5c122e8cd526e973bb0022af79be45a043a6585d
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rsi / rsi_91x_mgmt.c
1 /**
2  * Copyright (c) 2014 Redpine Signals Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20
21 static struct bootup_params boot_params_20 = {
22         .magic_number = cpu_to_le16(0x5aa5),
23         .crystal_good_time = 0x0,
24         .valid = cpu_to_le32(VALID_20),
25         .reserved_for_valids = 0x0,
26         .bootup_mode_info = 0x0,
27         .digital_loop_back_params = 0x0,
28         .rtls_timestamp_en = 0x0,
29         .host_spi_intr_cfg = 0x0,
30         .device_clk_info = {{
31                 .pll_config_g = {
32                         .tapll_info_g = {
33                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34                                               (TA_PLL_M_VAL_20)),
35                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36                         },
37                         .pll960_info_g = {
38                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39                                                          (PLL960_N_VAL_20)),
40                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41                                 .pll_reg_3 = 0x0,
42                         },
43                         .afepll_info_g = {
44                                 .pll_reg = cpu_to_le16(0x9f0),
45                         }
46                 },
47                 .switch_clk_g = {
48                         .switch_clk_info = cpu_to_le16(BIT(3)),
49                         .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50                         .umac_clock_reg_config = 0x0,
51                         .qspi_uart_clock_reg_config = 0x0
52                 }
53         },
54         {
55                 .pll_config_g = {
56                         .tapll_info_g = {
57                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58                                                          (TA_PLL_M_VAL_20)),
59                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60                         },
61                         .pll960_info_g = {
62                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63                                                          (PLL960_N_VAL_20)),
64                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65                                 .pll_reg_3 = 0x0,
66                         },
67                         .afepll_info_g = {
68                                 .pll_reg = cpu_to_le16(0x9f0),
69                         }
70                 },
71                 .switch_clk_g = {
72                         .switch_clk_info = 0x0,
73                         .bbp_lmac_clk_reg_val = 0x0,
74                         .umac_clock_reg_config = 0x0,
75                         .qspi_uart_clock_reg_config = 0x0
76                 }
77         },
78         {
79                 .pll_config_g = {
80                         .tapll_info_g = {
81                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82                                                          (TA_PLL_M_VAL_20)),
83                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84                         },
85                         .pll960_info_g = {
86                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87                                                          (PLL960_N_VAL_20)),
88                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89                                 .pll_reg_3 = 0x0,
90                         },
91                         .afepll_info_g = {
92                                 .pll_reg = cpu_to_le16(0x9f0),
93                         }
94                 },
95                 .switch_clk_g = {
96                         .switch_clk_info = 0x0,
97                         .bbp_lmac_clk_reg_val = 0x0,
98                         .umac_clock_reg_config = 0x0,
99                         .qspi_uart_clock_reg_config = 0x0
100                 }
101         } },
102         .buckboost_wakeup_cnt = 0x0,
103         .pmu_wakeup_wait = 0x0,
104         .shutdown_wait_time = 0x0,
105         .pmu_slp_clkout_sel = 0x0,
106         .wdt_prog_value = 0x0,
107         .wdt_soc_rst_delay = 0x0,
108         .dcdc_operation_mode = 0x0,
109         .soc_reset_wait_cnt = 0x0
110 };
111
112 static struct bootup_params boot_params_40 = {
113         .magic_number = cpu_to_le16(0x5aa5),
114         .crystal_good_time = 0x0,
115         .valid = cpu_to_le32(VALID_40),
116         .reserved_for_valids = 0x0,
117         .bootup_mode_info = 0x0,
118         .digital_loop_back_params = 0x0,
119         .rtls_timestamp_en = 0x0,
120         .host_spi_intr_cfg = 0x0,
121         .device_clk_info = {{
122                 .pll_config_g = {
123                         .tapll_info_g = {
124                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125                                                          (TA_PLL_M_VAL_40)),
126                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127                         },
128                         .pll960_info_g = {
129                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130                                                          (PLL960_N_VAL_40)),
131                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132                                 .pll_reg_3 = 0x0,
133                         },
134                         .afepll_info_g = {
135                                 .pll_reg = cpu_to_le16(0x9f0),
136                         }
137                 },
138                 .switch_clk_g = {
139                         .switch_clk_info = cpu_to_le16(0x09),
140                         .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141                         .umac_clock_reg_config = cpu_to_le16(0x48),
142                         .qspi_uart_clock_reg_config = 0x0
143                 }
144         },
145         {
146                 .pll_config_g = {
147                         .tapll_info_g = {
148                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149                                                          (TA_PLL_M_VAL_40)),
150                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151                         },
152                         .pll960_info_g = {
153                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154                                                          (PLL960_N_VAL_40)),
155                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156                                 .pll_reg_3 = 0x0,
157                         },
158                         .afepll_info_g = {
159                                 .pll_reg = cpu_to_le16(0x9f0),
160                         }
161                 },
162                 .switch_clk_g = {
163                         .switch_clk_info = 0x0,
164                         .bbp_lmac_clk_reg_val = 0x0,
165                         .umac_clock_reg_config = 0x0,
166                         .qspi_uart_clock_reg_config = 0x0
167                 }
168         },
169         {
170                 .pll_config_g = {
171                         .tapll_info_g = {
172                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173                                                          (TA_PLL_M_VAL_40)),
174                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175                         },
176                         .pll960_info_g = {
177                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178                                                          (PLL960_N_VAL_40)),
179                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180                                 .pll_reg_3 = 0x0,
181                         },
182                         .afepll_info_g = {
183                                 .pll_reg = cpu_to_le16(0x9f0),
184                         }
185                 },
186                 .switch_clk_g = {
187                         .switch_clk_info = 0x0,
188                         .bbp_lmac_clk_reg_val = 0x0,
189                         .umac_clock_reg_config = 0x0,
190                         .qspi_uart_clock_reg_config = 0x0
191                 }
192         } },
193         .buckboost_wakeup_cnt = 0x0,
194         .pmu_wakeup_wait = 0x0,
195         .shutdown_wait_time = 0x0,
196         .pmu_slp_clkout_sel = 0x0,
197         .wdt_prog_value = 0x0,
198         .wdt_soc_rst_delay = 0x0,
199         .dcdc_operation_mode = 0x0,
200         .soc_reset_wait_cnt = 0x0
201 };
202
203 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205 /**
206  * rsi_set_default_parameters() - This function sets default parameters.
207  * @common: Pointer to the driver private structure.
208  *
209  * Return: none
210  */
211 static void rsi_set_default_parameters(struct rsi_common *common)
212 {
213         common->band = IEEE80211_BAND_2GHZ;
214         common->channel_width = BW_20MHZ;
215         common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216         common->channel = 1;
217         common->min_rate = 0xffff;
218         common->fsm_state = FSM_CARD_NOT_READY;
219         common->iface_down = true;
220         common->endpoint = EP_2GHZ_20MHZ;
221 }
222
223 /**
224  * rsi_set_contention_vals() - This function sets the contention values for the
225  *                             backoff procedure.
226  * @common: Pointer to the driver private structure.
227  *
228  * Return: None.
229  */
230 static void rsi_set_contention_vals(struct rsi_common *common)
231 {
232         u8 ii = 0;
233
234         for (; ii < NUM_EDCA_QUEUES; ii++) {
235                 common->tx_qinfo[ii].wme_params =
236                         (((common->edca_params[ii].cw_min / 2) +
237                           (common->edca_params[ii].aifs)) *
238                           WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239                 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240                 common->tx_qinfo[ii].pkt_contended = 0;
241         }
242 }
243
244 /**
245  * rsi_send_internal_mgmt_frame() - This function sends management frames to
246  *                                  firmware.Also schedules packet to queue
247  *                                  for transmission.
248  * @common: Pointer to the driver private structure.
249  * @skb: Pointer to the socket buffer structure.
250  *
251  * Return: 0 on success, -1 on failure.
252  */
253 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254                                         struct sk_buff *skb)
255 {
256         struct skb_info *tx_params;
257
258         if (skb == NULL) {
259                 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260                 return -ENOMEM;
261         }
262         tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263         tx_params->flags |= INTERNAL_MGMT_PKT;
264         skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265         rsi_set_event(&common->tx_thread.event);
266         return 0;
267 }
268
269 /**
270  * rsi_load_radio_caps() - This function is used to send radio capabilities
271  *                         values to firmware.
272  * @common: Pointer to the driver private structure.
273  *
274  * Return: 0 on success, corresponding negative error code on failure.
275  */
276 static int rsi_load_radio_caps(struct rsi_common *common)
277 {
278         struct rsi_radio_caps *radio_caps;
279         struct rsi_hw *adapter = common->priv;
280         struct ieee80211_hw *hw = adapter->hw;
281         u16 inx = 0;
282         u8 ii;
283         u8 radio_id = 0;
284         u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
285                       0xf0, 0xf0, 0xf0, 0xf0,
286                       0xf0, 0xf0, 0xf0, 0xf0,
287                       0xf0, 0xf0, 0xf0, 0xf0,
288                       0xf0, 0xf0, 0xf0, 0xf0};
289         struct ieee80211_conf *conf = &hw->conf;
290         struct sk_buff *skb;
291
292         rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
293
294         skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
295
296         if (!skb) {
297                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
298                         __func__);
299                 return -ENOMEM;
300         }
301
302         memset(skb->data, 0, sizeof(struct rsi_radio_caps));
303         radio_caps = (struct rsi_radio_caps *)skb->data;
304
305         radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
306         radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
307
308         if (common->channel_width == BW_40MHZ) {
309                 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
310                 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
311                 if (common->channel_width) {
312                         radio_caps->desc_word[5] =
313                                 cpu_to_le16(common->channel_width << 12);
314                         radio_caps->desc_word[5] |= cpu_to_le16(FULL40M_ENABLE);
315                 }
316
317                 if (conf_is_ht40_minus(conf)) {
318                         radio_caps->desc_word[5] = 0;
319                         radio_caps->desc_word[5] |=
320                                 cpu_to_le16(LOWER_20_ENABLE);
321                         radio_caps->desc_word[5] |=
322                                 cpu_to_le16(LOWER_20_ENABLE >> 12);
323                 }
324
325                 if (conf_is_ht40_plus(conf)) {
326                         radio_caps->desc_word[5] = 0;
327                         radio_caps->desc_word[5] |=
328                                 cpu_to_le16(UPPER_20_ENABLE);
329                         radio_caps->desc_word[5] |=
330                                 cpu_to_le16(UPPER_20_ENABLE >> 12);
331                 }
332         }
333
334         radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
335         radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
336         radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
337         radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
338         radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
339         radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
340
341         radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
342
343         for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
344                 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
345                 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
346                 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
347                 radio_caps->qos_params[ii].txop_q = 0;
348         }
349
350         for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
351                 radio_caps->qos_params[ii].cont_win_min_q =
352                         cpu_to_le16(common->edca_params[ii].cw_min);
353                 radio_caps->qos_params[ii].cont_win_max_q =
354                         cpu_to_le16(common->edca_params[ii].cw_max);
355                 radio_caps->qos_params[ii].aifsn_val_q =
356                         cpu_to_le16((common->edca_params[ii].aifs) << 8);
357                 radio_caps->qos_params[ii].txop_q =
358                         cpu_to_le16(common->edca_params[ii].txop);
359         }
360
361         memcpy(&common->rate_pwr[0], &gc[0], 40);
362         for (ii = 0; ii < 20; ii++)
363                 radio_caps->gcpd_per_rate[inx++] =
364                         cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
365
366         radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
367                                                 FRAME_DESC_SZ) |
368                                                (RSI_WIFI_MGMT_Q << 12));
369
370
371         skb_put(skb, (sizeof(struct rsi_radio_caps)));
372
373         return rsi_send_internal_mgmt_frame(common, skb);
374 }
375
376 /**
377  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
378  * @common: Pointer to the driver private structure.
379  * @msg: Pointer to received packet.
380  * @msg_len: Length of the recieved packet.
381  * @type: Type of recieved packet.
382  *
383  * Return: 0 on success, -1 on failure.
384  */
385 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
386                                 u8 *msg,
387                                 s32 msg_len,
388                                 u8 type)
389 {
390         struct rsi_hw *adapter = common->priv;
391         struct ieee80211_tx_info *info;
392         struct skb_info *rx_params;
393         u8 pad_bytes = msg[4];
394         u8 pkt_recv;
395         struct sk_buff *skb;
396         char *buffer;
397
398         if (type == RX_DOT11_MGMT) {
399                 if (!adapter->sc_nvifs)
400                         return -ENOLINK;
401
402                 msg_len -= pad_bytes;
403                 if ((msg_len <= 0) || (!msg)) {
404                         rsi_dbg(MGMT_RX_ZONE,
405                                 "%s: Invalid rx msg of len = %d\n",
406                                 __func__, msg_len);
407                         return -EINVAL;
408                 }
409
410                 skb = dev_alloc_skb(msg_len);
411                 if (!skb) {
412                         rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
413                                 __func__);
414                         return -ENOMEM;
415                 }
416
417                 buffer = skb_put(skb, msg_len);
418
419                 memcpy(buffer,
420                        (u8 *)(msg +  FRAME_DESC_SZ + pad_bytes),
421                        msg_len);
422
423                 pkt_recv = buffer[0];
424
425                 info = IEEE80211_SKB_CB(skb);
426                 rx_params = (struct skb_info *)info->driver_data;
427                 rx_params->rssi = rsi_get_rssi(msg);
428                 rx_params->channel = rsi_get_channel(msg);
429                 rsi_indicate_pkt_to_os(common, skb);
430         } else {
431                 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
432         }
433
434         return 0;
435 }
436
437 /**
438  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
439  *                                   frame to firmware.
440  * @common: Pointer to the driver private structure.
441  * @opmode: Operating mode of device.
442  * @notify_event: Notification about station connection.
443  * @bssid: bssid.
444  * @qos_enable: Qos is enabled.
445  * @aid: Aid (unique for all STA).
446  *
447  * Return: status: 0 on success, corresponding negative error code on failure.
448  */
449 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
450                                          u8 opmode,
451                                          u8 notify_event,
452                                          const unsigned char *bssid,
453                                          u8 qos_enable,
454                                          u16 aid)
455 {
456         struct sk_buff *skb = NULL;
457         struct rsi_peer_notify *peer_notify;
458         u16 vap_id = 0;
459         int status;
460
461         rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
462
463         skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
464
465         if (!skb) {
466                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
467                         __func__);
468                 return -ENOMEM;
469         }
470
471         memset(skb->data, 0, sizeof(struct rsi_peer_notify));
472         peer_notify = (struct rsi_peer_notify *)skb->data;
473
474         peer_notify->command = cpu_to_le16(opmode << 1);
475
476         switch (notify_event) {
477         case STA_CONNECTED:
478                 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
479                 break;
480         case STA_DISCONNECTED:
481                 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
482                 break;
483         default:
484                 break;
485         }
486
487         peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
488         ether_addr_copy(peer_notify->mac_addr, bssid);
489
490         peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
491
492         peer_notify->desc_word[0] =
493                 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
494                             (RSI_WIFI_MGMT_Q << 12));
495         peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
496         peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
497
498         skb_put(skb, sizeof(struct rsi_peer_notify));
499
500         status = rsi_send_internal_mgmt_frame(common, skb);
501
502         if (!status && qos_enable) {
503                 rsi_set_contention_vals(common);
504                 status = rsi_load_radio_caps(common);
505         }
506         return status;
507 }
508
509 /**
510  * rsi_send_aggregation_params_frame() - This function sends the ampdu
511  *                                       indication frame to firmware.
512  * @common: Pointer to the driver private structure.
513  * @tid: traffic identifier.
514  * @ssn: ssn.
515  * @buf_size: buffer size.
516  * @event: notification about station connection.
517  *
518  * Return: 0 on success, corresponding negative error code on failure.
519  */
520 int rsi_send_aggregation_params_frame(struct rsi_common *common,
521                                       u16 tid,
522                                       u16 ssn,
523                                       u8 buf_size,
524                                       u8 event)
525 {
526         struct sk_buff *skb = NULL;
527         struct rsi_mac_frame *mgmt_frame;
528         u8 peer_id = 0;
529
530         skb = dev_alloc_skb(FRAME_DESC_SZ);
531
532         if (!skb) {
533                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
534                         __func__);
535                 return -ENOMEM;
536         }
537
538         memset(skb->data, 0, FRAME_DESC_SZ);
539         mgmt_frame = (struct rsi_mac_frame *)skb->data;
540
541         rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
542
543         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
544         mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
545
546         if (event == STA_TX_ADDBA_DONE) {
547                 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
548                 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
549                 mgmt_frame->desc_word[7] =
550                 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
551         } else if (event == STA_RX_ADDBA_DONE) {
552                 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
553                 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
554                                                        (START_AMPDU_AGGR << 4) |
555                                                        (RX_BA_INDICATION << 5) |
556                                                        (peer_id << 8));
557         } else if (event == STA_TX_DELBA) {
558                 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
559                                                        (STOP_AMPDU_AGGR << 4) |
560                                                        (peer_id << 8));
561         } else if (event == STA_RX_DELBA) {
562                 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
563                                                        (STOP_AMPDU_AGGR << 4) |
564                                                        (RX_BA_INDICATION << 5) |
565                                                        (peer_id << 8));
566         }
567
568         skb_put(skb, FRAME_DESC_SZ);
569
570         return rsi_send_internal_mgmt_frame(common, skb);
571 }
572
573 /**
574  * rsi_program_bb_rf() - This function starts base band and RF programming.
575  *                       This is called after initial configurations are done.
576  * @common: Pointer to the driver private structure.
577  *
578  * Return: 0 on success, corresponding negative error code on failure.
579  */
580 static int rsi_program_bb_rf(struct rsi_common *common)
581 {
582         struct sk_buff *skb;
583         struct rsi_mac_frame *mgmt_frame;
584
585         rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
586
587         skb = dev_alloc_skb(FRAME_DESC_SZ);
588         if (!skb) {
589                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
590                         __func__);
591                 return -ENOMEM;
592         }
593
594         memset(skb->data, 0, FRAME_DESC_SZ);
595         mgmt_frame = (struct rsi_mac_frame *)skb->data;
596
597         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
598         mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
599         mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
600
601         if (common->rf_reset) {
602                 mgmt_frame->desc_word[7] =  cpu_to_le16(RF_RESET_ENABLE);
603                 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
604                         __func__);
605                 common->rf_reset = 0;
606         }
607         common->bb_rf_prog_count = 1;
608         mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
609                                      BBP_REG_WRITE | (RSI_RF_TYPE << 4));
610         skb_put(skb, FRAME_DESC_SZ);
611
612         return rsi_send_internal_mgmt_frame(common, skb);
613 }
614
615 /**
616  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
617  * @common: Pointer to the driver private structure.
618  * @opmode: Operating mode of device.
619  *
620  * Return: 0 on success, corresponding negative error code on failure.
621  */
622 int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
623 {
624         struct sk_buff *skb = NULL;
625         struct rsi_vap_caps *vap_caps;
626         u16 vap_id = 0;
627
628         rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
629
630         skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
631         if (!skb) {
632                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
633                         __func__);
634                 return -ENOMEM;
635         }
636
637         memset(skb->data, 0, sizeof(struct rsi_vap_caps));
638         vap_caps = (struct rsi_vap_caps *)skb->data;
639
640         vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
641                                              FRAME_DESC_SZ) |
642                                              (RSI_WIFI_MGMT_Q << 12));
643         vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
644         vap_caps->desc_word[4] = cpu_to_le16(mode |
645                                              (common->channel_width << 8));
646         vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
647                                              (common->mac_id << 4) |
648                                              common->radio_id);
649
650         memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
651         vap_caps->keep_alive_period = cpu_to_le16(90);
652         vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
653
654         vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
655         vap_caps->default_mgmt_rate = 0;
656         if (conf_is_ht40(&common->priv->hw->conf)) {
657                 vap_caps->default_ctrl_rate =
658                                 cpu_to_le32(RSI_RATE_6 | FULL40M_ENABLE << 16);
659         } else {
660                 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
661         }
662         vap_caps->default_data_rate = 0;
663         vap_caps->beacon_interval = cpu_to_le16(200);
664         vap_caps->dtim_period = cpu_to_le16(4);
665
666         skb_put(skb, sizeof(*vap_caps));
667
668         return rsi_send_internal_mgmt_frame(common, skb);
669 }
670
671 /**
672  * rsi_hal_load_key() - This function is used to load keys within the firmware.
673  * @common: Pointer to the driver private structure.
674  * @data: Pointer to the key data.
675  * @key_len: Key length to be loaded.
676  * @key_type: Type of key: GROUP/PAIRWISE.
677  * @key_id: Key index.
678  * @cipher: Type of cipher used.
679  *
680  * Return: 0 on success, -1 on failure.
681  */
682 int rsi_hal_load_key(struct rsi_common *common,
683                      u8 *data,
684                      u16 key_len,
685                      u8 key_type,
686                      u8 key_id,
687                      u32 cipher)
688 {
689         struct sk_buff *skb = NULL;
690         struct rsi_set_key *set_key;
691         u16 key_descriptor = 0;
692
693         rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
694
695         skb = dev_alloc_skb(sizeof(struct rsi_set_key));
696         if (!skb) {
697                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
698                         __func__);
699                 return -ENOMEM;
700         }
701
702         memset(skb->data, 0, sizeof(struct rsi_set_key));
703         set_key = (struct rsi_set_key *)skb->data;
704
705         if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
706             (cipher == WLAN_CIPHER_SUITE_WEP104)) {
707                 key_len += 1;
708                 key_descriptor |= BIT(2);
709                 if (key_len >= 13)
710                         key_descriptor |= BIT(3);
711         } else if (cipher != KEY_TYPE_CLEAR) {
712                 key_descriptor |= BIT(4);
713                 if (key_type == RSI_PAIRWISE_KEY)
714                         key_id = 0;
715                 if (cipher == WLAN_CIPHER_SUITE_TKIP)
716                         key_descriptor |= BIT(5);
717         }
718         key_descriptor |= (key_type | BIT(13) | (key_id << 14));
719
720         set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
721                                             FRAME_DESC_SZ) |
722                                             (RSI_WIFI_MGMT_Q << 12));
723         set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
724         set_key->desc_word[4] = cpu_to_le16(key_descriptor);
725
726         if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
727             (cipher == WLAN_CIPHER_SUITE_WEP104)) {
728                 memcpy(&set_key->key[key_id][1],
729                        data,
730                        key_len * 2);
731         } else {
732                 memcpy(&set_key->key[0][0], data, key_len);
733         }
734
735         memcpy(set_key->tx_mic_key, &data[16], 8);
736         memcpy(set_key->rx_mic_key, &data[24], 8);
737
738         skb_put(skb, sizeof(struct rsi_set_key));
739
740         return rsi_send_internal_mgmt_frame(common, skb);
741 }
742
743 /*
744  * rsi_load_bootup_params() - This function send bootup params to the firmware.
745  * @common: Pointer to the driver private structure.
746  *
747  * Return: 0 on success, corresponding error code on failure.
748  */
749 static int rsi_load_bootup_params(struct rsi_common *common)
750 {
751         struct sk_buff *skb;
752         struct rsi_boot_params *boot_params;
753
754         rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
755         skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
756         if (!skb) {
757                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
758                         __func__);
759                 return -ENOMEM;
760         }
761
762         memset(skb->data, 0, sizeof(struct rsi_boot_params));
763         boot_params = (struct rsi_boot_params *)skb->data;
764
765         rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
766
767         if (common->channel_width == BW_40MHZ) {
768                 memcpy(&boot_params->bootup_params,
769                        &boot_params_40,
770                        sizeof(struct bootup_params));
771                 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
772                         UMAC_CLK_40BW);
773                 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
774         } else {
775                 memcpy(&boot_params->bootup_params,
776                        &boot_params_20,
777                        sizeof(struct bootup_params));
778                 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
779                         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
780                         rsi_dbg(MGMT_TX_ZONE,
781                                 "%s: Packet 20MHZ <=== %d\n", __func__,
782                                 UMAC_CLK_20BW);
783                 } else {
784                         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
785                         rsi_dbg(MGMT_TX_ZONE,
786                                 "%s: Packet 20MHZ <=== %d\n", __func__,
787                                 UMAC_CLK_40MHZ);
788                 }
789         }
790
791         /**
792          * Bit{0:11} indicates length of the Packet
793          * Bit{12:15} indicates host queue number
794          */
795         boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
796                                     (RSI_WIFI_MGMT_Q << 12));
797         boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
798
799         skb_put(skb, sizeof(struct rsi_boot_params));
800
801         return rsi_send_internal_mgmt_frame(common, skb);
802 }
803
804 /**
805  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
806  *                        internal management frame to indicate it to firmware.
807  * @common: Pointer to the driver private structure.
808  *
809  * Return: 0 on success, corresponding error code on failure.
810  */
811 static int rsi_send_reset_mac(struct rsi_common *common)
812 {
813         struct sk_buff *skb;
814         struct rsi_mac_frame *mgmt_frame;
815
816         rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
817
818         skb = dev_alloc_skb(FRAME_DESC_SZ);
819         if (!skb) {
820                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
821                         __func__);
822                 return -ENOMEM;
823         }
824
825         memset(skb->data, 0, FRAME_DESC_SZ);
826         mgmt_frame = (struct rsi_mac_frame *)skb->data;
827
828         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
829         mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
830         mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
831
832         skb_put(skb, FRAME_DESC_SZ);
833
834         return rsi_send_internal_mgmt_frame(common, skb);
835 }
836
837 /**
838  * rsi_set_channel() - This function programs the channel.
839  * @common: Pointer to the driver private structure.
840  * @channel: Channel value to be set.
841  *
842  * Return: 0 on success, corresponding error code on failure.
843  */
844 int rsi_set_channel(struct rsi_common *common, u16 channel)
845 {
846         struct sk_buff *skb = NULL;
847         struct rsi_mac_frame *mgmt_frame;
848
849         rsi_dbg(MGMT_TX_ZONE,
850                 "%s: Sending scan req frame\n", __func__);
851
852         skb = dev_alloc_skb(FRAME_DESC_SZ);
853         if (!skb) {
854                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
855                         __func__);
856                 return -ENOMEM;
857         }
858
859         memset(skb->data, 0, FRAME_DESC_SZ);
860         mgmt_frame = (struct rsi_mac_frame *)skb->data;
861
862         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
863         mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
864         mgmt_frame->desc_word[4] = cpu_to_le16(channel);
865
866         mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
867                                                BBP_REG_WRITE |
868                                                (RSI_RF_TYPE << 4));
869
870         mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
871         mgmt_frame->desc_word[6] = cpu_to_le16(0x12);
872
873         if (common->channel_width == BW_40MHZ)
874                 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
875
876         common->channel = channel;
877
878         skb_put(skb, FRAME_DESC_SZ);
879
880         return rsi_send_internal_mgmt_frame(common, skb);
881 }
882
883 /**
884  * rsi_compare() - This function is used to compare two integers
885  * @a: pointer to the first integer
886  * @b: pointer to the second integer
887  *
888  * Return: 0 if both are equal, -1 if the first is smaller, else 1
889  */
890 static int rsi_compare(const void *a, const void *b)
891 {
892         u16 _a = *(const u16 *)(a);
893         u16 _b = *(const u16 *)(b);
894
895         if (_a > _b)
896                 return -1;
897
898         if (_a < _b)
899                 return 1;
900
901         return 0;
902 }
903
904 /**
905  * rsi_map_rates() - This function is used to map selected rates to hw rates.
906  * @rate: The standard rate to be mapped.
907  * @offset: Offset that will be returned.
908  *
909  * Return: 0 if it is a mcs rate, else 1
910  */
911 static bool rsi_map_rates(u16 rate, int *offset)
912 {
913         int kk;
914         for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
915                 if (rate == mcs[kk]) {
916                         *offset = kk;
917                         return false;
918                 }
919         }
920
921         for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
922                 if (rate == rsi_rates[kk].bitrate / 5) {
923                         *offset = kk;
924                         break;
925                 }
926         }
927         return true;
928 }
929
930 /**
931  * rsi_send_auto_rate_request() - This function is to set rates for connection
932  *                                and send autorate request to firmware.
933  * @common: Pointer to the driver private structure.
934  *
935  * Return: 0 on success, corresponding error code on failure.
936  */
937 static int rsi_send_auto_rate_request(struct rsi_common *common)
938 {
939         struct sk_buff *skb;
940         struct rsi_auto_rate *auto_rate;
941         int ii = 0, jj = 0, kk = 0;
942         struct ieee80211_hw *hw = common->priv->hw;
943         u8 band = hw->conf.chandef.chan->band;
944         u8 num_supported_rates = 0;
945         u8 rate_offset = 0;
946         u32 rate_bitmap = common->bitrate_mask[band];
947
948         u16 *selected_rates, min_rate;
949
950         skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
951         if (!skb) {
952                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
953                         __func__);
954                 return -ENOMEM;
955         }
956
957         selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
958         if (!selected_rates) {
959                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
960                         __func__);
961                 dev_kfree_skb(skb);
962                 return -ENOMEM;
963         }
964
965         memset(skb->data, 0, sizeof(struct rsi_auto_rate));
966         memset(selected_rates, 0, 2 * RSI_TBL_SZ);
967
968         auto_rate = (struct rsi_auto_rate *)skb->data;
969
970         auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
971         auto_rate->collision_tolerance = cpu_to_le16(3);
972         auto_rate->failure_limit = cpu_to_le16(3);
973         auto_rate->initial_boundary = cpu_to_le16(3);
974         auto_rate->max_threshold_limt = cpu_to_le16(27);
975
976         auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
977
978         if (common->channel_width == BW_40MHZ)
979                 auto_rate->desc_word[7] |= cpu_to_le16(1);
980
981         if (band == IEEE80211_BAND_2GHZ)
982                 min_rate = STD_RATE_01;
983         else
984                 min_rate = STD_RATE_06;
985
986         for (ii = 0, jj = 0; ii < ARRAY_SIZE(rsi_rates); ii++) {
987                 if (rate_bitmap & BIT(ii)) {
988                         selected_rates[jj++] = (rsi_rates[ii].bitrate / 5);
989                         rate_offset++;
990                 }
991         }
992         num_supported_rates = jj;
993
994         if (common->vif_info[0].is_ht) {
995                 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
996                         selected_rates[jj++] = mcs[ii];
997                 num_supported_rates += ARRAY_SIZE(mcs);
998                 rate_offset += ARRAY_SIZE(mcs);
999         }
1000
1001         if (rate_offset < (RSI_TBL_SZ / 2) - 1) {
1002                 for (ii = jj; ii < (RSI_TBL_SZ / 2); ii++) {
1003                         selected_rates[jj++] = min_rate;
1004                         rate_offset++;
1005                 }
1006         }
1007
1008         sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1009
1010         /* mapping the rates to RSI rates */
1011         for (ii = 0; ii < jj; ii++) {
1012                 if (rsi_map_rates(selected_rates[ii], &kk)) {
1013                         auto_rate->supported_rates[ii] =
1014                                 cpu_to_le16(rsi_rates[kk].hw_value);
1015                 } else {
1016                         auto_rate->supported_rates[ii] =
1017                                 cpu_to_le16(rsi_mcsrates[kk]);
1018                 }
1019         }
1020
1021         /* loading HT rates in the bottom half of the auto rate table */
1022         if (common->vif_info[0].is_ht) {
1023                 if (common->vif_info[0].sgi)
1024                         auto_rate->supported_rates[rate_offset++] =
1025                                 cpu_to_le16(RSI_RATE_MCS7_SG);
1026
1027                 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1028                      ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1029                         if (common->vif_info[0].sgi)
1030                                 auto_rate->supported_rates[ii++] =
1031                                         cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1032                         auto_rate->supported_rates[ii] =
1033                                 cpu_to_le16(rsi_mcsrates[kk--]);
1034                 }
1035
1036                 for (; ii < RSI_TBL_SZ; ii++) {
1037                         auto_rate->supported_rates[ii] =
1038                                 cpu_to_le16(rsi_mcsrates[0]);
1039                 }
1040         }
1041
1042         auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1043         auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1044         auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1045         num_supported_rates *= 2;
1046
1047         auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1048                                                FRAME_DESC_SZ) |
1049                                                (RSI_WIFI_MGMT_Q << 12));
1050
1051         skb_put(skb,
1052                 sizeof(struct rsi_auto_rate));
1053         kfree(selected_rates);
1054
1055         return rsi_send_internal_mgmt_frame(common, skb);
1056 }
1057
1058 /**
1059  * rsi_inform_bss_status() - This function informs about bss status with the
1060  *                           help of sta notify params by sending an internal
1061  *                           management frame to firmware.
1062  * @common: Pointer to the driver private structure.
1063  * @status: Bss status type.
1064  * @bssid: Bssid.
1065  * @qos_enable: Qos is enabled.
1066  * @aid: Aid (unique for all STAs).
1067  *
1068  * Return: None.
1069  */
1070 void rsi_inform_bss_status(struct rsi_common *common,
1071                            u8 status,
1072                            const unsigned char *bssid,
1073                            u8 qos_enable,
1074                            u16 aid)
1075 {
1076         if (status) {
1077                 rsi_hal_send_sta_notify_frame(common,
1078                                               RSI_IFTYPE_STATION,
1079                                               STA_CONNECTED,
1080                                               bssid,
1081                                               qos_enable,
1082                                               aid);
1083                 if (common->min_rate == 0xffff)
1084                         rsi_send_auto_rate_request(common);
1085         } else {
1086                 rsi_hal_send_sta_notify_frame(common,
1087                                               RSI_IFTYPE_STATION,
1088                                               STA_DISCONNECTED,
1089                                               bssid,
1090                                               qos_enable,
1091                                               aid);
1092         }
1093 }
1094
1095 /**
1096  * rsi_eeprom_read() - This function sends a frame to read the mac address
1097  *                     from the eeprom.
1098  * @common: Pointer to the driver private structure.
1099  *
1100  * Return: 0 on success, -1 on failure.
1101  */
1102 static int rsi_eeprom_read(struct rsi_common *common)
1103 {
1104         struct rsi_mac_frame *mgmt_frame;
1105         struct sk_buff *skb;
1106
1107         rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1108
1109         skb = dev_alloc_skb(FRAME_DESC_SZ);
1110         if (!skb) {
1111                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1112                         __func__);
1113                 return -ENOMEM;
1114         }
1115
1116         memset(skb->data, 0, FRAME_DESC_SZ);
1117         mgmt_frame = (struct rsi_mac_frame *)skb->data;
1118
1119         /* FrameType */
1120         mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1121         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1122         /* Number of bytes to read */
1123         mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1124                                                WLAN_MAC_MAGIC_WORD_LEN +
1125                                                WLAN_HOST_MODE_LEN +
1126                                                WLAN_FW_VERSION_LEN);
1127         /* Address to read */
1128         mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1129
1130         skb_put(skb, FRAME_DESC_SZ);
1131
1132         return rsi_send_internal_mgmt_frame(common, skb);
1133 }
1134
1135 /**
1136  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1137  * @common: Pointer to the driver private structure.
1138  * @msg: Pointer to received packet.
1139  *
1140  * Return: 0 on success, -1 on failure.
1141  */
1142 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1143                                       u8 *msg)
1144 {
1145         u8 sub_type = (msg[15] & 0xff);
1146
1147         switch (sub_type) {
1148         case BOOTUP_PARAMS_REQUEST:
1149                 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1150                         __func__);
1151                 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1152                         if (rsi_eeprom_read(common)) {
1153                                 common->fsm_state = FSM_CARD_NOT_READY;
1154                                 goto out;
1155                         } else {
1156                                 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1157                         }
1158                 } else {
1159                         rsi_dbg(ERR_ZONE,
1160                                 "%s: Received bootup params cfm in %d state\n",
1161                                  __func__, common->fsm_state);
1162                         return 0;
1163                 }
1164                 break;
1165
1166         case EEPROM_READ_TYPE:
1167                 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1168                         if (msg[16] == MAGIC_WORD) {
1169                                 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1170                                              + WLAN_MAC_MAGIC_WORD_LEN);
1171                                 memcpy(common->mac_addr,
1172                                        &msg[offset],
1173                                        ETH_ALEN);
1174                                 memcpy(&common->fw_ver,
1175                                        &msg[offset + ETH_ALEN],
1176                                        sizeof(struct version_info));
1177
1178                         } else {
1179                                 common->fsm_state = FSM_CARD_NOT_READY;
1180                                 break;
1181                         }
1182                         if (rsi_send_reset_mac(common))
1183                                 goto out;
1184                         else
1185                                 common->fsm_state = FSM_RESET_MAC_SENT;
1186                 } else {
1187                         rsi_dbg(ERR_ZONE,
1188                                 "%s: Received eeprom mac addr in %d state\n",
1189                                 __func__, common->fsm_state);
1190                         return 0;
1191                 }
1192                 break;
1193
1194         case RESET_MAC_REQ:
1195                 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1196                         rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1197                                 __func__);
1198
1199                         if (rsi_load_radio_caps(common))
1200                                 goto out;
1201                         else
1202                                 common->fsm_state = FSM_RADIO_CAPS_SENT;
1203                 } else {
1204                         rsi_dbg(ERR_ZONE,
1205                                 "%s: Received reset mac cfm in %d state\n",
1206                                  __func__, common->fsm_state);
1207                         return 0;
1208                 }
1209                 break;
1210
1211         case RADIO_CAPABILITIES:
1212                 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1213                         common->rf_reset = 1;
1214                         if (rsi_program_bb_rf(common)) {
1215                                 goto out;
1216                         } else {
1217                                 common->fsm_state = FSM_BB_RF_PROG_SENT;
1218                                 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1219                                         __func__);
1220                         }
1221                 } else {
1222                         rsi_dbg(ERR_ZONE,
1223                                 "%s: Received radio caps cfm in %d state\n",
1224                                  __func__, common->fsm_state);
1225                         return 0;
1226                 }
1227                 break;
1228
1229         case BB_PROG_VALUES_REQUEST:
1230         case RF_PROG_VALUES_REQUEST:
1231         case BBP_PROG_IN_TA:
1232                 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1233                 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1234                         common->bb_rf_prog_count--;
1235                         if (!common->bb_rf_prog_count) {
1236                                 common->fsm_state = FSM_MAC_INIT_DONE;
1237                                 return rsi_mac80211_attach(common);
1238                         }
1239                 } else {
1240                         goto out;
1241                 }
1242                 break;
1243
1244         default:
1245                 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1246                         __func__);
1247                 break;
1248         }
1249         return 0;
1250 out:
1251         rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1252                 __func__);
1253         return -EINVAL;
1254 }
1255
1256 /**
1257  * rsi_mgmt_pkt_recv() - This function processes the management packets
1258  *                       recieved from the hardware.
1259  * @common: Pointer to the driver private structure.
1260  * @msg: Pointer to the received packet.
1261  *
1262  * Return: 0 on success, -1 on failure.
1263  */
1264 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1265 {
1266         s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1267         u16 msg_type = (msg[2]);
1268         int ret;
1269
1270         rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1271                 __func__, msg_len, msg_type);
1272
1273         if (msg_type == TA_CONFIRM_TYPE) {
1274                 return rsi_handle_ta_confirm_type(common, msg);
1275         } else if (msg_type == CARD_READY_IND) {
1276                 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1277                         __func__);
1278                 if (common->fsm_state == FSM_CARD_NOT_READY) {
1279                         rsi_set_default_parameters(common);
1280
1281                         ret = rsi_load_bootup_params(common);
1282                         if (ret)
1283                                 return ret;
1284                         else
1285                                 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1286                 } else {
1287                         return -EINVAL;
1288                 }
1289         } else if (msg_type == TX_STATUS_IND) {
1290                 if (msg[15] == PROBEREQ_CONFIRM) {
1291                         common->mgmt_q_block = false;
1292                         rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1293                                 __func__);
1294                 }
1295         } else {
1296                 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1297         }
1298         return 0;
1299 }