Revert "Revert "MALI: midgard: support sharing regulator with other devices""
[firefly-linux-kernel-4.4.55.git] / drivers / power / rk818_battery.c
1 /*
2  * rk818 battery driver
3  *
4  * Copyright (C) 2016 Rockchip Electronics Co., Ltd
5  * chenjh <chenjh@rock-chips.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  */
17
18 #include <linux/delay.h>
19 #include <linux/fb.h>
20 #include <linux/gpio.h>
21 #include <linux/iio/consumer.h>
22 #include <linux/iio/iio.h>
23 #include <linux/irq.h>
24 #include <linux/irqdomain.h>
25 #include <linux/jiffies.h>
26 #include <linux/mfd/rk808.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_gpio.h>
30 #include <linux/platform_device.h>
31 #include <linux/power_supply.h>
32 #include <linux/power/rk_usbbc.h>
33 #include <linux/regmap.h>
34 #include <linux/rk_keys.h>
35 #include <linux/rtc.h>
36 #include <linux/timer.h>
37 #include <linux/wakelock.h>
38 #include <linux/workqueue.h>
39 #include "rk818_battery.h"
40
41 static int dbg_enable = 0;
42 module_param_named(dbg_level, dbg_enable, int, 0644);
43
44 #define DBG(args...) \
45         do { \
46                 if (dbg_enable) { \
47                         pr_info(args); \
48                 } \
49         } while (0)
50
51 #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
52
53 /* default param */
54 #define DEFAULT_BAT_RES                 135
55 #define DEFAULT_SLP_ENTER_CUR           300
56 #define DEFAULT_SLP_EXIT_CUR            300
57 #define DEFAULT_SLP_FILTER_CUR          100
58 #define DEFAULT_PWROFF_VOL_THRESD       3400
59 #define DEFAULT_MONITOR_SEC             5
60 #define DEFAULT_ALGR_VOL_THRESD1        3850
61 #define DEFAULT_ALGR_VOL_THRESD2        3950
62 #define DEFAULT_MAX_SOC_OFFSET          60
63 #define DEFAULT_FB_TEMP                 TEMP_105C
64 #define DEFAULT_ZERO_RESERVE_DSOC       10
65 #define DEFAULT_POFFSET                 42
66 #define DEFAULT_COFFSET                 0x832
67 #define DEFAULT_SAMPLE_RES              20
68 #define DEFAULT_ENERGY_MODE             0
69 #define INVALID_COFFSET_MIN             0x780
70 #define INVALID_COFFSET_MAX             0x980
71 #define INVALID_VOL_THRESD              2500
72
73 /* sample resistor and division */
74 #define SAMPLE_RES_10MR                 10
75 #define SAMPLE_RES_20MR                 20
76 #define SAMPLE_RES_DIV1                 1
77 #define SAMPLE_RES_DIV2                 2
78
79 /* virtual params */
80 #define VIRTUAL_CURRENT                 1000
81 #define VIRTUAL_VOLTAGE                 3888
82 #define VIRTUAL_SOC                     66
83 #define VIRTUAL_PRESET                  1
84 #define VIRTUAL_TEMPERATURE             188
85 #define VIRTUAL_STATUS                  POWER_SUPPLY_STATUS_CHARGING
86
87 /* charge */
88 #define FINISH_CHRG_CUR1                        1000
89 #define FINISH_CHRG_CUR2                1500
90 #define FINISH_MAX_SOC_DELAY            20
91 #define TERM_CHRG_DSOC                  88
92 #define TERM_CHRG_CURR                  600
93 #define TERM_CHRG_K                     650
94 #define SIMULATE_CHRG_INTV              8
95 #define SIMULATE_CHRG_CURR              400
96 #define SIMULATE_CHRG_K                 1500
97 #define FULL_CHRG_K                     400
98
99 /* zero algorithm */
100 #define PWROFF_THRESD                   3400
101 #define MIN_ZERO_DSOC_ACCURACY          10      /*0.01%*/
102 #define MIN_ZERO_OVERCNT                100
103 #define MIN_ACCURACY                    1
104 #define DEF_PWRPATH_RES                 50
105 #define WAIT_DSOC_DROP_SEC              15
106 #define WAIT_SHTD_DROP_SEC              30
107 #define ZERO_GAP_XSOC1                  10
108 #define ZERO_GAP_XSOC2                  5
109 #define ZERO_GAP_XSOC3                  3
110 #define ZERO_LOAD_LVL1                  1400
111 #define ZERO_LOAD_LVL2                  600
112 #define ZERO_GAP_CALIB                  5
113
114 #define ADC_CALIB_THRESHOLD             4
115 #define ADC_CALIB_LMT_MIN               3
116 #define ADC_CALIB_CNT                   5
117 #define NTC_CALC_FACTOR                 7
118
119 /* time */
120 #define POWER_ON_SEC_BASE               1
121 #define MINUTE(x)                       ((x) * 60)
122
123 /* sleep */
124 #define SLP_CURR_MAX                    40
125 #define SLP_CURR_MIN                    6
126 #define DISCHRG_TIME_STEP1              MINUTE(10)
127 #define DISCHRG_TIME_STEP2              MINUTE(60)
128 #define SLP_DSOC_VOL_THRESD             3600
129 #define REBOOT_PERIOD_SEC               180
130 #define REBOOT_MAX_CNT                  80
131
132 /* fcc */
133 #define MIN_FCC                         500
134
135 static const char *bat_status[] = {
136         "charge off", "dead charge", "trickle charge", "cc cv",
137         "finish", "usb over vol", "bat temp error", "timer error",
138 };
139
140 struct rk818_battery {
141         struct platform_device          *pdev;
142         struct rk808                    *rk818;
143         struct regmap                   *regmap;
144         struct device                   *dev;
145         struct power_supply             *bat;
146         struct battery_platform_data    *pdata;
147         struct workqueue_struct         *bat_monitor_wq;
148         struct delayed_work             bat_delay_work;
149         struct delayed_work             calib_delay_work;
150         struct wake_lock                wake_lock;
151         struct notifier_block           fb_nb;
152         struct timer_list               caltimer;
153         struct timeval                  rtc_base;
154         int                             bat_res;
155         int                             chrg_status;
156         bool                            is_initialized;
157         bool                            is_first_power_on;
158         u8                              res_div;
159         int                             current_avg;
160         int                             voltage_avg;
161         int                             voltage_ocv;
162         int                             voltage_relax;
163         int                             voltage_k;
164         int                             voltage_b;
165         int                             remain_cap;
166         int                             design_cap;
167         int                             nac;
168         int                             fcc;
169         int                             qmax;
170         int                             dsoc;
171         int                             rsoc;
172         int                             poffset;
173         int                             age_ocv_soc;
174         bool                            age_allow_update;
175         int                             age_level;
176         int                             age_ocv_cap;
177         int                             age_voltage;
178         int                             age_adjust_cap;
179         unsigned long                   age_keep_sec;
180         int                             zero_timeout_cnt;
181         int                             zero_remain_cap;
182         int                             zero_dsoc;
183         int                             zero_linek;
184         u64                             zero_drop_sec;
185         u64                             shtd_drop_sec;
186         int                             sm_remain_cap;
187         int                             sm_linek;
188         int                             sm_chrg_dsoc;
189         int                             sm_dischrg_dsoc;
190         int                             algo_rest_val;
191         int                             algo_rest_mode;
192         int                             sleep_sum_cap;
193         int                             sleep_remain_cap;
194         unsigned long                   sleep_dischrg_sec;
195         unsigned long                   sleep_sum_sec;
196         bool                            sleep_chrg_online;
197         u8                              sleep_chrg_status;
198         bool                            adc_allow_update;
199         int                             fb_blank;
200         bool                            s2r; /*suspend to resume*/
201         u32                             work_mode;
202         int                             temperature;
203         u32                             monitor_ms;
204         u32                             pwroff_min;
205         u32                             adc_calib_cnt;
206         unsigned long                   finish_base;
207         unsigned long                   boot_base;
208         unsigned long                   flat_match_sec;
209         unsigned long                   plug_in_base;
210         unsigned long                   plug_out_base;
211         u8                              halt_cnt;
212         bool                            is_halt;
213         bool                            is_max_soc_offset;
214         bool                            is_sw_reset;
215         bool                            is_ocv_calib;
216         bool                            is_first_on;
217         bool                            is_force_calib;
218         int                             last_dsoc;
219         int                             ocv_pre_dsoc;
220         int                             ocv_new_dsoc;
221         int                             max_pre_dsoc;
222         int                             max_new_dsoc;
223         int                             force_pre_dsoc;
224         int                             force_new_dsoc;
225         int                             dbg_cap_low0;
226         int                             dbg_pwr_dsoc;
227         int                             dbg_pwr_rsoc;
228         int                             dbg_pwr_vol;
229         int                             dbg_chrg_min[10];
230         int                             dbg_meet_soc;
231         int                             dbg_calc_dsoc;
232         int                             dbg_calc_rsoc;
233 };
234
235 #define DIV(x)  ((x) ? (x) : 1)
236
237 static u64 get_boot_sec(void)
238 {
239         struct timespec ts;
240
241         get_monotonic_boottime(&ts);
242
243         return ts.tv_sec;
244 }
245
246 static unsigned long base2sec(unsigned long x)
247 {
248         if (x)
249                 return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
250         else
251                 return 0;
252 }
253
254 static unsigned long base2min(unsigned long x)
255 {
256         return base2sec(x) / 60;
257 }
258
259 static u32 interpolate(int value, u32 *table, int size)
260 {
261         u8 i;
262         u16 d;
263
264         for (i = 0; i < size; i++) {
265                 if (value < table[i])
266                         break;
267         }
268
269         if ((i > 0) && (i < size)) {
270                 d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
271                 d /= table[i] - table[i - 1];
272                 d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
273         } else {
274                 d = i * ((MAX_INTERPOLATE + size / 2) / size);
275         }
276
277         if (d > 1000)
278                 d = 1000;
279
280         return d;
281 }
282
283 /* (a*b)/c */
284 static int32_t ab_div_c(u32 a, u32 b, u32 c)
285 {
286         bool sign;
287         u32 ans = MAX_INT;
288         int tmp;
289
290         sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
291         if (c != 0) {
292                 if (sign)
293                         c = -c;
294                 tmp = (a * b + (c >> 1)) / c;
295                 if (tmp < MAX_INT)
296                         ans = tmp;
297         }
298
299         if (sign)
300                 ans = -ans;
301
302         return ans;
303 }
304
305 static int rk818_bat_read(struct rk818_battery *di, u8 reg)
306 {
307         int ret, val;
308
309         ret = regmap_read(di->regmap, reg, &val);
310         if (ret)
311                 dev_err(di->dev, "read reg:0x%x failed\n", reg);
312
313         return val;
314 }
315
316 static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
317 {
318         int ret;
319
320         ret = regmap_write(di->regmap, reg, buf);
321         if (ret)
322                 dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
323
324         return ret;
325 }
326
327 static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
328 {
329         int ret;
330
331         ret = regmap_update_bits(di->regmap, reg, mask, buf);
332         if (ret)
333                 dev_err(di->dev, "write reg:0x%x failed\n", reg);
334
335         return ret;
336 }
337
338 static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
339 {
340         int ret;
341
342         ret = regmap_update_bits(di->regmap, reg, mask, 0);
343         if (ret)
344                 dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
345
346         return ret;
347 }
348
349 static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
350 {
351         int i;
352
353         if (!dbg_enable)
354                 return;
355
356         DBG("dump regs from: 0x%x-->0x%x\n", start, end);
357         for (i = start; i < end; i++)
358                 DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
359 }
360
361 static bool rk818_bat_chrg_online(struct rk818_battery *di)
362 {
363         u8 buf;
364
365         buf = rk818_bat_read(di, RK818_VB_MON_REG);
366
367         return (buf & PLUG_IN_STS) ? true : false;
368 }
369
370 static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
371 {
372         int val = 0;
373
374         val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
375         val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
376         val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
377         val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
378
379         return (val / 2390) * di->res_div;
380 }
381
382 static int rk818_bat_get_rsoc(struct rk818_battery *di)
383 {
384         int remain_cap;
385
386         remain_cap = rk818_bat_get_coulomb_cap(di);
387         return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
388 }
389
390 static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
391                               const char *buf, size_t count)
392 {
393         char cmd;
394         struct rk818_battery *di = dev_get_drvdata(dev);
395
396         sscanf(buf, "%c", &cmd);
397
398         if (cmd == 'n')
399                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
400                                    FG_RESET_NOW, FG_RESET_NOW);
401         else if (cmd == 'm')
402                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
403                                    FG_RESET_LATE, FG_RESET_LATE);
404         else if (cmd == 'c')
405                 rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
406                                      FG_RESET_LATE | FG_RESET_NOW);
407         else if (cmd == 'r')
408                 BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
409         else
410                 BAT_INFO("command error\n");
411
412         return count;
413 }
414
415 static struct device_attribute rk818_bat_attr[] = {
416         __ATTR(bat, 0664, NULL, bat_info_store),
417 };
418
419 static void rk818_bat_enable_gauge(struct rk818_battery *di)
420 {
421         u8 buf;
422
423         buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
424         buf |= GG_EN;
425         rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
426 }
427
428 static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
429 {
430         rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
431 }
432
433 static u8 rk818_bat_get_age_level(struct  rk818_battery *di)
434 {
435         return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
436 }
437
438 static int rk818_bat_get_vcalib0(struct rk818_battery *di)
439 {
440         int val = 0;
441
442         val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
443         val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
444
445         DBG("<%s>. voffset0: 0x%x\n", __func__, val);
446         return val;
447 }
448
449 static int rk818_bat_get_vcalib1(struct rk818_battery *di)
450 {
451         int val = 0;
452
453         val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
454         val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
455
456         DBG("<%s>. voffset1: 0x%x\n", __func__, val);
457         return val;
458 }
459
460 static int rk818_bat_get_ioffset(struct rk818_battery *di)
461 {
462         int val = 0;
463
464         val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
465         val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
466
467         DBG("<%s>. ioffset: 0x%x\n", __func__, val);
468         return val;
469 }
470
471 static int rk818_bat_get_coffset(struct rk818_battery *di)
472 {
473         int val = 0;
474
475         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
476         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
477
478         DBG("<%s>. coffset: 0x%x\n", __func__, val);
479         return val;
480 }
481
482 static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
483 {
484         u8 buf;
485
486         if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
487                 BAT_INFO("set invalid coffset=0x%x\n", val);
488                 return;
489         }
490
491         buf = (val >> 8) & 0xff;
492         rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
493         buf = (val >> 0) & 0xff;
494         rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
495         DBG("<%s>. coffset: 0x%x\n", __func__, val);
496 }
497
498 static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
499 {
500         int vcalib0, vcalib1;
501
502         vcalib0 = rk818_bat_get_vcalib0(di);
503         vcalib1 = rk818_bat_get_vcalib1(di);
504         di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
505         di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
506
507         DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
508 }
509
510 static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
511 {
512         int vol, val = 0;
513
514         val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
515         val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
516
517         vol = di->voltage_k * val / 1000 + di->voltage_b;
518
519         return vol;
520 }
521
522 static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
523 {
524         int vol, val = 0;
525
526         val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
527         val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
528
529         vol = di->voltage_k * val / 1000 + di->voltage_b;
530
531         return vol;
532 }
533
534 static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
535 {
536         u8 status;
537
538         status = rk818_bat_read(di, RK818_GGSTS_REG);
539         if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
540                 return false;
541         else
542                 return true;
543 }
544
545 static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
546 {
547         u16 vol, val = 0;
548
549         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
550         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
551         vol = di->voltage_k * val / 1000 + di->voltage_b;
552
553         return vol;
554 }
555
556 static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
557 {
558         u16 vol, val = 0;
559
560         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
561         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
562         vol = di->voltage_k * val / 1000 + di->voltage_b;
563
564         return vol;
565 }
566
567 static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
568 {
569         u16 relax_vol1, relax_vol2;
570
571         if (!is_rk818_bat_relax_mode(di))
572                 return 0;
573
574         relax_vol1 = rk818_bat_get_relax_vol1(di);
575         relax_vol2 = rk818_bat_get_relax_vol2(di);
576
577         return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
578 }
579
580 static int rk818_bat_get_avg_current(struct rk818_battery *di)
581 {
582         int cur, val = 0;
583
584         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
585         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
586
587         if (val & 0x800)
588                 val -= 4096;
589         cur = val * di->res_div * 1506 / 1000;
590
591         return cur;
592 }
593
594 static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
595 {
596         u32 *ocv_table, temp;
597         int ocv_size, ocv_soc;
598
599         ocv_table = di->pdata->ocv_table;
600         ocv_size = di->pdata->ocv_size;
601         temp = interpolate(voltage, ocv_table, ocv_size);
602         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
603
604         return ocv_soc;
605 }
606
607 static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
608 {
609         u32 *ocv_table, temp;
610         int ocv_size, cap;
611
612         ocv_table = di->pdata->ocv_table;
613         ocv_size = di->pdata->ocv_size;
614         temp = interpolate(voltage, ocv_table, ocv_size);
615         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
616
617         return cap;
618 }
619
620 static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
621 {
622         u32 *ocv_table, temp;
623         int ocv_size, ocv_soc;
624
625         ocv_table = di->pdata->zero_table;
626         ocv_size = di->pdata->ocv_size;
627         temp = interpolate(voltage, ocv_table, ocv_size);
628         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
629
630         return ocv_soc;
631 }
632
633 static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
634 {
635         u32 *ocv_table, temp;
636         int ocv_size, cap;
637
638         ocv_table = di->pdata->zero_table;
639         ocv_size = di->pdata->ocv_size;
640         temp = interpolate(voltage, ocv_table, ocv_size);
641         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
642
643         return cap;
644 }
645
646 static int rk818_bat_get_iadc(struct rk818_battery *di)
647 {
648         int val = 0;
649
650         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
651         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
652         if (val > 2047)
653                 val -= 4096;
654
655         return val;
656 }
657
658 static bool rk818_bat_adc_calib(struct rk818_battery *di)
659 {
660         int i, ioffset, coffset, adc, save_coffset;
661
662         if ((di->chrg_status != CHARGE_FINISH) ||
663             (di->adc_calib_cnt > ADC_CALIB_CNT) ||
664             (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
665             (abs(di->current_avg) < ADC_CALIB_THRESHOLD))
666                 return false;
667
668         di->adc_calib_cnt++;
669         save_coffset = rk818_bat_get_coffset(di);
670         for (i = 0; i < 5; i++) {
671                 adc = rk818_bat_get_iadc(di);
672                 if (!rk818_bat_chrg_online(di)) {
673                         rk818_bat_set_coffset(di, save_coffset);
674                         BAT_INFO("quit, charger plugout when calib adc\n");
675                         return false;
676                 }
677                 coffset = rk818_bat_get_coffset(di);
678                 rk818_bat_set_coffset(di, coffset + adc);
679                 msleep(2000);
680                 adc = rk818_bat_get_iadc(di);
681                 if (abs(adc) < ADC_CALIB_THRESHOLD) {
682                         coffset = rk818_bat_get_coffset(di);
683                         ioffset = rk818_bat_get_ioffset(di);
684                         di->poffset = coffset - ioffset;
685                         rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
686                         BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
687                                  coffset, ioffset, di->poffset);
688                         return true;
689                 } else {
690                         BAT_INFO("coffset calib again %d.., max_cnt=%d\n",
691                                  i, di->adc_calib_cnt);
692                         rk818_bat_set_coffset(di, coffset);
693                         msleep(2000);
694                 }
695         }
696
697         rk818_bat_set_coffset(di, save_coffset);
698
699         return false;
700 }
701
702 static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
703 {
704         u8 ggcon;
705
706         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
707         ggcon &= ~ADC_CAL_MIN_MSK;
708         ggcon |= ADC_CAL_8MIN;
709         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
710 }
711
712 static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
713 {
714         u8 ggcon;
715
716         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
717         ggcon &= ~OCV_SAMP_MIN_MSK;
718         ggcon |= OCV_SAMP_8MIN;
719         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
720 }
721
722 static void rk818_bat_restart_relax(struct rk818_battery *di)
723 {
724         u8 ggsts;
725
726         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
727         ggsts &= ~RELAX_VOL12_UPD_MSK;
728         rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
729 }
730
731 static void rk818_bat_set_relax_sample(struct rk818_battery *di)
732 {
733         u8 buf;
734         int enter_thres, exit_thres;
735         struct battery_platform_data *pdata = di->pdata;
736
737         enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div);
738         exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div);
739
740         /* set relax enter and exit threshold */
741         buf = enter_thres & 0xff;
742         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
743         buf = (enter_thres >> 8) & 0xff;
744         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
745
746         buf = exit_thres & 0xff;
747         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
748         buf = (exit_thres >> 8) & 0xff;
749         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
750
751         /* reset relax update state */
752         rk818_bat_restart_relax(di);
753         DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
754             __func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
755 }
756
757 static bool is_rk818_bat_exist(struct rk818_battery *di)
758 {
759         return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
760 }
761
762 static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
763 {
764         u8 buf;
765
766         buf = rk818_bat_read(di, RK818_GGSTS_REG);
767         if (buf & BAT_CON) {
768                 buf &= ~BAT_CON;
769                 rk818_bat_write(di, RK818_GGSTS_REG, buf);
770                 return true;
771         }
772
773         return false;
774 }
775
776 static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
777 {
778         u8 cur, last;
779
780         cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
781         last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
782         rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
783
784         return (cur != last) ? cur : 0;
785 }
786
787 static u8 is_rk818_bat_initialized(struct rk818_battery *di)
788 {
789         u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
790
791         if (val & FG_INIT) {
792                 val &= ~FG_INIT;
793                 rk818_bat_write(di, RK818_MISC_MARK_REG, val);
794                 return true;
795         } else {
796                 return false;
797         }
798 }
799
800 static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
801 {
802         return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
803 }
804
805 static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
806 {
807         int age_level, ocv_soc, ocv_cap, ocv_vol;
808
809         if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
810                 DBG("<%s> enter.\n", __func__);
811                 ocv_vol = rk818_bat_get_ocv_voltage(di);
812                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
813                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
814                 if (ocv_soc < 20) {
815                         di->age_voltage = ocv_vol;
816                         di->age_ocv_cap = ocv_cap;
817                         di->age_ocv_soc = ocv_soc;
818                         di->age_adjust_cap = 0;
819
820                         if (ocv_soc <= 0)
821                                 di->age_level = 100;
822                         else if (ocv_soc < 5)
823                                 di->age_level = 95;
824                         else if (ocv_soc < 10)
825                                 di->age_level = 90;
826                         else
827                                 di->age_level = 80;
828
829                         age_level = rk818_bat_get_age_level(di);
830                         if (age_level > di->age_level) {
831                                 di->age_allow_update = false;
832                                 age_level -= 5;
833                                 if (age_level <= 80)
834                                         age_level = 80;
835                                 rk818_bat_save_age_level(di, age_level);
836                         } else {
837                                 di->age_allow_update = true;
838                                 di->age_keep_sec = get_boot_sec();
839                         }
840
841                         BAT_INFO("init_age_algorithm: "
842                                  "age_vol:%d, age_ocv_cap:%d, "
843                                  "age_ocv_soc:%d, old_age_level:%d, "
844                                  "age_allow_update:%d, new_age_level:%d\n",
845                                  di->age_voltage, di->age_ocv_cap,
846                                  ocv_soc, age_level, di->age_allow_update,
847                                  di->age_level);
848                 }
849         }
850 }
851
852 static enum power_supply_property rk818_bat_props[] = {
853         POWER_SUPPLY_PROP_CURRENT_NOW,
854         POWER_SUPPLY_PROP_VOLTAGE_NOW,
855         POWER_SUPPLY_PROP_PRESENT,
856         POWER_SUPPLY_PROP_HEALTH,
857         POWER_SUPPLY_PROP_CAPACITY,
858         POWER_SUPPLY_PROP_TEMP,
859         POWER_SUPPLY_PROP_STATUS,
860 };
861
862 static int rk818_battery_get_property(struct power_supply *psy,
863                                       enum power_supply_property psp,
864                                       union power_supply_propval *val)
865 {
866         struct rk818_battery *di = power_supply_get_drvdata(psy);
867
868         switch (psp) {
869         case POWER_SUPPLY_PROP_CURRENT_NOW:
870                 val->intval = di->current_avg * 1000;/*uA*/
871                 if (di->pdata->bat_mode == MODE_VIRTUAL)
872                         val->intval = VIRTUAL_CURRENT * 1000;
873                 break;
874         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
875                 val->intval = di->voltage_avg * 1000;/*uV*/
876                 if (di->pdata->bat_mode == MODE_VIRTUAL)
877                         val->intval = VIRTUAL_VOLTAGE * 1000;
878                 break;
879         case POWER_SUPPLY_PROP_PRESENT:
880                 val->intval = is_rk818_bat_exist(di);
881                 if (di->pdata->bat_mode == MODE_VIRTUAL)
882                         val->intval = VIRTUAL_PRESET;
883                 break;
884         case POWER_SUPPLY_PROP_CAPACITY:
885                 val->intval = di->dsoc;
886                 if (di->pdata->bat_mode == MODE_VIRTUAL)
887                         val->intval = VIRTUAL_SOC;
888                 DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
889                 break;
890         case POWER_SUPPLY_PROP_HEALTH:
891                 val->intval = POWER_SUPPLY_HEALTH_GOOD;
892                 break;
893         case POWER_SUPPLY_PROP_TEMP:
894                 val->intval = di->temperature;
895                 if (di->pdata->bat_mode == MODE_VIRTUAL)
896                         val->intval = VIRTUAL_TEMPERATURE;
897                 break;
898         case POWER_SUPPLY_PROP_STATUS:
899                 if (di->pdata->bat_mode == MODE_VIRTUAL)
900                         val->intval = VIRTUAL_STATUS;
901                 else if (di->dsoc == 100)
902                         val->intval = POWER_SUPPLY_STATUS_FULL;
903                 else if (rk818_bat_chrg_online(di))
904                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
905                 else
906                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
907                 break;
908         default:
909                 return -EINVAL;
910         }
911
912         return 0;
913 }
914
915 static const struct power_supply_desc rk818_bat_desc = {
916         .name           = "battery",
917         .type           = POWER_SUPPLY_TYPE_BATTERY,
918         .properties     = rk818_bat_props,
919         .num_properties = ARRAY_SIZE(rk818_bat_props),
920         .get_property   = rk818_battery_get_property,
921 };
922
923 static int rk818_bat_init_power_supply(struct rk818_battery *di)
924 {
925         struct power_supply_config psy_cfg = { .drv_data = di, };
926
927         di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
928         if (IS_ERR(di->bat)) {
929                 dev_err(di->dev, "register bat power supply fail\n");
930                 return PTR_ERR(di->bat);
931         }
932
933         return 0;
934 }
935
936 static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
937 {
938         u8 buf;
939         static u32 old_cap;
940
941         if (cap >= di->qmax)
942                 cap = di->qmax;
943         if (cap <= 0)
944                 cap = 0;
945         if (old_cap == cap)
946                 return;
947
948         old_cap = cap;
949         buf = (cap >> 24) & 0xff;
950         rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
951         buf = (cap >> 16) & 0xff;
952         rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
953         buf = (cap >> 8) & 0xff;
954         rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
955         buf = (cap >> 0) & 0xff;
956         rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
957 }
958
959 static int rk818_bat_get_prev_cap(struct rk818_battery *di)
960 {
961         int val = 0;
962
963         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
964         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
965         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
966         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
967
968         return val;
969 }
970
971 static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
972 {
973         u8 buf;
974
975         buf = (fcc >> 24) & 0xff;
976         rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
977         buf = (fcc >> 16) & 0xff;
978         rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
979         buf = (fcc >> 8) & 0xff;
980         rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
981         buf = (fcc >> 0) & 0xff;
982         rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
983
984         BAT_INFO("save fcc: %d\n", fcc);
985 }
986
987 static int rk818_bat_get_fcc(struct rk818_battery *di)
988 {
989         u32 fcc = 0;
990
991         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
992         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
993         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
994         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
995
996         if (fcc < MIN_FCC) {
997                 BAT_INFO("invalid fcc(%d), use design cap", fcc);
998                 fcc = di->pdata->design_capacity;
999                 rk818_bat_save_fcc(di, fcc);
1000         } else if (fcc > di->pdata->design_qmax) {
1001                 BAT_INFO("invalid fcc(%d), use qmax", fcc);
1002                 fcc = di->pdata->design_qmax;
1003                 rk818_bat_save_fcc(di, fcc);
1004         }
1005
1006         return fcc;
1007 }
1008
1009 static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
1010 {
1011         u8 buf;
1012         u32 cap;
1013
1014         cap = capacity * 2390 / DIV(di->res_div);
1015         buf = (cap >> 24) & 0xff;
1016         rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
1017         buf = (cap >> 16) & 0xff;
1018         rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
1019         buf = (cap >> 8) & 0xff;
1020         rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
1021         buf = ((cap >> 0) & 0xff);
1022         rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
1023
1024         DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
1025         di->remain_cap = capacity;
1026         di->rsoc = rk818_bat_get_rsoc(di);
1027 }
1028
1029 static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
1030 {
1031         static int last_soc = -1;
1032
1033         if (last_soc != save_soc) {
1034                 rk818_bat_write(di, RK818_SOC_REG, save_soc);
1035                 last_soc = save_soc;
1036         }
1037 }
1038
1039 static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
1040 {
1041         return rk818_bat_read(di, RK818_SOC_REG);
1042 }
1043
1044 static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
1045 {
1046         rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
1047 }
1048
1049 static int rk818_bat_fb_notifier(struct notifier_block *nb,
1050                                  unsigned long event, void *data)
1051 {
1052         struct rk818_battery *di;
1053         struct fb_event *evdata = data;
1054
1055         if (event != FB_EARLY_EVENT_BLANK && event != FB_EVENT_BLANK)
1056                 return NOTIFY_OK;
1057
1058         di = container_of(nb, struct rk818_battery, fb_nb);
1059         di->fb_blank = *(int *)evdata->data;
1060
1061         return 0;
1062 }
1063
1064 static int rk818_bat_register_fb_notify(struct rk818_battery *di)
1065 {
1066         memset(&di->fb_nb, 0, sizeof(di->fb_nb));
1067         di->fb_nb.notifier_call = rk818_bat_fb_notifier;
1068
1069         return fb_register_client(&di->fb_nb);
1070 }
1071
1072 static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
1073 {
1074         return fb_unregister_client(&di->fb_nb);
1075 }
1076
1077 static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
1078 {
1079         return rk818_bat_read(di, RK818_HALT_CNT_REG);
1080 }
1081
1082 static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
1083 {
1084         u8 cnt;
1085
1086         cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
1087         rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
1088 }
1089
1090 static bool is_rk818_bat_last_halt(struct rk818_battery *di)
1091 {
1092         int pre_cap = rk818_bat_get_prev_cap(di);
1093         int now_cap = rk818_bat_get_coulomb_cap(di);
1094
1095         /* over 10%: system halt last time */
1096         if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
1097                 rk818_bat_inc_halt_cnt(di);
1098                 return true;
1099         } else {
1100                 return false;
1101         }
1102 }
1103
1104 static void rk818_bat_first_pwron(struct rk818_battery *di)
1105 {
1106         int ocv_vol;
1107
1108         rk818_bat_save_fcc(di, di->design_cap);
1109         ocv_vol = rk818_bat_get_ocv_voltage(di);
1110         di->fcc = rk818_bat_get_fcc(di);
1111         di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1112         di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1113         di->dsoc = di->rsoc;
1114         di->is_first_on = true;
1115
1116         BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
1117                  di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
1118 }
1119
1120 static void rk818_bat_not_first_pwron(struct rk818_battery *di)
1121 {
1122         int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
1123
1124         di->fcc = rk818_bat_get_fcc(di);
1125         pre_soc = rk818_bat_get_prev_dsoc(di);
1126         pre_cap = rk818_bat_get_prev_cap(di);
1127         now_cap = rk818_bat_get_coulomb_cap(di);
1128         di->is_halt = is_rk818_bat_last_halt(di);
1129         di->halt_cnt = rk818_bat_get_halt_cnt(di);
1130         di->is_initialized = is_rk818_bat_initialized(di);
1131         di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
1132
1133         if (di->is_halt) {
1134                 BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
1135                          pre_cap, now_cap);
1136                 if (now_cap < 0)
1137                         now_cap = 0;
1138                 rk818_bat_init_coulomb_cap(di, now_cap);
1139                 pre_cap = now_cap;
1140                 pre_soc = di->rsoc;
1141                 goto finish;
1142         } else if (di->is_initialized) {
1143                 BAT_INFO("initialized yet..\n");
1144                 goto finish;
1145         } else if (di->is_ocv_calib) {
1146                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1147                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1148                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1149                 pre_cap = ocv_cap;
1150                 di->ocv_pre_dsoc = pre_soc;
1151                 di->ocv_new_dsoc = ocv_soc;
1152                 if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
1153                         di->ocv_pre_dsoc = pre_soc;
1154                         di->ocv_new_dsoc = ocv_soc;
1155                         di->is_max_soc_offset = true;
1156                         BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
1157                                  pre_soc, ocv_soc);
1158                         pre_soc = ocv_soc;
1159                 }
1160                 BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
1161         } else if (di->pwroff_min > 0) {
1162                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1163                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1164                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1165                 di->force_pre_dsoc = pre_soc;
1166                 di->force_new_dsoc = ocv_soc;
1167                 if (abs(ocv_soc - pre_soc) >= 80) {
1168                         di->is_force_calib = true;
1169                         BAT_INFO("dsoc force calib: %d -> %d\n",
1170                                  pre_soc, ocv_soc);
1171                         pre_soc = ocv_soc;
1172                         pre_cap = ocv_cap;
1173                 }
1174         }
1175
1176 finish:
1177         di->dsoc = pre_soc;
1178         di->nac = pre_cap;
1179         if (di->nac < 0)
1180                 di->nac = 0;
1181
1182         BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
1183                  di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
1184                  rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
1185                  di->pwroff_min, rk818_bat_get_prev_dsoc(di),
1186                  rk818_bat_get_prev_cap(di));
1187 }
1188
1189 static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
1190 {
1191         u8 buf;
1192
1193         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
1194         if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
1195             (buf & FG_RESET_NOW)) {
1196                 buf &= ~FG_RESET_LATE;
1197                 buf &= ~FG_RESET_NOW;
1198                 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
1199                 BAT_INFO("manual reset fuel gauge\n");
1200                 return true;
1201         } else {
1202                 return false;
1203         }
1204 }
1205
1206 static void rk818_bat_init_rsoc(struct rk818_battery *di)
1207 {
1208         di->is_first_power_on = is_rk818_bat_first_pwron(di);
1209         di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
1210         di->pwroff_min = rk818_bat_get_pwroff_min(di);
1211
1212         if (di->is_first_power_on || di->is_sw_reset)
1213                 rk818_bat_first_pwron(di);
1214         else
1215                 rk818_bat_not_first_pwron(di);
1216 }
1217
1218 static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
1219 {
1220         u8 status;
1221
1222         status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
1223         switch (status) {
1224         case CHARGE_OFF:
1225                 DBG("CHARGE-OFF ...\n");
1226                 break;
1227         case DEAD_CHARGE:
1228                 BAT_INFO("DEAD CHARGE...\n");
1229                 break;
1230         case TRICKLE_CHARGE:
1231                 BAT_INFO("TRICKLE CHARGE...\n ");
1232                 break;
1233         case CC_OR_CV:
1234                 DBG("CC or CV...\n");
1235                 break;
1236         case CHARGE_FINISH:
1237                 DBG("CHARGE FINISH...\n");
1238                 break;
1239         case USB_OVER_VOL:
1240                 BAT_INFO("USB OVER VOL...\n");
1241                 break;
1242         case BAT_TMP_ERR:
1243                 BAT_INFO("BAT TMP ERROR...\n");
1244                 break;
1245         case TIMER_ERR:
1246                 BAT_INFO("TIMER ERROR...\n");
1247                 break;
1248         case USB_EXIST:
1249                 BAT_INFO("USB EXIST...\n");
1250                 break;
1251         case USB_EFF:
1252                 BAT_INFO("USB EFF...\n");
1253                 break;
1254         default:
1255                 return -EINVAL;
1256         }
1257
1258         return status;
1259 }
1260
1261 static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
1262 {
1263         u8 reg;
1264         int index, fb_temp;
1265
1266         reg = DEFAULT_FB_TEMP;
1267         fb_temp = di->pdata->fb_temp;
1268         for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
1269                 if (fb_temp < feedback_temp_array[index])
1270                         break;
1271                 reg = (index << FB_TEMP_SHIFT);
1272         }
1273
1274         return reg;
1275 }
1276
1277 static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
1278 {
1279         u8 ma;
1280
1281         if (di->pdata->sample_res == SAMPLE_RES_10MR)
1282                 ma = FINISH_100MA;
1283         else if (fcc > 5000)
1284                 ma = FINISH_250MA;
1285         else if (fcc >= 4000)
1286                 ma = FINISH_200MA;
1287         else if (fcc >= 3000)
1288                 ma = FINISH_150MA;
1289         else
1290                 ma = FINISH_100MA;
1291
1292         return ma;
1293 }
1294
1295 static void rk818_bat_init_chrg_config(struct rk818_battery *di)
1296 {
1297         u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
1298         u8 thermal, ggcon, finish_ma, fb_temp;
1299
1300         finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
1301         fb_temp = rk818_bat_parse_fb_temperature(di);
1302
1303         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1304         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1305         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1306         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1307         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1308
1309         /* set charge finish current */
1310         chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
1311         chrg_ctrl2 &= ~FINISH_CUR_MSK;
1312         chrg_ctrl2 |= finish_ma;
1313
1314         /* disable cccv mode */
1315         chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
1316
1317         /* set feed back temperature */
1318         if (di->pdata->fb_temp)
1319                 usb_ctrl |= CHRG_CT_EN;
1320         else
1321                 usb_ctrl &= ~CHRG_CT_EN;
1322         thermal &= ~FB_TEMP_MSK;
1323         thermal |= fb_temp;
1324
1325         /* adc current mode */
1326         ggcon |= ADC_CUR_MODE;
1327
1328         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
1329         rk818_bat_write(di, RK818_THERMAL_REG, thermal);
1330         rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
1331         rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
1332         rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
1333 }
1334
1335 static void rk818_bat_init_coffset(struct rk818_battery *di)
1336 {
1337         int coffset, ioffset;
1338
1339         ioffset = rk818_bat_get_ioffset(di);
1340         di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1341         if (!di->poffset)
1342                 di->poffset = DEFAULT_POFFSET;
1343
1344         coffset = di->poffset + ioffset;
1345         if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
1346                 coffset = DEFAULT_COFFSET;
1347
1348         rk818_bat_set_coffset(di, coffset);
1349
1350         DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
1351             __func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
1352 }
1353
1354 static void rk818_bat_caltimer_isr(unsigned long data)
1355 {
1356         struct rk818_battery *di = (struct rk818_battery *)data;
1357
1358         mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
1359         queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
1360                            msecs_to_jiffies(10));
1361 }
1362
1363 static void rk818_bat_internal_calib(struct work_struct *work)
1364 {
1365         int ioffset, poffset;
1366         struct rk818_battery *di = container_of(work,
1367                         struct rk818_battery, calib_delay_work.work);
1368
1369         /* calib coffset */
1370         poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1371         if (poffset)
1372                 di->poffset = poffset;
1373         else
1374                 di->poffset = DEFAULT_POFFSET;
1375
1376         ioffset = rk818_bat_get_ioffset(di);
1377         rk818_bat_set_coffset(di, ioffset + di->poffset);
1378
1379         /* calib voltage kb */
1380         rk818_bat_init_voltage_kb(di);
1381         BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
1382                  ioffset, rk818_bat_get_coffset(di), di->poffset);
1383 }
1384
1385 static void rk818_bat_init_caltimer(struct rk818_battery *di)
1386 {
1387         setup_timer(&di->caltimer, rk818_bat_caltimer_isr, (unsigned long)di);
1388         di->caltimer.expires = jiffies + MINUTE(8) * HZ;
1389         add_timer(&di->caltimer);
1390         INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
1391 }
1392
1393 static void rk818_bat_init_zero_table(struct rk818_battery *di)
1394 {
1395         int i, diff, min, max;
1396         size_t ocv_size, length;
1397
1398         ocv_size = di->pdata->ocv_size;
1399         length = sizeof(di->pdata->zero_table) * ocv_size;
1400         di->pdata->zero_table =
1401                         devm_kzalloc(di->dev, length, GFP_KERNEL);
1402         if (!di->pdata->zero_table) {
1403                 di->pdata->zero_table = di->pdata->ocv_table;
1404                 dev_err(di->dev, "malloc zero table fail\n");
1405                 return;
1406         }
1407
1408         min = di->pdata->pwroff_vol,
1409         max = di->pdata->ocv_table[ocv_size - 4];
1410         diff = (max - min) / DIV(ocv_size - 1);
1411         for (i = 0; i < ocv_size; i++)
1412                 di->pdata->zero_table[i] = min + (i * diff);
1413
1414         for (i = 0; i < ocv_size; i++)
1415                 DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
1416
1417         for (i = 0; i < ocv_size; i++)
1418                 DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
1419 }
1420
1421 static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
1422 {
1423         int linek, current_avg;
1424         u8 diff, delta;
1425
1426         delta = abs(di->dsoc - di->rsoc);
1427         diff = delta * 3;/* speed:3/4 */
1428         current_avg = rk818_bat_get_avg_current(di);
1429         if (current_avg >= 0) {
1430                 if (di->dsoc < di->rsoc)
1431                         linek = 1000 * (delta + diff) / DIV(diff);
1432                 else if (di->dsoc > di->rsoc)
1433                         linek = 1000 * diff / DIV(delta + diff);
1434                 else
1435                         linek = 1000;
1436                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1437                                    (di->dsoc + diff) : (di->rsoc + diff);
1438         } else {
1439                 if (di->dsoc < di->rsoc)
1440                         linek = -1000 * diff / DIV(delta + diff);
1441                 else if (di->dsoc > di->rsoc)
1442                         linek = -1000 * (delta + diff) / DIV(diff);
1443                 else
1444                         linek = -1000;
1445                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1446                                    (di->dsoc - diff) : (di->rsoc - diff);
1447         }
1448
1449         di->sm_linek = linek;
1450         di->sm_remain_cap = di->remain_cap;
1451         di->dbg_calc_dsoc = di->dsoc;
1452         di->dbg_calc_rsoc = di->rsoc;
1453
1454         DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
1455 }
1456
1457 static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
1458 {
1459         int dead_voltage, ocv_voltage;
1460         int voltage_avg, current_avg, vsys;
1461         int ocv_cap, dead_cap, xsoc;
1462         int ocv_soc, dead_soc;
1463         int pwroff_vol;
1464         int i, cnt, vol_old, vol_now;
1465         int org_linek = 0, min_gap_xsoc;
1466
1467         if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
1468                 pwroff_vol = di->pdata->pwroff_vol + 50;
1469         else
1470                 pwroff_vol = di->pdata->pwroff_vol;
1471
1472         do {
1473                 vol_old = rk818_bat_get_avg_voltage(di);
1474                 msleep(100);
1475                 vol_now = rk818_bat_get_avg_voltage(di);
1476                 cnt++;
1477         } while ((vol_old == vol_now) && (cnt < 11));
1478
1479         voltage_avg = 0;
1480         for (i = 0; i < 10; i++) {
1481                 voltage_avg += rk818_bat_get_avg_voltage(di);
1482                 msleep(100);
1483         }
1484
1485         /* calc estimate ocv voltage */
1486         voltage_avg /= 10;
1487         current_avg = rk818_bat_get_avg_current(di);
1488         vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
1489
1490         DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n",
1491             di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc);
1492
1493         dead_voltage = pwroff_vol - current_avg *
1494                                 (di->bat_res + DEF_PWRPATH_RES) / 1000;
1495         ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
1496         DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
1497             dead_voltage, ocv_voltage);
1498
1499         /* calc estimate soc and cap */
1500         dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
1501         dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
1502         DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
1503             dead_soc, dead_cap);
1504
1505         ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
1506         ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
1507         DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
1508             ocv_soc, ocv_cap);
1509
1510         /* xsoc: available rsoc */
1511         xsoc = ocv_soc - dead_soc;
1512
1513         /* min_gap_xsoc: reserve xsoc */
1514         if (abs(current_avg) > ZERO_LOAD_LVL1)
1515                 min_gap_xsoc = ZERO_GAP_XSOC3;
1516         else if (abs(current_avg) > ZERO_LOAD_LVL2)
1517                 min_gap_xsoc = ZERO_GAP_XSOC2;
1518         else
1519                 min_gap_xsoc = ZERO_GAP_XSOC1;
1520
1521         if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc))
1522                 min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB;
1523
1524         di->zero_remain_cap = di->remain_cap;
1525         di->zero_timeout_cnt = 0;
1526         if ((di->dsoc <= 1) && (xsoc > 0)) {
1527                 di->zero_linek = 400;
1528                 di->zero_drop_sec = 0;
1529         } else if (xsoc >= 0) {
1530                 di->zero_drop_sec = 0;
1531                 di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
1532                 org_linek = di->zero_linek;
1533                 /* battery energy mode to use up voltage */
1534                 if ((di->pdata->energy_mode) &&
1535                     (xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
1536                     (di->dsoc <= 10) && (di->zero_linek < 300)) {
1537                         di->zero_linek = 300;
1538                         DBG("ZERO-new: zero_linek adjust step0...\n");
1539                 /* reserve enough power yet, slow down any way */
1540                 } else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
1541                            ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
1542                             (di->dsoc <= 10) && (xsoc > 15))) {
1543                         if (xsoc <= 20 &&
1544                             di->dsoc >= di->pdata->zero_reserve_dsoc)
1545                                 di->zero_linek = 1200;
1546                         else if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
1547                                 di->zero_linek = 400;
1548                         else if (xsoc - di->dsoc >= 3 + min_gap_xsoc)
1549                                 di->zero_linek = 600;
1550                         else
1551                                 di->zero_linek = 800;
1552                         DBG("ZERO-new: zero_linek adjust step1...\n");
1553                 /* control zero mode beginning enter */
1554                 } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
1555                         di->zero_linek = 1800;
1556                         DBG("ZERO-new: zero_linek adjust step2...\n");
1557                 /* dsoc close to xsoc: it must reserve power */
1558                 } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) {
1559                         di->zero_linek = 1200;
1560                         DBG("ZERO-new: zero_linek adjust step3...\n");
1561                 /* dsoc[5~15], dsoc < xsoc */
1562                 } else if ((di->dsoc <= 15 && di->dsoc > 5) &&
1563                            (di->zero_linek <= 1200)) {
1564                         /* slow down */
1565                         if (xsoc - di->dsoc >= min_gap_xsoc)
1566                                 di->zero_linek = 800;
1567                         /* reserve power */
1568                         else
1569                                 di->zero_linek = 1200;
1570                         DBG("ZERO-new: zero_linek adjust step4...\n");
1571                 /* dsoc[5, 100], dsoc < xsoc */
1572                 } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
1573                         if ((xsoc - di->dsoc) < min_gap_xsoc) {
1574                                 /* reserve power */
1575                                 di->zero_linek = 1200;
1576                         } else {
1577                                 if (abs(di->current_avg) > 500)/* heavy */
1578                                         di->zero_linek = 900;
1579                                 else
1580                                         di->zero_linek = 1000;
1581                         }
1582                         DBG("ZERO-new: zero_linek adjust step5...\n");
1583                 /* dsoc[0~5], dsoc < xsoc */
1584                 } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
1585                         if ((xsoc - di->dsoc) <= 3)
1586                                 di->zero_linek = 1200;
1587                         else
1588                                 di->zero_linek = 800;
1589                                 DBG("ZERO-new: zero_linek adjust step6...\n");
1590                 }
1591         } else {
1592                 /* xsoc < 0 */
1593                 di->zero_linek = 1000;
1594                 if (!di->zero_drop_sec)
1595                         di->zero_drop_sec = get_boot_sec();
1596                 if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
1597                         DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
1598                         di->zero_drop_sec = 0;
1599                         di->dsoc--;
1600                         di->zero_dsoc = (di->dsoc + 1) * 1000 -
1601                                                 MIN_ACCURACY;
1602                 }
1603         }
1604
1605         if (voltage_avg < pwroff_vol - 70) {
1606                 if (!di->shtd_drop_sec)
1607                         di->shtd_drop_sec = get_boot_sec();
1608                 if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
1609                         BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
1610                         di->shtd_drop_sec = 0;
1611                         di->dsoc = 0;
1612                 }
1613         } else {
1614                 di->shtd_drop_sec = 0;
1615         }
1616
1617         DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
1618             "rsoc=%d, gap=%d, v=%d, vsys=%d\n"
1619             "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
1620             "sht_drop=%ld\n\n",
1621             org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
1622             min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
1623             base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
1624 }
1625
1626 static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
1627 {
1628         di->finish_base = get_boot_sec();
1629         if (!di->finish_base)
1630                 di->finish_base = 1;
1631 }
1632
1633 static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
1634 {
1635         int tmp_soc;
1636
1637         tmp_soc = di->sm_chrg_dsoc / 1000;
1638         if (tmp_soc != di->dsoc)
1639                 di->sm_chrg_dsoc = di->dsoc * 1000;
1640
1641         tmp_soc = di->sm_dischrg_dsoc / 1000;
1642         if (tmp_soc != di->dsoc)
1643                 di->sm_dischrg_dsoc =
1644                 (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1645
1646         DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
1647             __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1648
1649         rk818_bat_calc_sm_linek(di);
1650 }
1651
1652 static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
1653 {
1654         int tmp_dsoc;
1655
1656         di->zero_timeout_cnt = 0;
1657         tmp_dsoc = di->zero_dsoc / 1000;
1658         if (tmp_dsoc != di->dsoc)
1659                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1660
1661         DBG("<%s>. first calc, reinit linek\n", __func__);
1662
1663         rk818_bat_calc_zero_linek(di);
1664 }
1665
1666 static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
1667 {
1668         int tmp_soc = 0, sm_delta_dsoc = 0;
1669
1670         tmp_soc = di->zero_dsoc / 1000;
1671         if (tmp_soc == di->dsoc)
1672                 goto out;
1673
1674         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1675         /* when discharge slow down, take sm chrg into calc */
1676         if (di->dsoc < di->rsoc) {
1677                 /* take sm charge rest into calc */
1678                 tmp_soc = di->sm_chrg_dsoc / 1000;
1679                 if (tmp_soc == di->dsoc) {
1680                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1681                         di->sm_chrg_dsoc = di->dsoc * 1000;
1682                         di->zero_dsoc += sm_delta_dsoc;
1683                         DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
1684                 }
1685         }
1686
1687         /* when discharge speed up, take sm dischrg into calc */
1688         if (di->dsoc > di->rsoc) {
1689                 /* take sm discharge rest into calc */
1690                 tmp_soc = di->sm_dischrg_dsoc / 1000;
1691                 if (tmp_soc == di->dsoc) {
1692                         sm_delta_dsoc = di->sm_dischrg_dsoc -
1693                                 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1694                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1695                                                                 MIN_ACCURACY;
1696                         di->zero_dsoc += sm_delta_dsoc;
1697                         DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
1698                 }
1699         }
1700
1701         /* check overflow */
1702         if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
1703                 DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
1704                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1705         }
1706
1707         /* check new dsoc */
1708         tmp_soc = di->zero_dsoc / 1000;
1709         if (tmp_soc != di->dsoc) {
1710                 /* avoid dsoc jump when heavy load */
1711                 if ((di->dsoc - tmp_soc) > 1) {
1712                         di->dsoc--;
1713                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1714                         DBG("ZERO1: heavy load...\n");
1715                 } else {
1716                         di->dsoc = tmp_soc;
1717                 }
1718                 di->zero_drop_sec = 0;
1719         }
1720
1721 out:
1722         DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
1723             di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
1724         DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
1725             di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1726 }
1727
1728 static void rk818_bat_zero_algorithm(struct rk818_battery *di)
1729 {
1730         int delta_cap = 0, delta_soc = 0;
1731
1732         di->zero_timeout_cnt++;
1733         delta_cap = di->zero_remain_cap - di->remain_cap;
1734         delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
1735
1736         DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
1737             "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
1738             "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
1739             di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
1740             delta_soc, delta_cap, di->zero_remain_cap,
1741             di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1742
1743         if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
1744             (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
1745             (di->zero_linek == 0)) {
1746                 DBG("ZERO1:--------- enter calc -----------\n");
1747                 di->zero_timeout_cnt = 0;
1748                 di->zero_dsoc -= delta_soc;
1749                 rk818_bat_calc_zero_algorithm(di);
1750                 rk818_bat_calc_zero_linek(di);
1751         }
1752 }
1753
1754 static void rk818_bat_dump_time_table(struct rk818_battery *di)
1755 {
1756         u8 i;
1757         static int old_index;
1758         static int old_min;
1759         int mod = di->dsoc % 10;
1760         int index = di->dsoc / 10;
1761         u32 time;
1762
1763         if (rk818_bat_chrg_online(di))
1764                 time = base2min(di->plug_in_base);
1765         else
1766                 time = base2min(di->plug_out_base);
1767
1768         if ((mod == 0) && (index > 0) && (old_index != index)) {
1769                 di->dbg_chrg_min[index - 1] = time - old_min;
1770                 old_min = time;
1771                 old_index = index;
1772         }
1773
1774         for (i = 1; i < 11; i++)
1775                 DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
1776         DBG("\n");
1777 }
1778
1779 static void rk818_bat_debug_info(struct rk818_battery *di)
1780 {
1781         u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
1782         u8 usb_ctrl, chrg_ctrl1, thermal;
1783         u8 int_sts1, int_sts2;
1784         u8 int_msk1, int_msk2;
1785         u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
1786         char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
1787         char *bat_mode[] = {"BAT", "VIRTUAL"};
1788
1789         if (rk818_bat_chrg_online(di))
1790                 di->plug_out_base = get_boot_sec();
1791         else
1792                 di->plug_in_base = get_boot_sec();
1793
1794         rk818_bat_dump_time_table(di);
1795
1796         if (!dbg_enable)
1797                 return;
1798
1799         ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
1800         misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
1801         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1802         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
1803         sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
1804         vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
1805         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1806         chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
1807         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1808         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1809         rtc = rk818_bat_read(di, 0);
1810         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1811         int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
1812         int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
1813         int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
1814         int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
1815         dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
1816         reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
1817
1818         DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
1819             "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
1820             "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
1821             "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
1822             "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
1823             "INT_STS:  REG1=0x%2x, REG2=0x%2x\n"
1824             "INT_MSK:  REG1=0x%2x, REG2=0x%2x\n",
1825             DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
1826             sup_tst, vb_mod, usb_ctrl,
1827             thermal, misc, ts_ctrl,
1828             chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
1829             int_sts1, int_sts2, int_msk1, int_msk2
1830            );
1831
1832         DBG("###############################################################\n"
1833             "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
1834             "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
1835             "fb_temp=%d, bat_temp=%d, sample_res=%d\n"
1836             "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d\n"
1837             "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
1838             "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
1839             "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
1840             "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n"
1841             "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n"
1842             "###############################################################\n",
1843             di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
1844             di->remain_cap, di->fcc, di->rsoc - di->dsoc,
1845             di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
1846             di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
1847             chrg_cur_input_array[usb_ctrl & 0x0f],
1848             chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
1849             feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
1850             di->pdata->sample_res, rk818_bat_get_ioffset(di),
1851             rk818_bat_get_coffset(di), di->poffset, di->bat_res,
1852             di->age_adjust_cap, di->fb_blank, base2min(di->finish_base),
1853             base2min(di->boot_base), di->sleep_sum_sec / 60,
1854             di->adc_allow_update,
1855             di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
1856             bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
1857             di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
1858             di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
1859             reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc,
1860             di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc,
1861             di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc,
1862             di->pwroff_min, di->is_initialized, di->is_sw_reset,
1863             di->dbg_cap_low0, di->is_first_on, di->last_dsoc
1864            );
1865 }
1866
1867 static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
1868 {
1869         int delta_cap;
1870
1871         delta_cap = cap - di->remain_cap;
1872         if (!delta_cap)
1873                 return;
1874
1875         di->age_adjust_cap += delta_cap;
1876         rk818_bat_init_coulomb_cap(di, cap);
1877         rk818_bat_smooth_algo_prepare(di);
1878         rk818_bat_zero_algo_prepare(di);
1879 }
1880
1881 static void rk818_bat_update_age_fcc(struct rk818_battery *di)
1882 {
1883         int fcc, remain_cap, age_keep_min, lock_fcc;
1884
1885         lock_fcc = rk818_bat_get_coulomb_cap(di);
1886         remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
1887         age_keep_min = base2min(di->age_keep_sec);
1888
1889         DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d,"
1890             "age_allow_update=%d, age_keep_min=%d\n",
1891             __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
1892             di->age_allow_update, age_keep_min);
1893
1894         if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
1895             (age_keep_min < 1200)) {
1896                 di->age_allow_update = false;
1897                 fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
1898                 BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
1899                          "level=%d, fcc:%d->%d?\n",
1900                          lock_fcc, remain_cap, di->age_ocv_soc,
1901                          di->age_ocv_cap, di->age_level, di->fcc, fcc);
1902
1903                 if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
1904                         BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
1905                         di->fcc = fcc;
1906                         rk818_bat_init_capacity(di, di->fcc);
1907                         rk818_bat_save_fcc(di, di->fcc);
1908                         rk818_bat_save_age_level(di, di->age_level);
1909                 }
1910         }
1911 }
1912
1913 static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
1914 {
1915         int chrg_finish_vol = di->pdata->max_chrg_voltage;
1916
1917         if (!rk818_bat_chrg_online(di))
1918                 return;
1919
1920         if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
1921             (di->voltage_avg > chrg_finish_vol - 150)) {
1922                 rk818_bat_update_age_fcc(di);
1923                 if (rk818_bat_adc_calib(di))
1924                         di->adc_allow_update = false;
1925         }
1926 }
1927
1928 static void rk818_bat_finish_algorithm(struct rk818_battery *di)
1929 {
1930         unsigned long finish_sec, soc_sec;
1931         int plus_soc, finish_current, rest = 0;
1932
1933         /* rsoc */
1934         if ((di->remain_cap != di->fcc) &&
1935             (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
1936                 di->age_adjust_cap += (di->fcc - di->remain_cap);
1937                 rk818_bat_init_coulomb_cap(di, di->fcc);
1938         }
1939
1940         /* dsoc */
1941         if (di->dsoc < 100) {
1942                 if (!di->finish_base)
1943                         di->finish_base = get_boot_sec();
1944                 finish_current = (di->rsoc - di->dsoc) >  FINISH_MAX_SOC_DELAY ?
1945                                         FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1;
1946                 finish_sec = base2sec(di->finish_base);
1947                 soc_sec = di->fcc * 3600 / 100 / DIV(finish_current);
1948                 plus_soc = finish_sec / DIV(soc_sec);
1949                 if (finish_sec > soc_sec) {
1950                         rest = finish_sec % soc_sec;
1951                         di->dsoc += plus_soc;
1952                         di->finish_base = get_boot_sec();
1953                         if (di->finish_base > rest)
1954                                 di->finish_base = get_boot_sec() - rest;
1955                 }
1956                 DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
1957                     "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
1958                     __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
1959         }
1960 }
1961
1962 static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
1963 {
1964         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
1965
1966         tmp_soc = di->sm_dischrg_dsoc / 1000;
1967         if (tmp_soc == di->dsoc)
1968                 goto out;
1969
1970         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1971         /* when dischrge slow down, take sm charge rest into calc */
1972         if (di->dsoc < di->rsoc) {
1973                 tmp_soc = di->sm_chrg_dsoc / 1000;
1974                 if (tmp_soc == di->dsoc) {
1975                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1976                         di->sm_chrg_dsoc = di->dsoc * 1000;
1977                         di->sm_dischrg_dsoc += sm_delta_dsoc;
1978                         DBG("<%s>. take sm dischrg, delta=%d\n",
1979                             __func__, sm_delta_dsoc);
1980                 }
1981         }
1982
1983         /* when discharge speed up, take zero discharge rest into calc */
1984         if (di->dsoc > di->rsoc) {
1985                 tmp_soc = di->zero_dsoc / 1000;
1986                 if (tmp_soc == di->dsoc) {
1987                         zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
1988                                                 1000 - MIN_ACCURACY);
1989                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1990                         di->sm_dischrg_dsoc += zero_delta_dsoc;
1991                         DBG("<%s>. take zero schrg, delta=%d\n",
1992                             __func__, zero_delta_dsoc);
1993                 }
1994         }
1995
1996         /* check up overflow */
1997         if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
1998                 DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
1999                 di->sm_dischrg_dsoc = (di->dsoc + 1) *
2000                                         1000 - MIN_ACCURACY;
2001         }
2002
2003         /* check new dsoc */
2004         tmp_soc = di->sm_dischrg_dsoc / 1000;
2005         if (tmp_soc != di->dsoc) {
2006                 di->dsoc = tmp_soc;
2007                 di->sm_chrg_dsoc = di->dsoc * 1000;
2008         }
2009 out:
2010         DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2011             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2012             di->zero_dsoc);
2013
2014 }
2015
2016 static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
2017 {
2018         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
2019
2020         tmp_soc = di->sm_chrg_dsoc / 1000;
2021         if (tmp_soc == di->dsoc)
2022                 goto out;
2023
2024         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
2025         /* when charge slow down, take zero & sm dischrg into calc */
2026         if (di->dsoc > di->rsoc) {
2027                 /* take sm discharge rest into calc */
2028                 tmp_soc = di->sm_dischrg_dsoc / 1000;
2029                 if (tmp_soc == di->dsoc) {
2030                         sm_delta_dsoc = di->sm_dischrg_dsoc -
2031                                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2032                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
2033                                                         MIN_ACCURACY;
2034                         di->sm_chrg_dsoc += sm_delta_dsoc;
2035                         DBG("<%s>. take sm dischrg, delta=%d\n",
2036                            __func__, sm_delta_dsoc);
2037                 }
2038
2039                 /* take zero discharge rest into calc */
2040                 tmp_soc = di->zero_dsoc / 1000;
2041                 if (tmp_soc == di->dsoc) {
2042                         zero_delta_dsoc = di->zero_dsoc -
2043                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2044                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2045                         di->sm_chrg_dsoc += zero_delta_dsoc;
2046                         DBG("<%s>. take zero dischrg, delta=%d\n",
2047                             __func__, zero_delta_dsoc);
2048                 }
2049         }
2050
2051         /* check down overflow */
2052         if (di->sm_chrg_dsoc < di->dsoc * 1000) {
2053                 DBG("<%s>. chrg_dsoc down overflow\n", __func__);
2054                 di->sm_chrg_dsoc = di->dsoc * 1000;
2055         }
2056
2057         /* check new dsoc */
2058         tmp_soc = di->sm_chrg_dsoc / 1000;
2059         if (tmp_soc != di->dsoc) {
2060                 di->dsoc = tmp_soc;
2061                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2062         }
2063 out:
2064         DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2065             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2066             di->zero_dsoc);
2067 }
2068
2069 static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
2070 {
2071         int ydsoc = 0, delta_cap = 0, old_cap = 0;
2072         unsigned long tgt_sec = 0;
2073
2074         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2075
2076         /* full charge: slow down */
2077         if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV)) {
2078                 di->sm_linek = FULL_CHRG_K;
2079         /* terminal charge, slow down */
2080         } else if ((di->current_avg >= TERM_CHRG_CURR) &&
2081             (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
2082                 di->sm_linek = TERM_CHRG_K;
2083                 DBG("<%s>. terminal mode..\n", __func__);
2084         /* simulate charge, speed up */
2085         } else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
2086                    (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
2087                    (di->dsoc < TERM_CHRG_DSOC) &&
2088                    ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
2089                 di->sm_linek = SIMULATE_CHRG_K;
2090                 DBG("<%s>. simulate mode..\n", __func__);
2091         } else {
2092                 /* charge and discharge switch */
2093                 if ((di->sm_linek * di->current_avg <= 0) ||
2094                     (di->sm_linek == TERM_CHRG_K) ||
2095                     (di->sm_linek == FULL_CHRG_K) ||
2096                     (di->sm_linek == SIMULATE_CHRG_K)) {
2097                         DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
2098                         rk818_bat_calc_sm_linek(di);
2099                 }
2100         }
2101
2102         old_cap = di->sm_remain_cap;
2103         /*
2104          * when dsoc equal rsoc(not include full, term, simulate case),
2105          * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
2106          * right away, so change it after flat seconds
2107          */
2108         if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
2109             (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
2110              di->sm_linek != SIMULATE_CHRG_K)) {
2111                 if (!di->flat_match_sec)
2112                         di->flat_match_sec = get_boot_sec();
2113                 tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3;
2114                 if (base2sec(di->flat_match_sec) >= tgt_sec) {
2115                         di->flat_match_sec = 0;
2116                         di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
2117                 }
2118                 DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
2119                     base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
2120         } else {
2121                 di->flat_match_sec = 0;
2122         }
2123
2124         /* abs(k)=1000 or dsoc=100, stop calc */
2125         if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
2126              di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
2127                 DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
2128                 if (abs(di->sm_linek) == 1000) {
2129                         di->dsoc = di->rsoc;
2130                         di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
2131                         DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
2132                             __func__, di->sm_linek);
2133                 }
2134                 di->sm_remain_cap = di->remain_cap;
2135                 di->sm_chrg_dsoc = di->dsoc * 1000;
2136                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2137                 DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
2138                     __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
2139         } else {
2140                 delta_cap = di->remain_cap - di->sm_remain_cap;
2141                 if (delta_cap == 0) {
2142                         DBG("<%s>. delta_cap = 0\n", __func__);
2143                         return;
2144                 }
2145                 ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
2146                 if (ydsoc == 0) {
2147                         DBG("<%s>. ydsoc = 0\n", __func__);
2148                         return;
2149                 }
2150                 di->sm_remain_cap = di->remain_cap;
2151
2152                 DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
2153                     __func__, di->sm_linek, ydsoc, old_cap,
2154                     di->sm_remain_cap, delta_cap);
2155
2156                 /* discharge mode */
2157                 if (ydsoc < 0) {
2158                         di->sm_dischrg_dsoc += ydsoc;
2159                         rk818_bat_calc_smooth_dischrg(di);
2160                 /* charge mode */
2161                 } else {
2162                         di->sm_chrg_dsoc += ydsoc;
2163                         rk818_bat_calc_smooth_chrg(di);
2164                 }
2165
2166                 if (di->s2r) {
2167                         di->s2r = false;
2168                         rk818_bat_calc_sm_linek(di);
2169                 }
2170         }
2171 }
2172
2173 /*
2174  * cccv and finish switch all the time will cause dsoc freeze,
2175  * if so, do finish chrg, 100ma is less than min finish_ma.
2176  */
2177 static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
2178 {
2179         if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
2180             (abs(di->current_avg) <= 100))
2181                 return true;
2182         else
2183                 return false;
2184 }
2185
2186 static void rk818_bat_display_smooth(struct rk818_battery *di)
2187 {
2188         /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
2189         if (di->s2r && !di->sleep_chrg_online) {
2190                 DBG("s2r: discharge, reset algorithm...\n");
2191                 di->s2r = false;
2192                 rk818_bat_zero_algo_prepare(di);
2193                 rk818_bat_smooth_algo_prepare(di);
2194                 return;
2195         }
2196
2197         if (di->work_mode == MODE_FINISH) {
2198                 DBG("step1: charge finish...\n");
2199                 rk818_bat_finish_algorithm(di);
2200                 if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
2201                     !rk818_bat_fake_finish_mode(di)) {
2202                         if ((di->current_avg < 0) &&
2203                             (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2204                                 DBG("step1: change to zero mode...\n");
2205                                 rk818_bat_zero_algo_prepare(di);
2206                                 di->work_mode = MODE_ZERO;
2207                         } else {
2208                                 DBG("step1: change to smooth mode...\n");
2209                                 rk818_bat_smooth_algo_prepare(di);
2210                                 di->work_mode = MODE_SMOOTH;
2211                         }
2212                 }
2213         } else if (di->work_mode == MODE_ZERO) {
2214                 DBG("step2: zero algorithm...\n");
2215                 rk818_bat_zero_algorithm(di);
2216                 if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
2217                     (di->current_avg >= 0)) {
2218                         DBG("step2: change to smooth mode...\n");
2219                         rk818_bat_smooth_algo_prepare(di);
2220                         di->work_mode = MODE_SMOOTH;
2221                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2222                            rk818_bat_fake_finish_mode(di)) {
2223                         DBG("step2: change to finish mode...\n");
2224                         rk818_bat_finish_algo_prepare(di);
2225                         di->work_mode = MODE_FINISH;
2226                 }
2227         } else {
2228                 DBG("step3: smooth algorithm...\n");
2229                 rk818_bat_smooth_algorithm(di);
2230                 if ((di->current_avg < 0) &&
2231                     (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2232                         DBG("step3: change to zero mode...\n");
2233                         rk818_bat_zero_algo_prepare(di);
2234                         di->work_mode = MODE_ZERO;
2235                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2236                            rk818_bat_fake_finish_mode(di)) {
2237                         DBG("step3: change to finish mode...\n");
2238                         rk818_bat_finish_algo_prepare(di);
2239                         di->work_mode = MODE_FINISH;
2240                 }
2241         }
2242 }
2243
2244 static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
2245 {
2246         int soc, cap, vol;
2247
2248         vol = di->voltage_relax;
2249         soc = rk818_bat_vol_to_ocvsoc(di, vol);
2250         cap = rk818_bat_vol_to_ocvcap(di, vol);
2251         rk818_bat_init_capacity(di, cap);
2252         BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
2253 }
2254
2255 static void rk818_bat_relife_age_flag(struct rk818_battery *di)
2256 {
2257         u8 ocv_soc, ocv_cap, soc_level;
2258
2259         if (di->voltage_relax <= 0)
2260                 return;
2261
2262         ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
2263         ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
2264         DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
2265             ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
2266
2267         /* sleep enough time and ocv_soc enough low */
2268         if (!di->age_allow_update && ocv_soc <= 10) {
2269                 di->age_voltage = di->voltage_relax;
2270                 di->age_ocv_cap = ocv_cap;
2271                 di->age_ocv_soc = ocv_soc;
2272                 di->age_adjust_cap = 0;
2273
2274                 if (ocv_soc <= 1)
2275                         di->age_level = 100;
2276                 else if (ocv_soc < 5)
2277                         di->age_level = 90;
2278                 else
2279                         di->age_level = 80;
2280
2281                 soc_level = rk818_bat_get_age_level(di);
2282                 if (soc_level > di->age_level) {
2283                         di->age_allow_update = false;
2284                 } else {
2285                         di->age_allow_update = true;
2286                         di->age_keep_sec = get_boot_sec();
2287                 }
2288
2289                 BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
2290                          "soc_level:%d, age_allow_update:%d, "
2291                          "age_level:%d\n",
2292                          di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
2293                          di->age_allow_update, di->age_level);
2294         }
2295 }
2296
2297 static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
2298 {
2299         bool ocv_soc_updated = false;
2300         int tgt_dsoc, gap_soc, sleep_soc = 0;
2301         int pwroff_vol = di->pdata->pwroff_vol;
2302         unsigned long sleep_sec = di->sleep_dischrg_sec;
2303
2304         DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
2305             __func__, di->dsoc, di->rsoc, di->voltage_relax,
2306             di->voltage_avg, sleep_sec / 60);
2307
2308         if (di->voltage_relax >= di->voltage_avg) {
2309                 rk818_bat_relax_vol_calib(di);
2310                 rk818_bat_restart_relax(di);
2311                 rk818_bat_relife_age_flag(di);
2312                 ocv_soc_updated = true;
2313         }
2314
2315         /* handle dsoc */
2316         if (di->dsoc <= di->rsoc) {
2317                 di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
2318                 sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc);
2319                 tgt_dsoc = di->dsoc - sleep_soc;
2320                 if (sleep_soc > 0) {
2321                         BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
2322                                  di->rsoc, di->dsoc, sleep_soc);
2323                         if (di->dsoc < 5) {
2324                                 di->dsoc--;
2325                         } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
2326                                 if (di->dsoc == 5)
2327                                         di->dsoc--;
2328                                 else
2329                                         di->dsoc = 5;
2330                         } else if (tgt_dsoc > 5) {
2331                                 di->dsoc = tgt_dsoc;
2332                         }
2333                 }
2334
2335                 DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
2336                     __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
2337         } else {
2338                 /* di->dsoc > di->rsoc */
2339                 di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
2340                 sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100);
2341                 gap_soc = di->dsoc - di->rsoc;
2342
2343                 BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
2344                          di->rsoc, di->dsoc, sleep_soc);
2345                 if (gap_soc > sleep_soc) {
2346                         if ((gap_soc - 5) > (sleep_soc * 2))
2347                                 di->dsoc -= (sleep_soc * 2);
2348                         else
2349                                 di->dsoc -= sleep_soc;
2350                 } else {
2351                         di->dsoc = di->rsoc;
2352                 }
2353
2354                 DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
2355                     __func__, di->sleep_sum_cap, sleep_soc, gap_soc);
2356         }
2357
2358         if (di->voltage_avg <= pwroff_vol - 70) {
2359                 di->dsoc = 0;
2360                 rk_send_wakeup_key();
2361                 BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
2362         }
2363
2364         if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
2365             di->dsoc < 40) {
2366                 di->dsoc--;
2367                 BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
2368         }
2369
2370         if (di->dsoc <= 0) {
2371                 di->dsoc = 0;
2372                 rk_send_wakeup_key();
2373                 BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
2374         }
2375
2376         DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
2377             __func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
2378
2379         return sleep_soc;
2380 }
2381
2382 static void rk818_bat_power_supply_changed(struct rk818_battery *di)
2383 {
2384         u8 status;
2385         static int old_soc = -1;
2386
2387         if (di->dsoc > 100)
2388                 di->dsoc = 100;
2389         else if (di->dsoc < 0)
2390                 di->dsoc = 0;
2391
2392         if (di->dsoc == old_soc)
2393                 return;
2394
2395         status = rk818_bat_read(di, RK818_SUP_STS_REG);
2396         status = (status & CHRG_STATUS_MSK) >> 4;
2397         old_soc = di->dsoc;
2398         di->last_dsoc = di->dsoc;
2399         power_supply_changed(di->bat);
2400         BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, "
2401                  "cap=%d, f=%d, st=%s\n",
2402                  di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
2403                  di->current_avg, di->remain_cap, di->fcc, bat_status[status]);
2404
2405         BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, "
2406                  "init=%d, sw=%d, calib=%d, below0=%d, force=%d\n",
2407                  di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol,
2408                  di->is_halt, di->halt_cnt, di->is_max_soc_offset,
2409                  di->is_initialized, di->is_sw_reset, di->is_ocv_calib,
2410                  di->dbg_cap_low0, di->is_force_calib);
2411 }
2412
2413 static u8 rk818_bat_check_reboot(struct rk818_battery *di)
2414 {
2415         u8 cnt;
2416
2417         cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
2418         cnt++;
2419
2420         if (cnt >= REBOOT_MAX_CNT) {
2421                 BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
2422                 di->dsoc = di->rsoc;
2423                 if (di->dsoc > 100)
2424                         di->dsoc = 100;
2425                 else if (di->dsoc < 0)
2426                         di->dsoc = 0;
2427                 rk818_bat_save_dsoc(di, di->dsoc);
2428                 cnt = REBOOT_MAX_CNT;
2429         }
2430
2431         rk818_bat_save_reboot_cnt(di, cnt);
2432         DBG("reboot cnt: %d\n", cnt);
2433
2434         return cnt;
2435 }
2436
2437 static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
2438 {
2439         int est_vol, remain_cap;
2440         static unsigned long sec;
2441
2442         if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
2443                 if (!sec)
2444                         sec = get_boot_sec();
2445                 wake_lock_timeout(&di->wake_lock,
2446                                   (di->pdata->monitor_sec + 1) * HZ);
2447
2448                 DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec));
2449                 if (base2sec(sec) >= 60) {
2450                         sec = 0;
2451                         di->dbg_cap_low0++;
2452                         est_vol = di->voltage_avg -
2453                                         (di->bat_res * di->current_avg) / 1000;
2454                         remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
2455                         rk818_bat_init_capacity(di, remain_cap);
2456                         BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
2457                                  di->remain_cap, di->rsoc);
2458                         wake_unlock(&di->wake_lock);
2459                 }
2460         } else {
2461                 sec = 0;
2462         }
2463 }
2464
2465 static void rk818_bat_update_info(struct rk818_battery *di)
2466 {
2467         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2468         di->current_avg = rk818_bat_get_avg_current(di);
2469         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2470         di->rsoc = rk818_bat_get_rsoc(di);
2471         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2472         di->chrg_status = rk818_bat_get_chrg_status(di);
2473
2474         /* smooth charge */
2475         if (di->remain_cap > di->fcc) {
2476                 di->sm_remain_cap -= (di->remain_cap - di->fcc);
2477                 DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
2478                     __func__, di->remain_cap, di->sm_remain_cap);
2479                 rk818_bat_init_coulomb_cap(di, di->fcc);
2480         }
2481
2482         if (di->chrg_status != CHARGE_FINISH)
2483                 di->finish_base = get_boot_sec();
2484
2485         /*
2486          * we need update fcc in continuous charging state, if discharge state
2487          * keep at least 2 hour, we decide not to update fcc, so clear the
2488          * fcc update flag: age_allow_update.
2489          */
2490         if (base2min(di->plug_out_base) > 120)
2491                 di->age_allow_update = false;
2492
2493         /* do adc calib: status must from cccv mode to finish mode */
2494         if (di->chrg_status == CC_OR_CV) {
2495                 di->adc_allow_update = true;
2496                 di->adc_calib_cnt = 0;
2497         }
2498 }
2499
2500 /* get ntc resistance */
2501 static int rk818_bat_get_ntc_res(struct rk818_battery *di)
2502 {
2503         int val = 0;
2504
2505         val |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2506         val |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2507
2508         val = val * NTC_CALC_FACTOR; /*reference voltage 2.2V,current 80ua*/
2509         DBG("<%s>. ntc_res=%d\n", __func__, val);
2510
2511         return val;
2512 }
2513
2514 static void rk818_bat_update_temperature(struct rk818_battery *di)
2515 {
2516         u32 ntc_size, *ntc_table;
2517         int i, res;
2518
2519         ntc_table = di->pdata->ntc_table;
2520         ntc_size = di->pdata->ntc_size;
2521         di->temperature = VIRTUAL_TEMPERATURE;
2522
2523         if (ntc_size) {
2524                 res = rk818_bat_get_ntc_res(di);
2525                 if (res < ntc_table[ntc_size - 1]) {
2526                         BAT_INFO("bat ntc upper max degree: R=%d\n", res);
2527                 } else if (res > ntc_table[0]) {
2528                         BAT_INFO("bat ntc lower min degree: R=%d\n", res);
2529                 } else {
2530                         for (i = 0; i < ntc_size; i++) {
2531                                 if (res >= ntc_table[i])
2532                                         break;
2533                         }
2534                         di->temperature = (i + di->pdata->ntc_degree_from) * 10;
2535                 }
2536         }
2537 }
2538
2539 static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
2540 {
2541         u8 buf;
2542         int16_t rest = 0;
2543         unsigned long soc_sec;
2544         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2545                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2546
2547         /* get rest */
2548         rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
2549         rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
2550
2551         /* get mode */
2552         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2553         di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
2554
2555         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2556                 if (di->algo_rest_mode == MODE_FINISH) {
2557                         soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1;
2558                         if ((rest / DIV(soc_sec)) > 0) {
2559                                 if (di->dsoc < 100) {
2560                                         di->dsoc++;
2561                                         di->algo_rest_val = rest % soc_sec;
2562                                         BAT_INFO("algorithm rest(%d) dsoc "
2563                                                  "inc: %d\n",
2564                                                  rest, di->dsoc);
2565                                 } else {
2566                                         di->algo_rest_val = 0;
2567                                 }
2568                         } else {
2569                                 di->algo_rest_val = rest;
2570                         }
2571                 } else {
2572                         di->algo_rest_val = rest;
2573                 }
2574         } else {
2575                 /* charge speed up */
2576                 if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
2577                         if (di->dsoc < di->rsoc) {
2578                                 di->dsoc++;
2579                                 di->algo_rest_val = rest % 1000;
2580                                 BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
2581                                          rest, di->dsoc);
2582                         } else {
2583                                 di->algo_rest_val = 0;
2584                         }
2585                 /* discharge speed up */
2586                 } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
2587                         if (di->dsoc > di->rsoc) {
2588                                 di->dsoc--;
2589                                 di->algo_rest_val = rest % 1000;
2590                                 BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
2591                                          rest, di->dsoc);
2592                         } else {
2593                                 di->algo_rest_val = 0;
2594                         }
2595                 } else {
2596                         di->algo_rest_val = rest;
2597                 }
2598         }
2599
2600         if (di->dsoc >= 100)
2601                 di->dsoc = 100;
2602         else if (di->dsoc <= 0)
2603                 di->dsoc = 0;
2604
2605         /* init current mode */
2606         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2607         di->current_avg = rk818_bat_get_avg_current(di);
2608         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2609                 rk818_bat_finish_algo_prepare(di);
2610                 di->work_mode = MODE_FINISH;
2611         } else {
2612                 rk818_bat_smooth_algo_prepare(di);
2613                 di->work_mode = MODE_SMOOTH;
2614         }
2615
2616         DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
2617             "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
2618             __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
2619             di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
2620             di->finish_base);
2621 }
2622
2623 static void rk818_bat_save_algo_rest(struct rk818_battery *di)
2624 {
2625         u8 buf, mode;
2626         int16_t algo_rest = 0;
2627         int tmp_soc;
2628         int zero_rest = 0, sm_chrg_rest = 0;
2629         int sm_dischrg_rest = 0, finish_rest = 0;
2630         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2631                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2632
2633         /* zero dischrg */
2634         tmp_soc = (di->zero_dsoc) / 1000;
2635         if (tmp_soc == di->dsoc)
2636                 zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
2637                                 MIN_ACCURACY);
2638
2639         /* sm chrg */
2640         tmp_soc = di->sm_chrg_dsoc / 1000;
2641         if (tmp_soc == di->dsoc)
2642                 sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
2643
2644         /* sm dischrg */
2645         tmp_soc = (di->sm_dischrg_dsoc) / 1000;
2646         if (tmp_soc == di->dsoc)
2647                 sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
2648                                 MIN_ACCURACY);
2649
2650         /* last time is also finish chrg, then add last rest */
2651         if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
2652                 finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
2653         else
2654                 finish_rest = base2sec(di->finish_base);
2655
2656         /* total calc */
2657         if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
2658             (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
2659             (di->dsoc == di->rsoc)) {
2660                 di->algo_rest_val = 0;
2661                 algo_rest = 0;
2662                 DBG("<%s>. step1..\n", __func__);
2663         } else if (di->work_mode == MODE_FINISH) {
2664                 algo_rest = finish_rest;
2665                 DBG("<%s>. step2..\n", __func__);
2666         } else if (di->algo_rest_mode == MODE_FINISH) {
2667                 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
2668                 DBG("<%s>. step3..\n", __func__);
2669         } else {
2670                 if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
2671                         algo_rest = sm_chrg_rest + di->algo_rest_val;
2672                 else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
2673                         algo_rest = zero_rest + sm_dischrg_rest +
2674                                     di->algo_rest_val;
2675                 else
2676                         algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
2677                                     di->algo_rest_val;
2678                 DBG("<%s>. step4..\n", __func__);
2679         }
2680
2681         /* check mode */
2682         if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
2683                 mode = di->work_mode;
2684         } else {/* MODE_SMOOTH */
2685                 if (di->sm_linek > 0)
2686                         mode = MODE_SMOOTH_CHRG;
2687                 else
2688                         mode = MODE_SMOOTH_DISCHRG;
2689         }
2690
2691         /* save mode */
2692         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2693         buf &= ~ALGO_REST_MODE_MSK;
2694         buf |= (mode << ALGO_REST_MODE_SHIFT);
2695         rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
2696
2697         /* save rest */
2698         buf = (algo_rest >> 8) & 0xff;
2699         rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
2700         buf = (algo_rest >> 0) & 0xff;
2701         rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
2702
2703         DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
2704             "chrg=%d, dischrg=%d, finish=%lu\n",
2705             __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
2706             sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
2707 }
2708
2709 static void rk818_bat_save_data(struct rk818_battery *di)
2710 {
2711         rk818_bat_save_dsoc(di, di->dsoc);
2712         rk818_bat_save_cap(di, di->remain_cap);
2713         rk818_bat_save_algo_rest(di);
2714 }
2715
2716 static void rk818_battery_work(struct work_struct *work)
2717 {
2718         struct rk818_battery *di =
2719                 container_of(work, struct rk818_battery, bat_delay_work.work);
2720
2721         rk818_bat_update_info(di);
2722         rk818_bat_wait_finish_sig(di);
2723         rk818_bat_rsoc_daemon(di);
2724         rk818_bat_update_temperature(di);
2725         rk818_bat_display_smooth(di);
2726         rk818_bat_power_supply_changed(di);
2727         rk818_bat_save_data(di);
2728         rk818_bat_debug_info(di);
2729
2730         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
2731                            msecs_to_jiffies(di->monitor_ms));
2732 }
2733
2734 static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
2735 {
2736         struct rk818_battery *di = (struct rk818_battery *)bat;
2737
2738         di->dsoc = 0;
2739         rk_send_wakeup_key();
2740         BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
2741                  di->voltage_avg, di->current_avg, di->dsoc);
2742
2743         return IRQ_HANDLED;
2744 }
2745
2746 static void rk818_bat_init_sysfs(struct rk818_battery *di)
2747 {
2748         int i, ret;
2749
2750         for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
2751                 ret = sysfs_create_file(&di->dev->kobj,
2752                                         &rk818_bat_attr[i].attr);
2753                 if (ret)
2754                         dev_err(di->dev, "create bat node(%s) error\n",
2755                                 rk818_bat_attr[i].attr.name);
2756         }
2757 }
2758
2759 static int rk818_bat_init_irqs(struct rk818_battery *di)
2760 {
2761         struct rk808 *rk818 = di->rk818;
2762         struct platform_device *pdev = di->pdev;
2763         int ret, vb_lo_irq;
2764
2765         vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
2766         if (vb_lo_irq < 0) {
2767                 dev_err(di->dev, "vb_lo_irq request failed!\n");
2768                 return vb_lo_irq;
2769         }
2770
2771         ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
2772                                         rk818_vb_low_irq, IRQF_TRIGGER_HIGH,
2773                                         "rk818_vb_low", di);
2774         if (ret) {
2775                 dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
2776                 return ret;
2777         }
2778         enable_irq_wake(vb_lo_irq);
2779
2780         return 0;
2781 }
2782
2783 static void rk818_bat_init_info(struct rk818_battery *di)
2784 {
2785         di->design_cap = di->pdata->design_capacity;
2786         di->qmax = di->pdata->design_qmax;
2787         di->bat_res = di->pdata->bat_res;
2788         di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
2789         di->boot_base = POWER_ON_SEC_BASE;
2790         di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
2791                        SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
2792 }
2793
2794 static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
2795 {
2796         int err;
2797         int interval_sec = 0;
2798         struct rtc_time tm;
2799         struct timespec tv = { .tv_nsec = NSEC_PER_SEC >> 1, };
2800         struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
2801
2802         err = rtc_read_time(rtc, &tm);
2803         if (err) {
2804                 dev_err(rtc->dev.parent, "hctosys: read hardware clk failed\n");
2805                 return 0;
2806         }
2807
2808         err = rtc_valid_tm(&tm);
2809         if (err) {
2810                 dev_err(rtc->dev.parent, "hctosys: invalid date time\n");
2811                 return 0;
2812         }
2813
2814         rtc_tm_to_time(&tm, &tv.tv_sec);
2815         interval_sec = tv.tv_sec - di->rtc_base.tv_sec;
2816
2817         return (interval_sec > 0) ? interval_sec : 0;
2818 }
2819
2820 static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
2821 {
2822         u8 buf;
2823
2824         if (!di->pdata->ntc_size)
2825                 return;
2826
2827         /* ADC_TS1_EN */
2828         buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
2829         buf |= ADC_TS1_EN;
2830         rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
2831 }
2832
2833 static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
2834 {
2835         u8 val;
2836
2837         /* set vbat lowest 3.0v shutdown */
2838         val = rk818_bat_read(di, RK818_VB_MON_REG);
2839         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
2840         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
2841         rk818_bat_write(di, RK818_VB_MON_REG, val);
2842
2843         /* disable low irq */
2844         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
2845                            VB_LOW_INT_EN, VB_LOW_INT_EN);
2846 }
2847
2848 static void rk818_bat_init_fg(struct rk818_battery *di)
2849 {
2850         rk818_bat_enable_gauge(di);
2851         rk818_bat_init_voltage_kb(di);
2852         rk818_bat_init_coffset(di);
2853         rk818_bat_set_relax_sample(di);
2854         rk818_bat_set_ioffset_sample(di);
2855         rk818_bat_set_ocv_sample(di);
2856         rk818_bat_init_ts1_detect(di);
2857         rk818_bat_init_rsoc(di);
2858         rk818_bat_init_coulomb_cap(di, di->nac);
2859         rk818_bat_init_age_algorithm(di);
2860         rk818_bat_init_chrg_config(di);
2861         rk818_bat_set_shtd_vol(di);
2862         rk818_bat_init_zero_table(di);
2863         rk818_bat_init_caltimer(di);
2864         rk818_bat_init_dsoc_algorithm(di);
2865
2866         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2867         di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
2868         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2869         di->current_avg = rk818_bat_get_avg_current(di);
2870         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2871         di->dbg_pwr_dsoc = di->dsoc;
2872         di->dbg_pwr_rsoc = di->rsoc;
2873         di->dbg_pwr_vol = di->voltage_avg;
2874
2875         rk818_bat_dump_regs(di, 0x99, 0xee);
2876         DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
2877             di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
2878             di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
2879 }
2880
2881 #ifdef CONFIG_OF
2882 static int rk818_bat_parse_dt(struct rk818_battery *di)
2883 {
2884         u32 out_value;
2885         int length, ret;
2886         size_t size;
2887         struct device_node *np = di->dev->of_node;
2888         struct battery_platform_data *pdata;
2889         struct device *dev = di->dev;
2890
2891         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2892         if (!pdata)
2893                 return -ENOMEM;
2894
2895         di->pdata = pdata;
2896         /* init default param */
2897         pdata->bat_res = DEFAULT_BAT_RES;
2898         pdata->monitor_sec = DEFAULT_MONITOR_SEC;
2899         pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
2900         pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
2901         pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
2902         pdata->bat_mode = MODE_BATTARY;
2903         pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
2904         pdata->sample_res = DEFAULT_SAMPLE_RES;
2905         pdata->energy_mode = DEFAULT_ENERGY_MODE;
2906         pdata->fb_temp = DEFAULT_FB_TEMP;
2907         pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC;
2908
2909         /* parse necessary param */
2910         if (!of_find_property(np, "ocv_table", &length)) {
2911                 dev_err(dev, "ocv_table not found!\n");
2912                 return -EINVAL;
2913         }
2914
2915         pdata->ocv_size = length / sizeof(u32);
2916         if (pdata->ocv_size <= 0) {
2917                 dev_err(dev, "invalid ocv table\n");
2918                 return -EINVAL;
2919         }
2920
2921         size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
2922         pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
2923         if (!pdata->ocv_table)
2924                 return -ENOMEM;
2925
2926         ret = of_property_read_u32_array(np, "ocv_table",
2927                                          pdata->ocv_table,
2928                                          pdata->ocv_size);
2929         if (ret < 0)
2930                 return ret;
2931
2932         ret = of_property_read_u32(np, "design_capacity", &out_value);
2933         if (ret < 0) {
2934                 dev_err(dev, "design_capacity not found!\n");
2935                 return ret;
2936         }
2937         pdata->design_capacity = out_value;
2938
2939         ret = of_property_read_u32(np, "design_qmax", &out_value);
2940         if (ret < 0) {
2941                 dev_err(dev, "design_qmax not found!\n");
2942                 return ret;
2943         }
2944         pdata->design_qmax = out_value;
2945         ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
2946         if (ret < 0) {
2947                 dev_err(dev, "max_chrg_voltage missing!\n");
2948                 return ret;
2949         }
2950         pdata->max_chrg_voltage = out_value;
2951         if (out_value >= 4300)
2952                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
2953         else
2954                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
2955
2956         ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
2957         if (ret < 0)
2958                 dev_err(dev, "fb_temperature missing!\n");
2959
2960         ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
2961         if (ret < 0)
2962                 dev_err(dev, "sample_res missing!\n");
2963
2964         ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
2965         if (ret < 0)
2966                 dev_err(dev, "energy_mode missing!\n");
2967
2968         ret = of_property_read_u32(np, "max_soc_offset",
2969                                    &pdata->max_soc_offset);
2970         if (ret < 0)
2971                 dev_err(dev, "max_soc_offset missing!\n");
2972
2973         ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
2974         if (ret < 0)
2975                 dev_err(dev, "monitor_sec missing!\n");
2976
2977         ret = of_property_read_u32(np, "zero_algorithm_vol",
2978                                    &pdata->zero_algorithm_vol);
2979         if (ret < 0)
2980                 dev_err(dev, "zero_algorithm_vol missing!\n");
2981
2982         ret = of_property_read_u32(np, "zero_reserve_dsoc",
2983                                   &pdata->zero_reserve_dsoc);
2984
2985         ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
2986         if (ret < 0)
2987                 dev_err(dev, "virtual_power missing!\n");
2988
2989         ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
2990         if (ret < 0)
2991                 dev_err(dev, "bat_res missing!\n");
2992
2993         ret = of_property_read_u32(np, "sleep_enter_current",
2994                                    &pdata->sleep_enter_current);
2995         if (ret < 0)
2996                 dev_err(dev, "sleep_enter_current missing!\n");
2997
2998         ret = of_property_read_u32(np, "sleep_exit_current",
2999                                    &pdata->sleep_exit_current);
3000         if (ret < 0)
3001                 dev_err(dev, "sleep_exit_current missing!\n");
3002
3003         ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
3004         if (ret < 0)
3005                 dev_err(dev, "power_off_thresd missing!\n");
3006
3007         if (!of_find_property(np, "ntc_table", &length)) {
3008                 pdata->ntc_size = 0;
3009         } else {
3010                 /* get ntc degree base value */
3011                 ret = of_property_read_u32_index(np, "ntc_degree_from", 1,
3012                                                  &pdata->ntc_degree_from);
3013                 if (ret) {
3014                         dev_err(dev, "invalid ntc_degree_from\n");
3015                         return -EINVAL;
3016                 }
3017
3018                 of_property_read_u32_index(np, "ntc_degree_from", 0,
3019                                            &out_value);
3020                 if (out_value)
3021                         pdata->ntc_degree_from = -pdata->ntc_degree_from;
3022
3023                 pdata->ntc_size = length / sizeof(u32);
3024         }
3025
3026         if (pdata->ntc_size) {
3027                 size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
3028                 pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
3029                 if (!pdata->ntc_table)
3030                         return -ENOMEM;
3031
3032                 ret = of_property_read_u32_array(np, "ntc_table",
3033                                                  pdata->ntc_table,
3034                                                  pdata->ntc_size);
3035                 if (ret < 0)
3036                         return ret;
3037         }
3038
3039         DBG("the battery dts info dump:\n"
3040             "bat_res:%d\n"
3041             "design_capacity:%d\n"
3042             "design_qmax :%d\n"
3043             "sleep_enter_current:%d\n"
3044             "sleep_exit_current:%d\n"
3045             "zero_algorithm_vol:%d\n"
3046             "zero_reserve_dsoc:%d\n"
3047             "monitor_sec:%d\n"
3048             "max_soc_offset:%d\n"
3049             "virtual_power:%d\n"
3050             "pwroff_vol:%d\n"
3051             "sample_res:%d\n"
3052             "ntc_size=%d\n"
3053             "ntc_degree_from:%d\n"
3054             "ntc_degree_to:%d\n",
3055             pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
3056             pdata->sleep_enter_current, pdata->sleep_exit_current,
3057             pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc,
3058             pdata->monitor_sec,
3059             pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
3060             pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
3061             pdata->ntc_degree_from + pdata->ntc_size - 1
3062             );
3063
3064         return 0;
3065 }
3066 #else
3067 static int rk818_bat_parse_dt(struct rk818_battery *di)
3068 {
3069         return -ENODEV;
3070 }
3071 #endif
3072
3073 static const struct of_device_id rk818_battery_of_match[] = {
3074         {.compatible = "rk818-battery",},
3075         { },
3076 };
3077
3078 static int rk818_battery_probe(struct platform_device *pdev)
3079 {
3080         const struct of_device_id *of_id =
3081                         of_match_device(rk818_battery_of_match, &pdev->dev);
3082         struct rk818_battery *di;
3083         struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
3084         int ret;
3085
3086         if (!of_id) {
3087                 dev_err(&pdev->dev, "Failed to find matching dt id\n");
3088                 return -ENODEV;
3089         }
3090
3091         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3092         if (!di)
3093                 return -ENOMEM;
3094
3095         di->rk818 = rk818;
3096         di->pdev = pdev;
3097         di->dev = &pdev->dev;
3098         di->regmap = rk818->regmap;
3099         platform_set_drvdata(pdev, di);
3100
3101         ret = rk818_bat_parse_dt(di);
3102         if (ret < 0) {
3103                 dev_err(di->dev, "rk818 battery parse dt failed!\n");
3104                 return ret;
3105         }
3106
3107         if (!is_rk818_bat_exist(di)) {
3108                 di->pdata->bat_mode = MODE_VIRTUAL;
3109                 dev_err(di->dev, "no battery, virtual power mode\n");
3110         }
3111
3112         ret = rk818_bat_init_irqs(di);
3113         if (ret != 0) {
3114                 dev_err(di->dev, "rk818 bat init irqs failed!\n");
3115                 return ret;
3116         }
3117
3118         ret = rk818_bat_init_power_supply(di);
3119         if (ret) {
3120                 dev_err(di->dev, "rk818 power supply register failed!\n");
3121                 return ret;
3122         }
3123
3124         rk818_bat_init_info(di);
3125         rk818_bat_init_fg(di);
3126         rk818_bat_init_sysfs(di);
3127         rk818_bat_register_fb_notify(di);
3128         wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
3129         di->bat_monitor_wq = alloc_ordered_workqueue("%s",
3130                         WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
3131         INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
3132         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3133                            msecs_to_jiffies(TIMER_MS_COUNTS * 5));
3134
3135         BAT_INFO("driver version %s\n", DRIVER_VERSION);
3136
3137         return ret;
3138 }
3139
3140 static int rk818_battery_suspend(struct platform_device *dev,
3141                                  pm_message_t state)
3142 {
3143         struct rk818_battery *di = platform_get_drvdata(dev);
3144         u8 val, st;
3145
3146         cancel_delayed_work_sync(&di->bat_delay_work);
3147
3148         di->s2r = false;
3149         di->sleep_chrg_online = rk818_bat_chrg_online(di);
3150         di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
3151         di->current_avg = rk818_bat_get_avg_current(di);
3152         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3153         di->rsoc = rk818_bat_get_rsoc(di);
3154         do_gettimeofday(&di->rtc_base);
3155         rk818_bat_save_data(di);
3156         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3157
3158         /* if not CHARGE_FINISH, reinit finish_base.
3159          * avoid sleep loop between suspend and resume
3160          */
3161         if (di->sleep_chrg_status != CHARGE_FINISH)
3162                 di->finish_base = get_boot_sec();
3163
3164         /* avoid: enter suspend from MODE_ZERO: load from heavy to light */
3165         if ((di->work_mode == MODE_ZERO) &&
3166             (di->sleep_chrg_online) && (di->current_avg >= 0)) {
3167                 DBG("suspend: MODE_ZERO exit...\n");
3168                 /* it need't do prepare for mode finish and smooth, it will
3169                  * be done in display_smooth
3170                  */
3171                 if (di->sleep_chrg_status == CHARGE_FINISH) {
3172                         di->work_mode = MODE_FINISH;
3173                         di->finish_base = get_boot_sec();
3174                 } else {
3175                         di->work_mode = MODE_SMOOTH;
3176                         rk818_bat_smooth_algo_prepare(di);
3177                 }
3178         }
3179
3180         /* set vbat low than 3.4v to generate a wakeup irq */
3181         val = rk818_bat_read(di, RK818_VB_MON_REG);
3182         val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
3183         val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
3184         rk818_bat_write(di, RK818_VB_MON_REG, val);
3185         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
3186
3187         BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n",
3188                  di->dsoc, di->rsoc, di->current_avg,
3189                  rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
3190                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3191
3192         return 0;
3193 }
3194
3195 static int rk818_battery_resume(struct platform_device *dev)
3196 {
3197         struct rk818_battery *di = platform_get_drvdata(dev);
3198         int interval_sec, time_step, pwroff_vol;
3199         u8 val, st;
3200
3201         di->s2r = true;
3202         di->current_avg = rk818_bat_get_avg_current(di);
3203         di->voltage_relax = rk818_bat_get_relax_voltage(di);
3204         di->voltage_avg = rk818_bat_get_avg_voltage(di);
3205         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3206         di->rsoc = rk818_bat_get_rsoc(di);
3207         interval_sec = rk818_bat_rtc_sleep_sec(di);
3208         di->sleep_sum_sec += interval_sec;
3209         pwroff_vol = di->pdata->pwroff_vol;
3210         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3211
3212         if (!di->sleep_chrg_online) {
3213                 /* only add up discharge sleep seconds */
3214                 di->sleep_dischrg_sec += interval_sec;
3215                 if (di->voltage_avg <= pwroff_vol + 50)
3216                         time_step = DISCHRG_TIME_STEP1;
3217                 else
3218                         time_step = DISCHRG_TIME_STEP2;
3219         }
3220
3221         BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
3222                  "cap=%d dt=%d at=%ld ch=%d st=%s\n",
3223                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3224                  di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
3225                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3226
3227         /* sleep: enough time and discharge */
3228         if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
3229                 if (rk818_bat_sleep_dischrg(di))
3230                         di->sleep_dischrg_sec = 0;
3231         }
3232
3233         rk818_bat_save_data(di);
3234
3235         /* set vbat lowest 3.0v shutdown */
3236         val = rk818_bat_read(di, RK818_VB_MON_REG);
3237         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3238         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3239         rk818_bat_write(di, RK818_VB_MON_REG, val);
3240         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3241                            VB_LOW_INT_EN, VB_LOW_INT_EN);
3242
3243         /* charge/lowpower lock: for battery work to update dsoc and rsoc */
3244         if ((di->sleep_chrg_online) ||
3245             (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
3246                 wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
3247
3248         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3249                            msecs_to_jiffies(1000));
3250
3251         return 0;
3252 }
3253
3254 static void rk818_battery_shutdown(struct platform_device *dev)
3255 {
3256         u8 cnt = 0;
3257         struct rk818_battery *di = platform_get_drvdata(dev);
3258
3259         cancel_delayed_work_sync(&di->bat_delay_work);
3260         cancel_delayed_work_sync(&di->calib_delay_work);
3261         rk818_bat_unregister_fb_notify(di);
3262         del_timer(&di->caltimer);
3263         if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
3264                 cnt = rk818_bat_check_reboot(di);
3265         else
3266                 rk818_bat_save_reboot_cnt(di, 0);
3267
3268         BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
3269                  "mode=%d rest=%d\n",
3270                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3271                  di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
3272                  di->algo_rest_mode, di->algo_rest_val);
3273 }
3274
3275 static struct platform_driver rk818_battery_driver = {
3276         .probe = rk818_battery_probe,
3277         .suspend = rk818_battery_suspend,
3278         .resume = rk818_battery_resume,
3279         .shutdown = rk818_battery_shutdown,
3280         .driver = {
3281                 .name = "rk818-battery",
3282                 .of_match_table = rk818_battery_of_match,
3283         },
3284 };
3285
3286 static int __init battery_init(void)
3287 {
3288         return platform_driver_register(&rk818_battery_driver);
3289 }
3290 fs_initcall_sync(battery_init);
3291
3292 static void __exit battery_exit(void)
3293 {
3294         platform_driver_unregister(&rk818_battery_driver);
3295 }
3296 module_exit(battery_exit);
3297
3298 MODULE_LICENSE("GPL");
3299 MODULE_ALIAS("platform:rk818-battery");
3300 MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");