cgroup: superblock can't be released with active dentries
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212                 break;
213         default:
214                 break;
215         }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221         struct queue_entry *entry;
222
223         switch (queue->qid) {
224         case QID_AC_VO:
225         case QID_AC_VI:
226         case QID_AC_BE:
227         case QID_AC_BK:
228                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230                                          entry->entry_idx);
231                 break;
232         case QID_MGMT:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235                                          entry->entry_idx);
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245         u32 reg;
246
247         switch (queue->qid) {
248         case QID_RX:
249                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252                 break;
253         case QID_BEACON:
254                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264                 /*
265                  * Wait for current invocation to finish. The tasklet
266                  * won't be scheduled anymore afterwards since we disabled
267                  * the TBTT and PRE TBTT timer.
268                  */
269                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272                 break;
273         default:
274                 break;
275         }
276 }
277
278 /*
279  * Firmware functions
280  */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283         return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287                                     const u8 *data, const size_t len)
288 {
289         u32 reg;
290
291         /*
292          * enable Host program ram write selection
293          */
294         reg = 0;
295         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298         /*
299          * Write firmware to device.
300          */
301         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302                                       data, len);
303
304         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310         return 0;
311 }
312
313 /*
314  * Initialization functions.
315  */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319         u32 word;
320
321         if (entry->queue->qid == QID_RX) {
322                 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325         } else {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329         }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337         u32 word;
338
339         if (entry->queue->qid == QID_RX) {
340                 rt2x00_desc_read(entry_priv->desc, 0, &word);
341                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342                 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344                 rt2x00_desc_read(entry_priv->desc, 1, &word);
345                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346                 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348                 /*
349                  * Set RX IDX in register to inform hardware that we have
350                  * handled this entry and it is available for reuse again.
351                  */
352                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353                                       entry->entry_idx);
354         } else {
355                 rt2x00_desc_read(entry_priv->desc, 1, &word);
356                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357                 rt2x00_desc_write(entry_priv->desc, 1, word);
358         }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363         struct queue_entry_priv_pci *entry_priv;
364
365         /*
366          * Initialize registers.
367          */
368         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
369         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
370         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
371                                  rt2x00dev->tx[0].limit);
372         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
373         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
374
375         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
376         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
377         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
378                                  rt2x00dev->tx[1].limit);
379         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
380         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
381
382         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
383         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
384         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
385                                  rt2x00dev->tx[2].limit);
386         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
387         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
388
389         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
390         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
391         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
392                                  rt2x00dev->tx[3].limit);
393         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
394         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
395
396         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
397         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
398         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
399         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
400
401         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
402         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
403         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
404         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
405
406         entry_priv = rt2x00dev->rx->entries[0].priv_data;
407         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
408         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
409                                  rt2x00dev->rx[0].limit);
410         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
411                                  rt2x00dev->rx[0].limit - 1);
412         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
413
414         rt2800_disable_wpdma(rt2x00dev);
415
416         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
417
418         return 0;
419 }
420
421 /*
422  * Device state switch handlers.
423  */
424 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
425                                  enum dev_state state)
426 {
427         u32 reg;
428         unsigned long flags;
429
430         /*
431          * When interrupts are being enabled, the interrupt registers
432          * should clear the register to assure a clean state.
433          */
434         if (state == STATE_RADIO_IRQ_ON) {
435                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
436                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
437         }
438
439         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
440         reg = 0;
441         if (state == STATE_RADIO_IRQ_ON) {
442                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
443                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
444                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
445                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
446                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
447         }
448         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
449         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
450
451         if (state == STATE_RADIO_IRQ_OFF) {
452                 /*
453                  * Wait for possibly running tasklets to finish.
454                  */
455                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
456                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
457                 tasklet_kill(&rt2x00dev->autowake_tasklet);
458                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
459                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
460         }
461 }
462
463 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
464 {
465         u32 reg;
466
467         /*
468          * Reset DMA indexes
469          */
470         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
471         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
472         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
473         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
474         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
475         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
476         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
477         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
478         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
479
480         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
481         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
482
483         if (rt2x00_is_pcie(rt2x00dev) &&
484             (rt2x00_rt(rt2x00dev, RT3572) ||
485              rt2x00_rt(rt2x00dev, RT5390) ||
486              rt2x00_rt(rt2x00dev, RT5392))) {
487                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
488                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
489                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
490                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
491         }
492
493         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
494
495         reg = 0;
496         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
497         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
498         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
499
500         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
501
502         return 0;
503 }
504
505 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
506 {
507         int retval;
508
509         /* Wait for DMA, ignore error until we initialize queues. */
510         rt2800_wait_wpdma_ready(rt2x00dev);
511
512         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
513                 return -EIO;
514
515         retval = rt2800_enable_radio(rt2x00dev);
516         if (retval)
517                 return retval;
518
519         /* After resume MCU_BOOT_SIGNAL will trash these. */
520         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
521         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
522
523         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
524         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
525
526         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
527         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
528
529         return retval;
530 }
531
532 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
533 {
534         if (rt2x00_is_soc(rt2x00dev)) {
535                 rt2800_disable_radio(rt2x00dev);
536                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
537                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
538         }
539 }
540
541 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
542                                enum dev_state state)
543 {
544         if (state == STATE_AWAKE) {
545                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
546                                    0, 0x02);
547                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
548         } else if (state == STATE_SLEEP) {
549                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
550                                          0xffffffff);
551                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
552                                          0xffffffff);
553                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
554                                    0xff, 0x01);
555         }
556
557         return 0;
558 }
559
560 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
561                                       enum dev_state state)
562 {
563         int retval = 0;
564
565         switch (state) {
566         case STATE_RADIO_ON:
567                 retval = rt2800pci_enable_radio(rt2x00dev);
568                 break;
569         case STATE_RADIO_OFF:
570                 /*
571                  * After the radio has been disabled, the device should
572                  * be put to sleep for powersaving.
573                  */
574                 rt2800pci_disable_radio(rt2x00dev);
575                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
576                 break;
577         case STATE_RADIO_IRQ_ON:
578         case STATE_RADIO_IRQ_OFF:
579                 rt2800pci_toggle_irq(rt2x00dev, state);
580                 break;
581         case STATE_DEEP_SLEEP:
582         case STATE_SLEEP:
583         case STATE_STANDBY:
584         case STATE_AWAKE:
585                 retval = rt2800pci_set_state(rt2x00dev, state);
586                 break;
587         default:
588                 retval = -ENOTSUPP;
589                 break;
590         }
591
592         if (unlikely(retval))
593                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
594                       state, retval);
595
596         return retval;
597 }
598
599 /*
600  * TX descriptor initialization
601  */
602 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
603 {
604         return (__le32 *) entry->skb->data;
605 }
606
607 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
608                                     struct txentry_desc *txdesc)
609 {
610         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
611         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
612         __le32 *txd = entry_priv->desc;
613         u32 word;
614
615         /*
616          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
617          * must contains a TXWI structure + 802.11 header + padding + 802.11
618          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
619          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
620          * data. It means that LAST_SEC0 is always 0.
621          */
622
623         /*
624          * Initialize TX descriptor
625          */
626         word = 0;
627         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
628         rt2x00_desc_write(txd, 0, word);
629
630         word = 0;
631         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
632         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
633                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
634         rt2x00_set_field32(&word, TXD_W1_BURST,
635                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
636         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
637         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
638         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
639         rt2x00_desc_write(txd, 1, word);
640
641         word = 0;
642         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
643                            skbdesc->skb_dma + TXWI_DESC_SIZE);
644         rt2x00_desc_write(txd, 2, word);
645
646         word = 0;
647         rt2x00_set_field32(&word, TXD_W3_WIV,
648                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
649         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
650         rt2x00_desc_write(txd, 3, word);
651
652         /*
653          * Register descriptor details in skb frame descriptor.
654          */
655         skbdesc->desc = txd;
656         skbdesc->desc_len = TXD_DESC_SIZE;
657 }
658
659 /*
660  * RX control handlers
661  */
662 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
663                                   struct rxdone_entry_desc *rxdesc)
664 {
665         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
666         __le32 *rxd = entry_priv->desc;
667         u32 word;
668
669         rt2x00_desc_read(rxd, 3, &word);
670
671         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
672                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
673
674         /*
675          * Unfortunately we don't know the cipher type used during
676          * decryption. This prevents us from correct providing
677          * correct statistics through debugfs.
678          */
679         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
680
681         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
682                 /*
683                  * Hardware has stripped IV/EIV data from 802.11 frame during
684                  * decryption. Unfortunately the descriptor doesn't contain
685                  * any fields with the EIV/IV data either, so they can't
686                  * be restored by rt2x00lib.
687                  */
688                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
689
690                 /*
691                  * The hardware has already checked the Michael Mic and has
692                  * stripped it from the frame. Signal this to mac80211.
693                  */
694                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
695
696                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
697                         rxdesc->flags |= RX_FLAG_DECRYPTED;
698                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
699                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
700         }
701
702         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
703                 rxdesc->dev_flags |= RXDONE_MY_BSS;
704
705         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
706                 rxdesc->dev_flags |= RXDONE_L2PAD;
707
708         /*
709          * Process the RXWI structure that is at the start of the buffer.
710          */
711         rt2800_process_rxwi(entry, rxdesc);
712 }
713
714 /*
715  * Interrupt functions.
716  */
717 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
718 {
719         struct ieee80211_conf conf = { .flags = 0 };
720         struct rt2x00lib_conf libconf = { .conf = &conf };
721
722         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
723 }
724
725 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
726 {
727         struct data_queue *queue;
728         struct queue_entry *entry;
729         u32 status;
730         u8 qid;
731         int max_tx_done = 16;
732
733         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
734                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
735                 if (unlikely(qid >= QID_RX)) {
736                         /*
737                          * Unknown queue, this shouldn't happen. Just drop
738                          * this tx status.
739                          */
740                         WARNING(rt2x00dev, "Got TX status report with "
741                                            "unexpected pid %u, dropping\n", qid);
742                         break;
743                 }
744
745                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
746                 if (unlikely(queue == NULL)) {
747                         /*
748                          * The queue is NULL, this shouldn't happen. Stop
749                          * processing here and drop the tx status
750                          */
751                         WARNING(rt2x00dev, "Got TX status for an unavailable "
752                                            "queue %u, dropping\n", qid);
753                         break;
754                 }
755
756                 if (unlikely(rt2x00queue_empty(queue))) {
757                         /*
758                          * The queue is empty. Stop processing here
759                          * and drop the tx status.
760                          */
761                         WARNING(rt2x00dev, "Got TX status for an empty "
762                                            "queue %u, dropping\n", qid);
763                         break;
764                 }
765
766                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
767                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
768
769                 if (--max_tx_done == 0)
770                         break;
771         }
772
773         return !max_tx_done;
774 }
775
776 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
777                                               struct rt2x00_field32 irq_field)
778 {
779         u32 reg;
780
781         /*
782          * Enable a single interrupt. The interrupt mask register
783          * access needs locking.
784          */
785         spin_lock_irq(&rt2x00dev->irqmask_lock);
786         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
787         rt2x00_set_field32(&reg, irq_field, 1);
788         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
789         spin_unlock_irq(&rt2x00dev->irqmask_lock);
790 }
791
792 static void rt2800pci_txstatus_tasklet(unsigned long data)
793 {
794         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
795         if (rt2800pci_txdone(rt2x00dev))
796                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
797
798         /*
799          * No need to enable the tx status interrupt here as we always
800          * leave it enabled to minimize the possibility of a tx status
801          * register overflow. See comment in interrupt handler.
802          */
803 }
804
805 static void rt2800pci_pretbtt_tasklet(unsigned long data)
806 {
807         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
808         rt2x00lib_pretbtt(rt2x00dev);
809         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
810                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
811 }
812
813 static void rt2800pci_tbtt_tasklet(unsigned long data)
814 {
815         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
816         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
817         u32 reg;
818
819         rt2x00lib_beacondone(rt2x00dev);
820
821         if (rt2x00dev->intf_ap_count) {
822                 /*
823                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
824                  * causing beacon skew and as a result causing problems with
825                  * some powersaving clients over time. Shorten the beacon
826                  * interval every 64 beacons by 64us to mitigate this effect.
827                  */
828                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
829                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
830                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
831                                            (rt2x00dev->beacon_int * 16) - 1);
832                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
833                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
834                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
835                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
836                                            (rt2x00dev->beacon_int * 16));
837                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
838                 }
839                 drv_data->tbtt_tick++;
840                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
841         }
842
843         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
844                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
845 }
846
847 static void rt2800pci_rxdone_tasklet(unsigned long data)
848 {
849         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
850         if (rt2x00pci_rxdone(rt2x00dev))
851                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
852         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
853                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
854 }
855
856 static void rt2800pci_autowake_tasklet(unsigned long data)
857 {
858         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
859         rt2800pci_wakeup(rt2x00dev);
860         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
861                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
862 }
863
864 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
865 {
866         u32 status;
867         int i;
868
869         /*
870          * The TX_FIFO_STATUS interrupt needs special care. We should
871          * read TX_STA_FIFO but we should do it immediately as otherwise
872          * the register can overflow and we would lose status reports.
873          *
874          * Hence, read the TX_STA_FIFO register and copy all tx status
875          * reports into a kernel FIFO which is handled in the txstatus
876          * tasklet. We use a tasklet to process the tx status reports
877          * because we can schedule the tasklet multiple times (when the
878          * interrupt fires again during tx status processing).
879          *
880          * Furthermore we don't disable the TX_FIFO_STATUS
881          * interrupt here but leave it enabled so that the TX_STA_FIFO
882          * can also be read while the tx status tasklet gets executed.
883          *
884          * Since we have only one producer and one consumer we don't
885          * need to lock the kfifo.
886          */
887         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
888                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
889
890                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
891                         break;
892
893                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
894                         WARNING(rt2x00dev, "TX status FIFO overrun,"
895                                 "drop tx status report.\n");
896                         break;
897                 }
898         }
899
900         /* Schedule the tasklet for processing the tx status. */
901         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
902 }
903
904 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
905 {
906         struct rt2x00_dev *rt2x00dev = dev_instance;
907         u32 reg, mask;
908
909         /* Read status and ACK all interrupts */
910         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
911         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
912
913         if (!reg)
914                 return IRQ_NONE;
915
916         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
917                 return IRQ_HANDLED;
918
919         /*
920          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
921          * for interrupts and interrupt masks we can just use the value of
922          * INT_SOURCE_CSR to create the interrupt mask.
923          */
924         mask = ~reg;
925
926         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
927                 rt2800pci_txstatus_interrupt(rt2x00dev);
928                 /*
929                  * Never disable the TX_FIFO_STATUS interrupt.
930                  */
931                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
932         }
933
934         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
935                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
936
937         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
938                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
939
940         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
941                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
942
943         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
944                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
945
946         /*
947          * Disable all interrupts for which a tasklet was scheduled right now,
948          * the tasklet will reenable the appropriate interrupts.
949          */
950         spin_lock(&rt2x00dev->irqmask_lock);
951         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
952         reg &= mask;
953         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
954         spin_unlock(&rt2x00dev->irqmask_lock);
955
956         return IRQ_HANDLED;
957 }
958
959 /*
960  * Device probe functions.
961  */
962 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
963 {
964         /*
965          * Read EEPROM into buffer
966          */
967         if (rt2x00_is_soc(rt2x00dev))
968                 rt2800pci_read_eeprom_soc(rt2x00dev);
969         else if (rt2800pci_efuse_detect(rt2x00dev))
970                 rt2800pci_read_eeprom_efuse(rt2x00dev);
971         else
972                 rt2800pci_read_eeprom_pci(rt2x00dev);
973
974         return rt2800_validate_eeprom(rt2x00dev);
975 }
976
977 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
978 {
979         int retval;
980
981         /*
982          * Allocate eeprom data.
983          */
984         retval = rt2800pci_validate_eeprom(rt2x00dev);
985         if (retval)
986                 return retval;
987
988         retval = rt2800_init_eeprom(rt2x00dev);
989         if (retval)
990                 return retval;
991
992         /*
993          * Initialize hw specifications.
994          */
995         retval = rt2800_probe_hw_mode(rt2x00dev);
996         if (retval)
997                 return retval;
998
999         /*
1000          * This device has multiple filters for control frames
1001          * and has a separate filter for PS Poll frames.
1002          */
1003         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
1004         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1005
1006         /*
1007          * This device has a pre tbtt interrupt and thus fetches
1008          * a new beacon directly prior to transmission.
1009          */
1010         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1011
1012         /*
1013          * This device requires firmware.
1014          */
1015         if (!rt2x00_is_soc(rt2x00dev))
1016                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1017         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1018         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1019         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1020         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1021         if (!modparam_nohwcrypt)
1022                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1023         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1024         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1025
1026         /*
1027          * Set the rssi offset.
1028          */
1029         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1030
1031         return 0;
1032 }
1033
1034 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1035         .tx                     = rt2x00mac_tx,
1036         .start                  = rt2x00mac_start,
1037         .stop                   = rt2x00mac_stop,
1038         .add_interface          = rt2x00mac_add_interface,
1039         .remove_interface       = rt2x00mac_remove_interface,
1040         .config                 = rt2x00mac_config,
1041         .configure_filter       = rt2x00mac_configure_filter,
1042         .set_key                = rt2x00mac_set_key,
1043         .sw_scan_start          = rt2x00mac_sw_scan_start,
1044         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1045         .get_stats              = rt2x00mac_get_stats,
1046         .get_tkip_seq           = rt2800_get_tkip_seq,
1047         .set_rts_threshold      = rt2800_set_rts_threshold,
1048         .sta_add                = rt2x00mac_sta_add,
1049         .sta_remove             = rt2x00mac_sta_remove,
1050         .bss_info_changed       = rt2x00mac_bss_info_changed,
1051         .conf_tx                = rt2800_conf_tx,
1052         .get_tsf                = rt2800_get_tsf,
1053         .rfkill_poll            = rt2x00mac_rfkill_poll,
1054         .ampdu_action           = rt2800_ampdu_action,
1055         .flush                  = rt2x00mac_flush,
1056         .get_survey             = rt2800_get_survey,
1057         .get_ringparam          = rt2x00mac_get_ringparam,
1058         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1059 };
1060
1061 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1062         .register_read          = rt2x00pci_register_read,
1063         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1064         .register_write         = rt2x00pci_register_write,
1065         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1066         .register_multiread     = rt2x00pci_register_multiread,
1067         .register_multiwrite    = rt2x00pci_register_multiwrite,
1068         .regbusy_read           = rt2x00pci_regbusy_read,
1069         .drv_write_firmware     = rt2800pci_write_firmware,
1070         .drv_init_registers     = rt2800pci_init_registers,
1071         .drv_get_txwi           = rt2800pci_get_txwi,
1072 };
1073
1074 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1075         .irq_handler            = rt2800pci_interrupt,
1076         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1077         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1078         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1079         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1080         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1081         .probe_hw               = rt2800pci_probe_hw,
1082         .get_firmware_name      = rt2800pci_get_firmware_name,
1083         .check_firmware         = rt2800_check_firmware,
1084         .load_firmware          = rt2800_load_firmware,
1085         .initialize             = rt2x00pci_initialize,
1086         .uninitialize           = rt2x00pci_uninitialize,
1087         .get_entry_state        = rt2800pci_get_entry_state,
1088         .clear_entry            = rt2800pci_clear_entry,
1089         .set_device_state       = rt2800pci_set_device_state,
1090         .rfkill_poll            = rt2800_rfkill_poll,
1091         .link_stats             = rt2800_link_stats,
1092         .reset_tuner            = rt2800_reset_tuner,
1093         .link_tuner             = rt2800_link_tuner,
1094         .gain_calibration       = rt2800_gain_calibration,
1095         .vco_calibration        = rt2800_vco_calibration,
1096         .start_queue            = rt2800pci_start_queue,
1097         .kick_queue             = rt2800pci_kick_queue,
1098         .stop_queue             = rt2800pci_stop_queue,
1099         .flush_queue            = rt2x00pci_flush_queue,
1100         .write_tx_desc          = rt2800pci_write_tx_desc,
1101         .write_tx_data          = rt2800_write_tx_data,
1102         .write_beacon           = rt2800_write_beacon,
1103         .clear_beacon           = rt2800_clear_beacon,
1104         .fill_rxdone            = rt2800pci_fill_rxdone,
1105         .config_shared_key      = rt2800_config_shared_key,
1106         .config_pairwise_key    = rt2800_config_pairwise_key,
1107         .config_filter          = rt2800_config_filter,
1108         .config_intf            = rt2800_config_intf,
1109         .config_erp             = rt2800_config_erp,
1110         .config_ant             = rt2800_config_ant,
1111         .config                 = rt2800_config,
1112         .sta_add                = rt2800_sta_add,
1113         .sta_remove             = rt2800_sta_remove,
1114 };
1115
1116 static const struct data_queue_desc rt2800pci_queue_rx = {
1117         .entry_num              = 128,
1118         .data_size              = AGGREGATION_SIZE,
1119         .desc_size              = RXD_DESC_SIZE,
1120         .priv_size              = sizeof(struct queue_entry_priv_pci),
1121 };
1122
1123 static const struct data_queue_desc rt2800pci_queue_tx = {
1124         .entry_num              = 64,
1125         .data_size              = AGGREGATION_SIZE,
1126         .desc_size              = TXD_DESC_SIZE,
1127         .priv_size              = sizeof(struct queue_entry_priv_pci),
1128 };
1129
1130 static const struct data_queue_desc rt2800pci_queue_bcn = {
1131         .entry_num              = 8,
1132         .data_size              = 0, /* No DMA required for beacons */
1133         .desc_size              = TXWI_DESC_SIZE,
1134         .priv_size              = sizeof(struct queue_entry_priv_pci),
1135 };
1136
1137 static const struct rt2x00_ops rt2800pci_ops = {
1138         .name                   = KBUILD_MODNAME,
1139         .drv_data_size          = sizeof(struct rt2800_drv_data),
1140         .max_sta_intf           = 1,
1141         .max_ap_intf            = 8,
1142         .eeprom_size            = EEPROM_SIZE,
1143         .rf_size                = RF_SIZE,
1144         .tx_queues              = NUM_TX_QUEUES,
1145         .extra_tx_headroom      = TXWI_DESC_SIZE,
1146         .rx                     = &rt2800pci_queue_rx,
1147         .tx                     = &rt2800pci_queue_tx,
1148         .bcn                    = &rt2800pci_queue_bcn,
1149         .lib                    = &rt2800pci_rt2x00_ops,
1150         .drv                    = &rt2800pci_rt2800_ops,
1151         .hw                     = &rt2800pci_mac80211_ops,
1152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1153         .debugfs                = &rt2800_rt2x00debug,
1154 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1155 };
1156
1157 /*
1158  * RT2800pci module information.
1159  */
1160 #ifdef CONFIG_PCI
1161 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1162         { PCI_DEVICE(0x1814, 0x0601) },
1163         { PCI_DEVICE(0x1814, 0x0681) },
1164         { PCI_DEVICE(0x1814, 0x0701) },
1165         { PCI_DEVICE(0x1814, 0x0781) },
1166         { PCI_DEVICE(0x1814, 0x3090) },
1167         { PCI_DEVICE(0x1814, 0x3091) },
1168         { PCI_DEVICE(0x1814, 0x3092) },
1169         { PCI_DEVICE(0x1432, 0x7708) },
1170         { PCI_DEVICE(0x1432, 0x7727) },
1171         { PCI_DEVICE(0x1432, 0x7728) },
1172         { PCI_DEVICE(0x1432, 0x7738) },
1173         { PCI_DEVICE(0x1432, 0x7748) },
1174         { PCI_DEVICE(0x1432, 0x7758) },
1175         { PCI_DEVICE(0x1432, 0x7768) },
1176         { PCI_DEVICE(0x1462, 0x891a) },
1177         { PCI_DEVICE(0x1a3b, 0x1059) },
1178 #ifdef CONFIG_RT2800PCI_RT33XX
1179         { PCI_DEVICE(0x1814, 0x3390) },
1180 #endif
1181 #ifdef CONFIG_RT2800PCI_RT35XX
1182         { PCI_DEVICE(0x1432, 0x7711) },
1183         { PCI_DEVICE(0x1432, 0x7722) },
1184         { PCI_DEVICE(0x1814, 0x3060) },
1185         { PCI_DEVICE(0x1814, 0x3062) },
1186         { PCI_DEVICE(0x1814, 0x3562) },
1187         { PCI_DEVICE(0x1814, 0x3592) },
1188         { PCI_DEVICE(0x1814, 0x3593) },
1189 #endif
1190 #ifdef CONFIG_RT2800PCI_RT53XX
1191         { PCI_DEVICE(0x1814, 0x5362) },
1192         { PCI_DEVICE(0x1814, 0x5390) },
1193         { PCI_DEVICE(0x1814, 0x5392) },
1194         { PCI_DEVICE(0x1814, 0x539a) },
1195         { PCI_DEVICE(0x1814, 0x539f) },
1196 #endif
1197         { 0, }
1198 };
1199 #endif /* CONFIG_PCI */
1200
1201 MODULE_AUTHOR(DRV_PROJECT);
1202 MODULE_VERSION(DRV_VERSION);
1203 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1204 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1205 #ifdef CONFIG_PCI
1206 MODULE_FIRMWARE(FIRMWARE_RT2860);
1207 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1208 #endif /* CONFIG_PCI */
1209 MODULE_LICENSE("GPL");
1210
1211 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1212 static int rt2800soc_probe(struct platform_device *pdev)
1213 {
1214         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1215 }
1216
1217 static struct platform_driver rt2800soc_driver = {
1218         .driver         = {
1219                 .name           = "rt2800_wmac",
1220                 .owner          = THIS_MODULE,
1221                 .mod_name       = KBUILD_MODNAME,
1222         },
1223         .probe          = rt2800soc_probe,
1224         .remove         = __devexit_p(rt2x00soc_remove),
1225         .suspend        = rt2x00soc_suspend,
1226         .resume         = rt2x00soc_resume,
1227 };
1228 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1229
1230 #ifdef CONFIG_PCI
1231 static int rt2800pci_probe(struct pci_dev *pci_dev,
1232                            const struct pci_device_id *id)
1233 {
1234         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1235 }
1236
1237 static struct pci_driver rt2800pci_driver = {
1238         .name           = KBUILD_MODNAME,
1239         .id_table       = rt2800pci_device_table,
1240         .probe          = rt2800pci_probe,
1241         .remove         = __devexit_p(rt2x00pci_remove),
1242         .suspend        = rt2x00pci_suspend,
1243         .resume         = rt2x00pci_resume,
1244 };
1245 #endif /* CONFIG_PCI */
1246
1247 static int __init rt2800pci_init(void)
1248 {
1249         int ret = 0;
1250
1251 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1252         ret = platform_driver_register(&rt2800soc_driver);
1253         if (ret)
1254                 return ret;
1255 #endif
1256 #ifdef CONFIG_PCI
1257         ret = pci_register_driver(&rt2800pci_driver);
1258         if (ret) {
1259 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1260                 platform_driver_unregister(&rt2800soc_driver);
1261 #endif
1262                 return ret;
1263         }
1264 #endif
1265
1266         return ret;
1267 }
1268
1269 static void __exit rt2800pci_exit(void)
1270 {
1271 #ifdef CONFIG_PCI
1272         pci_unregister_driver(&rt2800pci_driver);
1273 #endif
1274 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1275         platform_driver_unregister(&rt2800soc_driver);
1276 #endif
1277 }
1278
1279 module_init(rt2800pci_init);
1280 module_exit(rt2800pci_exit);