret);
1260         if (rdev)
1261                 goto found;
1262
1263         /*
1264          * If we have return value from dev_lookup fail, we do not expect to
1265          * succeed, so, quit with appropriate error value
1266          */
1267         if (ret) {
1268                 regulator = ERR_PTR(ret);
1269                 goto out;
1270         }
1271
1272         if (board_wants_dummy_regulator) {
1273                 rdev = dummy_regulator_rdev;
1274                 goto found;
1275         }
1276
1277 #ifdef CONFIG_REGULATOR_DUMMY
1278         if (!devname)
1279                 devname = "deviceless";
1280
1281         /* If the board didn't flag that it was fully constrained then
1282          * substitute in a dummy regulator so consumers can continue.
1283          */
1284         if (!has_full_constraints) {
1285                 pr_warn("%s supply %s not found, using dummy regulator\n",
1286                         devname, id);
1287                 rdev = dummy_regulator_rdev;
1288                 goto found;
1289         }
1290 #endif
1291
1292         mutex_unlock(&regulator_list_mutex);
1293         return regulator;
1294
1295 found:
1296         if (rdev->exclusive) {
1297                 regulator = ERR_PTR(-EPERM);
1298                 goto out;
1299         }
1300
1301         if (exclusive && rdev->open_count) {
1302                 regulator = ERR_PTR(-EBUSY);
1303                 goto out;
1304         }
1305
1306         if (!try_module_get(rdev->owner))
1307                 goto out;
1308
1309         regulator = create_regulator(rdev, dev, id);
1310         if (regulator == NULL) {
1311                 regulator = ERR_PTR(-ENOMEM);
1312                 module_put(rdev->owner);
1313                 goto out;
1314         }
1315
1316         rdev->open_count++;
1317         if (exclusive) {
1318                 rdev->exclusive = 1;
1319
1320                 ret = _regulator_is_enabled(rdev);
1321                 if (ret > 0)
1322                         rdev->use_count = 1;
1323                 else
1324                         rdev->use_count = 0;
1325         }
1326
1327 out:
1328         mutex_unlock(&regulator_list_mutex);
1329
1330         return regulator;
1331 }
1332
1333 /**
1334  * regulator_get - lookup and obtain a reference to a regulator.
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Returns a struct regulator corresponding to the regulator producer,
1339  * or IS_ERR() condition containing errno.
1340  *
1341  * Use of supply names configured via regulator_set_device_supply() is
1342  * strongly encouraged.  It is recommended that the supply name used
1343  * should match the name used for the supply and/or the relevant
1344  * device pins in the datasheet.
1345  */
1346 struct regulator *regulator_get(struct device *dev, const char *id)
1347 {
1348         return _regulator_get(dev, id, 0);
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_get);
1351
1352 static void devm_regulator_release(struct device *dev, void *res)
1353 {
1354         regulator_put(*(struct regulator **)res);
1355 }
1356
1357 /**
1358  * devm_regulator_get - Resource managed regulator_get()
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Managed regulator_get(). Regulators returned from this function are
1363  * automatically regulator_put() on driver detach. See regulator_get() for more
1364  * information.
1365  */
1366 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1367 {
1368         struct regulator **ptr, *regulator;
1369
1370         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1371         if (!ptr)
1372                 return ERR_PTR(-ENOMEM);
1373
1374         regulator = regulator_get(dev, id);
1375         if (!IS_ERR(regulator)) {
1376                 *ptr = regulator;
1377                 devres_add(dev, ptr);
1378         } else {
1379                 devres_free(ptr);
1380         }
1381
1382         return regulator;
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regulator_get);
1385
1386 /**
1387  * regulator_get_exclusive - obtain exclusive access to a regulator.
1388  * @dev: device for regulator "consumer"
1389  * @id: Supply name or regulator ID.
1390  *
1391  * Returns a struct regulator corresponding to the regulator producer,
1392  * or IS_ERR() condition containing errno.  Other consumers will be
1393  * unable to obtain this reference is held and the use count for the
1394  * regulator will be initialised to reflect the current state of the
1395  * regulator.
1396  *
1397  * This is intended for use by consumers which cannot tolerate shared
1398  * use of the regulator such as those which need to force the
1399  * regulator off for correct operation of the hardware they are
1400  * controlling.
1401  *
1402  * Use of supply names configured via regulator_set_device_supply() is
1403  * strongly encouraged.  It is recommended that the supply name used
1404  * should match the name used for the supply and/or the relevant
1405  * device pins in the datasheet.
1406  */
1407 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1408 {
1409         return _regulator_get(dev, id, 1);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1412
1413 /* regulator_list_mutex lock held by regulator_put() */
1414 static void _regulator_put(struct regulator *regulator)
1415 {
1416         struct regulator_dev *rdev;
1417
1418         if (regulator == NULL || IS_ERR(regulator))
1419                 return;
1420
1421         rdev = regulator->rdev;
1422
1423         debugfs_remove_recursive(regulator->debugfs);
1424
1425         /* remove any sysfs entries */
1426         if (regulator->dev)
1427                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1428         mutex_lock(&rdev->mutex);
1429         kfree(regulator->supply_name);
1430         list_del(&regulator->list);
1431         kfree(regulator);
1432
1433         rdev->open_count--;
1434         rdev->exclusive = 0;
1435         mutex_unlock(&rdev->mutex);
1436
1437         module_put(rdev->owner);
1438 }
1439
1440 /**
1441  * regulator_put - "free" the regulator source
1442  * @regulator: regulator source
1443  *
1444  * Note: drivers must ensure that all regulator_enable calls made on this
1445  * regulator source are balanced by regulator_disable calls prior to calling
1446  * this function.
1447  */
1448 void regulator_put(struct regulator *regulator)
1449 {
1450         mutex_lock(&regulator_list_mutex);
1451         _regulator_put(regulator);
1452         mutex_unlock(&regulator_list_mutex);
1453 }
1454 EXPORT_SYMBOL_GPL(regulator_put);
1455
1456 static int devm_regulator_match(struct device *dev, void *res, void *data)
1457 {
1458         struct regulator **r = res;
1459         if (!r || !*r) {
1460                 WARN_ON(!r || !*r);
1461                 return 0;
1462         }
1463         return *r == data;
1464 }
1465
1466 /**
1467  * devm_regulator_put - Resource managed regulator_put()
1468  * @regulator: regulator to free
1469  *
1470  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1471  * this function will not need to be called and the resource management
1472  * code will ensure that the resource is freed.
1473  */
1474 void devm_regulator_put(struct regulator *regulator)
1475 {
1476         int rc;
1477
1478         rc = devres_release(regulator->dev, devm_regulator_release,
1479                             devm_regulator_match, regulator);
1480         if (rc != 0)
1481                 WARN_ON(rc);
1482 }
1483 EXPORT_SYMBOL_GPL(devm_regulator_put);
1484
1485 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1486 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1487                                 const struct regulator_config *config)
1488 {
1489         struct regulator_enable_gpio *pin;
1490         int ret;
1491
1492         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1493                 if (pin->gpio == config->ena_gpio) {
1494                         rdev_dbg(rdev, "GPIO %d is already used\n",
1495                                 config->ena_gpio);
1496                         goto update_ena_gpio_to_rdev;
1497                 }
1498         }
1499
1500         ret = gpio_request_one(config->ena_gpio,
1501                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1502                                 rdev_get_name(rdev));
1503         if (ret)
1504                 return ret;
1505
1506         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1507         if (pin == NULL) {
1508                 gpio_free(config->ena_gpio);
1509                 return -ENOMEM;
1510         }
1511
1512         pin->gpio = config->ena_gpio;
1513         pin->ena_gpio_invert = config->ena_gpio_invert;
1514         list_add(&pin->list, &regulator_ena_gpio_list);
1515
1516 update_ena_gpio_to_rdev:
1517         pin->request_count++;
1518         rdev->ena_pin = pin;
1519         return 0;
1520 }
1521
1522 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1523 {
1524         struct regulator_enable_gpio *pin, *n;
1525
1526         if (!rdev->ena_pin)
1527                 return;
1528
1529         /* Free the GPIO only in case of no use */
1530         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1531                 if (pin->gpio == rdev->ena_pin->gpio) {
1532                         if (pin->request_count <= 1) {
1533                                 pin->request_count = 0;
1534                                 gpio_free(pin->gpio);
1535                                 list_del(&pin->list);
1536                                 kfree(pin);
1537                         } else {
1538                                 pin->request_count--;
1539                         }
1540                 }
1541         }
1542 }
1543
1544 /**
1545  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1546  * @rdev: regulator_dev structure
1547  * @enable: enable GPIO at initial use?
1548  *
1549  * GPIO is enabled in case of initial use. (enable_count is 0)
1550  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1551  */
1552 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1553 {
1554         struct regulator_enable_gpio *pin = rdev->ena_pin;
1555
1556         if (!pin)
1557                 return -EINVAL;
1558
1559         if (enable) {
1560                 /* Enable GPIO at initial use */
1561                 if (pin->enable_count == 0)
1562                         gpio_set_value_cansleep(pin->gpio,
1563                                                 !pin->ena_gpio_invert);
1564
1565                 pin->enable_count++;
1566         } else {
1567                 if (pin->enable_count > 1) {
1568                         pin->enable_count--;
1569                         return 0;
1570                 }
1571
1572                 /* Disable GPIO if not used */
1573                 if (pin->enable_count <= 1) {
1574                         gpio_set_value_cansleep(pin->gpio,
1575                                                 pin->ena_gpio_invert);
1576                         pin->enable_count = 0;
1577                 }
1578         }
1579
1580         return 0;
1581 }
1582
1583 static int _regulator_do_enable(struct regulator_dev *rdev)
1584 {
1585         int ret, delay;
1586
1587         /* Query before enabling in case configuration dependent.  */
1588         ret = _regulator_get_enable_time(rdev);
1589         if (ret >= 0) {
1590                 delay = ret;
1591         } else {
1592                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1593                 delay = 0;
1594         }
1595
1596         trace_regulator_enable(rdev_get_name(rdev));
1597
1598         if (rdev->ena_pin) {
1599                 if (!rdev->ena_gpio_state) {
1600                         ret = regulator_ena_gpio_ctrl(rdev, true);
1601                         if (ret < 0)
1602                                 return ret;
1603                         rdev->ena_gpio_state = 1;
1604                 }
1605         } else if (rdev->desc->ops->enable) {
1606                 ret = rdev->desc->ops->enable(rdev);
1607                 if (ret < 0)
1608                         return ret;
1609         } else {
1610                 return -EINVAL;
1611         }
1612
1613         /* Allow the regulator to ramp; it would be useful to extend
1614          * this for bulk operations so that the regulators can ramp
1615          * together.  */
1616         trace_regulator_enable_delay(rdev_get_name(rdev));
1617
1618         if (delay >= 1000) {
1619                 mdelay(delay / 1000);
1620                 udelay(delay % 1000);
1621         } else if (delay) {
1622                 udelay(delay);
1623         }
1624
1625         trace_regulator_enable_complete(rdev_get_name(rdev));
1626
1627         return 0;
1628 }
1629
1630 /* locks held by regulator_enable() */
1631 static int _regulator_enable(struct regulator_dev *rdev)
1632 {
1633         int ret;
1634
1635         /* check voltage and requested load before enabling */
1636         if (rdev->constraints &&
1637             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1638                 drms_uA_update(rdev);
1639
1640         if (rdev->use_count == 0) {
1641                 /* The regulator may on if it's not switchable or left on */
1642                 ret = _regulator_is_enabled(rdev);
1643                 if (ret == -EINVAL || ret == 0) {
1644                         if (!_regulator_can_change_status(rdev))
1645                                 return -EPERM;
1646
1647                         ret = _regulator_do_enable(rdev);
1648                         if (ret < 0)
1649                                 return ret;
1650
1651                 } else if (ret < 0) {
1652                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1653                         return ret;
1654                 }
1655                 /* Fallthrough on positive return values - already enabled */
1656         }
1657
1658         rdev->use_count++;
1659
1660         return 0;
1661 }
1662
1663 /**
1664  * regulator_enable - enable regulator output
1665  * @regulator: regulator source
1666  *
1667  * Request that the regulator be enabled with the regulator output at
1668  * the predefined voltage or current value.  Calls to regulator_enable()
1669  * must be balanced with calls to regulator_disable().
1670  *
1671  * NOTE: the output value can be set by other drivers, boot loader or may be
1672  * hardwired in the regulator.
1673  */
1674 int regulator_enable(struct regulator *regulator)
1675 {
1676         struct regulator_dev *rdev = regulator->rdev;
1677         int ret = 0;
1678
1679         if (regulator->always_on)
1680                 return 0;
1681
1682         if (rdev->supply) {
1683                 ret = regulator_enable(rdev->supply);
1684                 if (ret != 0)
1685                         return ret;
1686         }
1687
1688         mutex_lock(&rdev->mutex);
1689         ret = _regulator_enable(rdev);
1690         mutex_unlock(&rdev->mutex);
1691
1692         if (ret != 0 && rdev->supply)
1693                 regulator_disable(rdev->supply);
1694
1695         return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(regulator_enable);
1698
1699 static int _regulator_do_disable(struct regulator_dev *rdev)
1700 {
1701         int ret;
1702
1703         trace_regulator_disable(rdev_get_name(rdev));
1704
1705         if (rdev->ena_pin) {
1706                 if (rdev->ena_gpio_state) {
1707                         ret = regulator_ena_gpio_ctrl(rdev, false);
1708                         if (ret < 0)
1709                                 return ret;
1710                         rdev->ena_gpio_state = 0;
1711                 }
1712
1713         } else if (rdev->desc->ops->disable) {
1714                 ret = rdev->desc->ops->disable(rdev);
1715                 if (ret != 0)
1716                         return ret;
1717         }
1718
1719         trace_regulator_disable_complete(rdev_get_name(rdev));
1720
1721         return 0;
1722 }
1723
1724 /* locks held by regulator_disable() */
1725 static int _regulator_disable(struct regulator_dev *rdev)
1726 {
1727         int ret = 0;
1728
1729         if (WARN(rdev->use_count <= 0,
1730                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1731                 return -EIO;
1732
1733         /* are we the last user and permitted to disable ? */
1734         if (rdev->use_count == 1 &&
1735             (rdev->constraints && !rdev->constraints->always_on)) {
1736
1737                 /* we are last user */
1738                 if (_regulator_can_change_status(rdev)) {
1739                         ret = _regulator_do_disable(rdev);
1740                         if (ret < 0) {
1741                                 rdev_err(rdev, "failed to disable\n");
1742                                 return ret;
1743                         }
1744                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1745                                         NULL);
1746                 }
1747
1748                 rdev->use_count = 0;
1749         } else if (rdev->use_count > 1) {
1750
1751                 if (rdev->constraints &&
1752                         (rdev->constraints->valid_ops_mask &
1753                         REGULATOR_CHANGE_DRMS))
1754                         drms_uA_update(rdev);
1755
1756                 rdev->use_count--;
1757         }
1758
1759         return ret;
1760 }
1761
1762 /**
1763  * regulator_disable - disable regulator output
1764  * @regulator: regulator source
1765  *
1766  * Disable the regulator output voltage or current.  Calls to
1767  * regulator_enable() must be balanced with calls to
1768  * regulator_disable().
1769  *
1770  * NOTE: this will only disable the regulator output if no other consumer
1771  * devices have it enabled, the regulator device supports disabling and
1772  * machine constraints permit this operation.
1773  */
1774 int regulator_disable(struct regulator *regulator)
1775 {
1776         struct regulator_dev *rdev = regulator->rdev;
1777         int ret = 0;
1778
1779         if (regulator->always_on)
1780                 return 0;
1781
1782         mutex_lock(&rdev->mutex);
1783         ret = _regulator_disable(rdev);
1784         mutex_unlock(&rdev->mutex);
1785
1786         if (ret == 0 && rdev->supply)
1787                 regulator_disable(rdev->supply);
1788
1789         return ret;
1790 }
1791 EXPORT_SYMBOL_GPL(regulator_disable);
1792
1793 /* locks held by regulator_force_disable() */
1794 static int _regulator_force_disable(struct regulator_dev *rdev)
1795 {
1796         int ret = 0;
1797
1798         ret = _regulator_do_disable(rdev);
1799         if (ret < 0) {
1800                 rdev_err(rdev, "failed to force disable\n");
1801                 return ret;
1802         }
1803
1804         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805                         REGULATOR_EVENT_DISABLE, NULL);
1806
1807         return 0;
1808 }
1809
1810 /**
1811  * regulator_force_disable - force disable regulator output
1812  * @regulator: regulator source
1813  *
1814  * Forcibly disable the regulator output voltage or current.
1815  * NOTE: this *will* disable the regulator output even if other consumer
1816  * devices have it enabled. This should be used for situations when device
1817  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1818  */
1819 int regulator_force_disable(struct regulator *regulator)
1820 {
1821         struct regulator_dev *rdev = regulator->rdev;
1822         int ret;
1823
1824         mutex_lock(&rdev->mutex);
1825         regulator->uA_load = 0;
1826         ret = _regulator_force_disable(regulator->rdev);
1827         mutex_unlock(&rdev->mutex);
1828
1829         if (rdev->supply)
1830                 while (rdev->open_count--)
1831                         regulator_disable(rdev->supply);
1832
1833         return ret;
1834 }
1835 EXPORT_SYMBOL_GPL(regulator_force_disable);
1836
1837 static void regulator_disable_work(struct work_struct *work)
1838 {
1839         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1840                                                   disable_work.work);
1841         int count, i, ret;
1842
1843         mutex_lock(&rdev->mutex);
1844
1845         BUG_ON(!rdev->deferred_disables);
1846
1847         count = rdev->deferred_disables;
1848         rdev->deferred_disables = 0;
1849
1850         for (i = 0; i < count; i++) {
1851                 ret = _regulator_disable(rdev);
1852                 if (ret != 0)
1853                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1854         }
1855
1856         mutex_unlock(&rdev->mutex);
1857
1858         if (rdev->supply) {
1859                 for (i = 0; i < count; i++) {
1860                         ret = regulator_disable(rdev->supply);
1861                         if (ret != 0) {
1862                                 rdev_err(rdev,
1863                                          "Supply disable failed: %d\n", ret);
1864                         }
1865                 }
1866         }
1867 }
1868
1869 /**
1870  * regulator_disable_deferred - disable regulator output with delay
1871  * @regulator: regulator source
1872  * @ms: miliseconds until the regulator is disabled
1873  *
1874  * Execute regulator_disable() on the regulator after a delay.  This
1875  * is intended for use with devices that require some time to quiesce.
1876  *
1877  * NOTE: this will only disable the regulator output if no other consumer
1878  * devices have it enabled, the regulator device supports disabling and
1879  * machine constraints permit this operation.
1880  */
1881 int regulator_disable_deferred(struct regulator *regulator, int ms)
1882 {
1883         struct regulator_dev *rdev = regulator->rdev;
1884         int ret;
1885
1886         if (regulator->always_on)
1887                 return 0;
1888
1889         if (!ms)
1890                 return regulator_disable(regulator);
1891
1892         mutex_lock(&rdev->mutex);
1893         rdev->deferred_disables++;
1894         mutex_unlock(&rdev->mutex);
1895
1896         ret = schedule_delayed_work(&rdev->disable_work,
1897                                     msecs_to_jiffies(ms));
1898         if (ret < 0)
1899                 return ret;
1900         else
1901                 return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1904
1905 /**
1906  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1907  *
1908  * @rdev: regulator to operate on
1909  *
1910  * Regulators that use regmap for their register I/O can set the
1911  * enable_reg and enable_mask fields in their descriptor and then use
1912  * this as their is_enabled operation, saving some code.
1913  */
1914 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1915 {
1916         unsigned int val;
1917         int ret;
1918
1919         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1920         if (ret != 0)
1921                 return ret;
1922
1923         if (rdev->desc->enable_is_inverted)
1924                 return (val & rdev->desc->enable_mask) == 0;
1925         else
1926                 return (val & rdev->desc->enable_mask) != 0;
1927 }
1928 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1929
1930 /**
1931  * regulator_enable_regmap - standard enable() for regmap users
1932  *
1933  * @rdev: regulator to operate on
1934  *
1935  * Regulators that use regmap for their register I/O can set the
1936  * enable_reg and enable_mask fields in their descriptor and then use
1937  * this as their enable() operation, saving some code.
1938  */
1939 int regulator_enable_regmap(struct regulator_dev *rdev)
1940 {
1941         unsigned int val;
1942
1943         if (rdev->desc->enable_is_inverted)
1944                 val = 0;
1945         else
1946                 val = rdev->desc->enable_mask;
1947
1948         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1949                                   rdev->desc->enable_mask, val);
1950 }
1951 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1952
1953 /**
1954  * regulator_disable_regmap - standard disable() for regmap users
1955  *
1956  * @rdev: regulator to operate on
1957  *
1958  * Regulators that use regmap for their register I/O can set the
1959  * enable_reg and enable_mask fields in their descriptor and then use
1960  * this as their disable() operation, saving some code.
1961  */
1962 int regulator_disable_regmap(struct regulator_dev *rdev)
1963 {
1964         unsigned int val;
1965
1966         if (rdev->desc->enable_is_inverted)
1967                 val = rdev->desc->enable_mask;
1968         else
1969                 val = 0;
1970
1971         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1972                                   rdev->desc->enable_mask, val);
1973 }
1974 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1975
1976 static int _regulator_is_enabled(struct regulator_dev *rdev)
1977 {
1978         /* A GPIO control always takes precedence */
1979         if (rdev->ena_pin)
1980                 return rdev->ena_gpio_state;
1981
1982         /* If we don't know then assume that the regulator is always on */
1983         if (!rdev->desc->ops->is_enabled)
1984                 return 1;
1985
1986         return rdev->desc->ops->is_enabled(rdev);
1987 }
1988
1989 /**
1990  * regulator_is_enabled - is the regulator output enabled
1991  * @regulator: regulator source
1992  *
1993  * Returns positive if the regulator driver backing the source/client
1994  * has requested that the device be enabled, zero if it hasn't, else a
1995  * negative errno code.
1996  *
1997  * Note that the device backing this regulator handle can have multiple
1998  * users, so it might be enabled even if regulator_enable() was never
1999  * called for this particular source.
2000  */
2001 int regulator_is_enabled(struct regulator *regulator)
2002 {
2003         int ret;
2004
2005         if (regulator->always_on)
2006                 return 1;
2007
2008         mutex_lock(&regulator->rdev->mutex);
2009         ret = _regulator_is_enabled(regulator->rdev);
2010         mutex_unlock(&regulator->rdev->mutex);
2011
2012         return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2015
2016 /**
2017  * regulator_can_change_voltage - check if regulator can change voltage
2018  * @regulator: regulator source
2019  *
2020  * Returns positive if the regulator driver backing the source/client
2021  * can change its voltage, false otherwise. Usefull for detecting fixed
2022  * or dummy regulators and disabling voltage change logic in the client
2023  * driver.
2024  */
2025 int regulator_can_change_voltage(struct regulator *regulator)
2026 {
2027         struct regulator_dev    *rdev = regulator->rdev;
2028
2029         if (rdev->constraints &&
2030             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2031                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2032                         return 1;
2033
2034                 if (rdev->desc->continuous_voltage_range &&
2035                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2036                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2037                         return 1;
2038         }
2039
2040         return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2043
2044 /**
2045  * regulator_count_voltages - count regulator_list_voltage() selectors
2046  * @regulator: regulator source
2047  *
2048  * Returns number of selectors, or negative errno.  Selectors are
2049  * numbered starting at zero, and typically correspond to bitfields
2050  * in hardware registers.
2051  */
2052 int regulator_count_voltages(struct regulator *regulator)
2053 {
2054         struct regulator_dev    *rdev = regulator->rdev;
2055
2056         return rdev->desc->n_voltages ? : -EINVAL;
2057 }
2058 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2059
2060 /**
2061  * regulator_list_voltage_linear - List voltages with simple calculation
2062  *
2063  * @rdev: Regulator device
2064  * @selector: Selector to convert into a voltage
2065  *
2066  * Regulators with a simple linear mapping between voltages and
2067  * selectors can set min_uV and uV_step in the regulator descriptor
2068  * and then use this function as their list_voltage() operation,
2069  */
2070 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2071                                   unsigned int selector)
2072 {
2073         if (selector >= rdev->desc->n_voltages)
2074                 return -EINVAL;
2075         if (selector < rdev->desc->linear_min_sel)
2076                 return 0;
2077
2078         selector -= rdev->desc->linear_min_sel;
2079
2080         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2081 }
2082 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2083
2084 /**
2085  * regulator_list_voltage_table - List voltages with table based mapping
2086  *
2087  * @rdev: Regulator device
2088  * @selector: Selector to convert into a voltage
2089  *
2090  * Regulators with table based mapping between voltages and
2091  * selectors can set volt_table in the regulator descriptor
2092  * and then use this function as their list_voltage() operation.
2093  */
2094 int regulator_list_voltage_table(struct regulator_dev *rdev,
2095                                  unsigned int selector)
2096 {
2097         if (!rdev->desc->volt_table) {
2098                 BUG_ON(!rdev->desc->volt_table);
2099                 return -EINVAL;
2100         }
2101
2102         if (selector >= rdev->desc->n_voltages)
2103                 return -EINVAL;
2104
2105         return rdev->desc->volt_table[selector];
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2108
2109 /**
2110  * regulator_list_voltage - enumerate supported voltages
2111  * @regulator: regulator source
2112  * @selector: identify voltage to list
2113  * Context: can sleep
2114  *
2115  * Returns a voltage that can be passed to @regulator_set_voltage(),
2116  * zero if this selector code can't be used on this system, or a
2117  * negative errno.
2118  */
2119 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2120 {
2121         struct regulator_dev    *rdev = regulator->rdev;
2122         struct regulator_ops    *ops = rdev->desc->ops;
2123         int                     ret;
2124
2125         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2126                 return -EINVAL;
2127
2128         mutex_lock(&rdev->mutex);
2129         ret = ops->list_voltage(rdev, selector);
2130         mutex_unlock(&rdev->mutex);
2131
2132         if (ret > 0) {
2133                 if (ret < rdev->constraints->min_uV)
2134                         ret = 0;
2135                 else if (ret > rdev->constraints->max_uV)
2136                         ret = 0;
2137         }
2138
2139         return ret;
2140 }
2141 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2142
2143 /**
2144  * regulator_is_supported_voltage - check if a voltage range can be supported
2145  *
2146  * @regulator: Regulator to check.
2147  * @min_uV: Minimum required voltage in uV.
2148  * @max_uV: Maximum required voltage in uV.
2149  *
2150  * Returns a boolean or a negative error code.
2151  */
2152 int regulator_is_supported_voltage(struct regulator *regulator,
2153                                    int min_uV, int max_uV)
2154 {
2155         struct regulator_dev *rdev = regulator->rdev;
2156         int i, voltages, ret;
2157
2158         /* If we can't change voltage check the current voltage */
2159         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2160                 ret = regulator_get_voltage(regulator);
2161                 if (ret >= 0)
2162                         return (min_uV <= ret && ret <= max_uV);
2163                 else
2164                         return ret;
2165         }
2166
2167         /* Any voltage within constrains range is fine? */
2168         if (rdev->desc->continuous_voltage_range)
2169                 return min_uV >= rdev->constraints->min_uV &&
2170                                 max_uV <= rdev->constraints->max_uV;
2171
2172         ret = regulator_count_voltages(regulator);
2173         if (ret < 0)
2174                 return ret;
2175         voltages = ret;
2176
2177         for (i = 0; i < voltages; i++) {
2178                 ret = regulator_list_voltage(regulator, i);
2179
2180                 if (ret >= min_uV && ret <= max_uV)
2181                         return 1;
2182         }
2183
2184         return 0;
2185 }
2186 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2187
2188 /**
2189  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2190  *
2191  * @rdev: regulator to operate on
2192  *
2193  * Regulators that use regmap for their register I/O can set the
2194  * vsel_reg and vsel_mask fields in their descriptor and then use this
2195  * as their get_voltage_vsel operation, saving some code.
2196  */
2197 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2198 {
2199         unsigned int val;
2200         int ret;
2201
2202         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2203         if (ret != 0)
2204                 return ret;
2205
2206         val &= rdev->desc->vsel_mask;
2207         val >>= ffs(rdev->desc->vsel_mask) - 1;
2208
2209         return val;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2212
2213 /**
2214  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2215  *
2216  * @rdev: regulator to operate on
2217  * @sel: Selector to set
2218  *
2219  * Regulators that use regmap for their register I/O can set the
2220  * vsel_reg and vsel_mask fields in their descriptor and then use this
2221  * as their set_voltage_vsel operation, saving some code.
2222  */
2223 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2224 {
2225         int ret;
2226
2227         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2228
2229         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2230                                   rdev->desc->vsel_mask, sel);
2231         if (ret)
2232                 return ret;
2233
2234         if (rdev->desc->apply_bit)
2235                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2236                                          rdev->desc->apply_bit,
2237                                          rdev->desc->apply_bit);
2238         return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2241
2242 /**
2243  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2244  *
2245  * @rdev: Regulator to operate on
2246  * @min_uV: Lower bound for voltage
2247  * @max_uV: Upper bound for voltage
2248  *
2249  * Drivers implementing set_voltage_sel() and list_voltage() can use
2250  * this as their map_voltage() operation.  It will find a suitable
2251  * voltage by calling list_voltage() until it gets something in bounds
2252  * for the requested voltages.
2253  */
2254 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2255                                   int min_uV, int max_uV)
2256 {
2257         int best_val = INT_MAX;
2258         int selector = 0;
2259         int i, ret;
2260
2261         /* Find the smallest voltage that falls within the specified
2262          * range.
2263          */
2264         for (i = 0; i < rdev->desc->n_voltages; i++) {
2265                 ret = rdev->desc->ops->list_voltage(rdev, i);
2266                 if (ret < 0)
2267                         continue;
2268
2269                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2270                         best_val = ret;
2271                         selector = i;
2272                 }
2273         }
2274
2275         if (best_val != INT_MAX)
2276                 return selector;
2277         else
2278                 return -EINVAL;
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2281
2282 /**
2283  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2284  *
2285  * @rdev: Regulator to operate on
2286  * @min_uV: Lower bound for voltage
2287  * @max_uV: Upper bound for voltage
2288  *
2289  * Drivers that have ascendant voltage list can use this as their
2290  * map_voltage() operation.
2291  */
2292 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2293                                  int min_uV, int max_uV)
2294 {
2295         int i, ret;
2296
2297         for (i = 0; i < rdev->desc->n_voltages; i++) {
2298                 ret = rdev->desc->ops->list_voltage(rdev, i);
2299                 if (ret < 0)
2300                         continue;
2301
2302                 if (ret > max_uV)
2303                         break;
2304
2305                 if (ret >= min_uV && ret <= max_uV)
2306                         return i;
2307         }
2308
2309         return -EINVAL;
2310 }
2311 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2312
2313 /**
2314  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2315  *
2316  * @rdev: Regulator to operate on
2317  * @min_uV: Lower bound for voltage
2318  * @max_uV: Upper bound for voltage
2319  *
2320  * Drivers providing min_uV and uV_step in their regulator_desc can
2321  * use this as their map_voltage() operation.
2322  */
2323 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2324                                  int min_uV, int max_uV)
2325 {
2326         int ret, voltage;
2327
2328         /* Allow uV_step to be 0 for fixed voltage */
2329         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2330                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2331                         return 0;
2332                 else
2333                         return -EINVAL;
2334         }
2335
2336         if (!rdev->desc->uV_step) {
2337                 BUG_ON(!rdev->desc->uV_step);
2338                 return -EINVAL;
2339         }
2340
2341         if (min_uV < rdev->desc->min_uV)
2342                 min_uV = rdev->desc->min_uV;
2343
2344         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2345         if (ret < 0)
2346                 return ret;
2347
2348         ret += rdev->desc->linear_min_sel;
2349
2350         /* Map back into a voltage to verify we're still in bounds */
2351         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2352         if (voltage < min_uV || voltage > max_uV)
2353                 return -EINVAL;
2354
2355         return ret;
2356 }
2357 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2358
2359 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2360                                      int min_uV, int max_uV)
2361 {
2362         int ret;
2363         int delay = 0;
2364         int best_val = 0;
2365         unsigned int selector;
2366         int old_selector = -1;
2367
2368         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2369
2370         min_uV += rdev->constraints->uV_offset;
2371         max_uV += rdev->constraints->uV_offset;
2372
2373         /*
2374          * If we can't obtain the old selector there is not enough
2375          * info to call set_voltage_time_sel().
2376          */
2377         if (_regulator_is_enabled(rdev) &&
2378             rdev->desc->ops->set_voltage_time_sel &&
2379             rdev->desc->ops->get_voltage_sel) {
2380                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2381                 if (old_selector < 0)
2382                         return old_selector;
2383         }
2384
2385         if (rdev->desc->ops->set_voltage) {
2386                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2387                                                    &selector);
2388
2389                 if (ret >= 0) {
2390                         if (rdev->desc->ops->list_voltage)
2391                                 best_val = rdev->desc->ops->list_voltage(rdev,
2392                                                                          selector);
2393                         else
2394                                 best_val = _regulator_get_voltage(rdev);
2395                 }
2396
2397         } else if (rdev->desc->ops->set_voltage_sel) {
2398                 if (rdev->desc->ops->map_voltage) {
2399                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2400                                                            max_uV);
2401                 } else {
2402                         if (rdev->desc->ops->list_voltage ==
2403                             regulator_list_voltage_linear)
2404                                 ret = regulator_map_voltage_linear(rdev,
2405                                                                 min_uV, max_uV);
2406                         else
2407                                 ret = regulator_map_voltage_iterate(rdev,
2408                                                                 min_uV, max_uV);
2409                 }
2410
2411                 if (ret >= 0) {
2412                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2413                         if (min_uV <= best_val && max_uV >= best_val) {
2414                                 selector = ret;
2415                                 if (old_selector == selector)
2416                                         ret = 0;
2417                                 else
2418                                         ret = rdev->desc->ops->set_voltage_sel(
2419                                                                 rdev, ret);
2420                         } else {
2421                                 ret = -EINVAL;
2422                         }
2423                 }
2424         } else {
2425                 ret = -EINVAL;
2426         }
2427
2428         /* Call set_voltage_time_sel if successfully obtained old_selector */
2429         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2430             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2431
2432                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2433                                                 old_selector, selector);
2434                 if (delay < 0) {
2435                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2436                                   delay);
2437                         delay = 0;
2438                 }
2439
2440                 /* Insert any necessary delays */
2441                 if (delay >= 1000) {
2442                         mdelay(delay / 1000);
2443                         udelay(delay % 1000);
2444                 } else if (delay) {
2445                         udelay(delay);
2446                 }
2447         }
2448
2449         if (ret == 0 && best_val >= 0) {
2450                 unsigned long data = best_val;
2451
2452                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2453                                      (void *)data);
2454         }
2455
2456         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2457
2458         return ret;
2459 }
2460
2461 /**
2462  * regulator_set_voltage - set regulator output voltage
2463  * @regulator: regulator source
2464  * @min_uV: Minimum required voltage in uV
2465  * @max_uV: Maximum acceptable voltage in uV
2466  *
2467  * Sets a voltage regulator to the desired output voltage. This can be set
2468  * during any regulator state. IOW, regulator can be disabled or enabled.
2469  *
2470  * If the regulator is enabled then the voltage will change to the new value
2471  * immediately otherwise if the regulator is disabled the regulator will
2472  * output at the new voltage when enabled.
2473  *
2474  * NOTE: If the regulator is shared between several devices then the lowest
2475  * request voltage that meets the system constraints will be used.
2476  * Regulator system constraints must be set for this regulator before
2477  * calling this function otherwise this call will fail.
2478  */
2479 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2480 {
2481         struct regulator_dev *rdev = regulator->rdev;
2482         int ret = 0;
2483         int old_min_uV, old_max_uV;
2484
2485         mutex_lock(&rdev->mutex);
2486
2487         /* If we're setting the same range as last time the change
2488          * should be a noop (some cpufreq implementations use the same
2489          * voltage for multiple frequencies, for example).
2490          */
2491         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2492                 goto out;
2493
2494         /* sanity check */
2495         if (!rdev->desc->ops->set_voltage &&
2496             !rdev->desc->ops->set_voltage_sel) {
2497                 ret = -EINVAL;
2498                 goto out;
2499         }
2500
2501         /* constraints check */
2502         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2503         if (ret < 0)
2504                 goto out;
2505         
2506         /* restore original values in case of error */
2507         old_min_uV = regulator->min_uV;
2508         old_max_uV = regulator->max_uV;
2509         regulator->min_uV = min_uV;
2510         regulator->max_uV = max_uV;
2511
2512         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2513         if (ret < 0)
2514                 goto out2;
2515
2516         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2517         if (ret < 0)
2518                 goto out2;
2519         
2520 out:
2521         mutex_unlock(&rdev->mutex);
2522         return ret;
2523 out2:
2524         regulator->min_uV = old_min_uV;
2525         regulator->max_uV = old_max_uV;
2526         mutex_unlock(&rdev->mutex);
2527         return ret;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2530
2531 /**
2532  * regulator_set_voltage_time - get raise/fall time
2533  * @regulator: regulator source
2534  * @old_uV: starting voltage in microvolts
2535  * @new_uV: target voltage in microvolts
2536  *
2537  * Provided with the starting and ending voltage, this function attempts to
2538  * calculate the time in microseconds required to rise or fall to this new
2539  * voltage.
2540  */
2541 int regulator_set_voltage_time(struct regulator *regulator,
2542                                int old_uV, int new_uV)
2543 {
2544         struct regulator_dev    *rdev = regulator->rdev;
2545         struct regulator_ops    *ops = rdev->desc->ops;
2546         int old_sel = -1;
2547         int new_sel = -1;
2548         int voltage;
2549         int i;
2550
2551         /* Currently requires operations to do this */
2552         if (!ops->list_voltage || !ops->set_voltage_time_sel
2553             || !rdev->desc->n_voltages)
2554                 return -EINVAL;
2555
2556         for (i = 0; i < rdev->desc->n_voltages; i++) {
2557                 /* We only look for exact voltage matches here */
2558                 voltage = regulator_list_voltage(regulator, i);
2559                 if (voltage < 0)
2560                         return -EINVAL;
2561                 if (voltage == 0)
2562                         continue;
2563                 if (voltage == old_uV)
2564                         old_sel = i;
2565                 if (voltage == new_uV)
2566                         new_sel = i;
2567         }
2568
2569         if (old_sel < 0 || new_sel < 0)
2570                 return -EINVAL;
2571
2572         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2573 }
2574 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2575
2576 /**
2577  * regulator_set_voltage_time_sel - get raise/fall time
2578  * @rdev: regulator source device
2579  * @old_selector: selector for starting voltage
2580  * @new_selector: selector for target voltage
2581  *
2582  * Provided with the starting and target voltage selectors, this function
2583  * returns time in microseconds required to rise or fall to this new voltage
2584  *
2585  * Drivers providing ramp_delay in regulation_constraints can use this as their
2586  * set_voltage_time_sel() operation.
2587  */
2588 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2589                                    unsigned int old_selector,
2590                                    unsigned int new_selector)
2591 {
2592         unsigned int ramp_delay = 0;
2593         int old_volt, new_volt;
2594
2595         if (rdev->constraints->ramp_delay)
2596                 ramp_delay = rdev->constraints->ramp_delay;
2597         else if (rdev->desc->ramp_delay)
2598                 ramp_delay = rdev->desc->ramp_delay;
2599
2600         if (ramp_delay == 0) {
2601                 rdev_warn(rdev, "ramp_delay not set\n");
2602                 return 0;
2603         }
2604
2605         /* sanity check */
2606         if (!rdev->desc->ops->list_voltage)
2607                 return -EINVAL;
2608
2609         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2610         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2611
2612         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2613 }
2614 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2615
2616 /**
2617  * regulator_sync_voltage - re-apply last regulator output voltage
2618  * @regulator: regulator source
2619  *
2620  * Re-apply the last configured voltage.  This is intended to be used
2621  * where some external control source the consumer is cooperating with
2622  * has caused the configured voltage to change.
2623  */
2624 int regulator_sync_voltage(struct regulator *regulator)
2625 {
2626         struct regulator_dev *rdev = regulator->rdev;
2627         int ret, min_uV, max_uV;
2628
2629         mutex_lock(&rdev->mutex);
2630
2631         if (!rdev->desc->ops->set_voltage &&
2632             !rdev->desc->ops->set_voltage_sel) {
2633                 ret = -EINVAL;
2634                 goto out;
2635         }
2636
2637         /* This is only going to work if we've had a voltage configured. */
2638         if (!regulator->min_uV && !regulator->max_uV) {
2639                 ret = -EINVAL;
2640                 goto out;
2641         }
2642
2643         min_uV = regulator->min_uV;
2644         max_uV = regulator->max_uV;
2645
2646         /* This should be a paranoia check... */
2647         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2648         if (ret < 0)
2649                 goto out;
2650
2651         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2652         if (ret < 0)
2653                 goto out;
2654
2655         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2656
2657 out:
2658         mutex_unlock(&rdev->mutex);
2659         return ret;
2660 }
2661 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2662
2663 static int _regulator_get_voltage(struct regulator_dev *rdev)
2664 {
2665         int sel, ret;
2666
2667         if (rdev->desc->ops->get_voltage_sel) {
2668                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2669                 if (sel < 0)
2670                         return sel;
2671                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2672         } else if (rdev->desc->ops->get_voltage) {
2673                 ret = rdev->desc->ops->get_voltage(rdev);
2674         } else if (rdev->desc->ops->list_voltage) {
2675                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2676         } else {
2677                 return -EINVAL;
2678         }
2679
2680         if (ret < 0)
2681                 return ret;
2682         return ret - rdev->constraints->uV_offset;
2683 }
2684
2685 /**
2686  * regulator_get_voltage - get regulator output voltage
2687  * @regulator: regulator source
2688  *
2689  * This returns the current regulator voltage in uV.
2690  *
2691  * NOTE: If the regulator is disabled it will return the voltage value. This
2692  * function should not be used to determine regulator state.
2693  */
2694 int regulator_get_voltage(struct regulator *regulator)
2695 {
2696         int ret;
2697
2698         mutex_lock(&regulator->rdev->mutex);
2699
2700         ret = _regulator_get_voltage(regulator->rdev);
2701
2702         mutex_unlock(&regulator->rdev->mutex);
2703
2704         return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2707
2708 /**
2709  * regulator_set_current_limit - set regulator output current limit
2710  * @regulator: regulator source
2711  * @min_uA: Minimum supported current in uA
2712  * @max_uA: Maximum supported current in uA
2713  *
2714  * Sets current sink to the desired output current. This can be set during
2715  * any regulator state. IOW, regulator can be disabled or enabled.
2716  *
2717  * If the regulator is enabled then the current will change to the new value
2718  * immediately otherwise if the regulator is disabled the regulator will
2719  * output at the new current when enabled.
2720  *
2721  * NOTE: Regulator system constraints must be set for this regulator before
2722  * calling this function otherwise this call will fail.
2723  */
2724 int regulator_set_current_limit(struct regulator *regulator,
2725                                int min_uA, int max_uA)
2726 {
2727         struct regulator_dev *rdev = regulator->rdev;
2728         int ret;
2729
2730         mutex_lock(&rdev->mutex);
2731
2732         /* sanity check */
2733         if (!rdev->desc->ops->set_current_limit) {
2734                 ret = -EINVAL;
2735                 goto out;
2736         }
2737
2738         /* constraints check */
2739         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2740         if (ret < 0)
2741                 goto out;
2742
2743         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2744 out:
2745         mutex_unlock(&rdev->mutex);
2746         return ret;
2747 }
2748 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2749
2750 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2751 {
2752         int ret;
2753
2754         mutex_lock(&rdev->mutex);
2755
2756         /* sanity check */
2757         if (!rdev->desc->ops->get_current_limit) {
2758                 ret = -EINVAL;
2759                 goto out;
2760         }
2761
2762         ret = rdev->desc->ops->get_current_limit(rdev);
2763 out:
2764         mutex_unlock(&rdev->mutex);
2765         return ret;
2766 }
2767
2768 /**
2769  * regulator_get_current_limit - get regulator output current
2770  * @regulator: regulator source
2771  *
2772  * This returns the current supplied by the specified current sink in uA.
2773  *
2774  * NOTE: If the regulator is disabled it will return the current value. This
2775  * function should not be used to determine regulator state.
2776  */
2777 int regulator_get_current_limit(struct regulator *regulator)
2778 {
2779         return _regulator_get_current_limit(regulator->rdev);
2780 }
2781 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2782
2783 /**
2784  * regulator_set_mode - set regulator operating mode
2785  * @regulator: regulator source
2786  * @mode: operating mode - one of the REGULATOR_MODE constants
2787  *
2788  * Set regulator operating mode to increase regulator efficiency or improve
2789  * regulation performance.
2790  *
2791  * NOTE: Regulator system constraints must be set for this regulator before
2792  * calling this function otherwise this call will fail.
2793  */
2794 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2795 {
2796         struct regulator_dev *rdev = regulator->rdev;
2797         int ret;
2798         int regulator_curr_mode;
2799
2800         mutex_lock(&rdev->mutex);
2801
2802         /* sanity check */
2803         if (!rdev->desc->ops->set_mode) {
2804                 ret = -EINVAL;
2805                 goto out;
2806         }
2807
2808         /* return if the same mode is requested */
2809         if (rdev->desc->ops->get_mode) {
2810                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2811                 if (regulator_curr_mode == mode) {
2812                         ret = 0;
2813                         goto out;
2814                 }
2815         }
2816
2817         /* constraints check */
2818         ret = regulator_mode_constrain(rdev, &mode);
2819         if (ret < 0)
2820                 goto out;
2821
2822         ret = rdev->desc->ops->set_mode(rdev, mode);
2823 out:
2824         mutex_unlock(&rdev->mutex);
2825         return ret;
2826 }
2827 EXPORT_SYMBOL_GPL(regulator_set_mode);
2828
2829 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2830 {
2831         int ret;
2832
2833         mutex_lock(&rdev->mutex);
2834
2835         /* sanity check */
2836         if (!rdev->desc->ops->get_mode) {
2837                 ret = -EINVAL;
2838                 goto out;
2839         }
2840
2841         ret = rdev->desc->ops->get_mode(rdev);
2842 out:
2843         mutex_unlock(&rdev->mutex);
2844         return ret;
2845 }
2846
2847 /**
2848  * regulator_get_mode - get regulator operating mode
2849  * @regulator: regulator source
2850  *
2851  * Get the current regulator operating mode.
2852  */
2853 unsigned int regulator_get_mode(struct regulator *regulator)
2854 {
2855         return _regulator_get_mode(regulator->rdev);
2856 }
2857 EXPORT_SYMBOL_GPL(regulator_get_mode);
2858
2859 /**
2860  * regulator_set_optimum_mode - set regulator optimum operating mode
2861  * @regulator: regulator source
2862  * @uA_load: load current
2863  *
2864  * Notifies the regulator core of a new device load. This is then used by
2865  * DRMS (if enabled by constraints) to set the most efficient regulator
2866  * operating mode for the new regulator loading.
2867  *
2868  * Consumer devices notify their supply regulator of the maximum power
2869  * they will require (can be taken from device datasheet in the power
2870  * consumption tables) when they change operational status and hence power
2871  * state. Examples of operational state changes that can affect power
2872  * consumption are :-
2873  *
2874  *    o Device is opened / closed.
2875  *    o Device I/O is about to begin or has just finished.
2876  *    o Device is idling in between work.
2877  *
2878  * This information is also exported via sysfs to userspace.
2879  *
2880  * DRMS will sum the total requested load on the regulator and change
2881  * to the most efficient operating mode if platform constraints allow.
2882  *
2883  * Returns the new regulator mode or error.
2884  */
2885 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2886 {
2887         struct regulator_dev *rdev = regulator->rdev;
2888         struct regulator *consumer;
2889         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2890         unsigned int mode;
2891
2892         if (rdev->supply)
2893                 input_uV = regulator_get_voltage(rdev->supply);
2894
2895         mutex_lock(&rdev->mutex);
2896
2897         /*
2898          * first check to see if we can set modes at all, otherwise just
2899          * tell the consumer everything is OK.
2900          */
2901         regulator->uA_load = uA_load;
2902         ret = regulator_check_drms(rdev);
2903         if (ret < 0) {
2904                 ret = 0;
2905                 goto out;
2906         }
2907
2908         if (!rdev->desc->ops->get_optimum_mode)
2909                 goto out;
2910
2911         /*
2912          * we can actually do this so any errors are indicators of
2913          * potential real failure.
2914          */
2915         ret = -EINVAL;
2916
2917         if (!rdev->desc->ops->set_mode)
2918                 goto out;
2919
2920         /* get output voltage */
2921         output_uV = _regulator_get_voltage(rdev);
2922         if (output_uV <= 0) {
2923                 rdev_err(rdev, "invalid output voltage found\n");
2924                 goto out;
2925         }
2926
2927         /* No supply? Use constraint voltage */
2928         if (input_uV <= 0)
2929                 input_uV = rdev->constraints->input_uV;
2930         if (input_uV <= 0) {
2931                 rdev_err(rdev, "invalid input voltage found\n");
2932                 goto out;
2933         }
2934
2935         /* calc total requested load for this regulator */
2936         list_for_each_entry(consumer, &rdev->consumer_list, list)
2937                 total_uA_load += consumer->uA_load;
2938
2939         mode = rdev->desc->ops->get_optimum_mode(rdev,
2940                                                  input_uV, output_uV,
2941                                                  total_uA_load);
2942         ret = regulator_mode_constrain(rdev, &mode);
2943         if (ret < 0) {
2944                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2945                          total_uA_load, input_uV, output_uV);
2946                 goto out;
2947         }
2948
2949         ret = rdev->desc->ops->set_mode(rdev, mode);
2950         if (ret < 0) {
2951                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2952                 goto out;
2953         }
2954         ret = mode;
2955 out:
2956         mutex_unlock(&rdev->mutex);
2957         return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2960
2961 /**
2962  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2963  *
2964  * @rdev: device to operate on.
2965  * @enable: state to set.
2966  */
2967 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2968 {
2969         unsigned int val;
2970
2971         if (enable)
2972                 val = rdev->desc->bypass_mask;
2973         else
2974                 val = 0;
2975
2976         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2977                                   rdev->desc->bypass_mask, val);
2978 }
2979 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2980
2981 /**
2982  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2983  *
2984  * @rdev: device to operate on.
2985  * @enable: current state.
2986  */
2987 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2988 {
2989         unsigned int val;
2990         int ret;
2991
2992         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2993         if (ret != 0)
2994                 return ret;
2995
2996         *enable = val & rdev->desc->bypass_mask;
2997
2998         return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3001
3002 /**
3003  * regulator_allow_bypass - allow the regulator to go into bypass mode
3004  *
3005  * @regulator: Regulator to configure
3006  * @enable: enable or disable bypass mode
3007  *
3008  * Allow the regulator to go into bypass mode if all other consumers
3009  * for the regulator also enable bypass mode and the machine
3010  * constraints allow this.  Bypass mode means that the regulator is
3011  * simply passing the input directly to the output with no regulation.
3012  */
3013 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3014 {
3015         struct regulator_dev *rdev = regulator->rdev;
3016         int ret = 0;
3017
3018         if (!rdev->desc->ops->set_bypass)
3019                 return 0;
3020
3021         if (rdev->constraints &&
3022             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3023                 return 0;
3024
3025         mutex_lock(&rdev->mutex);
3026
3027         if (enable && !regulator->bypass) {
3028                 rdev->bypass_count++;
3029
3030                 if (rdev->bypass_count == rdev->open_count) {
3031                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3032                         if (ret != 0)
3033                                 rdev->bypass_count--;
3034                 }
3035
3036         } else if (!enable && regulator->bypass) {
3037                 rdev->bypass_count--;
3038
3039                 if (rdev->bypass_count != rdev->open_count) {
3040                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3041                         if (ret != 0)
3042                                 rdev->bypass_count++;
3043                 }
3044         }
3045
3046         if (ret == 0)
3047                 regulator->bypass = enable;
3048
3049         mutex_unlock(&rdev->mutex);
3050
3051         return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3054
3055 /**
3056  * regulator_register_notifier - register regulator event notifier
3057  * @regulator: regulator source
3058  * @nb: notifier block
3059  *
3060  * Register notifier block to receive regulator events.
3061  */
3062 int regulator_register_notifier(struct regulator *regulator,
3063                               struct notifier_block *nb)
3064 {
3065         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3066                                                 nb);
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3069
3070 /**
3071  * regulator_unregister_notifier - unregister regulator event notifier
3072  * @regulator: regulator source
3073  * @nb: notifier block
3074  *
3075  * Unregister regulator event notifier block.
3076  */
3077 int regulator_unregister_notifier(struct regulator *regulator,
3078                                 struct notifier_block *nb)
3079 {
3080         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3081                                                   nb);
3082 }
3083 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3084
3085 /* notify regulator consumers and downstream regulator consumers.
3086  * Note mutex must be held by caller.
3087  */
3088 static void _notifier_call_chain(struct regulator_dev *rdev,
3089                                   unsigned long event, void *data)
3090 {
3091         /* call rdev chain first */
3092         blocking_notifier_call_chain(&rdev->notifier, event, data);
3093 }
3094
3095 /**
3096  * regulator_bulk_get - get multiple regulator consumers
3097  *
3098  * @dev:           Device to supply
3099  * @num_consumers: Number of consumers to register
3100  * @consumers:     Configuration of consumers; clients are stored here.
3101  *
3102  * @return 0 on success, an errno on failure.
3103  *
3104  * This helper function allows drivers to get several regulator
3105  * consumers in one operation.  If any of the regulators cannot be
3106  * acquired then any regulators that were allocated will be freed
3107  * before returning to the caller.
3108  */
3109 int regulator_bulk_get(struct device *dev, int num_consumers,
3110                        struct regulator_bulk_data *consumers)
3111 {
3112         int i;
3113         int ret;
3114
3115         for (i = 0; i < num_consumers; i++)
3116                 consumers[i].consumer = NULL;
3117
3118         for (i = 0; i < num_consumers; i++) {
3119                 consumers[i].consumer = regulator_get(dev,
3120                                                       consumers[i].supply);
3121                 if (IS_ERR(consumers[i].consumer)) {
3122                         ret = PTR_ERR(consumers[i].consumer);
3123                         dev_err(dev, "Failed to get supply '%s': %d\n",
3124                                 consumers[i].supply, ret);
3125                         consumers[i].consumer = NULL;
3126                         goto err;
3127                 }
3128         }
3129
3130         return 0;
3131
3132 err:
3133         while (--i >= 0)
3134                 regulator_put(consumers[i].consumer);
3135
3136         return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3139
3140 /**
3141  * devm_regulator_bulk_get - managed get multiple regulator consumers
3142  *
3143  * @dev:           Device to supply
3144  * @num_consumers: Number of consumers to register
3145  * @consumers:     Configuration of consumers; clients are stored here.
3146  *
3147  * @return 0 on success, an errno on failure.
3148  *
3149  * This helper function allows drivers to get several regulator
3150  * consumers in one operation with management, the regulators will
3151  * automatically be freed when the device is unbound.  If any of the
3152  * regulators cannot be acquired then any regulators that were
3153  * allocated will be freed before returning to the caller.
3154  */
3155 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3156                             struct regulator_bulk_data *consumers)
3157 {
3158         int i;
3159         int ret;
3160
3161         for (i = 0; i < num_consumers; i++)
3162                 consumers[i].consumer = NULL;
3163
3164         for (i = 0; i < num_consumers; i++) {
3165                 consumers[i].consumer = devm_regulator_get(dev,
3166                                                            consumers[i].supply);
3167                 if (IS_ERR(consumers[i].consumer)) {
3168                         ret = PTR_ERR(consumers[i].consumer);
3169                         dev_err(dev, "Failed to get supply '%s': %d\n",
3170                                 consumers[i].supply, ret);
3171                         consumers[i].consumer = NULL;
3172                         goto err;
3173                 }
3174         }
3175
3176         return 0;
3177
3178 err:
3179         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3180                 devm_regulator_put(consumers[i].consumer);
3181
3182         return ret;
3183 }
3184 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3185
3186 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3187 {
3188         struct regulator_bulk_data *bulk = data;
3189
3190         bulk->ret = regulator_enable(bulk->consumer);
3191 }
3192
3193 /**
3194  * regulator_bulk_enable - enable multiple regulator consumers
3195  *
3196  * @num_consumers: Number of consumers
3197  * @consumers:     Consumer data; clients are stored here.
3198  * @return         0 on success, an errno on failure
3199  *
3200  * This convenience API allows consumers to enable multiple regulator
3201  * clients in a single API call.  If any consumers cannot be enabled
3202  * then any others that were enabled will be disabled again prior to
3203  * return.
3204  */
3205 int regulator_bulk_enable(int num_consumers,
3206                           struct regulator_bulk_data *consumers)
3207 {
3208         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3209         int i;
3210         int ret = 0;
3211
3212         for (i = 0; i < num_consumers; i++) {
3213                 if (consumers[i].consumer->always_on)
3214                         consumers[i].ret = 0;
3215                 else
3216                         async_schedule_domain(regulator_bulk_enable_async,
3217                                               &consumers[i], &async_domain);
3218         }
3219
3220         async_synchronize_full_domain(&async_domain);
3221
3222         /* If any consumer failed we need to unwind any that succeeded */
3223         for (i = 0; i < num_consumers; i++) {
3224                 if (consumers[i].ret != 0) {
3225                         ret = consumers[i].ret;
3226                         goto err;
3227                 }
3228         }
3229
3230         return 0;
3231
3232 err:
3233         for (i = 0; i < num_consumers; i++) {
3234                 if (consumers[i].ret < 0)
3235                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3236                                consumers[i].ret);
3237                 else
3238                         regulator_disable(consumers[i].consumer);
3239         }
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3244
3245 /**
3246  * regulator_bulk_disable - disable multiple regulator consumers
3247  *
3248  * @num_consumers: Number of consumers
3249  * @consumers:     Consumer data; clients are stored here.
3250  * @return         0 on success, an errno on failure
3251  *
3252  * This convenience API allows consumers to disable multiple regulator
3253  * clients in a single API call.  If any consumers cannot be disabled
3254  * then any others that were disabled will be enabled again prior to
3255  * return.
3256  */
3257 int regulator_bulk_disable(int num_consumers,
3258                            struct regulator_bulk_data *consumers)
3259 {
3260         int i;
3261         int ret, r;
3262
3263         for (i = num_consumers - 1; i >= 0; --i) {
3264                 ret = regulator_disable(consumers[i].consumer);
3265                 if (ret != 0)
3266                         goto err;
3267         }
3268
3269         return 0;
3270
3271 err:
3272         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3273         for (++i; i < num_consumers; ++i) {
3274                 r = regulator_enable(consumers[i].consumer);
3275                 if (r != 0)
3276                         pr_err("Failed to reename %s: %d\n",
3277                                consumers[i].supply, r);
3278         }
3279
3280         return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3283
3284 /**
3285  * regulator_bulk_force_disable - force disable multiple regulator consumers
3286  *
3287  * @num_consumers: Number of consumers
3288  * @consumers:     Consumer data; clients are stored here.
3289  * @return         0 on success, an errno on failure
3290  *
3291  * This convenience API allows consumers to forcibly disable multiple regulator
3292  * clients in a single API call.
3293  * NOTE: This should be used for situations when device damage will
3294  * likely occur if the regulators are not disabled (e.g. over temp).
3295  * Although regulator_force_disable function call for some consumers can
3296  * return error numbers, the function is called for all consumers.
3297  */
3298 int regulator_bulk_force_disable(int num_consumers,
3299                            struct regulator_bulk_data *consumers)
3300 {
3301         int i;
3302         int ret;
3303
3304         for (i = 0; i < num_consumers; i++)
3305                 consumers[i].ret =
3306                             regulator_force_disable(consumers[i].consumer);
3307
3308         for (i = 0; i < num_consumers; i++) {
3309                 if (consumers[i].ret != 0) {
3310                         ret = consumers[i].ret;
3311                         goto out;
3312                 }
3313         }
3314
3315         return 0;
3316 out:
3317         return ret;
3318 }
3319 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3320
3321 /**
3322  * regulator_bulk_free - free multiple regulator consumers
3323  *
3324  * @num_consumers: Number of consumers
3325  * @consumers:     Consumer data; clients are stored here.
3326  *
3327  * This convenience API allows consumers to free multiple regulator
3328  * clients in a single API call.
3329  */
3330 void regulator_bulk_free(int num_consumers,
3331                          struct regulator_bulk_data *consumers)
3332 {
3333         int i;
3334
3335         for (i = 0; i < num_consumers; i++) {
3336                 regulator_put(consumers[i].consumer);
3337                 consumers[i].consumer = NULL;
3338         }
3339 }
3340 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3341
3342 /**
3343  * regulator_notifier_call_chain - call regulator event notifier
3344  * @rdev: regulator source
3345  * @event: notifier block
3346  * @data: callback-specific data.
3347  *
3348  * Called by regulator drivers to notify clients a regulator event has
3349  * occurred. We also notify regulator clients downstream.
3350  * Note lock must be held by caller.
3351  */
3352 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3353                                   unsigned long event, void *data)
3354 {
3355         _notifier_call_chain(rdev, event, data);
3356         return NOTIFY_DONE;
3357
3358 }
3359 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3360
3361 /**
3362  * regulator_mode_to_status - convert a regulator mode into a status
3363  *
3364  * @mode: Mode to convert
3365  *
3366  * Convert a regulator mode into a status.
3367  */
3368 int regulator_mode_to_status(unsigned int mode)
3369 {
3370         switch (mode) {
3371         case REGULATOR_MODE_FAST:
3372                 return REGULATOR_STATUS_FAST;
3373         case REGULATOR_MODE_NORMAL:
3374                 return REGULATOR_STATUS_NORMAL;
3375         case REGULATOR_MODE_IDLE:
3376                 return REGULATOR_STATUS_IDLE;
3377         case REGULATOR_MODE_STANDBY:
3378                 return REGULATOR_STATUS_STANDBY;
3379         default:
3380                 return REGULATOR_STATUS_UNDEFINED;
3381         }
3382 }
3383 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3384
3385 /*
3386  * To avoid cluttering sysfs (and memory) with useless state, only
3387  * create attributes that can be meaningfully displayed.
3388  */
3389 static int add_regulator_attributes(struct regulator_dev *rdev)
3390 {
3391         struct device           *dev = &rdev->dev;
3392         struct regulator_ops    *ops = rdev->desc->ops;
3393         int                     status = 0;
3394
3395         /* some attributes need specific methods to be displayed */
3396         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3397             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3398             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3399                 status = device_create_file(dev, &dev_attr_microvolts);
3400                 if (status < 0)
3401                         return status;
3402         }
3403         if (ops->get_current_limit) {
3404                 status = device_create_file(dev, &dev_attr_microamps);
3405                 if (status < 0)
3406                         return status;
3407         }
3408         if (ops->get_mode) {
3409                 status = device_create_file(dev, &dev_attr_opmode);
3410                 if (status < 0)
3411                         return status;
3412         }
3413         if (rdev->ena_pin || ops->is_enabled) {
3414                 status = device_create_file(dev, &dev_attr_state);
3415                 if (status < 0)
3416                         return status;
3417         }
3418         if (ops->get_status) {
3419                 status = device_create_file(dev, &dev_attr_status);
3420                 if (status < 0)
3421                         return status;
3422         }
3423         if (ops->get_bypass) {
3424                 status = device_create_file(dev, &dev_attr_bypass);
3425                 if (status < 0)
3426                         return status;
3427         }
3428
3429         /* some attributes are type-specific */
3430         if (rdev->desc->type == REGULATOR_CURRENT) {
3431                 status = device_create_file(dev, &dev_attr_requested_microamps);
3432                 if (status < 0)
3433                         return status;
3434         }
3435
3436         /* all the other attributes exist to support constraints;
3437          * don't show them if there are no constraints, or if the
3438          * relevant supporting methods are missing.
3439          */
3440         if (!rdev->constraints)
3441                 return status;
3442
3443         /* constraints need specific supporting methods */
3444         if (ops->set_voltage || ops->set_voltage_sel) {
3445                 status = device_create_file(dev, &dev_attr_min_microvolts);
3446                 if (status < 0)
3447                         return status;
3448                 status = device_create_file(dev, &dev_attr_max_microvolts);
3449                 if (status < 0)
3450                         return status;
3451         }
3452         if (ops->set_current_limit) {
3453                 status = device_create_file(dev, &dev_attr_min_microamps);
3454                 if (status < 0)
3455                         return status;
3456                 status = device_create_file(dev, &dev_attr_max_microamps);
3457                 if (status < 0)
3458                         return status;
3459         }
3460
3461         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3462         if (status < 0)
3463                 return status;
3464         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3465         if (status < 0)
3466                 return status;
3467         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3468         if (status < 0)
3469                 return status;
3470
3471         if (ops->set_suspend_voltage) {
3472                 status = device_create_file(dev,
3473                                 &dev_attr_suspend_standby_microvolts);
3474                 if (status < 0)
3475                         return status;
3476                 status = device_create_file(dev,
3477                                 &dev_attr_suspend_mem_microvolts);
3478                 if (status < 0)
3479                         return status;
3480                 status = device_create_file(dev,
3481                                 &dev_attr_suspend_disk_microvolts);
3482                 if (status < 0)
3483                         return status;
3484         }
3485
3486         if (ops->set_suspend_mode) {
3487                 status = device_create_file(dev,
3488                                 &dev_attr_suspend_standby_mode);
3489                 if (status < 0)
3490                         return status;
3491                 status = device_create_file(dev,
3492                                 &dev_attr_suspend_mem_mode);
3493                 if (status < 0)
3494                         return status;
3495                 status = device_create_file(dev,
3496                                 &dev_attr_suspend_disk_mode);
3497                 if (status < 0)
3498                         return status;
3499         }
3500
3501         return status;
3502 }
3503
3504 static void rdev_init_debugfs(struct regulator_dev *rdev)
3505 {
3506         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3507         if (!rdev->debugfs) {
3508                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3509                 return;
3510         }
3511
3512         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3513                            &rdev->use_count);
3514         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3515                            &rdev->open_count);
3516         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3517                            &rdev->bypass_count);
3518 }
3519
3520 /**
3521  * regulator_register - register regulator
3522  * @regulator_desc: regulator to register
3523  * @config: runtime configuration for regulator
3524  *
3525  * Called by regulator drivers to register a regulator.
3526  * Returns a valid pointer to struct regulator_dev on success
3527  * or an ERR_PTR() on error.
3528  */
3529 struct regulator_dev *
3530 regulator_register(const struct regulator_desc *regulator_desc,
3531                    const struct regulator_config *config)
3532 {
3533         const struct regulation_constraints *constraints = NULL;
3534         const struct regulator_init_data *init_data;
3535         static atomic_t regulator_no = ATOMIC_INIT(0);
3536         struct regulator_dev *rdev;
3537         struct device *dev;
3538         int ret, i;
3539         const char *supply = NULL;
3540
3541         if (regulator_desc == NULL || config == NULL)
3542                 return ERR_PTR(-EINVAL);
3543
3544         dev = config->dev;
3545         WARN_ON(!dev);
3546
3547         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3548                 return ERR_PTR(-EINVAL);
3549
3550         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3551             regulator_desc->type != REGULATOR_CURRENT)
3552                 return ERR_PTR(-EINVAL);
3553
3554         /* Only one of each should be implemented */
3555         WARN_ON(regulator_desc->ops->get_voltage &&
3556                 regulator_desc->ops->get_voltage_sel);
3557         WARN_ON(regulator_desc->ops->set_voltage &&
3558                 regulator_desc->ops->set_voltage_sel);
3559
3560         /* If we're using selectors we must implement list_voltage. */
3561         if (regulator_desc->ops->get_voltage_sel &&
3562             !regulator_desc->ops->list_voltage) {
3563                 return ERR_PTR(-EINVAL);
3564         }
3565         if (regulator_desc->ops->set_voltage_sel &&
3566             !regulator_desc->ops->list_voltage) {
3567                 return ERR_PTR(-EINVAL);
3568         }
3569
3570         init_data = config->init_data;
3571
3572         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3573         if (rdev == NULL)
3574                 return ERR_PTR(-ENOMEM);
3575
3576         mutex_lock(&regulator_list_mutex);
3577
3578         mutex_init(&rdev->mutex);
3579         rdev->reg_data = config->driver_data;
3580         rdev->owner = regulator_desc->owner;
3581         rdev->desc = regulator_desc;
3582         if (config->regmap)
3583                 rdev->regmap = config->regmap;
3584         else if (dev_get_regmap(dev, NULL))
3585                 rdev->regmap = dev_get_regmap(dev, NULL);
3586         else if (dev->parent)
3587                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3588         INIT_LIST_HEAD(&rdev->consumer_list);
3589         INIT_LIST_HEAD(&rdev->list);
3590         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3591         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3592
3593         /* preform any regulator specific init */
3594         if (init_data && init_data->regulator_init) {
3595                 ret = init_data->regulator_init(rdev->reg_data);
3596                 if (ret < 0)
3597                         goto clean;
3598         }
3599
3600         /* register with sysfs */
3601         rdev->dev.class = &regulator_class;
3602         rdev->dev.of_node = config->of_node;
3603         rdev->dev.parent = dev;
3604         dev_set_name(&rdev->dev, "regulator.%d",
3605                      atomic_inc_return(&regulator_no) - 1);
3606         ret = device_register(&rdev->dev);
3607         if (ret != 0) {
3608                 put_device(&rdev->dev);
3609                 goto clean;
3610         }
3611
3612         dev_set_drvdata(&rdev->dev, rdev);
3613
3614         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3615                 ret = regulator_ena_gpio_request(rdev, config);
3616                 if (ret != 0) {
3617                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3618                                  config->ena_gpio, ret);
3619                         goto wash;
3620                 }
3621         }
3622
3623         /* set regulator constraints */
3624         if (init_data)
3625                 constraints = &init_data->constraints;
3626
3627         ret = set_machine_constraints(rdev, constraints);
3628         if (ret < 0)
3629                 goto scrub;
3630
3631         /* add attributes supported by this regulator */
3632         ret = add_regulator_attributes(rdev);
3633         if (ret < 0)
3634                 goto scrub;
3635
3636         if (init_data && init_data->supply_regulator)
3637                 supply = init_data->supply_regulator;
3638         else if (regulator_desc->supply_name)
3639                 supply = regulator_desc->supply_name;
3640
3641         if (supply) {
3642                 struct regulator_dev *r;
3643
3644                 r = regulator_dev_lookup(dev, supply, &ret);
3645
3646                 if (ret == -ENODEV) {
3647                         /*
3648                          * No supply was specified for this regulator and
3649                          * there will never be one.
3650                          */
3651                         ret = 0;
3652                         goto add_dev;
3653                 } else if (!r) {
3654                         dev_err(dev, "Failed to find supply %s\n", supply);
3655                         ret = -EPROBE_DEFER;
3656                         goto scrub;
3657                 }
3658
3659                 ret = set_supply(rdev, r);
3660                 if (ret < 0)
3661                         goto scrub;
3662
3663                 /* Enable supply if rail is enabled */
3664                 if (_regulator_is_enabled(rdev)) {
3665                         ret = regulator_enable(rdev->supply);
3666                         if (ret < 0)
3667                                 goto scrub;
3668                 }
3669         }
3670
3671 add_dev:
3672         /* add consumers devices */
3673         if (init_data) {
3674                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3675                         ret = set_consumer_device_supply(rdev,
3676                                 init_data->consumer_supplies[i].dev_name,
3677                                 init_data->consumer_supplies[i].supply);
3678                         if (ret < 0) {
3679                                 dev_err(dev, "Failed to set supply %s\n",
3680                                         init_data->consumer_supplies[i].supply);
3681                                 goto unset_supplies;
3682                         }
3683                 }
3684         }
3685
3686         list_add(&rdev->list, &regulator_list);
3687
3688         rdev_init_debugfs(rdev);
3689 out:
3690         mutex_unlock(&regulator_list_mutex);
3691         return rdev;
3692
3693 unset_supplies:
3694         unset_regulator_supplies(rdev);
3695
3696 scrub:
3697         if (rdev->supply)
3698                 _regulator_put(rdev->supply);
3699         regulator_ena_gpio_free(rdev);
3700         kfree(rdev->constraints);
3701 wash:
3702         device_unregister(&rdev->dev);
3703         /* device core frees rdev */
3704         rdev = ERR_PTR(ret);
3705         goto out;
3706
3707 clean:
3708         kfree(rdev);
3709         rdev = ERR_PTR(ret);
3710         goto out;
3711 }
3712 EXPORT_SYMBOL_GPL(regulator_register);
3713
3714 /**
3715  * regulator_unregister - unregister regulator
3716  * @rdev: regulator to unregister
3717  *
3718  * Called by regulator drivers to unregister a regulator.
3719  */
3720 void regulator_unregister(struct regulator_dev *rdev)
3721 {
3722         if (rdev == NULL)
3723                 return;
3724
3725         if (rdev->supply)
3726                 regulator_put(rdev->supply);
3727         mutex_lock(&regulator_list_mutex);
3728         debugfs_remove_recursive(rdev->debugfs);
3729         flush_work(&rdev->disable_work.work);
3730         WARN_ON(rdev->open_count);
3731         unset_regulator_supplies(rdev);
3732         list_del(&rdev->list);
3733         kfree(rdev->constraints);
3734         regulator_ena_gpio_free(rdev);
3735         device_unregister(&rdev->dev);
3736         mutex_unlock(&regulator_list_mutex);
3737 }
3738 EXPORT_SYMBOL_GPL(regulator_unregister);
3739
3740 /**
3741  * regulator_suspend_prepare - prepare regulators for system wide suspend
3742  * @state: system suspend state
3743  *
3744  * Configure each regulator with it's suspend operating parameters for state.
3745  * This will usually be called by machine suspend code prior to supending.
3746  */
3747 int regulator_suspend_prepare(suspend_state_t state)
3748 {
3749         struct regulator_dev *rdev;
3750         int ret = 0;
3751
3752         /* ON is handled by regulator active state */
3753         if (state == PM_SUSPEND_ON)
3754                 return -EINVAL;
3755
3756         mutex_lock(&regulator_list_mutex);
3757         list_for_each_entry(rdev, &regulator_list, list) {
3758
3759                 mutex_lock(&rdev->mutex);
3760                 ret = suspend_prepare(rdev, state);
3761                 mutex_unlock(&rdev->mutex);
3762
3763                 if (ret < 0) {
3764                         rdev_err(rdev, "failed to prepare\n");
3765                         goto out;
3766                 }
3767         }
3768 out:
3769         mutex_unlock(&regulator_list_mutex);
3770         return ret;
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3773
3774 /**
3775  * regulator_suspend_finish - resume regulators from system wide suspend
3776  *
3777  * Turn on regulators that might be turned off by regulator_suspend_prepare
3778  * and that should be turned on according to the regulators properties.
3779  */
3780 int regulator_suspend_finish(void)
3781 {
3782         struct regulator_dev *rdev;
3783         int ret = 0, error;
3784
3785         mutex_lock(&regulator_list_mutex);
3786         list_for_each_entry(rdev, &regulator_list, list) {
3787                 mutex_lock(&rdev->mutex);
3788                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3789                         if (!_regulator_is_enabled(rdev)) {
3790                                 error = _regulator_do_enable(rdev);
3791                                 if (error)
3792                                         ret = error;
3793                         }
3794                 } else {
3795                         if (!has_full_constraints)
3796                                 goto unlock;
3797                         if (!_regulator_is_enabled(rdev))
3798                                 goto unlock;
3799
3800                         error = _regulator_do_disable(rdev);
3801                         if (error)
3802                                 ret = error;
3803                 }
3804 unlock:
3805                 mutex_unlock(&rdev->mutex);
3806         }
3807         mutex_unlock(&regulator_list_mutex);
3808         return ret;
3809 }
3810 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3811
3812 /**
3813  * regulator_has_full_constraints - the system has fully specified constraints
3814  *
3815  * Calling this function will cause the regulator API to disable all
3816  * regulators which have a zero use count and don't have an always_on
3817  * constraint in a late_initcall.
3818  *
3819  * The intention is that this will become the default behaviour in a
3820  * future kernel release so users are encouraged to use this facility
3821  * now.
3822  */
3823 void regulator_has_full_constraints(void)
3824 {
3825         has_full_constraints = 1;
3826 }
3827 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3828
3829 /**
3830  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3831  *
3832  * Calling this function will cause the regulator API to provide a
3833  * dummy regulator to consumers if no physical regulator is found,
3834  * allowing most consumers to proceed as though a regulator were
3835  * configured.  This allows systems such as those with software
3836  * controllable regulators for the CPU core only to be brought up more
3837  * readily.
3838  */
3839 void regulator_use_dummy_regulator(void)
3840 {
3841         board_wants_dummy_regulator = true;
3842 }
3843 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3844
3845 /**
3846  * rdev_get_drvdata - get rdev regulator driver data
3847  * @rdev: regulator
3848  *
3849  * Get rdev regulator driver private data. This call can be used in the
3850  * regulator driver context.
3851  */
3852 void *rdev_get_drvdata(struct regulator_dev *rdev)
3853 {
3854         return rdev->reg_data;
3855 }
3856 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3857
3858 /**
3859  * regulator_get_drvdata - get regulator driver data
3860  * @regulator: regulator
3861  *
3862  * Get regulator driver private data. This call can be used in the consumer
3863  * driver context when non API regulator specific functions need to be called.
3864  */
3865 void *regulator_get_drvdata(struct regulator *regulator)
3866 {
3867         return regulator->rdev->reg_data;
3868 }
3869 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3870
3871 /**
3872  * regulator_set_drvdata - set regulator driver data
3873  * @regulator: regulator
3874  * @data: data
3875  */
3876 void regulator_set_drvdata(struct regulator *regulator, void *data)
3877 {
3878         regulator->rdev->reg_data = data;
3879 }
3880 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3881
3882 /**
3883  * regulator_get_id - get regulator ID
3884  * @rdev: regulator
3885  */
3886 int rdev_get_id(struct regulator_dev *rdev)
3887 {
3888         return rdev->desc->id;
3889 }
3890 EXPORT_SYMBOL_GPL(rdev_get_id);
3891
3892 struct device *rdev_get_dev(struct regulator_dev *rdev)
3893 {
3894         return &rdev->dev;
3895 }
3896 EXPORT_SYMBOL_GPL(rdev_get_dev);
3897
3898 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3899 {
3900         return reg_init_data->driver_data;
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3903
3904 #ifdef CONFIG_DEBUG_FS
3905 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3906                                     size_t count, loff_t *ppos)
3907 {
3908         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3909         ssize_t len, ret = 0;
3910         struct regulator_map *map;
3911
3912         if (!buf)
3913                 return -ENOMEM;
3914
3915         list_for_each_entry(map, &regulator_map_list, list) {
3916                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3917                                "%s -> %s.%s\n",
3918                                rdev_get_name(map->regulator), map->dev_name,
3919                                map->supply);
3920                 if (len >= 0)
3921                         ret += len;
3922                 if (ret > PAGE_SIZE) {
3923                         ret = PAGE_SIZE;
3924                         break;
3925                 }
3926         }
3927
3928         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3929
3930         kfree(buf);
3931
3932         return ret;
3933 }
3934 #endif
3935
3936 static const struct file_operations supply_map_fops = {
3937 #ifdef CONFIG_DEBUG_FS
3938         .read = supply_map_read_file,
3939         .llseek = default_llseek,
3940 #endif
3941 };
3942
3943 static int __init regulator_init(void)
3944 {
3945         int ret;
3946
3947         ret = class_register(&regulator_class);
3948
3949         debugfs_root = debugfs_create_dir("regulator", NULL);
3950         if (!debugfs_root)
3951                 pr_warn("regulator: Failed to create debugfs directory\n");
3952
3953         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3954                             &supply_map_fops);
3955
3956         regulator_dummy_init();
3957
3958         return ret;
3959 }
3960
3961 /* init early to allow our consumers to complete system booting */
3962 core_initcall(regulator_init);
3963
3964 static int __init regulator_init_complete(void)
3965 {
3966         struct regulator_dev *rdev;
3967         struct regulator_ops *ops;
3968         struct regulation_constraints *c;
3969         int enabled, ret;
3970
3971         /*
3972          * Since DT doesn't provide an idiomatic mechanism for
3973          * enabling full constraints and since it's much more natural
3974          * with DT to provide them just assume that a DT enabled
3975          * system has full constraints.
3976          */
3977         if (of_have_populated_dt())
3978                 has_full_constraints = true;
3979
3980         mutex_lock(&regulator_list_mutex);
3981
3982         /* If we have a full configuration then disable any regulators
3983          * which are not in use or always_on.  This will become the
3984          * default behaviour in the future.
3985          */
3986         list_for_each_entry(rdev, &regulator_list, list) {
3987                 ops = rdev->desc->ops;
3988                 c = rdev->constraints;
3989
3990                 if (c && c->always_on)
3991                         continue;
3992
3993                 mutex_lock(&rdev->mutex);
3994
3995                 if (rdev->use_count)
3996                         goto unlock;
3997
3998                 /* If we can't read the status assume it's on. */
3999                 if (ops->is_enabled)
4000                         enabled = ops->is_enabled(rdev);
4001                 else
4002                         enabled = 1;
4003
4004                 if (!enabled)
4005                         goto unlock;
4006
4007                 if (has_full_constraints) {
4008                         /* We log since this may kill the system if it
4009                          * goes wrong. */
4010                         rdev_info(rdev, "disabling\n");
4011                         ret = _regulator_do_disable(rdev);
4012                         if (ret != 0) {
4013                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4014                         }
4015                 } else {
4016                         /* The intention is that in future we will
4017                          * assume that full constraints are provided
4018                          * so warn even if we aren't going to do
4019                          * anything here.
4020                          */
4021                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4022                 }
4023
4024 unlock:
4025                 mutex_unlock(&rdev->mutex);
4026         }
4027
4028         mutex_unlock(&regulator_list_mutex);
4029
4030         return 0;
4031 }
4032 late_initcall(regulator_init_complete);