Merge remote-tracking branch 'lsk/v3.10/topic/arm64-insn' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92                 rt2x00link_start_vcocal(rt2x00dev);
93
94         /*
95          * Start watchdog monitoring.
96          */
97         rt2x00link_start_watchdog(rt2x00dev);
98
99         return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105                 return;
106
107         /*
108          * Stop watchdog monitoring.
109          */
110         rt2x00link_stop_watchdog(rt2x00dev);
111
112         /*
113          * Stop all queues
114          */
115         rt2x00link_stop_agc(rt2x00dev);
116         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117                 rt2x00link_stop_vcocal(rt2x00dev);
118         rt2x00link_stop_tuner(rt2x00dev);
119         rt2x00queue_stop_queues(rt2x00dev);
120         rt2x00queue_flush_queues(rt2x00dev, true);
121
122         /*
123          * Disable radio.
124          */
125         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127         rt2x00led_led_activity(rt2x00dev, false);
128         rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132                                           struct ieee80211_vif *vif)
133 {
134         struct rt2x00_dev *rt2x00dev = data;
135         struct rt2x00_intf *intf = vif_to_intf(vif);
136
137         /*
138          * It is possible the radio was disabled while the work had been
139          * scheduled. If that happens we should return here immediately,
140          * note that in the spinlock protected area above the delayed_flags
141          * have been cleared correctly.
142          */
143         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144                 return;
145
146         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147                 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152         struct rt2x00_dev *rt2x00dev =
153             container_of(work, struct rt2x00_dev, intf_work);
154
155         /*
156          * Iterate over each interface and perform the
157          * requested configurations.
158          */
159         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160                                             IEEE80211_IFACE_ITER_RESUME_ALL,
161                                             rt2x00lib_intf_scheduled_iter,
162                                             rt2x00dev);
163 }
164
165 static void rt2x00lib_autowakeup(struct work_struct *work)
166 {
167         struct rt2x00_dev *rt2x00dev =
168             container_of(work, struct rt2x00_dev, autowakeup_work.work);
169
170         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
171                 return;
172
173         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
174                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
175         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
176 }
177
178 /*
179  * Interrupt context handlers.
180  */
181 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182                                      struct ieee80211_vif *vif)
183 {
184         struct ieee80211_tx_control control = {};
185         struct rt2x00_dev *rt2x00dev = data;
186         struct sk_buff *skb;
187
188         /*
189          * Only AP mode interfaces do broad- and multicast buffering
190          */
191         if (vif->type != NL80211_IFTYPE_AP)
192                 return;
193
194         /*
195          * Send out buffered broad- and multicast frames
196          */
197         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         while (skb) {
199                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
200                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201         }
202 }
203
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205                                         struct ieee80211_vif *vif)
206 {
207         struct rt2x00_dev *rt2x00dev = data;
208
209         if (vif->type != NL80211_IFTYPE_AP &&
210             vif->type != NL80211_IFTYPE_ADHOC &&
211             vif->type != NL80211_IFTYPE_MESH_POINT &&
212             vif->type != NL80211_IFTYPE_WDS)
213                 return;
214
215         /*
216          * Update the beacon without locking. This is safe on PCI devices
217          * as they only update the beacon periodically here. This should
218          * never be called for USB devices.
219          */
220         WARN_ON(rt2x00_is_usb(rt2x00dev));
221         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
222 }
223
224 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
225 {
226         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
227                 return;
228
229         /* send buffered bc/mc frames out for every bssid */
230         ieee80211_iterate_active_interfaces_atomic(
231                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
232                 rt2x00lib_bc_buffer_iter, rt2x00dev);
233         /*
234          * Devices with pre tbtt interrupt don't need to update the beacon
235          * here as they will fetch the next beacon directly prior to
236          * transmission.
237          */
238         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
239                 return;
240
241         /* fetch next beacon */
242         ieee80211_iterate_active_interfaces_atomic(
243                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
244                 rt2x00lib_beaconupdate_iter, rt2x00dev);
245 }
246 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
247
248 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
249 {
250         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
251                 return;
252
253         /* fetch next beacon */
254         ieee80211_iterate_active_interfaces_atomic(
255                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
256                 rt2x00lib_beaconupdate_iter, rt2x00dev);
257 }
258 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
259
260 void rt2x00lib_dmastart(struct queue_entry *entry)
261 {
262         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
263         rt2x00queue_index_inc(entry, Q_INDEX);
264 }
265 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
266
267 void rt2x00lib_dmadone(struct queue_entry *entry)
268 {
269         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
270         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
271         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
272 }
273 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
274
275 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
276 {
277         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
278         struct ieee80211_bar *bar = (void *) entry->skb->data;
279         struct rt2x00_bar_list_entry *bar_entry;
280         int ret;
281
282         if (likely(!ieee80211_is_back_req(bar->frame_control)))
283                 return 0;
284
285         /*
286          * Unlike all other frames, the status report for BARs does
287          * not directly come from the hardware as it is incapable of
288          * matching a BA to a previously send BAR. The hardware will
289          * report all BARs as if they weren't acked at all.
290          *
291          * Instead the RX-path will scan for incoming BAs and set the
292          * block_acked flag if it sees one that was likely caused by
293          * a BAR from us.
294          *
295          * Remove remaining BARs here and return their status for
296          * TX done processing.
297          */
298         ret = 0;
299         rcu_read_lock();
300         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
301                 if (bar_entry->entry != entry)
302                         continue;
303
304                 spin_lock_bh(&rt2x00dev->bar_list_lock);
305                 /* Return whether this BAR was blockacked or not */
306                 ret = bar_entry->block_acked;
307                 /* Remove the BAR from our checklist */
308                 list_del_rcu(&bar_entry->list);
309                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
310                 kfree_rcu(bar_entry, head);
311
312                 break;
313         }
314         rcu_read_unlock();
315
316         return ret;
317 }
318
319 void rt2x00lib_txdone(struct queue_entry *entry,
320                       struct txdone_entry_desc *txdesc)
321 {
322         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
323         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
324         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
325         unsigned int header_length, i;
326         u8 rate_idx, rate_flags, retry_rates;
327         u8 skbdesc_flags = skbdesc->flags;
328         bool success;
329
330         /*
331          * Unmap the skb.
332          */
333         rt2x00queue_unmap_skb(entry);
334
335         /*
336          * Remove the extra tx headroom from the skb.
337          */
338         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
339
340         /*
341          * Signal that the TX descriptor is no longer in the skb.
342          */
343         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
344
345         /*
346          * Determine the length of 802.11 header.
347          */
348         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
349
350         /*
351          * Remove L2 padding which was added during
352          */
353         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
354                 rt2x00queue_remove_l2pad(entry->skb, header_length);
355
356         /*
357          * If the IV/EIV data was stripped from the frame before it was
358          * passed to the hardware, we should now reinsert it again because
359          * mac80211 will expect the same data to be present it the
360          * frame as it was passed to us.
361          */
362         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
363                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
364
365         /*
366          * Send frame to debugfs immediately, after this call is completed
367          * we are going to overwrite the skb->cb array.
368          */
369         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
370
371         /*
372          * Determine if the frame has been successfully transmitted and
373          * remove BARs from our check list while checking for their
374          * TX status.
375          */
376         success =
377             rt2x00lib_txdone_bar_status(entry) ||
378             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
379             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
380
381         /*
382          * Update TX statistics.
383          */
384         rt2x00dev->link.qual.tx_success += success;
385         rt2x00dev->link.qual.tx_failed += !success;
386
387         rate_idx = skbdesc->tx_rate_idx;
388         rate_flags = skbdesc->tx_rate_flags;
389         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
390             (txdesc->retry + 1) : 1;
391
392         /*
393          * Initialize TX status
394          */
395         memset(&tx_info->status, 0, sizeof(tx_info->status));
396         tx_info->status.ack_signal = 0;
397
398         /*
399          * Frame was send with retries, hardware tried
400          * different rates to send out the frame, at each
401          * retry it lowered the rate 1 step except when the
402          * lowest rate was used.
403          */
404         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
405                 tx_info->status.rates[i].idx = rate_idx - i;
406                 tx_info->status.rates[i].flags = rate_flags;
407
408                 if (rate_idx - i == 0) {
409                         /*
410                          * The lowest rate (index 0) was used until the
411                          * number of max retries was reached.
412                          */
413                         tx_info->status.rates[i].count = retry_rates - i;
414                         i++;
415                         break;
416                 }
417                 tx_info->status.rates[i].count = 1;
418         }
419         if (i < (IEEE80211_TX_MAX_RATES - 1))
420                 tx_info->status.rates[i].idx = -1; /* terminate */
421
422         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
423                 if (success)
424                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
425                 else
426                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
427         }
428
429         /*
430          * Every single frame has it's own tx status, hence report
431          * every frame as ampdu of size 1.
432          *
433          * TODO: if we can find out how many frames were aggregated
434          * by the hw we could provide the real ampdu_len to mac80211
435          * which would allow the rc algorithm to better decide on
436          * which rates are suitable.
437          */
438         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
439             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
440                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
441                 tx_info->status.ampdu_len = 1;
442                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
443
444                 if (!success)
445                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
446         }
447
448         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
449                 if (success)
450                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
451                 else
452                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
453         }
454
455         /*
456          * Only send the status report to mac80211 when it's a frame
457          * that originated in mac80211. If this was a extra frame coming
458          * through a mac80211 library call (RTS/CTS) then we should not
459          * send the status report back.
460          */
461         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
462                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
463                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
464                 else
465                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
466         } else
467                 dev_kfree_skb_any(entry->skb);
468
469         /*
470          * Make this entry available for reuse.
471          */
472         entry->skb = NULL;
473         entry->flags = 0;
474
475         rt2x00dev->ops->lib->clear_entry(entry);
476
477         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
478
479         /*
480          * If the data queue was below the threshold before the txdone
481          * handler we must make sure the packet queue in the mac80211 stack
482          * is reenabled when the txdone handler has finished. This has to be
483          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
484          * before it was stopped.
485          */
486         spin_lock_bh(&entry->queue->tx_lock);
487         if (!rt2x00queue_threshold(entry->queue))
488                 rt2x00queue_unpause_queue(entry->queue);
489         spin_unlock_bh(&entry->queue->tx_lock);
490 }
491 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
492
493 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
494 {
495         struct txdone_entry_desc txdesc;
496
497         txdesc.flags = 0;
498         __set_bit(status, &txdesc.flags);
499         txdesc.retry = 0;
500
501         rt2x00lib_txdone(entry, &txdesc);
502 }
503 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
504
505 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
506 {
507         struct ieee80211_mgmt *mgmt = (void *)data;
508         u8 *pos, *end;
509
510         pos = (u8 *)mgmt->u.beacon.variable;
511         end = data + len;
512         while (pos < end) {
513                 if (pos + 2 + pos[1] > end)
514                         return NULL;
515
516                 if (pos[0] == ie)
517                         return pos;
518
519                 pos += 2 + pos[1];
520         }
521
522         return NULL;
523 }
524
525 static void rt2x00lib_sleep(struct work_struct *work)
526 {
527         struct rt2x00_dev *rt2x00dev =
528             container_of(work, struct rt2x00_dev, sleep_work);
529
530         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
531                 return;
532
533         /*
534          * Check again is powersaving is enabled, to prevent races from delayed
535          * work execution.
536          */
537         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
538                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
539                                  IEEE80211_CONF_CHANGE_PS);
540 }
541
542 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
543                                       struct sk_buff *skb,
544                                       struct rxdone_entry_desc *rxdesc)
545 {
546         struct rt2x00_bar_list_entry *entry;
547         struct ieee80211_bar *ba = (void *)skb->data;
548
549         if (likely(!ieee80211_is_back(ba->frame_control)))
550                 return;
551
552         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
553                 return;
554
555         rcu_read_lock();
556         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
557
558                 if (ba->start_seq_num != entry->start_seq_num)
559                         continue;
560
561 #define TID_CHECK(a, b) (                                               \
562         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
563         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
564
565                 if (!TID_CHECK(ba->control, entry->control))
566                         continue;
567
568 #undef TID_CHECK
569
570                 if (compare_ether_addr(ba->ra, entry->ta))
571                         continue;
572
573                 if (compare_ether_addr(ba->ta, entry->ra))
574                         continue;
575
576                 /* Mark BAR since we received the according BA */
577                 spin_lock_bh(&rt2x00dev->bar_list_lock);
578                 entry->block_acked = 1;
579                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
580                 break;
581         }
582         rcu_read_unlock();
583
584 }
585
586 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
587                                       struct sk_buff *skb,
588                                       struct rxdone_entry_desc *rxdesc)
589 {
590         struct ieee80211_hdr *hdr = (void *) skb->data;
591         struct ieee80211_tim_ie *tim_ie;
592         u8 *tim;
593         u8 tim_len;
594         bool cam;
595
596         /* If this is not a beacon, or if mac80211 has no powersaving
597          * configured, or if the device is already in powersaving mode
598          * we can exit now. */
599         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
600                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
601                 return;
602
603         /* min. beacon length + FCS_LEN */
604         if (skb->len <= 40 + FCS_LEN)
605                 return;
606
607         /* and only beacons from the associated BSSID, please */
608         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
609             !rt2x00dev->aid)
610                 return;
611
612         rt2x00dev->last_beacon = jiffies;
613
614         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
615         if (!tim)
616                 return;
617
618         if (tim[1] < sizeof(*tim_ie))
619                 return;
620
621         tim_len = tim[1];
622         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
623
624         /* Check whenever the PHY can be turned off again. */
625
626         /* 1. What about buffered unicast traffic for our AID? */
627         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
628
629         /* 2. Maybe the AP wants to send multicast/broadcast data? */
630         cam |= (tim_ie->bitmap_ctrl & 0x01);
631
632         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
633                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
634 }
635
636 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
637                                         struct rxdone_entry_desc *rxdesc)
638 {
639         struct ieee80211_supported_band *sband;
640         const struct rt2x00_rate *rate;
641         unsigned int i;
642         int signal = rxdesc->signal;
643         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
644
645         switch (rxdesc->rate_mode) {
646         case RATE_MODE_CCK:
647         case RATE_MODE_OFDM:
648                 /*
649                  * For non-HT rates the MCS value needs to contain the
650                  * actually used rate modulation (CCK or OFDM).
651                  */
652                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
653                         signal = RATE_MCS(rxdesc->rate_mode, signal);
654
655                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
656                 for (i = 0; i < sband->n_bitrates; i++) {
657                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
658                         if (((type == RXDONE_SIGNAL_PLCP) &&
659                              (rate->plcp == signal)) ||
660                             ((type == RXDONE_SIGNAL_BITRATE) &&
661                               (rate->bitrate == signal)) ||
662                             ((type == RXDONE_SIGNAL_MCS) &&
663                               (rate->mcs == signal))) {
664                                 return i;
665                         }
666                 }
667                 break;
668         case RATE_MODE_HT_MIX:
669         case RATE_MODE_HT_GREENFIELD:
670                 if (signal >= 0 && signal <= 76)
671                         return signal;
672                 break;
673         default:
674                 break;
675         }
676
677         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
678                     rxdesc->rate_mode, signal, type);
679         return 0;
680 }
681
682 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
683 {
684         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
685         struct rxdone_entry_desc rxdesc;
686         struct sk_buff *skb;
687         struct ieee80211_rx_status *rx_status;
688         unsigned int header_length;
689         int rate_idx;
690
691         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
692             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
693                 goto submit_entry;
694
695         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
696                 goto submit_entry;
697
698         /*
699          * Allocate a new sk_buffer. If no new buffer available, drop the
700          * received frame and reuse the existing buffer.
701          */
702         skb = rt2x00queue_alloc_rxskb(entry, gfp);
703         if (!skb)
704                 goto submit_entry;
705
706         /*
707          * Unmap the skb.
708          */
709         rt2x00queue_unmap_skb(entry);
710
711         /*
712          * Extract the RXD details.
713          */
714         memset(&rxdesc, 0, sizeof(rxdesc));
715         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
716
717         /*
718          * Check for valid size in case we get corrupted descriptor from
719          * hardware.
720          */
721         if (unlikely(rxdesc.size == 0 ||
722                      rxdesc.size > entry->queue->data_size)) {
723                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
724                            rxdesc.size, entry->queue->data_size);
725                 dev_kfree_skb(entry->skb);
726                 goto renew_skb;
727         }
728
729         /*
730          * The data behind the ieee80211 header must be
731          * aligned on a 4 byte boundary.
732          */
733         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
734
735         /*
736          * Hardware might have stripped the IV/EIV/ICV data,
737          * in that case it is possible that the data was
738          * provided separately (through hardware descriptor)
739          * in which case we should reinsert the data into the frame.
740          */
741         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
742             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
743                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
744                                           &rxdesc);
745         else if (header_length &&
746                  (rxdesc.size > header_length) &&
747                  (rxdesc.dev_flags & RXDONE_L2PAD))
748                 rt2x00queue_remove_l2pad(entry->skb, header_length);
749
750         /* Trim buffer to correct size */
751         skb_trim(entry->skb, rxdesc.size);
752
753         /*
754          * Translate the signal to the correct bitrate index.
755          */
756         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
757         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
758             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
759                 rxdesc.flags |= RX_FLAG_HT;
760
761         /*
762          * Check if this is a beacon, and more frames have been
763          * buffered while we were in powersaving mode.
764          */
765         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
766
767         /*
768          * Check for incoming BlockAcks to match to the BlockAckReqs
769          * we've send out.
770          */
771         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
772
773         /*
774          * Update extra components
775          */
776         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
777         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
778         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
779
780         /*
781          * Initialize RX status information, and send frame
782          * to mac80211.
783          */
784         rx_status = IEEE80211_SKB_RXCB(entry->skb);
785
786         /* Ensure that all fields of rx_status are initialized
787          * properly. The skb->cb array was used for driver
788          * specific informations, so rx_status might contain
789          * garbage.
790          */
791         memset(rx_status, 0, sizeof(*rx_status));
792
793         rx_status->mactime = rxdesc.timestamp;
794         rx_status->band = rt2x00dev->curr_band;
795         rx_status->freq = rt2x00dev->curr_freq;
796         rx_status->rate_idx = rate_idx;
797         rx_status->signal = rxdesc.rssi;
798         rx_status->flag = rxdesc.flags;
799         rx_status->antenna = rt2x00dev->link.ant.active.rx;
800
801         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
802
803 renew_skb:
804         /*
805          * Replace the skb with the freshly allocated one.
806          */
807         entry->skb = skb;
808
809 submit_entry:
810         entry->flags = 0;
811         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
812         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
813             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
814                 rt2x00dev->ops->lib->clear_entry(entry);
815 }
816 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
817
818 /*
819  * Driver initialization handlers.
820  */
821 const struct rt2x00_rate rt2x00_supported_rates[12] = {
822         {
823                 .flags = DEV_RATE_CCK,
824                 .bitrate = 10,
825                 .ratemask = BIT(0),
826                 .plcp = 0x00,
827                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
828         },
829         {
830                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
831                 .bitrate = 20,
832                 .ratemask = BIT(1),
833                 .plcp = 0x01,
834                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
835         },
836         {
837                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
838                 .bitrate = 55,
839                 .ratemask = BIT(2),
840                 .plcp = 0x02,
841                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
842         },
843         {
844                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
845                 .bitrate = 110,
846                 .ratemask = BIT(3),
847                 .plcp = 0x03,
848                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
849         },
850         {
851                 .flags = DEV_RATE_OFDM,
852                 .bitrate = 60,
853                 .ratemask = BIT(4),
854                 .plcp = 0x0b,
855                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
856         },
857         {
858                 .flags = DEV_RATE_OFDM,
859                 .bitrate = 90,
860                 .ratemask = BIT(5),
861                 .plcp = 0x0f,
862                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
863         },
864         {
865                 .flags = DEV_RATE_OFDM,
866                 .bitrate = 120,
867                 .ratemask = BIT(6),
868                 .plcp = 0x0a,
869                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
870         },
871         {
872                 .flags = DEV_RATE_OFDM,
873                 .bitrate = 180,
874                 .ratemask = BIT(7),
875                 .plcp = 0x0e,
876                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
877         },
878         {
879                 .flags = DEV_RATE_OFDM,
880                 .bitrate = 240,
881                 .ratemask = BIT(8),
882                 .plcp = 0x09,
883                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
884         },
885         {
886                 .flags = DEV_RATE_OFDM,
887                 .bitrate = 360,
888                 .ratemask = BIT(9),
889                 .plcp = 0x0d,
890                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
891         },
892         {
893                 .flags = DEV_RATE_OFDM,
894                 .bitrate = 480,
895                 .ratemask = BIT(10),
896                 .plcp = 0x08,
897                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
898         },
899         {
900                 .flags = DEV_RATE_OFDM,
901                 .bitrate = 540,
902                 .ratemask = BIT(11),
903                 .plcp = 0x0c,
904                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
905         },
906 };
907
908 static void rt2x00lib_channel(struct ieee80211_channel *entry,
909                               const int channel, const int tx_power,
910                               const int value)
911 {
912         /* XXX: this assumption about the band is wrong for 802.11j */
913         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
914         entry->center_freq = ieee80211_channel_to_frequency(channel,
915                                                             entry->band);
916         entry->hw_value = value;
917         entry->max_power = tx_power;
918         entry->max_antenna_gain = 0xff;
919 }
920
921 static void rt2x00lib_rate(struct ieee80211_rate *entry,
922                            const u16 index, const struct rt2x00_rate *rate)
923 {
924         entry->flags = 0;
925         entry->bitrate = rate->bitrate;
926         entry->hw_value = index;
927         entry->hw_value_short = index;
928
929         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
930                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
931 }
932
933 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
934                                     struct hw_mode_spec *spec)
935 {
936         struct ieee80211_hw *hw = rt2x00dev->hw;
937         struct ieee80211_channel *channels;
938         struct ieee80211_rate *rates;
939         unsigned int num_rates;
940         unsigned int i;
941
942         num_rates = 0;
943         if (spec->supported_rates & SUPPORT_RATE_CCK)
944                 num_rates += 4;
945         if (spec->supported_rates & SUPPORT_RATE_OFDM)
946                 num_rates += 8;
947
948         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
949         if (!channels)
950                 return -ENOMEM;
951
952         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
953         if (!rates)
954                 goto exit_free_channels;
955
956         /*
957          * Initialize Rate list.
958          */
959         for (i = 0; i < num_rates; i++)
960                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
961
962         /*
963          * Initialize Channel list.
964          */
965         for (i = 0; i < spec->num_channels; i++) {
966                 rt2x00lib_channel(&channels[i],
967                                   spec->channels[i].channel,
968                                   spec->channels_info[i].max_power, i);
969         }
970
971         /*
972          * Intitialize 802.11b, 802.11g
973          * Rates: CCK, OFDM.
974          * Channels: 2.4 GHz
975          */
976         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
977                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
978                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
979                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
980                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
981                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
982                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
983                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
984                        &spec->ht, sizeof(spec->ht));
985         }
986
987         /*
988          * Intitialize 802.11a
989          * Rates: OFDM.
990          * Channels: OFDM, UNII, HiperLAN2.
991          */
992         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
993                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
994                     spec->num_channels - 14;
995                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
996                     num_rates - 4;
997                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
998                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
999                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1000                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1001                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1002                        &spec->ht, sizeof(spec->ht));
1003         }
1004
1005         return 0;
1006
1007  exit_free_channels:
1008         kfree(channels);
1009         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1010         return -ENOMEM;
1011 }
1012
1013 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1014 {
1015         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1016                 ieee80211_unregister_hw(rt2x00dev->hw);
1017
1018         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1019                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1020                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1021                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1022                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1023         }
1024
1025         kfree(rt2x00dev->spec.channels_info);
1026 }
1027
1028 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1029 {
1030         struct hw_mode_spec *spec = &rt2x00dev->spec;
1031         int status;
1032
1033         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1034                 return 0;
1035
1036         /*
1037          * Initialize HW modes.
1038          */
1039         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1040         if (status)
1041                 return status;
1042
1043         /*
1044          * Initialize HW fields.
1045          */
1046         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1047
1048         /*
1049          * Initialize extra TX headroom required.
1050          */
1051         rt2x00dev->hw->extra_tx_headroom =
1052                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1053                       rt2x00dev->ops->extra_tx_headroom);
1054
1055         /*
1056          * Take TX headroom required for alignment into account.
1057          */
1058         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1059                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1060         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1061                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1062
1063         /*
1064          * Tell mac80211 about the size of our private STA structure.
1065          */
1066         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1067
1068         /*
1069          * Allocate tx status FIFO for driver use.
1070          */
1071         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1072                 /*
1073                  * Allocate the txstatus fifo. In the worst case the tx
1074                  * status fifo has to hold the tx status of all entries
1075                  * in all tx queues. Hence, calculate the kfifo size as
1076                  * tx_queues * entry_num and round up to the nearest
1077                  * power of 2.
1078                  */
1079                 int kfifo_size =
1080                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1081                                            rt2x00dev->ops->tx->entry_num *
1082                                            sizeof(u32));
1083
1084                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1085                                      GFP_KERNEL);
1086                 if (status)
1087                         return status;
1088         }
1089
1090         /*
1091          * Initialize tasklets if used by the driver. Tasklets are
1092          * disabled until the interrupts are turned on. The driver
1093          * has to handle that.
1094          */
1095 #define RT2X00_TASKLET_INIT(taskletname) \
1096         if (rt2x00dev->ops->lib->taskletname) { \
1097                 tasklet_init(&rt2x00dev->taskletname, \
1098                              rt2x00dev->ops->lib->taskletname, \
1099                              (unsigned long)rt2x00dev); \
1100         }
1101
1102         RT2X00_TASKLET_INIT(txstatus_tasklet);
1103         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1104         RT2X00_TASKLET_INIT(tbtt_tasklet);
1105         RT2X00_TASKLET_INIT(rxdone_tasklet);
1106         RT2X00_TASKLET_INIT(autowake_tasklet);
1107
1108 #undef RT2X00_TASKLET_INIT
1109
1110         /*
1111          * Register HW.
1112          */
1113         status = ieee80211_register_hw(rt2x00dev->hw);
1114         if (status)
1115                 return status;
1116
1117         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1118
1119         return 0;
1120 }
1121
1122 /*
1123  * Initialization/uninitialization handlers.
1124  */
1125 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1126 {
1127         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1128                 return;
1129
1130         /*
1131          * Unregister extra components.
1132          */
1133         rt2x00rfkill_unregister(rt2x00dev);
1134
1135         /*
1136          * Allow the HW to uninitialize.
1137          */
1138         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1139
1140         /*
1141          * Free allocated queue entries.
1142          */
1143         rt2x00queue_uninitialize(rt2x00dev);
1144 }
1145
1146 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1147 {
1148         int status;
1149
1150         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1151                 return 0;
1152
1153         /*
1154          * Allocate all queue entries.
1155          */
1156         status = rt2x00queue_initialize(rt2x00dev);
1157         if (status)
1158                 return status;
1159
1160         /*
1161          * Initialize the device.
1162          */
1163         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1164         if (status) {
1165                 rt2x00queue_uninitialize(rt2x00dev);
1166                 return status;
1167         }
1168
1169         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1170
1171         return 0;
1172 }
1173
1174 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1175 {
1176         int retval;
1177
1178         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1179                 return 0;
1180
1181         /*
1182          * If this is the first interface which is added,
1183          * we should load the firmware now.
1184          */
1185         retval = rt2x00lib_load_firmware(rt2x00dev);
1186         if (retval)
1187                 return retval;
1188
1189         /*
1190          * Initialize the device.
1191          */
1192         retval = rt2x00lib_initialize(rt2x00dev);
1193         if (retval)
1194                 return retval;
1195
1196         rt2x00dev->intf_ap_count = 0;
1197         rt2x00dev->intf_sta_count = 0;
1198         rt2x00dev->intf_associated = 0;
1199
1200         /* Enable the radio */
1201         retval = rt2x00lib_enable_radio(rt2x00dev);
1202         if (retval)
1203                 return retval;
1204
1205         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1206
1207         return 0;
1208 }
1209
1210 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1211 {
1212         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1213                 return;
1214
1215         /*
1216          * Perhaps we can add something smarter here,
1217          * but for now just disabling the radio should do.
1218          */
1219         rt2x00lib_disable_radio(rt2x00dev);
1220
1221         rt2x00dev->intf_ap_count = 0;
1222         rt2x00dev->intf_sta_count = 0;
1223         rt2x00dev->intf_associated = 0;
1224 }
1225
1226 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1227 {
1228         struct ieee80211_iface_limit *if_limit;
1229         struct ieee80211_iface_combination *if_combination;
1230
1231         if (rt2x00dev->ops->max_ap_intf < 2)
1232                 return;
1233
1234         /*
1235          * Build up AP interface limits structure.
1236          */
1237         if_limit = &rt2x00dev->if_limits_ap;
1238         if_limit->max = rt2x00dev->ops->max_ap_intf;
1239         if_limit->types = BIT(NL80211_IFTYPE_AP);
1240 #ifdef CONFIG_MAC80211_MESH
1241         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1242 #endif
1243
1244         /*
1245          * Build up AP interface combinations structure.
1246          */
1247         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1248         if_combination->limits = if_limit;
1249         if_combination->n_limits = 1;
1250         if_combination->max_interfaces = if_limit->max;
1251         if_combination->num_different_channels = 1;
1252
1253         /*
1254          * Finally, specify the possible combinations to mac80211.
1255          */
1256         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1257         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1258 }
1259
1260 /*
1261  * driver allocation handlers.
1262  */
1263 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1264 {
1265         int retval = -ENOMEM;
1266
1267         /*
1268          * Set possible interface combinations.
1269          */
1270         rt2x00lib_set_if_combinations(rt2x00dev);
1271
1272         /*
1273          * Allocate the driver data memory, if necessary.
1274          */
1275         if (rt2x00dev->ops->drv_data_size > 0) {
1276                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1277                                               GFP_KERNEL);
1278                 if (!rt2x00dev->drv_data) {
1279                         retval = -ENOMEM;
1280                         goto exit;
1281                 }
1282         }
1283
1284         spin_lock_init(&rt2x00dev->irqmask_lock);
1285         mutex_init(&rt2x00dev->csr_mutex);
1286         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1287         spin_lock_init(&rt2x00dev->bar_list_lock);
1288
1289         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1290
1291         /*
1292          * Make room for rt2x00_intf inside the per-interface
1293          * structure ieee80211_vif.
1294          */
1295         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1296
1297         /*
1298          * rt2x00 devices can only use the last n bits of the MAC address
1299          * for virtual interfaces.
1300          */
1301         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1302                 (rt2x00dev->ops->max_ap_intf - 1);
1303
1304         /*
1305          * Determine which operating modes are supported, all modes
1306          * which require beaconing, depend on the availability of
1307          * beacon entries.
1308          */
1309         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1310         if (rt2x00dev->ops->bcn->entry_num > 0)
1311                 rt2x00dev->hw->wiphy->interface_modes |=
1312                     BIT(NL80211_IFTYPE_ADHOC) |
1313                     BIT(NL80211_IFTYPE_AP) |
1314 #ifdef CONFIG_MAC80211_MESH
1315                     BIT(NL80211_IFTYPE_MESH_POINT) |
1316 #endif
1317                     BIT(NL80211_IFTYPE_WDS);
1318
1319         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1320
1321         /*
1322          * Initialize work.
1323          */
1324         rt2x00dev->workqueue =
1325             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1326         if (!rt2x00dev->workqueue) {
1327                 retval = -ENOMEM;
1328                 goto exit;
1329         }
1330
1331         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1332         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1333         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1334
1335         /*
1336          * Let the driver probe the device to detect the capabilities.
1337          */
1338         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1339         if (retval) {
1340                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1341                 goto exit;
1342         }
1343
1344         /*
1345          * Allocate queue array.
1346          */
1347         retval = rt2x00queue_allocate(rt2x00dev);
1348         if (retval)
1349                 goto exit;
1350
1351         /*
1352          * Initialize ieee80211 structure.
1353          */
1354         retval = rt2x00lib_probe_hw(rt2x00dev);
1355         if (retval) {
1356                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1357                 goto exit;
1358         }
1359
1360         /*
1361          * Register extra components.
1362          */
1363         rt2x00link_register(rt2x00dev);
1364         rt2x00leds_register(rt2x00dev);
1365         rt2x00debug_register(rt2x00dev);
1366         rt2x00rfkill_register(rt2x00dev);
1367
1368         return 0;
1369
1370 exit:
1371         rt2x00lib_remove_dev(rt2x00dev);
1372
1373         return retval;
1374 }
1375 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1376
1377 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1378 {
1379         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1380
1381         /*
1382          * Disable radio.
1383          */
1384         rt2x00lib_disable_radio(rt2x00dev);
1385
1386         /*
1387          * Stop all work.
1388          */
1389         cancel_work_sync(&rt2x00dev->intf_work);
1390         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1391         cancel_work_sync(&rt2x00dev->sleep_work);
1392         if (rt2x00_is_usb(rt2x00dev)) {
1393                 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1394                 cancel_work_sync(&rt2x00dev->rxdone_work);
1395                 cancel_work_sync(&rt2x00dev->txdone_work);
1396         }
1397         if (rt2x00dev->workqueue)
1398                 destroy_workqueue(rt2x00dev->workqueue);
1399
1400         /*
1401          * Free the tx status fifo.
1402          */
1403         kfifo_free(&rt2x00dev->txstatus_fifo);
1404
1405         /*
1406          * Kill the tx status tasklet.
1407          */
1408         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1409         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1410         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1411         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1412         tasklet_kill(&rt2x00dev->autowake_tasklet);
1413
1414         /*
1415          * Uninitialize device.
1416          */
1417         rt2x00lib_uninitialize(rt2x00dev);
1418
1419         /*
1420          * Free extra components
1421          */
1422         rt2x00debug_deregister(rt2x00dev);
1423         rt2x00leds_unregister(rt2x00dev);
1424
1425         /*
1426          * Free ieee80211_hw memory.
1427          */
1428         rt2x00lib_remove_hw(rt2x00dev);
1429
1430         /*
1431          * Free firmware image.
1432          */
1433         rt2x00lib_free_firmware(rt2x00dev);
1434
1435         /*
1436          * Free queue structures.
1437          */
1438         rt2x00queue_free(rt2x00dev);
1439
1440         /*
1441          * Free the driver data.
1442          */
1443         if (rt2x00dev->drv_data)
1444                 kfree(rt2x00dev->drv_data);
1445 }
1446 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1447
1448 /*
1449  * Device state handlers
1450  */
1451 #ifdef CONFIG_PM
1452 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1453 {
1454         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1455
1456         /*
1457          * Prevent mac80211 from accessing driver while suspended.
1458          */
1459         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1460                 return 0;
1461
1462         /*
1463          * Cleanup as much as possible.
1464          */
1465         rt2x00lib_uninitialize(rt2x00dev);
1466
1467         /*
1468          * Suspend/disable extra components.
1469          */
1470         rt2x00leds_suspend(rt2x00dev);
1471         rt2x00debug_deregister(rt2x00dev);
1472
1473         /*
1474          * Set device mode to sleep for power management,
1475          * on some hardware this call seems to consistently fail.
1476          * From the specifications it is hard to tell why it fails,
1477          * and if this is a "bad thing".
1478          * Overall it is safe to just ignore the failure and
1479          * continue suspending. The only downside is that the
1480          * device will not be in optimal power save mode, but with
1481          * the radio and the other components already disabled the
1482          * device is as good as disabled.
1483          */
1484         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1485                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1486
1487         return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1490
1491 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1492 {
1493         rt2x00_dbg(rt2x00dev, "Waking up\n");
1494
1495         /*
1496          * Restore/enable extra components.
1497          */
1498         rt2x00debug_register(rt2x00dev);
1499         rt2x00leds_resume(rt2x00dev);
1500
1501         /*
1502          * We are ready again to receive requests from mac80211.
1503          */
1504         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1505
1506         return 0;
1507 }
1508 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1509 #endif /* CONFIG_PM */
1510
1511 /*
1512  * rt2x00lib module information.
1513  */
1514 MODULE_AUTHOR(DRV_PROJECT);
1515 MODULE_VERSION(DRV_VERSION);
1516 MODULE_DESCRIPTION("rt2x00 library");
1517 MODULE_LICENSE("GPL");