intel-iommu: Limit DOMAIN_MAX_PFN to fit in an 'unsigned long'
[firefly-linux-kernel-4.4.55.git] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/dmi.h>
41 #include <asm/cacheflush.h>
42 #include <asm/iommu.h>
43 #include "pci.h"
44
45 #define ROOT_SIZE               VTD_PAGE_SIZE
46 #define CONTEXT_SIZE            VTD_PAGE_SIZE
47
48 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
49 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50
51 #define IOAPIC_RANGE_START      (0xfee00000)
52 #define IOAPIC_RANGE_END        (0xfeefffff)
53 #define IOVA_START_ADDR         (0x1000)
54
55 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56
57 #define MAX_AGAW_WIDTH 64
58
59 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
61
62 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
63    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
64 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
65                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
66 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
67
68 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
69 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
70 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
71
72
73 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
74    are never going to work. */
75 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
76 {
77         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
78 }
79
80 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
81 {
82         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
83 }
84 static inline unsigned long page_to_dma_pfn(struct page *pg)
85 {
86         return mm_to_dma_pfn(page_to_pfn(pg));
87 }
88 static inline unsigned long virt_to_dma_pfn(void *p)
89 {
90         return page_to_dma_pfn(virt_to_page(p));
91 }
92
93 /* global iommu list, set NULL for ignored DMAR units */
94 static struct intel_iommu **g_iommus;
95
96 static int rwbf_quirk;
97
98 /*
99  * 0: Present
100  * 1-11: Reserved
101  * 12-63: Context Ptr (12 - (haw-1))
102  * 64-127: Reserved
103  */
104 struct root_entry {
105         u64     val;
106         u64     rsvd1;
107 };
108 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
109 static inline bool root_present(struct root_entry *root)
110 {
111         return (root->val & 1);
112 }
113 static inline void set_root_present(struct root_entry *root)
114 {
115         root->val |= 1;
116 }
117 static inline void set_root_value(struct root_entry *root, unsigned long value)
118 {
119         root->val |= value & VTD_PAGE_MASK;
120 }
121
122 static inline struct context_entry *
123 get_context_addr_from_root(struct root_entry *root)
124 {
125         return (struct context_entry *)
126                 (root_present(root)?phys_to_virt(
127                 root->val & VTD_PAGE_MASK) :
128                 NULL);
129 }
130
131 /*
132  * low 64 bits:
133  * 0: present
134  * 1: fault processing disable
135  * 2-3: translation type
136  * 12-63: address space root
137  * high 64 bits:
138  * 0-2: address width
139  * 3-6: aval
140  * 8-23: domain id
141  */
142 struct context_entry {
143         u64 lo;
144         u64 hi;
145 };
146
147 static inline bool context_present(struct context_entry *context)
148 {
149         return (context->lo & 1);
150 }
151 static inline void context_set_present(struct context_entry *context)
152 {
153         context->lo |= 1;
154 }
155
156 static inline void context_set_fault_enable(struct context_entry *context)
157 {
158         context->lo &= (((u64)-1) << 2) | 1;
159 }
160
161 static inline void context_set_translation_type(struct context_entry *context,
162                                                 unsigned long value)
163 {
164         context->lo &= (((u64)-1) << 4) | 3;
165         context->lo |= (value & 3) << 2;
166 }
167
168 static inline void context_set_address_root(struct context_entry *context,
169                                             unsigned long value)
170 {
171         context->lo |= value & VTD_PAGE_MASK;
172 }
173
174 static inline void context_set_address_width(struct context_entry *context,
175                                              unsigned long value)
176 {
177         context->hi |= value & 7;
178 }
179
180 static inline void context_set_domain_id(struct context_entry *context,
181                                          unsigned long value)
182 {
183         context->hi |= (value & ((1 << 16) - 1)) << 8;
184 }
185
186 static inline void context_clear_entry(struct context_entry *context)
187 {
188         context->lo = 0;
189         context->hi = 0;
190 }
191
192 /*
193  * 0: readable
194  * 1: writable
195  * 2-6: reserved
196  * 7: super page
197  * 8-10: available
198  * 11: snoop behavior
199  * 12-63: Host physcial address
200  */
201 struct dma_pte {
202         u64 val;
203 };
204
205 static inline void dma_clear_pte(struct dma_pte *pte)
206 {
207         pte->val = 0;
208 }
209
210 static inline void dma_set_pte_readable(struct dma_pte *pte)
211 {
212         pte->val |= DMA_PTE_READ;
213 }
214
215 static inline void dma_set_pte_writable(struct dma_pte *pte)
216 {
217         pte->val |= DMA_PTE_WRITE;
218 }
219
220 static inline void dma_set_pte_snp(struct dma_pte *pte)
221 {
222         pte->val |= DMA_PTE_SNP;
223 }
224
225 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
226 {
227         pte->val = (pte->val & ~3) | (prot & 3);
228 }
229
230 static inline u64 dma_pte_addr(struct dma_pte *pte)
231 {
232 #ifdef CONFIG_64BIT
233         return pte->val & VTD_PAGE_MASK;
234 #else
235         /* Must have a full atomic 64-bit read */
236         return  __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
237 #endif
238 }
239
240 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
241 {
242         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
243 }
244
245 static inline bool dma_pte_present(struct dma_pte *pte)
246 {
247         return (pte->val & 3) != 0;
248 }
249
250 static inline int first_pte_in_page(struct dma_pte *pte)
251 {
252         return !((unsigned long)pte & ~VTD_PAGE_MASK);
253 }
254
255 /*
256  * This domain is a statically identity mapping domain.
257  *      1. This domain creats a static 1:1 mapping to all usable memory.
258  *      2. It maps to each iommu if successful.
259  *      3. Each iommu mapps to this domain if successful.
260  */
261 static struct dmar_domain *si_domain;
262 static int hw_pass_through = 1;
263
264 /* devices under the same p2p bridge are owned in one domain */
265 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
266
267 /* domain represents a virtual machine, more than one devices
268  * across iommus may be owned in one domain, e.g. kvm guest.
269  */
270 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
271
272 /* si_domain contains mulitple devices */
273 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
274
275 struct dmar_domain {
276         int     id;                     /* domain id */
277         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
278
279         struct list_head devices;       /* all devices' list */
280         struct iova_domain iovad;       /* iova's that belong to this domain */
281
282         struct dma_pte  *pgd;           /* virtual address */
283         int             gaw;            /* max guest address width */
284
285         /* adjusted guest address width, 0 is level 2 30-bit */
286         int             agaw;
287
288         int             flags;          /* flags to find out type of domain */
289
290         int             iommu_coherency;/* indicate coherency of iommu access */
291         int             iommu_snooping; /* indicate snooping control feature*/
292         int             iommu_count;    /* reference count of iommu */
293         spinlock_t      iommu_lock;     /* protect iommu set in domain */
294         u64             max_addr;       /* maximum mapped address */
295 };
296
297 /* PCI domain-device relationship */
298 struct device_domain_info {
299         struct list_head link;  /* link to domain siblings */
300         struct list_head global; /* link to global list */
301         int segment;            /* PCI domain */
302         u8 bus;                 /* PCI bus number */
303         u8 devfn;               /* PCI devfn number */
304         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
305         struct intel_iommu *iommu; /* IOMMU used by this device */
306         struct dmar_domain *domain; /* pointer to domain */
307 };
308
309 static void flush_unmaps_timeout(unsigned long data);
310
311 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
312
313 #define HIGH_WATER_MARK 250
314 struct deferred_flush_tables {
315         int next;
316         struct iova *iova[HIGH_WATER_MARK];
317         struct dmar_domain *domain[HIGH_WATER_MARK];
318 };
319
320 static struct deferred_flush_tables *deferred_flush;
321
322 /* bitmap for indexing intel_iommus */
323 static int g_num_of_iommus;
324
325 static DEFINE_SPINLOCK(async_umap_flush_lock);
326 static LIST_HEAD(unmaps_to_do);
327
328 static int timer_on;
329 static long list_size;
330
331 static void domain_remove_dev_info(struct dmar_domain *domain);
332
333 #ifdef CONFIG_DMAR_DEFAULT_ON
334 int dmar_disabled = 0;
335 #else
336 int dmar_disabled = 1;
337 #endif /*CONFIG_DMAR_DEFAULT_ON*/
338
339 static int __initdata dmar_map_gfx = 1;
340 static int dmar_forcedac;
341 static int intel_iommu_strict;
342
343 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
344 static DEFINE_SPINLOCK(device_domain_lock);
345 static LIST_HEAD(device_domain_list);
346
347 static struct iommu_ops intel_iommu_ops;
348
349 static int __init intel_iommu_setup(char *str)
350 {
351         if (!str)
352                 return -EINVAL;
353         while (*str) {
354                 if (!strncmp(str, "on", 2)) {
355                         dmar_disabled = 0;
356                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
357                 } else if (!strncmp(str, "off", 3)) {
358                         dmar_disabled = 1;
359                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
360                 } else if (!strncmp(str, "igfx_off", 8)) {
361                         dmar_map_gfx = 0;
362                         printk(KERN_INFO
363                                 "Intel-IOMMU: disable GFX device mapping\n");
364                 } else if (!strncmp(str, "forcedac", 8)) {
365                         printk(KERN_INFO
366                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
367                         dmar_forcedac = 1;
368                 } else if (!strncmp(str, "strict", 6)) {
369                         printk(KERN_INFO
370                                 "Intel-IOMMU: disable batched IOTLB flush\n");
371                         intel_iommu_strict = 1;
372                 }
373
374                 str += strcspn(str, ",");
375                 while (*str == ',')
376                         str++;
377         }
378         return 0;
379 }
380 __setup("intel_iommu=", intel_iommu_setup);
381
382 static struct kmem_cache *iommu_domain_cache;
383 static struct kmem_cache *iommu_devinfo_cache;
384 static struct kmem_cache *iommu_iova_cache;
385
386 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
387 {
388         unsigned int flags;
389         void *vaddr;
390
391         /* trying to avoid low memory issues */
392         flags = current->flags & PF_MEMALLOC;
393         current->flags |= PF_MEMALLOC;
394         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
395         current->flags &= (~PF_MEMALLOC | flags);
396         return vaddr;
397 }
398
399
400 static inline void *alloc_pgtable_page(void)
401 {
402         unsigned int flags;
403         void *vaddr;
404
405         /* trying to avoid low memory issues */
406         flags = current->flags & PF_MEMALLOC;
407         current->flags |= PF_MEMALLOC;
408         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
409         current->flags &= (~PF_MEMALLOC | flags);
410         return vaddr;
411 }
412
413 static inline void free_pgtable_page(void *vaddr)
414 {
415         free_page((unsigned long)vaddr);
416 }
417
418 static inline void *alloc_domain_mem(void)
419 {
420         return iommu_kmem_cache_alloc(iommu_domain_cache);
421 }
422
423 static void free_domain_mem(void *vaddr)
424 {
425         kmem_cache_free(iommu_domain_cache, vaddr);
426 }
427
428 static inline void * alloc_devinfo_mem(void)
429 {
430         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
431 }
432
433 static inline void free_devinfo_mem(void *vaddr)
434 {
435         kmem_cache_free(iommu_devinfo_cache, vaddr);
436 }
437
438 struct iova *alloc_iova_mem(void)
439 {
440         return iommu_kmem_cache_alloc(iommu_iova_cache);
441 }
442
443 void free_iova_mem(struct iova *iova)
444 {
445         kmem_cache_free(iommu_iova_cache, iova);
446 }
447
448
449 static inline int width_to_agaw(int width);
450
451 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
452 {
453         unsigned long sagaw;
454         int agaw = -1;
455
456         sagaw = cap_sagaw(iommu->cap);
457         for (agaw = width_to_agaw(max_gaw);
458              agaw >= 0; agaw--) {
459                 if (test_bit(agaw, &sagaw))
460                         break;
461         }
462
463         return agaw;
464 }
465
466 /*
467  * Calculate max SAGAW for each iommu.
468  */
469 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
470 {
471         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
472 }
473
474 /*
475  * calculate agaw for each iommu.
476  * "SAGAW" may be different across iommus, use a default agaw, and
477  * get a supported less agaw for iommus that don't support the default agaw.
478  */
479 int iommu_calculate_agaw(struct intel_iommu *iommu)
480 {
481         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
482 }
483
484 /* This functionin only returns single iommu in a domain */
485 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
486 {
487         int iommu_id;
488
489         /* si_domain and vm domain should not get here. */
490         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
491         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
492
493         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
494         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
495                 return NULL;
496
497         return g_iommus[iommu_id];
498 }
499
500 static void domain_update_iommu_coherency(struct dmar_domain *domain)
501 {
502         int i;
503
504         domain->iommu_coherency = 1;
505
506         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
507         for (; i < g_num_of_iommus; ) {
508                 if (!ecap_coherent(g_iommus[i]->ecap)) {
509                         domain->iommu_coherency = 0;
510                         break;
511                 }
512                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
513         }
514 }
515
516 static void domain_update_iommu_snooping(struct dmar_domain *domain)
517 {
518         int i;
519
520         domain->iommu_snooping = 1;
521
522         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
523         for (; i < g_num_of_iommus; ) {
524                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
525                         domain->iommu_snooping = 0;
526                         break;
527                 }
528                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
529         }
530 }
531
532 /* Some capabilities may be different across iommus */
533 static void domain_update_iommu_cap(struct dmar_domain *domain)
534 {
535         domain_update_iommu_coherency(domain);
536         domain_update_iommu_snooping(domain);
537 }
538
539 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
540 {
541         struct dmar_drhd_unit *drhd = NULL;
542         int i;
543
544         for_each_drhd_unit(drhd) {
545                 if (drhd->ignored)
546                         continue;
547                 if (segment != drhd->segment)
548                         continue;
549
550                 for (i = 0; i < drhd->devices_cnt; i++) {
551                         if (drhd->devices[i] &&
552                             drhd->devices[i]->bus->number == bus &&
553                             drhd->devices[i]->devfn == devfn)
554                                 return drhd->iommu;
555                         if (drhd->devices[i] &&
556                             drhd->devices[i]->subordinate &&
557                             drhd->devices[i]->subordinate->number <= bus &&
558                             drhd->devices[i]->subordinate->subordinate >= bus)
559                                 return drhd->iommu;
560                 }
561
562                 if (drhd->include_all)
563                         return drhd->iommu;
564         }
565
566         return NULL;
567 }
568
569 static void domain_flush_cache(struct dmar_domain *domain,
570                                void *addr, int size)
571 {
572         if (!domain->iommu_coherency)
573                 clflush_cache_range(addr, size);
574 }
575
576 /* Gets context entry for a given bus and devfn */
577 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
578                 u8 bus, u8 devfn)
579 {
580         struct root_entry *root;
581         struct context_entry *context;
582         unsigned long phy_addr;
583         unsigned long flags;
584
585         spin_lock_irqsave(&iommu->lock, flags);
586         root = &iommu->root_entry[bus];
587         context = get_context_addr_from_root(root);
588         if (!context) {
589                 context = (struct context_entry *)alloc_pgtable_page();
590                 if (!context) {
591                         spin_unlock_irqrestore(&iommu->lock, flags);
592                         return NULL;
593                 }
594                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
595                 phy_addr = virt_to_phys((void *)context);
596                 set_root_value(root, phy_addr);
597                 set_root_present(root);
598                 __iommu_flush_cache(iommu, root, sizeof(*root));
599         }
600         spin_unlock_irqrestore(&iommu->lock, flags);
601         return &context[devfn];
602 }
603
604 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
605 {
606         struct root_entry *root;
607         struct context_entry *context;
608         int ret;
609         unsigned long flags;
610
611         spin_lock_irqsave(&iommu->lock, flags);
612         root = &iommu->root_entry[bus];
613         context = get_context_addr_from_root(root);
614         if (!context) {
615                 ret = 0;
616                 goto out;
617         }
618         ret = context_present(&context[devfn]);
619 out:
620         spin_unlock_irqrestore(&iommu->lock, flags);
621         return ret;
622 }
623
624 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
625 {
626         struct root_entry *root;
627         struct context_entry *context;
628         unsigned long flags;
629
630         spin_lock_irqsave(&iommu->lock, flags);
631         root = &iommu->root_entry[bus];
632         context = get_context_addr_from_root(root);
633         if (context) {
634                 context_clear_entry(&context[devfn]);
635                 __iommu_flush_cache(iommu, &context[devfn], \
636                         sizeof(*context));
637         }
638         spin_unlock_irqrestore(&iommu->lock, flags);
639 }
640
641 static void free_context_table(struct intel_iommu *iommu)
642 {
643         struct root_entry *root;
644         int i;
645         unsigned long flags;
646         struct context_entry *context;
647
648         spin_lock_irqsave(&iommu->lock, flags);
649         if (!iommu->root_entry) {
650                 goto out;
651         }
652         for (i = 0; i < ROOT_ENTRY_NR; i++) {
653                 root = &iommu->root_entry[i];
654                 context = get_context_addr_from_root(root);
655                 if (context)
656                         free_pgtable_page(context);
657         }
658         free_pgtable_page(iommu->root_entry);
659         iommu->root_entry = NULL;
660 out:
661         spin_unlock_irqrestore(&iommu->lock, flags);
662 }
663
664 /* page table handling */
665 #define LEVEL_STRIDE            (9)
666 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
667
668 static inline int agaw_to_level(int agaw)
669 {
670         return agaw + 2;
671 }
672
673 static inline int agaw_to_width(int agaw)
674 {
675         return 30 + agaw * LEVEL_STRIDE;
676
677 }
678
679 static inline int width_to_agaw(int width)
680 {
681         return (width - 30) / LEVEL_STRIDE;
682 }
683
684 static inline unsigned int level_to_offset_bits(int level)
685 {
686         return (level - 1) * LEVEL_STRIDE;
687 }
688
689 static inline int pfn_level_offset(unsigned long pfn, int level)
690 {
691         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
692 }
693
694 static inline unsigned long level_mask(int level)
695 {
696         return -1UL << level_to_offset_bits(level);
697 }
698
699 static inline unsigned long level_size(int level)
700 {
701         return 1UL << level_to_offset_bits(level);
702 }
703
704 static inline unsigned long align_to_level(unsigned long pfn, int level)
705 {
706         return (pfn + level_size(level) - 1) & level_mask(level);
707 }
708
709 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
710                                       unsigned long pfn)
711 {
712         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
713         struct dma_pte *parent, *pte = NULL;
714         int level = agaw_to_level(domain->agaw);
715         int offset;
716
717         BUG_ON(!domain->pgd);
718         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
719         parent = domain->pgd;
720
721         while (level > 0) {
722                 void *tmp_page;
723
724                 offset = pfn_level_offset(pfn, level);
725                 pte = &parent[offset];
726                 if (level == 1)
727                         break;
728
729                 if (!dma_pte_present(pte)) {
730                         uint64_t pteval;
731
732                         tmp_page = alloc_pgtable_page();
733
734                         if (!tmp_page)
735                                 return NULL;
736
737                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
738                         pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
739                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
740                                 /* Someone else set it while we were thinking; use theirs. */
741                                 free_pgtable_page(tmp_page);
742                         } else {
743                                 dma_pte_addr(pte);
744                                 domain_flush_cache(domain, pte, sizeof(*pte));
745                         }
746                 }
747                 parent = phys_to_virt(dma_pte_addr(pte));
748                 level--;
749         }
750
751         return pte;
752 }
753
754 /* return address's pte at specific level */
755 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
756                                          unsigned long pfn,
757                                          int level)
758 {
759         struct dma_pte *parent, *pte = NULL;
760         int total = agaw_to_level(domain->agaw);
761         int offset;
762
763         parent = domain->pgd;
764         while (level <= total) {
765                 offset = pfn_level_offset(pfn, total);
766                 pte = &parent[offset];
767                 if (level == total)
768                         return pte;
769
770                 if (!dma_pte_present(pte))
771                         break;
772                 parent = phys_to_virt(dma_pte_addr(pte));
773                 total--;
774         }
775         return NULL;
776 }
777
778 /* clear last level pte, a tlb flush should be followed */
779 static void dma_pte_clear_range(struct dmar_domain *domain,
780                                 unsigned long start_pfn,
781                                 unsigned long last_pfn)
782 {
783         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
784         struct dma_pte *first_pte, *pte;
785
786         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
787         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
788
789         /* we don't need lock here; nobody else touches the iova range */
790         while (start_pfn <= last_pfn) {
791                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
792                 if (!pte) {
793                         start_pfn = align_to_level(start_pfn + 1, 2);
794                         continue;
795                 }
796                 do { 
797                         dma_clear_pte(pte);
798                         start_pfn++;
799                         pte++;
800                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
801
802                 domain_flush_cache(domain, first_pte,
803                                    (void *)pte - (void *)first_pte);
804         }
805 }
806
807 /* free page table pages. last level pte should already be cleared */
808 static void dma_pte_free_pagetable(struct dmar_domain *domain,
809                                    unsigned long start_pfn,
810                                    unsigned long last_pfn)
811 {
812         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
813         struct dma_pte *first_pte, *pte;
814         int total = agaw_to_level(domain->agaw);
815         int level;
816         unsigned long tmp;
817
818         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
819         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
820
821         /* We don't need lock here; nobody else touches the iova range */
822         level = 2;
823         while (level <= total) {
824                 tmp = align_to_level(start_pfn, level);
825
826                 /* If we can't even clear one PTE at this level, we're done */
827                 if (tmp + level_size(level) - 1 > last_pfn)
828                         return;
829
830                 while (tmp + level_size(level) - 1 <= last_pfn) {
831                         first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
832                         if (!pte) {
833                                 tmp = align_to_level(tmp + 1, level + 1);
834                                 continue;
835                         }
836                         do {
837                                 if (dma_pte_present(pte)) {
838                                         free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
839                                         dma_clear_pte(pte);
840                                 }
841                                 pte++;
842                                 tmp += level_size(level);
843                         } while (!first_pte_in_page(pte) &&
844                                  tmp + level_size(level) - 1 <= last_pfn);
845
846                         domain_flush_cache(domain, first_pte,
847                                            (void *)pte - (void *)first_pte);
848                         
849                 }
850                 level++;
851         }
852         /* free pgd */
853         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
854                 free_pgtable_page(domain->pgd);
855                 domain->pgd = NULL;
856         }
857 }
858
859 /* iommu handling */
860 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
861 {
862         struct root_entry *root;
863         unsigned long flags;
864
865         root = (struct root_entry *)alloc_pgtable_page();
866         if (!root)
867                 return -ENOMEM;
868
869         __iommu_flush_cache(iommu, root, ROOT_SIZE);
870
871         spin_lock_irqsave(&iommu->lock, flags);
872         iommu->root_entry = root;
873         spin_unlock_irqrestore(&iommu->lock, flags);
874
875         return 0;
876 }
877
878 static void iommu_set_root_entry(struct intel_iommu *iommu)
879 {
880         void *addr;
881         u32 sts;
882         unsigned long flag;
883
884         addr = iommu->root_entry;
885
886         spin_lock_irqsave(&iommu->register_lock, flag);
887         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
888
889         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
890
891         /* Make sure hardware complete it */
892         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
893                       readl, (sts & DMA_GSTS_RTPS), sts);
894
895         spin_unlock_irqrestore(&iommu->register_lock, flag);
896 }
897
898 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
899 {
900         u32 val;
901         unsigned long flag;
902
903         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
904                 return;
905
906         spin_lock_irqsave(&iommu->register_lock, flag);
907         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
908
909         /* Make sure hardware complete it */
910         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
911                       readl, (!(val & DMA_GSTS_WBFS)), val);
912
913         spin_unlock_irqrestore(&iommu->register_lock, flag);
914 }
915
916 /* return value determine if we need a write buffer flush */
917 static void __iommu_flush_context(struct intel_iommu *iommu,
918                                   u16 did, u16 source_id, u8 function_mask,
919                                   u64 type)
920 {
921         u64 val = 0;
922         unsigned long flag;
923
924         switch (type) {
925         case DMA_CCMD_GLOBAL_INVL:
926                 val = DMA_CCMD_GLOBAL_INVL;
927                 break;
928         case DMA_CCMD_DOMAIN_INVL:
929                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
930                 break;
931         case DMA_CCMD_DEVICE_INVL:
932                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
933                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
934                 break;
935         default:
936                 BUG();
937         }
938         val |= DMA_CCMD_ICC;
939
940         spin_lock_irqsave(&iommu->register_lock, flag);
941         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
942
943         /* Make sure hardware complete it */
944         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
945                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
946
947         spin_unlock_irqrestore(&iommu->register_lock, flag);
948 }
949
950 /* return value determine if we need a write buffer flush */
951 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
952                                 u64 addr, unsigned int size_order, u64 type)
953 {
954         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
955         u64 val = 0, val_iva = 0;
956         unsigned long flag;
957
958         switch (type) {
959         case DMA_TLB_GLOBAL_FLUSH:
960                 /* global flush doesn't need set IVA_REG */
961                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
962                 break;
963         case DMA_TLB_DSI_FLUSH:
964                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
965                 break;
966         case DMA_TLB_PSI_FLUSH:
967                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
968                 /* Note: always flush non-leaf currently */
969                 val_iva = size_order | addr;
970                 break;
971         default:
972                 BUG();
973         }
974         /* Note: set drain read/write */
975 #if 0
976         /*
977          * This is probably to be super secure.. Looks like we can
978          * ignore it without any impact.
979          */
980         if (cap_read_drain(iommu->cap))
981                 val |= DMA_TLB_READ_DRAIN;
982 #endif
983         if (cap_write_drain(iommu->cap))
984                 val |= DMA_TLB_WRITE_DRAIN;
985
986         spin_lock_irqsave(&iommu->register_lock, flag);
987         /* Note: Only uses first TLB reg currently */
988         if (val_iva)
989                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
990         dmar_writeq(iommu->reg + tlb_offset + 8, val);
991
992         /* Make sure hardware complete it */
993         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
994                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
995
996         spin_unlock_irqrestore(&iommu->register_lock, flag);
997
998         /* check IOTLB invalidation granularity */
999         if (DMA_TLB_IAIG(val) == 0)
1000                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1001         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1002                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1003                         (unsigned long long)DMA_TLB_IIRG(type),
1004                         (unsigned long long)DMA_TLB_IAIG(val));
1005 }
1006
1007 static struct device_domain_info *iommu_support_dev_iotlb(
1008         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1009 {
1010         int found = 0;
1011         unsigned long flags;
1012         struct device_domain_info *info;
1013         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1014
1015         if (!ecap_dev_iotlb_support(iommu->ecap))
1016                 return NULL;
1017
1018         if (!iommu->qi)
1019                 return NULL;
1020
1021         spin_lock_irqsave(&device_domain_lock, flags);
1022         list_for_each_entry(info, &domain->devices, link)
1023                 if (info->bus == bus && info->devfn == devfn) {
1024                         found = 1;
1025                         break;
1026                 }
1027         spin_unlock_irqrestore(&device_domain_lock, flags);
1028
1029         if (!found || !info->dev)
1030                 return NULL;
1031
1032         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1033                 return NULL;
1034
1035         if (!dmar_find_matched_atsr_unit(info->dev))
1036                 return NULL;
1037
1038         info->iommu = iommu;
1039
1040         return info;
1041 }
1042
1043 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1044 {
1045         if (!info)
1046                 return;
1047
1048         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1049 }
1050
1051 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1052 {
1053         if (!info->dev || !pci_ats_enabled(info->dev))
1054                 return;
1055
1056         pci_disable_ats(info->dev);
1057 }
1058
1059 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1060                                   u64 addr, unsigned mask)
1061 {
1062         u16 sid, qdep;
1063         unsigned long flags;
1064         struct device_domain_info *info;
1065
1066         spin_lock_irqsave(&device_domain_lock, flags);
1067         list_for_each_entry(info, &domain->devices, link) {
1068                 if (!info->dev || !pci_ats_enabled(info->dev))
1069                         continue;
1070
1071                 sid = info->bus << 8 | info->devfn;
1072                 qdep = pci_ats_queue_depth(info->dev);
1073                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1074         }
1075         spin_unlock_irqrestore(&device_domain_lock, flags);
1076 }
1077
1078 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1079                                   unsigned long pfn, unsigned int pages)
1080 {
1081         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1082         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1083
1084         BUG_ON(pages == 0);
1085
1086         /*
1087          * Fallback to domain selective flush if no PSI support or the size is
1088          * too big.
1089          * PSI requires page size to be 2 ^ x, and the base address is naturally
1090          * aligned to the size
1091          */
1092         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1093                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1094                                                 DMA_TLB_DSI_FLUSH);
1095         else
1096                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1097                                                 DMA_TLB_PSI_FLUSH);
1098
1099         /*
1100          * In caching mode, domain ID 0 is reserved for non-present to present
1101          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1102          */
1103         if (!cap_caching_mode(iommu->cap) || did)
1104                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1105 }
1106
1107 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1108 {
1109         u32 pmen;
1110         unsigned long flags;
1111
1112         spin_lock_irqsave(&iommu->register_lock, flags);
1113         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1114         pmen &= ~DMA_PMEN_EPM;
1115         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1116
1117         /* wait for the protected region status bit to clear */
1118         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1119                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1120
1121         spin_unlock_irqrestore(&iommu->register_lock, flags);
1122 }
1123
1124 static int iommu_enable_translation(struct intel_iommu *iommu)
1125 {
1126         u32 sts;
1127         unsigned long flags;
1128
1129         spin_lock_irqsave(&iommu->register_lock, flags);
1130         iommu->gcmd |= DMA_GCMD_TE;
1131         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1132
1133         /* Make sure hardware complete it */
1134         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1135                       readl, (sts & DMA_GSTS_TES), sts);
1136
1137         spin_unlock_irqrestore(&iommu->register_lock, flags);
1138         return 0;
1139 }
1140
1141 static int iommu_disable_translation(struct intel_iommu *iommu)
1142 {
1143         u32 sts;
1144         unsigned long flag;
1145
1146         spin_lock_irqsave(&iommu->register_lock, flag);
1147         iommu->gcmd &= ~DMA_GCMD_TE;
1148         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1149
1150         /* Make sure hardware complete it */
1151         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1152                       readl, (!(sts & DMA_GSTS_TES)), sts);
1153
1154         spin_unlock_irqrestore(&iommu->register_lock, flag);
1155         return 0;
1156 }
1157
1158
1159 static int iommu_init_domains(struct intel_iommu *iommu)
1160 {
1161         unsigned long ndomains;
1162         unsigned long nlongs;
1163
1164         ndomains = cap_ndoms(iommu->cap);
1165         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1166         nlongs = BITS_TO_LONGS(ndomains);
1167
1168         spin_lock_init(&iommu->lock);
1169
1170         /* TBD: there might be 64K domains,
1171          * consider other allocation for future chip
1172          */
1173         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1174         if (!iommu->domain_ids) {
1175                 printk(KERN_ERR "Allocating domain id array failed\n");
1176                 return -ENOMEM;
1177         }
1178         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1179                         GFP_KERNEL);
1180         if (!iommu->domains) {
1181                 printk(KERN_ERR "Allocating domain array failed\n");
1182                 return -ENOMEM;
1183         }
1184
1185         /*
1186          * if Caching mode is set, then invalid translations are tagged
1187          * with domainid 0. Hence we need to pre-allocate it.
1188          */
1189         if (cap_caching_mode(iommu->cap))
1190                 set_bit(0, iommu->domain_ids);
1191         return 0;
1192 }
1193
1194
1195 static void domain_exit(struct dmar_domain *domain);
1196 static void vm_domain_exit(struct dmar_domain *domain);
1197
1198 void free_dmar_iommu(struct intel_iommu *iommu)
1199 {
1200         struct dmar_domain *domain;
1201         int i;
1202         unsigned long flags;
1203
1204         if ((iommu->domains) && (iommu->domain_ids)) {
1205                 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1206                 for (; i < cap_ndoms(iommu->cap); ) {
1207                         domain = iommu->domains[i];
1208                         clear_bit(i, iommu->domain_ids);
1209
1210                         spin_lock_irqsave(&domain->iommu_lock, flags);
1211                         if (--domain->iommu_count == 0) {
1212                                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1213                                         vm_domain_exit(domain);
1214                                 else
1215                                         domain_exit(domain);
1216                         }
1217                         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1218
1219                         i = find_next_bit(iommu->domain_ids,
1220                                 cap_ndoms(iommu->cap), i+1);
1221                 }
1222         }
1223
1224         if (iommu->gcmd & DMA_GCMD_TE)
1225                 iommu_disable_translation(iommu);
1226
1227         if (iommu->irq) {
1228                 set_irq_data(iommu->irq, NULL);
1229                 /* This will mask the irq */
1230                 free_irq(iommu->irq, iommu);
1231                 destroy_irq(iommu->irq);
1232         }
1233
1234         kfree(iommu->domains);
1235         kfree(iommu->domain_ids);
1236
1237         g_iommus[iommu->seq_id] = NULL;
1238
1239         /* if all iommus are freed, free g_iommus */
1240         for (i = 0; i < g_num_of_iommus; i++) {
1241                 if (g_iommus[i])
1242                         break;
1243         }
1244
1245         if (i == g_num_of_iommus)
1246                 kfree(g_iommus);
1247
1248         /* free context mapping */
1249         free_context_table(iommu);
1250 }
1251
1252 static struct dmar_domain *alloc_domain(void)
1253 {
1254         struct dmar_domain *domain;
1255
1256         domain = alloc_domain_mem();
1257         if (!domain)
1258                 return NULL;
1259
1260         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1261         domain->flags = 0;
1262
1263         return domain;
1264 }
1265
1266 static int iommu_attach_domain(struct dmar_domain *domain,
1267                                struct intel_iommu *iommu)
1268 {
1269         int num;
1270         unsigned long ndomains;
1271         unsigned long flags;
1272
1273         ndomains = cap_ndoms(iommu->cap);
1274
1275         spin_lock_irqsave(&iommu->lock, flags);
1276
1277         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1278         if (num >= ndomains) {
1279                 spin_unlock_irqrestore(&iommu->lock, flags);
1280                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1281                 return -ENOMEM;
1282         }
1283
1284         domain->id = num;
1285         set_bit(num, iommu->domain_ids);
1286         set_bit(iommu->seq_id, &domain->iommu_bmp);
1287         iommu->domains[num] = domain;
1288         spin_unlock_irqrestore(&iommu->lock, flags);
1289
1290         return 0;
1291 }
1292
1293 static void iommu_detach_domain(struct dmar_domain *domain,
1294                                 struct intel_iommu *iommu)
1295 {
1296         unsigned long flags;
1297         int num, ndomains;
1298         int found = 0;
1299
1300         spin_lock_irqsave(&iommu->lock, flags);
1301         ndomains = cap_ndoms(iommu->cap);
1302         num = find_first_bit(iommu->domain_ids, ndomains);
1303         for (; num < ndomains; ) {
1304                 if (iommu->domains[num] == domain) {
1305                         found = 1;
1306                         break;
1307                 }
1308                 num = find_next_bit(iommu->domain_ids,
1309                                     cap_ndoms(iommu->cap), num+1);
1310         }
1311
1312         if (found) {
1313                 clear_bit(num, iommu->domain_ids);
1314                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1315                 iommu->domains[num] = NULL;
1316         }
1317         spin_unlock_irqrestore(&iommu->lock, flags);
1318 }
1319
1320 static struct iova_domain reserved_iova_list;
1321 static struct lock_class_key reserved_rbtree_key;
1322
1323 static void dmar_init_reserved_ranges(void)
1324 {
1325         struct pci_dev *pdev = NULL;
1326         struct iova *iova;
1327         int i;
1328
1329         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1330
1331         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1332                 &reserved_rbtree_key);
1333
1334         /* IOAPIC ranges shouldn't be accessed by DMA */
1335         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1336                 IOVA_PFN(IOAPIC_RANGE_END));
1337         if (!iova)
1338                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1339
1340         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1341         for_each_pci_dev(pdev) {
1342                 struct resource *r;
1343
1344                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1345                         r = &pdev->resource[i];
1346                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1347                                 continue;
1348                         iova = reserve_iova(&reserved_iova_list,
1349                                             IOVA_PFN(r->start),
1350                                             IOVA_PFN(r->end));
1351                         if (!iova)
1352                                 printk(KERN_ERR "Reserve iova failed\n");
1353                 }
1354         }
1355
1356 }
1357
1358 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1359 {
1360         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1361 }
1362
1363 static inline int guestwidth_to_adjustwidth(int gaw)
1364 {
1365         int agaw;
1366         int r = (gaw - 12) % 9;
1367
1368         if (r == 0)
1369                 agaw = gaw;
1370         else
1371                 agaw = gaw + 9 - r;
1372         if (agaw > 64)
1373                 agaw = 64;
1374         return agaw;
1375 }
1376
1377 static int domain_init(struct dmar_domain *domain, int guest_width)
1378 {
1379         struct intel_iommu *iommu;
1380         int adjust_width, agaw;
1381         unsigned long sagaw;
1382
1383         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1384         spin_lock_init(&domain->iommu_lock);
1385
1386         domain_reserve_special_ranges(domain);
1387
1388         /* calculate AGAW */
1389         iommu = domain_get_iommu(domain);
1390         if (guest_width > cap_mgaw(iommu->cap))
1391                 guest_width = cap_mgaw(iommu->cap);
1392         domain->gaw = guest_width;
1393         adjust_width = guestwidth_to_adjustwidth(guest_width);
1394         agaw = width_to_agaw(adjust_width);
1395         sagaw = cap_sagaw(iommu->cap);
1396         if (!test_bit(agaw, &sagaw)) {
1397                 /* hardware doesn't support it, choose a bigger one */
1398                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1399                 agaw = find_next_bit(&sagaw, 5, agaw);
1400                 if (agaw >= 5)
1401                         return -ENODEV;
1402         }
1403         domain->agaw = agaw;
1404         INIT_LIST_HEAD(&domain->devices);
1405
1406         if (ecap_coherent(iommu->ecap))
1407                 domain->iommu_coherency = 1;
1408         else
1409                 domain->iommu_coherency = 0;
1410
1411         if (ecap_sc_support(iommu->ecap))
1412                 domain->iommu_snooping = 1;
1413         else
1414                 domain->iommu_snooping = 0;
1415
1416         domain->iommu_count = 1;
1417
1418         /* always allocate the top pgd */
1419         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1420         if (!domain->pgd)
1421                 return -ENOMEM;
1422         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1423         return 0;
1424 }
1425
1426 static void domain_exit(struct dmar_domain *domain)
1427 {
1428         struct dmar_drhd_unit *drhd;
1429         struct intel_iommu *iommu;
1430
1431         /* Domain 0 is reserved, so dont process it */
1432         if (!domain)
1433                 return;
1434
1435         domain_remove_dev_info(domain);
1436         /* destroy iovas */
1437         put_iova_domain(&domain->iovad);
1438
1439         /* clear ptes */
1440         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1441
1442         /* free page tables */
1443         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1444
1445         for_each_active_iommu(iommu, drhd)
1446                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1447                         iommu_detach_domain(domain, iommu);
1448
1449         free_domain_mem(domain);
1450 }
1451
1452 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1453                                  u8 bus, u8 devfn, int translation)
1454 {
1455         struct context_entry *context;
1456         unsigned long flags;
1457         struct intel_iommu *iommu;
1458         struct dma_pte *pgd;
1459         unsigned long num;
1460         unsigned long ndomains;
1461         int id;
1462         int agaw;
1463         struct device_domain_info *info = NULL;
1464
1465         pr_debug("Set context mapping for %02x:%02x.%d\n",
1466                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1467
1468         BUG_ON(!domain->pgd);
1469         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1470                translation != CONTEXT_TT_MULTI_LEVEL);
1471
1472         iommu = device_to_iommu(segment, bus, devfn);
1473         if (!iommu)
1474                 return -ENODEV;
1475
1476         context = device_to_context_entry(iommu, bus, devfn);
1477         if (!context)
1478                 return -ENOMEM;
1479         spin_lock_irqsave(&iommu->lock, flags);
1480         if (context_present(context)) {
1481                 spin_unlock_irqrestore(&iommu->lock, flags);
1482                 return 0;
1483         }
1484
1485         id = domain->id;
1486         pgd = domain->pgd;
1487
1488         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1489             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1490                 int found = 0;
1491
1492                 /* find an available domain id for this device in iommu */
1493                 ndomains = cap_ndoms(iommu->cap);
1494                 num = find_first_bit(iommu->domain_ids, ndomains);
1495                 for (; num < ndomains; ) {
1496                         if (iommu->domains[num] == domain) {
1497                                 id = num;
1498                                 found = 1;
1499                                 break;
1500                         }
1501                         num = find_next_bit(iommu->domain_ids,
1502                                             cap_ndoms(iommu->cap), num+1);
1503                 }
1504
1505                 if (found == 0) {
1506                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1507                         if (num >= ndomains) {
1508                                 spin_unlock_irqrestore(&iommu->lock, flags);
1509                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1510                                 return -EFAULT;
1511                         }
1512
1513                         set_bit(num, iommu->domain_ids);
1514                         iommu->domains[num] = domain;
1515                         id = num;
1516                 }
1517
1518                 /* Skip top levels of page tables for
1519                  * iommu which has less agaw than default.
1520                  */
1521                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1522                         pgd = phys_to_virt(dma_pte_addr(pgd));
1523                         if (!dma_pte_present(pgd)) {
1524                                 spin_unlock_irqrestore(&iommu->lock, flags);
1525                                 return -ENOMEM;
1526                         }
1527                 }
1528         }
1529
1530         context_set_domain_id(context, id);
1531
1532         if (translation != CONTEXT_TT_PASS_THROUGH) {
1533                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1534                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1535                                      CONTEXT_TT_MULTI_LEVEL;
1536         }
1537         /*
1538          * In pass through mode, AW must be programmed to indicate the largest
1539          * AGAW value supported by hardware. And ASR is ignored by hardware.
1540          */
1541         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1542                 context_set_address_width(context, iommu->msagaw);
1543         else {
1544                 context_set_address_root(context, virt_to_phys(pgd));
1545                 context_set_address_width(context, iommu->agaw);
1546         }
1547
1548         context_set_translation_type(context, translation);
1549         context_set_fault_enable(context);
1550         context_set_present(context);
1551         domain_flush_cache(domain, context, sizeof(*context));
1552
1553         /*
1554          * It's a non-present to present mapping. If hardware doesn't cache
1555          * non-present entry we only need to flush the write-buffer. If the
1556          * _does_ cache non-present entries, then it does so in the special
1557          * domain #0, which we have to flush:
1558          */
1559         if (cap_caching_mode(iommu->cap)) {
1560                 iommu->flush.flush_context(iommu, 0,
1561                                            (((u16)bus) << 8) | devfn,
1562                                            DMA_CCMD_MASK_NOBIT,
1563                                            DMA_CCMD_DEVICE_INVL);
1564                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1565         } else {
1566                 iommu_flush_write_buffer(iommu);
1567         }
1568         iommu_enable_dev_iotlb(info);
1569         spin_unlock_irqrestore(&iommu->lock, flags);
1570
1571         spin_lock_irqsave(&domain->iommu_lock, flags);
1572         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1573                 domain->iommu_count++;
1574                 domain_update_iommu_cap(domain);
1575         }
1576         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1577         return 0;
1578 }
1579
1580 static int
1581 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1582                         int translation)
1583 {
1584         int ret;
1585         struct pci_dev *tmp, *parent;
1586
1587         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1588                                          pdev->bus->number, pdev->devfn,
1589                                          translation);
1590         if (ret)
1591                 return ret;
1592
1593         /* dependent device mapping */
1594         tmp = pci_find_upstream_pcie_bridge(pdev);
1595         if (!tmp)
1596                 return 0;
1597         /* Secondary interface's bus number and devfn 0 */
1598         parent = pdev->bus->self;
1599         while (parent != tmp) {
1600                 ret = domain_context_mapping_one(domain,
1601                                                  pci_domain_nr(parent->bus),
1602                                                  parent->bus->number,
1603                                                  parent->devfn, translation);
1604                 if (ret)
1605                         return ret;
1606                 parent = parent->bus->self;
1607         }
1608         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1609                 return domain_context_mapping_one(domain,
1610                                         pci_domain_nr(tmp->subordinate),
1611                                         tmp->subordinate->number, 0,
1612                                         translation);
1613         else /* this is a legacy PCI bridge */
1614                 return domain_context_mapping_one(domain,
1615                                                   pci_domain_nr(tmp->bus),
1616                                                   tmp->bus->number,
1617                                                   tmp->devfn,
1618                                                   translation);
1619 }
1620
1621 static int domain_context_mapped(struct pci_dev *pdev)
1622 {
1623         int ret;
1624         struct pci_dev *tmp, *parent;
1625         struct intel_iommu *iommu;
1626
1627         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1628                                 pdev->devfn);
1629         if (!iommu)
1630                 return -ENODEV;
1631
1632         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1633         if (!ret)
1634                 return ret;
1635         /* dependent device mapping */
1636         tmp = pci_find_upstream_pcie_bridge(pdev);
1637         if (!tmp)
1638                 return ret;
1639         /* Secondary interface's bus number and devfn 0 */
1640         parent = pdev->bus->self;
1641         while (parent != tmp) {
1642                 ret = device_context_mapped(iommu, parent->bus->number,
1643                                             parent->devfn);
1644                 if (!ret)
1645                         return ret;
1646                 parent = parent->bus->self;
1647         }
1648         if (tmp->is_pcie)
1649                 return device_context_mapped(iommu, tmp->subordinate->number,
1650                                              0);
1651         else
1652                 return device_context_mapped(iommu, tmp->bus->number,
1653                                              tmp->devfn);
1654 }
1655
1656 /* Returns a number of VTD pages, but aligned to MM page size */
1657 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1658                                             size_t size)
1659 {
1660         host_addr &= ~PAGE_MASK;
1661         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1662 }
1663
1664 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1665                             struct scatterlist *sg, unsigned long phys_pfn,
1666                             unsigned long nr_pages, int prot)
1667 {
1668         struct dma_pte *first_pte = NULL, *pte = NULL;
1669         phys_addr_t uninitialized_var(pteval);
1670         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1671         unsigned long sg_res;
1672
1673         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1674
1675         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1676                 return -EINVAL;
1677
1678         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1679
1680         if (sg)
1681                 sg_res = 0;
1682         else {
1683                 sg_res = nr_pages + 1;
1684                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1685         }
1686
1687         while (nr_pages--) {
1688                 uint64_t tmp;
1689
1690                 if (!sg_res) {
1691                         sg_res = aligned_nrpages(sg->offset, sg->length);
1692                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1693                         sg->dma_length = sg->length;
1694                         pteval = page_to_phys(sg_page(sg)) | prot;
1695                 }
1696                 if (!pte) {
1697                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1698                         if (!pte)
1699                                 return -ENOMEM;
1700                 }
1701                 /* We don't need lock here, nobody else
1702                  * touches the iova range
1703                  */
1704                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1705                 if (tmp) {
1706                         static int dumps = 5;
1707                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1708                                iov_pfn, tmp, (unsigned long long)pteval);
1709                         if (dumps) {
1710                                 dumps--;
1711                                 debug_dma_dump_mappings(NULL);
1712                         }
1713                         WARN_ON(1);
1714                 }
1715                 pte++;
1716                 if (!nr_pages || first_pte_in_page(pte)) {
1717                         domain_flush_cache(domain, first_pte,
1718                                            (void *)pte - (void *)first_pte);
1719                         pte = NULL;
1720                 }
1721                 iov_pfn++;
1722                 pteval += VTD_PAGE_SIZE;
1723                 sg_res--;
1724                 if (!sg_res)
1725                         sg = sg_next(sg);
1726         }
1727         return 0;
1728 }
1729
1730 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1731                                     struct scatterlist *sg, unsigned long nr_pages,
1732                                     int prot)
1733 {
1734         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1735 }
1736
1737 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1738                                      unsigned long phys_pfn, unsigned long nr_pages,
1739                                      int prot)
1740 {
1741         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1742 }
1743
1744 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1745 {
1746         if (!iommu)
1747                 return;
1748
1749         clear_context_table(iommu, bus, devfn);
1750         iommu->flush.flush_context(iommu, 0, 0, 0,
1751                                            DMA_CCMD_GLOBAL_INVL);
1752         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1753 }
1754
1755 static void domain_remove_dev_info(struct dmar_domain *domain)
1756 {
1757         struct device_domain_info *info;
1758         unsigned long flags;
1759         struct intel_iommu *iommu;
1760
1761         spin_lock_irqsave(&device_domain_lock, flags);
1762         while (!list_empty(&domain->devices)) {
1763                 info = list_entry(domain->devices.next,
1764                         struct device_domain_info, link);
1765                 list_del(&info->link);
1766                 list_del(&info->global);
1767                 if (info->dev)
1768                         info->dev->dev.archdata.iommu = NULL;
1769                 spin_unlock_irqrestore(&device_domain_lock, flags);
1770
1771                 iommu_disable_dev_iotlb(info);
1772                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1773                 iommu_detach_dev(iommu, info->bus, info->devfn);
1774                 free_devinfo_mem(info);
1775
1776                 spin_lock_irqsave(&device_domain_lock, flags);
1777         }
1778         spin_unlock_irqrestore(&device_domain_lock, flags);
1779 }
1780
1781 /*
1782  * find_domain
1783  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1784  */
1785 static struct dmar_domain *
1786 find_domain(struct pci_dev *pdev)
1787 {
1788         struct device_domain_info *info;
1789
1790         /* No lock here, assumes no domain exit in normal case */
1791         info = pdev->dev.archdata.iommu;
1792         if (info)
1793                 return info->domain;
1794         return NULL;
1795 }
1796
1797 /* domain is initialized */
1798 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1799 {
1800         struct dmar_domain *domain, *found = NULL;
1801         struct intel_iommu *iommu;
1802         struct dmar_drhd_unit *drhd;
1803         struct device_domain_info *info, *tmp;
1804         struct pci_dev *dev_tmp;
1805         unsigned long flags;
1806         int bus = 0, devfn = 0;
1807         int segment;
1808         int ret;
1809
1810         domain = find_domain(pdev);
1811         if (domain)
1812                 return domain;
1813
1814         segment = pci_domain_nr(pdev->bus);
1815
1816         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1817         if (dev_tmp) {
1818                 if (dev_tmp->is_pcie) {
1819                         bus = dev_tmp->subordinate->number;
1820                         devfn = 0;
1821                 } else {
1822                         bus = dev_tmp->bus->number;
1823                         devfn = dev_tmp->devfn;
1824                 }
1825                 spin_lock_irqsave(&device_domain_lock, flags);
1826                 list_for_each_entry(info, &device_domain_list, global) {
1827                         if (info->segment == segment &&
1828                             info->bus == bus && info->devfn == devfn) {
1829                                 found = info->domain;
1830                                 break;
1831                         }
1832                 }
1833                 spin_unlock_irqrestore(&device_domain_lock, flags);
1834                 /* pcie-pci bridge already has a domain, uses it */
1835                 if (found) {
1836                         domain = found;
1837                         goto found_domain;
1838                 }
1839         }
1840
1841         domain = alloc_domain();
1842         if (!domain)
1843                 goto error;
1844
1845         /* Allocate new domain for the device */
1846         drhd = dmar_find_matched_drhd_unit(pdev);
1847         if (!drhd) {
1848                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1849                         pci_name(pdev));
1850                 return NULL;
1851         }
1852         iommu = drhd->iommu;
1853
1854         ret = iommu_attach_domain(domain, iommu);
1855         if (ret) {
1856                 domain_exit(domain);
1857                 goto error;
1858         }
1859
1860         if (domain_init(domain, gaw)) {
1861                 domain_exit(domain);
1862                 goto error;
1863         }
1864
1865         /* register pcie-to-pci device */
1866         if (dev_tmp) {
1867                 info = alloc_devinfo_mem();
1868                 if (!info) {
1869                         domain_exit(domain);
1870                         goto error;
1871                 }
1872                 info->segment = segment;
1873                 info->bus = bus;
1874                 info->devfn = devfn;
1875                 info->dev = NULL;
1876                 info->domain = domain;
1877                 /* This domain is shared by devices under p2p bridge */
1878                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1879
1880                 /* pcie-to-pci bridge already has a domain, uses it */
1881                 found = NULL;
1882                 spin_lock_irqsave(&device_domain_lock, flags);
1883                 list_for_each_entry(tmp, &device_domain_list, global) {
1884                         if (tmp->segment == segment &&
1885                             tmp->bus == bus && tmp->devfn == devfn) {
1886                                 found = tmp->domain;
1887                                 break;
1888                         }
1889                 }
1890                 if (found) {
1891                         free_devinfo_mem(info);
1892                         domain_exit(domain);
1893                         domain = found;
1894                 } else {
1895                         list_add(&info->link, &domain->devices);
1896                         list_add(&info->global, &device_domain_list);
1897                 }
1898                 spin_unlock_irqrestore(&device_domain_lock, flags);
1899         }
1900
1901 found_domain:
1902         info = alloc_devinfo_mem();
1903         if (!info)
1904                 goto error;
1905         info->segment = segment;
1906         info->bus = pdev->bus->number;
1907         info->devfn = pdev->devfn;
1908         info->dev = pdev;
1909         info->domain = domain;
1910         spin_lock_irqsave(&device_domain_lock, flags);
1911         /* somebody is fast */
1912         found = find_domain(pdev);
1913         if (found != NULL) {
1914                 spin_unlock_irqrestore(&device_domain_lock, flags);
1915                 if (found != domain) {
1916                         domain_exit(domain);
1917                         domain = found;
1918                 }
1919                 free_devinfo_mem(info);
1920                 return domain;
1921         }
1922         list_add(&info->link, &domain->devices);
1923         list_add(&info->global, &device_domain_list);
1924         pdev->dev.archdata.iommu = info;
1925         spin_unlock_irqrestore(&device_domain_lock, flags);
1926         return domain;
1927 error:
1928         /* recheck it here, maybe others set it */
1929         return find_domain(pdev);
1930 }
1931
1932 static int iommu_identity_mapping;
1933
1934 static int iommu_domain_identity_map(struct dmar_domain *domain,
1935                                      unsigned long long start,
1936                                      unsigned long long end)
1937 {
1938         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1939         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1940
1941         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1942                           dma_to_mm_pfn(last_vpfn))) {
1943                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1944                 return -ENOMEM;
1945         }
1946
1947         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1948                  start, end, domain->id);
1949         /*
1950          * RMRR range might have overlap with physical memory range,
1951          * clear it first
1952          */
1953         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1954
1955         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1956                                   last_vpfn - first_vpfn + 1,
1957                                   DMA_PTE_READ|DMA_PTE_WRITE);
1958 }
1959
1960 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1961                                       unsigned long long start,
1962                                       unsigned long long end)
1963 {
1964         struct dmar_domain *domain;
1965         int ret;
1966
1967         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1968         if (!domain)
1969                 return -ENOMEM;
1970
1971         /* For _hardware_ passthrough, don't bother. But for software
1972            passthrough, we do it anyway -- it may indicate a memory
1973            range which is reserved in E820, so which didn't get set
1974            up to start with in si_domain */
1975         if (domain == si_domain && hw_pass_through) {
1976                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1977                        pci_name(pdev), start, end);
1978                 return 0;
1979         }
1980
1981         printk(KERN_INFO
1982                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1983                pci_name(pdev), start, end);
1984         
1985         if (end >> agaw_to_width(domain->agaw)) {
1986                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1987                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1988                      agaw_to_width(domain->agaw),
1989                      dmi_get_system_info(DMI_BIOS_VENDOR),
1990                      dmi_get_system_info(DMI_BIOS_VERSION),
1991                      dmi_get_system_info(DMI_PRODUCT_VERSION));
1992                 ret = -EIO;
1993                 goto error;
1994         }
1995
1996         ret = iommu_domain_identity_map(domain, start, end);
1997         if (ret)
1998                 goto error;
1999
2000         /* context entry init */
2001         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2002         if (ret)
2003                 goto error;
2004
2005         return 0;
2006
2007  error:
2008         domain_exit(domain);
2009         return ret;
2010 }
2011
2012 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2013         struct pci_dev *pdev)
2014 {
2015         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2016                 return 0;
2017         return iommu_prepare_identity_map(pdev, rmrr->base_address,
2018                 rmrr->end_address + 1);
2019 }
2020
2021 #ifdef CONFIG_DMAR_FLOPPY_WA
2022 static inline void iommu_prepare_isa(void)
2023 {
2024         struct pci_dev *pdev;
2025         int ret;
2026
2027         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2028         if (!pdev)
2029                 return;
2030
2031         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2032         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2033
2034         if (ret)
2035                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2036                        "floppy might not work\n");
2037
2038 }
2039 #else
2040 static inline void iommu_prepare_isa(void)
2041 {
2042         return;
2043 }
2044 #endif /* !CONFIG_DMAR_FLPY_WA */
2045
2046 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2047
2048 static int __init si_domain_work_fn(unsigned long start_pfn,
2049                                     unsigned long end_pfn, void *datax)
2050 {
2051         int *ret = datax;
2052
2053         *ret = iommu_domain_identity_map(si_domain,
2054                                          (uint64_t)start_pfn << PAGE_SHIFT,
2055                                          (uint64_t)end_pfn << PAGE_SHIFT);
2056         return *ret;
2057
2058 }
2059
2060 static int __init si_domain_init(int hw)
2061 {
2062         struct dmar_drhd_unit *drhd;
2063         struct intel_iommu *iommu;
2064         int nid, ret = 0;
2065
2066         si_domain = alloc_domain();
2067         if (!si_domain)
2068                 return -EFAULT;
2069
2070         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2071
2072         for_each_active_iommu(iommu, drhd) {
2073                 ret = iommu_attach_domain(si_domain, iommu);
2074                 if (ret) {
2075                         domain_exit(si_domain);
2076                         return -EFAULT;
2077                 }
2078         }
2079
2080         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2081                 domain_exit(si_domain);
2082                 return -EFAULT;
2083         }
2084
2085         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2086
2087         if (hw)
2088                 return 0;
2089
2090         for_each_online_node(nid) {
2091                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2092                 if (ret)
2093                         return ret;
2094         }
2095
2096         return 0;
2097 }
2098
2099 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2100                                           struct pci_dev *pdev);
2101 static int identity_mapping(struct pci_dev *pdev)
2102 {
2103         struct device_domain_info *info;
2104
2105         if (likely(!iommu_identity_mapping))
2106                 return 0;
2107
2108
2109         list_for_each_entry(info, &si_domain->devices, link)
2110                 if (info->dev == pdev)
2111                         return 1;
2112         return 0;
2113 }
2114
2115 static int domain_add_dev_info(struct dmar_domain *domain,
2116                                struct pci_dev *pdev,
2117                                int translation)
2118 {
2119         struct device_domain_info *info;
2120         unsigned long flags;
2121         int ret;
2122
2123         info = alloc_devinfo_mem();
2124         if (!info)
2125                 return -ENOMEM;
2126
2127         ret = domain_context_mapping(domain, pdev, translation);
2128         if (ret) {
2129                 free_devinfo_mem(info);
2130                 return ret;
2131         }
2132
2133         info->segment = pci_domain_nr(pdev->bus);
2134         info->bus = pdev->bus->number;
2135         info->devfn = pdev->devfn;
2136         info->dev = pdev;
2137         info->domain = domain;
2138
2139         spin_lock_irqsave(&device_domain_lock, flags);
2140         list_add(&info->link, &domain->devices);
2141         list_add(&info->global, &device_domain_list);
2142         pdev->dev.archdata.iommu = info;
2143         spin_unlock_irqrestore(&device_domain_lock, flags);
2144
2145         return 0;
2146 }
2147
2148 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2149 {
2150         if (iommu_identity_mapping == 2)
2151                 return IS_GFX_DEVICE(pdev);
2152
2153         /*
2154          * We want to start off with all devices in the 1:1 domain, and
2155          * take them out later if we find they can't access all of memory.
2156          *
2157          * However, we can't do this for PCI devices behind bridges,
2158          * because all PCI devices behind the same bridge will end up
2159          * with the same source-id on their transactions.
2160          *
2161          * Practically speaking, we can't change things around for these
2162          * devices at run-time, because we can't be sure there'll be no
2163          * DMA transactions in flight for any of their siblings.
2164          * 
2165          * So PCI devices (unless they're on the root bus) as well as
2166          * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2167          * the 1:1 domain, just in _case_ one of their siblings turns out
2168          * not to be able to map all of memory.
2169          */
2170         if (!pdev->is_pcie) {
2171                 if (!pci_is_root_bus(pdev->bus))
2172                         return 0;
2173                 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2174                         return 0;
2175         } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2176                 return 0;
2177
2178         /* 
2179          * At boot time, we don't yet know if devices will be 64-bit capable.
2180          * Assume that they will -- if they turn out not to be, then we can 
2181          * take them out of the 1:1 domain later.
2182          */
2183         if (!startup)
2184                 return pdev->dma_mask > DMA_BIT_MASK(32);
2185
2186         return 1;
2187 }
2188
2189 static int __init iommu_prepare_static_identity_mapping(int hw)
2190 {
2191         struct pci_dev *pdev = NULL;
2192         int ret;
2193
2194         ret = si_domain_init(hw);
2195         if (ret)
2196                 return -EFAULT;
2197
2198         for_each_pci_dev(pdev) {
2199                 if (iommu_should_identity_map(pdev, 1)) {
2200                         printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2201                                hw ? "hardware" : "software", pci_name(pdev));
2202
2203                         ret = domain_add_dev_info(si_domain, pdev,
2204                                                      hw ? CONTEXT_TT_PASS_THROUGH :
2205                                                      CONTEXT_TT_MULTI_LEVEL);
2206                         if (ret)
2207                                 return ret;
2208                 }
2209         }
2210
2211         return 0;
2212 }
2213
2214 int __init init_dmars(void)
2215 {
2216         struct dmar_drhd_unit *drhd;
2217         struct dmar_rmrr_unit *rmrr;
2218         struct pci_dev *pdev;
2219         struct intel_iommu *iommu;
2220         int i, ret;
2221
2222         /*
2223          * for each drhd
2224          *    allocate root
2225          *    initialize and program root entry to not present
2226          * endfor
2227          */
2228         for_each_drhd_unit(drhd) {
2229                 g_num_of_iommus++;
2230                 /*
2231                  * lock not needed as this is only incremented in the single
2232                  * threaded kernel __init code path all other access are read
2233                  * only
2234                  */
2235         }
2236
2237         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2238                         GFP_KERNEL);
2239         if (!g_iommus) {
2240                 printk(KERN_ERR "Allocating global iommu array failed\n");
2241                 ret = -ENOMEM;
2242                 goto error;
2243         }
2244
2245         deferred_flush = kzalloc(g_num_of_iommus *
2246                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2247         if (!deferred_flush) {
2248                 ret = -ENOMEM;
2249                 goto error;
2250         }
2251
2252         for_each_drhd_unit(drhd) {
2253                 if (drhd->ignored)
2254                         continue;
2255
2256                 iommu = drhd->iommu;
2257                 g_iommus[iommu->seq_id] = iommu;
2258
2259                 ret = iommu_init_domains(iommu);
2260                 if (ret)
2261                         goto error;
2262
2263                 /*
2264                  * TBD:
2265                  * we could share the same root & context tables
2266                  * amoung all IOMMU's. Need to Split it later.
2267                  */
2268                 ret = iommu_alloc_root_entry(iommu);
2269                 if (ret) {
2270                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2271                         goto error;
2272                 }
2273                 if (!ecap_pass_through(iommu->ecap))
2274                         hw_pass_through = 0;
2275         }
2276
2277         /*
2278          * Start from the sane iommu hardware state.
2279          */
2280         for_each_drhd_unit(drhd) {
2281                 if (drhd->ignored)
2282                         continue;
2283
2284                 iommu = drhd->iommu;
2285
2286                 /*
2287                  * If the queued invalidation is already initialized by us
2288                  * (for example, while enabling interrupt-remapping) then
2289                  * we got the things already rolling from a sane state.
2290                  */
2291                 if (iommu->qi)
2292                         continue;
2293
2294                 /*
2295                  * Clear any previous faults.
2296                  */
2297                 dmar_fault(-1, iommu);
2298                 /*
2299                  * Disable queued invalidation if supported and already enabled
2300                  * before OS handover.
2301                  */
2302                 dmar_disable_qi(iommu);
2303         }
2304
2305         for_each_drhd_unit(drhd) {
2306                 if (drhd->ignored)
2307                         continue;
2308
2309                 iommu = drhd->iommu;
2310
2311                 if (dmar_enable_qi(iommu)) {
2312                         /*
2313                          * Queued Invalidate not enabled, use Register Based
2314                          * Invalidate
2315                          */
2316                         iommu->flush.flush_context = __iommu_flush_context;
2317                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2318                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2319                                "invalidation\n",
2320                                (unsigned long long)drhd->reg_base_addr);
2321                 } else {
2322                         iommu->flush.flush_context = qi_flush_context;
2323                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2324                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2325                                "invalidation\n",
2326                                (unsigned long long)drhd->reg_base_addr);
2327                 }
2328         }
2329
2330         if (iommu_pass_through)
2331                 iommu_identity_mapping = 1;
2332 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2333         else
2334                 iommu_identity_mapping = 2;
2335 #endif
2336         /*
2337          * If pass through is not set or not enabled, setup context entries for
2338          * identity mappings for rmrr, gfx, and isa and may fall back to static
2339          * identity mapping if iommu_identity_mapping is set.
2340          */
2341         if (iommu_identity_mapping) {
2342                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2343                 if (ret) {
2344                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2345                         goto error;
2346                 }
2347         }
2348         /*
2349          * For each rmrr
2350          *   for each dev attached to rmrr
2351          *   do
2352          *     locate drhd for dev, alloc domain for dev
2353          *     allocate free domain
2354          *     allocate page table entries for rmrr
2355          *     if context not allocated for bus
2356          *           allocate and init context
2357          *           set present in root table for this bus
2358          *     init context with domain, translation etc
2359          *    endfor
2360          * endfor
2361          */
2362         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2363         for_each_rmrr_units(rmrr) {
2364                 for (i = 0; i < rmrr->devices_cnt; i++) {
2365                         pdev = rmrr->devices[i];
2366                         /*
2367                          * some BIOS lists non-exist devices in DMAR
2368                          * table.
2369                          */
2370                         if (!pdev)
2371                                 continue;
2372                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2373                         if (ret)
2374                                 printk(KERN_ERR
2375                                        "IOMMU: mapping reserved region failed\n");
2376                 }
2377         }
2378
2379         iommu_prepare_isa();
2380
2381         /*
2382          * for each drhd
2383          *   enable fault log
2384          *   global invalidate context cache
2385          *   global invalidate iotlb
2386          *   enable translation
2387          */
2388         for_each_drhd_unit(drhd) {
2389                 if (drhd->ignored)
2390                         continue;
2391                 iommu = drhd->iommu;
2392
2393                 iommu_flush_write_buffer(iommu);
2394
2395                 ret = dmar_set_interrupt(iommu);
2396                 if (ret)
2397                         goto error;
2398
2399                 iommu_set_root_entry(iommu);
2400
2401                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2402                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2403                 iommu_disable_protect_mem_regions(iommu);
2404
2405                 ret = iommu_enable_translation(iommu);
2406                 if (ret)
2407                         goto error;
2408         }
2409
2410         return 0;
2411 error:
2412         for_each_drhd_unit(drhd) {
2413                 if (drhd->ignored)
2414                         continue;
2415                 iommu = drhd->iommu;
2416                 free_iommu(iommu);
2417         }
2418         kfree(g_iommus);
2419         return ret;
2420 }
2421
2422 /* This takes a number of _MM_ pages, not VTD pages */
2423 static struct iova *intel_alloc_iova(struct device *dev,
2424                                      struct dmar_domain *domain,
2425                                      unsigned long nrpages, uint64_t dma_mask)
2426 {
2427         struct pci_dev *pdev = to_pci_dev(dev);
2428         struct iova *iova = NULL;
2429
2430         /* Restrict dma_mask to the width that the iommu can handle */
2431         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2432
2433         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2434                 /*
2435                  * First try to allocate an io virtual address in
2436                  * DMA_BIT_MASK(32) and if that fails then try allocating
2437                  * from higher range
2438                  */
2439                 iova = alloc_iova(&domain->iovad, nrpages,
2440                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2441                 if (iova)
2442                         return iova;
2443         }
2444         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2445         if (unlikely(!iova)) {
2446                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2447                        nrpages, pci_name(pdev));
2448                 return NULL;
2449         }
2450
2451         return iova;
2452 }
2453
2454 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2455 {
2456         struct dmar_domain *domain;
2457         int ret;
2458
2459         domain = get_domain_for_dev(pdev,
2460                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2461         if (!domain) {
2462                 printk(KERN_ERR
2463                         "Allocating domain for %s failed", pci_name(pdev));
2464                 return NULL;
2465         }
2466
2467         /* make sure context mapping is ok */
2468         if (unlikely(!domain_context_mapped(pdev))) {
2469                 ret = domain_context_mapping(domain, pdev,
2470                                              CONTEXT_TT_MULTI_LEVEL);
2471                 if (ret) {
2472                         printk(KERN_ERR
2473                                 "Domain context map for %s failed",
2474                                 pci_name(pdev));
2475                         return NULL;
2476                 }
2477         }
2478
2479         return domain;
2480 }
2481
2482 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2483 {
2484         struct device_domain_info *info;
2485
2486         /* No lock here, assumes no domain exit in normal case */
2487         info = dev->dev.archdata.iommu;
2488         if (likely(info))
2489                 return info->domain;
2490
2491         return __get_valid_domain_for_dev(dev);
2492 }
2493
2494 static int iommu_dummy(struct pci_dev *pdev)
2495 {
2496         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2497 }
2498
2499 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2500 static int iommu_no_mapping(struct device *dev)
2501 {
2502         struct pci_dev *pdev;
2503         int found;
2504
2505         if (unlikely(dev->bus != &pci_bus_type))
2506                 return 1;
2507
2508         pdev = to_pci_dev(dev);
2509         if (iommu_dummy(pdev))
2510                 return 1;
2511
2512         if (!iommu_identity_mapping)
2513                 return 0;
2514
2515         found = identity_mapping(pdev);
2516         if (found) {
2517                 if (iommu_should_identity_map(pdev, 0))
2518                         return 1;
2519                 else {
2520                         /*
2521                          * 32 bit DMA is removed from si_domain and fall back
2522                          * to non-identity mapping.
2523                          */
2524                         domain_remove_one_dev_info(si_domain, pdev);
2525                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2526                                pci_name(pdev));
2527                         return 0;
2528                 }
2529         } else {
2530                 /*
2531                  * In case of a detached 64 bit DMA device from vm, the device
2532                  * is put into si_domain for identity mapping.
2533                  */
2534                 if (iommu_should_identity_map(pdev, 0)) {
2535                         int ret;
2536                         ret = domain_add_dev_info(si_domain, pdev,
2537                                                   hw_pass_through ?
2538                                                   CONTEXT_TT_PASS_THROUGH :
2539                                                   CONTEXT_TT_MULTI_LEVEL);
2540                         if (!ret) {
2541                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2542                                        pci_name(pdev));
2543                                 return 1;
2544                         }
2545                 }
2546         }
2547
2548         return 0;
2549 }
2550
2551 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2552                                      size_t size, int dir, u64 dma_mask)
2553 {
2554         struct pci_dev *pdev = to_pci_dev(hwdev);
2555         struct dmar_domain *domain;
2556         phys_addr_t start_paddr;
2557         struct iova *iova;
2558         int prot = 0;
2559         int ret;
2560         struct intel_iommu *iommu;
2561         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2562
2563         BUG_ON(dir == DMA_NONE);
2564
2565         if (iommu_no_mapping(hwdev))
2566                 return paddr;
2567
2568         domain = get_valid_domain_for_dev(pdev);
2569         if (!domain)
2570                 return 0;
2571
2572         iommu = domain_get_iommu(domain);
2573         size = aligned_nrpages(paddr, size);
2574
2575         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2576                                 pdev->dma_mask);
2577         if (!iova)
2578                 goto error;
2579
2580         /*
2581          * Check if DMAR supports zero-length reads on write only
2582          * mappings..
2583          */
2584         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2585                         !cap_zlr(iommu->cap))
2586                 prot |= DMA_PTE_READ;
2587         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2588                 prot |= DMA_PTE_WRITE;
2589         /*
2590          * paddr - (paddr + size) might be partial page, we should map the whole
2591          * page.  Note: if two part of one page are separately mapped, we
2592          * might have two guest_addr mapping to the same host paddr, but this
2593          * is not a big problem
2594          */
2595         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2596                                  mm_to_dma_pfn(paddr_pfn), size, prot);
2597         if (ret)
2598                 goto error;
2599
2600         /* it's a non-present to present mapping. Only flush if caching mode */
2601         if (cap_caching_mode(iommu->cap))
2602                 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2603         else
2604                 iommu_flush_write_buffer(iommu);
2605
2606         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2607         start_paddr += paddr & ~PAGE_MASK;
2608         return start_paddr;
2609
2610 error:
2611         if (iova)
2612                 __free_iova(&domain->iovad, iova);
2613         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2614                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2615         return 0;
2616 }
2617
2618 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2619                                  unsigned long offset, size_t size,
2620                                  enum dma_data_direction dir,
2621                                  struct dma_attrs *attrs)
2622 {
2623         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2624                                   dir, to_pci_dev(dev)->dma_mask);
2625 }
2626
2627 static void flush_unmaps(void)
2628 {
2629         int i, j;
2630
2631         timer_on = 0;
2632
2633         /* just flush them all */
2634         for (i = 0; i < g_num_of_iommus; i++) {
2635                 struct intel_iommu *iommu = g_iommus[i];
2636                 if (!iommu)
2637                         continue;
2638
2639                 if (!deferred_flush[i].next)
2640                         continue;
2641
2642                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2643                                          DMA_TLB_GLOBAL_FLUSH);
2644                 for (j = 0; j < deferred_flush[i].next; j++) {
2645                         unsigned long mask;
2646                         struct iova *iova = deferred_flush[i].iova[j];
2647
2648                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2649                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2650                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2651                                         iova->pfn_lo << PAGE_SHIFT, mask);
2652                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2653                 }
2654                 deferred_flush[i].next = 0;
2655         }
2656
2657         list_size = 0;
2658 }
2659
2660 static void flush_unmaps_timeout(unsigned long data)
2661 {
2662         unsigned long flags;
2663
2664         spin_lock_irqsave(&async_umap_flush_lock, flags);
2665         flush_unmaps();
2666         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2667 }
2668
2669 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2670 {
2671         unsigned long flags;
2672         int next, iommu_id;
2673         struct intel_iommu *iommu;
2674
2675         spin_lock_irqsave(&async_umap_flush_lock, flags);
2676         if (list_size == HIGH_WATER_MARK)
2677                 flush_unmaps();
2678
2679         iommu = domain_get_iommu(dom);
2680         iommu_id = iommu->seq_id;
2681
2682         next = deferred_flush[iommu_id].next;
2683         deferred_flush[iommu_id].domain[next] = dom;
2684         deferred_flush[iommu_id].iova[next] = iova;
2685         deferred_flush[iommu_id].next++;
2686
2687         if (!timer_on) {
2688                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2689                 timer_on = 1;
2690         }
2691         list_size++;
2692         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2693 }
2694
2695 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2696                              size_t size, enum dma_data_direction dir,
2697                              struct dma_attrs *attrs)
2698 {
2699         struct pci_dev *pdev = to_pci_dev(dev);
2700         struct dmar_domain *domain;
2701         unsigned long start_pfn, last_pfn;
2702         struct iova *iova;
2703         struct intel_iommu *iommu;
2704
2705         if (iommu_no_mapping(dev))
2706                 return;
2707
2708         domain = find_domain(pdev);
2709         BUG_ON(!domain);
2710
2711         iommu = domain_get_iommu(domain);
2712
2713         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2714         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2715                       (unsigned long long)dev_addr))
2716                 return;
2717
2718         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2719         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2720
2721         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2722                  pci_name(pdev), start_pfn, last_pfn);
2723
2724         /*  clear the whole page */
2725         dma_pte_clear_range(domain, start_pfn, last_pfn);
2726
2727         /* free page tables */
2728         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2729
2730         if (intel_iommu_strict) {
2731                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2732                                       last_pfn - start_pfn + 1);
2733                 /* free iova */
2734                 __free_iova(&domain->iovad, iova);
2735         } else {
2736                 add_unmap(domain, iova);
2737                 /*
2738                  * queue up the release of the unmap to save the 1/6th of the
2739                  * cpu used up by the iotlb flush operation...
2740                  */
2741         }
2742 }
2743
2744 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2745                                   dma_addr_t *dma_handle, gfp_t flags)
2746 {
2747         void *vaddr;
2748         int order;
2749
2750         size = PAGE_ALIGN(size);
2751         order = get_order(size);
2752         flags &= ~(GFP_DMA | GFP_DMA32);
2753
2754         vaddr = (void *)__get_free_pages(flags, order);
2755         if (!vaddr)
2756                 return NULL;
2757         memset(vaddr, 0, size);
2758
2759         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2760                                          DMA_BIDIRECTIONAL,
2761                                          hwdev->coherent_dma_mask);
2762         if (*dma_handle)
2763                 return vaddr;
2764         free_pages((unsigned long)vaddr, order);
2765         return NULL;
2766 }
2767
2768 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2769                                 dma_addr_t dma_handle)
2770 {
2771         int order;
2772
2773         size = PAGE_ALIGN(size);
2774         order = get_order(size);
2775
2776         intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2777         free_pages((unsigned long)vaddr, order);
2778 }
2779
2780 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2781                            int nelems, enum dma_data_direction dir,
2782                            struct dma_attrs *attrs)
2783 {
2784         struct pci_dev *pdev = to_pci_dev(hwdev);
2785         struct dmar_domain *domain;
2786         unsigned long start_pfn, last_pfn;
2787         struct iova *iova;
2788         struct intel_iommu *iommu;
2789
2790         if (iommu_no_mapping(hwdev))
2791                 return;
2792
2793         domain = find_domain(pdev);
2794         BUG_ON(!domain);
2795
2796         iommu = domain_get_iommu(domain);
2797
2798         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2799         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2800                       (unsigned long long)sglist[0].dma_address))
2801                 return;
2802
2803         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2804         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2805
2806         /*  clear the whole page */
2807         dma_pte_clear_range(domain, start_pfn, last_pfn);
2808
2809         /* free page tables */
2810         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2811
2812         if (intel_iommu_strict) {
2813                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2814                                       last_pfn - start_pfn + 1);
2815                 /* free iova */
2816                 __free_iova(&domain->iovad, iova);
2817         } else {
2818                 add_unmap(domain, iova);
2819                 /*
2820                  * queue up the release of the unmap to save the 1/6th of the
2821                  * cpu used up by the iotlb flush operation...
2822                  */
2823         }
2824 }
2825
2826 static int intel_nontranslate_map_sg(struct device *hddev,
2827         struct scatterlist *sglist, int nelems, int dir)
2828 {
2829         int i;
2830         struct scatterlist *sg;
2831
2832         for_each_sg(sglist, sg, nelems, i) {
2833                 BUG_ON(!sg_page(sg));
2834                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2835                 sg->dma_length = sg->length;
2836         }
2837         return nelems;
2838 }
2839
2840 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2841                         enum dma_data_direction dir, struct dma_attrs *attrs)
2842 {
2843         int i;
2844         struct pci_dev *pdev = to_pci_dev(hwdev);
2845         struct dmar_domain *domain;
2846         size_t size = 0;
2847         int prot = 0;
2848         size_t offset_pfn = 0;
2849         struct iova *iova = NULL;
2850         int ret;
2851         struct scatterlist *sg;
2852         unsigned long start_vpfn;
2853         struct intel_iommu *iommu;
2854
2855         BUG_ON(dir == DMA_NONE);
2856         if (iommu_no_mapping(hwdev))
2857                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2858
2859         domain = get_valid_domain_for_dev(pdev);
2860         if (!domain)
2861                 return 0;
2862
2863         iommu = domain_get_iommu(domain);
2864
2865         for_each_sg(sglist, sg, nelems, i)
2866                 size += aligned_nrpages(sg->offset, sg->length);
2867
2868         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2869                                 pdev->dma_mask);
2870         if (!iova) {
2871                 sglist->dma_length = 0;
2872                 return 0;
2873         }
2874
2875         /*
2876          * Check if DMAR supports zero-length reads on write only
2877          * mappings..
2878          */
2879         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2880                         !cap_zlr(iommu->cap))
2881                 prot |= DMA_PTE_READ;
2882         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2883                 prot |= DMA_PTE_WRITE;
2884
2885         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2886
2887         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2888         if (unlikely(ret)) {
2889                 /*  clear the page */
2890                 dma_pte_clear_range(domain, start_vpfn,
2891                                     start_vpfn + size - 1);
2892                 /* free page tables */
2893                 dma_pte_free_pagetable(domain, start_vpfn,
2894                                        start_vpfn + size - 1);
2895                 /* free iova */
2896                 __free_iova(&domain->iovad, iova);
2897                 return 0;
2898         }
2899
2900         /* it's a non-present to present mapping. Only flush if caching mode */
2901         if (cap_caching_mode(iommu->cap))
2902                 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2903         else
2904                 iommu_flush_write_buffer(iommu);
2905
2906         return nelems;
2907 }
2908
2909 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2910 {
2911         return !dma_addr;
2912 }
2913
2914 struct dma_map_ops intel_dma_ops = {
2915         .alloc_coherent = intel_alloc_coherent,
2916         .free_coherent = intel_free_coherent,
2917         .map_sg = intel_map_sg,
2918         .unmap_sg = intel_unmap_sg,
2919         .map_page = intel_map_page,
2920         .unmap_page = intel_unmap_page,
2921         .mapping_error = intel_mapping_error,
2922 };
2923
2924 static inline int iommu_domain_cache_init(void)
2925 {
2926         int ret = 0;
2927
2928         iommu_domain_cache = kmem_cache_create("iommu_domain",
2929                                          sizeof(struct dmar_domain),
2930                                          0,
2931                                          SLAB_HWCACHE_ALIGN,
2932
2933                                          NULL);
2934         if (!iommu_domain_cache) {
2935                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2936                 ret = -ENOMEM;
2937         }
2938
2939         return ret;
2940 }
2941
2942 static inline int iommu_devinfo_cache_init(void)
2943 {
2944         int ret = 0;
2945
2946         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2947                                          sizeof(struct device_domain_info),
2948                                          0,
2949                                          SLAB_HWCACHE_ALIGN,
2950                                          NULL);
2951         if (!iommu_devinfo_cache) {
2952                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2953                 ret = -ENOMEM;
2954         }
2955
2956         return ret;
2957 }
2958
2959 static inline int iommu_iova_cache_init(void)
2960 {
2961         int ret = 0;
2962
2963         iommu_iova_cache = kmem_cache_create("iommu_iova",
2964                                          sizeof(struct iova),
2965                                          0,
2966                                          SLAB_HWCACHE_ALIGN,
2967                                          NULL);
2968         if (!iommu_iova_cache) {
2969                 printk(KERN_ERR "Couldn't create iova cache\n");
2970                 ret = -ENOMEM;
2971         }
2972
2973         return ret;
2974 }
2975
2976 static int __init iommu_init_mempool(void)
2977 {
2978         int ret;
2979         ret = iommu_iova_cache_init();
2980         if (ret)
2981                 return ret;
2982
2983         ret = iommu_domain_cache_init();
2984         if (ret)
2985                 goto domain_error;
2986
2987         ret = iommu_devinfo_cache_init();
2988         if (!ret)
2989                 return ret;
2990
2991         kmem_cache_destroy(iommu_domain_cache);
2992 domain_error:
2993         kmem_cache_destroy(iommu_iova_cache);
2994
2995         return -ENOMEM;
2996 }
2997
2998 static void __init iommu_exit_mempool(void)
2999 {
3000         kmem_cache_destroy(iommu_devinfo_cache);
3001         kmem_cache_destroy(iommu_domain_cache);
3002         kmem_cache_destroy(iommu_iova_cache);
3003
3004 }
3005
3006 static void __init init_no_remapping_devices(void)
3007 {
3008         struct dmar_drhd_unit *drhd;
3009
3010         for_each_drhd_unit(drhd) {
3011                 if (!drhd->include_all) {
3012                         int i;
3013                         for (i = 0; i < drhd->devices_cnt; i++)
3014                                 if (drhd->devices[i] != NULL)
3015                                         break;
3016                         /* ignore DMAR unit if no pci devices exist */
3017                         if (i == drhd->devices_cnt)
3018                                 drhd->ignored = 1;
3019                 }
3020         }
3021
3022         if (dmar_map_gfx)
3023                 return;
3024
3025         for_each_drhd_unit(drhd) {
3026                 int i;
3027                 if (drhd->ignored || drhd->include_all)
3028                         continue;
3029
3030                 for (i = 0; i < drhd->devices_cnt; i++)
3031                         if (drhd->devices[i] &&
3032                                 !IS_GFX_DEVICE(drhd->devices[i]))
3033                                 break;
3034
3035                 if (i < drhd->devices_cnt)
3036                         continue;
3037
3038                 /* bypass IOMMU if it is just for gfx devices */
3039                 drhd->ignored = 1;
3040                 for (i = 0; i < drhd->devices_cnt; i++) {
3041                         if (!drhd->devices[i])
3042                                 continue;
3043                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3044                 }
3045         }
3046 }
3047
3048 #ifdef CONFIG_SUSPEND
3049 static int init_iommu_hw(void)
3050 {
3051         struct dmar_drhd_unit *drhd;
3052         struct intel_iommu *iommu = NULL;
3053
3054         for_each_active_iommu(iommu, drhd)
3055                 if (iommu->qi)
3056                         dmar_reenable_qi(iommu);
3057
3058         for_each_active_iommu(iommu, drhd) {
3059                 iommu_flush_write_buffer(iommu);
3060
3061                 iommu_set_root_entry(iommu);
3062
3063                 iommu->flush.flush_context(iommu, 0, 0, 0,
3064                                            DMA_CCMD_GLOBAL_INVL);
3065                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3066                                          DMA_TLB_GLOBAL_FLUSH);
3067                 iommu_disable_protect_mem_regions(iommu);
3068                 iommu_enable_translation(iommu);
3069         }
3070
3071         return 0;
3072 }
3073
3074 static void iommu_flush_all(void)
3075 {
3076         struct dmar_drhd_unit *drhd;
3077         struct intel_iommu *iommu;
3078
3079         for_each_active_iommu(iommu, drhd) {
3080                 iommu->flush.flush_context(iommu, 0, 0, 0,
3081                                            DMA_CCMD_GLOBAL_INVL);
3082                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3083                                          DMA_TLB_GLOBAL_FLUSH);
3084         }
3085 }
3086
3087 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3088 {
3089         struct dmar_drhd_unit *drhd;
3090         struct intel_iommu *iommu = NULL;
3091         unsigned long flag;
3092
3093         for_each_active_iommu(iommu, drhd) {
3094                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3095                                                  GFP_ATOMIC);
3096                 if (!iommu->iommu_state)
3097                         goto nomem;
3098         }
3099
3100         iommu_flush_all();
3101
3102         for_each_active_iommu(iommu, drhd) {
3103                 iommu_disable_translation(iommu);
3104
3105                 spin_lock_irqsave(&iommu->register_lock, flag);
3106
3107                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3108                         readl(iommu->reg + DMAR_FECTL_REG);
3109                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3110                         readl(iommu->reg + DMAR_FEDATA_REG);
3111                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3112                         readl(iommu->reg + DMAR_FEADDR_REG);
3113                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3114                         readl(iommu->reg + DMAR_FEUADDR_REG);
3115
3116                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3117         }
3118         return 0;
3119
3120 nomem:
3121         for_each_active_iommu(iommu, drhd)
3122                 kfree(iommu->iommu_state);
3123
3124         return -ENOMEM;
3125 }
3126
3127 static int iommu_resume(struct sys_device *dev)
3128 {
3129         struct dmar_drhd_unit *drhd;
3130         struct intel_iommu *iommu = NULL;
3131         unsigned long flag;
3132
3133         if (init_iommu_hw()) {
3134                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3135                 return -EIO;
3136         }
3137
3138         for_each_active_iommu(iommu, drhd) {
3139
3140                 spin_lock_irqsave(&iommu->register_lock, flag);
3141
3142                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3143                         iommu->reg + DMAR_FECTL_REG);
3144                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3145                         iommu->reg + DMAR_FEDATA_REG);
3146                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3147                         iommu->reg + DMAR_FEADDR_REG);
3148                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3149                         iommu->reg + DMAR_FEUADDR_REG);
3150
3151                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3152         }
3153
3154         for_each_active_iommu(iommu, drhd)
3155                 kfree(iommu->iommu_state);
3156
3157         return 0;
3158 }
3159
3160 static struct sysdev_class iommu_sysclass = {
3161         .name           = "iommu",
3162         .resume         = iommu_resume,
3163         .suspend        = iommu_suspend,
3164 };
3165
3166 static struct sys_device device_iommu = {
3167         .cls    = &iommu_sysclass,
3168 };
3169
3170 static int __init init_iommu_sysfs(void)
3171 {
3172         int error;
3173
3174         error = sysdev_class_register(&iommu_sysclass);
3175         if (error)
3176                 return error;
3177
3178         error = sysdev_register(&device_iommu);
3179         if (error)
3180                 sysdev_class_unregister(&iommu_sysclass);
3181
3182         return error;
3183 }
3184
3185 #else
3186 static int __init init_iommu_sysfs(void)
3187 {
3188         return 0;
3189 }
3190 #endif  /* CONFIG_PM */
3191
3192 int __init intel_iommu_init(void)
3193 {
3194         int ret = 0;
3195
3196         if (dmar_table_init())
3197                 return  -ENODEV;
3198
3199         if (dmar_dev_scope_init())
3200                 return  -ENODEV;
3201
3202         /*
3203          * Check the need for DMA-remapping initialization now.
3204          * Above initialization will also be used by Interrupt-remapping.
3205          */
3206         if (no_iommu || swiotlb || dmar_disabled)
3207                 return -ENODEV;
3208
3209         iommu_init_mempool();
3210         dmar_init_reserved_ranges();
3211
3212         init_no_remapping_devices();
3213
3214         ret = init_dmars();
3215         if (ret) {
3216                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3217                 put_iova_domain(&reserved_iova_list);
3218                 iommu_exit_mempool();
3219                 return ret;
3220         }
3221         printk(KERN_INFO
3222         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3223
3224         init_timer(&unmap_timer);
3225         force_iommu = 1;
3226         dma_ops = &intel_dma_ops;
3227
3228         init_iommu_sysfs();
3229
3230         register_iommu(&intel_iommu_ops);
3231
3232         return 0;
3233 }
3234
3235 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3236                                            struct pci_dev *pdev)
3237 {
3238         struct pci_dev *tmp, *parent;
3239
3240         if (!iommu || !pdev)
3241                 return;
3242
3243         /* dependent device detach */
3244         tmp = pci_find_upstream_pcie_bridge(pdev);
3245         /* Secondary interface's bus number and devfn 0 */
3246         if (tmp) {
3247                 parent = pdev->bus->self;
3248                 while (parent != tmp) {
3249                         iommu_detach_dev(iommu, parent->bus->number,
3250                                          parent->devfn);
3251                         parent = parent->bus->self;
3252                 }
3253                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3254                         iommu_detach_dev(iommu,
3255                                 tmp->subordinate->number, 0);
3256                 else /* this is a legacy PCI bridge */
3257                         iommu_detach_dev(iommu, tmp->bus->number,
3258                                          tmp->devfn);
3259         }
3260 }
3261
3262 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3263                                           struct pci_dev *pdev)
3264 {
3265         struct device_domain_info *info;
3266         struct intel_iommu *iommu;
3267         unsigned long flags;
3268         int found = 0;
3269         struct list_head *entry, *tmp;
3270
3271         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3272                                 pdev->devfn);
3273         if (!iommu)
3274                 return;
3275
3276         spin_lock_irqsave(&device_domain_lock, flags);
3277         list_for_each_safe(entry, tmp, &domain->devices) {
3278                 info = list_entry(entry, struct device_domain_info, link);
3279                 /* No need to compare PCI domain; it has to be the same */
3280                 if (info->bus == pdev->bus->number &&
3281                     info->devfn == pdev->devfn) {
3282                         list_del(&info->link);
3283                         list_del(&info->global);
3284                         if (info->dev)
3285                                 info->dev->dev.archdata.iommu = NULL;
3286                         spin_unlock_irqrestore(&device_domain_lock, flags);
3287
3288                         iommu_disable_dev_iotlb(info);
3289                         iommu_detach_dev(iommu, info->bus, info->devfn);
3290                         iommu_detach_dependent_devices(iommu, pdev);
3291                         free_devinfo_mem(info);
3292
3293                         spin_lock_irqsave(&device_domain_lock, flags);
3294
3295                         if (found)
3296                                 break;
3297                         else
3298                                 continue;
3299                 }
3300
3301                 /* if there is no other devices under the same iommu
3302                  * owned by this domain, clear this iommu in iommu_bmp
3303                  * update iommu count and coherency
3304                  */
3305                 if (iommu == device_to_iommu(info->segment, info->bus,
3306                                             info->devfn))
3307                         found = 1;
3308         }
3309
3310         if (found == 0) {
3311                 unsigned long tmp_flags;
3312                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3313                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3314                 domain->iommu_count--;
3315                 domain_update_iommu_cap(domain);
3316                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3317         }
3318
3319         spin_unlock_irqrestore(&device_domain_lock, flags);
3320 }
3321
3322 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3323 {
3324         struct device_domain_info *info;
3325         struct intel_iommu *iommu;
3326         unsigned long flags1, flags2;
3327
3328         spin_lock_irqsave(&device_domain_lock, flags1);
3329         while (!list_empty(&domain->devices)) {
3330                 info = list_entry(domain->devices.next,
3331                         struct device_domain_info, link);
3332                 list_del(&info->link);
3333                 list_del(&info->global);
3334                 if (info->dev)
3335                         info->dev->dev.archdata.iommu = NULL;
3336
3337                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3338
3339                 iommu_disable_dev_iotlb(info);
3340                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3341                 iommu_detach_dev(iommu, info->bus, info->devfn);
3342                 iommu_detach_dependent_devices(iommu, info->dev);
3343
3344                 /* clear this iommu in iommu_bmp, update iommu count
3345                  * and capabilities
3346                  */
3347                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3348                 if (test_and_clear_bit(iommu->seq_id,
3349                                        &domain->iommu_bmp)) {
3350                         domain->iommu_count--;
3351                         domain_update_iommu_cap(domain);
3352                 }
3353                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3354
3355                 free_devinfo_mem(info);
3356                 spin_lock_irqsave(&device_domain_lock, flags1);
3357         }
3358         spin_unlock_irqrestore(&device_domain_lock, flags1);
3359 }
3360
3361 /* domain id for virtual machine, it won't be set in context */
3362 static unsigned long vm_domid;
3363
3364 static int vm_domain_min_agaw(struct dmar_domain *domain)
3365 {
3366         int i;
3367         int min_agaw = domain->agaw;
3368
3369         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3370         for (; i < g_num_of_iommus; ) {
3371                 if (min_agaw > g_iommus[i]->agaw)
3372                         min_agaw = g_iommus[i]->agaw;
3373
3374                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3375         }
3376
3377         return min_agaw;
3378 }
3379
3380 static struct dmar_domain *iommu_alloc_vm_domain(void)
3381 {
3382         struct dmar_domain *domain;
3383
3384         domain = alloc_domain_mem();
3385         if (!domain)
3386                 return NULL;
3387
3388         domain->id = vm_domid++;
3389         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3390         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3391
3392         return domain;
3393 }
3394
3395 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3396 {
3397         int adjust_width;
3398
3399         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3400         spin_lock_init(&domain->iommu_lock);
3401
3402         domain_reserve_special_ranges(domain);
3403
3404         /* calculate AGAW */
3405         domain->gaw = guest_width;
3406         adjust_width = guestwidth_to_adjustwidth(guest_width);
3407         domain->agaw = width_to_agaw(adjust_width);
3408
3409         INIT_LIST_HEAD(&domain->devices);
3410
3411         domain->iommu_count = 0;
3412         domain->iommu_coherency = 0;
3413         domain->iommu_snooping = 0;
3414         domain->max_addr = 0;
3415
3416         /* always allocate the top pgd */
3417         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3418         if (!domain->pgd)
3419                 return -ENOMEM;
3420         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3421         return 0;
3422 }
3423
3424 static void iommu_free_vm_domain(struct dmar_domain *domain)
3425 {
3426         unsigned long flags;
3427         struct dmar_drhd_unit *drhd;
3428         struct intel_iommu *iommu;
3429         unsigned long i;
3430         unsigned long ndomains;
3431
3432         for_each_drhd_unit(drhd) {
3433                 if (drhd->ignored)
3434                         continue;
3435                 iommu = drhd->iommu;
3436
3437                 ndomains = cap_ndoms(iommu->cap);
3438                 i = find_first_bit(iommu->domain_ids, ndomains);
3439                 for (; i < ndomains; ) {
3440                         if (iommu->domains[i] == domain) {
3441                                 spin_lock_irqsave(&iommu->lock, flags);
3442                                 clear_bit(i, iommu->domain_ids);
3443                                 iommu->domains[i] = NULL;
3444                                 spin_unlock_irqrestore(&iommu->lock, flags);
3445                                 break;
3446                         }
3447                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3448                 }
3449         }
3450 }
3451
3452 static void vm_domain_exit(struct dmar_domain *domain)
3453 {
3454         /* Domain 0 is reserved, so dont process it */
3455         if (!domain)
3456                 return;
3457
3458         vm_domain_remove_all_dev_info(domain);
3459         /* destroy iovas */
3460         put_iova_domain(&domain->iovad);
3461
3462         /* clear ptes */
3463         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3464
3465         /* free page tables */
3466         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3467
3468         iommu_free_vm_domain(domain);
3469         free_domain_mem(domain);
3470 }
3471
3472 static int intel_iommu_domain_init(struct iommu_domain *domain)
3473 {
3474         struct dmar_domain *dmar_domain;
3475
3476         dmar_domain = iommu_alloc_vm_domain();
3477         if (!dmar_domain) {
3478                 printk(KERN_ERR
3479                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3480                 return -ENOMEM;
3481         }
3482         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3483                 printk(KERN_ERR
3484                         "intel_iommu_domain_init() failed\n");
3485                 vm_domain_exit(dmar_domain);
3486                 return -ENOMEM;
3487         }
3488         domain->priv = dmar_domain;
3489
3490         return 0;
3491 }
3492
3493 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3494 {
3495         struct dmar_domain *dmar_domain = domain->priv;
3496
3497         domain->priv = NULL;
3498         vm_domain_exit(dmar_domain);
3499 }
3500
3501 static int intel_iommu_attach_device(struct iommu_domain *domain,
3502                                      struct device *dev)
3503 {
3504         struct dmar_domain *dmar_domain = domain->priv;
3505         struct pci_dev *pdev = to_pci_dev(dev);
3506         struct intel_iommu *iommu;
3507         int addr_width;
3508         u64 end;
3509
3510         /* normally pdev is not mapped */
3511         if (unlikely(domain_context_mapped(pdev))) {
3512                 struct dmar_domain *old_domain;
3513
3514                 old_domain = find_domain(pdev);
3515                 if (old_domain) {
3516                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3517                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3518                                 domain_remove_one_dev_info(old_domain, pdev);
3519                         else
3520                                 domain_remove_dev_info(old_domain);
3521                 }
3522         }
3523
3524         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3525                                 pdev->devfn);
3526         if (!iommu)
3527                 return -ENODEV;
3528
3529         /* check if this iommu agaw is sufficient for max mapped address */
3530         addr_width = agaw_to_width(iommu->agaw);
3531         end = DOMAIN_MAX_ADDR(addr_width);
3532         end = end & VTD_PAGE_MASK;
3533         if (end < dmar_domain->max_addr) {
3534                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3535                        "sufficient for the mapped address (%llx)\n",
3536                        __func__, iommu->agaw, dmar_domain->max_addr);
3537                 return -EFAULT;
3538         }
3539
3540         return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3541 }
3542
3543 static void intel_iommu_detach_device(struct iommu_domain *domain,
3544                                       struct device *dev)
3545 {
3546         struct dmar_domain *dmar_domain = domain->priv;
3547         struct pci_dev *pdev = to_pci_dev(dev);
3548
3549         domain_remove_one_dev_info(dmar_domain, pdev);
3550 }
3551
3552 static int intel_iommu_map_range(struct iommu_domain *domain,
3553                                  unsigned long iova, phys_addr_t hpa,
3554                                  size_t size, int iommu_prot)
3555 {
3556         struct dmar_domain *dmar_domain = domain->priv;
3557         u64 max_addr;
3558         int addr_width;
3559         int prot = 0;
3560         int ret;
3561
3562         if (iommu_prot & IOMMU_READ)
3563                 prot |= DMA_PTE_READ;
3564         if (iommu_prot & IOMMU_WRITE)
3565                 prot |= DMA_PTE_WRITE;
3566         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3567                 prot |= DMA_PTE_SNP;
3568
3569         max_addr = iova + size;
3570         if (dmar_domain->max_addr < max_addr) {
3571                 int min_agaw;
3572                 u64 end;
3573
3574                 /* check if minimum agaw is sufficient for mapped address */
3575                 min_agaw = vm_domain_min_agaw(dmar_domain);
3576                 addr_width = agaw_to_width(min_agaw);
3577                 end = DOMAIN_MAX_ADDR(addr_width);
3578                 end = end & VTD_PAGE_MASK;
3579                 if (end < max_addr) {
3580                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3581                                "sufficient for the mapped address (%llx)\n",
3582                                __func__, min_agaw, max_addr);
3583                         return -EFAULT;
3584                 }
3585                 dmar_domain->max_addr = max_addr;
3586         }
3587         /* Round up size to next multiple of PAGE_SIZE, if it and
3588            the low bits of hpa would take us onto the next page */
3589         size = aligned_nrpages(hpa, size);
3590         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3591                                  hpa >> VTD_PAGE_SHIFT, size, prot);
3592         return ret;
3593 }
3594
3595 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3596                                     unsigned long iova, size_t size)
3597 {
3598         struct dmar_domain *dmar_domain = domain->priv;
3599
3600         if (!size)
3601                 return;
3602
3603         dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3604                             (iova + size - 1) >> VTD_PAGE_SHIFT);
3605
3606         if (dmar_domain->max_addr == iova + size)
3607                 dmar_domain->max_addr = iova;
3608 }
3609
3610 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3611                                             unsigned long iova)
3612 {
3613         struct dmar_domain *dmar_domain = domain->priv;
3614         struct dma_pte *pte;
3615         u64 phys = 0;
3616
3617         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3618         if (pte)
3619                 phys = dma_pte_addr(pte);
3620
3621         return phys;
3622 }
3623
3624 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3625                                       unsigned long cap)
3626 {
3627         struct dmar_domain *dmar_domain = domain->priv;
3628
3629         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3630                 return dmar_domain->iommu_snooping;
3631
3632         return 0;
3633 }
3634
3635 static struct iommu_ops intel_iommu_ops = {
3636         .domain_init    = intel_iommu_domain_init,
3637         .domain_destroy = intel_iommu_domain_destroy,
3638         .attach_dev     = intel_iommu_attach_device,
3639         .detach_dev     = intel_iommu_detach_device,
3640         .map            = intel_iommu_map_range,
3641         .unmap          = intel_iommu_unmap_range,
3642         .iova_to_phys   = intel_iommu_iova_to_phys,
3643         .domain_has_cap = intel_iommu_domain_has_cap,
3644 };
3645
3646 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3647 {
3648         /*
3649          * Mobile 4 Series Chipset neglects to set RWBF capability,
3650          * but needs it:
3651          */
3652         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3653         rwbf_quirk = 1;
3654 }
3655
3656 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);