Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include "ipw2200.h"
36
37
38 #ifndef KBUILD_EXTMOD
39 #define VK "k"
40 #else
41 #define VK
42 #endif
43
44 #ifdef CONFIG_IPW2200_DEBUG
45 #define VD "d"
46 #else
47 #define VD
48 #endif
49
50 #ifdef CONFIG_IPW2200_MONITOR
51 #define VM "m"
52 #else
53 #define VM
54 #endif
55
56 #ifdef CONFIG_IPW2200_PROMISCUOUS
57 #define VP "p"
58 #else
59 #define VP
60 #endif
61
62 #ifdef CONFIG_IPW2200_RADIOTAP
63 #define VR "r"
64 #else
65 #define VR
66 #endif
67
68 #ifdef CONFIG_IPW2200_QOS
69 #define VQ "q"
70 #else
71 #define VQ
72 #endif
73
74 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
75 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
76 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
77 #define DRV_VERSION     IPW2200_VERSION
78
79 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80
81 MODULE_DESCRIPTION(DRV_DESCRIPTION);
82 MODULE_VERSION(DRV_VERSION);
83 MODULE_AUTHOR(DRV_COPYRIGHT);
84 MODULE_LICENSE("GPL");
85 MODULE_FIRMWARE("ipw2200-ibss.fw");
86 #ifdef CONFIG_IPW2200_MONITOR
87 MODULE_FIRMWARE("ipw2200-sniffer.fw");
88 #endif
89 MODULE_FIRMWARE("ipw2200-bss.fw");
90
91 static int cmdlog = 0;
92 static int debug = 0;
93 static int default_channel = 0;
94 static int network_mode = 0;
95
96 static u32 ipw_debug_level;
97 static int associate;
98 static int auto_create = 1;
99 static int led_support = 0;
100 static int disable = 0;
101 static int bt_coexist = 0;
102 static int hwcrypto = 0;
103 static int roaming = 1;
104 static const char ipw_modes[] = {
105         'a', 'b', 'g', '?'
106 };
107 static int antenna = CFG_SYS_ANTENNA_BOTH;
108
109 #ifdef CONFIG_IPW2200_PROMISCUOUS
110 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
111 #endif
112
113 static struct ieee80211_rate ipw2200_rates[] = {
114         { .bitrate = 10 },
115         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 60 },
119         { .bitrate = 90 },
120         { .bitrate = 120 },
121         { .bitrate = 180 },
122         { .bitrate = 240 },
123         { .bitrate = 360 },
124         { .bitrate = 480 },
125         { .bitrate = 540 }
126 };
127
128 #define ipw2200_a_rates         (ipw2200_rates + 4)
129 #define ipw2200_num_a_rates     8
130 #define ipw2200_bg_rates        (ipw2200_rates + 0)
131 #define ipw2200_num_bg_rates    12
132
133 #ifdef CONFIG_IPW2200_QOS
134 static int qos_enable = 0;
135 static int qos_burst_enable = 0;
136 static int qos_no_ack_mask = 0;
137 static int burst_duration_CCK = 0;
138 static int burst_duration_OFDM = 0;
139
140 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
141         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
142          QOS_TX3_CW_MIN_OFDM},
143         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
144          QOS_TX3_CW_MAX_OFDM},
145         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
146         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
147         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
148          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
149 };
150
151 static struct libipw_qos_parameters def_qos_parameters_CCK = {
152         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
153          QOS_TX3_CW_MIN_CCK},
154         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
155          QOS_TX3_CW_MAX_CCK},
156         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
157         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
158         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
159          QOS_TX3_TXOP_LIMIT_CCK}
160 };
161
162 static struct libipw_qos_parameters def_parameters_OFDM = {
163         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
164          DEF_TX3_CW_MIN_OFDM},
165         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
166          DEF_TX3_CW_MAX_OFDM},
167         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
168         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
169         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
170          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
171 };
172
173 static struct libipw_qos_parameters def_parameters_CCK = {
174         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
175          DEF_TX3_CW_MIN_CCK},
176         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
177          DEF_TX3_CW_MAX_CCK},
178         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
179         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
180         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
181          DEF_TX3_TXOP_LIMIT_CCK}
182 };
183
184 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
185
186 static int from_priority_to_tx_queue[] = {
187         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
188         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
189 };
190
191 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
192
193 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
194                                        *qos_param);
195 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
196                                      *qos_param);
197 #endif                          /* CONFIG_IPW2200_QOS */
198
199 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
200 static void ipw_remove_current_network(struct ipw_priv *priv);
201 static void ipw_rx(struct ipw_priv *priv);
202 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
203                                 struct clx2_tx_queue *txq, int qindex);
204 static int ipw_queue_reset(struct ipw_priv *priv);
205
206 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
207                              int len, int sync);
208
209 static void ipw_tx_queue_free(struct ipw_priv *);
210
211 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
212 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
213 static void ipw_rx_queue_replenish(void *);
214 static int ipw_up(struct ipw_priv *);
215 static void ipw_bg_up(struct work_struct *work);
216 static void ipw_down(struct ipw_priv *);
217 static void ipw_bg_down(struct work_struct *work);
218 static int ipw_config(struct ipw_priv *);
219 static int init_supported_rates(struct ipw_priv *priv,
220                                 struct ipw_supported_rates *prates);
221 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
222 static void ipw_send_wep_keys(struct ipw_priv *, int);
223
224 static int snprint_line(char *buf, size_t count,
225                         const u8 * data, u32 len, u32 ofs)
226 {
227         int out, i, j, l;
228         char c;
229
230         out = snprintf(buf, count, "%08X", ofs);
231
232         for (l = 0, i = 0; i < 2; i++) {
233                 out += snprintf(buf + out, count - out, " ");
234                 for (j = 0; j < 8 && l < len; j++, l++)
235                         out += snprintf(buf + out, count - out, "%02X ",
236                                         data[(i * 8 + j)]);
237                 for (; j < 8; j++)
238                         out += snprintf(buf + out, count - out, "   ");
239         }
240
241         out += snprintf(buf + out, count - out, " ");
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++) {
245                         c = data[(i * 8 + j)];
246                         if (!isascii(c) || !isprint(c))
247                                 c = '.';
248
249                         out += snprintf(buf + out, count - out, "%c", c);
250                 }
251
252                 for (; j < 8; j++)
253                         out += snprintf(buf + out, count - out, " ");
254         }
255
256         return out;
257 }
258
259 static void printk_buf(int level, const u8 * data, u32 len)
260 {
261         char line[81];
262         u32 ofs = 0;
263         if (!(ipw_debug_level & level))
264                 return;
265
266         while (len) {
267                 snprint_line(line, sizeof(line), &data[ofs],
268                              min(len, 16U), ofs);
269                 printk(KERN_DEBUG "%s\n", line);
270                 ofs += 16;
271                 len -= min(len, 16U);
272         }
273 }
274
275 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
276 {
277         size_t out = size;
278         u32 ofs = 0;
279         int total = 0;
280
281         while (size && len) {
282                 out = snprint_line(output, size, &data[ofs],
283                                    min_t(size_t, len, 16U), ofs);
284
285                 ofs += 16;
286                 output += out;
287                 size -= out;
288                 len -= min_t(size_t, len, 16U);
289                 total += out;
290         }
291         return total;
292 }
293
294 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
296 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
297
298 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
299 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
300 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
301
302 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
303 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
304 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
305 {
306         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
307                      __LINE__, (u32) (b), (u32) (c));
308         _ipw_write_reg8(a, b, c);
309 }
310
311 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
312 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
313 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
314 {
315         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
316                      __LINE__, (u32) (b), (u32) (c));
317         _ipw_write_reg16(a, b, c);
318 }
319
320 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
321 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
322 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
323 {
324         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
325                      __LINE__, (u32) (b), (u32) (c));
326         _ipw_write_reg32(a, b, c);
327 }
328
329 /* 8-bit direct write (low 4K) */
330 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
331                 u8 val)
332 {
333         writeb(val, ipw->hw_base + ofs);
334 }
335
336 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
337 #define ipw_write8(ipw, ofs, val) do { \
338         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
339                         __LINE__, (u32)(ofs), (u32)(val)); \
340         _ipw_write8(ipw, ofs, val); \
341 } while (0)
342
343 /* 16-bit direct write (low 4K) */
344 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
345                 u16 val)
346 {
347         writew(val, ipw->hw_base + ofs);
348 }
349
350 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
351 #define ipw_write16(ipw, ofs, val) do { \
352         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
353                         __LINE__, (u32)(ofs), (u32)(val)); \
354         _ipw_write16(ipw, ofs, val); \
355 } while (0)
356
357 /* 32-bit direct write (low 4K) */
358 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
359                 u32 val)
360 {
361         writel(val, ipw->hw_base + ofs);
362 }
363
364 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_write32(ipw, ofs, val) do { \
366         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
367                         __LINE__, (u32)(ofs), (u32)(val)); \
368         _ipw_write32(ipw, ofs, val); \
369 } while (0)
370
371 /* 8-bit direct read (low 4K) */
372 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
373 {
374         return readb(ipw->hw_base + ofs);
375 }
376
377 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read8(ipw, ofs) ({ \
379         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
380                         (u32)(ofs)); \
381         _ipw_read8(ipw, ofs); \
382 })
383
384 /* 16-bit direct read (low 4K) */
385 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
386 {
387         return readw(ipw->hw_base + ofs);
388 }
389
390 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
391 #define ipw_read16(ipw, ofs) ({ \
392         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
393                         (u32)(ofs)); \
394         _ipw_read16(ipw, ofs); \
395 })
396
397 /* 32-bit direct read (low 4K) */
398 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
399 {
400         return readl(ipw->hw_base + ofs);
401 }
402
403 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
404 #define ipw_read32(ipw, ofs) ({ \
405         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
406                         (u32)(ofs)); \
407         _ipw_read32(ipw, ofs); \
408 })
409
410 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
411 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
412 #define ipw_read_indirect(a, b, c, d) ({ \
413         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
414                         __LINE__, (u32)(b), (u32)(d)); \
415         _ipw_read_indirect(a, b, c, d); \
416 })
417
418 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
419 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
420                                 int num);
421 #define ipw_write_indirect(a, b, c, d) do { \
422         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
423                         __LINE__, (u32)(b), (u32)(d)); \
424         _ipw_write_indirect(a, b, c, d); \
425 } while (0)
426
427 /* 32-bit indirect write (above 4K) */
428 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
429 {
430         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
431         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
432         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
433 }
434
435 /* 8-bit indirect write (above 4K) */
436 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
437 {
438         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
439         u32 dif_len = reg - aligned_addr;
440
441         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
442         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
443         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
444 }
445
446 /* 16-bit indirect write (above 4K) */
447 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
448 {
449         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
450         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
451
452         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
453         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
454         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
455 }
456
457 /* 8-bit indirect read (above 4K) */
458 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
459 {
460         u32 word;
461         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
462         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
463         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
464         return (word >> ((reg & 0x3) * 8)) & 0xff;
465 }
466
467 /* 32-bit indirect read (above 4K) */
468 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
469 {
470         u32 value;
471
472         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
473
474         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
475         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
476         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
477         return value;
478 }
479
480 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
481 /*    for area above 1st 4K of SRAM/reg space */
482 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
483                                int num)
484 {
485         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
486         u32 dif_len = addr - aligned_addr;
487         u32 i;
488
489         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
490
491         if (num <= 0) {
492                 return;
493         }
494
495         /* Read the first dword (or portion) byte by byte */
496         if (unlikely(dif_len)) {
497                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
498                 /* Start reading at aligned_addr + dif_len */
499                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
500                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
501                 aligned_addr += 4;
502         }
503
504         /* Read all of the middle dwords as dwords, with auto-increment */
505         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
506         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
507                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
508
509         /* Read the last dword (or portion) byte by byte */
510         if (unlikely(num)) {
511                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
512                 for (i = 0; num > 0; i++, num--)
513                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
514         }
515 }
516
517 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
518 /*    for area above 1st 4K of SRAM/reg space */
519 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
520                                 int num)
521 {
522         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
523         u32 dif_len = addr - aligned_addr;
524         u32 i;
525
526         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
527
528         if (num <= 0) {
529                 return;
530         }
531
532         /* Write the first dword (or portion) byte by byte */
533         if (unlikely(dif_len)) {
534                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
535                 /* Start writing at aligned_addr + dif_len */
536                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
537                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
538                 aligned_addr += 4;
539         }
540
541         /* Write all of the middle dwords as dwords, with auto-increment */
542         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
543         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
544                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
545
546         /* Write the last dword (or portion) byte by byte */
547         if (unlikely(num)) {
548                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
549                 for (i = 0; num > 0; i++, num--, buf++)
550                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
551         }
552 }
553
554 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
555 /*    for 1st 4K of SRAM/regs space */
556 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
557                              int num)
558 {
559         memcpy_toio((priv->hw_base + addr), buf, num);
560 }
561
562 /* Set bit(s) in low 4K of SRAM/regs */
563 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
564 {
565         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
566 }
567
568 /* Clear bit(s) in low 4K of SRAM/regs */
569 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
570 {
571         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
572 }
573
574 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
575 {
576         if (priv->status & STATUS_INT_ENABLED)
577                 return;
578         priv->status |= STATUS_INT_ENABLED;
579         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
580 }
581
582 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
583 {
584         if (!(priv->status & STATUS_INT_ENABLED))
585                 return;
586         priv->status &= ~STATUS_INT_ENABLED;
587         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
588 }
589
590 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
591 {
592         unsigned long flags;
593
594         spin_lock_irqsave(&priv->irq_lock, flags);
595         __ipw_enable_interrupts(priv);
596         spin_unlock_irqrestore(&priv->irq_lock, flags);
597 }
598
599 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
600 {
601         unsigned long flags;
602
603         spin_lock_irqsave(&priv->irq_lock, flags);
604         __ipw_disable_interrupts(priv);
605         spin_unlock_irqrestore(&priv->irq_lock, flags);
606 }
607
608 static char *ipw_error_desc(u32 val)
609 {
610         switch (val) {
611         case IPW_FW_ERROR_OK:
612                 return "ERROR_OK";
613         case IPW_FW_ERROR_FAIL:
614                 return "ERROR_FAIL";
615         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
616                 return "MEMORY_UNDERFLOW";
617         case IPW_FW_ERROR_MEMORY_OVERFLOW:
618                 return "MEMORY_OVERFLOW";
619         case IPW_FW_ERROR_BAD_PARAM:
620                 return "BAD_PARAM";
621         case IPW_FW_ERROR_BAD_CHECKSUM:
622                 return "BAD_CHECKSUM";
623         case IPW_FW_ERROR_NMI_INTERRUPT:
624                 return "NMI_INTERRUPT";
625         case IPW_FW_ERROR_BAD_DATABASE:
626                 return "BAD_DATABASE";
627         case IPW_FW_ERROR_ALLOC_FAIL:
628                 return "ALLOC_FAIL";
629         case IPW_FW_ERROR_DMA_UNDERRUN:
630                 return "DMA_UNDERRUN";
631         case IPW_FW_ERROR_DMA_STATUS:
632                 return "DMA_STATUS";
633         case IPW_FW_ERROR_DINO_ERROR:
634                 return "DINO_ERROR";
635         case IPW_FW_ERROR_EEPROM_ERROR:
636                 return "EEPROM_ERROR";
637         case IPW_FW_ERROR_SYSASSERT:
638                 return "SYSASSERT";
639         case IPW_FW_ERROR_FATAL_ERROR:
640                 return "FATAL_ERROR";
641         default:
642                 return "UNKNOWN_ERROR";
643         }
644 }
645
646 static void ipw_dump_error_log(struct ipw_priv *priv,
647                                struct ipw_fw_error *error)
648 {
649         u32 i;
650
651         if (!error) {
652                 IPW_ERROR("Error allocating and capturing error log.  "
653                           "Nothing to dump.\n");
654                 return;
655         }
656
657         IPW_ERROR("Start IPW Error Log Dump:\n");
658         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
659                   error->status, error->config);
660
661         for (i = 0; i < error->elem_len; i++)
662                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
663                           ipw_error_desc(error->elem[i].desc),
664                           error->elem[i].time,
665                           error->elem[i].blink1,
666                           error->elem[i].blink2,
667                           error->elem[i].link1,
668                           error->elem[i].link2, error->elem[i].data);
669         for (i = 0; i < error->log_len; i++)
670                 IPW_ERROR("%i\t0x%08x\t%i\n",
671                           error->log[i].time,
672                           error->log[i].data, error->log[i].event);
673 }
674
675 static inline int ipw_is_init(struct ipw_priv *priv)
676 {
677         return (priv->status & STATUS_INIT) ? 1 : 0;
678 }
679
680 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
681 {
682         u32 addr, field_info, field_len, field_count, total_len;
683
684         IPW_DEBUG_ORD("ordinal = %i\n", ord);
685
686         if (!priv || !val || !len) {
687                 IPW_DEBUG_ORD("Invalid argument\n");
688                 return -EINVAL;
689         }
690
691         /* verify device ordinal tables have been initialized */
692         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
693                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
694                 return -EINVAL;
695         }
696
697         switch (IPW_ORD_TABLE_ID_MASK & ord) {
698         case IPW_ORD_TABLE_0_MASK:
699                 /*
700                  * TABLE 0: Direct access to a table of 32 bit values
701                  *
702                  * This is a very simple table with the data directly
703                  * read from the table
704                  */
705
706                 /* remove the table id from the ordinal */
707                 ord &= IPW_ORD_TABLE_VALUE_MASK;
708
709                 /* boundary check */
710                 if (ord > priv->table0_len) {
711                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
712                                       "max (%i)\n", ord, priv->table0_len);
713                         return -EINVAL;
714                 }
715
716                 /* verify we have enough room to store the value */
717                 if (*len < sizeof(u32)) {
718                         IPW_DEBUG_ORD("ordinal buffer length too small, "
719                                       "need %zd\n", sizeof(u32));
720                         return -EINVAL;
721                 }
722
723                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
724                               ord, priv->table0_addr + (ord << 2));
725
726                 *len = sizeof(u32);
727                 ord <<= 2;
728                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
729                 break;
730
731         case IPW_ORD_TABLE_1_MASK:
732                 /*
733                  * TABLE 1: Indirect access to a table of 32 bit values
734                  *
735                  * This is a fairly large table of u32 values each
736                  * representing starting addr for the data (which is
737                  * also a u32)
738                  */
739
740                 /* remove the table id from the ordinal */
741                 ord &= IPW_ORD_TABLE_VALUE_MASK;
742
743                 /* boundary check */
744                 if (ord > priv->table1_len) {
745                         IPW_DEBUG_ORD("ordinal value too long\n");
746                         return -EINVAL;
747                 }
748
749                 /* verify we have enough room to store the value */
750                 if (*len < sizeof(u32)) {
751                         IPW_DEBUG_ORD("ordinal buffer length too small, "
752                                       "need %zd\n", sizeof(u32));
753                         return -EINVAL;
754                 }
755
756                 *((u32 *) val) =
757                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
758                 *len = sizeof(u32);
759                 break;
760
761         case IPW_ORD_TABLE_2_MASK:
762                 /*
763                  * TABLE 2: Indirect access to a table of variable sized values
764                  *
765                  * This table consist of six values, each containing
766                  *     - dword containing the starting offset of the data
767                  *     - dword containing the lengh in the first 16bits
768                  *       and the count in the second 16bits
769                  */
770
771                 /* remove the table id from the ordinal */
772                 ord &= IPW_ORD_TABLE_VALUE_MASK;
773
774                 /* boundary check */
775                 if (ord > priv->table2_len) {
776                         IPW_DEBUG_ORD("ordinal value too long\n");
777                         return -EINVAL;
778                 }
779
780                 /* get the address of statistic */
781                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
782
783                 /* get the second DW of statistics ;
784                  * two 16-bit words - first is length, second is count */
785                 field_info =
786                     ipw_read_reg32(priv,
787                                    priv->table2_addr + (ord << 3) +
788                                    sizeof(u32));
789
790                 /* get each entry length */
791                 field_len = *((u16 *) & field_info);
792
793                 /* get number of entries */
794                 field_count = *(((u16 *) & field_info) + 1);
795
796                 /* abort if not enough memory */
797                 total_len = field_len * field_count;
798                 if (total_len > *len) {
799                         *len = total_len;
800                         return -EINVAL;
801                 }
802
803                 *len = total_len;
804                 if (!total_len)
805                         return 0;
806
807                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
808                               "field_info = 0x%08x\n",
809                               addr, total_len, field_info);
810                 ipw_read_indirect(priv, addr, val, total_len);
811                 break;
812
813         default:
814                 IPW_DEBUG_ORD("Invalid ordinal!\n");
815                 return -EINVAL;
816
817         }
818
819         return 0;
820 }
821
822 static void ipw_init_ordinals(struct ipw_priv *priv)
823 {
824         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
825         priv->table0_len = ipw_read32(priv, priv->table0_addr);
826
827         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
828                       priv->table0_addr, priv->table0_len);
829
830         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
831         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
832
833         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
834                       priv->table1_addr, priv->table1_len);
835
836         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
837         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
838         priv->table2_len &= 0x0000ffff; /* use first two bytes */
839
840         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
841                       priv->table2_addr, priv->table2_len);
842
843 }
844
845 static u32 ipw_register_toggle(u32 reg)
846 {
847         reg &= ~IPW_START_STANDBY;
848         if (reg & IPW_GATE_ODMA)
849                 reg &= ~IPW_GATE_ODMA;
850         if (reg & IPW_GATE_IDMA)
851                 reg &= ~IPW_GATE_IDMA;
852         if (reg & IPW_GATE_ADMA)
853                 reg &= ~IPW_GATE_ADMA;
854         return reg;
855 }
856
857 /*
858  * LED behavior:
859  * - On radio ON, turn on any LEDs that require to be on during start
860  * - On initialization, start unassociated blink
861  * - On association, disable unassociated blink
862  * - On disassociation, start unassociated blink
863  * - On radio OFF, turn off any LEDs started during radio on
864  *
865  */
866 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
867 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
868 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
869
870 static void ipw_led_link_on(struct ipw_priv *priv)
871 {
872         unsigned long flags;
873         u32 led;
874
875         /* If configured to not use LEDs, or nic_type is 1,
876          * then we don't toggle a LINK led */
877         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
878                 return;
879
880         spin_lock_irqsave(&priv->lock, flags);
881
882         if (!(priv->status & STATUS_RF_KILL_MASK) &&
883             !(priv->status & STATUS_LED_LINK_ON)) {
884                 IPW_DEBUG_LED("Link LED On\n");
885                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
886                 led |= priv->led_association_on;
887
888                 led = ipw_register_toggle(led);
889
890                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
891                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
892
893                 priv->status |= STATUS_LED_LINK_ON;
894
895                 /* If we aren't associated, schedule turning the LED off */
896                 if (!(priv->status & STATUS_ASSOCIATED))
897                         queue_delayed_work(priv->workqueue,
898                                            &priv->led_link_off,
899                                            LD_TIME_LINK_ON);
900         }
901
902         spin_unlock_irqrestore(&priv->lock, flags);
903 }
904
905 static void ipw_bg_led_link_on(struct work_struct *work)
906 {
907         struct ipw_priv *priv =
908                 container_of(work, struct ipw_priv, led_link_on.work);
909         mutex_lock(&priv->mutex);
910         ipw_led_link_on(priv);
911         mutex_unlock(&priv->mutex);
912 }
913
914 static void ipw_led_link_off(struct ipw_priv *priv)
915 {
916         unsigned long flags;
917         u32 led;
918
919         /* If configured not to use LEDs, or nic type is 1,
920          * then we don't goggle the LINK led. */
921         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
922                 return;
923
924         spin_lock_irqsave(&priv->lock, flags);
925
926         if (priv->status & STATUS_LED_LINK_ON) {
927                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
928                 led &= priv->led_association_off;
929                 led = ipw_register_toggle(led);
930
931                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
932                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
933
934                 IPW_DEBUG_LED("Link LED Off\n");
935
936                 priv->status &= ~STATUS_LED_LINK_ON;
937
938                 /* If we aren't associated and the radio is on, schedule
939                  * turning the LED on (blink while unassociated) */
940                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
941                     !(priv->status & STATUS_ASSOCIATED))
942                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
943                                            LD_TIME_LINK_OFF);
944
945         }
946
947         spin_unlock_irqrestore(&priv->lock, flags);
948 }
949
950 static void ipw_bg_led_link_off(struct work_struct *work)
951 {
952         struct ipw_priv *priv =
953                 container_of(work, struct ipw_priv, led_link_off.work);
954         mutex_lock(&priv->mutex);
955         ipw_led_link_off(priv);
956         mutex_unlock(&priv->mutex);
957 }
958
959 static void __ipw_led_activity_on(struct ipw_priv *priv)
960 {
961         u32 led;
962
963         if (priv->config & CFG_NO_LED)
964                 return;
965
966         if (priv->status & STATUS_RF_KILL_MASK)
967                 return;
968
969         if (!(priv->status & STATUS_LED_ACT_ON)) {
970                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
971                 led |= priv->led_activity_on;
972
973                 led = ipw_register_toggle(led);
974
975                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
976                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
977
978                 IPW_DEBUG_LED("Activity LED On\n");
979
980                 priv->status |= STATUS_LED_ACT_ON;
981
982                 cancel_delayed_work(&priv->led_act_off);
983                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
984                                    LD_TIME_ACT_ON);
985         } else {
986                 /* Reschedule LED off for full time period */
987                 cancel_delayed_work(&priv->led_act_off);
988                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
989                                    LD_TIME_ACT_ON);
990         }
991 }
992
993 #if 0
994 void ipw_led_activity_on(struct ipw_priv *priv)
995 {
996         unsigned long flags;
997         spin_lock_irqsave(&priv->lock, flags);
998         __ipw_led_activity_on(priv);
999         spin_unlock_irqrestore(&priv->lock, flags);
1000 }
1001 #endif  /*  0  */
1002
1003 static void ipw_led_activity_off(struct ipw_priv *priv)
1004 {
1005         unsigned long flags;
1006         u32 led;
1007
1008         if (priv->config & CFG_NO_LED)
1009                 return;
1010
1011         spin_lock_irqsave(&priv->lock, flags);
1012
1013         if (priv->status & STATUS_LED_ACT_ON) {
1014                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1015                 led &= priv->led_activity_off;
1016
1017                 led = ipw_register_toggle(led);
1018
1019                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1020                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1021
1022                 IPW_DEBUG_LED("Activity LED Off\n");
1023
1024                 priv->status &= ~STATUS_LED_ACT_ON;
1025         }
1026
1027         spin_unlock_irqrestore(&priv->lock, flags);
1028 }
1029
1030 static void ipw_bg_led_activity_off(struct work_struct *work)
1031 {
1032         struct ipw_priv *priv =
1033                 container_of(work, struct ipw_priv, led_act_off.work);
1034         mutex_lock(&priv->mutex);
1035         ipw_led_activity_off(priv);
1036         mutex_unlock(&priv->mutex);
1037 }
1038
1039 static void ipw_led_band_on(struct ipw_priv *priv)
1040 {
1041         unsigned long flags;
1042         u32 led;
1043
1044         /* Only nic type 1 supports mode LEDs */
1045         if (priv->config & CFG_NO_LED ||
1046             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1047                 return;
1048
1049         spin_lock_irqsave(&priv->lock, flags);
1050
1051         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1052         if (priv->assoc_network->mode == IEEE_A) {
1053                 led |= priv->led_ofdm_on;
1054                 led &= priv->led_association_off;
1055                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1056         } else if (priv->assoc_network->mode == IEEE_G) {
1057                 led |= priv->led_ofdm_on;
1058                 led |= priv->led_association_on;
1059                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1060         } else {
1061                 led &= priv->led_ofdm_off;
1062                 led |= priv->led_association_on;
1063                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1064         }
1065
1066         led = ipw_register_toggle(led);
1067
1068         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1069         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1070
1071         spin_unlock_irqrestore(&priv->lock, flags);
1072 }
1073
1074 static void ipw_led_band_off(struct ipw_priv *priv)
1075 {
1076         unsigned long flags;
1077         u32 led;
1078
1079         /* Only nic type 1 supports mode LEDs */
1080         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1081                 return;
1082
1083         spin_lock_irqsave(&priv->lock, flags);
1084
1085         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1086         led &= priv->led_ofdm_off;
1087         led &= priv->led_association_off;
1088
1089         led = ipw_register_toggle(led);
1090
1091         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1092         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1093
1094         spin_unlock_irqrestore(&priv->lock, flags);
1095 }
1096
1097 static void ipw_led_radio_on(struct ipw_priv *priv)
1098 {
1099         ipw_led_link_on(priv);
1100 }
1101
1102 static void ipw_led_radio_off(struct ipw_priv *priv)
1103 {
1104         ipw_led_activity_off(priv);
1105         ipw_led_link_off(priv);
1106 }
1107
1108 static void ipw_led_link_up(struct ipw_priv *priv)
1109 {
1110         /* Set the Link Led on for all nic types */
1111         ipw_led_link_on(priv);
1112 }
1113
1114 static void ipw_led_link_down(struct ipw_priv *priv)
1115 {
1116         ipw_led_activity_off(priv);
1117         ipw_led_link_off(priv);
1118
1119         if (priv->status & STATUS_RF_KILL_MASK)
1120                 ipw_led_radio_off(priv);
1121 }
1122
1123 static void ipw_led_init(struct ipw_priv *priv)
1124 {
1125         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1126
1127         /* Set the default PINs for the link and activity leds */
1128         priv->led_activity_on = IPW_ACTIVITY_LED;
1129         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1130
1131         priv->led_association_on = IPW_ASSOCIATED_LED;
1132         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1133
1134         /* Set the default PINs for the OFDM leds */
1135         priv->led_ofdm_on = IPW_OFDM_LED;
1136         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1137
1138         switch (priv->nic_type) {
1139         case EEPROM_NIC_TYPE_1:
1140                 /* In this NIC type, the LEDs are reversed.... */
1141                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1142                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1143                 priv->led_association_on = IPW_ACTIVITY_LED;
1144                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1145
1146                 if (!(priv->config & CFG_NO_LED))
1147                         ipw_led_band_on(priv);
1148
1149                 /* And we don't blink link LEDs for this nic, so
1150                  * just return here */
1151                 return;
1152
1153         case EEPROM_NIC_TYPE_3:
1154         case EEPROM_NIC_TYPE_2:
1155         case EEPROM_NIC_TYPE_4:
1156         case EEPROM_NIC_TYPE_0:
1157                 break;
1158
1159         default:
1160                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1161                                priv->nic_type);
1162                 priv->nic_type = EEPROM_NIC_TYPE_0;
1163                 break;
1164         }
1165
1166         if (!(priv->config & CFG_NO_LED)) {
1167                 if (priv->status & STATUS_ASSOCIATED)
1168                         ipw_led_link_on(priv);
1169                 else
1170                         ipw_led_link_off(priv);
1171         }
1172 }
1173
1174 static void ipw_led_shutdown(struct ipw_priv *priv)
1175 {
1176         ipw_led_activity_off(priv);
1177         ipw_led_link_off(priv);
1178         ipw_led_band_off(priv);
1179         cancel_delayed_work(&priv->led_link_on);
1180         cancel_delayed_work(&priv->led_link_off);
1181         cancel_delayed_work(&priv->led_act_off);
1182 }
1183
1184 /*
1185  * The following adds a new attribute to the sysfs representation
1186  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1187  * used for controling the debug level.
1188  *
1189  * See the level definitions in ipw for details.
1190  */
1191 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1192 {
1193         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1194 }
1195
1196 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1197                                  size_t count)
1198 {
1199         char *p = (char *)buf;
1200         u32 val;
1201
1202         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1203                 p++;
1204                 if (p[0] == 'x' || p[0] == 'X')
1205                         p++;
1206                 val = simple_strtoul(p, &p, 16);
1207         } else
1208                 val = simple_strtoul(p, &p, 10);
1209         if (p == buf)
1210                 printk(KERN_INFO DRV_NAME
1211                        ": %s is not in hex or decimal form.\n", buf);
1212         else
1213                 ipw_debug_level = val;
1214
1215         return strnlen(buf, count);
1216 }
1217
1218 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1219                    show_debug_level, store_debug_level);
1220
1221 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1222 {
1223         /* length = 1st dword in log */
1224         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1225 }
1226
1227 static void ipw_capture_event_log(struct ipw_priv *priv,
1228                                   u32 log_len, struct ipw_event *log)
1229 {
1230         u32 base;
1231
1232         if (log_len) {
1233                 base = ipw_read32(priv, IPW_EVENT_LOG);
1234                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1235                                   (u8 *) log, sizeof(*log) * log_len);
1236         }
1237 }
1238
1239 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1240 {
1241         struct ipw_fw_error *error;
1242         u32 log_len = ipw_get_event_log_len(priv);
1243         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1244         u32 elem_len = ipw_read_reg32(priv, base);
1245
1246         error = kmalloc(sizeof(*error) +
1247                         sizeof(*error->elem) * elem_len +
1248                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1249         if (!error) {
1250                 IPW_ERROR("Memory allocation for firmware error log "
1251                           "failed.\n");
1252                 return NULL;
1253         }
1254         error->jiffies = jiffies;
1255         error->status = priv->status;
1256         error->config = priv->config;
1257         error->elem_len = elem_len;
1258         error->log_len = log_len;
1259         error->elem = (struct ipw_error_elem *)error->payload;
1260         error->log = (struct ipw_event *)(error->elem + elem_len);
1261
1262         ipw_capture_event_log(priv, log_len, error->log);
1263
1264         if (elem_len)
1265                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1266                                   sizeof(*error->elem) * elem_len);
1267
1268         return error;
1269 }
1270
1271 static ssize_t show_event_log(struct device *d,
1272                               struct device_attribute *attr, char *buf)
1273 {
1274         struct ipw_priv *priv = dev_get_drvdata(d);
1275         u32 log_len = ipw_get_event_log_len(priv);
1276         u32 log_size;
1277         struct ipw_event *log;
1278         u32 len = 0, i;
1279
1280         /* not using min() because of its strict type checking */
1281         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1282                         sizeof(*log) * log_len : PAGE_SIZE;
1283         log = kzalloc(log_size, GFP_KERNEL);
1284         if (!log) {
1285                 IPW_ERROR("Unable to allocate memory for log\n");
1286                 return 0;
1287         }
1288         log_len = log_size / sizeof(*log);
1289         ipw_capture_event_log(priv, log_len, log);
1290
1291         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1292         for (i = 0; i < log_len; i++)
1293                 len += snprintf(buf + len, PAGE_SIZE - len,
1294                                 "\n%08X%08X%08X",
1295                                 log[i].time, log[i].event, log[i].data);
1296         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1297         kfree(log);
1298         return len;
1299 }
1300
1301 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1302
1303 static ssize_t show_error(struct device *d,
1304                           struct device_attribute *attr, char *buf)
1305 {
1306         struct ipw_priv *priv = dev_get_drvdata(d);
1307         u32 len = 0, i;
1308         if (!priv->error)
1309                 return 0;
1310         len += snprintf(buf + len, PAGE_SIZE - len,
1311                         "%08lX%08X%08X%08X",
1312                         priv->error->jiffies,
1313                         priv->error->status,
1314                         priv->error->config, priv->error->elem_len);
1315         for (i = 0; i < priv->error->elem_len; i++)
1316                 len += snprintf(buf + len, PAGE_SIZE - len,
1317                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1318                                 priv->error->elem[i].time,
1319                                 priv->error->elem[i].desc,
1320                                 priv->error->elem[i].blink1,
1321                                 priv->error->elem[i].blink2,
1322                                 priv->error->elem[i].link1,
1323                                 priv->error->elem[i].link2,
1324                                 priv->error->elem[i].data);
1325
1326         len += snprintf(buf + len, PAGE_SIZE - len,
1327                         "\n%08X", priv->error->log_len);
1328         for (i = 0; i < priv->error->log_len; i++)
1329                 len += snprintf(buf + len, PAGE_SIZE - len,
1330                                 "\n%08X%08X%08X",
1331                                 priv->error->log[i].time,
1332                                 priv->error->log[i].event,
1333                                 priv->error->log[i].data);
1334         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1335         return len;
1336 }
1337
1338 static ssize_t clear_error(struct device *d,
1339                            struct device_attribute *attr,
1340                            const char *buf, size_t count)
1341 {
1342         struct ipw_priv *priv = dev_get_drvdata(d);
1343
1344         kfree(priv->error);
1345         priv->error = NULL;
1346         return count;
1347 }
1348
1349 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1350
1351 static ssize_t show_cmd_log(struct device *d,
1352                             struct device_attribute *attr, char *buf)
1353 {
1354         struct ipw_priv *priv = dev_get_drvdata(d);
1355         u32 len = 0, i;
1356         if (!priv->cmdlog)
1357                 return 0;
1358         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1359              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1360              i = (i + 1) % priv->cmdlog_len) {
1361                 len +=
1362                     snprintf(buf + len, PAGE_SIZE - len,
1363                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1364                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1365                              priv->cmdlog[i].cmd.len);
1366                 len +=
1367                     snprintk_buf(buf + len, PAGE_SIZE - len,
1368                                  (u8 *) priv->cmdlog[i].cmd.param,
1369                                  priv->cmdlog[i].cmd.len);
1370                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1371         }
1372         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1373         return len;
1374 }
1375
1376 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1377
1378 #ifdef CONFIG_IPW2200_PROMISCUOUS
1379 static void ipw_prom_free(struct ipw_priv *priv);
1380 static int ipw_prom_alloc(struct ipw_priv *priv);
1381 static ssize_t store_rtap_iface(struct device *d,
1382                          struct device_attribute *attr,
1383                          const char *buf, size_t count)
1384 {
1385         struct ipw_priv *priv = dev_get_drvdata(d);
1386         int rc = 0;
1387
1388         if (count < 1)
1389                 return -EINVAL;
1390
1391         switch (buf[0]) {
1392         case '0':
1393                 if (!rtap_iface)
1394                         return count;
1395
1396                 if (netif_running(priv->prom_net_dev)) {
1397                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1398                         return count;
1399                 }
1400
1401                 ipw_prom_free(priv);
1402                 rtap_iface = 0;
1403                 break;
1404
1405         case '1':
1406                 if (rtap_iface)
1407                         return count;
1408
1409                 rc = ipw_prom_alloc(priv);
1410                 if (!rc)
1411                         rtap_iface = 1;
1412                 break;
1413
1414         default:
1415                 return -EINVAL;
1416         }
1417
1418         if (rc) {
1419                 IPW_ERROR("Failed to register promiscuous network "
1420                           "device (error %d).\n", rc);
1421         }
1422
1423         return count;
1424 }
1425
1426 static ssize_t show_rtap_iface(struct device *d,
1427                         struct device_attribute *attr,
1428                         char *buf)
1429 {
1430         struct ipw_priv *priv = dev_get_drvdata(d);
1431         if (rtap_iface)
1432                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1433         else {
1434                 buf[0] = '-';
1435                 buf[1] = '1';
1436                 buf[2] = '\0';
1437                 return 3;
1438         }
1439 }
1440
1441 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1442                    store_rtap_iface);
1443
1444 static ssize_t store_rtap_filter(struct device *d,
1445                          struct device_attribute *attr,
1446                          const char *buf, size_t count)
1447 {
1448         struct ipw_priv *priv = dev_get_drvdata(d);
1449
1450         if (!priv->prom_priv) {
1451                 IPW_ERROR("Attempting to set filter without "
1452                           "rtap_iface enabled.\n");
1453                 return -EPERM;
1454         }
1455
1456         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1457
1458         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1459                        BIT_ARG16(priv->prom_priv->filter));
1460
1461         return count;
1462 }
1463
1464 static ssize_t show_rtap_filter(struct device *d,
1465                         struct device_attribute *attr,
1466                         char *buf)
1467 {
1468         struct ipw_priv *priv = dev_get_drvdata(d);
1469         return sprintf(buf, "0x%04X",
1470                        priv->prom_priv ? priv->prom_priv->filter : 0);
1471 }
1472
1473 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1474                    store_rtap_filter);
1475 #endif
1476
1477 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1478                              char *buf)
1479 {
1480         struct ipw_priv *priv = dev_get_drvdata(d);
1481         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1482 }
1483
1484 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1485                               const char *buf, size_t count)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         struct net_device *dev = priv->net_dev;
1489         char buffer[] = "00000000";
1490         unsigned long len =
1491             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1492         unsigned long val;
1493         char *p = buffer;
1494
1495         IPW_DEBUG_INFO("enter\n");
1496
1497         strncpy(buffer, buf, len);
1498         buffer[len] = 0;
1499
1500         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1501                 p++;
1502                 if (p[0] == 'x' || p[0] == 'X')
1503                         p++;
1504                 val = simple_strtoul(p, &p, 16);
1505         } else
1506                 val = simple_strtoul(p, &p, 10);
1507         if (p == buffer) {
1508                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1509         } else {
1510                 priv->ieee->scan_age = val;
1511                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1512         }
1513
1514         IPW_DEBUG_INFO("exit\n");
1515         return len;
1516 }
1517
1518 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1519
1520 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1521                         char *buf)
1522 {
1523         struct ipw_priv *priv = dev_get_drvdata(d);
1524         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1525 }
1526
1527 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1528                          const char *buf, size_t count)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531
1532         IPW_DEBUG_INFO("enter\n");
1533
1534         if (count == 0)
1535                 return 0;
1536
1537         if (*buf == 0) {
1538                 IPW_DEBUG_LED("Disabling LED control.\n");
1539                 priv->config |= CFG_NO_LED;
1540                 ipw_led_shutdown(priv);
1541         } else {
1542                 IPW_DEBUG_LED("Enabling LED control.\n");
1543                 priv->config &= ~CFG_NO_LED;
1544                 ipw_led_init(priv);
1545         }
1546
1547         IPW_DEBUG_INFO("exit\n");
1548         return count;
1549 }
1550
1551 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1552
1553 static ssize_t show_status(struct device *d,
1554                            struct device_attribute *attr, char *buf)
1555 {
1556         struct ipw_priv *p = dev_get_drvdata(d);
1557         return sprintf(buf, "0x%08x\n", (int)p->status);
1558 }
1559
1560 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1561
1562 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1563                         char *buf)
1564 {
1565         struct ipw_priv *p = dev_get_drvdata(d);
1566         return sprintf(buf, "0x%08x\n", (int)p->config);
1567 }
1568
1569 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1570
1571 static ssize_t show_nic_type(struct device *d,
1572                              struct device_attribute *attr, char *buf)
1573 {
1574         struct ipw_priv *priv = dev_get_drvdata(d);
1575         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1576 }
1577
1578 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1579
1580 static ssize_t show_ucode_version(struct device *d,
1581                                   struct device_attribute *attr, char *buf)
1582 {
1583         u32 len = sizeof(u32), tmp = 0;
1584         struct ipw_priv *p = dev_get_drvdata(d);
1585
1586         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1587                 return 0;
1588
1589         return sprintf(buf, "0x%08x\n", tmp);
1590 }
1591
1592 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1593
1594 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1595                         char *buf)
1596 {
1597         u32 len = sizeof(u32), tmp = 0;
1598         struct ipw_priv *p = dev_get_drvdata(d);
1599
1600         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1601                 return 0;
1602
1603         return sprintf(buf, "0x%08x\n", tmp);
1604 }
1605
1606 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1607
1608 /*
1609  * Add a device attribute to view/control the delay between eeprom
1610  * operations.
1611  */
1612 static ssize_t show_eeprom_delay(struct device *d,
1613                                  struct device_attribute *attr, char *buf)
1614 {
1615         struct ipw_priv *p = dev_get_drvdata(d);
1616         int n = p->eeprom_delay;
1617         return sprintf(buf, "%i\n", n);
1618 }
1619 static ssize_t store_eeprom_delay(struct device *d,
1620                                   struct device_attribute *attr,
1621                                   const char *buf, size_t count)
1622 {
1623         struct ipw_priv *p = dev_get_drvdata(d);
1624         sscanf(buf, "%i", &p->eeprom_delay);
1625         return strnlen(buf, count);
1626 }
1627
1628 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1629                    show_eeprom_delay, store_eeprom_delay);
1630
1631 static ssize_t show_command_event_reg(struct device *d,
1632                                       struct device_attribute *attr, char *buf)
1633 {
1634         u32 reg = 0;
1635         struct ipw_priv *p = dev_get_drvdata(d);
1636
1637         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1638         return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_command_event_reg(struct device *d,
1641                                        struct device_attribute *attr,
1642                                        const char *buf, size_t count)
1643 {
1644         u32 reg;
1645         struct ipw_priv *p = dev_get_drvdata(d);
1646
1647         sscanf(buf, "%x", &reg);
1648         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1649         return strnlen(buf, count);
1650 }
1651
1652 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1653                    show_command_event_reg, store_command_event_reg);
1654
1655 static ssize_t show_mem_gpio_reg(struct device *d,
1656                                  struct device_attribute *attr, char *buf)
1657 {
1658         u32 reg = 0;
1659         struct ipw_priv *p = dev_get_drvdata(d);
1660
1661         reg = ipw_read_reg32(p, 0x301100);
1662         return sprintf(buf, "0x%08x\n", reg);
1663 }
1664 static ssize_t store_mem_gpio_reg(struct device *d,
1665                                   struct device_attribute *attr,
1666                                   const char *buf, size_t count)
1667 {
1668         u32 reg;
1669         struct ipw_priv *p = dev_get_drvdata(d);
1670
1671         sscanf(buf, "%x", &reg);
1672         ipw_write_reg32(p, 0x301100, reg);
1673         return strnlen(buf, count);
1674 }
1675
1676 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1677                    show_mem_gpio_reg, store_mem_gpio_reg);
1678
1679 static ssize_t show_indirect_dword(struct device *d,
1680                                    struct device_attribute *attr, char *buf)
1681 {
1682         u32 reg = 0;
1683         struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685         if (priv->status & STATUS_INDIRECT_DWORD)
1686                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1687         else
1688                 reg = 0;
1689
1690         return sprintf(buf, "0x%08x\n", reg);
1691 }
1692 static ssize_t store_indirect_dword(struct device *d,
1693                                     struct device_attribute *attr,
1694                                     const char *buf, size_t count)
1695 {
1696         struct ipw_priv *priv = dev_get_drvdata(d);
1697
1698         sscanf(buf, "%x", &priv->indirect_dword);
1699         priv->status |= STATUS_INDIRECT_DWORD;
1700         return strnlen(buf, count);
1701 }
1702
1703 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1704                    show_indirect_dword, store_indirect_dword);
1705
1706 static ssize_t show_indirect_byte(struct device *d,
1707                                   struct device_attribute *attr, char *buf)
1708 {
1709         u8 reg = 0;
1710         struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712         if (priv->status & STATUS_INDIRECT_BYTE)
1713                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1714         else
1715                 reg = 0;
1716
1717         return sprintf(buf, "0x%02x\n", reg);
1718 }
1719 static ssize_t store_indirect_byte(struct device *d,
1720                                    struct device_attribute *attr,
1721                                    const char *buf, size_t count)
1722 {
1723         struct ipw_priv *priv = dev_get_drvdata(d);
1724
1725         sscanf(buf, "%x", &priv->indirect_byte);
1726         priv->status |= STATUS_INDIRECT_BYTE;
1727         return strnlen(buf, count);
1728 }
1729
1730 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1731                    show_indirect_byte, store_indirect_byte);
1732
1733 static ssize_t show_direct_dword(struct device *d,
1734                                  struct device_attribute *attr, char *buf)
1735 {
1736         u32 reg = 0;
1737         struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739         if (priv->status & STATUS_DIRECT_DWORD)
1740                 reg = ipw_read32(priv, priv->direct_dword);
1741         else
1742                 reg = 0;
1743
1744         return sprintf(buf, "0x%08x\n", reg);
1745 }
1746 static ssize_t store_direct_dword(struct device *d,
1747                                   struct device_attribute *attr,
1748                                   const char *buf, size_t count)
1749 {
1750         struct ipw_priv *priv = dev_get_drvdata(d);
1751
1752         sscanf(buf, "%x", &priv->direct_dword);
1753         priv->status |= STATUS_DIRECT_DWORD;
1754         return strnlen(buf, count);
1755 }
1756
1757 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1758                    show_direct_dword, store_direct_dword);
1759
1760 static int rf_kill_active(struct ipw_priv *priv)
1761 {
1762         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1763                 priv->status |= STATUS_RF_KILL_HW;
1764                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1765         } else {
1766                 priv->status &= ~STATUS_RF_KILL_HW;
1767                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1768         }
1769
1770         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1771 }
1772
1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1774                             char *buf)
1775 {
1776         /* 0 - RF kill not enabled
1777            1 - SW based RF kill active (sysfs)
1778            2 - HW based RF kill active
1779            3 - Both HW and SW baed RF kill active */
1780         struct ipw_priv *priv = dev_get_drvdata(d);
1781         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1782             (rf_kill_active(priv) ? 0x2 : 0x0);
1783         return sprintf(buf, "%i\n", val);
1784 }
1785
1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1787 {
1788         if ((disable_radio ? 1 : 0) ==
1789             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1790                 return 0;
1791
1792         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1793                           disable_radio ? "OFF" : "ON");
1794
1795         if (disable_radio) {
1796                 priv->status |= STATUS_RF_KILL_SW;
1797
1798                 if (priv->workqueue) {
1799                         cancel_delayed_work(&priv->request_scan);
1800                         cancel_delayed_work(&priv->request_direct_scan);
1801                         cancel_delayed_work(&priv->request_passive_scan);
1802                         cancel_delayed_work(&priv->scan_event);
1803                 }
1804                 queue_work(priv->workqueue, &priv->down);
1805         } else {
1806                 priv->status &= ~STATUS_RF_KILL_SW;
1807                 if (rf_kill_active(priv)) {
1808                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1809                                           "disabled by HW switch\n");
1810                         /* Make sure the RF_KILL check timer is running */
1811                         cancel_delayed_work(&priv->rf_kill);
1812                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1813                                            round_jiffies_relative(2 * HZ));
1814                 } else
1815                         queue_work(priv->workqueue, &priv->up);
1816         }
1817
1818         return 1;
1819 }
1820
1821 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1822                              const char *buf, size_t count)
1823 {
1824         struct ipw_priv *priv = dev_get_drvdata(d);
1825
1826         ipw_radio_kill_sw(priv, buf[0] == '1');
1827
1828         return count;
1829 }
1830
1831 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1832
1833 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1834                                char *buf)
1835 {
1836         struct ipw_priv *priv = dev_get_drvdata(d);
1837         int pos = 0, len = 0;
1838         if (priv->config & CFG_SPEED_SCAN) {
1839                 while (priv->speed_scan[pos] != 0)
1840                         len += sprintf(&buf[len], "%d ",
1841                                        priv->speed_scan[pos++]);
1842                 return len + sprintf(&buf[len], "\n");
1843         }
1844
1845         return sprintf(buf, "0\n");
1846 }
1847
1848 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1849                                 const char *buf, size_t count)
1850 {
1851         struct ipw_priv *priv = dev_get_drvdata(d);
1852         int channel, pos = 0;
1853         const char *p = buf;
1854
1855         /* list of space separated channels to scan, optionally ending with 0 */
1856         while ((channel = simple_strtol(p, NULL, 0))) {
1857                 if (pos == MAX_SPEED_SCAN - 1) {
1858                         priv->speed_scan[pos] = 0;
1859                         break;
1860                 }
1861
1862                 if (libipw_is_valid_channel(priv->ieee, channel))
1863                         priv->speed_scan[pos++] = channel;
1864                 else
1865                         IPW_WARNING("Skipping invalid channel request: %d\n",
1866                                     channel);
1867                 p = strchr(p, ' ');
1868                 if (!p)
1869                         break;
1870                 while (*p == ' ' || *p == '\t')
1871                         p++;
1872         }
1873
1874         if (pos == 0)
1875                 priv->config &= ~CFG_SPEED_SCAN;
1876         else {
1877                 priv->speed_scan_pos = 0;
1878                 priv->config |= CFG_SPEED_SCAN;
1879         }
1880
1881         return count;
1882 }
1883
1884 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1885                    store_speed_scan);
1886
1887 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1888                               char *buf)
1889 {
1890         struct ipw_priv *priv = dev_get_drvdata(d);
1891         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1892 }
1893
1894 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1895                                const char *buf, size_t count)
1896 {
1897         struct ipw_priv *priv = dev_get_drvdata(d);
1898         if (buf[0] == '1')
1899                 priv->config |= CFG_NET_STATS;
1900         else
1901                 priv->config &= ~CFG_NET_STATS;
1902
1903         return count;
1904 }
1905
1906 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1907                    show_net_stats, store_net_stats);
1908
1909 static ssize_t show_channels(struct device *d,
1910                              struct device_attribute *attr,
1911                              char *buf)
1912 {
1913         struct ipw_priv *priv = dev_get_drvdata(d);
1914         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1915         int len = 0, i;
1916
1917         len = sprintf(&buf[len],
1918                       "Displaying %d channels in 2.4Ghz band "
1919                       "(802.11bg):\n", geo->bg_channels);
1920
1921         for (i = 0; i < geo->bg_channels; i++) {
1922                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1923                                geo->bg[i].channel,
1924                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1925                                " (radar spectrum)" : "",
1926                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1927                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1928                                ? "" : ", IBSS",
1929                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1930                                "passive only" : "active/passive",
1931                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1932                                "B" : "B/G");
1933         }
1934
1935         len += sprintf(&buf[len],
1936                        "Displaying %d channels in 5.2Ghz band "
1937                        "(802.11a):\n", geo->a_channels);
1938         for (i = 0; i < geo->a_channels; i++) {
1939                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1940                                geo->a[i].channel,
1941                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1942                                " (radar spectrum)" : "",
1943                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1944                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1945                                ? "" : ", IBSS",
1946                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1947                                "passive only" : "active/passive");
1948         }
1949
1950         return len;
1951 }
1952
1953 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1954
1955 static void notify_wx_assoc_event(struct ipw_priv *priv)
1956 {
1957         union iwreq_data wrqu;
1958         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1959         if (priv->status & STATUS_ASSOCIATED)
1960                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1961         else
1962                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1963         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1964 }
1965
1966 static void ipw_irq_tasklet(struct ipw_priv *priv)
1967 {
1968         u32 inta, inta_mask, handled = 0;
1969         unsigned long flags;
1970         int rc = 0;
1971
1972         spin_lock_irqsave(&priv->irq_lock, flags);
1973
1974         inta = ipw_read32(priv, IPW_INTA_RW);
1975         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1976         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1977
1978         /* Add any cached INTA values that need to be handled */
1979         inta |= priv->isr_inta;
1980
1981         spin_unlock_irqrestore(&priv->irq_lock, flags);
1982
1983         spin_lock_irqsave(&priv->lock, flags);
1984
1985         /* handle all the justifications for the interrupt */
1986         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1987                 ipw_rx(priv);
1988                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1989         }
1990
1991         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1992                 IPW_DEBUG_HC("Command completed.\n");
1993                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1994                 priv->status &= ~STATUS_HCMD_ACTIVE;
1995                 wake_up_interruptible(&priv->wait_command_queue);
1996                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1997         }
1998
1999         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2000                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2001                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2002                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2003         }
2004
2005         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2006                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2007                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2008                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2009         }
2010
2011         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2012                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2013                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2014                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2015         }
2016
2017         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2018                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2019                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2020                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2024                 IPW_WARNING("STATUS_CHANGE\n");
2025                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2026         }
2027
2028         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2029                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2030                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2031         }
2032
2033         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2034                 IPW_WARNING("HOST_CMD_DONE\n");
2035                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2036         }
2037
2038         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2039                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2040                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2041         }
2042
2043         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2044                 IPW_WARNING("PHY_OFF_DONE\n");
2045                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2046         }
2047
2048         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2049                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2050                 priv->status |= STATUS_RF_KILL_HW;
2051                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2052                 wake_up_interruptible(&priv->wait_command_queue);
2053                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2054                 cancel_delayed_work(&priv->request_scan);
2055                 cancel_delayed_work(&priv->request_direct_scan);
2056                 cancel_delayed_work(&priv->request_passive_scan);
2057                 cancel_delayed_work(&priv->scan_event);
2058                 schedule_work(&priv->link_down);
2059                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2060                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2061         }
2062
2063         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2064                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2065                 if (priv->error) {
2066                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2067                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2068                                 struct ipw_fw_error *error =
2069                                     ipw_alloc_error_log(priv);
2070                                 ipw_dump_error_log(priv, error);
2071                                 kfree(error);
2072                         }
2073                 } else {
2074                         priv->error = ipw_alloc_error_log(priv);
2075                         if (priv->error)
2076                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2077                         else
2078                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2079                                              "log.\n");
2080                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2081                                 ipw_dump_error_log(priv, priv->error);
2082                 }
2083
2084                 /* XXX: If hardware encryption is for WPA/WPA2,
2085                  * we have to notify the supplicant. */
2086                 if (priv->ieee->sec.encrypt) {
2087                         priv->status &= ~STATUS_ASSOCIATED;
2088                         notify_wx_assoc_event(priv);
2089                 }
2090
2091                 /* Keep the restart process from trying to send host
2092                  * commands by clearing the INIT status bit */
2093                 priv->status &= ~STATUS_INIT;
2094
2095                 /* Cancel currently queued command. */
2096                 priv->status &= ~STATUS_HCMD_ACTIVE;
2097                 wake_up_interruptible(&priv->wait_command_queue);
2098
2099                 queue_work(priv->workqueue, &priv->adapter_restart);
2100                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2101         }
2102
2103         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2104                 IPW_ERROR("Parity error\n");
2105                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2106         }
2107
2108         if (handled != inta) {
2109                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2110         }
2111
2112         spin_unlock_irqrestore(&priv->lock, flags);
2113
2114         /* enable all interrupts */
2115         ipw_enable_interrupts(priv);
2116 }
2117
2118 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2119 static char *get_cmd_string(u8 cmd)
2120 {
2121         switch (cmd) {
2122                 IPW_CMD(HOST_COMPLETE);
2123                 IPW_CMD(POWER_DOWN);
2124                 IPW_CMD(SYSTEM_CONFIG);
2125                 IPW_CMD(MULTICAST_ADDRESS);
2126                 IPW_CMD(SSID);
2127                 IPW_CMD(ADAPTER_ADDRESS);
2128                 IPW_CMD(PORT_TYPE);
2129                 IPW_CMD(RTS_THRESHOLD);
2130                 IPW_CMD(FRAG_THRESHOLD);
2131                 IPW_CMD(POWER_MODE);
2132                 IPW_CMD(WEP_KEY);
2133                 IPW_CMD(TGI_TX_KEY);
2134                 IPW_CMD(SCAN_REQUEST);
2135                 IPW_CMD(SCAN_REQUEST_EXT);
2136                 IPW_CMD(ASSOCIATE);
2137                 IPW_CMD(SUPPORTED_RATES);
2138                 IPW_CMD(SCAN_ABORT);
2139                 IPW_CMD(TX_FLUSH);
2140                 IPW_CMD(QOS_PARAMETERS);
2141                 IPW_CMD(DINO_CONFIG);
2142                 IPW_CMD(RSN_CAPABILITIES);
2143                 IPW_CMD(RX_KEY);
2144                 IPW_CMD(CARD_DISABLE);
2145                 IPW_CMD(SEED_NUMBER);
2146                 IPW_CMD(TX_POWER);
2147                 IPW_CMD(COUNTRY_INFO);
2148                 IPW_CMD(AIRONET_INFO);
2149                 IPW_CMD(AP_TX_POWER);
2150                 IPW_CMD(CCKM_INFO);
2151                 IPW_CMD(CCX_VER_INFO);
2152                 IPW_CMD(SET_CALIBRATION);
2153                 IPW_CMD(SENSITIVITY_CALIB);
2154                 IPW_CMD(RETRY_LIMIT);
2155                 IPW_CMD(IPW_PRE_POWER_DOWN);
2156                 IPW_CMD(VAP_BEACON_TEMPLATE);
2157                 IPW_CMD(VAP_DTIM_PERIOD);
2158                 IPW_CMD(EXT_SUPPORTED_RATES);
2159                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2160                 IPW_CMD(VAP_QUIET_INTERVALS);
2161                 IPW_CMD(VAP_CHANNEL_SWITCH);
2162                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2163                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2164                 IPW_CMD(VAP_CF_PARAM_SET);
2165                 IPW_CMD(VAP_SET_BEACONING_STATE);
2166                 IPW_CMD(MEASUREMENT);
2167                 IPW_CMD(POWER_CAPABILITY);
2168                 IPW_CMD(SUPPORTED_CHANNELS);
2169                 IPW_CMD(TPC_REPORT);
2170                 IPW_CMD(WME_INFO);
2171                 IPW_CMD(PRODUCTION_COMMAND);
2172         default:
2173                 return "UNKNOWN";
2174         }
2175 }
2176
2177 #define HOST_COMPLETE_TIMEOUT HZ
2178
2179 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2180 {
2181         int rc = 0;
2182         unsigned long flags;
2183
2184         spin_lock_irqsave(&priv->lock, flags);
2185         if (priv->status & STATUS_HCMD_ACTIVE) {
2186                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2187                           get_cmd_string(cmd->cmd));
2188                 spin_unlock_irqrestore(&priv->lock, flags);
2189                 return -EAGAIN;
2190         }
2191
2192         priv->status |= STATUS_HCMD_ACTIVE;
2193
2194         if (priv->cmdlog) {
2195                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2196                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2197                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2198                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2199                        cmd->len);
2200                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2201         }
2202
2203         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2204                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2205                      priv->status);
2206
2207 #ifndef DEBUG_CMD_WEP_KEY
2208         if (cmd->cmd == IPW_CMD_WEP_KEY)
2209                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2210         else
2211 #endif
2212                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2213
2214         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2215         if (rc) {
2216                 priv->status &= ~STATUS_HCMD_ACTIVE;
2217                 IPW_ERROR("Failed to send %s: Reason %d\n",
2218                           get_cmd_string(cmd->cmd), rc);
2219                 spin_unlock_irqrestore(&priv->lock, flags);
2220                 goto exit;
2221         }
2222         spin_unlock_irqrestore(&priv->lock, flags);
2223
2224         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2225                                               !(priv->
2226                                                 status & STATUS_HCMD_ACTIVE),
2227                                               HOST_COMPLETE_TIMEOUT);
2228         if (rc == 0) {
2229                 spin_lock_irqsave(&priv->lock, flags);
2230                 if (priv->status & STATUS_HCMD_ACTIVE) {
2231                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2232                                   get_cmd_string(cmd->cmd));
2233                         priv->status &= ~STATUS_HCMD_ACTIVE;
2234                         spin_unlock_irqrestore(&priv->lock, flags);
2235                         rc = -EIO;
2236                         goto exit;
2237                 }
2238                 spin_unlock_irqrestore(&priv->lock, flags);
2239         } else
2240                 rc = 0;
2241
2242         if (priv->status & STATUS_RF_KILL_HW) {
2243                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244                           get_cmd_string(cmd->cmd));
2245                 rc = -EIO;
2246                 goto exit;
2247         }
2248
2249       exit:
2250         if (priv->cmdlog) {
2251                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252                 priv->cmdlog_pos %= priv->cmdlog_len;
2253         }
2254         return rc;
2255 }
2256
2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258 {
2259         struct host_cmd cmd = {
2260                 .cmd = command,
2261         };
2262
2263         return __ipw_send_cmd(priv, &cmd);
2264 }
2265
2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267                             void *data)
2268 {
2269         struct host_cmd cmd = {
2270                 .cmd = command,
2271                 .len = len,
2272                 .param = data,
2273         };
2274
2275         return __ipw_send_cmd(priv, &cmd);
2276 }
2277
2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2279 {
2280         if (!priv) {
2281                 IPW_ERROR("Invalid args\n");
2282                 return -1;
2283         }
2284
2285         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286 }
2287
2288 static int ipw_send_system_config(struct ipw_priv *priv)
2289 {
2290         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291                                 sizeof(priv->sys_config),
2292                                 &priv->sys_config);
2293 }
2294
2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296 {
2297         if (!priv || !ssid) {
2298                 IPW_ERROR("Invalid args\n");
2299                 return -1;
2300         }
2301
2302         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303                                 ssid);
2304 }
2305
2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307 {
2308         if (!priv || !mac) {
2309                 IPW_ERROR("Invalid args\n");
2310                 return -1;
2311         }
2312
2313         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314                        priv->net_dev->name, mac);
2315
2316         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317 }
2318
2319 /*
2320  * NOTE: This must be executed from our workqueue as it results in udelay
2321  * being called which may corrupt the keyboard if executed on default
2322  * workqueue
2323  */
2324 static void ipw_adapter_restart(void *adapter)
2325 {
2326         struct ipw_priv *priv = adapter;
2327
2328         if (priv->status & STATUS_RF_KILL_MASK)
2329                 return;
2330
2331         ipw_down(priv);
2332
2333         if (priv->assoc_network &&
2334             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2335                 ipw_remove_current_network(priv);
2336
2337         if (ipw_up(priv)) {
2338                 IPW_ERROR("Failed to up device\n");
2339                 return;
2340         }
2341 }
2342
2343 static void ipw_bg_adapter_restart(struct work_struct *work)
2344 {
2345         struct ipw_priv *priv =
2346                 container_of(work, struct ipw_priv, adapter_restart);
2347         mutex_lock(&priv->mutex);
2348         ipw_adapter_restart(priv);
2349         mutex_unlock(&priv->mutex);
2350 }
2351
2352 static void ipw_abort_scan(struct ipw_priv *priv);
2353
2354 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2355
2356 static void ipw_scan_check(void *data)
2357 {
2358         struct ipw_priv *priv = data;
2359
2360         if (priv->status & STATUS_SCAN_ABORTING) {
2361                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2362                                "adapter after (%dms).\n",
2363                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364                 queue_work(priv->workqueue, &priv->adapter_restart);
2365         } else if (priv->status & STATUS_SCANNING) {
2366                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2367                                "after (%dms).\n",
2368                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2369                 ipw_abort_scan(priv);
2370                 queue_delayed_work(priv->workqueue, &priv->scan_check, HZ);
2371         }
2372 }
2373
2374 static void ipw_bg_scan_check(struct work_struct *work)
2375 {
2376         struct ipw_priv *priv =
2377                 container_of(work, struct ipw_priv, scan_check.work);
2378         mutex_lock(&priv->mutex);
2379         ipw_scan_check(priv);
2380         mutex_unlock(&priv->mutex);
2381 }
2382
2383 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2384                                      struct ipw_scan_request_ext *request)
2385 {
2386         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2387                                 sizeof(*request), request);
2388 }
2389
2390 static int ipw_send_scan_abort(struct ipw_priv *priv)
2391 {
2392         if (!priv) {
2393                 IPW_ERROR("Invalid args\n");
2394                 return -1;
2395         }
2396
2397         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2398 }
2399
2400 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2401 {
2402         struct ipw_sensitivity_calib calib = {
2403                 .beacon_rssi_raw = cpu_to_le16(sens),
2404         };
2405
2406         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2407                                 &calib);
2408 }
2409
2410 static int ipw_send_associate(struct ipw_priv *priv,
2411                               struct ipw_associate *associate)
2412 {
2413         if (!priv || !associate) {
2414                 IPW_ERROR("Invalid args\n");
2415                 return -1;
2416         }
2417
2418         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2419                                 associate);
2420 }
2421
2422 static int ipw_send_supported_rates(struct ipw_priv *priv,
2423                                     struct ipw_supported_rates *rates)
2424 {
2425         if (!priv || !rates) {
2426                 IPW_ERROR("Invalid args\n");
2427                 return -1;
2428         }
2429
2430         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2431                                 rates);
2432 }
2433
2434 static int ipw_set_random_seed(struct ipw_priv *priv)
2435 {
2436         u32 val;
2437
2438         if (!priv) {
2439                 IPW_ERROR("Invalid args\n");
2440                 return -1;
2441         }
2442
2443         get_random_bytes(&val, sizeof(val));
2444
2445         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2446 }
2447
2448 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2449 {
2450         __le32 v = cpu_to_le32(phy_off);
2451         if (!priv) {
2452                 IPW_ERROR("Invalid args\n");
2453                 return -1;
2454         }
2455
2456         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2457 }
2458
2459 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2460 {
2461         if (!priv || !power) {
2462                 IPW_ERROR("Invalid args\n");
2463                 return -1;
2464         }
2465
2466         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2467 }
2468
2469 static int ipw_set_tx_power(struct ipw_priv *priv)
2470 {
2471         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2472         struct ipw_tx_power tx_power;
2473         s8 max_power;
2474         int i;
2475
2476         memset(&tx_power, 0, sizeof(tx_power));
2477
2478         /* configure device for 'G' band */
2479         tx_power.ieee_mode = IPW_G_MODE;
2480         tx_power.num_channels = geo->bg_channels;
2481         for (i = 0; i < geo->bg_channels; i++) {
2482                 max_power = geo->bg[i].max_power;
2483                 tx_power.channels_tx_power[i].channel_number =
2484                     geo->bg[i].channel;
2485                 tx_power.channels_tx_power[i].tx_power = max_power ?
2486                     min(max_power, priv->tx_power) : priv->tx_power;
2487         }
2488         if (ipw_send_tx_power(priv, &tx_power))
2489                 return -EIO;
2490
2491         /* configure device to also handle 'B' band */
2492         tx_power.ieee_mode = IPW_B_MODE;
2493         if (ipw_send_tx_power(priv, &tx_power))
2494                 return -EIO;
2495
2496         /* configure device to also handle 'A' band */
2497         if (priv->ieee->abg_true) {
2498                 tx_power.ieee_mode = IPW_A_MODE;
2499                 tx_power.num_channels = geo->a_channels;
2500                 for (i = 0; i < tx_power.num_channels; i++) {
2501                         max_power = geo->a[i].max_power;
2502                         tx_power.channels_tx_power[i].channel_number =
2503                             geo->a[i].channel;
2504                         tx_power.channels_tx_power[i].tx_power = max_power ?
2505                             min(max_power, priv->tx_power) : priv->tx_power;
2506                 }
2507                 if (ipw_send_tx_power(priv, &tx_power))
2508                         return -EIO;
2509         }
2510         return 0;
2511 }
2512
2513 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2514 {
2515         struct ipw_rts_threshold rts_threshold = {
2516                 .rts_threshold = cpu_to_le16(rts),
2517         };
2518
2519         if (!priv) {
2520                 IPW_ERROR("Invalid args\n");
2521                 return -1;
2522         }
2523
2524         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2525                                 sizeof(rts_threshold), &rts_threshold);
2526 }
2527
2528 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2529 {
2530         struct ipw_frag_threshold frag_threshold = {
2531                 .frag_threshold = cpu_to_le16(frag),
2532         };
2533
2534         if (!priv) {
2535                 IPW_ERROR("Invalid args\n");
2536                 return -1;
2537         }
2538
2539         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2540                                 sizeof(frag_threshold), &frag_threshold);
2541 }
2542
2543 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2544 {
2545         __le32 param;
2546
2547         if (!priv) {
2548                 IPW_ERROR("Invalid args\n");
2549                 return -1;
2550         }
2551
2552         /* If on battery, set to 3, if AC set to CAM, else user
2553          * level */
2554         switch (mode) {
2555         case IPW_POWER_BATTERY:
2556                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2557                 break;
2558         case IPW_POWER_AC:
2559                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2560                 break;
2561         default:
2562                 param = cpu_to_le32(mode);
2563                 break;
2564         }
2565
2566         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2567                                 &param);
2568 }
2569
2570 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2571 {
2572         struct ipw_retry_limit retry_limit = {
2573                 .short_retry_limit = slimit,
2574                 .long_retry_limit = llimit
2575         };
2576
2577         if (!priv) {
2578                 IPW_ERROR("Invalid args\n");
2579                 return -1;
2580         }
2581
2582         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2583                                 &retry_limit);
2584 }
2585
2586 /*
2587  * The IPW device contains a Microwire compatible EEPROM that stores
2588  * various data like the MAC address.  Usually the firmware has exclusive
2589  * access to the eeprom, but during device initialization (before the
2590  * device driver has sent the HostComplete command to the firmware) the
2591  * device driver has read access to the EEPROM by way of indirect addressing
2592  * through a couple of memory mapped registers.
2593  *
2594  * The following is a simplified implementation for pulling data out of the
2595  * the eeprom, along with some helper functions to find information in
2596  * the per device private data's copy of the eeprom.
2597  *
2598  * NOTE: To better understand how these functions work (i.e what is a chip
2599  *       select and why do have to keep driving the eeprom clock?), read
2600  *       just about any data sheet for a Microwire compatible EEPROM.
2601  */
2602
2603 /* write a 32 bit value into the indirect accessor register */
2604 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2605 {
2606         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2607
2608         /* the eeprom requires some time to complete the operation */
2609         udelay(p->eeprom_delay);
2610
2611         return;
2612 }
2613
2614 /* perform a chip select operation */
2615 static void eeprom_cs(struct ipw_priv *priv)
2616 {
2617         eeprom_write_reg(priv, 0);
2618         eeprom_write_reg(priv, EEPROM_BIT_CS);
2619         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2620         eeprom_write_reg(priv, EEPROM_BIT_CS);
2621 }
2622
2623 /* perform a chip select operation */
2624 static void eeprom_disable_cs(struct ipw_priv *priv)
2625 {
2626         eeprom_write_reg(priv, EEPROM_BIT_CS);
2627         eeprom_write_reg(priv, 0);
2628         eeprom_write_reg(priv, EEPROM_BIT_SK);
2629 }
2630
2631 /* push a single bit down to the eeprom */
2632 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2633 {
2634         int d = (bit ? EEPROM_BIT_DI : 0);
2635         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2636         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2637 }
2638
2639 /* push an opcode followed by an address down to the eeprom */
2640 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2641 {
2642         int i;
2643
2644         eeprom_cs(priv);
2645         eeprom_write_bit(priv, 1);
2646         eeprom_write_bit(priv, op & 2);
2647         eeprom_write_bit(priv, op & 1);
2648         for (i = 7; i >= 0; i--) {
2649                 eeprom_write_bit(priv, addr & (1 << i));
2650         }
2651 }
2652
2653 /* pull 16 bits off the eeprom, one bit at a time */
2654 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2655 {
2656         int i;
2657         u16 r = 0;
2658
2659         /* Send READ Opcode */
2660         eeprom_op(priv, EEPROM_CMD_READ, addr);
2661
2662         /* Send dummy bit */
2663         eeprom_write_reg(priv, EEPROM_BIT_CS);
2664
2665         /* Read the byte off the eeprom one bit at a time */
2666         for (i = 0; i < 16; i++) {
2667                 u32 data = 0;
2668                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2669                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2670                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2671                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2672         }
2673
2674         /* Send another dummy bit */
2675         eeprom_write_reg(priv, 0);
2676         eeprom_disable_cs(priv);
2677
2678         return r;
2679 }
2680
2681 /* helper function for pulling the mac address out of the private */
2682 /* data's copy of the eeprom data                                 */
2683 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2684 {
2685         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2686 }
2687
2688 /*
2689  * Either the device driver (i.e. the host) or the firmware can
2690  * load eeprom data into the designated region in SRAM.  If neither
2691  * happens then the FW will shutdown with a fatal error.
2692  *
2693  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2694  * bit needs region of shared SRAM needs to be non-zero.
2695  */
2696 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2697 {
2698         int i;
2699         __le16 *eeprom = (__le16 *) priv->eeprom;
2700
2701         IPW_DEBUG_TRACE(">>\n");
2702
2703         /* read entire contents of eeprom into private buffer */
2704         for (i = 0; i < 128; i++)
2705                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2706
2707         /*
2708            If the data looks correct, then copy it to our private
2709            copy.  Otherwise let the firmware know to perform the operation
2710            on its own.
2711          */
2712         if (priv->eeprom[EEPROM_VERSION] != 0) {
2713                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2714
2715                 /* write the eeprom data to sram */
2716                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2717                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2718
2719                 /* Do not load eeprom data on fatal error or suspend */
2720                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2721         } else {
2722                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2723
2724                 /* Load eeprom data on fatal error or suspend */
2725                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2726         }
2727
2728         IPW_DEBUG_TRACE("<<\n");
2729 }
2730
2731 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2732 {
2733         count >>= 2;
2734         if (!count)
2735                 return;
2736         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2737         while (count--)
2738                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2739 }
2740
2741 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2742 {
2743         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2744                         CB_NUMBER_OF_ELEMENTS_SMALL *
2745                         sizeof(struct command_block));
2746 }
2747
2748 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2749 {                               /* start dma engine but no transfers yet */
2750
2751         IPW_DEBUG_FW(">> :\n");
2752
2753         /* Start the dma */
2754         ipw_fw_dma_reset_command_blocks(priv);
2755
2756         /* Write CB base address */
2757         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2758
2759         IPW_DEBUG_FW("<< :\n");
2760         return 0;
2761 }
2762
2763 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2764 {
2765         u32 control = 0;
2766
2767         IPW_DEBUG_FW(">> :\n");
2768
2769         /* set the Stop and Abort bit */
2770         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2771         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2772         priv->sram_desc.last_cb_index = 0;
2773
2774         IPW_DEBUG_FW("<<\n");
2775 }
2776
2777 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2778                                           struct command_block *cb)
2779 {
2780         u32 address =
2781             IPW_SHARED_SRAM_DMA_CONTROL +
2782             (sizeof(struct command_block) * index);
2783         IPW_DEBUG_FW(">> :\n");
2784
2785         ipw_write_indirect(priv, address, (u8 *) cb,
2786                            (int)sizeof(struct command_block));
2787
2788         IPW_DEBUG_FW("<< :\n");
2789         return 0;
2790
2791 }
2792
2793 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2794 {
2795         u32 control = 0;
2796         u32 index = 0;
2797
2798         IPW_DEBUG_FW(">> :\n");
2799
2800         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2801                 ipw_fw_dma_write_command_block(priv, index,
2802                                                &priv->sram_desc.cb_list[index]);
2803
2804         /* Enable the DMA in the CSR register */
2805         ipw_clear_bit(priv, IPW_RESET_REG,
2806                       IPW_RESET_REG_MASTER_DISABLED |
2807                       IPW_RESET_REG_STOP_MASTER);
2808
2809         /* Set the Start bit. */
2810         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2811         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2812
2813         IPW_DEBUG_FW("<< :\n");
2814         return 0;
2815 }
2816
2817 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2818 {
2819         u32 address;
2820         u32 register_value = 0;
2821         u32 cb_fields_address = 0;
2822
2823         IPW_DEBUG_FW(">> :\n");
2824         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2825         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2826
2827         /* Read the DMA Controlor register */
2828         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2829         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2830
2831         /* Print the CB values */
2832         cb_fields_address = address;
2833         register_value = ipw_read_reg32(priv, cb_fields_address);
2834         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2835
2836         cb_fields_address += sizeof(u32);
2837         register_value = ipw_read_reg32(priv, cb_fields_address);
2838         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2839
2840         cb_fields_address += sizeof(u32);
2841         register_value = ipw_read_reg32(priv, cb_fields_address);
2842         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2843                           register_value);
2844
2845         cb_fields_address += sizeof(u32);
2846         register_value = ipw_read_reg32(priv, cb_fields_address);
2847         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2848
2849         IPW_DEBUG_FW(">> :\n");
2850 }
2851
2852 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2853 {
2854         u32 current_cb_address = 0;
2855         u32 current_cb_index = 0;
2856
2857         IPW_DEBUG_FW("<< :\n");
2858         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2859
2860         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2861             sizeof(struct command_block);
2862
2863         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2864                           current_cb_index, current_cb_address);
2865
2866         IPW_DEBUG_FW(">> :\n");
2867         return current_cb_index;
2868
2869 }
2870
2871 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2872                                         u32 src_address,
2873                                         u32 dest_address,
2874                                         u32 length,
2875                                         int interrupt_enabled, int is_last)
2876 {
2877
2878         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2879             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2880             CB_DEST_SIZE_LONG;
2881         struct command_block *cb;
2882         u32 last_cb_element = 0;
2883
2884         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2885                           src_address, dest_address, length);
2886
2887         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2888                 return -1;
2889
2890         last_cb_element = priv->sram_desc.last_cb_index;
2891         cb = &priv->sram_desc.cb_list[last_cb_element];
2892         priv->sram_desc.last_cb_index++;
2893
2894         /* Calculate the new CB control word */
2895         if (interrupt_enabled)
2896                 control |= CB_INT_ENABLED;
2897
2898         if (is_last)
2899                 control |= CB_LAST_VALID;
2900
2901         control |= length;
2902
2903         /* Calculate the CB Element's checksum value */
2904         cb->status = control ^ src_address ^ dest_address;
2905
2906         /* Copy the Source and Destination addresses */
2907         cb->dest_addr = dest_address;
2908         cb->source_addr = src_address;
2909
2910         /* Copy the Control Word last */
2911         cb->control = control;
2912
2913         return 0;
2914 }
2915
2916 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2917                                  int nr, u32 dest_address, u32 len)
2918 {
2919         int ret, i;
2920         u32 size;
2921
2922         IPW_DEBUG_FW(">>\n");
2923         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2924                           nr, dest_address, len);
2925
2926         for (i = 0; i < nr; i++) {
2927                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2928                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2929                                                    dest_address +
2930                                                    i * CB_MAX_LENGTH, size,
2931                                                    0, 0);
2932                 if (ret) {
2933                         IPW_DEBUG_FW_INFO(": Failed\n");
2934                         return -1;
2935                 } else
2936                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2937         }
2938
2939         IPW_DEBUG_FW("<<\n");
2940         return 0;
2941 }
2942
2943 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2944 {
2945         u32 current_index = 0, previous_index;
2946         u32 watchdog = 0;
2947
2948         IPW_DEBUG_FW(">> :\n");
2949
2950         current_index = ipw_fw_dma_command_block_index(priv);
2951         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2952                           (int)priv->sram_desc.last_cb_index);
2953
2954         while (current_index < priv->sram_desc.last_cb_index) {
2955                 udelay(50);
2956                 previous_index = current_index;
2957                 current_index = ipw_fw_dma_command_block_index(priv);
2958
2959                 if (previous_index < current_index) {
2960                         watchdog = 0;
2961                         continue;
2962                 }
2963                 if (++watchdog > 400) {
2964                         IPW_DEBUG_FW_INFO("Timeout\n");
2965                         ipw_fw_dma_dump_command_block(priv);
2966                         ipw_fw_dma_abort(priv);
2967                         return -1;
2968                 }
2969         }
2970
2971         ipw_fw_dma_abort(priv);
2972
2973         /*Disable the DMA in the CSR register */
2974         ipw_set_bit(priv, IPW_RESET_REG,
2975                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2976
2977         IPW_DEBUG_FW("<< dmaWaitSync\n");
2978         return 0;
2979 }
2980
2981 static void ipw_remove_current_network(struct ipw_priv *priv)
2982 {
2983         struct list_head *element, *safe;
2984         struct libipw_network *network = NULL;
2985         unsigned long flags;
2986
2987         spin_lock_irqsave(&priv->ieee->lock, flags);
2988         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2989                 network = list_entry(element, struct libipw_network, list);
2990                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2991                         list_del(element);
2992                         list_add_tail(&network->list,
2993                                       &priv->ieee->network_free_list);
2994                 }
2995         }
2996         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2997 }
2998
2999 /**
3000  * Check that card is still alive.
3001  * Reads debug register from domain0.
3002  * If card is present, pre-defined value should
3003  * be found there.
3004  *
3005  * @param priv
3006  * @return 1 if card is present, 0 otherwise
3007  */
3008 static inline int ipw_alive(struct ipw_priv *priv)
3009 {
3010         return ipw_read32(priv, 0x90) == 0xd55555d5;
3011 }
3012
3013 /* timeout in msec, attempted in 10-msec quanta */
3014 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3015                                int timeout)
3016 {
3017         int i = 0;
3018
3019         do {
3020                 if ((ipw_read32(priv, addr) & mask) == mask)
3021                         return i;
3022                 mdelay(10);
3023                 i += 10;
3024         } while (i < timeout);
3025
3026         return -ETIME;
3027 }
3028
3029 /* These functions load the firmware and micro code for the operation of
3030  * the ipw hardware.  It assumes the buffer has all the bits for the
3031  * image and the caller is handling the memory allocation and clean up.
3032  */
3033
3034 static int ipw_stop_master(struct ipw_priv *priv)
3035 {
3036         int rc;
3037
3038         IPW_DEBUG_TRACE(">>\n");
3039         /* stop master. typical delay - 0 */
3040         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3041
3042         /* timeout is in msec, polled in 10-msec quanta */
3043         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3044                           IPW_RESET_REG_MASTER_DISABLED, 100);
3045         if (rc < 0) {
3046                 IPW_ERROR("wait for stop master failed after 100ms\n");
3047                 return -1;
3048         }
3049
3050         IPW_DEBUG_INFO("stop master %dms\n", rc);
3051
3052         return rc;
3053 }
3054
3055 static void ipw_arc_release(struct ipw_priv *priv)
3056 {
3057         IPW_DEBUG_TRACE(">>\n");
3058         mdelay(5);
3059
3060         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3061
3062         /* no one knows timing, for safety add some delay */
3063         mdelay(5);
3064 }
3065
3066 struct fw_chunk {
3067         __le32 address;
3068         __le32 length;
3069 };
3070
3071 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3072 {
3073         int rc = 0, i, addr;
3074         u8 cr = 0;
3075         __le16 *image;
3076
3077         image = (__le16 *) data;
3078
3079         IPW_DEBUG_TRACE(">>\n");
3080
3081         rc = ipw_stop_master(priv);
3082
3083         if (rc < 0)
3084                 return rc;
3085
3086         for (addr = IPW_SHARED_LOWER_BOUND;
3087              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3088                 ipw_write32(priv, addr, 0);
3089         }
3090
3091         /* no ucode (yet) */
3092         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3093         /* destroy DMA queues */
3094         /* reset sequence */
3095
3096         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3097         ipw_arc_release(priv);
3098         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3099         mdelay(1);
3100
3101         /* reset PHY */
3102         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3103         mdelay(1);
3104
3105         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3106         mdelay(1);
3107
3108         /* enable ucode store */
3109         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3110         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3111         mdelay(1);
3112
3113         /* write ucode */
3114         /**
3115          * @bug
3116          * Do NOT set indirect address register once and then
3117          * store data to indirect data register in the loop.
3118          * It seems very reasonable, but in this case DINO do not
3119          * accept ucode. It is essential to set address each time.
3120          */
3121         /* load new ipw uCode */
3122         for (i = 0; i < len / 2; i++)
3123                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3124                                 le16_to_cpu(image[i]));
3125
3126         /* enable DINO */
3127         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3128         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3129
3130         /* this is where the igx / win driver deveates from the VAP driver. */
3131
3132         /* wait for alive response */
3133         for (i = 0; i < 100; i++) {
3134                 /* poll for incoming data */
3135                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3136                 if (cr & DINO_RXFIFO_DATA)
3137                         break;
3138                 mdelay(1);
3139         }
3140
3141         if (cr & DINO_RXFIFO_DATA) {
3142                 /* alive_command_responce size is NOT multiple of 4 */
3143                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3144
3145                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3146                         response_buffer[i] =
3147                             cpu_to_le32(ipw_read_reg32(priv,
3148                                                        IPW_BASEBAND_RX_FIFO_READ));
3149                 memcpy(&priv->dino_alive, response_buffer,
3150                        sizeof(priv->dino_alive));
3151                 if (priv->dino_alive.alive_command == 1
3152                     && priv->dino_alive.ucode_valid == 1) {
3153                         rc = 0;
3154                         IPW_DEBUG_INFO
3155                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3156                              "of %02d/%02d/%02d %02d:%02d\n",
3157                              priv->dino_alive.software_revision,
3158                              priv->dino_alive.software_revision,
3159                              priv->dino_alive.device_identifier,
3160                              priv->dino_alive.device_identifier,
3161                              priv->dino_alive.time_stamp[0],
3162                              priv->dino_alive.time_stamp[1],
3163                              priv->dino_alive.time_stamp[2],
3164                              priv->dino_alive.time_stamp[3],
3165                              priv->dino_alive.time_stamp[4]);
3166                 } else {
3167                         IPW_DEBUG_INFO("Microcode is not alive\n");
3168                         rc = -EINVAL;
3169                 }
3170         } else {
3171                 IPW_DEBUG_INFO("No alive response from DINO\n");
3172                 rc = -ETIME;
3173         }
3174
3175         /* disable DINO, otherwise for some reason
3176            firmware have problem getting alive resp. */
3177         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3178
3179         return rc;
3180 }
3181
3182 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3183 {
3184         int ret = -1;
3185         int offset = 0;
3186         struct fw_chunk *chunk;
3187         int total_nr = 0;
3188         int i;
3189         struct pci_pool *pool;
3190         void **virts;
3191         dma_addr_t *phys;
3192
3193         IPW_DEBUG_TRACE("<< :\n");
3194
3195         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3196                         GFP_KERNEL);
3197         if (!virts)
3198                 return -ENOMEM;
3199
3200         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3201                         GFP_KERNEL);
3202         if (!phys) {
3203                 kfree(virts);
3204                 return -ENOMEM;
3205         }
3206         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3207         if (!pool) {
3208                 IPW_ERROR("pci_pool_create failed\n");
3209                 kfree(phys);
3210                 kfree(virts);
3211                 return -ENOMEM;
3212         }
3213
3214         /* Start the Dma */
3215         ret = ipw_fw_dma_enable(priv);
3216
3217         /* the DMA is already ready this would be a bug. */
3218         BUG_ON(priv->sram_desc.last_cb_index > 0);
3219
3220         do {
3221                 u32 chunk_len;
3222                 u8 *start;
3223                 int size;
3224                 int nr = 0;
3225
3226                 chunk = (struct fw_chunk *)(data + offset);
3227                 offset += sizeof(struct fw_chunk);
3228                 chunk_len = le32_to_cpu(chunk->length);
3229                 start = data + offset;
3230
3231                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3232                 for (i = 0; i < nr; i++) {
3233                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3234                                                          &phys[total_nr]);
3235                         if (!virts[total_nr]) {
3236                                 ret = -ENOMEM;
3237                                 goto out;
3238                         }
3239                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3240                                      CB_MAX_LENGTH);
3241                         memcpy(virts[total_nr], start, size);
3242                         start += size;
3243                         total_nr++;
3244                         /* We don't support fw chunk larger than 64*8K */
3245                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3246                 }
3247
3248                 /* build DMA packet and queue up for sending */
3249                 /* dma to chunk->address, the chunk->length bytes from data +
3250                  * offeset*/
3251                 /* Dma loading */
3252                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3253                                             nr, le32_to_cpu(chunk->address),
3254                                             chunk_len);
3255                 if (ret) {
3256                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3257                         goto out;
3258                 }
3259
3260                 offset += chunk_len;
3261         } while (offset < len);
3262
3263         /* Run the DMA and wait for the answer */
3264         ret = ipw_fw_dma_kick(priv);
3265         if (ret) {
3266                 IPW_ERROR("dmaKick Failed\n");
3267                 goto out;
3268         }
3269
3270         ret = ipw_fw_dma_wait(priv);
3271         if (ret) {
3272                 IPW_ERROR("dmaWaitSync Failed\n");
3273                 goto out;
3274         }
3275  out:
3276         for (i = 0; i < total_nr; i++)
3277                 pci_pool_free(pool, virts[i], phys[i]);
3278
3279         pci_pool_destroy(pool);
3280         kfree(phys);
3281         kfree(virts);
3282
3283         return ret;
3284 }
3285
3286 /* stop nic */
3287 static int ipw_stop_nic(struct ipw_priv *priv)
3288 {
3289         int rc = 0;
3290
3291         /* stop */
3292         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3293
3294         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3295                           IPW_RESET_REG_MASTER_DISABLED, 500);
3296         if (rc < 0) {
3297                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3298                 return rc;
3299         }
3300
3301         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3302
3303         return rc;
3304 }
3305
3306 static void ipw_start_nic(struct ipw_priv *priv)
3307 {
3308         IPW_DEBUG_TRACE(">>\n");
3309
3310         /* prvHwStartNic  release ARC */
3311         ipw_clear_bit(priv, IPW_RESET_REG,
3312                       IPW_RESET_REG_MASTER_DISABLED |
3313                       IPW_RESET_REG_STOP_MASTER |
3314                       CBD_RESET_REG_PRINCETON_RESET);
3315
3316         /* enable power management */
3317         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3318                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3319
3320         IPW_DEBUG_TRACE("<<\n");
3321 }
3322
3323 static int ipw_init_nic(struct ipw_priv *priv)
3324 {
3325         int rc;
3326
3327         IPW_DEBUG_TRACE(">>\n");
3328         /* reset */
3329         /*prvHwInitNic */
3330         /* set "initialization complete" bit to move adapter to D0 state */
3331         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3332
3333         /* low-level PLL activation */
3334         ipw_write32(priv, IPW_READ_INT_REGISTER,
3335                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3336
3337         /* wait for clock stabilization */
3338         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3339                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3340         if (rc < 0)
3341                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3342
3343         /* assert SW reset */
3344         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3345
3346         udelay(10);
3347
3348         /* set "initialization complete" bit to move adapter to D0 state */
3349         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3350
3351         IPW_DEBUG_TRACE(">>\n");
3352         return 0;
3353 }
3354
3355 /* Call this function from process context, it will sleep in request_firmware.
3356  * Probe is an ok place to call this from.
3357  */
3358 static int ipw_reset_nic(struct ipw_priv *priv)
3359 {
3360         int rc = 0;
3361         unsigned long flags;
3362
3363         IPW_DEBUG_TRACE(">>\n");
3364
3365         rc = ipw_init_nic(priv);
3366
3367         spin_lock_irqsave(&priv->lock, flags);
3368         /* Clear the 'host command active' bit... */
3369         priv->status &= ~STATUS_HCMD_ACTIVE;
3370         wake_up_interruptible(&priv->wait_command_queue);
3371         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3372         wake_up_interruptible(&priv->wait_state);
3373         spin_unlock_irqrestore(&priv->lock, flags);
3374
3375         IPW_DEBUG_TRACE("<<\n");
3376         return rc;
3377 }
3378
3379
3380 struct ipw_fw {
3381         __le32 ver;
3382         __le32 boot_size;
3383         __le32 ucode_size;
3384         __le32 fw_size;
3385         u8 data[0];
3386 };
3387
3388 static int ipw_get_fw(struct ipw_priv *priv,
3389                       const struct firmware **raw, const char *name)
3390 {
3391         struct ipw_fw *fw;
3392         int rc;
3393
3394         /* ask firmware_class module to get the boot firmware off disk */
3395         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3396         if (rc < 0) {
3397                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3398                 return rc;
3399         }
3400
3401         if ((*raw)->size < sizeof(*fw)) {
3402                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3403                 return -EINVAL;
3404         }
3405
3406         fw = (void *)(*raw)->data;
3407
3408         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3409             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3410                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3411                           name, (*raw)->size);
3412                 return -EINVAL;
3413         }
3414
3415         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3416                        name,
3417                        le32_to_cpu(fw->ver) >> 16,
3418                        le32_to_cpu(fw->ver) & 0xff,
3419                        (*raw)->size - sizeof(*fw));
3420         return 0;
3421 }
3422
3423 #define IPW_RX_BUF_SIZE (3000)
3424
3425 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3426                                       struct ipw_rx_queue *rxq)
3427 {
3428         unsigned long flags;
3429         int i;
3430
3431         spin_lock_irqsave(&rxq->lock, flags);
3432
3433         INIT_LIST_HEAD(&rxq->rx_free);
3434         INIT_LIST_HEAD(&rxq->rx_used);
3435
3436         /* Fill the rx_used queue with _all_ of the Rx buffers */
3437         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3438                 /* In the reset function, these buffers may have been allocated
3439                  * to an SKB, so we need to unmap and free potential storage */
3440                 if (rxq->pool[i].skb != NULL) {
3441                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3442                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3443                         dev_kfree_skb(rxq->pool[i].skb);
3444                         rxq->pool[i].skb = NULL;
3445                 }
3446                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3447         }
3448
3449         /* Set us so that we have processed and used all buffers, but have
3450          * not restocked the Rx queue with fresh buffers */
3451         rxq->read = rxq->write = 0;
3452         rxq->free_count = 0;
3453         spin_unlock_irqrestore(&rxq->lock, flags);
3454 }
3455
3456 #ifdef CONFIG_PM
3457 static int fw_loaded = 0;
3458 static const struct firmware *raw = NULL;
3459
3460 static void free_firmware(void)
3461 {
3462         if (fw_loaded) {
3463                 release_firmware(raw);
3464                 raw = NULL;
3465                 fw_loaded = 0;
3466         }
3467 }
3468 #else
3469 #define free_firmware() do {} while (0)
3470 #endif
3471
3472 static int ipw_load(struct ipw_priv *priv)
3473 {
3474 #ifndef CONFIG_PM
3475         const struct firmware *raw = NULL;
3476 #endif
3477         struct ipw_fw *fw;
3478         u8 *boot_img, *ucode_img, *fw_img;
3479         u8 *name = NULL;
3480         int rc = 0, retries = 3;
3481
3482         switch (priv->ieee->iw_mode) {
3483         case IW_MODE_ADHOC:
3484                 name = "ipw2200-ibss.fw";
3485                 break;
3486 #ifdef CONFIG_IPW2200_MONITOR
3487         case IW_MODE_MONITOR:
3488                 name = "ipw2200-sniffer.fw";
3489                 break;
3490 #endif
3491         case IW_MODE_INFRA:
3492                 name = "ipw2200-bss.fw";
3493                 break;
3494         }
3495
3496         if (!name) {
3497                 rc = -EINVAL;
3498                 goto error;
3499         }
3500
3501 #ifdef CONFIG_PM
3502         if (!fw_loaded) {
3503 #endif
3504                 rc = ipw_get_fw(priv, &raw, name);
3505                 if (rc < 0)
3506                         goto error;
3507 #ifdef CONFIG_PM
3508         }
3509 #endif
3510
3511         fw = (void *)raw->data;
3512         boot_img = &fw->data[0];
3513         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3514         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3515                            le32_to_cpu(fw->ucode_size)];
3516
3517         if (rc < 0)
3518                 goto error;
3519
3520         if (!priv->rxq)
3521                 priv->rxq = ipw_rx_queue_alloc(priv);
3522         else
3523                 ipw_rx_queue_reset(priv, priv->rxq);
3524         if (!priv->rxq) {
3525                 IPW_ERROR("Unable to initialize Rx queue\n");
3526                 goto error;
3527         }
3528
3529       retry:
3530         /* Ensure interrupts are disabled */
3531         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3532         priv->status &= ~STATUS_INT_ENABLED;
3533
3534         /* ack pending interrupts */
3535         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3536
3537         ipw_stop_nic(priv);
3538
3539         rc = ipw_reset_nic(priv);
3540         if (rc < 0) {
3541                 IPW_ERROR("Unable to reset NIC\n");
3542                 goto error;
3543         }
3544
3545         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3546                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3547
3548         /* DMA the initial boot firmware into the device */
3549         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3550         if (rc < 0) {
3551                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3552                 goto error;
3553         }
3554
3555         /* kick start the device */
3556         ipw_start_nic(priv);
3557
3558         /* wait for the device to finish its initial startup sequence */
3559         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3560                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3561         if (rc < 0) {
3562                 IPW_ERROR("device failed to boot initial fw image\n");
3563                 goto error;
3564         }
3565         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3566
3567         /* ack fw init done interrupt */
3568         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3569
3570         /* DMA the ucode into the device */
3571         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3572         if (rc < 0) {
3573                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3574                 goto error;
3575         }
3576
3577         /* stop nic */
3578         ipw_stop_nic(priv);
3579
3580         /* DMA bss firmware into the device */
3581         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3582         if (rc < 0) {
3583                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3584                 goto error;
3585         }
3586 #ifdef CONFIG_PM
3587         fw_loaded = 1;
3588 #endif
3589
3590         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3591
3592         rc = ipw_queue_reset(priv);
3593         if (rc < 0) {
3594                 IPW_ERROR("Unable to initialize queues\n");
3595                 goto error;
3596         }
3597
3598         /* Ensure interrupts are disabled */
3599         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3600         /* ack pending interrupts */
3601         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3602
3603         /* kick start the device */
3604         ipw_start_nic(priv);
3605
3606         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3607                 if (retries > 0) {
3608                         IPW_WARNING("Parity error.  Retrying init.\n");
3609                         retries--;
3610                         goto retry;
3611                 }
3612
3613                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3614                 rc = -EIO;
3615                 goto error;
3616         }
3617
3618         /* wait for the device */
3619         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3620                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3621         if (rc < 0) {
3622                 IPW_ERROR("device failed to start within 500ms\n");
3623                 goto error;
3624         }
3625         IPW_DEBUG_INFO("device response after %dms\n", rc);
3626
3627         /* ack fw init done interrupt */
3628         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3629
3630         /* read eeprom data and initialize the eeprom region of sram */
3631         priv->eeprom_delay = 1;
3632         ipw_eeprom_init_sram(priv);
3633
3634         /* enable interrupts */
3635         ipw_enable_interrupts(priv);
3636
3637         /* Ensure our queue has valid packets */
3638         ipw_rx_queue_replenish(priv);
3639
3640         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3641
3642         /* ack pending interrupts */
3643         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3644
3645 #ifndef CONFIG_PM
3646         release_firmware(raw);
3647 #endif
3648         return 0;
3649
3650       error:
3651         if (priv->rxq) {
3652                 ipw_rx_queue_free(priv, priv->rxq);
3653                 priv->rxq = NULL;
3654         }
3655         ipw_tx_queue_free(priv);
3656         if (raw)
3657                 release_firmware(raw);
3658 #ifdef CONFIG_PM
3659         fw_loaded = 0;
3660         raw = NULL;
3661 #endif
3662
3663         return rc;
3664 }
3665
3666 /**
3667  * DMA services
3668  *
3669  * Theory of operation
3670  *
3671  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3672  * 2 empty entries always kept in the buffer to protect from overflow.
3673  *
3674  * For Tx queue, there are low mark and high mark limits. If, after queuing
3675  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3676  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3677  * Tx queue resumed.
3678  *
3679  * The IPW operates with six queues, one receive queue in the device's
3680  * sram, one transmit queue for sending commands to the device firmware,
3681  * and four transmit queues for data.
3682  *
3683  * The four transmit queues allow for performing quality of service (qos)
3684  * transmissions as per the 802.11 protocol.  Currently Linux does not
3685  * provide a mechanism to the user for utilizing prioritized queues, so
3686  * we only utilize the first data transmit queue (queue1).
3687  */
3688
3689 /**
3690  * Driver allocates buffers of this size for Rx
3691  */
3692
3693 /**
3694  * ipw_rx_queue_space - Return number of free slots available in queue.
3695  */
3696 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3697 {
3698         int s = q->read - q->write;
3699         if (s <= 0)
3700                 s += RX_QUEUE_SIZE;
3701         /* keep some buffer to not confuse full and empty queue */
3702         s -= 2;
3703         if (s < 0)
3704                 s = 0;
3705         return s;
3706 }
3707
3708 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3709 {
3710         int s = q->last_used - q->first_empty;
3711         if (s <= 0)
3712                 s += q->n_bd;
3713         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3714         if (s < 0)
3715                 s = 0;
3716         return s;
3717 }
3718
3719 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3720 {
3721         return (++index == n_bd) ? 0 : index;
3722 }
3723
3724 /**
3725  * Initialize common DMA queue structure
3726  *
3727  * @param q                queue to init
3728  * @param count            Number of BD's to allocate. Should be power of 2
3729  * @param read_register    Address for 'read' register
3730  *                         (not offset within BAR, full address)
3731  * @param write_register   Address for 'write' register
3732  *                         (not offset within BAR, full address)
3733  * @param base_register    Address for 'base' register
3734  *                         (not offset within BAR, full address)
3735  * @param size             Address for 'size' register
3736  *                         (not offset within BAR, full address)
3737  */
3738 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3739                            int count, u32 read, u32 write, u32 base, u32 size)
3740 {
3741         q->n_bd = count;
3742
3743         q->low_mark = q->n_bd / 4;
3744         if (q->low_mark < 4)
3745                 q->low_mark = 4;
3746
3747         q->high_mark = q->n_bd / 8;
3748         if (q->high_mark < 2)
3749                 q->high_mark = 2;
3750
3751         q->first_empty = q->last_used = 0;
3752         q->reg_r = read;
3753         q->reg_w = write;
3754
3755         ipw_write32(priv, base, q->dma_addr);
3756         ipw_write32(priv, size, count);
3757         ipw_write32(priv, read, 0);
3758         ipw_write32(priv, write, 0);
3759
3760         _ipw_read32(priv, 0x90);
3761 }
3762
3763 static int ipw_queue_tx_init(struct ipw_priv *priv,
3764                              struct clx2_tx_queue *q,
3765                              int count, u32 read, u32 write, u32 base, u32 size)
3766 {
3767         struct pci_dev *dev = priv->pci_dev;
3768
3769         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3770         if (!q->txb) {
3771                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3772                 return -ENOMEM;
3773         }
3774
3775         q->bd =
3776             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3777         if (!q->bd) {
3778                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3779                           sizeof(q->bd[0]) * count);
3780                 kfree(q->txb);
3781                 q->txb = NULL;
3782                 return -ENOMEM;
3783         }
3784
3785         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3786         return 0;
3787 }
3788
3789 /**
3790  * Free one TFD, those at index [txq->q.last_used].
3791  * Do NOT advance any indexes
3792  *
3793  * @param dev
3794  * @param txq
3795  */
3796 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3797                                   struct clx2_tx_queue *txq)
3798 {
3799         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3800         struct pci_dev *dev = priv->pci_dev;
3801         int i;
3802
3803         /* classify bd */
3804         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3805                 /* nothing to cleanup after for host commands */
3806                 return;
3807
3808         /* sanity check */
3809         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3810                 IPW_ERROR("Too many chunks: %i\n",
3811                           le32_to_cpu(bd->u.data.num_chunks));
3812                 /** @todo issue fatal error, it is quite serious situation */
3813                 return;
3814         }
3815
3816         /* unmap chunks if any */
3817         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3818                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3819                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3820                                  PCI_DMA_TODEVICE);
3821                 if (txq->txb[txq->q.last_used]) {
3822                         libipw_txb_free(txq->txb[txq->q.last_used]);
3823                         txq->txb[txq->q.last_used] = NULL;
3824                 }
3825         }
3826 }
3827
3828 /**
3829  * Deallocate DMA queue.
3830  *
3831  * Empty queue by removing and destroying all BD's.
3832  * Free all buffers.
3833  *
3834  * @param dev
3835  * @param q
3836  */
3837 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3838 {
3839         struct clx2_queue *q = &txq->q;
3840         struct pci_dev *dev = priv->pci_dev;
3841
3842         if (q->n_bd == 0)
3843                 return;
3844
3845         /* first, empty all BD's */
3846         for (; q->first_empty != q->last_used;
3847              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3848                 ipw_queue_tx_free_tfd(priv, txq);
3849         }
3850
3851         /* free buffers belonging to queue itself */
3852         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3853                             q->dma_addr);
3854         kfree(txq->txb);
3855
3856         /* 0 fill whole structure */
3857         memset(txq, 0, sizeof(*txq));
3858 }
3859
3860 /**
3861  * Destroy all DMA queues and structures
3862  *
3863  * @param priv
3864  */
3865 static void ipw_tx_queue_free(struct ipw_priv *priv)
3866 {
3867         /* Tx CMD queue */
3868         ipw_queue_tx_free(priv, &priv->txq_cmd);
3869
3870         /* Tx queues */
3871         ipw_queue_tx_free(priv, &priv->txq[0]);
3872         ipw_queue_tx_free(priv, &priv->txq[1]);
3873         ipw_queue_tx_free(priv, &priv->txq[2]);
3874         ipw_queue_tx_free(priv, &priv->txq[3]);
3875 }
3876
3877 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3878 {
3879         /* First 3 bytes are manufacturer */
3880         bssid[0] = priv->mac_addr[0];
3881         bssid[1] = priv->mac_addr[1];
3882         bssid[2] = priv->mac_addr[2];
3883
3884         /* Last bytes are random */
3885         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3886
3887         bssid[0] &= 0xfe;       /* clear multicast bit */
3888         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3889 }
3890
3891 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3892 {
3893         struct ipw_station_entry entry;
3894         int i;
3895
3896         for (i = 0; i < priv->num_stations; i++) {
3897                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3898                         /* Another node is active in network */
3899                         priv->missed_adhoc_beacons = 0;
3900                         if (!(priv->config & CFG_STATIC_CHANNEL))
3901                                 /* when other nodes drop out, we drop out */
3902                                 priv->config &= ~CFG_ADHOC_PERSIST;
3903
3904                         return i;
3905                 }
3906         }
3907
3908         if (i == MAX_STATIONS)
3909                 return IPW_INVALID_STATION;
3910
3911         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3912
3913         entry.reserved = 0;
3914         entry.support_mode = 0;
3915         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3916         memcpy(priv->stations[i], bssid, ETH_ALEN);
3917         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3918                          &entry, sizeof(entry));
3919         priv->num_stations++;
3920
3921         return i;
3922 }
3923
3924 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3925 {
3926         int i;
3927
3928         for (i = 0; i < priv->num_stations; i++)
3929                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3930                         return i;
3931
3932         return IPW_INVALID_STATION;
3933 }
3934
3935 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3936 {
3937         int err;
3938
3939         if (priv->status & STATUS_ASSOCIATING) {
3940                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3941                 queue_work(priv->workqueue, &priv->disassociate);
3942                 return;
3943         }
3944
3945         if (!(priv->status & STATUS_ASSOCIATED)) {
3946                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3947                 return;
3948         }
3949
3950         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3951                         "on channel %d.\n",
3952                         priv->assoc_request.bssid,
3953                         priv->assoc_request.channel);
3954
3955         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3956         priv->status |= STATUS_DISASSOCIATING;
3957
3958         if (quiet)
3959                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3960         else
3961                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3962
3963         err = ipw_send_associate(priv, &priv->assoc_request);
3964         if (err) {
3965                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3966                              "failed.\n");
3967                 return;
3968         }
3969
3970 }
3971
3972 static int ipw_disassociate(void *data)
3973 {
3974         struct ipw_priv *priv = data;
3975         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3976                 return 0;
3977         ipw_send_disassociate(data, 0);
3978         netif_carrier_off(priv->net_dev);
3979         return 1;
3980 }
3981
3982 static void ipw_bg_disassociate(struct work_struct *work)
3983 {
3984         struct ipw_priv *priv =
3985                 container_of(work, struct ipw_priv, disassociate);
3986         mutex_lock(&priv->mutex);
3987         ipw_disassociate(priv);
3988         mutex_unlock(&priv->mutex);
3989 }
3990
3991 static void ipw_system_config(struct work_struct *work)
3992 {
3993         struct ipw_priv *priv =
3994                 container_of(work, struct ipw_priv, system_config);
3995
3996 #ifdef CONFIG_IPW2200_PROMISCUOUS
3997         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3998                 priv->sys_config.accept_all_data_frames = 1;
3999                 priv->sys_config.accept_non_directed_frames = 1;
4000                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4001                 priv->sys_config.accept_all_mgmt_frames = 1;
4002         }
4003 #endif
4004
4005         ipw_send_system_config(priv);
4006 }
4007
4008 struct ipw_status_code {
4009         u16 status;
4010         const char *reason;
4011 };
4012
4013 static const struct ipw_status_code ipw_status_codes[] = {
4014         {0x00, "Successful"},
4015         {0x01, "Unspecified failure"},
4016         {0x0A, "Cannot support all requested capabilities in the "
4017          "Capability information field"},
4018         {0x0B, "Reassociation denied due to inability to confirm that "
4019          "association exists"},
4020         {0x0C, "Association denied due to reason outside the scope of this "
4021          "standard"},
4022         {0x0D,
4023          "Responding station does not support the specified authentication "
4024          "algorithm"},
4025         {0x0E,
4026          "Received an Authentication frame with authentication sequence "
4027          "transaction sequence number out of expected sequence"},
4028         {0x0F, "Authentication rejected because of challenge failure"},
4029         {0x10, "Authentication rejected due to timeout waiting for next "
4030          "frame in sequence"},
4031         {0x11, "Association denied because AP is unable to handle additional "
4032          "associated stations"},
4033         {0x12,
4034          "Association denied due to requesting station not supporting all "
4035          "of the datarates in the BSSBasicServiceSet Parameter"},
4036         {0x13,
4037          "Association denied due to requesting station not supporting "
4038          "short preamble operation"},
4039         {0x14,
4040          "Association denied due to requesting station not supporting "
4041          "PBCC encoding"},
4042         {0x15,
4043          "Association denied due to requesting station not supporting "
4044          "channel agility"},
4045         {0x19,
4046          "Association denied due to requesting station not supporting "
4047          "short slot operation"},
4048         {0x1A,
4049          "Association denied due to requesting station not supporting "
4050          "DSSS-OFDM operation"},
4051         {0x28, "Invalid Information Element"},
4052         {0x29, "Group Cipher is not valid"},
4053         {0x2A, "Pairwise Cipher is not valid"},
4054         {0x2B, "AKMP is not valid"},
4055         {0x2C, "Unsupported RSN IE version"},
4056         {0x2D, "Invalid RSN IE Capabilities"},
4057         {0x2E, "Cipher suite is rejected per security policy"},
4058 };
4059
4060 static const char *ipw_get_status_code(u16 status)
4061 {
4062         int i;
4063         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4064                 if (ipw_status_codes[i].status == (status & 0xff))
4065                         return ipw_status_codes[i].reason;
4066         return "Unknown status value.";
4067 }
4068
4069 static void inline average_init(struct average *avg)
4070 {
4071         memset(avg, 0, sizeof(*avg));
4072 }
4073
4074 #define DEPTH_RSSI 8
4075 #define DEPTH_NOISE 16
4076 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4077 {
4078         return ((depth-1)*prev_avg +  val)/depth;
4079 }
4080
4081 static void average_add(struct average *avg, s16 val)
4082 {
4083         avg->sum -= avg->entries[avg->pos];
4084         avg->sum += val;
4085         avg->entries[avg->pos++] = val;
4086         if (unlikely(avg->pos == AVG_ENTRIES)) {
4087                 avg->init = 1;
4088                 avg->pos = 0;
4089         }
4090 }
4091
4092 static s16 average_value(struct average *avg)
4093 {
4094         if (!unlikely(avg->init)) {
4095                 if (avg->pos)
4096                         return avg->sum / avg->pos;
4097                 return 0;
4098         }
4099
4100         return avg->sum / AVG_ENTRIES;
4101 }
4102
4103 static void ipw_reset_stats(struct ipw_priv *priv)
4104 {
4105         u32 len = sizeof(u32);
4106
4107         priv->quality = 0;
4108
4109         average_init(&priv->average_missed_beacons);
4110         priv->exp_avg_rssi = -60;
4111         priv->exp_avg_noise = -85 + 0x100;
4112
4113         priv->last_rate = 0;
4114         priv->last_missed_beacons = 0;
4115         priv->last_rx_packets = 0;
4116         priv->last_tx_packets = 0;
4117         priv->last_tx_failures = 0;
4118
4119         /* Firmware managed, reset only when NIC is restarted, so we have to
4120          * normalize on the current value */
4121         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4122                         &priv->last_rx_err, &len);
4123         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4124                         &priv->last_tx_failures, &len);
4125
4126         /* Driver managed, reset with each association */
4127         priv->missed_adhoc_beacons = 0;
4128         priv->missed_beacons = 0;
4129         priv->tx_packets = 0;
4130         priv->rx_packets = 0;
4131
4132 }
4133
4134 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4135 {
4136         u32 i = 0x80000000;
4137         u32 mask = priv->rates_mask;
4138         /* If currently associated in B mode, restrict the maximum
4139          * rate match to B rates */
4140         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4141                 mask &= LIBIPW_CCK_RATES_MASK;
4142
4143         /* TODO: Verify that the rate is supported by the current rates
4144          * list. */
4145
4146         while (i && !(mask & i))
4147                 i >>= 1;
4148         switch (i) {
4149         case LIBIPW_CCK_RATE_1MB_MASK:
4150                 return 1000000;
4151         case LIBIPW_CCK_RATE_2MB_MASK:
4152                 return 2000000;
4153         case LIBIPW_CCK_RATE_5MB_MASK:
4154                 return 5500000;
4155         case LIBIPW_OFDM_RATE_6MB_MASK:
4156                 return 6000000;
4157         case LIBIPW_OFDM_RATE_9MB_MASK:
4158                 return 9000000;
4159         case LIBIPW_CCK_RATE_11MB_MASK:
4160                 return 11000000;
4161         case LIBIPW_OFDM_RATE_12MB_MASK:
4162                 return 12000000;
4163         case LIBIPW_OFDM_RATE_18MB_MASK:
4164                 return 18000000;
4165         case LIBIPW_OFDM_RATE_24MB_MASK:
4166                 return 24000000;
4167         case LIBIPW_OFDM_RATE_36MB_MASK:
4168                 return 36000000;
4169         case LIBIPW_OFDM_RATE_48MB_MASK:
4170                 return 48000000;
4171         case LIBIPW_OFDM_RATE_54MB_MASK:
4172                 return 54000000;
4173         }
4174
4175         if (priv->ieee->mode == IEEE_B)
4176                 return 11000000;
4177         else
4178                 return 54000000;
4179 }
4180
4181 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4182 {
4183         u32 rate, len = sizeof(rate);
4184         int err;
4185
4186         if (!(priv->status & STATUS_ASSOCIATED))
4187                 return 0;
4188
4189         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4190                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4191                                       &len);
4192                 if (err) {
4193                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4194                         return 0;
4195                 }
4196         } else
4197                 return ipw_get_max_rate(priv);
4198
4199         switch (rate) {
4200         case IPW_TX_RATE_1MB:
4201                 return 1000000;
4202         case IPW_TX_RATE_2MB:
4203                 return 2000000;
4204         case IPW_TX_RATE_5MB:
4205                 return 5500000;
4206         case IPW_TX_RATE_6MB:
4207                 return 6000000;
4208         case IPW_TX_RATE_9MB:
4209                 return 9000000;
4210         case IPW_TX_RATE_11MB:
4211                 return 11000000;
4212         case IPW_TX_RATE_12MB:
4213                 return 12000000;
4214         case IPW_TX_RATE_18MB:
4215                 return 18000000;
4216         case IPW_TX_RATE_24MB:
4217                 return 24000000;
4218         case IPW_TX_RATE_36MB:
4219                 return 36000000;
4220         case IPW_TX_RATE_48MB:
4221                 return 48000000;
4222         case IPW_TX_RATE_54MB:
4223                 return 54000000;
4224         }
4225
4226         return 0;
4227 }
4228
4229 #define IPW_STATS_INTERVAL (2 * HZ)
4230 static void ipw_gather_stats(struct ipw_priv *priv)
4231 {
4232         u32 rx_err, rx_err_delta, rx_packets_delta;
4233         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4234         u32 missed_beacons_percent, missed_beacons_delta;
4235         u32 quality = 0;
4236         u32 len = sizeof(u32);
4237         s16 rssi;
4238         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4239             rate_quality;
4240         u32 max_rate;
4241
4242         if (!(priv->status & STATUS_ASSOCIATED)) {
4243                 priv->quality = 0;
4244                 return;
4245         }
4246
4247         /* Update the statistics */
4248         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4249                         &priv->missed_beacons, &len);
4250         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4251         priv->last_missed_beacons = priv->missed_beacons;
4252         if (priv->assoc_request.beacon_interval) {
4253                 missed_beacons_percent = missed_beacons_delta *
4254                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4255                     (IPW_STATS_INTERVAL * 10);
4256         } else {
4257                 missed_beacons_percent = 0;
4258         }
4259         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4260
4261         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4262         rx_err_delta = rx_err - priv->last_rx_err;
4263         priv->last_rx_err = rx_err;
4264
4265         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4266         tx_failures_delta = tx_failures - priv->last_tx_failures;
4267         priv->last_tx_failures = tx_failures;
4268
4269         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4270         priv->last_rx_packets = priv->rx_packets;
4271
4272         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4273         priv->last_tx_packets = priv->tx_packets;
4274
4275         /* Calculate quality based on the following:
4276          *
4277          * Missed beacon: 100% = 0, 0% = 70% missed
4278          * Rate: 60% = 1Mbs, 100% = Max
4279          * Rx and Tx errors represent a straight % of total Rx/Tx
4280          * RSSI: 100% = > -50,  0% = < -80
4281          * Rx errors: 100% = 0, 0% = 50% missed
4282          *
4283          * The lowest computed quality is used.
4284          *
4285          */
4286 #define BEACON_THRESHOLD 5
4287         beacon_quality = 100 - missed_beacons_percent;
4288         if (beacon_quality < BEACON_THRESHOLD)
4289                 beacon_quality = 0;
4290         else
4291                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4292                     (100 - BEACON_THRESHOLD);
4293         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4294                         beacon_quality, missed_beacons_percent);
4295
4296         priv->last_rate = ipw_get_current_rate(priv);
4297         max_rate = ipw_get_max_rate(priv);
4298         rate_quality = priv->last_rate * 40 / max_rate + 60;
4299         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4300                         rate_quality, priv->last_rate / 1000000);
4301
4302         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4303                 rx_quality = 100 - (rx_err_delta * 100) /
4304                     (rx_packets_delta + rx_err_delta);
4305         else
4306                 rx_quality = 100;
4307         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4308                         rx_quality, rx_err_delta, rx_packets_delta);
4309
4310         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4311                 tx_quality = 100 - (tx_failures_delta * 100) /
4312                     (tx_packets_delta + tx_failures_delta);
4313         else
4314                 tx_quality = 100;
4315         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4316                         tx_quality, tx_failures_delta, tx_packets_delta);
4317
4318         rssi = priv->exp_avg_rssi;
4319         signal_quality =
4320             (100 *
4321              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4322              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4323              (priv->ieee->perfect_rssi - rssi) *
4324              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4325               62 * (priv->ieee->perfect_rssi - rssi))) /
4326             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4327              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4328         if (signal_quality > 100)
4329                 signal_quality = 100;
4330         else if (signal_quality < 1)
4331                 signal_quality = 0;
4332
4333         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4334                         signal_quality, rssi);
4335
4336         quality = min(rx_quality, signal_quality);
4337         quality = min(tx_quality, quality);
4338         quality = min(rate_quality, quality);
4339         quality = min(beacon_quality, quality);
4340         if (quality == beacon_quality)
4341                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4342                                 quality);
4343         if (quality == rate_quality)
4344                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4345                                 quality);
4346         if (quality == tx_quality)
4347                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4348                                 quality);
4349         if (quality == rx_quality)
4350                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4351                                 quality);
4352         if (quality == signal_quality)
4353                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4354                                 quality);
4355
4356         priv->quality = quality;
4357
4358         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4359                            IPW_STATS_INTERVAL);
4360 }
4361
4362 static void ipw_bg_gather_stats(struct work_struct *work)
4363 {
4364         struct ipw_priv *priv =
4365                 container_of(work, struct ipw_priv, gather_stats.work);
4366         mutex_lock(&priv->mutex);
4367         ipw_gather_stats(priv);
4368         mutex_unlock(&priv->mutex);
4369 }
4370
4371 /* Missed beacon behavior:
4372  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4373  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4374  * Above disassociate threshold, give up and stop scanning.
4375  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4376 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4377                                             int missed_count)
4378 {
4379         priv->notif_missed_beacons = missed_count;
4380
4381         if (missed_count > priv->disassociate_threshold &&
4382             priv->status & STATUS_ASSOCIATED) {
4383                 /* If associated and we've hit the missed
4384                  * beacon threshold, disassociate, turn
4385                  * off roaming, and abort any active scans */
4386                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4387                           IPW_DL_STATE | IPW_DL_ASSOC,
4388                           "Missed beacon: %d - disassociate\n", missed_count);
4389                 priv->status &= ~STATUS_ROAMING;
4390                 if (priv->status & STATUS_SCANNING) {
4391                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4392                                   IPW_DL_STATE,
4393                                   "Aborting scan with missed beacon.\n");
4394                         queue_work(priv->workqueue, &priv->abort_scan);
4395                 }
4396
4397                 queue_work(priv->workqueue, &priv->disassociate);
4398                 return;
4399         }
4400
4401         if (priv->status & STATUS_ROAMING) {
4402                 /* If we are currently roaming, then just
4403                  * print a debug statement... */
4404                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4405                           "Missed beacon: %d - roam in progress\n",
4406                           missed_count);
4407                 return;
4408         }
4409
4410         if (roaming &&
4411             (missed_count > priv->roaming_threshold &&
4412              missed_count <= priv->disassociate_threshold)) {
4413                 /* If we are not already roaming, set the ROAM
4414                  * bit in the status and kick off a scan.
4415                  * This can happen several times before we reach
4416                  * disassociate_threshold. */
4417                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4418                           "Missed beacon: %d - initiate "
4419                           "roaming\n", missed_count);
4420                 if (!(priv->status & STATUS_ROAMING)) {
4421                         priv->status |= STATUS_ROAMING;
4422                         if (!(priv->status & STATUS_SCANNING))
4423                                 queue_delayed_work(priv->workqueue,
4424                                                    &priv->request_scan, 0);
4425                 }
4426                 return;
4427         }
4428
4429         if (priv->status & STATUS_SCANNING &&
4430             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4431                 /* Stop scan to keep fw from getting
4432                  * stuck (only if we aren't roaming --
4433                  * otherwise we'll never scan more than 2 or 3
4434                  * channels..) */
4435                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4436                           "Aborting scan with missed beacon.\n");
4437                 queue_work(priv->workqueue, &priv->abort_scan);
4438         }
4439
4440         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4441 }
4442
4443 static void ipw_scan_event(struct work_struct *work)
4444 {
4445         union iwreq_data wrqu;
4446
4447         struct ipw_priv *priv =
4448                 container_of(work, struct ipw_priv, scan_event.work);
4449
4450         wrqu.data.length = 0;
4451         wrqu.data.flags = 0;
4452         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4453 }
4454
4455 static void handle_scan_event(struct ipw_priv *priv)
4456 {
4457         /* Only userspace-requested scan completion events go out immediately */
4458         if (!priv->user_requested_scan) {
4459                 if (!delayed_work_pending(&priv->scan_event))
4460                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4461                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4462         } else {
4463                 union iwreq_data wrqu;
4464
4465                 priv->user_requested_scan = 0;
4466                 cancel_delayed_work(&priv->scan_event);
4467
4468                 wrqu.data.length = 0;
4469                 wrqu.data.flags = 0;
4470                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4471         }
4472 }
4473
4474 /**
4475  * Handle host notification packet.
4476  * Called from interrupt routine
4477  */
4478 static void ipw_rx_notification(struct ipw_priv *priv,
4479                                        struct ipw_rx_notification *notif)
4480 {
4481         DECLARE_SSID_BUF(ssid);
4482         u16 size = le16_to_cpu(notif->size);
4483
4484         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4485
4486         switch (notif->subtype) {
4487         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4488                         struct notif_association *assoc = &notif->u.assoc;
4489
4490                         switch (assoc->state) {
4491                         case CMAS_ASSOCIATED:{
4492                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4493                                                   IPW_DL_ASSOC,
4494                                                   "associated: '%s' %pM\n",
4495                                                   print_ssid(ssid, priv->essid,
4496                                                              priv->essid_len),
4497                                                   priv->bssid);
4498
4499                                         switch (priv->ieee->iw_mode) {
4500                                         case IW_MODE_INFRA:
4501                                                 memcpy(priv->ieee->bssid,
4502                                                        priv->bssid, ETH_ALEN);
4503                                                 break;
4504
4505                                         case IW_MODE_ADHOC:
4506                                                 memcpy(priv->ieee->bssid,
4507                                                        priv->bssid, ETH_ALEN);
4508
4509                                                 /* clear out the station table */
4510                                                 priv->num_stations = 0;
4511
4512                                                 IPW_DEBUG_ASSOC
4513                                                     ("queueing adhoc check\n");
4514                                                 queue_delayed_work(priv->
4515                                                                    workqueue,
4516                                                                    &priv->
4517                                                                    adhoc_check,
4518                                                                    le16_to_cpu(priv->
4519                                                                    assoc_request.
4520                                                                    beacon_interval));
4521                                                 break;
4522                                         }
4523
4524                                         priv->status &= ~STATUS_ASSOCIATING;
4525                                         priv->status |= STATUS_ASSOCIATED;
4526                                         queue_work(priv->workqueue,
4527                                                    &priv->system_config);
4528
4529 #ifdef CONFIG_IPW2200_QOS
4530 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4531                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4532                                         if ((priv->status & STATUS_AUTH) &&
4533                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4534                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4535                                                 if ((sizeof
4536                                                      (struct
4537                                                       libipw_assoc_response)
4538                                                      <= size)
4539                                                     && (size <= 2314)) {
4540                                                         struct
4541                                                         libipw_rx_stats
4542                                                             stats = {
4543                                                                 .len = size - 1,
4544                                                         };
4545
4546                                                         IPW_DEBUG_QOS
4547                                                             ("QoS Associate "
4548                                                              "size %d\n", size);
4549                                                         libipw_rx_mgt(priv->
4550                                                                          ieee,
4551                                                                          (struct
4552                                                                           libipw_hdr_4addr
4553                                                                           *)
4554                                                                          &notif->u.raw, &stats);
4555                                                 }
4556                                         }
4557 #endif
4558
4559                                         schedule_work(&priv->link_up);
4560
4561                                         break;
4562                                 }
4563
4564                         case CMAS_AUTHENTICATED:{
4565                                         if (priv->
4566                                             status & (STATUS_ASSOCIATED |
4567                                                       STATUS_AUTH)) {
4568                                                 struct notif_authenticate *auth
4569                                                     = &notif->u.auth;
4570                                                 IPW_DEBUG(IPW_DL_NOTIF |
4571                                                           IPW_DL_STATE |
4572                                                           IPW_DL_ASSOC,
4573                                                           "deauthenticated: '%s' "
4574                                                           "%pM"
4575                                                           ": (0x%04X) - %s\n",
4576                                                           print_ssid(ssid,
4577                                                                      priv->
4578                                                                      essid,
4579                                                                      priv->
4580                                                                      essid_len),
4581                                                           priv->bssid,
4582                                                           le16_to_cpu(auth->status),
4583                                                           ipw_get_status_code
4584                                                           (le16_to_cpu
4585                                                            (auth->status)));
4586
4587                                                 priv->status &=
4588                                                     ~(STATUS_ASSOCIATING |
4589                                                       STATUS_AUTH |
4590                                                       STATUS_ASSOCIATED);
4591
4592                                                 schedule_work(&priv->link_down);
4593                                                 break;
4594                                         }
4595
4596                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4597                                                   IPW_DL_ASSOC,
4598                                                   "authenticated: '%s' %pM\n",
4599                                                   print_ssid(ssid, priv->essid,
4600                                                              priv->essid_len),
4601                                                   priv->bssid);
4602                                         break;
4603                                 }
4604
4605                         case CMAS_INIT:{
4606                                         if (priv->status & STATUS_AUTH) {
4607                                                 struct
4608                                                     libipw_assoc_response
4609                                                 *resp;
4610                                                 resp =
4611                                                     (struct
4612                                                      libipw_assoc_response
4613                                                      *)&notif->u.raw;
4614                                                 IPW_DEBUG(IPW_DL_NOTIF |
4615                                                           IPW_DL_STATE |
4616                                                           IPW_DL_ASSOC,
4617                                                           "association failed (0x%04X): %s\n",
4618                                                           le16_to_cpu(resp->status),
4619                                                           ipw_get_status_code
4620                                                           (le16_to_cpu
4621                                                            (resp->status)));
4622                                         }
4623
4624                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4625                                                   IPW_DL_ASSOC,
4626                                                   "disassociated: '%s' %pM\n",
4627                                                   print_ssid(ssid, priv->essid,
4628                                                              priv->essid_len),
4629                                                   priv->bssid);
4630
4631                                         priv->status &=
4632                                             ~(STATUS_DISASSOCIATING |
4633                                               STATUS_ASSOCIATING |
4634                                               STATUS_ASSOCIATED | STATUS_AUTH);
4635                                         if (priv->assoc_network
4636                                             && (priv->assoc_network->
4637                                                 capability &
4638                                                 WLAN_CAPABILITY_IBSS))
4639                                                 ipw_remove_current_network
4640                                                     (priv);
4641
4642                                         schedule_work(&priv->link_down);
4643
4644                                         break;
4645                                 }
4646
4647                         case CMAS_RX_ASSOC_RESP:
4648                                 break;
4649
4650                         default:
4651                                 IPW_ERROR("assoc: unknown (%d)\n",
4652                                           assoc->state);
4653                                 break;
4654                         }
4655
4656                         break;
4657                 }
4658
4659         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4660                         struct notif_authenticate *auth = &notif->u.auth;
4661                         switch (auth->state) {
4662                         case CMAS_AUTHENTICATED:
4663                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4664                                           "authenticated: '%s' %pM\n",
4665                                           print_ssid(ssid, priv->essid,
4666                                                      priv->essid_len),
4667                                           priv->bssid);
4668                                 priv->status |= STATUS_AUTH;
4669                                 break;
4670
4671                         case CMAS_INIT:
4672                                 if (priv->status & STATUS_AUTH) {
4673                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4674                                                   IPW_DL_ASSOC,
4675                                                   "authentication failed (0x%04X): %s\n",
4676                                                   le16_to_cpu(auth->status),
4677                                                   ipw_get_status_code(le16_to_cpu
4678                                                                       (auth->
4679                                                                        status)));
4680                                 }
4681                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4682                                           IPW_DL_ASSOC,
4683                                           "deauthenticated: '%s' %pM\n",
4684                                           print_ssid(ssid, priv->essid,
4685                                                      priv->essid_len),
4686                                           priv->bssid);
4687
4688                                 priv->status &= ~(STATUS_ASSOCIATING |
4689                                                   STATUS_AUTH |
4690                                                   STATUS_ASSOCIATED);
4691
4692                                 schedule_work(&priv->link_down);
4693                                 break;
4694
4695                         case CMAS_TX_AUTH_SEQ_1:
4696                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4698                                 break;
4699                         case CMAS_RX_AUTH_SEQ_2:
4700                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4702                                 break;
4703                         case CMAS_AUTH_SEQ_1_PASS:
4704                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4706                                 break;
4707                         case CMAS_AUTH_SEQ_1_FAIL:
4708                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4710                                 break;
4711                         case CMAS_TX_AUTH_SEQ_3:
4712                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4714                                 break;
4715                         case CMAS_RX_AUTH_SEQ_4:
4716                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4717                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4718                                 break;
4719                         case CMAS_AUTH_SEQ_2_PASS:
4720                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4721                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4722                                 break;
4723                         case CMAS_AUTH_SEQ_2_FAIL:
4724                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4725                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4726                                 break;
4727                         case CMAS_TX_ASSOC:
4728                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4729                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4730                                 break;
4731                         case CMAS_RX_ASSOC_RESP:
4732                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4733                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4734
4735                                 break;
4736                         case CMAS_ASSOCIATED:
4737                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4738                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4739                                 break;
4740                         default:
4741                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4742                                                 auth->state);
4743                                 break;
4744                         }
4745                         break;
4746                 }
4747
4748         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4749                         struct notif_channel_result *x =
4750                             &notif->u.channel_result;
4751
4752                         if (size == sizeof(*x)) {
4753                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4754                                                x->channel_num);
4755                         } else {
4756                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4757                                                "(should be %zd)\n",
4758                                                size, sizeof(*x));
4759                         }
4760                         break;
4761                 }
4762
4763         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4764                         struct notif_scan_complete *x = &notif->u.scan_complete;
4765                         if (size == sizeof(*x)) {
4766                                 IPW_DEBUG_SCAN
4767                                     ("Scan completed: type %d, %d channels, "
4768                                      "%d status\n", x->scan_type,
4769                                      x->num_channels, x->status);
4770                         } else {
4771                                 IPW_ERROR("Scan completed of wrong size %d "
4772                                           "(should be %zd)\n",
4773                                           size, sizeof(*x));
4774                         }
4775
4776                         priv->status &=
4777                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4778
4779                         wake_up_interruptible(&priv->wait_state);
4780                         cancel_delayed_work(&priv->scan_check);
4781
4782                         if (priv->status & STATUS_EXIT_PENDING)
4783                                 break;
4784
4785                         priv->ieee->scans++;
4786
4787 #ifdef CONFIG_IPW2200_MONITOR
4788                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4789                                 priv->status |= STATUS_SCAN_FORCED;
4790                                 queue_delayed_work(priv->workqueue,
4791                                                    &priv->request_scan, 0);
4792                                 break;
4793                         }
4794                         priv->status &= ~STATUS_SCAN_FORCED;
4795 #endif                          /* CONFIG_IPW2200_MONITOR */
4796
4797                         /* Do queued direct scans first */
4798                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4799                                 queue_delayed_work(priv->workqueue,
4800                                                    &priv->request_direct_scan, 0);
4801                         }
4802
4803                         if (!(priv->status & (STATUS_ASSOCIATED |
4804                                               STATUS_ASSOCIATING |
4805                                               STATUS_ROAMING |
4806                                               STATUS_DISASSOCIATING)))
4807                                 queue_work(priv->workqueue, &priv->associate);
4808                         else if (priv->status & STATUS_ROAMING) {
4809                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4810                                         /* If a scan completed and we are in roam mode, then
4811                                          * the scan that completed was the one requested as a
4812                                          * result of entering roam... so, schedule the
4813                                          * roam work */
4814                                         queue_work(priv->workqueue,
4815                                                    &priv->roam);
4816                                 else
4817                                         /* Don't schedule if we aborted the scan */
4818                                         priv->status &= ~STATUS_ROAMING;
4819                         } else if (priv->status & STATUS_SCAN_PENDING)
4820                                 queue_delayed_work(priv->workqueue,
4821                                                    &priv->request_scan, 0);
4822                         else if (priv->config & CFG_BACKGROUND_SCAN
4823                                  && priv->status & STATUS_ASSOCIATED)
4824                                 queue_delayed_work(priv->workqueue,
4825                                                    &priv->request_scan,
4826                                                    round_jiffies_relative(HZ));
4827
4828                         /* Send an empty event to user space.
4829                          * We don't send the received data on the event because
4830                          * it would require us to do complex transcoding, and
4831                          * we want to minimise the work done in the irq handler
4832                          * Use a request to extract the data.
4833                          * Also, we generate this even for any scan, regardless
4834                          * on how the scan was initiated. User space can just
4835                          * sync on periodic scan to get fresh data...
4836                          * Jean II */
4837                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4838                                 handle_scan_event(priv);
4839                         break;
4840                 }
4841
4842         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4843                         struct notif_frag_length *x = &notif->u.frag_len;
4844
4845                         if (size == sizeof(*x))
4846                                 IPW_ERROR("Frag length: %d\n",
4847                                           le16_to_cpu(x->frag_length));
4848                         else
4849                                 IPW_ERROR("Frag length of wrong size %d "
4850                                           "(should be %zd)\n",
4851                                           size, sizeof(*x));
4852                         break;
4853                 }
4854
4855         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4856                         struct notif_link_deterioration *x =
4857                             &notif->u.link_deterioration;
4858
4859                         if (size == sizeof(*x)) {
4860                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4861                                         "link deterioration: type %d, cnt %d\n",
4862                                         x->silence_notification_type,
4863                                         x->silence_count);
4864                                 memcpy(&priv->last_link_deterioration, x,
4865                                        sizeof(*x));
4866                         } else {
4867                                 IPW_ERROR("Link Deterioration of wrong size %d "
4868                                           "(should be %zd)\n",
4869                                           size, sizeof(*x));
4870                         }
4871                         break;
4872                 }
4873
4874         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4875                         IPW_ERROR("Dino config\n");
4876                         if (priv->hcmd
4877                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4878                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4879
4880                         break;
4881                 }
4882
4883         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4884                         struct notif_beacon_state *x = &notif->u.beacon_state;
4885                         if (size != sizeof(*x)) {
4886                                 IPW_ERROR
4887                                     ("Beacon state of wrong size %d (should "
4888                                      "be %zd)\n", size, sizeof(*x));
4889                                 break;
4890                         }
4891
4892                         if (le32_to_cpu(x->state) ==
4893                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4894                                 ipw_handle_missed_beacon(priv,
4895                                                          le32_to_cpu(x->
4896                                                                      number));
4897
4898                         break;
4899                 }
4900
4901         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4902                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4903                         if (size == sizeof(*x)) {
4904                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4905                                           "0x%02x station %d\n",
4906                                           x->key_state, x->security_type,
4907                                           x->station_index);
4908                                 break;
4909                         }
4910
4911                         IPW_ERROR
4912                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4913                              size, sizeof(*x));
4914                         break;
4915                 }
4916
4917         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4918                         struct notif_calibration *x = &notif->u.calibration;
4919
4920                         if (size == sizeof(*x)) {
4921                                 memcpy(&priv->calib, x, sizeof(*x));
4922                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4923                                 break;
4924                         }
4925
4926                         IPW_ERROR
4927                             ("Calibration of wrong size %d (should be %zd)\n",
4928                              size, sizeof(*x));
4929                         break;
4930                 }
4931
4932         case HOST_NOTIFICATION_NOISE_STATS:{
4933                         if (size == sizeof(u32)) {
4934                                 priv->exp_avg_noise =
4935                                     exponential_average(priv->exp_avg_noise,
4936                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4937                                     DEPTH_NOISE);
4938                                 break;
4939                         }
4940
4941                         IPW_ERROR
4942                             ("Noise stat is wrong size %d (should be %zd)\n",
4943                              size, sizeof(u32));
4944                         break;
4945                 }
4946
4947         default:
4948                 IPW_DEBUG_NOTIF("Unknown notification: "
4949                                 "subtype=%d,flags=0x%2x,size=%d\n",
4950                                 notif->subtype, notif->flags, size);
4951         }
4952 }
4953
4954 /**
4955  * Destroys all DMA structures and initialise them again
4956  *
4957  * @param priv
4958  * @return error code
4959  */
4960 static int ipw_queue_reset(struct ipw_priv *priv)
4961 {
4962         int rc = 0;
4963         /** @todo customize queue sizes */
4964         int nTx = 64, nTxCmd = 8;
4965         ipw_tx_queue_free(priv);
4966         /* Tx CMD queue */
4967         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4968                                IPW_TX_CMD_QUEUE_READ_INDEX,
4969                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4970                                IPW_TX_CMD_QUEUE_BD_BASE,
4971                                IPW_TX_CMD_QUEUE_BD_SIZE);
4972         if (rc) {
4973                 IPW_ERROR("Tx Cmd queue init failed\n");
4974                 goto error;
4975         }
4976         /* Tx queue(s) */
4977         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4978                                IPW_TX_QUEUE_0_READ_INDEX,
4979                                IPW_TX_QUEUE_0_WRITE_INDEX,
4980                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4981         if (rc) {
4982                 IPW_ERROR("Tx 0 queue init failed\n");
4983                 goto error;
4984         }
4985         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4986                                IPW_TX_QUEUE_1_READ_INDEX,
4987                                IPW_TX_QUEUE_1_WRITE_INDEX,
4988                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4989         if (rc) {
4990                 IPW_ERROR("Tx 1 queue init failed\n");
4991                 goto error;
4992         }
4993         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4994                                IPW_TX_QUEUE_2_READ_INDEX,
4995                                IPW_TX_QUEUE_2_WRITE_INDEX,
4996                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4997         if (rc) {
4998                 IPW_ERROR("Tx 2 queue init failed\n");
4999                 goto error;
5000         }
5001         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5002                                IPW_TX_QUEUE_3_READ_INDEX,
5003                                IPW_TX_QUEUE_3_WRITE_INDEX,
5004                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5005         if (rc) {
5006                 IPW_ERROR("Tx 3 queue init failed\n");
5007                 goto error;
5008         }
5009         /* statistics */
5010         priv->rx_bufs_min = 0;
5011         priv->rx_pend_max = 0;
5012         return rc;
5013
5014       error:
5015         ipw_tx_queue_free(priv);
5016         return rc;
5017 }
5018
5019 /**
5020  * Reclaim Tx queue entries no more used by NIC.
5021  *
5022  * When FW advances 'R' index, all entries between old and
5023  * new 'R' index need to be reclaimed. As result, some free space
5024  * forms. If there is enough free space (> low mark), wake Tx queue.
5025  *
5026  * @note Need to protect against garbage in 'R' index
5027  * @param priv
5028  * @param txq
5029  * @param qindex
5030  * @return Number of used entries remains in the queue
5031  */
5032 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5033                                 struct clx2_tx_queue *txq, int qindex)
5034 {
5035         u32 hw_tail;
5036         int used;
5037         struct clx2_queue *q = &txq->q;
5038
5039         hw_tail = ipw_read32(priv, q->reg_r);
5040         if (hw_tail >= q->n_bd) {
5041                 IPW_ERROR
5042                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5043                      hw_tail, q->n_bd);
5044                 goto done;
5045         }
5046         for (; q->last_used != hw_tail;
5047              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5048                 ipw_queue_tx_free_tfd(priv, txq);
5049                 priv->tx_packets++;
5050         }
5051       done:
5052         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5053             (qindex >= 0))
5054                 netif_wake_queue(priv->net_dev);
5055         used = q->first_empty - q->last_used;
5056         if (used < 0)
5057                 used += q->n_bd;
5058
5059         return used;
5060 }
5061
5062 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5063                              int len, int sync)
5064 {
5065         struct clx2_tx_queue *txq = &priv->txq_cmd;
5066         struct clx2_queue *q = &txq->q;
5067         struct tfd_frame *tfd;
5068
5069         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5070                 IPW_ERROR("No space for Tx\n");
5071                 return -EBUSY;
5072         }
5073
5074         tfd = &txq->bd[q->first_empty];
5075         txq->txb[q->first_empty] = NULL;
5076
5077         memset(tfd, 0, sizeof(*tfd));
5078         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5079         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5080         priv->hcmd_seq++;
5081         tfd->u.cmd.index = hcmd;
5082         tfd->u.cmd.length = len;
5083         memcpy(tfd->u.cmd.payload, buf, len);
5084         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5085         ipw_write32(priv, q->reg_w, q->first_empty);
5086         _ipw_read32(priv, 0x90);
5087
5088         return 0;
5089 }
5090
5091 /*
5092  * Rx theory of operation
5093  *
5094  * The host allocates 32 DMA target addresses and passes the host address
5095  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5096  * 0 to 31
5097  *
5098  * Rx Queue Indexes
5099  * The host/firmware share two index registers for managing the Rx buffers.
5100  *
5101  * The READ index maps to the first position that the firmware may be writing
5102  * to -- the driver can read up to (but not including) this position and get
5103  * good data.
5104  * The READ index is managed by the firmware once the card is enabled.
5105  *
5106  * The WRITE index maps to the last position the driver has read from -- the
5107  * position preceding WRITE is the last slot the firmware can place a packet.
5108  *
5109  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5110  * WRITE = READ.
5111  *
5112  * During initialization the host sets up the READ queue position to the first
5113  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5114  *
5115  * When the firmware places a packet in a buffer it will advance the READ index
5116  * and fire the RX interrupt.  The driver can then query the READ index and
5117  * process as many packets as possible, moving the WRITE index forward as it
5118  * resets the Rx queue buffers with new memory.
5119  *
5120  * The management in the driver is as follows:
5121  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5122  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5123  *   to replensish the ipw->rxq->rx_free.
5124  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5125  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5126  *   'processed' and 'read' driver indexes as well)
5127  * + A received packet is processed and handed to the kernel network stack,
5128  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5129  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5130  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5131  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5132  *   were enough free buffers and RX_STALLED is set it is cleared.
5133  *
5134  *
5135  * Driver sequence:
5136  *
5137  * ipw_rx_queue_alloc()       Allocates rx_free
5138  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5139  *                            ipw_rx_queue_restock
5140  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5141  *                            queue, updates firmware pointers, and updates
5142  *                            the WRITE index.  If insufficient rx_free buffers
5143  *                            are available, schedules ipw_rx_queue_replenish
5144  *
5145  * -- enable interrupts --
5146  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5147  *                            READ INDEX, detaching the SKB from the pool.
5148  *                            Moves the packet buffer from queue to rx_used.
5149  *                            Calls ipw_rx_queue_restock to refill any empty
5150  *                            slots.
5151  * ...
5152  *
5153  */
5154
5155 /*
5156  * If there are slots in the RX queue that  need to be restocked,
5157  * and we have free pre-allocated buffers, fill the ranks as much
5158  * as we can pulling from rx_free.
5159  *
5160  * This moves the 'write' index forward to catch up with 'processed', and
5161  * also updates the memory address in the firmware to reference the new
5162  * target buffer.
5163  */
5164 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5165 {
5166         struct ipw_rx_queue *rxq = priv->rxq;
5167         struct list_head *element;
5168         struct ipw_rx_mem_buffer *rxb;
5169         unsigned long flags;
5170         int write;
5171
5172         spin_lock_irqsave(&rxq->lock, flags);
5173         write = rxq->write;
5174         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5175                 element = rxq->rx_free.next;
5176                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5177                 list_del(element);
5178
5179                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5180                             rxb->dma_addr);
5181                 rxq->queue[rxq->write] = rxb;
5182                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5183                 rxq->free_count--;
5184         }
5185         spin_unlock_irqrestore(&rxq->lock, flags);
5186
5187         /* If the pre-allocated buffer pool is dropping low, schedule to
5188          * refill it */
5189         if (rxq->free_count <= RX_LOW_WATERMARK)
5190                 queue_work(priv->workqueue, &priv->rx_replenish);
5191
5192         /* If we've added more space for the firmware to place data, tell it */
5193         if (write != rxq->write)
5194                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5195 }
5196
5197 /*
5198  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5199  * Also restock the Rx queue via ipw_rx_queue_restock.
5200  *
5201  * This is called as a scheduled work item (except for during intialization)
5202  */
5203 static void ipw_rx_queue_replenish(void *data)
5204 {
5205         struct ipw_priv *priv = data;
5206         struct ipw_rx_queue *rxq = priv->rxq;
5207         struct list_head *element;
5208         struct ipw_rx_mem_buffer *rxb;
5209         unsigned long flags;
5210
5211         spin_lock_irqsave(&rxq->lock, flags);
5212         while (!list_empty(&rxq->rx_used)) {
5213                 element = rxq->rx_used.next;
5214                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5215                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5216                 if (!rxb->skb) {
5217                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5218                                priv->net_dev->name);
5219                         /* We don't reschedule replenish work here -- we will
5220                          * call the restock method and if it still needs
5221                          * more buffers it will schedule replenish */
5222                         break;
5223                 }
5224                 list_del(element);
5225
5226                 rxb->dma_addr =
5227                     pci_map_single(priv->pci_dev, rxb->skb->data,
5228                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5229
5230                 list_add_tail(&rxb->list, &rxq->rx_free);
5231                 rxq->free_count++;
5232         }
5233         spin_unlock_irqrestore(&rxq->lock, flags);
5234
5235         ipw_rx_queue_restock(priv);
5236 }
5237
5238 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5239 {
5240         struct ipw_priv *priv =
5241                 container_of(work, struct ipw_priv, rx_replenish);
5242         mutex_lock(&priv->mutex);
5243         ipw_rx_queue_replenish(priv);
5244         mutex_unlock(&priv->mutex);
5245 }
5246
5247 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5248  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5249  * This free routine walks the list of POOL entries and if SKB is set to
5250  * non NULL it is unmapped and freed
5251  */
5252 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5253 {
5254         int i;
5255
5256         if (!rxq)
5257                 return;
5258
5259         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5260                 if (rxq->pool[i].skb != NULL) {
5261                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5262                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5263                         dev_kfree_skb(rxq->pool[i].skb);
5264                 }
5265         }
5266
5267         kfree(rxq);
5268 }
5269
5270 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5271 {
5272         struct ipw_rx_queue *rxq;
5273         int i;
5274
5275         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5276         if (unlikely(!rxq)) {
5277                 IPW_ERROR("memory allocation failed\n");
5278                 return NULL;
5279         }
5280         spin_lock_init(&rxq->lock);
5281         INIT_LIST_HEAD(&rxq->rx_free);
5282         INIT_LIST_HEAD(&rxq->rx_used);
5283
5284         /* Fill the rx_used queue with _all_ of the Rx buffers */
5285         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5286                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5287
5288         /* Set us so that we have processed and used all buffers, but have
5289          * not restocked the Rx queue with fresh buffers */
5290         rxq->read = rxq->write = 0;
5291         rxq->free_count = 0;
5292
5293         return rxq;
5294 }
5295
5296 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5297 {
5298         rate &= ~LIBIPW_BASIC_RATE_MASK;
5299         if (ieee_mode == IEEE_A) {
5300                 switch (rate) {
5301                 case LIBIPW_OFDM_RATE_6MB:
5302                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5303                             1 : 0;
5304                 case LIBIPW_OFDM_RATE_9MB:
5305                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5306                             1 : 0;
5307                 case LIBIPW_OFDM_RATE_12MB:
5308                         return priv->
5309                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5310                 case LIBIPW_OFDM_RATE_18MB:
5311                         return priv->
5312                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5313                 case LIBIPW_OFDM_RATE_24MB:
5314                         return priv->
5315                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5316                 case LIBIPW_OFDM_RATE_36MB:
5317                         return priv->
5318                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5319                 case LIBIPW_OFDM_RATE_48MB:
5320                         return priv->
5321                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5322                 case LIBIPW_OFDM_RATE_54MB:
5323                         return priv->
5324                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5325                 default:
5326                         return 0;
5327                 }
5328         }
5329
5330         /* B and G mixed */
5331         switch (rate) {
5332         case LIBIPW_CCK_RATE_1MB:
5333                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5334         case LIBIPW_CCK_RATE_2MB:
5335                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5336         case LIBIPW_CCK_RATE_5MB:
5337                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5338         case LIBIPW_CCK_RATE_11MB:
5339                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5340         }
5341
5342         /* If we are limited to B modulations, bail at this point */
5343         if (ieee_mode == IEEE_B)
5344                 return 0;
5345
5346         /* G */
5347         switch (rate) {
5348         case LIBIPW_OFDM_RATE_6MB:
5349                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5350         case LIBIPW_OFDM_RATE_9MB:
5351                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5352         case LIBIPW_OFDM_RATE_12MB:
5353                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5354         case LIBIPW_OFDM_RATE_18MB:
5355                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5356         case LIBIPW_OFDM_RATE_24MB:
5357                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5358         case LIBIPW_OFDM_RATE_36MB:
5359                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5360         case LIBIPW_OFDM_RATE_48MB:
5361                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5362         case LIBIPW_OFDM_RATE_54MB:
5363                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5364         }
5365
5366         return 0;
5367 }
5368
5369 static int ipw_compatible_rates(struct ipw_priv *priv,
5370                                 const struct libipw_network *network,
5371                                 struct ipw_supported_rates *rates)
5372 {
5373         int num_rates, i;
5374
5375         memset(rates, 0, sizeof(*rates));
5376         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5377         rates->num_rates = 0;
5378         for (i = 0; i < num_rates; i++) {
5379                 if (!ipw_is_rate_in_mask(priv, network->mode,
5380                                          network->rates[i])) {
5381
5382                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5383                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5384                                                "rate %02X\n",
5385                                                network->rates[i]);
5386                                 rates->supported_rates[rates->num_rates++] =
5387                                     network->rates[i];
5388                                 continue;
5389                         }
5390
5391                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5392                                        network->rates[i], priv->rates_mask);
5393                         continue;
5394                 }
5395
5396                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5397         }
5398
5399         num_rates = min(network->rates_ex_len,
5400                         (u8) (IPW_MAX_RATES - num_rates));
5401         for (i = 0; i < num_rates; i++) {
5402                 if (!ipw_is_rate_in_mask(priv, network->mode,
5403                                          network->rates_ex[i])) {
5404                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5405                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5406                                                "rate %02X\n",
5407                                                network->rates_ex[i]);
5408                                 rates->supported_rates[rates->num_rates++] =
5409                                     network->rates[i];
5410                                 continue;
5411                         }
5412
5413                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5414                                        network->rates_ex[i], priv->rates_mask);
5415                         continue;
5416                 }
5417
5418                 rates->supported_rates[rates->num_rates++] =
5419                     network->rates_ex[i];
5420         }
5421
5422         return 1;
5423 }
5424
5425 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5426                                   const struct ipw_supported_rates *src)
5427 {
5428         u8 i;
5429         for (i = 0; i < src->num_rates; i++)
5430                 dest->supported_rates[i] = src->supported_rates[i];
5431         dest->num_rates = src->num_rates;
5432 }
5433
5434 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5435  * mask should ever be used -- right now all callers to add the scan rates are
5436  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5437 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5438                                    u8 modulation, u32 rate_mask)
5439 {
5440         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5441             LIBIPW_BASIC_RATE_MASK : 0;
5442
5443         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5444                 rates->supported_rates[rates->num_rates++] =
5445                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5446
5447         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5448                 rates->supported_rates[rates->num_rates++] =
5449                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5450
5451         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5452                 rates->supported_rates[rates->num_rates++] = basic_mask |
5453                     LIBIPW_CCK_RATE_5MB;
5454
5455         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5456                 rates->supported_rates[rates->num_rates++] = basic_mask |
5457                     LIBIPW_CCK_RATE_11MB;
5458 }
5459
5460 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5461                                     u8 modulation, u32 rate_mask)
5462 {
5463         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5464             LIBIPW_BASIC_RATE_MASK : 0;
5465
5466         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5467                 rates->supported_rates[rates->num_rates++] = basic_mask |
5468                     LIBIPW_OFDM_RATE_6MB;
5469
5470         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5471                 rates->supported_rates[rates->num_rates++] =
5472                     LIBIPW_OFDM_RATE_9MB;
5473
5474         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5475                 rates->supported_rates[rates->num_rates++] = basic_mask |
5476                     LIBIPW_OFDM_RATE_12MB;
5477
5478         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5479                 rates->supported_rates[rates->num_rates++] =
5480                     LIBIPW_OFDM_RATE_18MB;
5481
5482         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5483                 rates->supported_rates[rates->num_rates++] = basic_mask |
5484                     LIBIPW_OFDM_RATE_24MB;
5485
5486         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5487                 rates->supported_rates[rates->num_rates++] =
5488                     LIBIPW_OFDM_RATE_36MB;
5489
5490         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5491                 rates->supported_rates[rates->num_rates++] =
5492                     LIBIPW_OFDM_RATE_48MB;
5493
5494         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5495                 rates->supported_rates[rates->num_rates++] =
5496                     LIBIPW_OFDM_RATE_54MB;
5497 }
5498
5499 struct ipw_network_match {
5500         struct libipw_network *network;
5501         struct ipw_supported_rates rates;
5502 };
5503
5504 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5505                                   struct ipw_network_match *match,
5506                                   struct libipw_network *network,
5507                                   int roaming)
5508 {
5509         struct ipw_supported_rates rates;
5510         DECLARE_SSID_BUF(ssid);
5511
5512         /* Verify that this network's capability is compatible with the
5513          * current mode (AdHoc or Infrastructure) */
5514         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5515              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5516                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5517                                 "capability mismatch.\n",
5518                                 print_ssid(ssid, network->ssid,
5519                                            network->ssid_len),
5520                                 network->bssid);
5521                 return 0;
5522         }
5523
5524         if (unlikely(roaming)) {
5525                 /* If we are roaming, then ensure check if this is a valid
5526                  * network to try and roam to */
5527                 if ((network->ssid_len != match->network->ssid_len) ||
5528                     memcmp(network->ssid, match->network->ssid,
5529                            network->ssid_len)) {
5530                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5531                                         "because of non-network ESSID.\n",
5532                                         print_ssid(ssid, network->ssid,
5533                                                    network->ssid_len),
5534                                         network->bssid);
5535                         return 0;
5536                 }
5537         } else {
5538                 /* If an ESSID has been configured then compare the broadcast
5539                  * ESSID to ours */
5540                 if ((priv->config & CFG_STATIC_ESSID) &&
5541                     ((network->ssid_len != priv->essid_len) ||
5542                      memcmp(network->ssid, priv->essid,
5543                             min(network->ssid_len, priv->essid_len)))) {
5544                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5545
5546                         strncpy(escaped,
5547                                 print_ssid(ssid, network->ssid,
5548                                            network->ssid_len),
5549                                 sizeof(escaped));
5550                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5551                                         "because of ESSID mismatch: '%s'.\n",
5552                                         escaped, network->bssid,
5553                                         print_ssid(ssid, priv->essid,
5554                                                    priv->essid_len));
5555                         return 0;
5556                 }
5557         }
5558
5559         /* If the old network rate is better than this one, don't bother
5560          * testing everything else. */
5561
5562         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5563                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5564                                 "current network.\n",
5565                                 print_ssid(ssid, match->network->ssid,
5566                                            match->network->ssid_len));
5567                 return 0;
5568         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5569                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5570                                 "current network.\n",
5571                                 print_ssid(ssid, match->network->ssid,
5572                                            match->network->ssid_len));
5573                 return 0;
5574         }
5575
5576         /* Now go through and see if the requested network is valid... */
5577         if (priv->ieee->scan_age != 0 &&
5578             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5579                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5580                                 "because of age: %ums.\n",
5581                                 print_ssid(ssid, network->ssid,
5582                                            network->ssid_len),
5583                                 network->bssid,
5584                                 jiffies_to_msecs(jiffies -
5585                                                  network->last_scanned));
5586                 return 0;
5587         }
5588
5589         if ((priv->config & CFG_STATIC_CHANNEL) &&
5590             (network->channel != priv->channel)) {
5591                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5592                                 "because of channel mismatch: %d != %d.\n",
5593                                 print_ssid(ssid, network->ssid,
5594                                            network->ssid_len),
5595                                 network->bssid,
5596                                 network->channel, priv->channel);
5597                 return 0;
5598         }
5599
5600         /* Verify privacy compatability */
5601         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5602             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5603                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5604                                 "because of privacy mismatch: %s != %s.\n",
5605                                 print_ssid(ssid, network->ssid,
5606                                            network->ssid_len),
5607                                 network->bssid,
5608                                 priv->
5609                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5610                                 network->
5611                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5612                                 "off");
5613                 return 0;
5614         }
5615
5616         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5617                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5618                                 "because of the same BSSID match: %pM"
5619                                 ".\n", print_ssid(ssid, network->ssid,
5620                                                   network->ssid_len),
5621                                 network->bssid,
5622                                 priv->bssid);
5623                 return 0;
5624         }
5625
5626         /* Filter out any incompatible freq / mode combinations */
5627         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5628                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5629                                 "because of invalid frequency/mode "
5630                                 "combination.\n",
5631                                 print_ssid(ssid, network->ssid,
5632                                            network->ssid_len),
5633                                 network->bssid);
5634                 return 0;
5635         }
5636
5637         /* Ensure that the rates supported by the driver are compatible with
5638          * this AP, including verification of basic rates (mandatory) */
5639         if (!ipw_compatible_rates(priv, network, &rates)) {
5640                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5641                                 "because configured rate mask excludes "
5642                                 "AP mandatory rate.\n",
5643                                 print_ssid(ssid, network->ssid,
5644                                            network->ssid_len),
5645                                 network->bssid);
5646                 return 0;
5647         }
5648
5649         if (rates.num_rates == 0) {
5650                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5651                                 "because of no compatible rates.\n",
5652                                 print_ssid(ssid, network->ssid,
5653                                            network->ssid_len),
5654                                 network->bssid);
5655                 return 0;
5656         }
5657
5658         /* TODO: Perform any further minimal comparititive tests.  We do not
5659          * want to put too much policy logic here; intelligent scan selection
5660          * should occur within a generic IEEE 802.11 user space tool.  */
5661
5662         /* Set up 'new' AP to this network */
5663         ipw_copy_rates(&match->rates, &rates);
5664         match->network = network;
5665         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5666                         print_ssid(ssid, network->ssid, network->ssid_len),
5667                         network->bssid);
5668
5669         return 1;
5670 }
5671
5672 static void ipw_merge_adhoc_network(struct work_struct *work)
5673 {
5674         DECLARE_SSID_BUF(ssid);
5675         struct ipw_priv *priv =
5676                 container_of(work, struct ipw_priv, merge_networks);
5677         struct libipw_network *network = NULL;
5678         struct ipw_network_match match = {
5679                 .network = priv->assoc_network
5680         };
5681
5682         if ((priv->status & STATUS_ASSOCIATED) &&
5683             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5684                 /* First pass through ROAM process -- look for a better
5685                  * network */
5686                 unsigned long flags;
5687
5688                 spin_lock_irqsave(&priv->ieee->lock, flags);
5689                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5690                         if (network != priv->assoc_network)
5691                                 ipw_find_adhoc_network(priv, &match, network,
5692                                                        1);
5693                 }
5694                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5695
5696                 if (match.network == priv->assoc_network) {
5697                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5698                                         "merge to.\n");
5699                         return;
5700                 }
5701
5702                 mutex_lock(&priv->mutex);
5703                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5704                         IPW_DEBUG_MERGE("remove network %s\n",
5705                                         print_ssid(ssid, priv->essid,
5706                                                    priv->essid_len));
5707                         ipw_remove_current_network(priv);
5708                 }
5709
5710                 ipw_disassociate(priv);
5711                 priv->assoc_network = match.network;
5712                 mutex_unlock(&priv->mutex);
5713                 return;
5714         }
5715 }
5716
5717 static int ipw_best_network(struct ipw_priv *priv,
5718                             struct ipw_network_match *match,
5719                             struct libipw_network *network, int roaming)
5720 {
5721         struct ipw_supported_rates rates;
5722         DECLARE_SSID_BUF(ssid);
5723
5724         /* Verify that this network's capability is compatible with the
5725          * current mode (AdHoc or Infrastructure) */
5726         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5727              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5728             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5729              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5730                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5731                                 "capability mismatch.\n",
5732                                 print_ssid(ssid, network->ssid,
5733                                            network->ssid_len),
5734                                 network->bssid);
5735                 return 0;
5736         }
5737
5738         if (unlikely(roaming)) {
5739                 /* If we are roaming, then ensure check if this is a valid
5740                  * network to try and roam to */
5741                 if ((network->ssid_len != match->network->ssid_len) ||
5742                     memcmp(network->ssid, match->network->ssid,
5743                            network->ssid_len)) {
5744                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5745                                         "because of non-network ESSID.\n",
5746                                         print_ssid(ssid, network->ssid,
5747                                                    network->ssid_len),
5748                                         network->bssid);
5749                         return 0;
5750                 }
5751         } else {
5752                 /* If an ESSID has been configured then compare the broadcast
5753                  * ESSID to ours */
5754                 if ((priv->config & CFG_STATIC_ESSID) &&
5755                     ((network->ssid_len != priv->essid_len) ||
5756                      memcmp(network->ssid, priv->essid,
5757                             min(network->ssid_len, priv->essid_len)))) {
5758                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5759                         strncpy(escaped,
5760                                 print_ssid(ssid, network->ssid,
5761                                            network->ssid_len),
5762                                 sizeof(escaped));
5763                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5764                                         "because of ESSID mismatch: '%s'.\n",
5765                                         escaped, network->bssid,
5766                                         print_ssid(ssid, priv->essid,
5767                                                    priv->essid_len));
5768                         return 0;
5769                 }
5770         }
5771
5772         /* If the old network rate is better than this one, don't bother
5773          * testing everything else. */
5774         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5775                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5776                 strncpy(escaped,
5777                         print_ssid(ssid, network->ssid, network->ssid_len),
5778                         sizeof(escaped));
5779                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5780                                 "'%s (%pM)' has a stronger signal.\n",
5781                                 escaped, network->bssid,
5782                                 print_ssid(ssid, match->network->ssid,
5783                                            match->network->ssid_len),
5784                                 match->network->bssid);
5785                 return 0;
5786         }
5787
5788         /* If this network has already had an association attempt within the
5789          * last 3 seconds, do not try and associate again... */
5790         if (network->last_associate &&
5791             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5792                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5793                                 "because of storming (%ums since last "
5794                                 "assoc attempt).\n",
5795                                 print_ssid(ssid, network->ssid,
5796                                            network->ssid_len),
5797                                 network->bssid,
5798                                 jiffies_to_msecs(jiffies -
5799                                                  network->last_associate));
5800                 return 0;
5801         }
5802
5803         /* Now go through and see if the requested network is valid... */
5804         if (priv->ieee->scan_age != 0 &&
5805             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5806                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5807                                 "because of age: %ums.\n",
5808                                 print_ssid(ssid, network->ssid,
5809                                            network->ssid_len),
5810                                 network->bssid,
5811                                 jiffies_to_msecs(jiffies -
5812                                                  network->last_scanned));
5813                 return 0;
5814         }
5815
5816         if ((priv->config & CFG_STATIC_CHANNEL) &&
5817             (network->channel != priv->channel)) {
5818                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5819                                 "because of channel mismatch: %d != %d.\n",
5820                                 print_ssid(ssid, network->ssid,
5821                                            network->ssid_len),
5822                                 network->bssid,
5823                                 network->channel, priv->channel);
5824                 return 0;
5825         }
5826
5827         /* Verify privacy compatability */
5828         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5829             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5830                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5831                                 "because of privacy mismatch: %s != %s.\n",
5832                                 print_ssid(ssid, network->ssid,
5833                                            network->ssid_len),
5834                                 network->bssid,
5835                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5836                                 "off",
5837                                 network->capability &
5838                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5839                 return 0;
5840         }
5841
5842         if ((priv->config & CFG_STATIC_BSSID) &&
5843             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5844                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5845                                 "because of BSSID mismatch: %pM.\n",
5846                                 print_ssid(ssid, network->ssid,
5847                                            network->ssid_len),
5848                                 network->bssid, priv->bssid);
5849                 return 0;
5850         }
5851
5852         /* Filter out any incompatible freq / mode combinations */
5853         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5854                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5855                                 "because of invalid frequency/mode "
5856                                 "combination.\n",
5857                                 print_ssid(ssid, network->ssid,
5858                                            network->ssid_len),
5859                                 network->bssid);
5860                 return 0;
5861         }
5862
5863         /* Filter out invalid channel in current GEO */
5864         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5865                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5866                                 "because of invalid channel in current GEO\n",
5867                                 print_ssid(ssid, network->ssid,
5868                                            network->ssid_len),
5869                                 network->bssid);
5870                 return 0;
5871         }
5872
5873         /* Ensure that the rates supported by the driver are compatible with
5874          * this AP, including verification of basic rates (mandatory) */
5875         if (!ipw_compatible_rates(priv, network, &rates)) {
5876                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5877                                 "because configured rate mask excludes "
5878                                 "AP mandatory rate.\n",
5879                                 print_ssid(ssid, network->ssid,
5880                                            network->ssid_len),
5881                                 network->bssid);
5882                 return 0;
5883         }
5884
5885         if (rates.num_rates == 0) {
5886                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5887                                 "because of no compatible rates.\n",
5888                                 print_ssid(ssid, network->ssid,
5889                                            network->ssid_len),
5890                                 network->bssid);
5891                 return 0;
5892         }
5893
5894         /* TODO: Perform any further minimal comparititive tests.  We do not
5895          * want to put too much policy logic here; intelligent scan selection
5896          * should occur within a generic IEEE 802.11 user space tool.  */
5897
5898         /* Set up 'new' AP to this network */
5899         ipw_copy_rates(&match->rates, &rates);
5900         match->network = network;
5901
5902         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5903                         print_ssid(ssid, network->ssid, network->ssid_len),
5904                         network->bssid);
5905
5906         return 1;
5907 }
5908
5909 static void ipw_adhoc_create(struct ipw_priv *priv,
5910                              struct libipw_network *network)
5911 {
5912         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5913         int i;
5914
5915         /*
5916          * For the purposes of scanning, we can set our wireless mode
5917          * to trigger scans across combinations of bands, but when it
5918          * comes to creating a new ad-hoc network, we have tell the FW
5919          * exactly which band to use.
5920          *
5921          * We also have the possibility of an invalid channel for the
5922          * chossen band.  Attempting to create a new ad-hoc network
5923          * with an invalid channel for wireless mode will trigger a
5924          * FW fatal error.
5925          *
5926          */
5927         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5928         case LIBIPW_52GHZ_BAND:
5929                 network->mode = IEEE_A;
5930                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5931                 BUG_ON(i == -1);
5932                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5933                         IPW_WARNING("Overriding invalid channel\n");
5934                         priv->channel = geo->a[0].channel;
5935                 }
5936                 break;
5937
5938         case LIBIPW_24GHZ_BAND:
5939                 if (priv->ieee->mode & IEEE_G)
5940                         network->mode = IEEE_G;
5941                 else
5942                         network->mode = IEEE_B;
5943                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5944                 BUG_ON(i == -1);
5945                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5946                         IPW_WARNING("Overriding invalid channel\n");
5947                         priv->channel = geo->bg[0].channel;
5948                 }
5949                 break;
5950
5951         default:
5952                 IPW_WARNING("Overriding invalid channel\n");
5953                 if (priv->ieee->mode & IEEE_A) {
5954                         network->mode = IEEE_A;
5955                         priv->channel = geo->a[0].channel;
5956                 } else if (priv->ieee->mode & IEEE_G) {
5957                         network->mode = IEEE_G;
5958                         priv->channel = geo->bg[0].channel;
5959                 } else {
5960                         network->mode = IEEE_B;
5961                         priv->channel = geo->bg[0].channel;
5962                 }
5963                 break;
5964         }
5965
5966         network->channel = priv->channel;
5967         priv->config |= CFG_ADHOC_PERSIST;
5968         ipw_create_bssid(priv, network->bssid);
5969         network->ssid_len = priv->essid_len;
5970         memcpy(network->ssid, priv->essid, priv->essid_len);
5971         memset(&network->stats, 0, sizeof(network->stats));
5972         network->capability = WLAN_CAPABILITY_IBSS;
5973         if (!(priv->config & CFG_PREAMBLE_LONG))
5974                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5975         if (priv->capability & CAP_PRIVACY_ON)
5976                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5977         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5978         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5979         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5980         memcpy(network->rates_ex,
5981                &priv->rates.supported_rates[network->rates_len],
5982                network->rates_ex_len);
5983         network->last_scanned = 0;
5984         network->flags = 0;
5985         network->last_associate = 0;
5986         network->time_stamp[0] = 0;
5987         network->time_stamp[1] = 0;
5988         network->beacon_interval = 100; /* Default */
5989         network->listen_interval = 10;  /* Default */
5990         network->atim_window = 0;       /* Default */
5991         network->wpa_ie_len = 0;
5992         network->rsn_ie_len = 0;
5993 }
5994
5995 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5996 {
5997         struct ipw_tgi_tx_key key;
5998
5999         if (!(priv->ieee->sec.flags & (1 << index)))
6000                 return;
6001
6002         key.key_id = index;
6003         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6004         key.security_type = type;
6005         key.station_index = 0;  /* always 0 for BSS */
6006         key.flags = 0;
6007         /* 0 for new key; previous value of counter (after fatal error) */
6008         key.tx_counter[0] = cpu_to_le32(0);
6009         key.tx_counter[1] = cpu_to_le32(0);
6010
6011         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6012 }
6013
6014 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6015 {
6016         struct ipw_wep_key key;
6017         int i;
6018
6019         key.cmd_id = DINO_CMD_WEP_KEY;
6020         key.seq_num = 0;
6021
6022         /* Note: AES keys cannot be set for multiple times.
6023          * Only set it at the first time. */
6024         for (i = 0; i < 4; i++) {
6025                 key.key_index = i | type;
6026                 if (!(priv->ieee->sec.flags & (1 << i))) {
6027                         key.key_size = 0;
6028                         continue;
6029                 }
6030
6031                 key.key_size = priv->ieee->sec.key_sizes[i];
6032                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6033
6034                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6035         }
6036 }
6037
6038 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6039 {
6040         if (priv->ieee->host_encrypt)
6041                 return;
6042
6043         switch (level) {
6044         case SEC_LEVEL_3:
6045                 priv->sys_config.disable_unicast_decryption = 0;
6046                 priv->ieee->host_decrypt = 0;
6047                 break;
6048         case SEC_LEVEL_2:
6049                 priv->sys_config.disable_unicast_decryption = 1;
6050                 priv->ieee->host_decrypt = 1;
6051                 break;
6052         case SEC_LEVEL_1:
6053                 priv->sys_config.disable_unicast_decryption = 0;
6054                 priv->ieee->host_decrypt = 0;
6055                 break;
6056         case SEC_LEVEL_0:
6057                 priv->sys_config.disable_unicast_decryption = 1;
6058                 break;
6059         default:
6060                 break;
6061         }
6062 }
6063
6064 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6065 {
6066         if (priv->ieee->host_encrypt)
6067                 return;
6068
6069         switch (level) {
6070         case SEC_LEVEL_3:
6071                 priv->sys_config.disable_multicast_decryption = 0;
6072                 break;
6073         case SEC_LEVEL_2:
6074                 priv->sys_config.disable_multicast_decryption = 1;
6075                 break;
6076         case SEC_LEVEL_1:
6077                 priv->sys_config.disable_multicast_decryption = 0;
6078                 break;
6079         case SEC_LEVEL_0:
6080                 priv->sys_config.disable_multicast_decryption = 1;
6081                 break;
6082         default:
6083                 break;
6084         }
6085 }
6086
6087 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6088 {
6089         switch (priv->ieee->sec.level) {
6090         case SEC_LEVEL_3:
6091                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6092                         ipw_send_tgi_tx_key(priv,
6093                                             DCT_FLAG_EXT_SECURITY_CCM,
6094                                             priv->ieee->sec.active_key);
6095
6096                 if (!priv->ieee->host_mc_decrypt)
6097                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6098                 break;
6099         case SEC_LEVEL_2:
6100                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6101                         ipw_send_tgi_tx_key(priv,
6102                                             DCT_FLAG_EXT_SECURITY_TKIP,
6103                                             priv->ieee->sec.active_key);
6104                 break;
6105         case SEC_LEVEL_1:
6106                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6107                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6108                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6109                 break;
6110         case SEC_LEVEL_0:
6111         default:
6112                 break;
6113         }
6114 }
6115
6116 static void ipw_adhoc_check(void *data)
6117 {
6118         struct ipw_priv *priv = data;
6119
6120         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6121             !(priv->config & CFG_ADHOC_PERSIST)) {
6122                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6123                           IPW_DL_STATE | IPW_DL_ASSOC,
6124                           "Missed beacon: %d - disassociate\n",
6125                           priv->missed_adhoc_beacons);
6126                 ipw_remove_current_network(priv);
6127                 ipw_disassociate(priv);
6128                 return;
6129         }
6130
6131         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6132                            le16_to_cpu(priv->assoc_request.beacon_interval));
6133 }
6134
6135 static void ipw_bg_adhoc_check(struct work_struct *work)
6136 {
6137         struct ipw_priv *priv =
6138                 container_of(work, struct ipw_priv, adhoc_check.work);
6139         mutex_lock(&priv->mutex);
6140         ipw_adhoc_check(priv);
6141         mutex_unlock(&priv->mutex);
6142 }
6143
6144 static void ipw_debug_config(struct ipw_priv *priv)
6145 {
6146         DECLARE_SSID_BUF(ssid);
6147         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6148                        "[CFG 0x%08X]\n", priv->config);
6149         if (priv->config & CFG_STATIC_CHANNEL)
6150                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6151         else
6152                 IPW_DEBUG_INFO("Channel unlocked.\n");
6153         if (priv->config & CFG_STATIC_ESSID)
6154                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6155                                print_ssid(ssid, priv->essid, priv->essid_len));
6156         else
6157                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6158         if (priv->config & CFG_STATIC_BSSID)
6159                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6160         else
6161                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6162         if (priv->capability & CAP_PRIVACY_ON)
6163                 IPW_DEBUG_INFO("PRIVACY on\n");
6164         else
6165                 IPW_DEBUG_INFO("PRIVACY off\n");
6166         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6167 }
6168
6169 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6170 {
6171         /* TODO: Verify that this works... */
6172         struct ipw_fixed_rate fr;
6173         u32 reg;
6174         u16 mask = 0;
6175         u16 new_tx_rates = priv->rates_mask;
6176
6177         /* Identify 'current FW band' and match it with the fixed
6178          * Tx rates */
6179
6180         switch (priv->ieee->freq_band) {
6181         case LIBIPW_52GHZ_BAND: /* A only */
6182                 /* IEEE_A */
6183                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6184                         /* Invalid fixed rate mask */
6185                         IPW_DEBUG_WX
6186                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6187                         new_tx_rates = 0;
6188                         break;
6189                 }
6190
6191                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6192                 break;
6193
6194         default:                /* 2.4Ghz or Mixed */
6195                 /* IEEE_B */
6196                 if (mode == IEEE_B) {
6197                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6198                                 /* Invalid fixed rate mask */
6199                                 IPW_DEBUG_WX
6200                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6201                                 new_tx_rates = 0;
6202                         }
6203                         break;
6204                 }
6205
6206                 /* IEEE_G */
6207                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6208                                     LIBIPW_OFDM_RATES_MASK)) {
6209                         /* Invalid fixed rate mask */
6210                         IPW_DEBUG_WX
6211                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6212                         new_tx_rates = 0;
6213                         break;
6214                 }
6215
6216                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6217                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6218                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6219                 }
6220
6221                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6222                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6223                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6224                 }
6225
6226                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6227                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6228                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6229                 }
6230
6231                 new_tx_rates |= mask;
6232                 break;
6233         }
6234
6235         fr.tx_rates = cpu_to_le16(new_tx_rates);
6236
6237         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6238         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6239 }
6240
6241 static void ipw_abort_scan(struct ipw_priv *priv)
6242 {
6243         int err;
6244
6245         if (priv->status & STATUS_SCAN_ABORTING) {
6246                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6247                 return;
6248         }
6249         priv->status |= STATUS_SCAN_ABORTING;
6250
6251         err = ipw_send_scan_abort(priv);
6252         if (err)
6253                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6254 }
6255
6256 static void ipw_add_scan_channels(struct ipw_priv *priv,
6257                                   struct ipw_scan_request_ext *scan,
6258                                   int scan_type)
6259 {
6260         int channel_index = 0;
6261         const struct libipw_geo *geo;
6262         int i;
6263
6264         geo = libipw_get_geo(priv->ieee);
6265
6266         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6267                 int start = channel_index;
6268                 for (i = 0; i < geo->a_channels; i++) {
6269                         if ((priv->status & STATUS_ASSOCIATED) &&
6270                             geo->a[i].channel == priv->channel)
6271                                 continue;
6272                         channel_index++;
6273                         scan->channels_list[channel_index] = geo->a[i].channel;
6274                         ipw_set_scan_type(scan, channel_index,
6275                                           geo->a[i].
6276                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6277                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6278                                           scan_type);
6279                 }
6280
6281                 if (start != channel_index) {
6282                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6283                             (channel_index - start);
6284                         channel_index++;
6285                 }
6286         }
6287
6288         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6289                 int start = channel_index;
6290                 if (priv->config & CFG_SPEED_SCAN) {
6291                         int index;
6292                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6293                                 /* nop out the list */
6294                                 [0] = 0
6295                         };
6296
6297                         u8 channel;
6298                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6299                                 channel =
6300                                     priv->speed_scan[priv->speed_scan_pos];
6301                                 if (channel == 0) {
6302                                         priv->speed_scan_pos = 0;
6303                                         channel = priv->speed_scan[0];
6304                                 }
6305                                 if ((priv->status & STATUS_ASSOCIATED) &&
6306                                     channel == priv->channel) {
6307                                         priv->speed_scan_pos++;
6308                                         continue;
6309                                 }
6310
6311                                 /* If this channel has already been
6312                                  * added in scan, break from loop
6313                                  * and this will be the first channel
6314                                  * in the next scan.
6315                                  */
6316                                 if (channels[channel - 1] != 0)
6317                                         break;
6318
6319                                 channels[channel - 1] = 1;
6320                                 priv->speed_scan_pos++;
6321                                 channel_index++;
6322                                 scan->channels_list[channel_index] = channel;
6323                                 index =
6324                                     libipw_channel_to_index(priv->ieee, channel);
6325                                 ipw_set_scan_type(scan, channel_index,
6326                                                   geo->bg[index].
6327                                                   flags &
6328                                                   LIBIPW_CH_PASSIVE_ONLY ?
6329                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6330                                                   : scan_type);
6331                         }
6332                 } else {
6333                         for (i = 0; i < geo->bg_channels; i++) {
6334                                 if ((priv->status & STATUS_ASSOCIATED) &&
6335                                     geo->bg[i].channel == priv->channel)
6336                                         continue;
6337                                 channel_index++;
6338                                 scan->channels_list[channel_index] =
6339                                     geo->bg[i].channel;
6340                                 ipw_set_scan_type(scan, channel_index,
6341                                                   geo->bg[i].
6342                                                   flags &
6343                                                   LIBIPW_CH_PASSIVE_ONLY ?
6344                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6345                                                   : scan_type);
6346                         }
6347                 }
6348
6349                 if (start != channel_index) {
6350                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6351                             (channel_index - start);
6352                 }
6353         }
6354 }
6355
6356 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6357 {
6358         /* staying on passive channels longer than the DTIM interval during a
6359          * scan, while associated, causes the firmware to cancel the scan
6360          * without notification. Hence, don't stay on passive channels longer
6361          * than the beacon interval.
6362          */
6363         if (priv->status & STATUS_ASSOCIATED
6364             && priv->assoc_network->beacon_interval > 10)
6365                 return priv->assoc_network->beacon_interval - 10;
6366         else
6367                 return 120;
6368 }
6369
6370 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6371 {
6372         struct ipw_scan_request_ext scan;
6373         int err = 0, scan_type;
6374
6375         if (!(priv->status & STATUS_INIT) ||
6376             (priv->status & STATUS_EXIT_PENDING))
6377                 return 0;
6378
6379         mutex_lock(&priv->mutex);
6380
6381         if (direct && (priv->direct_scan_ssid_len == 0)) {
6382                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6383                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6384                 goto done;
6385         }
6386
6387         if (priv->status & STATUS_SCANNING) {
6388                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6389                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6390                                         STATUS_SCAN_PENDING;
6391                 goto done;
6392         }
6393
6394         if (!(priv->status & STATUS_SCAN_FORCED) &&
6395             priv->status & STATUS_SCAN_ABORTING) {
6396                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6397                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6398                                         STATUS_SCAN_PENDING;
6399                 goto done;
6400         }
6401
6402         if (priv->status & STATUS_RF_KILL_MASK) {
6403                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6404                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6405                                         STATUS_SCAN_PENDING;
6406                 goto done;
6407         }
6408
6409         memset(&scan, 0, sizeof(scan));
6410         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6411
6412         if (type == IW_SCAN_TYPE_PASSIVE) {
6413                 IPW_DEBUG_WX("use passive scanning\n");
6414                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6415                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6416                         cpu_to_le16(ipw_passive_dwell_time(priv));
6417                 ipw_add_scan_channels(priv, &scan, scan_type);
6418                 goto send_request;
6419         }
6420
6421         /* Use active scan by default. */
6422         if (priv->config & CFG_SPEED_SCAN)
6423                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6424                         cpu_to_le16(30);
6425         else
6426                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6427                         cpu_to_le16(20);
6428
6429         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6430                 cpu_to_le16(20);
6431
6432         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6433                 cpu_to_le16(ipw_passive_dwell_time(priv));
6434         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6435
6436 #ifdef CONFIG_IPW2200_MONITOR
6437         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6438                 u8 channel;
6439                 u8 band = 0;
6440
6441                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6442                 case LIBIPW_52GHZ_BAND:
6443                         band = (u8) (IPW_A_MODE << 6) | 1;
6444                         channel = priv->channel;
6445                         break;
6446
6447                 case LIBIPW_24GHZ_BAND:
6448                         band = (u8) (IPW_B_MODE << 6) | 1;
6449                         channel = priv->channel;
6450                         break;
6451
6452                 default:
6453                         band = (u8) (IPW_B_MODE << 6) | 1;
6454                         channel = 9;
6455                         break;
6456                 }
6457
6458                 scan.channels_list[0] = band;
6459                 scan.channels_list[1] = channel;
6460                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6461
6462                 /* NOTE:  The card will sit on this channel for this time
6463                  * period.  Scan aborts are timing sensitive and frequently
6464                  * result in firmware restarts.  As such, it is best to
6465                  * set a small dwell_time here and just keep re-issuing
6466                  * scans.  Otherwise fast channel hopping will not actually
6467                  * hop channels.
6468                  *
6469                  * TODO: Move SPEED SCAN support to all modes and bands */
6470                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6471                         cpu_to_le16(2000);
6472         } else {
6473 #endif                          /* CONFIG_IPW2200_MONITOR */
6474                 /* Honor direct scans first, otherwise if we are roaming make
6475                  * this a direct scan for the current network.  Finally,
6476                  * ensure that every other scan is a fast channel hop scan */
6477                 if (direct) {
6478                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6479                                             priv->direct_scan_ssid_len);
6480                         if (err) {
6481                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6482                                              "failed\n");
6483                                 goto done;
6484                         }
6485
6486                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6487                 } else if ((priv->status & STATUS_ROAMING)
6488                            || (!(priv->status & STATUS_ASSOCIATED)
6489                                && (priv->config & CFG_STATIC_ESSID)
6490                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6491                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6492                         if (err) {
6493                                 IPW_DEBUG_HC("Attempt to send SSID command "
6494                                              "failed.\n");
6495                                 goto done;
6496                         }
6497
6498                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6499                 } else
6500                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6501
6502                 ipw_add_scan_channels(priv, &scan, scan_type);
6503 #ifdef CONFIG_IPW2200_MONITOR
6504         }
6505 #endif
6506
6507 send_request:
6508         err = ipw_send_scan_request_ext(priv, &scan);
6509         if (err) {
6510                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6511                 goto done;
6512         }
6513
6514         priv->status |= STATUS_SCANNING;
6515         if (direct) {
6516                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6517                 priv->direct_scan_ssid_len = 0;
6518         } else
6519                 priv->status &= ~STATUS_SCAN_PENDING;
6520
6521         queue_delayed_work(priv->workqueue, &priv->scan_check,
6522                            IPW_SCAN_CHECK_WATCHDOG);
6523 done:
6524         mutex_unlock(&priv->mutex);
6525         return err;
6526 }
6527
6528 static void ipw_request_passive_scan(struct work_struct *work)
6529 {
6530         struct ipw_priv *priv =
6531                 container_of(work, struct ipw_priv, request_passive_scan.work);
6532         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6533 }
6534
6535 static void ipw_request_scan(struct work_struct *work)
6536 {
6537         struct ipw_priv *priv =
6538                 container_of(work, struct ipw_priv, request_scan.work);
6539         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6540 }
6541
6542 static void ipw_request_direct_scan(struct work_struct *work)
6543 {
6544         struct ipw_priv *priv =
6545                 container_of(work, struct ipw_priv, request_direct_scan.work);
6546         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6547 }
6548
6549 static void ipw_bg_abort_scan(struct work_struct *work)
6550 {
6551         struct ipw_priv *priv =
6552                 container_of(work, struct ipw_priv, abort_scan);
6553         mutex_lock(&priv->mutex);
6554         ipw_abort_scan(priv);
6555         mutex_unlock(&priv->mutex);
6556 }
6557
6558 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6559 {
6560         /* This is called when wpa_supplicant loads and closes the driver
6561          * interface. */
6562         priv->ieee->wpa_enabled = value;
6563         return 0;
6564 }
6565
6566 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6567 {
6568         struct libipw_device *ieee = priv->ieee;
6569         struct libipw_security sec = {
6570                 .flags = SEC_AUTH_MODE,
6571         };
6572         int ret = 0;
6573
6574         if (value & IW_AUTH_ALG_SHARED_KEY) {
6575                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6576                 ieee->open_wep = 0;
6577         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6578                 sec.auth_mode = WLAN_AUTH_OPEN;
6579                 ieee->open_wep = 1;
6580         } else if (value & IW_AUTH_ALG_LEAP) {
6581                 sec.auth_mode = WLAN_AUTH_LEAP;
6582                 ieee->open_wep = 1;
6583         } else
6584                 return -EINVAL;
6585
6586         if (ieee->set_security)
6587                 ieee->set_security(ieee->dev, &sec);
6588         else
6589                 ret = -EOPNOTSUPP;
6590
6591         return ret;
6592 }
6593
6594 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6595                                 int wpa_ie_len)
6596 {
6597         /* make sure WPA is enabled */
6598         ipw_wpa_enable(priv, 1);
6599 }
6600
6601 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6602                             char *capabilities, int length)
6603 {
6604         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6605
6606         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6607                                 capabilities);
6608 }
6609
6610 /*
6611  * WE-18 support
6612  */
6613
6614 /* SIOCSIWGENIE */
6615 static int ipw_wx_set_genie(struct net_device *dev,
6616                             struct iw_request_info *info,
6617                             union iwreq_data *wrqu, char *extra)
6618 {
6619         struct ipw_priv *priv = libipw_priv(dev);
6620         struct libipw_device *ieee = priv->ieee;
6621         u8 *buf;
6622         int err = 0;
6623
6624         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6625             (wrqu->data.length && extra == NULL))
6626                 return -EINVAL;
6627
6628         if (wrqu->data.length) {
6629                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6630                 if (buf == NULL) {
6631                         err = -ENOMEM;
6632                         goto out;
6633                 }
6634
6635                 memcpy(buf, extra, wrqu->data.length);
6636                 kfree(ieee->wpa_ie);
6637                 ieee->wpa_ie = buf;
6638                 ieee->wpa_ie_len = wrqu->data.length;
6639         } else {
6640                 kfree(ieee->wpa_ie);
6641                 ieee->wpa_ie = NULL;
6642                 ieee->wpa_ie_len = 0;
6643         }
6644
6645         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6646       out:
6647         return err;
6648 }
6649
6650 /* SIOCGIWGENIE */
6651 static int ipw_wx_get_genie(struct net_device *dev,
6652                             struct iw_request_info *info,
6653                             union iwreq_data *wrqu, char *extra)
6654 {
6655         struct ipw_priv *priv = libipw_priv(dev);
6656         struct libipw_device *ieee = priv->ieee;
6657         int err = 0;
6658
6659         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6660                 wrqu->data.length = 0;
6661                 goto out;
6662         }
6663
6664         if (wrqu->data.length < ieee->wpa_ie_len) {
6665                 err = -E2BIG;
6666                 goto out;
6667         }
6668
6669         wrqu->data.length = ieee->wpa_ie_len;
6670         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6671
6672       out:
6673         return err;
6674 }
6675
6676 static int wext_cipher2level(int cipher)
6677 {
6678         switch (cipher) {
6679         case IW_AUTH_CIPHER_NONE:
6680                 return SEC_LEVEL_0;
6681         case IW_AUTH_CIPHER_WEP40:
6682         case IW_AUTH_CIPHER_WEP104:
6683                 return SEC_LEVEL_1;
6684         case IW_AUTH_CIPHER_TKIP:
6685                 return SEC_LEVEL_2;
6686         case IW_AUTH_CIPHER_CCMP:
6687                 return SEC_LEVEL_3;
6688         default:
6689                 return -1;
6690         }
6691 }
6692
6693 /* SIOCSIWAUTH */
6694 static int ipw_wx_set_auth(struct net_device *dev,
6695                            struct iw_request_info *info,
6696                            union iwreq_data *wrqu, char *extra)
6697 {
6698         struct ipw_priv *priv = libipw_priv(dev);
6699         struct libipw_device *ieee = priv->ieee;
6700         struct iw_param *param = &wrqu->param;
6701         struct lib80211_crypt_data *crypt;
6702         unsigned long flags;
6703         int ret = 0;
6704
6705         switch (param->flags & IW_AUTH_INDEX) {
6706         case IW_AUTH_WPA_VERSION:
6707                 break;
6708         case IW_AUTH_CIPHER_PAIRWISE:
6709                 ipw_set_hw_decrypt_unicast(priv,
6710                                            wext_cipher2level(param->value));
6711                 break;
6712         case IW_AUTH_CIPHER_GROUP:
6713                 ipw_set_hw_decrypt_multicast(priv,
6714                                              wext_cipher2level(param->value));
6715                 break;
6716         case IW_AUTH_KEY_MGMT:
6717                 /*
6718                  * ipw2200 does not use these parameters
6719                  */
6720                 break;
6721
6722         case IW_AUTH_TKIP_COUNTERMEASURES:
6723                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6724                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6725                         break;
6726
6727                 flags = crypt->ops->get_flags(crypt->priv);
6728
6729                 if (param->value)
6730                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6731                 else
6732                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6733
6734                 crypt->ops->set_flags(flags, crypt->priv);
6735
6736                 break;
6737
6738         case IW_AUTH_DROP_UNENCRYPTED:{
6739                         /* HACK:
6740                          *
6741                          * wpa_supplicant calls set_wpa_enabled when the driver
6742                          * is loaded and unloaded, regardless of if WPA is being
6743                          * used.  No other calls are made which can be used to
6744                          * determine if encryption will be used or not prior to
6745                          * association being expected.  If encryption is not being
6746                          * used, drop_unencrypted is set to false, else true -- we
6747                          * can use this to determine if the CAP_PRIVACY_ON bit should
6748                          * be set.
6749                          */
6750                         struct libipw_security sec = {
6751                                 .flags = SEC_ENABLED,
6752                                 .enabled = param->value,
6753                         };
6754                         priv->ieee->drop_unencrypted = param->value;
6755                         /* We only change SEC_LEVEL for open mode. Others
6756                          * are set by ipw_wpa_set_encryption.
6757                          */
6758                         if (!param->value) {
6759                                 sec.flags |= SEC_LEVEL;
6760                                 sec.level = SEC_LEVEL_0;
6761                         } else {
6762                                 sec.flags |= SEC_LEVEL;
6763                                 sec.level = SEC_LEVEL_1;
6764                         }
6765                         if (priv->ieee->set_security)
6766                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6767                         break;
6768                 }
6769
6770         case IW_AUTH_80211_AUTH_ALG:
6771                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6772                 break;
6773
6774         case IW_AUTH_WPA_ENABLED:
6775                 ret = ipw_wpa_enable(priv, param->value);
6776                 ipw_disassociate(priv);
6777                 break;
6778
6779         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6780                 ieee->ieee802_1x = param->value;
6781                 break;
6782
6783         case IW_AUTH_PRIVACY_INVOKED:
6784                 ieee->privacy_invoked = param->value;
6785                 break;
6786
6787         default:
6788                 return -EOPNOTSUPP;
6789         }
6790         return ret;
6791 }
6792
6793 /* SIOCGIWAUTH */
6794 static int ipw_wx_get_auth(struct net_device *dev,
6795                            struct iw_request_info *info,
6796                            union iwreq_data *wrqu, char *extra)
6797 {
6798         struct ipw_priv *priv = libipw_priv(dev);
6799         struct libipw_device *ieee = priv->ieee;
6800         struct lib80211_crypt_data *crypt;
6801         struct iw_param *param = &wrqu->param;
6802         int ret = 0;
6803
6804         switch (param->flags & IW_AUTH_INDEX) {
6805         case IW_AUTH_WPA_VERSION:
6806         case IW_AUTH_CIPHER_PAIRWISE:
6807         case IW_AUTH_CIPHER_GROUP:
6808         case IW_AUTH_KEY_MGMT:
6809                 /*
6810                  * wpa_supplicant will control these internally
6811                  */
6812                 ret = -EOPNOTSUPP;
6813                 break;
6814
6815         case IW_AUTH_TKIP_COUNTERMEASURES:
6816                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6817                 if (!crypt || !crypt->ops->get_flags)
6818                         break;
6819
6820                 param->value = (crypt->ops->get_flags(crypt->priv) &
6821                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6822
6823                 break;
6824
6825         case IW_AUTH_DROP_UNENCRYPTED:
6826                 param->value = ieee->drop_unencrypted;
6827                 break;
6828
6829         case IW_AUTH_80211_AUTH_ALG:
6830                 param->value = ieee->sec.auth_mode;
6831                 break;
6832
6833         case IW_AUTH_WPA_ENABLED:
6834                 param->value = ieee->wpa_enabled;
6835                 break;
6836
6837         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6838                 param->value = ieee->ieee802_1x;
6839                 break;
6840
6841         case IW_AUTH_ROAMING_CONTROL:
6842         case IW_AUTH_PRIVACY_INVOKED:
6843                 param->value = ieee->privacy_invoked;
6844                 break;
6845
6846         default:
6847                 return -EOPNOTSUPP;
6848         }
6849         return 0;
6850 }
6851
6852 /* SIOCSIWENCODEEXT */
6853 static int ipw_wx_set_encodeext(struct net_device *dev,
6854                                 struct iw_request_info *info,
6855                                 union iwreq_data *wrqu, char *extra)
6856 {
6857         struct ipw_priv *priv = libipw_priv(dev);
6858         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6859
6860         if (hwcrypto) {
6861                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6862                         /* IPW HW can't build TKIP MIC,
6863                            host decryption still needed */
6864                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6865                                 priv->ieee->host_mc_decrypt = 1;
6866                         else {
6867                                 priv->ieee->host_encrypt = 0;
6868                                 priv->ieee->host_encrypt_msdu = 1;
6869                                 priv->ieee->host_decrypt = 1;
6870                         }
6871                 } else {
6872                         priv->ieee->host_encrypt = 0;
6873                         priv->ieee->host_encrypt_msdu = 0;
6874                         priv->ieee->host_decrypt = 0;
6875                         priv->ieee->host_mc_decrypt = 0;
6876                 }
6877         }
6878
6879         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6880 }
6881
6882 /* SIOCGIWENCODEEXT */
6883 static int ipw_wx_get_encodeext(struct net_device *dev,
6884                                 struct iw_request_info *info,
6885                                 union iwreq_data *wrqu, char *extra)
6886 {
6887         struct ipw_priv *priv = libipw_priv(dev);
6888         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6889 }
6890
6891 /* SIOCSIWMLME */
6892 static int ipw_wx_set_mlme(struct net_device *dev,
6893                            struct iw_request_info *info,
6894                            union iwreq_data *wrqu, char *extra)
6895 {
6896         struct ipw_priv *priv = libipw_priv(dev);
6897         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6898         __le16 reason;
6899
6900         reason = cpu_to_le16(mlme->reason_code);
6901
6902         switch (mlme->cmd) {
6903         case IW_MLME_DEAUTH:
6904                 /* silently ignore */
6905                 break;
6906
6907         case IW_MLME_DISASSOC:
6908                 ipw_disassociate(priv);
6909                 break;
6910
6911         default:
6912                 return -EOPNOTSUPP;
6913         }
6914         return 0;
6915 }
6916
6917 #ifdef CONFIG_IPW2200_QOS
6918
6919 /* QoS */
6920 /*
6921 * get the modulation type of the current network or
6922 * the card current mode
6923 */
6924 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6925 {
6926         u8 mode = 0;
6927
6928         if (priv->status & STATUS_ASSOCIATED) {
6929                 unsigned long flags;
6930
6931                 spin_lock_irqsave(&priv->ieee->lock, flags);
6932                 mode = priv->assoc_network->mode;
6933                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6934         } else {
6935                 mode = priv->ieee->mode;
6936         }
6937         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6938         return mode;
6939 }
6940
6941 /*
6942 * Handle management frame beacon and probe response
6943 */
6944 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6945                                          int active_network,
6946                                          struct libipw_network *network)
6947 {
6948         u32 size = sizeof(struct libipw_qos_parameters);
6949
6950         if (network->capability & WLAN_CAPABILITY_IBSS)
6951                 network->qos_data.active = network->qos_data.supported;
6952
6953         if (network->flags & NETWORK_HAS_QOS_MASK) {
6954                 if (active_network &&
6955                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6956                         network->qos_data.active = network->qos_data.supported;
6957
6958                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6959                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6960                     (network->qos_data.old_param_count !=
6961                      network->qos_data.param_count)) {
6962                         network->qos_data.old_param_count =
6963                             network->qos_data.param_count;
6964                         schedule_work(&priv->qos_activate);
6965                         IPW_DEBUG_QOS("QoS parameters change call "
6966                                       "qos_activate\n");
6967                 }
6968         } else {
6969                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6970                         memcpy(&network->qos_data.parameters,
6971                                &def_parameters_CCK, size);
6972                 else
6973                         memcpy(&network->qos_data.parameters,
6974                                &def_parameters_OFDM, size);
6975
6976                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6977                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6978                         schedule_work(&priv->qos_activate);
6979                 }
6980
6981                 network->qos_data.active = 0;
6982                 network->qos_data.supported = 0;
6983         }
6984         if ((priv->status & STATUS_ASSOCIATED) &&
6985             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6986                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6987                         if (network->capability & WLAN_CAPABILITY_IBSS)
6988                                 if ((network->ssid_len ==
6989                                      priv->assoc_network->ssid_len) &&
6990                                     !memcmp(network->ssid,
6991                                             priv->assoc_network->ssid,
6992                                             network->ssid_len)) {
6993                                         queue_work(priv->workqueue,
6994                                                    &priv->merge_networks);
6995                                 }
6996         }
6997
6998         return 0;
6999 }
7000
7001 /*
7002 * This function set up the firmware to support QoS. It sends
7003 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7004 */
7005 static int ipw_qos_activate(struct ipw_priv *priv,
7006                             struct libipw_qos_data *qos_network_data)
7007 {
7008         int err;
7009         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7010         struct libipw_qos_parameters *active_one = NULL;
7011         u32 size = sizeof(struct libipw_qos_parameters);
7012         u32 burst_duration;
7013         int i;
7014         u8 type;
7015
7016         type = ipw_qos_current_mode(priv);
7017
7018         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7019         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7020         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7021         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7022
7023         if (qos_network_data == NULL) {
7024                 if (type == IEEE_B) {
7025                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7026                         active_one = &def_parameters_CCK;
7027                 } else
7028                         active_one = &def_parameters_OFDM;
7029
7030                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7031                 burst_duration = ipw_qos_get_burst_duration(priv);
7032                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7033                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7034                             cpu_to_le16(burst_duration);
7035         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7036                 if (type == IEEE_B) {
7037                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7038                                       type);
7039                         if (priv->qos_data.qos_enable == 0)
7040                                 active_one = &def_parameters_CCK;
7041                         else
7042                                 active_one = priv->qos_data.def_qos_parm_CCK;
7043                 } else {
7044                         if (priv->qos_data.qos_enable == 0)
7045                                 active_one = &def_parameters_OFDM;
7046                         else
7047                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7048                 }
7049                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7050         } else {
7051                 unsigned long flags;
7052                 int active;
7053
7054                 spin_lock_irqsave(&priv->ieee->lock, flags);
7055                 active_one = &(qos_network_data->parameters);
7056                 qos_network_data->old_param_count =
7057                     qos_network_data->param_count;
7058                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7059                 active = qos_network_data->supported;
7060                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7061
7062                 if (active == 0) {
7063                         burst_duration = ipw_qos_get_burst_duration(priv);
7064                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7065                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7066                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7067                 }
7068         }
7069
7070         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7071         err = ipw_send_qos_params_command(priv,
7072                                           (struct libipw_qos_parameters *)
7073                                           &(qos_parameters[0]));
7074         if (err)
7075                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7076
7077         return err;
7078 }
7079
7080 /*
7081 * send IPW_CMD_WME_INFO to the firmware
7082 */
7083 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7084 {
7085         int ret = 0;
7086         struct libipw_qos_information_element qos_info;
7087
7088         if (priv == NULL)
7089                 return -1;
7090
7091         qos_info.elementID = QOS_ELEMENT_ID;
7092         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7093
7094         qos_info.version = QOS_VERSION_1;
7095         qos_info.ac_info = 0;
7096
7097         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7098         qos_info.qui_type = QOS_OUI_TYPE;
7099         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7100
7101         ret = ipw_send_qos_info_command(priv, &qos_info);
7102         if (ret != 0) {
7103                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7104         }
7105         return ret;
7106 }
7107
7108 /*
7109 * Set the QoS parameter with the association request structure
7110 */
7111 static int ipw_qos_association(struct ipw_priv *priv,
7112                                struct libipw_network *network)
7113 {
7114         int err = 0;
7115         struct libipw_qos_data *qos_data = NULL;
7116         struct libipw_qos_data ibss_data = {
7117                 .supported = 1,
7118                 .active = 1,
7119         };
7120
7121         switch (priv->ieee->iw_mode) {
7122         case IW_MODE_ADHOC:
7123                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7124
7125                 qos_data = &ibss_data;
7126                 break;
7127
7128         case IW_MODE_INFRA:
7129                 qos_data = &network->qos_data;
7130                 break;
7131
7132         default:
7133                 BUG();
7134                 break;
7135         }
7136
7137         err = ipw_qos_activate(priv, qos_data);
7138         if (err) {
7139                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7140                 return err;
7141         }
7142
7143         if (priv->qos_data.qos_enable && qos_data->supported) {
7144                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7145                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7146                 return ipw_qos_set_info_element(priv);
7147         }
7148
7149         return 0;
7150 }
7151
7152 /*
7153 * handling the beaconing responses. if we get different QoS setting
7154 * off the network from the associated setting, adjust the QoS
7155 * setting
7156 */
7157 static int ipw_qos_association_resp(struct ipw_priv *priv,
7158                                     struct libipw_network *network)
7159 {
7160         int ret = 0;
7161         unsigned long flags;
7162         u32 size = sizeof(struct libipw_qos_parameters);
7163         int set_qos_param = 0;
7164
7165         if ((priv == NULL) || (network == NULL) ||
7166             (priv->assoc_network == NULL))
7167                 return ret;
7168
7169         if (!(priv->status & STATUS_ASSOCIATED))
7170                 return ret;
7171
7172         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7173                 return ret;
7174
7175         spin_lock_irqsave(&priv->ieee->lock, flags);
7176         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7177                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7178                        sizeof(struct libipw_qos_data));
7179                 priv->assoc_network->qos_data.active = 1;
7180                 if ((network->qos_data.old_param_count !=
7181                      network->qos_data.param_count)) {
7182                         set_qos_param = 1;
7183                         network->qos_data.old_param_count =
7184                             network->qos_data.param_count;
7185                 }
7186
7187         } else {
7188                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7189                         memcpy(&priv->assoc_network->qos_data.parameters,
7190                                &def_parameters_CCK, size);
7191                 else
7192                         memcpy(&priv->assoc_network->qos_data.parameters,
7193                                &def_parameters_OFDM, size);
7194                 priv->assoc_network->qos_data.active = 0;
7195                 priv->assoc_network->qos_data.supported = 0;
7196                 set_qos_param = 1;
7197         }
7198
7199         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7200
7201         if (set_qos_param == 1)
7202                 schedule_work(&priv->qos_activate);
7203
7204         return ret;
7205 }
7206
7207 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7208 {
7209         u32 ret = 0;
7210
7211         if ((priv == NULL))
7212                 return 0;
7213
7214         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7215                 ret = priv->qos_data.burst_duration_CCK;
7216         else
7217                 ret = priv->qos_data.burst_duration_OFDM;
7218
7219         return ret;
7220 }
7221
7222 /*
7223 * Initialize the setting of QoS global
7224 */
7225 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7226                          int burst_enable, u32 burst_duration_CCK,
7227                          u32 burst_duration_OFDM)
7228 {
7229         priv->qos_data.qos_enable = enable;
7230
7231         if (priv->qos_data.qos_enable) {
7232                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7233                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7234                 IPW_DEBUG_QOS("QoS is enabled\n");
7235         } else {
7236                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7237                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7238                 IPW_DEBUG_QOS("QoS is not enabled\n");
7239         }
7240
7241         priv->qos_data.burst_enable = burst_enable;
7242
7243         if (burst_enable) {
7244                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7245                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7246         } else {
7247                 priv->qos_data.burst_duration_CCK = 0;
7248                 priv->qos_data.burst_duration_OFDM = 0;
7249         }
7250 }
7251
7252 /*
7253 * map the packet priority to the right TX Queue
7254 */
7255 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7256 {
7257         if (priority > 7 || !priv->qos_data.qos_enable)
7258                 priority = 0;
7259
7260         return from_priority_to_tx_queue[priority] - 1;
7261 }
7262
7263 static int ipw_is_qos_active(struct net_device *dev,
7264                              struct sk_buff *skb)
7265 {
7266         struct ipw_priv *priv = libipw_priv(dev);
7267         struct libipw_qos_data *qos_data = NULL;
7268         int active, supported;
7269         u8 *daddr = skb->data + ETH_ALEN;
7270         int unicast = !is_multicast_ether_addr(daddr);
7271
7272         if (!(priv->status & STATUS_ASSOCIATED))
7273                 return 0;
7274
7275         qos_data = &priv->assoc_network->qos_data;
7276
7277         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7278                 if (unicast == 0)
7279                         qos_data->active = 0;
7280                 else
7281                         qos_data->active = qos_data->supported;
7282         }
7283         active = qos_data->active;
7284         supported = qos_data->supported;
7285         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7286                       "unicast %d\n",
7287                       priv->qos_data.qos_enable, active, supported, unicast);
7288         if (active && priv->qos_data.qos_enable)
7289                 return 1;
7290
7291         return 0;
7292
7293 }
7294 /*
7295 * add QoS parameter to the TX command
7296 */
7297 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7298                                         u16 priority,
7299                                         struct tfd_data *tfd)
7300 {
7301         int tx_queue_id = 0;
7302
7303
7304         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7305         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7306
7307         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7308                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7309                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7310         }
7311         return 0;
7312 }
7313
7314 /*
7315 * background support to run QoS activate functionality
7316 */
7317 static void ipw_bg_qos_activate(struct work_struct *work)
7318 {
7319         struct ipw_priv *priv =
7320                 container_of(work, struct ipw_priv, qos_activate);
7321
7322         mutex_lock(&priv->mutex);
7323
7324         if (priv->status & STATUS_ASSOCIATED)
7325                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7326
7327         mutex_unlock(&priv->mutex);
7328 }
7329
7330 static int ipw_handle_probe_response(struct net_device *dev,
7331                                      struct libipw_probe_response *resp,
7332                                      struct libipw_network *network)
7333 {
7334         struct ipw_priv *priv = libipw_priv(dev);
7335         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7336                               (network == priv->assoc_network));
7337
7338         ipw_qos_handle_probe_response(priv, active_network, network);
7339
7340         return 0;
7341 }
7342
7343 static int ipw_handle_beacon(struct net_device *dev,
7344                              struct libipw_beacon *resp,
7345                              struct libipw_network *network)
7346 {
7347         struct ipw_priv *priv = libipw_priv(dev);
7348         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7349                               (network == priv->assoc_network));
7350
7351         ipw_qos_handle_probe_response(priv, active_network, network);
7352
7353         return 0;
7354 }
7355
7356 static int ipw_handle_assoc_response(struct net_device *dev,
7357                                      struct libipw_assoc_response *resp,
7358                                      struct libipw_network *network)
7359 {
7360         struct ipw_priv *priv = libipw_priv(dev);
7361         ipw_qos_association_resp(priv, network);
7362         return 0;
7363 }
7364
7365 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7366                                        *qos_param)
7367 {
7368         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7369                                 sizeof(*qos_param) * 3, qos_param);
7370 }
7371
7372 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7373                                      *qos_param)
7374 {
7375         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7376                                 qos_param);
7377 }
7378
7379 #endif                          /* CONFIG_IPW2200_QOS */
7380
7381 static int ipw_associate_network(struct ipw_priv *priv,
7382                                  struct libipw_network *network,
7383                                  struct ipw_supported_rates *rates, int roaming)
7384 {
7385         int err;
7386         DECLARE_SSID_BUF(ssid);
7387
7388         if (priv->config & CFG_FIXED_RATE)
7389                 ipw_set_fixed_rate(priv, network->mode);
7390
7391         if (!(priv->config & CFG_STATIC_ESSID)) {
7392                 priv->essid_len = min(network->ssid_len,
7393                                       (u8) IW_ESSID_MAX_SIZE);
7394                 memcpy(priv->essid, network->ssid, priv->essid_len);
7395         }
7396
7397         network->last_associate = jiffies;
7398
7399         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7400         priv->assoc_request.channel = network->channel;
7401         priv->assoc_request.auth_key = 0;
7402
7403         if ((priv->capability & CAP_PRIVACY_ON) &&
7404             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7405                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7406                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7407
7408                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7409                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7410
7411         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7412                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7413                 priv->assoc_request.auth_type = AUTH_LEAP;
7414         else
7415                 priv->assoc_request.auth_type = AUTH_OPEN;
7416
7417         if (priv->ieee->wpa_ie_len) {
7418                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7419                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7420                                  priv->ieee->wpa_ie_len);
7421         }
7422
7423         /*
7424          * It is valid for our ieee device to support multiple modes, but
7425          * when it comes to associating to a given network we have to choose
7426          * just one mode.
7427          */
7428         if (network->mode & priv->ieee->mode & IEEE_A)
7429                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7430         else if (network->mode & priv->ieee->mode & IEEE_G)
7431                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7432         else if (network->mode & priv->ieee->mode & IEEE_B)
7433                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7434
7435         priv->assoc_request.capability = cpu_to_le16(network->capability);
7436         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7437             && !(priv->config & CFG_PREAMBLE_LONG)) {
7438                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7439         } else {
7440                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7441
7442                 /* Clear the short preamble if we won't be supporting it */
7443                 priv->assoc_request.capability &=
7444                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7445         }
7446
7447         /* Clear capability bits that aren't used in Ad Hoc */
7448         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7449                 priv->assoc_request.capability &=
7450                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7451
7452         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7453                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7454                         roaming ? "Rea" : "A",
7455                         print_ssid(ssid, priv->essid, priv->essid_len),
7456                         network->channel,
7457                         ipw_modes[priv->assoc_request.ieee_mode],
7458                         rates->num_rates,
7459                         (priv->assoc_request.preamble_length ==
7460                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7461                         network->capability &
7462                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7463                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7464                         priv->capability & CAP_PRIVACY_ON ?
7465                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7466                          "(open)") : "",
7467                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7468                         priv->capability & CAP_PRIVACY_ON ?
7469                         '1' + priv->ieee->sec.active_key : '.',
7470                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7471
7472         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7473         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7474             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7475                 priv->assoc_request.assoc_type = HC_IBSS_START;
7476                 priv->assoc_request.assoc_tsf_msw = 0;
7477                 priv->assoc_request.assoc_tsf_lsw = 0;
7478         } else {
7479                 if (unlikely(roaming))
7480                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7481                 else
7482                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7483                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7484                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7485         }
7486
7487         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7488
7489         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7490                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7491                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7492         } else {
7493                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7494                 priv->assoc_request.atim_window = 0;
7495         }
7496
7497         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7498
7499         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7500         if (err) {
7501                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7502                 return err;
7503         }
7504
7505         rates->ieee_mode = priv->assoc_request.ieee_mode;
7506         rates->purpose = IPW_RATE_CONNECT;
7507         ipw_send_supported_rates(priv, rates);
7508
7509         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7510                 priv->sys_config.dot11g_auto_detection = 1;
7511         else
7512                 priv->sys_config.dot11g_auto_detection = 0;
7513
7514         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7515                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7516         else
7517                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7518
7519         err = ipw_send_system_config(priv);
7520         if (err) {
7521                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7522                 return err;
7523         }
7524
7525         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7526         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7527         if (err) {
7528                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7529                 return err;
7530         }
7531
7532         /*
7533          * If preemption is enabled, it is possible for the association
7534          * to complete before we return from ipw_send_associate.  Therefore
7535          * we have to be sure and update our priviate data first.
7536          */
7537         priv->channel = network->channel;
7538         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7539         priv->status |= STATUS_ASSOCIATING;
7540         priv->status &= ~STATUS_SECURITY_UPDATED;
7541
7542         priv->assoc_network = network;
7543
7544 #ifdef CONFIG_IPW2200_QOS
7545         ipw_qos_association(priv, network);
7546 #endif
7547
7548         err = ipw_send_associate(priv, &priv->assoc_request);
7549         if (err) {
7550                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7551                 return err;
7552         }
7553
7554         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7555                   print_ssid(ssid, priv->essid, priv->essid_len),
7556                   priv->bssid);
7557
7558         return 0;
7559 }
7560
7561 static void ipw_roam(void *data)
7562 {
7563         struct ipw_priv *priv = data;
7564         struct libipw_network *network = NULL;
7565         struct ipw_network_match match = {
7566                 .network = priv->assoc_network
7567         };
7568
7569         /* The roaming process is as follows:
7570          *
7571          * 1.  Missed beacon threshold triggers the roaming process by
7572          *     setting the status ROAM bit and requesting a scan.
7573          * 2.  When the scan completes, it schedules the ROAM work
7574          * 3.  The ROAM work looks at all of the known networks for one that
7575          *     is a better network than the currently associated.  If none
7576          *     found, the ROAM process is over (ROAM bit cleared)
7577          * 4.  If a better network is found, a disassociation request is
7578          *     sent.
7579          * 5.  When the disassociation completes, the roam work is again
7580          *     scheduled.  The second time through, the driver is no longer
7581          *     associated, and the newly selected network is sent an
7582          *     association request.
7583          * 6.  At this point ,the roaming process is complete and the ROAM
7584          *     status bit is cleared.
7585          */
7586
7587         /* If we are no longer associated, and the roaming bit is no longer
7588          * set, then we are not actively roaming, so just return */
7589         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7590                 return;
7591
7592         if (priv->status & STATUS_ASSOCIATED) {
7593                 /* First pass through ROAM process -- look for a better
7594                  * network */
7595                 unsigned long flags;
7596                 u8 rssi = priv->assoc_network->stats.rssi;
7597                 priv->assoc_network->stats.rssi = -128;
7598                 spin_lock_irqsave(&priv->ieee->lock, flags);
7599                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7600                         if (network != priv->assoc_network)
7601                                 ipw_best_network(priv, &match, network, 1);
7602                 }
7603                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7604                 priv->assoc_network->stats.rssi = rssi;
7605
7606                 if (match.network == priv->assoc_network) {
7607                         IPW_DEBUG_ASSOC("No better APs in this network to "
7608                                         "roam to.\n");
7609                         priv->status &= ~STATUS_ROAMING;
7610                         ipw_debug_config(priv);
7611                         return;
7612                 }
7613
7614                 ipw_send_disassociate(priv, 1);
7615                 priv->assoc_network = match.network;
7616
7617                 return;
7618         }
7619
7620         /* Second pass through ROAM process -- request association */
7621         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7622         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7623         priv->status &= ~STATUS_ROAMING;
7624 }
7625
7626 static void ipw_bg_roam(struct work_struct *work)
7627 {
7628         struct ipw_priv *priv =
7629                 container_of(work, struct ipw_priv, roam);
7630         mutex_lock(&priv->mutex);
7631         ipw_roam(priv);
7632         mutex_unlock(&priv->mutex);
7633 }
7634
7635 static int ipw_associate(void *data)
7636 {
7637         struct ipw_priv *priv = data;
7638
7639         struct libipw_network *network = NULL;
7640         struct ipw_network_match match = {
7641                 .network = NULL
7642         };
7643         struct ipw_supported_rates *rates;
7644         struct list_head *element;
7645         unsigned long flags;
7646         DECLARE_SSID_BUF(ssid);
7647
7648         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7649                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7650                 return 0;
7651         }
7652
7653         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7654                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7655                                 "progress)\n");
7656                 return 0;
7657         }
7658
7659         if (priv->status & STATUS_DISASSOCIATING) {
7660                 IPW_DEBUG_ASSOC("Not attempting association (in "
7661                                 "disassociating)\n ");
7662                 queue_work(priv->workqueue, &priv->associate);
7663                 return 0;
7664         }
7665
7666         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7667                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7668                                 "initialized)\n");
7669                 return 0;
7670         }
7671
7672         if (!(priv->config & CFG_ASSOCIATE) &&
7673             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7674                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7675                 return 0;
7676         }
7677
7678         /* Protect our use of the network_list */
7679         spin_lock_irqsave(&priv->ieee->lock, flags);
7680         list_for_each_entry(network, &priv->ieee->network_list, list)
7681             ipw_best_network(priv, &match, network, 0);
7682
7683         network = match.network;
7684         rates = &match.rates;
7685
7686         if (network == NULL &&
7687             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7688             priv->config & CFG_ADHOC_CREATE &&
7689             priv->config & CFG_STATIC_ESSID &&
7690             priv->config & CFG_STATIC_CHANNEL) {
7691                 /* Use oldest network if the free list is empty */
7692                 if (list_empty(&priv->ieee->network_free_list)) {
7693                         struct libipw_network *oldest = NULL;
7694                         struct libipw_network *target;
7695
7696                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7697                                 if ((oldest == NULL) ||
7698                                     (target->last_scanned < oldest->last_scanned))
7699                                         oldest = target;
7700                         }
7701
7702                         /* If there are no more slots, expire the oldest */
7703                         list_del(&oldest->list);
7704                         target = oldest;
7705                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7706                                         "network list.\n",
7707                                         print_ssid(ssid, target->ssid,
7708                                                    target->ssid_len),
7709                                         target->bssid);
7710                         list_add_tail(&target->list,
7711                                       &priv->ieee->network_free_list);
7712                 }
7713
7714                 element = priv->ieee->network_free_list.next;
7715                 network = list_entry(element, struct libipw_network, list);
7716                 ipw_adhoc_create(priv, network);
7717                 rates = &priv->rates;
7718                 list_del(element);
7719                 list_add_tail(&network->list, &priv->ieee->network_list);
7720         }
7721         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7722
7723         /* If we reached the end of the list, then we don't have any valid
7724          * matching APs */
7725         if (!network) {
7726                 ipw_debug_config(priv);
7727
7728                 if (!(priv->status & STATUS_SCANNING)) {
7729                         if (!(priv->config & CFG_SPEED_SCAN))
7730                                 queue_delayed_work(priv->workqueue,
7731                                                    &priv->request_scan,
7732                                                    SCAN_INTERVAL);
7733                         else
7734                                 queue_delayed_work(priv->workqueue,
7735                                                    &priv->request_scan, 0);
7736                 }
7737
7738                 return 0;
7739         }
7740
7741         ipw_associate_network(priv, network, rates, 0);
7742
7743         return 1;
7744 }
7745
7746 static void ipw_bg_associate(struct work_struct *work)
7747 {
7748         struct ipw_priv *priv =
7749                 container_of(work, struct ipw_priv, associate);
7750         mutex_lock(&priv->mutex);
7751         ipw_associate(priv);
7752         mutex_unlock(&priv->mutex);
7753 }
7754
7755 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7756                                       struct sk_buff *skb)
7757 {
7758         struct ieee80211_hdr *hdr;
7759         u16 fc;
7760
7761         hdr = (struct ieee80211_hdr *)skb->data;
7762         fc = le16_to_cpu(hdr->frame_control);
7763         if (!(fc & IEEE80211_FCTL_PROTECTED))
7764                 return;
7765
7766         fc &= ~IEEE80211_FCTL_PROTECTED;
7767         hdr->frame_control = cpu_to_le16(fc);
7768         switch (priv->ieee->sec.level) {
7769         case SEC_LEVEL_3:
7770                 /* Remove CCMP HDR */
7771                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7772                         skb->data + LIBIPW_3ADDR_LEN + 8,
7773                         skb->len - LIBIPW_3ADDR_LEN - 8);
7774                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7775                 break;
7776         case SEC_LEVEL_2:
7777                 break;
7778         case SEC_LEVEL_1:
7779                 /* Remove IV */
7780                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7781                         skb->data + LIBIPW_3ADDR_LEN + 4,
7782                         skb->len - LIBIPW_3ADDR_LEN - 4);
7783                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7784                 break;
7785         case SEC_LEVEL_0:
7786                 break;
7787         default:
7788                 printk(KERN_ERR "Unknown security level %d\n",
7789                        priv->ieee->sec.level);
7790                 break;
7791         }
7792 }
7793
7794 static void ipw_handle_data_packet(struct ipw_priv *priv,
7795                                    struct ipw_rx_mem_buffer *rxb,
7796                                    struct libipw_rx_stats *stats)
7797 {
7798         struct net_device *dev = priv->net_dev;
7799         struct libipw_hdr_4addr *hdr;
7800         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7801
7802         /* We received data from the HW, so stop the watchdog */
7803         dev->trans_start = jiffies;
7804
7805         /* We only process data packets if the
7806          * interface is open */
7807         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7808                      skb_tailroom(rxb->skb))) {
7809                 dev->stats.rx_errors++;
7810                 priv->wstats.discard.misc++;
7811                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7812                 return;
7813         } else if (unlikely(!netif_running(priv->net_dev))) {
7814                 dev->stats.rx_dropped++;
7815                 priv->wstats.discard.misc++;
7816                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7817                 return;
7818         }
7819
7820         /* Advance skb->data to the start of the actual payload */
7821         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7822
7823         /* Set the size of the skb to the size of the frame */
7824         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7825
7826         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7827
7828         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7829         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7830         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7831             (is_multicast_ether_addr(hdr->addr1) ?
7832              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7833                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7834
7835         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7836                 dev->stats.rx_errors++;
7837         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7838                 rxb->skb = NULL;
7839                 __ipw_led_activity_on(priv);
7840         }
7841 }
7842
7843 #ifdef CONFIG_IPW2200_RADIOTAP
7844 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7845                                            struct ipw_rx_mem_buffer *rxb,
7846                                            struct libipw_rx_stats *stats)
7847 {
7848         struct net_device *dev = priv->net_dev;
7849         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7850         struct ipw_rx_frame *frame = &pkt->u.frame;
7851
7852         /* initial pull of some data */
7853         u16 received_channel = frame->received_channel;
7854         u8 antennaAndPhy = frame->antennaAndPhy;
7855         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7856         u16 pktrate = frame->rate;
7857
7858         /* Magic struct that slots into the radiotap header -- no reason
7859          * to build this manually element by element, we can write it much
7860          * more efficiently than we can parse it. ORDER MATTERS HERE */
7861         struct ipw_rt_hdr *ipw_rt;
7862
7863         short len = le16_to_cpu(pkt->u.frame.length);
7864
7865         /* We received data from the HW, so stop the watchdog */
7866         dev->trans_start = jiffies;
7867
7868         /* We only process data packets if the
7869          * interface is open */
7870         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7871                      skb_tailroom(rxb->skb))) {
7872                 dev->stats.rx_errors++;
7873                 priv->wstats.discard.misc++;
7874                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7875                 return;
7876         } else if (unlikely(!netif_running(priv->net_dev))) {
7877                 dev->stats.rx_dropped++;
7878                 priv->wstats.discard.misc++;
7879                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7880                 return;
7881         }
7882
7883         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7884          * that now */
7885         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7886                 /* FIXME: Should alloc bigger skb instead */
7887                 dev->stats.rx_dropped++;
7888                 priv->wstats.discard.misc++;
7889                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7890                 return;
7891         }
7892
7893         /* copy the frame itself */
7894         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7895                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7896
7897         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7898
7899         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7900         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7901         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7902
7903         /* Big bitfield of all the fields we provide in radiotap */
7904         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7905              (1 << IEEE80211_RADIOTAP_TSFT) |
7906              (1 << IEEE80211_RADIOTAP_FLAGS) |
7907              (1 << IEEE80211_RADIOTAP_RATE) |
7908              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7909              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7910              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7911              (1 << IEEE80211_RADIOTAP_ANTENNA));
7912
7913         /* Zero the flags, we'll add to them as we go */
7914         ipw_rt->rt_flags = 0;
7915         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7916                                frame->parent_tsf[2] << 16 |
7917                                frame->parent_tsf[1] << 8  |
7918                                frame->parent_tsf[0]);
7919
7920         /* Convert signal to DBM */
7921         ipw_rt->rt_dbmsignal = antsignal;
7922         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7923
7924         /* Convert the channel data and set the flags */
7925         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7926         if (received_channel > 14) {    /* 802.11a */
7927                 ipw_rt->rt_chbitmask =
7928                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7929         } else if (antennaAndPhy & 32) {        /* 802.11b */
7930                 ipw_rt->rt_chbitmask =
7931                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7932         } else {                /* 802.11g */
7933                 ipw_rt->rt_chbitmask =
7934                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7935         }
7936
7937         /* set the rate in multiples of 500k/s */
7938         switch (pktrate) {
7939         case IPW_TX_RATE_1MB:
7940                 ipw_rt->rt_rate = 2;
7941                 break;
7942         case IPW_TX_RATE_2MB:
7943                 ipw_rt->rt_rate = 4;
7944                 break;
7945         case IPW_TX_RATE_5MB:
7946                 ipw_rt->rt_rate = 10;
7947                 break;
7948         case IPW_TX_RATE_6MB:
7949                 ipw_rt->rt_rate = 12;
7950                 break;
7951         case IPW_TX_RATE_9MB:
7952                 ipw_rt->rt_rate = 18;
7953                 break;
7954         case IPW_TX_RATE_11MB:
7955                 ipw_rt->rt_rate = 22;
7956                 break;
7957         case IPW_TX_RATE_12MB:
7958                 ipw_rt->rt_rate = 24;
7959                 break;
7960         case IPW_TX_RATE_18MB:
7961                 ipw_rt->rt_rate = 36;
7962                 break;
7963         case IPW_TX_RATE_24MB:
7964                 ipw_rt->rt_rate = 48;
7965                 break;
7966         case IPW_TX_RATE_36MB:
7967                 ipw_rt->rt_rate = 72;
7968                 break;
7969         case IPW_TX_RATE_48MB:
7970                 ipw_rt->rt_rate = 96;
7971                 break;
7972         case IPW_TX_RATE_54MB:
7973                 ipw_rt->rt_rate = 108;
7974                 break;
7975         default:
7976                 ipw_rt->rt_rate = 0;
7977                 break;
7978         }
7979
7980         /* antenna number */
7981         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7982
7983         /* set the preamble flag if we have it */
7984         if ((antennaAndPhy & 64))
7985                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7986
7987         /* Set the size of the skb to the size of the frame */
7988         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7989
7990         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7991
7992         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7993                 dev->stats.rx_errors++;
7994         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7995                 rxb->skb = NULL;
7996                 /* no LED during capture */
7997         }
7998 }
7999 #endif
8000
8001 #ifdef CONFIG_IPW2200_PROMISCUOUS
8002 #define libipw_is_probe_response(fc) \
8003    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8004     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8005
8006 #define libipw_is_management(fc) \
8007    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8008
8009 #define libipw_is_control(fc) \
8010    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8011
8012 #define libipw_is_data(fc) \
8013    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8014
8015 #define libipw_is_assoc_request(fc) \
8016    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8017
8018 #define libipw_is_reassoc_request(fc) \
8019    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8020
8021 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8022                                       struct ipw_rx_mem_buffer *rxb,
8023                                       struct libipw_rx_stats *stats)
8024 {
8025         struct net_device *dev = priv->prom_net_dev;
8026         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8027         struct ipw_rx_frame *frame = &pkt->u.frame;
8028         struct ipw_rt_hdr *ipw_rt;
8029
8030         /* First cache any information we need before we overwrite
8031          * the information provided in the skb from the hardware */
8032         struct ieee80211_hdr *hdr;
8033         u16 channel = frame->received_channel;
8034         u8 phy_flags = frame->antennaAndPhy;
8035         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8036         s8 noise = (s8) le16_to_cpu(frame->noise);
8037         u8 rate = frame->rate;
8038         short len = le16_to_cpu(pkt->u.frame.length);
8039         struct sk_buff *skb;
8040         int hdr_only = 0;
8041         u16 filter = priv->prom_priv->filter;
8042
8043         /* If the filter is set to not include Rx frames then return */
8044         if (filter & IPW_PROM_NO_RX)
8045                 return;
8046
8047         /* We received data from the HW, so stop the watchdog */
8048         dev->trans_start = jiffies;
8049
8050         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8051                 dev->stats.rx_errors++;
8052                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8053                 return;
8054         }
8055
8056         /* We only process data packets if the interface is open */
8057         if (unlikely(!netif_running(dev))) {
8058                 dev->stats.rx_dropped++;
8059                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8060                 return;
8061         }
8062
8063         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8064          * that now */
8065         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8066                 /* FIXME: Should alloc bigger skb instead */
8067                 dev->stats.rx_dropped++;
8068                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8069                 return;
8070         }
8071
8072         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8073         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8074                 if (filter & IPW_PROM_NO_MGMT)
8075                         return;
8076                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8077                         hdr_only = 1;
8078         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8079                 if (filter & IPW_PROM_NO_CTL)
8080                         return;
8081                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8082                         hdr_only = 1;
8083         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8084                 if (filter & IPW_PROM_NO_DATA)
8085                         return;
8086                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8087                         hdr_only = 1;
8088         }
8089
8090         /* Copy the SKB since this is for the promiscuous side */
8091         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8092         if (skb == NULL) {
8093                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8094                 return;
8095         }
8096
8097         /* copy the frame data to write after where the radiotap header goes */
8098         ipw_rt = (void *)skb->data;
8099
8100         if (hdr_only)
8101                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8102
8103         memcpy(ipw_rt->payload, hdr, len);
8104
8105         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8106         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8107         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8108
8109         /* Set the size of the skb to the size of the frame */
8110         skb_put(skb, sizeof(*ipw_rt) + len);
8111
8112         /* Big bitfield of all the fields we provide in radiotap */
8113         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8114              (1 << IEEE80211_RADIOTAP_TSFT) |
8115              (1 << IEEE80211_RADIOTAP_FLAGS) |
8116              (1 << IEEE80211_RADIOTAP_RATE) |
8117              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8118              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8119              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8120              (1 << IEEE80211_RADIOTAP_ANTENNA));
8121
8122         /* Zero the flags, we'll add to them as we go */
8123         ipw_rt->rt_flags = 0;
8124         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8125                                frame->parent_tsf[2] << 16 |
8126                                frame->parent_tsf[1] << 8  |
8127                                frame->parent_tsf[0]);
8128
8129         /* Convert to DBM */
8130         ipw_rt->rt_dbmsignal = signal;
8131         ipw_rt->rt_dbmnoise = noise;
8132
8133         /* Convert the channel data and set the flags */
8134         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8135         if (channel > 14) {     /* 802.11a */
8136                 ipw_rt->rt_chbitmask =
8137                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8138         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8139                 ipw_rt->rt_chbitmask =
8140                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8141         } else {                /* 802.11g */
8142                 ipw_rt->rt_chbitmask =
8143                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8144         }
8145
8146         /* set the rate in multiples of 500k/s */
8147         switch (rate) {
8148         case IPW_TX_RATE_1MB:
8149                 ipw_rt->rt_rate = 2;
8150                 break;
8151         case IPW_TX_RATE_2MB:
8152                 ipw_rt->rt_rate = 4;
8153                 break;
8154         case IPW_TX_RATE_5MB:
8155                 ipw_rt->rt_rate = 10;
8156                 break;
8157         case IPW_TX_RATE_6MB:
8158                 ipw_rt->rt_rate = 12;
8159                 break;
8160         case IPW_TX_RATE_9MB:
8161                 ipw_rt->rt_rate = 18;
8162                 break;
8163         case IPW_TX_RATE_11MB:
8164                 ipw_rt->rt_rate = 22;
8165                 break;
8166         case IPW_TX_RATE_12MB:
8167                 ipw_rt->rt_rate = 24;
8168                 break;
8169         case IPW_TX_RATE_18MB:
8170                 ipw_rt->rt_rate = 36;
8171                 break;
8172         case IPW_TX_RATE_24MB:
8173                 ipw_rt->rt_rate = 48;
8174                 break;
8175         case IPW_TX_RATE_36MB:
8176                 ipw_rt->rt_rate = 72;
8177                 break;
8178         case IPW_TX_RATE_48MB:
8179                 ipw_rt->rt_rate = 96;
8180                 break;
8181         case IPW_TX_RATE_54MB:
8182                 ipw_rt->rt_rate = 108;
8183                 break;
8184         default:
8185                 ipw_rt->rt_rate = 0;
8186                 break;
8187         }
8188
8189         /* antenna number */
8190         ipw_rt->rt_antenna = (phy_flags & 3);
8191
8192         /* set the preamble flag if we have it */
8193         if (phy_flags & (1 << 6))
8194                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8195
8196         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8197
8198         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8199                 dev->stats.rx_errors++;
8200                 dev_kfree_skb_any(skb);
8201         }
8202 }
8203 #endif
8204
8205 static int is_network_packet(struct ipw_priv *priv,
8206                                     struct libipw_hdr_4addr *header)
8207 {
8208         /* Filter incoming packets to determine if they are targetted toward
8209          * this network, discarding packets coming from ourselves */
8210         switch (priv->ieee->iw_mode) {
8211         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8212                 /* packets from our adapter are dropped (echo) */
8213                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8214                         return 0;
8215
8216                 /* {broad,multi}cast packets to our BSSID go through */
8217                 if (is_multicast_ether_addr(header->addr1))
8218                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8219
8220                 /* packets to our adapter go through */
8221                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8222                                ETH_ALEN);
8223
8224         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8225                 /* packets from our adapter are dropped (echo) */
8226                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8227                         return 0;
8228
8229                 /* {broad,multi}cast packets to our BSS go through */
8230                 if (is_multicast_ether_addr(header->addr1))
8231                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8232
8233                 /* packets to our adapter go through */
8234                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8235                                ETH_ALEN);
8236         }
8237
8238         return 1;
8239 }
8240
8241 #define IPW_PACKET_RETRY_TIME HZ
8242
8243 static  int is_duplicate_packet(struct ipw_priv *priv,
8244                                       struct libipw_hdr_4addr *header)
8245 {
8246         u16 sc = le16_to_cpu(header->seq_ctl);
8247         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8248         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8249         u16 *last_seq, *last_frag;
8250         unsigned long *last_time;
8251
8252         switch (priv->ieee->iw_mode) {
8253         case IW_MODE_ADHOC:
8254                 {
8255                         struct list_head *p;
8256                         struct ipw_ibss_seq *entry = NULL;
8257                         u8 *mac = header->addr2;
8258                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8259
8260                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8261                                 entry =
8262                                     list_entry(p, struct ipw_ibss_seq, list);
8263                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8264                                         break;
8265                         }
8266                         if (p == &priv->ibss_mac_hash[index]) {
8267                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8268                                 if (!entry) {
8269                                         IPW_ERROR
8270                                             ("Cannot malloc new mac entry\n");
8271                                         return 0;
8272                                 }
8273                                 memcpy(entry->mac, mac, ETH_ALEN);
8274                                 entry->seq_num = seq;
8275                                 entry->frag_num = frag;
8276                                 entry->packet_time = jiffies;
8277                                 list_add(&entry->list,
8278                                          &priv->ibss_mac_hash[index]);
8279                                 return 0;
8280                         }
8281                         last_seq = &entry->seq_num;
8282                         last_frag = &entry->frag_num;
8283                         last_time = &entry->packet_time;
8284                         break;
8285                 }
8286         case IW_MODE_INFRA:
8287                 last_seq = &priv->last_seq_num;
8288                 last_frag = &priv->last_frag_num;
8289                 last_time = &priv->last_packet_time;
8290                 break;
8291         default:
8292                 return 0;
8293         }
8294         if ((*last_seq == seq) &&
8295             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8296                 if (*last_frag == frag)
8297                         goto drop;
8298                 if (*last_frag + 1 != frag)
8299                         /* out-of-order fragment */
8300                         goto drop;
8301         } else
8302                 *last_seq = seq;
8303
8304         *last_frag = frag;
8305         *last_time = jiffies;
8306         return 0;
8307
8308       drop:
8309         /* Comment this line now since we observed the card receives
8310          * duplicate packets but the FCTL_RETRY bit is not set in the
8311          * IBSS mode with fragmentation enabled.
8312          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8313         return 1;
8314 }
8315
8316 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8317                                    struct ipw_rx_mem_buffer *rxb,
8318                                    struct libipw_rx_stats *stats)
8319 {
8320         struct sk_buff *skb = rxb->skb;
8321         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8322         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8323             (skb->data + IPW_RX_FRAME_SIZE);
8324
8325         libipw_rx_mgt(priv->ieee, header, stats);
8326
8327         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8328             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8329               IEEE80211_STYPE_PROBE_RESP) ||
8330              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8331               IEEE80211_STYPE_BEACON))) {
8332                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8333                         ipw_add_station(priv, header->addr2);
8334         }
8335
8336         if (priv->config & CFG_NET_STATS) {
8337                 IPW_DEBUG_HC("sending stat packet\n");
8338
8339                 /* Set the size of the skb to the size of the full
8340                  * ipw header and 802.11 frame */
8341                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8342                         IPW_RX_FRAME_SIZE);
8343
8344                 /* Advance past the ipw packet header to the 802.11 frame */
8345                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8346
8347                 /* Push the libipw_rx_stats before the 802.11 frame */
8348                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8349
8350                 skb->dev = priv->ieee->dev;
8351
8352                 /* Point raw at the libipw_stats */
8353                 skb_reset_mac_header(skb);
8354
8355                 skb->pkt_type = PACKET_OTHERHOST;
8356                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8357                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8358                 netif_rx(skb);
8359                 rxb->skb = NULL;
8360         }
8361 }
8362
8363 /*
8364  * Main entry function for recieving a packet with 80211 headers.  This
8365  * should be called when ever the FW has notified us that there is a new
8366  * skb in the recieve queue.
8367  */
8368 static void ipw_rx(struct ipw_priv *priv)
8369 {
8370         struct ipw_rx_mem_buffer *rxb;
8371         struct ipw_rx_packet *pkt;
8372         struct libipw_hdr_4addr *header;
8373         u32 r, w, i;
8374         u8 network_packet;
8375         u8 fill_rx = 0;
8376
8377         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8378         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8379         i = priv->rxq->read;
8380
8381         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8382                 fill_rx = 1;
8383
8384         while (i != r) {
8385                 rxb = priv->rxq->queue[i];
8386                 if (unlikely(rxb == NULL)) {
8387                         printk(KERN_CRIT "Queue not allocated!\n");
8388                         break;
8389                 }
8390                 priv->rxq->queue[i] = NULL;
8391
8392                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8393                                             IPW_RX_BUF_SIZE,
8394                                             PCI_DMA_FROMDEVICE);
8395
8396                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8397                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8398                              pkt->header.message_type,
8399                              pkt->header.rx_seq_num, pkt->header.control_bits);
8400
8401                 switch (pkt->header.message_type) {
8402                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8403                                 struct libipw_rx_stats stats = {
8404                                         .rssi = pkt->u.frame.rssi_dbm -
8405                                             IPW_RSSI_TO_DBM,
8406                                         .signal =
8407                                             pkt->u.frame.rssi_dbm -
8408                                             IPW_RSSI_TO_DBM + 0x100,
8409                                         .noise =
8410                                             le16_to_cpu(pkt->u.frame.noise),
8411                                         .rate = pkt->u.frame.rate,
8412                                         .mac_time = jiffies,
8413                                         .received_channel =
8414                                             pkt->u.frame.received_channel,
8415                                         .freq =
8416                                             (pkt->u.frame.
8417                                              control & (1 << 0)) ?
8418                                             LIBIPW_24GHZ_BAND :
8419                                             LIBIPW_52GHZ_BAND,
8420                                         .len = le16_to_cpu(pkt->u.frame.length),
8421                                 };
8422
8423                                 if (stats.rssi != 0)
8424                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8425                                 if (stats.signal != 0)
8426                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8427                                 if (stats.noise != 0)
8428                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8429                                 if (stats.rate != 0)
8430                                         stats.mask |= LIBIPW_STATMASK_RATE;
8431
8432                                 priv->rx_packets++;
8433
8434 #ifdef CONFIG_IPW2200_PROMISCUOUS
8435         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8436                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8437 #endif
8438
8439 #ifdef CONFIG_IPW2200_MONITOR
8440                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8441 #ifdef CONFIG_IPW2200_RADIOTAP
8442
8443                 ipw_handle_data_packet_monitor(priv,
8444                                                rxb,
8445                                                &stats);
8446 #else
8447                 ipw_handle_data_packet(priv, rxb,
8448                                        &stats);
8449 #endif
8450                                         break;
8451                                 }
8452 #endif
8453
8454                                 header =
8455                                     (struct libipw_hdr_4addr *)(rxb->skb->
8456                                                                    data +
8457                                                                    IPW_RX_FRAME_SIZE);
8458                                 /* TODO: Check Ad-Hoc dest/source and make sure
8459                                  * that we are actually parsing these packets
8460                                  * correctly -- we should probably use the
8461                                  * frame control of the packet and disregard
8462                                  * the current iw_mode */
8463
8464                                 network_packet =
8465                                     is_network_packet(priv, header);
8466                                 if (network_packet && priv->assoc_network) {
8467                                         priv->assoc_network->stats.rssi =
8468                                             stats.rssi;
8469                                         priv->exp_avg_rssi =
8470                                             exponential_average(priv->exp_avg_rssi,
8471                                             stats.rssi, DEPTH_RSSI);
8472                                 }
8473
8474                                 IPW_DEBUG_RX("Frame: len=%u\n",
8475                                              le16_to_cpu(pkt->u.frame.length));
8476
8477                                 if (le16_to_cpu(pkt->u.frame.length) <
8478                                     libipw_get_hdrlen(le16_to_cpu(
8479                                                     header->frame_ctl))) {
8480                                         IPW_DEBUG_DROP
8481                                             ("Received packet is too small. "
8482                                              "Dropping.\n");
8483                                         priv->net_dev->stats.rx_errors++;
8484                                         priv->wstats.discard.misc++;
8485                                         break;
8486                                 }
8487
8488                                 switch (WLAN_FC_GET_TYPE
8489                                         (le16_to_cpu(header->frame_ctl))) {
8490
8491                                 case IEEE80211_FTYPE_MGMT:
8492                                         ipw_handle_mgmt_packet(priv, rxb,
8493                                                                &stats);
8494                                         break;
8495
8496                                 case IEEE80211_FTYPE_CTL:
8497                                         break;
8498
8499                                 case IEEE80211_FTYPE_DATA:
8500                                         if (unlikely(!network_packet ||
8501                                                      is_duplicate_packet(priv,
8502                                                                          header)))
8503                                         {
8504                                                 IPW_DEBUG_DROP("Dropping: "
8505                                                                "%pM, "
8506                                                                "%pM, "
8507                                                                "%pM\n",
8508                                                                header->addr1,
8509                                                                header->addr2,
8510                                                                header->addr3);
8511                                                 break;
8512                                         }
8513
8514                                         ipw_handle_data_packet(priv, rxb,
8515                                                                &stats);
8516
8517                                         break;
8518                                 }
8519                                 break;
8520                         }
8521
8522                 case RX_HOST_NOTIFICATION_TYPE:{
8523                                 IPW_DEBUG_RX
8524                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8525                                      pkt->u.notification.subtype,
8526                                      pkt->u.notification.flags,
8527                                      le16_to_cpu(pkt->u.notification.size));
8528                                 ipw_rx_notification(priv, &pkt->u.notification);
8529                                 break;
8530                         }
8531
8532                 default:
8533                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8534                                      pkt->header.message_type);
8535                         break;
8536                 }
8537
8538                 /* For now we just don't re-use anything.  We can tweak this
8539                  * later to try and re-use notification packets and SKBs that
8540                  * fail to Rx correctly */
8541                 if (rxb->skb != NULL) {
8542                         dev_kfree_skb_any(rxb->skb);
8543                         rxb->skb = NULL;
8544                 }
8545
8546                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8547                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8548                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8549
8550                 i = (i + 1) % RX_QUEUE_SIZE;
8551
8552                 /* If there are a lot of unsued frames, restock the Rx queue
8553                  * so the ucode won't assert */
8554                 if (fill_rx) {
8555                         priv->rxq->read = i;
8556                         ipw_rx_queue_replenish(priv);
8557                 }
8558         }
8559
8560         /* Backtrack one entry */
8561         priv->rxq->read = i;
8562         ipw_rx_queue_restock(priv);
8563 }
8564
8565 #define DEFAULT_RTS_THRESHOLD     2304U
8566 #define MIN_RTS_THRESHOLD         1U
8567 #define MAX_RTS_THRESHOLD         2304U
8568 #define DEFAULT_BEACON_INTERVAL   100U
8569 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8570 #define DEFAULT_LONG_RETRY_LIMIT  4U
8571
8572 /**
8573  * ipw_sw_reset
8574  * @option: options to control different reset behaviour
8575  *          0 = reset everything except the 'disable' module_param
8576  *          1 = reset everything and print out driver info (for probe only)
8577  *          2 = reset everything
8578  */
8579 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8580 {
8581         int band, modulation;
8582         int old_mode = priv->ieee->iw_mode;
8583
8584         /* Initialize module parameter values here */
8585         priv->config = 0;
8586
8587         /* We default to disabling the LED code as right now it causes
8588          * too many systems to lock up... */
8589         if (!led_support)
8590                 priv->config |= CFG_NO_LED;
8591
8592         if (associate)
8593                 priv->config |= CFG_ASSOCIATE;
8594         else
8595                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8596
8597         if (auto_create)
8598                 priv->config |= CFG_ADHOC_CREATE;
8599         else
8600                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8601
8602         priv->config &= ~CFG_STATIC_ESSID;
8603         priv->essid_len = 0;
8604         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8605
8606         if (disable && option) {
8607                 priv->status |= STATUS_RF_KILL_SW;
8608                 IPW_DEBUG_INFO("Radio disabled.\n");
8609         }
8610
8611         if (default_channel != 0) {
8612                 priv->config |= CFG_STATIC_CHANNEL;
8613                 priv->channel = default_channel;
8614                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8615                 /* TODO: Validate that provided channel is in range */
8616         }
8617 #ifdef CONFIG_IPW2200_QOS
8618         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8619                      burst_duration_CCK, burst_duration_OFDM);
8620 #endif                          /* CONFIG_IPW2200_QOS */
8621
8622         switch (network_mode) {
8623         case 1:
8624                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8625                 priv->net_dev->type = ARPHRD_ETHER;
8626
8627                 break;
8628 #ifdef CONFIG_IPW2200_MONITOR
8629         case 2:
8630                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8631 #ifdef CONFIG_IPW2200_RADIOTAP
8632                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8633 #else
8634                 priv->net_dev->type = ARPHRD_IEEE80211;
8635 #endif
8636                 break;
8637 #endif
8638         default:
8639         case 0:
8640                 priv->net_dev->type = ARPHRD_ETHER;
8641                 priv->ieee->iw_mode = IW_MODE_INFRA;
8642                 break;
8643         }
8644
8645         if (hwcrypto) {
8646                 priv->ieee->host_encrypt = 0;
8647                 priv->ieee->host_encrypt_msdu = 0;
8648                 priv->ieee->host_decrypt = 0;
8649                 priv->ieee->host_mc_decrypt = 0;
8650         }
8651         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8652
8653         /* IPW2200/2915 is abled to do hardware fragmentation. */
8654         priv->ieee->host_open_frag = 0;
8655
8656         if ((priv->pci_dev->device == 0x4223) ||
8657             (priv->pci_dev->device == 0x4224)) {
8658                 if (option == 1)
8659                         printk(KERN_INFO DRV_NAME
8660                                ": Detected Intel PRO/Wireless 2915ABG Network "
8661                                "Connection\n");
8662                 priv->ieee->abg_true = 1;
8663                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8664                 modulation = LIBIPW_OFDM_MODULATION |
8665                     LIBIPW_CCK_MODULATION;
8666                 priv->adapter = IPW_2915ABG;
8667                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8668         } else {
8669                 if (option == 1)
8670                         printk(KERN_INFO DRV_NAME
8671                                ": Detected Intel PRO/Wireless 2200BG Network "
8672                                "Connection\n");
8673
8674                 priv->ieee->abg_true = 0;
8675                 band = LIBIPW_24GHZ_BAND;
8676                 modulation = LIBIPW_OFDM_MODULATION |
8677                     LIBIPW_CCK_MODULATION;
8678                 priv->adapter = IPW_2200BG;
8679                 priv->ieee->mode = IEEE_G | IEEE_B;
8680         }
8681
8682         priv->ieee->freq_band = band;
8683         priv->ieee->modulation = modulation;
8684
8685         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8686
8687         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8688         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8689
8690         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8691         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8692         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8693
8694         /* If power management is turned on, default to AC mode */
8695         priv->power_mode = IPW_POWER_AC;
8696         priv->tx_power = IPW_TX_POWER_DEFAULT;
8697
8698         return old_mode == priv->ieee->iw_mode;
8699 }
8700
8701 /*
8702  * This file defines the Wireless Extension handlers.  It does not
8703  * define any methods of hardware manipulation and relies on the
8704  * functions defined in ipw_main to provide the HW interaction.
8705  *
8706  * The exception to this is the use of the ipw_get_ordinal()
8707  * function used to poll the hardware vs. making unecessary calls.
8708  *
8709  */
8710
8711 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8712 {
8713         if (channel == 0) {
8714                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8715                 priv->config &= ~CFG_STATIC_CHANNEL;
8716                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8717                                 "parameters.\n");
8718                 ipw_associate(priv);
8719                 return 0;
8720         }
8721
8722         priv->config |= CFG_STATIC_CHANNEL;
8723
8724         if (priv->channel == channel) {
8725                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8726                                channel);
8727                 return 0;
8728         }
8729
8730         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8731         priv->channel = channel;
8732
8733 #ifdef CONFIG_IPW2200_MONITOR
8734         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8735                 int i;
8736                 if (priv->status & STATUS_SCANNING) {
8737                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8738                                        "channel change.\n");
8739                         ipw_abort_scan(priv);
8740                 }
8741
8742                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8743                         udelay(10);
8744
8745                 if (priv->status & STATUS_SCANNING)
8746                         IPW_DEBUG_SCAN("Still scanning...\n");
8747                 else
8748                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8749                                        1000 - i);
8750
8751                 return 0;
8752         }
8753 #endif                          /* CONFIG_IPW2200_MONITOR */
8754
8755         /* Network configuration changed -- force [re]association */
8756         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8757         if (!ipw_disassociate(priv))
8758                 ipw_associate(priv);
8759
8760         return 0;
8761 }
8762
8763 static int ipw_wx_set_freq(struct net_device *dev,
8764                            struct iw_request_info *info,
8765                            union iwreq_data *wrqu, char *extra)
8766 {
8767         struct ipw_priv *priv = libipw_priv(dev);
8768         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8769         struct iw_freq *fwrq = &wrqu->freq;
8770         int ret = 0, i;
8771         u8 channel, flags;
8772         int band;
8773
8774         if (fwrq->m == 0) {
8775                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8776                 mutex_lock(&priv->mutex);
8777                 ret = ipw_set_channel(priv, 0);
8778                 mutex_unlock(&priv->mutex);
8779                 return ret;
8780         }
8781         /* if setting by freq convert to channel */
8782         if (fwrq->e == 1) {
8783                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8784                 if (channel == 0)
8785                         return -EINVAL;
8786         } else
8787                 channel = fwrq->m;
8788
8789         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8790                 return -EINVAL;
8791
8792         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8793                 i = libipw_channel_to_index(priv->ieee, channel);
8794                 if (i == -1)
8795                         return -EINVAL;
8796
8797                 flags = (band == LIBIPW_24GHZ_BAND) ?
8798                     geo->bg[i].flags : geo->a[i].flags;
8799                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8800                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8801                         return -EINVAL;
8802                 }
8803         }
8804
8805         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8806         mutex_lock(&priv->mutex);
8807         ret = ipw_set_channel(priv, channel);
8808         mutex_unlock(&priv->mutex);
8809         return ret;
8810 }
8811
8812 static int ipw_wx_get_freq(struct net_device *dev,
8813                            struct iw_request_info *info,
8814                            union iwreq_data *wrqu, char *extra)
8815 {
8816         struct ipw_priv *priv = libipw_priv(dev);
8817
8818         wrqu->freq.e = 0;
8819
8820         /* If we are associated, trying to associate, or have a statically
8821          * configured CHANNEL then return that; otherwise return ANY */
8822         mutex_lock(&priv->mutex);
8823         if (priv->config & CFG_STATIC_CHANNEL ||
8824             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8825                 int i;
8826
8827                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8828                 BUG_ON(i == -1);
8829                 wrqu->freq.e = 1;
8830
8831                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8832                 case LIBIPW_52GHZ_BAND:
8833                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8834                         break;
8835
8836                 case LIBIPW_24GHZ_BAND:
8837                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8838                         break;
8839
8840                 default:
8841                         BUG();
8842                 }
8843         } else
8844                 wrqu->freq.m = 0;
8845
8846         mutex_unlock(&priv->mutex);
8847         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8848         return 0;
8849 }
8850
8851 static int ipw_wx_set_mode(struct net_device *dev,
8852                            struct iw_request_info *info,
8853                            union iwreq_data *wrqu, char *extra)
8854 {
8855         struct ipw_priv *priv = libipw_priv(dev);
8856         int err = 0;
8857
8858         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8859
8860         switch (wrqu->mode) {
8861 #ifdef CONFIG_IPW2200_MONITOR
8862         case IW_MODE_MONITOR:
8863 #endif
8864         case IW_MODE_ADHOC:
8865         case IW_MODE_INFRA:
8866                 break;
8867         case IW_MODE_AUTO:
8868                 wrqu->mode = IW_MODE_INFRA;
8869                 break;
8870         default:
8871                 return -EINVAL;
8872         }
8873         if (wrqu->mode == priv->ieee->iw_mode)
8874                 return 0;
8875
8876         mutex_lock(&priv->mutex);
8877
8878         ipw_sw_reset(priv, 0);
8879
8880 #ifdef CONFIG_IPW2200_MONITOR
8881         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8882                 priv->net_dev->type = ARPHRD_ETHER;
8883
8884         if (wrqu->mode == IW_MODE_MONITOR)
8885 #ifdef CONFIG_IPW2200_RADIOTAP
8886                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8887 #else
8888                 priv->net_dev->type = ARPHRD_IEEE80211;
8889 #endif
8890 #endif                          /* CONFIG_IPW2200_MONITOR */
8891
8892         /* Free the existing firmware and reset the fw_loaded
8893          * flag so ipw_load() will bring in the new firmware */
8894         free_firmware();
8895
8896         priv->ieee->iw_mode = wrqu->mode;
8897
8898         queue_work(priv->workqueue, &priv->adapter_restart);
8899         mutex_unlock(&priv->mutex);
8900         return err;
8901 }
8902
8903 static int ipw_wx_get_mode(struct net_device *dev,
8904                            struct iw_request_info *info,
8905                            union iwreq_data *wrqu, char *extra)
8906 {
8907         struct ipw_priv *priv = libipw_priv(dev);
8908         mutex_lock(&priv->mutex);
8909         wrqu->mode = priv->ieee->iw_mode;
8910         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8911         mutex_unlock(&priv->mutex);
8912         return 0;
8913 }
8914
8915 /* Values are in microsecond */
8916 static const s32 timeout_duration[] = {
8917         350000,
8918         250000,
8919         75000,
8920         37000,
8921         25000,
8922 };
8923
8924 static const s32 period_duration[] = {
8925         400000,
8926         700000,
8927         1000000,
8928         1000000,
8929         1000000
8930 };
8931
8932 static int ipw_wx_get_range(struct net_device *dev,
8933                             struct iw_request_info *info,
8934                             union iwreq_data *wrqu, char *extra)
8935 {
8936         struct ipw_priv *priv = libipw_priv(dev);
8937         struct iw_range *range = (struct iw_range *)extra;
8938         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8939         int i = 0, j;
8940
8941         wrqu->data.length = sizeof(*range);
8942         memset(range, 0, sizeof(*range));
8943
8944         /* 54Mbs == ~27 Mb/s real (802.11g) */
8945         range->throughput = 27 * 1000 * 1000;
8946
8947         range->max_qual.qual = 100;
8948         /* TODO: Find real max RSSI and stick here */
8949         range->max_qual.level = 0;
8950         range->max_qual.noise = 0;
8951         range->max_qual.updated = 7;    /* Updated all three */
8952
8953         range->avg_qual.qual = 70;
8954         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8955         range->avg_qual.level = 0;      /* FIXME to real average level */
8956         range->avg_qual.noise = 0;
8957         range->avg_qual.updated = 7;    /* Updated all three */
8958         mutex_lock(&priv->mutex);
8959         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8960
8961         for (i = 0; i < range->num_bitrates; i++)
8962                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8963                     500000;
8964
8965         range->max_rts = DEFAULT_RTS_THRESHOLD;
8966         range->min_frag = MIN_FRAG_THRESHOLD;
8967         range->max_frag = MAX_FRAG_THRESHOLD;
8968
8969         range->encoding_size[0] = 5;
8970         range->encoding_size[1] = 13;
8971         range->num_encoding_sizes = 2;
8972         range->max_encoding_tokens = WEP_KEYS;
8973
8974         /* Set the Wireless Extension versions */
8975         range->we_version_compiled = WIRELESS_EXT;
8976         range->we_version_source = 18;
8977
8978         i = 0;
8979         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8980                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8981                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8982                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8983                                 continue;
8984
8985                         range->freq[i].i = geo->bg[j].channel;
8986                         range->freq[i].m = geo->bg[j].freq * 100000;
8987                         range->freq[i].e = 1;
8988                         i++;
8989                 }
8990         }
8991
8992         if (priv->ieee->mode & IEEE_A) {
8993                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8994                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8995                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8996                                 continue;
8997
8998                         range->freq[i].i = geo->a[j].channel;
8999                         range->freq[i].m = geo->a[j].freq * 100000;
9000                         range->freq[i].e = 1;
9001                         i++;
9002                 }
9003         }
9004
9005         range->num_channels = i;
9006         range->num_frequency = i;
9007
9008         mutex_unlock(&priv->mutex);
9009
9010         /* Event capability (kernel + driver) */
9011         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9012                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9013                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9014                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9015         range->event_capa[1] = IW_EVENT_CAPA_K_1;
9016
9017         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9018                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9019
9020         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9021
9022         IPW_DEBUG_WX("GET Range\n");
9023         return 0;
9024 }
9025
9026 static int ipw_wx_set_wap(struct net_device *dev,
9027                           struct iw_request_info *info,
9028                           union iwreq_data *wrqu, char *extra)
9029 {
9030         struct ipw_priv *priv = libipw_priv(dev);
9031
9032         static const unsigned char any[] = {
9033                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9034         };
9035         static const unsigned char off[] = {
9036                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9037         };
9038
9039         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9040                 return -EINVAL;
9041         mutex_lock(&priv->mutex);
9042         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9043             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9044                 /* we disable mandatory BSSID association */
9045                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9046                 priv->config &= ~CFG_STATIC_BSSID;
9047                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9048                                 "parameters.\n");
9049                 ipw_associate(priv);
9050                 mutex_unlock(&priv->mutex);
9051                 return 0;
9052         }
9053
9054         priv->config |= CFG_STATIC_BSSID;
9055         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9056                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9057                 mutex_unlock(&priv->mutex);
9058                 return 0;
9059         }
9060
9061         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9062                      wrqu->ap_addr.sa_data);
9063
9064         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9065
9066         /* Network configuration changed -- force [re]association */
9067         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9068         if (!ipw_disassociate(priv))
9069                 ipw_associate(priv);
9070
9071         mutex_unlock(&priv->mutex);
9072         return 0;
9073 }
9074
9075 static int ipw_wx_get_wap(struct net_device *dev,
9076                           struct iw_request_info *info,
9077                           union iwreq_data *wrqu, char *extra)
9078 {
9079         struct ipw_priv *priv = libipw_priv(dev);
9080
9081         /* If we are associated, trying to associate, or have a statically
9082          * configured BSSID then return that; otherwise return ANY */
9083         mutex_lock(&priv->mutex);
9084         if (priv->config & CFG_STATIC_BSSID ||
9085             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9086                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9087                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9088         } else
9089                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9090
9091         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9092                      wrqu->ap_addr.sa_data);
9093         mutex_unlock(&priv->mutex);
9094         return 0;
9095 }
9096
9097 static int ipw_wx_set_essid(struct net_device *dev,
9098                             struct iw_request_info *info,
9099                             union iwreq_data *wrqu, char *extra)
9100 {
9101         struct ipw_priv *priv = libipw_priv(dev);
9102         int length;
9103         DECLARE_SSID_BUF(ssid);
9104
9105         mutex_lock(&priv->mutex);
9106
9107         if (!wrqu->essid.flags)
9108         {
9109                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9110                 ipw_disassociate(priv);
9111                 priv->config &= ~CFG_STATIC_ESSID;
9112                 ipw_associate(priv);
9113                 mutex_unlock(&priv->mutex);
9114                 return 0;
9115         }
9116
9117         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9118
9119         priv->config |= CFG_STATIC_ESSID;
9120
9121         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9122             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9123                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9124                 mutex_unlock(&priv->mutex);
9125                 return 0;
9126         }
9127
9128         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9129                      print_ssid(ssid, extra, length), length);
9130
9131         priv->essid_len = length;
9132         memcpy(priv->essid, extra, priv->essid_len);
9133
9134         /* Network configuration changed -- force [re]association */
9135         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9136         if (!ipw_disassociate(priv))
9137                 ipw_associate(priv);
9138
9139         mutex_unlock(&priv->mutex);
9140         return 0;
9141 }
9142
9143 static int ipw_wx_get_essid(struct net_device *dev,
9144                             struct iw_request_info *info,
9145                             union iwreq_data *wrqu, char *extra)
9146 {
9147         struct ipw_priv *priv = libipw_priv(dev);
9148         DECLARE_SSID_BUF(ssid);
9149
9150         /* If we are associated, trying to associate, or have a statically
9151          * configured ESSID then return that; otherwise return ANY */
9152         mutex_lock(&priv->mutex);
9153         if (priv->config & CFG_STATIC_ESSID ||
9154             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9155                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9156                              print_ssid(ssid, priv->essid, priv->essid_len));
9157                 memcpy(extra, priv->essid, priv->essid_len);
9158                 wrqu->essid.length = priv->essid_len;
9159                 wrqu->essid.flags = 1;  /* active */
9160         } else {
9161                 IPW_DEBUG_WX("Getting essid: ANY\n");
9162                 wrqu->essid.length = 0;
9163                 wrqu->essid.flags = 0;  /* active */
9164         }
9165         mutex_unlock(&priv->mutex);
9166         return 0;
9167 }
9168
9169 static int ipw_wx_set_nick(struct net_device *dev,
9170                            struct iw_request_info *info,
9171                            union iwreq_data *wrqu, char *extra)
9172 {
9173         struct ipw_priv *priv = libipw_priv(dev);
9174
9175         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9176         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9177                 return -E2BIG;
9178         mutex_lock(&priv->mutex);
9179         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9180         memset(priv->nick, 0, sizeof(priv->nick));
9181         memcpy(priv->nick, extra, wrqu->data.length);
9182         IPW_DEBUG_TRACE("<<\n");
9183         mutex_unlock(&priv->mutex);
9184         return 0;
9185
9186 }
9187
9188 static int ipw_wx_get_nick(struct net_device *dev,
9189                            struct iw_request_info *info,
9190                            union iwreq_data *wrqu, char *extra)
9191 {
9192         struct ipw_priv *priv = libipw_priv(dev);
9193         IPW_DEBUG_WX("Getting nick\n");
9194         mutex_lock(&priv->mutex);
9195         wrqu->data.length = strlen(priv->nick);
9196         memcpy(extra, priv->nick, wrqu->data.length);
9197         wrqu->data.flags = 1;   /* active */
9198         mutex_unlock(&priv->mutex);
9199         return 0;
9200 }
9201
9202 static int ipw_wx_set_sens(struct net_device *dev,
9203                             struct iw_request_info *info,
9204                             union iwreq_data *wrqu, char *extra)
9205 {
9206         struct ipw_priv *priv = libipw_priv(dev);
9207         int err = 0;
9208
9209         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9210         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9211         mutex_lock(&priv->mutex);
9212
9213         if (wrqu->sens.fixed == 0)
9214         {
9215                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9216                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9217                 goto out;
9218         }
9219         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9220             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9221                 err = -EINVAL;
9222                 goto out;
9223         }
9224
9225         priv->roaming_threshold = wrqu->sens.value;
9226         priv->disassociate_threshold = 3*wrqu->sens.value;
9227       out:
9228         mutex_unlock(&priv->mutex);
9229         return err;
9230 }
9231
9232 static int ipw_wx_get_sens(struct net_device *dev,
9233                             struct iw_request_info *info,
9234                             union iwreq_data *wrqu, char *extra)
9235 {
9236         struct ipw_priv *priv = libipw_priv(dev);
9237         mutex_lock(&priv->mutex);
9238         wrqu->sens.fixed = 1;
9239         wrqu->sens.value = priv->roaming_threshold;
9240         mutex_unlock(&priv->mutex);
9241
9242         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9243                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9244
9245         return 0;
9246 }
9247
9248 static int ipw_wx_set_rate(struct net_device *dev,
9249                            struct iw_request_info *info,
9250                            union iwreq_data *wrqu, char *extra)
9251 {
9252         /* TODO: We should use semaphores or locks for access to priv */
9253         struct ipw_priv *priv = libipw_priv(dev);
9254         u32 target_rate = wrqu->bitrate.value;
9255         u32 fixed, mask;
9256
9257         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9258         /* value = X, fixed = 1 means only rate X */
9259         /* value = X, fixed = 0 means all rates lower equal X */
9260
9261         if (target_rate == -1) {
9262                 fixed = 0;
9263                 mask = LIBIPW_DEFAULT_RATES_MASK;
9264                 /* Now we should reassociate */
9265                 goto apply;
9266         }
9267
9268         mask = 0;
9269         fixed = wrqu->bitrate.fixed;
9270
9271         if (target_rate == 1000000 || !fixed)
9272                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9273         if (target_rate == 1000000)
9274                 goto apply;
9275
9276         if (target_rate == 2000000 || !fixed)
9277                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9278         if (target_rate == 2000000)
9279                 goto apply;
9280
9281         if (target_rate == 5500000 || !fixed)
9282                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9283         if (target_rate == 5500000)
9284                 goto apply;
9285
9286         if (target_rate == 6000000 || !fixed)
9287                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9288         if (target_rate == 6000000)
9289                 goto apply;
9290
9291         if (target_rate == 9000000 || !fixed)
9292                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9293         if (target_rate == 9000000)
9294                 goto apply;
9295
9296         if (target_rate == 11000000 || !fixed)
9297                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9298         if (target_rate == 11000000)
9299                 goto apply;
9300
9301         if (target_rate == 12000000 || !fixed)
9302                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9303         if (target_rate == 12000000)
9304                 goto apply;
9305
9306         if (target_rate == 18000000 || !fixed)
9307                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9308         if (target_rate == 18000000)
9309                 goto apply;
9310
9311         if (target_rate == 24000000 || !fixed)
9312                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9313         if (target_rate == 24000000)
9314                 goto apply;
9315
9316         if (target_rate == 36000000 || !fixed)
9317                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9318         if (target_rate == 36000000)
9319                 goto apply;
9320
9321         if (target_rate == 48000000 || !fixed)
9322                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9323         if (target_rate == 48000000)
9324                 goto apply;
9325
9326         if (target_rate == 54000000 || !fixed)
9327                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9328         if (target_rate == 54000000)
9329                 goto apply;
9330
9331         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9332         return -EINVAL;
9333
9334       apply:
9335         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9336                      mask, fixed ? "fixed" : "sub-rates");
9337         mutex_lock(&priv->mutex);
9338         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9339                 priv->config &= ~CFG_FIXED_RATE;
9340                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9341         } else
9342                 priv->config |= CFG_FIXED_RATE;
9343
9344         if (priv->rates_mask == mask) {
9345                 IPW_DEBUG_WX("Mask set to current mask.\n");
9346                 mutex_unlock(&priv->mutex);
9347                 return 0;
9348         }
9349
9350         priv->rates_mask = mask;
9351
9352         /* Network configuration changed -- force [re]association */
9353         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9354         if (!ipw_disassociate(priv))
9355                 ipw_associate(priv);
9356
9357         mutex_unlock(&priv->mutex);
9358         return 0;
9359 }
9360
9361 static int ipw_wx_get_rate(struct net_device *dev,
9362                            struct iw_request_info *info,
9363                            union iwreq_data *wrqu, char *extra)
9364 {
9365         struct ipw_priv *priv = libipw_priv(dev);
9366         mutex_lock(&priv->mutex);
9367         wrqu->bitrate.value = priv->last_rate;
9368         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9369         mutex_unlock(&priv->mutex);
9370         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9371         return 0;
9372 }
9373
9374 static int ipw_wx_set_rts(struct net_device *dev,
9375                           struct iw_request_info *info,
9376                           union iwreq_data *wrqu, char *extra)
9377 {
9378         struct ipw_priv *priv = libipw_priv(dev);
9379         mutex_lock(&priv->mutex);
9380         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9381                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9382         else {
9383                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9384                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9385                         mutex_unlock(&priv->mutex);
9386                         return -EINVAL;
9387                 }
9388                 priv->rts_threshold = wrqu->rts.value;
9389         }
9390
9391         ipw_send_rts_threshold(priv, priv->rts_threshold);
9392         mutex_unlock(&priv->mutex);
9393         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9394         return 0;
9395 }
9396
9397 static int ipw_wx_get_rts(struct net_device *dev,
9398                           struct iw_request_info *info,
9399                           union iwreq_data *wrqu, char *extra)
9400 {
9401         struct ipw_priv *priv = libipw_priv(dev);
9402         mutex_lock(&priv->mutex);
9403         wrqu->rts.value = priv->rts_threshold;
9404         wrqu->rts.fixed = 0;    /* no auto select */
9405         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9406         mutex_unlock(&priv->mutex);
9407         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9408         return 0;
9409 }
9410
9411 static int ipw_wx_set_txpow(struct net_device *dev,
9412                             struct iw_request_info *info,
9413                             union iwreq_data *wrqu, char *extra)
9414 {
9415         struct ipw_priv *priv = libipw_priv(dev);
9416         int err = 0;
9417
9418         mutex_lock(&priv->mutex);
9419         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9420                 err = -EINPROGRESS;
9421                 goto out;
9422         }
9423
9424         if (!wrqu->power.fixed)
9425                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9426
9427         if (wrqu->power.flags != IW_TXPOW_DBM) {
9428                 err = -EINVAL;
9429                 goto out;
9430         }
9431
9432         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9433             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9434                 err = -EINVAL;
9435                 goto out;
9436         }
9437
9438         priv->tx_power = wrqu->power.value;
9439         err = ipw_set_tx_power(priv);
9440       out:
9441         mutex_unlock(&priv->mutex);
9442         return err;
9443 }
9444
9445 static int ipw_wx_get_txpow(struct net_device *dev,
9446                             struct iw_request_info *info,
9447                             union iwreq_data *wrqu, char *extra)
9448 {
9449         struct ipw_priv *priv = libipw_priv(dev);
9450         mutex_lock(&priv->mutex);
9451         wrqu->power.value = priv->tx_power;
9452         wrqu->power.fixed = 1;
9453         wrqu->power.flags = IW_TXPOW_DBM;
9454         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9455         mutex_unlock(&priv->mutex);
9456
9457         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9458                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9459
9460         return 0;
9461 }
9462
9463 static int ipw_wx_set_frag(struct net_device *dev,
9464                            struct iw_request_info *info,
9465                            union iwreq_data *wrqu, char *extra)
9466 {
9467         struct ipw_priv *priv = libipw_priv(dev);
9468         mutex_lock(&priv->mutex);
9469         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9470                 priv->ieee->fts = DEFAULT_FTS;
9471         else {
9472                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9473                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9474                         mutex_unlock(&priv->mutex);
9475                         return -EINVAL;
9476                 }
9477
9478                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9479         }
9480
9481         ipw_send_frag_threshold(priv, wrqu->frag.value);
9482         mutex_unlock(&priv->mutex);
9483         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9484         return 0;
9485 }
9486
9487 static int ipw_wx_get_frag(struct net_device *dev,
9488                            struct iw_request_info *info,
9489                            union iwreq_data *wrqu, char *extra)
9490 {
9491         struct ipw_priv *priv = libipw_priv(dev);
9492         mutex_lock(&priv->mutex);
9493         wrqu->frag.value = priv->ieee->fts;
9494         wrqu->frag.fixed = 0;   /* no auto select */
9495         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9496         mutex_unlock(&priv->mutex);
9497         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9498
9499         return 0;
9500 }
9501
9502 static int ipw_wx_set_retry(struct net_device *dev,
9503                             struct iw_request_info *info,
9504                             union iwreq_data *wrqu, char *extra)
9505 {
9506         struct ipw_priv *priv = libipw_priv(dev);
9507
9508         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9509                 return -EINVAL;
9510
9511         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9512                 return 0;
9513
9514         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9515                 return -EINVAL;
9516
9517         mutex_lock(&priv->mutex);
9518         if (wrqu->retry.flags & IW_RETRY_SHORT)
9519                 priv->short_retry_limit = (u8) wrqu->retry.value;
9520         else if (wrqu->retry.flags & IW_RETRY_LONG)
9521                 priv->long_retry_limit = (u8) wrqu->retry.value;
9522         else {
9523                 priv->short_retry_limit = (u8) wrqu->retry.value;
9524                 priv->long_retry_limit = (u8) wrqu->retry.value;
9525         }
9526
9527         ipw_send_retry_limit(priv, priv->short_retry_limit,
9528                              priv->long_retry_limit);
9529         mutex_unlock(&priv->mutex);
9530         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9531                      priv->short_retry_limit, priv->long_retry_limit);
9532         return 0;
9533 }
9534
9535 static int ipw_wx_get_retry(struct net_device *dev,
9536                             struct iw_request_info *info,
9537                             union iwreq_data *wrqu, char *extra)
9538 {
9539         struct ipw_priv *priv = libipw_priv(dev);
9540
9541         mutex_lock(&priv->mutex);
9542         wrqu->retry.disabled = 0;
9543
9544         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9545                 mutex_unlock(&priv->mutex);
9546                 return -EINVAL;
9547         }
9548
9549         if (wrqu->retry.flags & IW_RETRY_LONG) {
9550                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9551                 wrqu->retry.value = priv->long_retry_limit;
9552         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9553                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9554                 wrqu->retry.value = priv->short_retry_limit;
9555         } else {
9556                 wrqu->retry.flags = IW_RETRY_LIMIT;
9557                 wrqu->retry.value = priv->short_retry_limit;
9558         }
9559         mutex_unlock(&priv->mutex);
9560
9561         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9562
9563         return 0;
9564 }
9565
9566 static int ipw_wx_set_scan(struct net_device *dev,
9567                            struct iw_request_info *info,
9568                            union iwreq_data *wrqu, char *extra)
9569 {
9570         struct ipw_priv *priv = libipw_priv(dev);
9571         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9572         struct delayed_work *work = NULL;
9573
9574         mutex_lock(&priv->mutex);
9575
9576         priv->user_requested_scan = 1;
9577
9578         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9579                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9580                         int len = min((int)req->essid_len,
9581                                       (int)sizeof(priv->direct_scan_ssid));
9582                         memcpy(priv->direct_scan_ssid, req->essid, len);
9583                         priv->direct_scan_ssid_len = len;
9584                         work = &priv->request_direct_scan;
9585                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9586                         work = &priv->request_passive_scan;
9587                 }
9588         } else {
9589                 /* Normal active broadcast scan */
9590                 work = &priv->request_scan;
9591         }
9592
9593         mutex_unlock(&priv->mutex);
9594
9595         IPW_DEBUG_WX("Start scan\n");
9596
9597         queue_delayed_work(priv->workqueue, work, 0);
9598
9599         return 0;
9600 }
9601
9602 static int ipw_wx_get_scan(struct net_device *dev,
9603                            struct iw_request_info *info,
9604                            union iwreq_data *wrqu, char *extra)
9605 {
9606         struct ipw_priv *priv = libipw_priv(dev);
9607         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9608 }
9609
9610 static int ipw_wx_set_encode(struct net_device *dev,
9611                              struct iw_request_info *info,
9612                              union iwreq_data *wrqu, char *key)
9613 {
9614         struct ipw_priv *priv = libipw_priv(dev);
9615         int ret;
9616         u32 cap = priv->capability;
9617
9618         mutex_lock(&priv->mutex);
9619         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9620
9621         /* In IBSS mode, we need to notify the firmware to update
9622          * the beacon info after we changed the capability. */
9623         if (cap != priv->capability &&
9624             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9625             priv->status & STATUS_ASSOCIATED)
9626                 ipw_disassociate(priv);
9627
9628         mutex_unlock(&priv->mutex);
9629         return ret;
9630 }
9631
9632 static int ipw_wx_get_encode(struct net_device *dev,
9633                              struct iw_request_info *info,
9634                              union iwreq_data *wrqu, char *key)
9635 {
9636         struct ipw_priv *priv = libipw_priv(dev);
9637         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9638 }
9639
9640 static int ipw_wx_set_power(struct net_device *dev,
9641                             struct iw_request_info *info,
9642                             union iwreq_data *wrqu, char *extra)
9643 {
9644         struct ipw_priv *priv = libipw_priv(dev);
9645         int err;
9646         mutex_lock(&priv->mutex);
9647         if (wrqu->power.disabled) {
9648                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9649                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9650                 if (err) {
9651                         IPW_DEBUG_WX("failed setting power mode.\n");
9652                         mutex_unlock(&priv->mutex);
9653                         return err;
9654                 }
9655                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9656                 mutex_unlock(&priv->mutex);
9657                 return 0;
9658         }
9659
9660         switch (wrqu->power.flags & IW_POWER_MODE) {
9661         case IW_POWER_ON:       /* If not specified */
9662         case IW_POWER_MODE:     /* If set all mask */
9663         case IW_POWER_ALL_R:    /* If explicitly state all */
9664                 break;
9665         default:                /* Otherwise we don't support it */
9666                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9667                              wrqu->power.flags);
9668                 mutex_unlock(&priv->mutex);
9669                 return -EOPNOTSUPP;
9670         }
9671
9672         /* If the user hasn't specified a power management mode yet, default
9673          * to BATTERY */
9674         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9675                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9676         else
9677                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9678
9679         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9680         if (err) {
9681                 IPW_DEBUG_WX("failed setting power mode.\n");
9682                 mutex_unlock(&priv->mutex);
9683                 return err;
9684         }
9685
9686         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9687         mutex_unlock(&priv->mutex);
9688         return 0;
9689 }
9690
9691 static int ipw_wx_get_power(struct net_device *dev,
9692                             struct iw_request_info *info,
9693                             union iwreq_data *wrqu, char *extra)
9694 {
9695         struct ipw_priv *priv = libipw_priv(dev);
9696         mutex_lock(&priv->mutex);
9697         if (!(priv->power_mode & IPW_POWER_ENABLED))
9698                 wrqu->power.disabled = 1;
9699         else
9700                 wrqu->power.disabled = 0;
9701
9702         mutex_unlock(&priv->mutex);
9703         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9704
9705         return 0;
9706 }
9707
9708 static int ipw_wx_set_powermode(struct net_device *dev,
9709                                 struct iw_request_info *info,
9710                                 union iwreq_data *wrqu, char *extra)
9711 {
9712         struct ipw_priv *priv = libipw_priv(dev);
9713         int mode = *(int *)extra;
9714         int err;
9715
9716         mutex_lock(&priv->mutex);
9717         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9718                 mode = IPW_POWER_AC;
9719
9720         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9721                 err = ipw_send_power_mode(priv, mode);
9722                 if (err) {
9723                         IPW_DEBUG_WX("failed setting power mode.\n");
9724                         mutex_unlock(&priv->mutex);
9725                         return err;
9726                 }
9727                 priv->power_mode = IPW_POWER_ENABLED | mode;
9728         }
9729         mutex_unlock(&priv->mutex);
9730         return 0;
9731 }
9732
9733 #define MAX_WX_STRING 80
9734 static int ipw_wx_get_powermode(struct net_device *dev,
9735                                 struct iw_request_info *info,
9736                                 union iwreq_data *wrqu, char *extra)
9737 {
9738         struct ipw_priv *priv = libipw_priv(dev);
9739         int level = IPW_POWER_LEVEL(priv->power_mode);
9740         char *p = extra;
9741
9742         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9743
9744         switch (level) {
9745         case IPW_POWER_AC:
9746                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9747                 break;
9748         case IPW_POWER_BATTERY:
9749                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9750                 break;
9751         default:
9752                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9753                               "(Timeout %dms, Period %dms)",
9754                               timeout_duration[level - 1] / 1000,
9755                               period_duration[level - 1] / 1000);
9756         }
9757
9758         if (!(priv->power_mode & IPW_POWER_ENABLED))
9759                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9760
9761         wrqu->data.length = p - extra + 1;
9762
9763         return 0;
9764 }
9765
9766 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9767                                     struct iw_request_info *info,
9768                                     union iwreq_data *wrqu, char *extra)
9769 {
9770         struct ipw_priv *priv = libipw_priv(dev);
9771         int mode = *(int *)extra;
9772         u8 band = 0, modulation = 0;
9773
9774         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9775                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9776                 return -EINVAL;
9777         }
9778         mutex_lock(&priv->mutex);
9779         if (priv->adapter == IPW_2915ABG) {
9780                 priv->ieee->abg_true = 1;
9781                 if (mode & IEEE_A) {
9782                         band |= LIBIPW_52GHZ_BAND;
9783                         modulation |= LIBIPW_OFDM_MODULATION;
9784                 } else
9785                         priv->ieee->abg_true = 0;
9786         } else {
9787                 if (mode & IEEE_A) {
9788                         IPW_WARNING("Attempt to set 2200BG into "
9789                                     "802.11a mode\n");
9790                         mutex_unlock(&priv->mutex);
9791                         return -EINVAL;
9792                 }
9793
9794                 priv->ieee->abg_true = 0;
9795         }
9796
9797         if (mode & IEEE_B) {
9798                 band |= LIBIPW_24GHZ_BAND;
9799                 modulation |= LIBIPW_CCK_MODULATION;
9800         } else
9801                 priv->ieee->abg_true = 0;
9802
9803         if (mode & IEEE_G) {
9804                 band |= LIBIPW_24GHZ_BAND;
9805                 modulation |= LIBIPW_OFDM_MODULATION;
9806         } else
9807                 priv->ieee->abg_true = 0;
9808
9809         priv->ieee->mode = mode;
9810         priv->ieee->freq_band = band;
9811         priv->ieee->modulation = modulation;
9812         init_supported_rates(priv, &priv->rates);
9813
9814         /* Network configuration changed -- force [re]association */
9815         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9816         if (!ipw_disassociate(priv)) {
9817                 ipw_send_supported_rates(priv, &priv->rates);
9818                 ipw_associate(priv);
9819         }
9820
9821         /* Update the band LEDs */
9822         ipw_led_band_on(priv);
9823
9824         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9825                      mode & IEEE_A ? 'a' : '.',
9826                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9827         mutex_unlock(&priv->mutex);
9828         return 0;
9829 }
9830
9831 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9832                                     struct iw_request_info *info,
9833                                     union iwreq_data *wrqu, char *extra)
9834 {
9835         struct ipw_priv *priv = libipw_priv(dev);
9836         mutex_lock(&priv->mutex);
9837         switch (priv->ieee->mode) {
9838         case IEEE_A:
9839                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9840                 break;
9841         case IEEE_B:
9842                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9843                 break;
9844         case IEEE_A | IEEE_B:
9845                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9846                 break;
9847         case IEEE_G:
9848                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9849                 break;
9850         case IEEE_A | IEEE_G:
9851                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9852                 break;
9853         case IEEE_B | IEEE_G:
9854                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9855                 break;
9856         case IEEE_A | IEEE_B | IEEE_G:
9857                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9858                 break;
9859         default:
9860                 strncpy(extra, "unknown", MAX_WX_STRING);
9861                 break;
9862         }
9863
9864         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9865
9866         wrqu->data.length = strlen(extra) + 1;
9867         mutex_unlock(&priv->mutex);
9868
9869         return 0;
9870 }
9871
9872 static int ipw_wx_set_preamble(struct net_device *dev,
9873                                struct iw_request_info *info,
9874                                union iwreq_data *wrqu, char *extra)
9875 {
9876         struct ipw_priv *priv = libipw_priv(dev);
9877         int mode = *(int *)extra;
9878         mutex_lock(&priv->mutex);
9879         /* Switching from SHORT -> LONG requires a disassociation */
9880         if (mode == 1) {
9881                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9882                         priv->config |= CFG_PREAMBLE_LONG;
9883
9884                         /* Network configuration changed -- force [re]association */
9885                         IPW_DEBUG_ASSOC
9886                             ("[re]association triggered due to preamble change.\n");
9887                         if (!ipw_disassociate(priv))
9888                                 ipw_associate(priv);
9889                 }
9890                 goto done;
9891         }
9892
9893         if (mode == 0) {
9894                 priv->config &= ~CFG_PREAMBLE_LONG;
9895                 goto done;
9896         }
9897         mutex_unlock(&priv->mutex);
9898         return -EINVAL;
9899
9900       done:
9901         mutex_unlock(&priv->mutex);
9902         return 0;
9903 }
9904
9905 static int ipw_wx_get_preamble(struct net_device *dev,
9906                                struct iw_request_info *info,
9907                                union iwreq_data *wrqu, char *extra)
9908 {
9909         struct ipw_priv *priv = libipw_priv(dev);
9910         mutex_lock(&priv->mutex);
9911         if (priv->config & CFG_PREAMBLE_LONG)
9912                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9913         else
9914                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9915         mutex_unlock(&priv->mutex);
9916         return 0;
9917 }
9918
9919 #ifdef CONFIG_IPW2200_MONITOR
9920 static int ipw_wx_set_monitor(struct net_device *dev,
9921                               struct iw_request_info *info,
9922                               union iwreq_data *wrqu, char *extra)
9923 {
9924         struct ipw_priv *priv = libipw_priv(dev);
9925         int *parms = (int *)extra;
9926         int enable = (parms[0] > 0);
9927         mutex_lock(&priv->mutex);
9928         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9929         if (enable) {
9930                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9931 #ifdef CONFIG_IPW2200_RADIOTAP
9932                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9933 #else
9934                         priv->net_dev->type = ARPHRD_IEEE80211;
9935 #endif
9936                         queue_work(priv->workqueue, &priv->adapter_restart);
9937                 }
9938
9939                 ipw_set_channel(priv, parms[1]);
9940         } else {
9941                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9942                         mutex_unlock(&priv->mutex);
9943                         return 0;
9944                 }
9945                 priv->net_dev->type = ARPHRD_ETHER;
9946                 queue_work(priv->workqueue, &priv->adapter_restart);
9947         }
9948         mutex_unlock(&priv->mutex);
9949         return 0;
9950 }
9951
9952 #endif                          /* CONFIG_IPW2200_MONITOR */
9953
9954 static int ipw_wx_reset(struct net_device *dev,
9955                         struct iw_request_info *info,
9956                         union iwreq_data *wrqu, char *extra)
9957 {
9958         struct ipw_priv *priv = libipw_priv(dev);
9959         IPW_DEBUG_WX("RESET\n");
9960         queue_work(priv->workqueue, &priv->adapter_restart);
9961         return 0;
9962 }
9963
9964 static int ipw_wx_sw_reset(struct net_device *dev,
9965                            struct iw_request_info *info,
9966                            union iwreq_data *wrqu, char *extra)
9967 {
9968         struct ipw_priv *priv = libipw_priv(dev);
9969         union iwreq_data wrqu_sec = {
9970                 .encoding = {
9971                              .flags = IW_ENCODE_DISABLED,
9972                              },
9973         };
9974         int ret;
9975
9976         IPW_DEBUG_WX("SW_RESET\n");
9977
9978         mutex_lock(&priv->mutex);
9979
9980         ret = ipw_sw_reset(priv, 2);
9981         if (!ret) {
9982                 free_firmware();
9983                 ipw_adapter_restart(priv);
9984         }
9985
9986         /* The SW reset bit might have been toggled on by the 'disable'
9987          * module parameter, so take appropriate action */
9988         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9989
9990         mutex_unlock(&priv->mutex);
9991         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9992         mutex_lock(&priv->mutex);
9993
9994         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9995                 /* Configuration likely changed -- force [re]association */
9996                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9997                                 "reset.\n");
9998                 if (!ipw_disassociate(priv))
9999                         ipw_associate(priv);
10000         }
10001
10002         mutex_unlock(&priv->mutex);
10003
10004         return 0;
10005 }
10006
10007 /* Rebase the WE IOCTLs to zero for the handler array */
10008 static iw_handler ipw_wx_handlers[] = {
10009         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10010         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10011         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10012         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10013         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10014         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10015         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10016         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10017         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10018         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10019         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10020         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10021         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10022         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10023         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10024         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10025         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10026         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10027         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10028         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10029         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10030         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10031         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10032         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10033         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10034         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10035         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10036         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10037         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10038         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10039         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10040         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10041         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10042         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10043         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10044         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10045         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10046         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10047         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10048         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10049         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10050 };
10051
10052 enum {
10053         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10054         IPW_PRIV_GET_POWER,
10055         IPW_PRIV_SET_MODE,
10056         IPW_PRIV_GET_MODE,
10057         IPW_PRIV_SET_PREAMBLE,
10058         IPW_PRIV_GET_PREAMBLE,
10059         IPW_PRIV_RESET,
10060         IPW_PRIV_SW_RESET,
10061 #ifdef CONFIG_IPW2200_MONITOR
10062         IPW_PRIV_SET_MONITOR,
10063 #endif
10064 };
10065
10066 static struct iw_priv_args ipw_priv_args[] = {
10067         {
10068          .cmd = IPW_PRIV_SET_POWER,
10069          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10070          .name = "set_power"},
10071         {
10072          .cmd = IPW_PRIV_GET_POWER,
10073          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10074          .name = "get_power"},
10075         {
10076          .cmd = IPW_PRIV_SET_MODE,
10077          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10078          .name = "set_mode"},
10079         {
10080          .cmd = IPW_PRIV_GET_MODE,
10081          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10082          .name = "get_mode"},
10083         {
10084          .cmd = IPW_PRIV_SET_PREAMBLE,
10085          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10086          .name = "set_preamble"},
10087         {
10088          .cmd = IPW_PRIV_GET_PREAMBLE,
10089          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10090          .name = "get_preamble"},
10091         {
10092          IPW_PRIV_RESET,
10093          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10094         {
10095          IPW_PRIV_SW_RESET,
10096          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10097 #ifdef CONFIG_IPW2200_MONITOR
10098         {
10099          IPW_PRIV_SET_MONITOR,
10100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10101 #endif                          /* CONFIG_IPW2200_MONITOR */
10102 };
10103
10104 static iw_handler ipw_priv_handler[] = {
10105         ipw_wx_set_powermode,
10106         ipw_wx_get_powermode,
10107         ipw_wx_set_wireless_mode,
10108         ipw_wx_get_wireless_mode,
10109         ipw_wx_set_preamble,
10110         ipw_wx_get_preamble,
10111         ipw_wx_reset,
10112         ipw_wx_sw_reset,
10113 #ifdef CONFIG_IPW2200_MONITOR
10114         ipw_wx_set_monitor,
10115 #endif
10116 };
10117
10118 static struct iw_handler_def ipw_wx_handler_def = {
10119         .standard = ipw_wx_handlers,
10120         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10121         .num_private = ARRAY_SIZE(ipw_priv_handler),
10122         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10123         .private = ipw_priv_handler,
10124         .private_args = ipw_priv_args,
10125         .get_wireless_stats = ipw_get_wireless_stats,
10126 };
10127
10128 /*
10129  * Get wireless statistics.
10130  * Called by /proc/net/wireless
10131  * Also called by SIOCGIWSTATS
10132  */
10133 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10134 {
10135         struct ipw_priv *priv = libipw_priv(dev);
10136         struct iw_statistics *wstats;
10137
10138         wstats = &priv->wstats;
10139
10140         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10141          * netdev->get_wireless_stats seems to be called before fw is
10142          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10143          * and associated; if not associcated, the values are all meaningless
10144          * anyway, so set them all to NULL and INVALID */
10145         if (!(priv->status & STATUS_ASSOCIATED)) {
10146                 wstats->miss.beacon = 0;
10147                 wstats->discard.retries = 0;
10148                 wstats->qual.qual = 0;
10149                 wstats->qual.level = 0;
10150                 wstats->qual.noise = 0;
10151                 wstats->qual.updated = 7;
10152                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10153                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10154                 return wstats;
10155         }
10156
10157         wstats->qual.qual = priv->quality;
10158         wstats->qual.level = priv->exp_avg_rssi;
10159         wstats->qual.noise = priv->exp_avg_noise;
10160         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10161             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10162
10163         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10164         wstats->discard.retries = priv->last_tx_failures;
10165         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10166
10167 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10168         goto fail_get_ordinal;
10169         wstats->discard.retries += tx_retry; */
10170
10171         return wstats;
10172 }
10173
10174 /* net device stuff */
10175
10176 static  void init_sys_config(struct ipw_sys_config *sys_config)
10177 {
10178         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10179         sys_config->bt_coexistence = 0;
10180         sys_config->answer_broadcast_ssid_probe = 0;
10181         sys_config->accept_all_data_frames = 0;
10182         sys_config->accept_non_directed_frames = 1;
10183         sys_config->exclude_unicast_unencrypted = 0;
10184         sys_config->disable_unicast_decryption = 1;
10185         sys_config->exclude_multicast_unencrypted = 0;
10186         sys_config->disable_multicast_decryption = 1;
10187         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10188                 antenna = CFG_SYS_ANTENNA_BOTH;
10189         sys_config->antenna_diversity = antenna;
10190         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10191         sys_config->dot11g_auto_detection = 0;
10192         sys_config->enable_cts_to_self = 0;
10193         sys_config->bt_coexist_collision_thr = 0;
10194         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10195         sys_config->silence_threshold = 0x1e;
10196 }
10197
10198 static int ipw_net_open(struct net_device *dev)
10199 {
10200         IPW_DEBUG_INFO("dev->open\n");
10201         netif_start_queue(dev);
10202         return 0;
10203 }
10204
10205 static int ipw_net_stop(struct net_device *dev)
10206 {
10207         IPW_DEBUG_INFO("dev->close\n");
10208         netif_stop_queue(dev);
10209         return 0;
10210 }
10211
10212 /*
10213 todo:
10214
10215 modify to send one tfd per fragment instead of using chunking.  otherwise
10216 we need to heavily modify the libipw_skb_to_txb.
10217 */
10218
10219 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10220                              int pri)
10221 {
10222         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10223             txb->fragments[0]->data;
10224         int i = 0;
10225         struct tfd_frame *tfd;
10226 #ifdef CONFIG_IPW2200_QOS
10227         int tx_id = ipw_get_tx_queue_number(priv, pri);
10228         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10229 #else
10230         struct clx2_tx_queue *txq = &priv->txq[0];
10231 #endif
10232         struct clx2_queue *q = &txq->q;
10233         u8 id, hdr_len, unicast;
10234         int fc;
10235
10236         if (!(priv->status & STATUS_ASSOCIATED))
10237                 goto drop;
10238
10239         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10240         switch (priv->ieee->iw_mode) {
10241         case IW_MODE_ADHOC:
10242                 unicast = !is_multicast_ether_addr(hdr->addr1);
10243                 id = ipw_find_station(priv, hdr->addr1);
10244                 if (id == IPW_INVALID_STATION) {
10245                         id = ipw_add_station(priv, hdr->addr1);
10246                         if (id == IPW_INVALID_STATION) {
10247                                 IPW_WARNING("Attempt to send data to "
10248                                             "invalid cell: %pM\n",
10249                                             hdr->addr1);
10250                                 goto drop;
10251                         }
10252                 }
10253                 break;
10254
10255         case IW_MODE_INFRA:
10256         default:
10257                 unicast = !is_multicast_ether_addr(hdr->addr3);
10258                 id = 0;
10259                 break;
10260         }
10261
10262         tfd = &txq->bd[q->first_empty];
10263         txq->txb[q->first_empty] = txb;
10264         memset(tfd, 0, sizeof(*tfd));
10265         tfd->u.data.station_number = id;
10266
10267         tfd->control_flags.message_type = TX_FRAME_TYPE;
10268         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10269
10270         tfd->u.data.cmd_id = DINO_CMD_TX;
10271         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10272
10273         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10274                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10275         else
10276                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10277
10278         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10279                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10280
10281         fc = le16_to_cpu(hdr->frame_ctl);
10282         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10283
10284         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10285
10286         if (likely(unicast))
10287                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10288
10289         if (txb->encrypted && !priv->ieee->host_encrypt) {
10290                 switch (priv->ieee->sec.level) {
10291                 case SEC_LEVEL_3:
10292                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10293                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10294                         /* XXX: ACK flag must be set for CCMP even if it
10295                          * is a multicast/broadcast packet, because CCMP
10296                          * group communication encrypted by GTK is
10297                          * actually done by the AP. */
10298                         if (!unicast)
10299                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10300
10301                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10302                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10303                         tfd->u.data.key_index = 0;
10304                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10305                         break;
10306                 case SEC_LEVEL_2:
10307                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10308                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10309                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10310                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10311                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10312                         break;
10313                 case SEC_LEVEL_1:
10314                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10315                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10316                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10317                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10318                             40)
10319                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10320                         else
10321                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10322                         break;
10323                 case SEC_LEVEL_0:
10324                         break;
10325                 default:
10326                         printk(KERN_ERR "Unknown security level %d\n",
10327                                priv->ieee->sec.level);
10328                         break;
10329                 }
10330         } else
10331                 /* No hardware encryption */
10332                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10333
10334 #ifdef CONFIG_IPW2200_QOS
10335         if (fc & IEEE80211_STYPE_QOS_DATA)
10336                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10337 #endif                          /* CONFIG_IPW2200_QOS */
10338
10339         /* payload */
10340         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10341                                                  txb->nr_frags));
10342         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10343                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10344         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10345                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10346                                i, le32_to_cpu(tfd->u.data.num_chunks),
10347                                txb->fragments[i]->len - hdr_len);
10348                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10349                              i, tfd->u.data.num_chunks,
10350                              txb->fragments[i]->len - hdr_len);
10351                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10352                            txb->fragments[i]->len - hdr_len);
10353
10354                 tfd->u.data.chunk_ptr[i] =
10355                     cpu_to_le32(pci_map_single
10356                                 (priv->pci_dev,
10357                                  txb->fragments[i]->data + hdr_len,
10358                                  txb->fragments[i]->len - hdr_len,
10359                                  PCI_DMA_TODEVICE));
10360                 tfd->u.data.chunk_len[i] =
10361                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10362         }
10363
10364         if (i != txb->nr_frags) {
10365                 struct sk_buff *skb;
10366                 u16 remaining_bytes = 0;
10367                 int j;
10368
10369                 for (j = i; j < txb->nr_frags; j++)
10370                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10371
10372                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10373                        remaining_bytes);
10374                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10375                 if (skb != NULL) {
10376                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10377                         for (j = i; j < txb->nr_frags; j++) {
10378                                 int size = txb->fragments[j]->len - hdr_len;
10379
10380                                 printk(KERN_INFO "Adding frag %d %d...\n",
10381                                        j, size);
10382                                 memcpy(skb_put(skb, size),
10383                                        txb->fragments[j]->data + hdr_len, size);
10384                         }
10385                         dev_kfree_skb_any(txb->fragments[i]);
10386                         txb->fragments[i] = skb;
10387                         tfd->u.data.chunk_ptr[i] =
10388                             cpu_to_le32(pci_map_single
10389                                         (priv->pci_dev, skb->data,
10390                                          remaining_bytes,
10391                                          PCI_DMA_TODEVICE));
10392
10393                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10394                 }
10395         }
10396
10397         /* kick DMA */
10398         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10399         ipw_write32(priv, q->reg_w, q->first_empty);
10400
10401         if (ipw_tx_queue_space(q) < q->high_mark)
10402                 netif_stop_queue(priv->net_dev);
10403
10404         return NETDEV_TX_OK;
10405
10406       drop:
10407         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10408         libipw_txb_free(txb);
10409         return NETDEV_TX_OK;
10410 }
10411
10412 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10413 {
10414         struct ipw_priv *priv = libipw_priv(dev);
10415 #ifdef CONFIG_IPW2200_QOS
10416         int tx_id = ipw_get_tx_queue_number(priv, pri);
10417         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10418 #else
10419         struct clx2_tx_queue *txq = &priv->txq[0];
10420 #endif                          /* CONFIG_IPW2200_QOS */
10421
10422         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10423                 return 1;
10424
10425         return 0;
10426 }
10427
10428 #ifdef CONFIG_IPW2200_PROMISCUOUS
10429 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10430                                       struct libipw_txb *txb)
10431 {
10432         struct libipw_rx_stats dummystats;
10433         struct ieee80211_hdr *hdr;
10434         u8 n;
10435         u16 filter = priv->prom_priv->filter;
10436         int hdr_only = 0;
10437
10438         if (filter & IPW_PROM_NO_TX)
10439                 return;
10440
10441         memset(&dummystats, 0, sizeof(dummystats));
10442
10443         /* Filtering of fragment chains is done agains the first fragment */
10444         hdr = (void *)txb->fragments[0]->data;
10445         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10446                 if (filter & IPW_PROM_NO_MGMT)
10447                         return;
10448                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10449                         hdr_only = 1;
10450         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10451                 if (filter & IPW_PROM_NO_CTL)
10452                         return;
10453                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10454                         hdr_only = 1;
10455         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10456                 if (filter & IPW_PROM_NO_DATA)
10457                         return;
10458                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10459                         hdr_only = 1;
10460         }
10461
10462         for(n=0; n<txb->nr_frags; ++n) {
10463                 struct sk_buff *src = txb->fragments[n];
10464                 struct sk_buff *dst;
10465                 struct ieee80211_radiotap_header *rt_hdr;
10466                 int len;
10467
10468                 if (hdr_only) {
10469                         hdr = (void *)src->data;
10470                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10471                 } else
10472                         len = src->len;
10473
10474                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10475                 if (!dst)
10476                         continue;
10477
10478                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10479
10480                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10481                 rt_hdr->it_pad = 0;
10482                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10483                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10484
10485                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10486                         ieee80211chan2mhz(priv->channel));
10487                 if (priv->channel > 14)         /* 802.11a */
10488                         *(__le16*)skb_put(dst, sizeof(u16)) =
10489                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10490                                              IEEE80211_CHAN_5GHZ);
10491                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10492                         *(__le16*)skb_put(dst, sizeof(u16)) =
10493                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10494                                              IEEE80211_CHAN_2GHZ);
10495                 else            /* 802.11g */
10496                         *(__le16*)skb_put(dst, sizeof(u16)) =
10497                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10498                                  IEEE80211_CHAN_2GHZ);
10499
10500                 rt_hdr->it_len = cpu_to_le16(dst->len);
10501
10502                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10503
10504                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10505                         dev_kfree_skb_any(dst);
10506         }
10507 }
10508 #endif
10509
10510 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10511                                            struct net_device *dev, int pri)
10512 {
10513         struct ipw_priv *priv = libipw_priv(dev);
10514         unsigned long flags;
10515         netdev_tx_t ret;
10516
10517         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10518         spin_lock_irqsave(&priv->lock, flags);
10519
10520 #ifdef CONFIG_IPW2200_PROMISCUOUS
10521         if (rtap_iface && netif_running(priv->prom_net_dev))
10522                 ipw_handle_promiscuous_tx(priv, txb);
10523 #endif
10524
10525         ret = ipw_tx_skb(priv, txb, pri);
10526         if (ret == NETDEV_TX_OK)
10527                 __ipw_led_activity_on(priv);
10528         spin_unlock_irqrestore(&priv->lock, flags);
10529
10530         return ret;
10531 }
10532
10533 static void ipw_net_set_multicast_list(struct net_device *dev)
10534 {
10535
10536 }
10537
10538 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10539 {
10540         struct ipw_priv *priv = libipw_priv(dev);
10541         struct sockaddr *addr = p;
10542
10543         if (!is_valid_ether_addr(addr->sa_data))
10544                 return -EADDRNOTAVAIL;
10545         mutex_lock(&priv->mutex);
10546         priv->config |= CFG_CUSTOM_MAC;
10547         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10548         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10549                priv->net_dev->name, priv->mac_addr);
10550         queue_work(priv->workqueue, &priv->adapter_restart);
10551         mutex_unlock(&priv->mutex);
10552         return 0;
10553 }
10554
10555 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10556                                     struct ethtool_drvinfo *info)
10557 {
10558         struct ipw_priv *p = libipw_priv(dev);
10559         char vers[64];
10560         char date[32];
10561         u32 len;
10562
10563         strcpy(info->driver, DRV_NAME);
10564         strcpy(info->version, DRV_VERSION);
10565
10566         len = sizeof(vers);
10567         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10568         len = sizeof(date);
10569         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10570
10571         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10572                  vers, date);
10573         strcpy(info->bus_info, pci_name(p->pci_dev));
10574         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10575 }
10576
10577 static u32 ipw_ethtool_get_link(struct net_device *dev)
10578 {
10579         struct ipw_priv *priv = libipw_priv(dev);
10580         return (priv->status & STATUS_ASSOCIATED) != 0;
10581 }
10582
10583 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10584 {
10585         return IPW_EEPROM_IMAGE_SIZE;
10586 }
10587
10588 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10589                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10590 {
10591         struct ipw_priv *p = libipw_priv(dev);
10592
10593         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10594                 return -EINVAL;
10595         mutex_lock(&p->mutex);
10596         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10597         mutex_unlock(&p->mutex);
10598         return 0;
10599 }
10600
10601 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10602                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10603 {
10604         struct ipw_priv *p = libipw_priv(dev);
10605         int i;
10606
10607         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10608                 return -EINVAL;
10609         mutex_lock(&p->mutex);
10610         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10611         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10612                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10613         mutex_unlock(&p->mutex);
10614         return 0;
10615 }
10616
10617 static const struct ethtool_ops ipw_ethtool_ops = {
10618         .get_link = ipw_ethtool_get_link,
10619         .get_drvinfo = ipw_ethtool_get_drvinfo,
10620         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10621         .get_eeprom = ipw_ethtool_get_eeprom,
10622         .set_eeprom = ipw_ethtool_set_eeprom,
10623 };
10624
10625 static irqreturn_t ipw_isr(int irq, void *data)
10626 {
10627         struct ipw_priv *priv = data;
10628         u32 inta, inta_mask;
10629
10630         if (!priv)
10631                 return IRQ_NONE;
10632
10633         spin_lock(&priv->irq_lock);
10634
10635         if (!(priv->status & STATUS_INT_ENABLED)) {
10636                 /* IRQ is disabled */
10637                 goto none;
10638         }
10639
10640         inta = ipw_read32(priv, IPW_INTA_RW);
10641         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10642
10643         if (inta == 0xFFFFFFFF) {
10644                 /* Hardware disappeared */
10645                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10646                 goto none;
10647         }
10648
10649         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10650                 /* Shared interrupt */
10651                 goto none;
10652         }
10653
10654         /* tell the device to stop sending interrupts */
10655         __ipw_disable_interrupts(priv);
10656
10657         /* ack current interrupts */
10658         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10659         ipw_write32(priv, IPW_INTA_RW, inta);
10660
10661         /* Cache INTA value for our tasklet */
10662         priv->isr_inta = inta;
10663
10664         tasklet_schedule(&priv->irq_tasklet);
10665
10666         spin_unlock(&priv->irq_lock);
10667
10668         return IRQ_HANDLED;
10669       none:
10670         spin_unlock(&priv->irq_lock);
10671         return IRQ_NONE;
10672 }
10673
10674 static void ipw_rf_kill(void *adapter)
10675 {
10676         struct ipw_priv *priv = adapter;
10677         unsigned long flags;
10678
10679         spin_lock_irqsave(&priv->lock, flags);
10680
10681         if (rf_kill_active(priv)) {
10682                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10683                 if (priv->workqueue)
10684                         queue_delayed_work(priv->workqueue,
10685                                            &priv->rf_kill, 2 * HZ);
10686                 goto exit_unlock;
10687         }
10688
10689         /* RF Kill is now disabled, so bring the device back up */
10690
10691         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10692                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10693                                   "device\n");
10694
10695                 /* we can not do an adapter restart while inside an irq lock */
10696                 queue_work(priv->workqueue, &priv->adapter_restart);
10697         } else
10698                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10699                                   "enabled\n");
10700
10701       exit_unlock:
10702         spin_unlock_irqrestore(&priv->lock, flags);
10703 }
10704
10705 static void ipw_bg_rf_kill(struct work_struct *work)
10706 {
10707         struct ipw_priv *priv =
10708                 container_of(work, struct ipw_priv, rf_kill.work);
10709         mutex_lock(&priv->mutex);
10710         ipw_rf_kill(priv);
10711         mutex_unlock(&priv->mutex);
10712 }
10713
10714 static void ipw_link_up(struct ipw_priv *priv)
10715 {
10716         priv->last_seq_num = -1;
10717         priv->last_frag_num = -1;
10718         priv->last_packet_time = 0;
10719
10720         netif_carrier_on(priv->net_dev);
10721
10722         cancel_delayed_work(&priv->request_scan);
10723         cancel_delayed_work(&priv->request_direct_scan);
10724         cancel_delayed_work(&priv->request_passive_scan);
10725         cancel_delayed_work(&priv->scan_event);
10726         ipw_reset_stats(priv);
10727         /* Ensure the rate is updated immediately */
10728         priv->last_rate = ipw_get_current_rate(priv);
10729         ipw_gather_stats(priv);
10730         ipw_led_link_up(priv);
10731         notify_wx_assoc_event(priv);
10732
10733         if (priv->config & CFG_BACKGROUND_SCAN)
10734                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10735 }
10736
10737 static void ipw_bg_link_up(struct work_struct *work)
10738 {
10739         struct ipw_priv *priv =
10740                 container_of(work, struct ipw_priv, link_up);
10741         mutex_lock(&priv->mutex);
10742         ipw_link_up(priv);
10743         mutex_unlock(&priv->mutex);
10744 }
10745
10746 static void ipw_link_down(struct ipw_priv *priv)
10747 {
10748         ipw_led_link_down(priv);
10749         netif_carrier_off(priv->net_dev);
10750         notify_wx_assoc_event(priv);
10751
10752         /* Cancel any queued work ... */
10753         cancel_delayed_work(&priv->request_scan);
10754         cancel_delayed_work(&priv->request_direct_scan);
10755         cancel_delayed_work(&priv->request_passive_scan);
10756         cancel_delayed_work(&priv->adhoc_check);
10757         cancel_delayed_work(&priv->gather_stats);
10758
10759         ipw_reset_stats(priv);
10760
10761         if (!(priv->status & STATUS_EXIT_PENDING)) {
10762                 /* Queue up another scan... */
10763                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10764         } else
10765                 cancel_delayed_work(&priv->scan_event);
10766 }
10767
10768 static void ipw_bg_link_down(struct work_struct *work)
10769 {
10770         struct ipw_priv *priv =
10771                 container_of(work, struct ipw_priv, link_down);
10772         mutex_lock(&priv->mutex);
10773         ipw_link_down(priv);
10774         mutex_unlock(&priv->mutex);
10775 }
10776
10777 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10778 {
10779         int ret = 0;
10780
10781         priv->workqueue = create_workqueue(DRV_NAME);
10782         init_waitqueue_head(&priv->wait_command_queue);
10783         init_waitqueue_head(&priv->wait_state);
10784
10785         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10786         INIT_WORK(&priv->associate, ipw_bg_associate);
10787         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10788         INIT_WORK(&priv->system_config, ipw_system_config);
10789         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10790         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10791         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10792         INIT_WORK(&priv->up, ipw_bg_up);
10793         INIT_WORK(&priv->down, ipw_bg_down);
10794         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10795         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10796         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10797         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10798         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10799         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10800         INIT_WORK(&priv->roam, ipw_bg_roam);
10801         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10802         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10803         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10804         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10805         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10806         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10807         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10808
10809 #ifdef CONFIG_IPW2200_QOS
10810         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10811 #endif                          /* CONFIG_IPW2200_QOS */
10812
10813         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10814                      ipw_irq_tasklet, (unsigned long)priv);
10815
10816         return ret;
10817 }
10818
10819 static void shim__set_security(struct net_device *dev,
10820                                struct libipw_security *sec)
10821 {
10822         struct ipw_priv *priv = libipw_priv(dev);
10823         int i;
10824         for (i = 0; i < 4; i++) {
10825                 if (sec->flags & (1 << i)) {
10826                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10827                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10828                         if (sec->key_sizes[i] == 0)
10829                                 priv->ieee->sec.flags &= ~(1 << i);
10830                         else {
10831                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10832                                        sec->key_sizes[i]);
10833                                 priv->ieee->sec.flags |= (1 << i);
10834                         }
10835                         priv->status |= STATUS_SECURITY_UPDATED;
10836                 } else if (sec->level != SEC_LEVEL_1)
10837                         priv->ieee->sec.flags &= ~(1 << i);
10838         }
10839
10840         if (sec->flags & SEC_ACTIVE_KEY) {
10841                 if (sec->active_key <= 3) {
10842                         priv->ieee->sec.active_key = sec->active_key;
10843                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10844                 } else
10845                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10846                 priv->status |= STATUS_SECURITY_UPDATED;
10847         } else
10848                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10849
10850         if ((sec->flags & SEC_AUTH_MODE) &&
10851             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10852                 priv->ieee->sec.auth_mode = sec->auth_mode;
10853                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10854                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10855                         priv->capability |= CAP_SHARED_KEY;
10856                 else
10857                         priv->capability &= ~CAP_SHARED_KEY;
10858                 priv->status |= STATUS_SECURITY_UPDATED;
10859         }
10860
10861         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10862                 priv->ieee->sec.flags |= SEC_ENABLED;
10863                 priv->ieee->sec.enabled = sec->enabled;
10864                 priv->status |= STATUS_SECURITY_UPDATED;
10865                 if (sec->enabled)
10866                         priv->capability |= CAP_PRIVACY_ON;
10867                 else
10868                         priv->capability &= ~CAP_PRIVACY_ON;
10869         }
10870
10871         if (sec->flags & SEC_ENCRYPT)
10872                 priv->ieee->sec.encrypt = sec->encrypt;
10873
10874         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10875                 priv->ieee->sec.level = sec->level;
10876                 priv->ieee->sec.flags |= SEC_LEVEL;
10877                 priv->status |= STATUS_SECURITY_UPDATED;
10878         }
10879
10880         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10881                 ipw_set_hwcrypto_keys(priv);
10882
10883         /* To match current functionality of ipw2100 (which works well w/
10884          * various supplicants, we don't force a disassociate if the
10885          * privacy capability changes ... */
10886 #if 0
10887         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10888             (((priv->assoc_request.capability &
10889                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10890              (!(priv->assoc_request.capability &
10891                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10892                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10893                                 "change.\n");
10894                 ipw_disassociate(priv);
10895         }
10896 #endif
10897 }
10898
10899 static int init_supported_rates(struct ipw_priv *priv,
10900                                 struct ipw_supported_rates *rates)
10901 {
10902         /* TODO: Mask out rates based on priv->rates_mask */
10903
10904         memset(rates, 0, sizeof(*rates));
10905         /* configure supported rates */
10906         switch (priv->ieee->freq_band) {
10907         case LIBIPW_52GHZ_BAND:
10908                 rates->ieee_mode = IPW_A_MODE;
10909                 rates->purpose = IPW_RATE_CAPABILITIES;
10910                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10911                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10912                 break;
10913
10914         default:                /* Mixed or 2.4Ghz */
10915                 rates->ieee_mode = IPW_G_MODE;
10916                 rates->purpose = IPW_RATE_CAPABILITIES;
10917                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10918                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10919                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10920                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10921                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10922                 }
10923                 break;
10924         }
10925
10926         return 0;
10927 }
10928
10929 static int ipw_config(struct ipw_priv *priv)
10930 {
10931         /* This is only called from ipw_up, which resets/reloads the firmware
10932            so, we don't need to first disable the card before we configure
10933            it */
10934         if (ipw_set_tx_power(priv))
10935                 goto error;
10936
10937         /* initialize adapter address */
10938         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10939                 goto error;
10940
10941         /* set basic system config settings */
10942         init_sys_config(&priv->sys_config);
10943
10944         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10945          * Does not support BT priority yet (don't abort or defer our Tx) */
10946         if (bt_coexist) {
10947                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10948
10949                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10950                         priv->sys_config.bt_coexistence
10951                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10952                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10953                         priv->sys_config.bt_coexistence
10954                             |= CFG_BT_COEXISTENCE_OOB;
10955         }
10956
10957 #ifdef CONFIG_IPW2200_PROMISCUOUS
10958         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10959                 priv->sys_config.accept_all_data_frames = 1;
10960                 priv->sys_config.accept_non_directed_frames = 1;
10961                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10962                 priv->sys_config.accept_all_mgmt_frames = 1;
10963         }
10964 #endif
10965
10966         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10967                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10968         else
10969                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10970
10971         if (ipw_send_system_config(priv))
10972                 goto error;
10973
10974         init_supported_rates(priv, &priv->rates);
10975         if (ipw_send_supported_rates(priv, &priv->rates))
10976                 goto error;
10977
10978         /* Set request-to-send threshold */
10979         if (priv->rts_threshold) {
10980                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10981                         goto error;
10982         }
10983 #ifdef CONFIG_IPW2200_QOS
10984         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10985         ipw_qos_activate(priv, NULL);
10986 #endif                          /* CONFIG_IPW2200_QOS */
10987
10988         if (ipw_set_random_seed(priv))
10989                 goto error;
10990
10991         /* final state transition to the RUN state */
10992         if (ipw_send_host_complete(priv))
10993                 goto error;
10994
10995         priv->status |= STATUS_INIT;
10996
10997         ipw_led_init(priv);
10998         ipw_led_radio_on(priv);
10999         priv->notif_missed_beacons = 0;
11000
11001         /* Set hardware WEP key if it is configured. */
11002         if ((priv->capability & CAP_PRIVACY_ON) &&
11003             (priv->ieee->sec.level == SEC_LEVEL_1) &&
11004             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11005                 ipw_set_hwcrypto_keys(priv);
11006
11007         return 0;
11008
11009       error:
11010         return -EIO;
11011 }
11012
11013 /*
11014  * NOTE:
11015  *
11016  * These tables have been tested in conjunction with the
11017  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11018  *
11019  * Altering this values, using it on other hardware, or in geographies
11020  * not intended for resale of the above mentioned Intel adapters has
11021  * not been tested.
11022  *
11023  * Remember to update the table in README.ipw2200 when changing this
11024  * table.
11025  *
11026  */
11027 static const struct libipw_geo ipw_geos[] = {
11028         {                       /* Restricted */
11029          "---",
11030          .bg_channels = 11,
11031          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032                 {2427, 4}, {2432, 5}, {2437, 6},
11033                 {2442, 7}, {2447, 8}, {2452, 9},
11034                 {2457, 10}, {2462, 11}},
11035          },
11036
11037         {                       /* Custom US/Canada */
11038          "ZZF",
11039          .bg_channels = 11,
11040          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11041                 {2427, 4}, {2432, 5}, {2437, 6},
11042                 {2442, 7}, {2447, 8}, {2452, 9},
11043                 {2457, 10}, {2462, 11}},
11044          .a_channels = 8,
11045          .a = {{5180, 36},
11046                {5200, 40},
11047                {5220, 44},
11048                {5240, 48},
11049                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11050                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11051                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11052                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11053          },
11054
11055         {                       /* Rest of World */
11056          "ZZD",
11057          .bg_channels = 13,
11058          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059                 {2427, 4}, {2432, 5}, {2437, 6},
11060                 {2442, 7}, {2447, 8}, {2452, 9},
11061                 {2457, 10}, {2462, 11}, {2467, 12},
11062                 {2472, 13}},
11063          },
11064
11065         {                       /* Custom USA & Europe & High */
11066          "ZZA",
11067          .bg_channels = 11,
11068          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069                 {2427, 4}, {2432, 5}, {2437, 6},
11070                 {2442, 7}, {2447, 8}, {2452, 9},
11071                 {2457, 10}, {2462, 11}},
11072          .a_channels = 13,
11073          .a = {{5180, 36},
11074                {5200, 40},
11075                {5220, 44},
11076                {5240, 48},
11077                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11078                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11079                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11080                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11081                {5745, 149},
11082                {5765, 153},
11083                {5785, 157},
11084                {5805, 161},
11085                {5825, 165}},
11086          },
11087
11088         {                       /* Custom NA & Europe */
11089          "ZZB",
11090          .bg_channels = 11,
11091          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11092                 {2427, 4}, {2432, 5}, {2437, 6},
11093                 {2442, 7}, {2447, 8}, {2452, 9},
11094                 {2457, 10}, {2462, 11}},
11095          .a_channels = 13,
11096          .a = {{5180, 36},
11097                {5200, 40},
11098                {5220, 44},
11099                {5240, 48},
11100                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11101                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11102                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11103                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11104                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11105                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11106                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11107                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11108                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11109          },
11110
11111         {                       /* Custom Japan */
11112          "ZZC",
11113          .bg_channels = 11,
11114          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11115                 {2427, 4}, {2432, 5}, {2437, 6},
11116                 {2442, 7}, {2447, 8}, {2452, 9},
11117                 {2457, 10}, {2462, 11}},
11118          .a_channels = 4,
11119          .a = {{5170, 34}, {5190, 38},
11120                {5210, 42}, {5230, 46}},
11121          },
11122
11123         {                       /* Custom */
11124          "ZZM",
11125          .bg_channels = 11,
11126          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11127                 {2427, 4}, {2432, 5}, {2437, 6},
11128                 {2442, 7}, {2447, 8}, {2452, 9},
11129                 {2457, 10}, {2462, 11}},
11130          },
11131
11132         {                       /* Europe */
11133          "ZZE",
11134          .bg_channels = 13,
11135          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11136                 {2427, 4}, {2432, 5}, {2437, 6},
11137                 {2442, 7}, {2447, 8}, {2452, 9},
11138                 {2457, 10}, {2462, 11}, {2467, 12},
11139                 {2472, 13}},
11140          .a_channels = 19,
11141          .a = {{5180, 36},
11142                {5200, 40},
11143                {5220, 44},
11144                {5240, 48},
11145                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11146                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11147                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11148                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11149                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11150                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11151                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11152                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11153                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11154                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11155                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11156                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11157                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11158                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11159                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11160          },
11161
11162         {                       /* Custom Japan */
11163          "ZZJ",
11164          .bg_channels = 14,
11165          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11166                 {2427, 4}, {2432, 5}, {2437, 6},
11167                 {2442, 7}, {2447, 8}, {2452, 9},
11168                 {2457, 10}, {2462, 11}, {2467, 12},
11169                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11170          .a_channels = 4,
11171          .a = {{5170, 34}, {5190, 38},
11172                {5210, 42}, {5230, 46}},
11173          },
11174
11175         {                       /* Rest of World */
11176          "ZZR",
11177          .bg_channels = 14,
11178          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11179                 {2427, 4}, {2432, 5}, {2437, 6},
11180                 {2442, 7}, {2447, 8}, {2452, 9},
11181                 {2457, 10}, {2462, 11}, {2467, 12},
11182                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11183                              LIBIPW_CH_PASSIVE_ONLY}},
11184          },
11185
11186         {                       /* High Band */
11187          "ZZH",
11188          .bg_channels = 13,
11189          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11190                 {2427, 4}, {2432, 5}, {2437, 6},
11191                 {2442, 7}, {2447, 8}, {2452, 9},
11192                 {2457, 10}, {2462, 11},
11193                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11194                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11195          .a_channels = 4,
11196          .a = {{5745, 149}, {5765, 153},
11197                {5785, 157}, {5805, 161}},
11198          },
11199
11200         {                       /* Custom Europe */
11201          "ZZG",
11202          .bg_channels = 13,
11203          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11204                 {2427, 4}, {2432, 5}, {2437, 6},
11205                 {2442, 7}, {2447, 8}, {2452, 9},
11206                 {2457, 10}, {2462, 11},
11207                 {2467, 12}, {2472, 13}},
11208          .a_channels = 4,
11209          .a = {{5180, 36}, {5200, 40},
11210                {5220, 44}, {5240, 48}},
11211          },
11212
11213         {                       /* Europe */
11214          "ZZK",
11215          .bg_channels = 13,
11216          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11217                 {2427, 4}, {2432, 5}, {2437, 6},
11218                 {2442, 7}, {2447, 8}, {2452, 9},
11219                 {2457, 10}, {2462, 11},
11220                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11221                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11222          .a_channels = 24,
11223          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11224                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11225                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11226                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11227                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11228                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11229                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11230                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11231                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11232                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11233                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11234                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11235                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11236                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11237                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11238                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11239                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11240                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11241                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11242                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11243                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11244                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11245                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11246                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11247          },
11248
11249         {                       /* Europe */
11250          "ZZL",
11251          .bg_channels = 11,
11252          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11253                 {2427, 4}, {2432, 5}, {2437, 6},
11254                 {2442, 7}, {2447, 8}, {2452, 9},
11255                 {2457, 10}, {2462, 11}},
11256          .a_channels = 13,
11257          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11258                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11259                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11260                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11261                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11262                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11263                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11264                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11265                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11266                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11267                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11268                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11269                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11270          }
11271 };
11272
11273 #define MAX_HW_RESTARTS 5
11274 static int ipw_up(struct ipw_priv *priv)
11275 {
11276         int rc, i, j;
11277
11278         /* Age scan list entries found before suspend */
11279         if (priv->suspend_time) {
11280                 libipw_networks_age(priv->ieee, priv->suspend_time);
11281                 priv->suspend_time = 0;
11282         }
11283
11284         if (priv->status & STATUS_EXIT_PENDING)
11285                 return -EIO;
11286
11287         if (cmdlog && !priv->cmdlog) {
11288                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11289                                        GFP_KERNEL);
11290                 if (priv->cmdlog == NULL) {
11291                         IPW_ERROR("Error allocating %d command log entries.\n",
11292                                   cmdlog);
11293                         return -ENOMEM;
11294                 } else {
11295                         priv->cmdlog_len = cmdlog;
11296                 }
11297         }
11298
11299         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11300                 /* Load the microcode, firmware, and eeprom.
11301                  * Also start the clocks. */
11302                 rc = ipw_load(priv);
11303                 if (rc) {
11304                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11305                         return rc;
11306                 }
11307
11308                 ipw_init_ordinals(priv);
11309                 if (!(priv->config & CFG_CUSTOM_MAC))
11310                         eeprom_parse_mac(priv, priv->mac_addr);
11311                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11312                 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11313
11314                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11315                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11316                                     ipw_geos[j].name, 3))
11317                                 break;
11318                 }
11319                 if (j == ARRAY_SIZE(ipw_geos)) {
11320                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11321                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11322                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11323                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11324                         j = 0;
11325                 }
11326                 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11327                         IPW_WARNING("Could not set geography.");
11328                         return 0;
11329                 }
11330
11331                 if (priv->status & STATUS_RF_KILL_SW) {
11332                         IPW_WARNING("Radio disabled by module parameter.\n");
11333                         return 0;
11334                 } else if (rf_kill_active(priv)) {
11335                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11336                                     "Kill switch must be turned off for "
11337                                     "wireless networking to work.\n");
11338                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11339                                            2 * HZ);
11340                         return 0;
11341                 }
11342
11343                 rc = ipw_config(priv);
11344                 if (!rc) {
11345                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11346
11347                         /* If configure to try and auto-associate, kick
11348                          * off a scan. */
11349                         queue_delayed_work(priv->workqueue,
11350                                            &priv->request_scan, 0);
11351
11352                         return 0;
11353                 }
11354
11355                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11356                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11357                                i, MAX_HW_RESTARTS);
11358
11359                 /* We had an error bringing up the hardware, so take it
11360                  * all the way back down so we can try again */
11361                 ipw_down(priv);
11362         }
11363
11364         /* tried to restart and config the device for as long as our
11365          * patience could withstand */
11366         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11367
11368         return -EIO;
11369 }
11370
11371 static void ipw_bg_up(struct work_struct *work)
11372 {
11373         struct ipw_priv *priv =
11374                 container_of(work, struct ipw_priv, up);
11375         mutex_lock(&priv->mutex);
11376         ipw_up(priv);
11377         mutex_unlock(&priv->mutex);
11378 }
11379
11380 static void ipw_deinit(struct ipw_priv *priv)
11381 {
11382         int i;
11383
11384         if (priv->status & STATUS_SCANNING) {
11385                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11386                 ipw_abort_scan(priv);
11387         }
11388
11389         if (priv->status & STATUS_ASSOCIATED) {
11390                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11391                 ipw_disassociate(priv);
11392         }
11393
11394         ipw_led_shutdown(priv);
11395
11396         /* Wait up to 1s for status to change to not scanning and not
11397          * associated (disassociation can take a while for a ful 802.11
11398          * exchange */
11399         for (i = 1000; i && (priv->status &
11400                              (STATUS_DISASSOCIATING |
11401                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11402                 udelay(10);
11403
11404         if (priv->status & (STATUS_DISASSOCIATING |
11405                             STATUS_ASSOCIATED | STATUS_SCANNING))
11406                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11407         else
11408                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11409
11410         /* Attempt to disable the card */
11411         ipw_send_card_disable(priv, 0);
11412
11413         priv->status &= ~STATUS_INIT;
11414 }
11415
11416 static void ipw_down(struct ipw_priv *priv)
11417 {
11418         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11419
11420         priv->status |= STATUS_EXIT_PENDING;
11421
11422         if (ipw_is_init(priv))
11423                 ipw_deinit(priv);
11424
11425         /* Wipe out the EXIT_PENDING status bit if we are not actually
11426          * exiting the module */
11427         if (!exit_pending)
11428                 priv->status &= ~STATUS_EXIT_PENDING;
11429
11430         /* tell the device to stop sending interrupts */
11431         ipw_disable_interrupts(priv);
11432
11433         /* Clear all bits but the RF Kill */
11434         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11435         netif_carrier_off(priv->net_dev);
11436
11437         ipw_stop_nic(priv);
11438
11439         ipw_led_radio_off(priv);
11440 }
11441
11442 static void ipw_bg_down(struct work_struct *work)
11443 {
11444         struct ipw_priv *priv =
11445                 container_of(work, struct ipw_priv, down);
11446         mutex_lock(&priv->mutex);
11447         ipw_down(priv);
11448         mutex_unlock(&priv->mutex);
11449 }
11450
11451 /* Called by register_netdev() */
11452 static int ipw_net_init(struct net_device *dev)
11453 {
11454         int i, rc = 0;
11455         struct ipw_priv *priv = libipw_priv(dev);
11456         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11457         struct wireless_dev *wdev = &priv->ieee->wdev;
11458         mutex_lock(&priv->mutex);
11459
11460         if (ipw_up(priv)) {
11461                 rc = -EIO;
11462                 goto out;
11463         }
11464
11465         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11466
11467         /* fill-out priv->ieee->bg_band */
11468         if (geo->bg_channels) {
11469                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11470
11471                 bg_band->band = IEEE80211_BAND_2GHZ;
11472                 bg_band->n_channels = geo->bg_channels;
11473                 bg_band->channels =
11474                         kzalloc(geo->bg_channels *
11475                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
11476                 /* translate geo->bg to bg_band.channels */
11477                 for (i = 0; i < geo->bg_channels; i++) {
11478                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11479                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11480                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11481                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11482                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11483                                 bg_band->channels[i].flags |=
11484                                         IEEE80211_CHAN_PASSIVE_SCAN;
11485                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11486                                 bg_band->channels[i].flags |=
11487                                         IEEE80211_CHAN_NO_IBSS;
11488                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11489                                 bg_band->channels[i].flags |=
11490                                         IEEE80211_CHAN_RADAR;
11491                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11492                            LIBIPW_CH_UNIFORM_SPREADING, or
11493                            LIBIPW_CH_B_ONLY... */
11494                 }
11495                 /* point at bitrate info */
11496                 bg_band->bitrates = ipw2200_bg_rates;
11497                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11498
11499                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11500         }
11501
11502         /* fill-out priv->ieee->a_band */
11503         if (geo->a_channels) {
11504                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11505
11506                 a_band->band = IEEE80211_BAND_5GHZ;
11507                 a_band->n_channels = geo->a_channels;
11508                 a_band->channels =
11509                         kzalloc(geo->a_channels *
11510                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
11511                 /* translate geo->bg to a_band.channels */
11512                 for (i = 0; i < geo->a_channels; i++) {
11513                         a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11514                         a_band->channels[i].center_freq = geo->a[i].freq;
11515                         a_band->channels[i].hw_value = geo->a[i].channel;
11516                         a_band->channels[i].max_power = geo->a[i].max_power;
11517                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11518                                 a_band->channels[i].flags |=
11519                                         IEEE80211_CHAN_PASSIVE_SCAN;
11520                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11521                                 a_band->channels[i].flags |=
11522                                         IEEE80211_CHAN_NO_IBSS;
11523                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11524                                 a_band->channels[i].flags |=
11525                                         IEEE80211_CHAN_RADAR;
11526                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11527                            LIBIPW_CH_UNIFORM_SPREADING, or
11528                            LIBIPW_CH_B_ONLY... */
11529                 }
11530                 /* point at bitrate info */
11531                 a_band->bitrates = ipw2200_a_rates;
11532                 a_band->n_bitrates = ipw2200_num_a_rates;
11533
11534                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11535         }
11536
11537         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11538
11539         /* With that information in place, we can now register the wiphy... */
11540         if (wiphy_register(wdev->wiphy)) {
11541                 rc = -EIO;
11542                 goto out;
11543         }
11544
11545 out:
11546         mutex_unlock(&priv->mutex);
11547         return rc;
11548 }
11549
11550 /* PCI driver stuff */
11551 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11552         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11553         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11554         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11555         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11556         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11557         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11558         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11559         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11560         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11561         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11562         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11563         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11564         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11565         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11566         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11567         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11568         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11569         {PCI_VDEVICE(INTEL, 0x104f), 0},
11570         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11571         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11572         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11573         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11574
11575         /* required last entry */
11576         {0,}
11577 };
11578
11579 MODULE_DEVICE_TABLE(pci, card_ids);
11580
11581 static struct attribute *ipw_sysfs_entries[] = {
11582         &dev_attr_rf_kill.attr,
11583         &dev_attr_direct_dword.attr,
11584         &dev_attr_indirect_byte.attr,
11585         &dev_attr_indirect_dword.attr,
11586         &dev_attr_mem_gpio_reg.attr,
11587         &dev_attr_command_event_reg.attr,
11588         &dev_attr_nic_type.attr,
11589         &dev_attr_status.attr,
11590         &dev_attr_cfg.attr,
11591         &dev_attr_error.attr,
11592         &dev_attr_event_log.attr,
11593         &dev_attr_cmd_log.attr,
11594         &dev_attr_eeprom_delay.attr,
11595         &dev_attr_ucode_version.attr,
11596         &dev_attr_rtc.attr,
11597         &dev_attr_scan_age.attr,
11598         &dev_attr_led.attr,
11599         &dev_attr_speed_scan.attr,
11600         &dev_attr_net_stats.attr,
11601         &dev_attr_channels.attr,
11602 #ifdef CONFIG_IPW2200_PROMISCUOUS
11603         &dev_attr_rtap_iface.attr,
11604         &dev_attr_rtap_filter.attr,
11605 #endif
11606         NULL
11607 };
11608
11609 static struct attribute_group ipw_attribute_group = {
11610         .name = NULL,           /* put in device directory */
11611         .attrs = ipw_sysfs_entries,
11612 };
11613
11614 #ifdef CONFIG_IPW2200_PROMISCUOUS
11615 static int ipw_prom_open(struct net_device *dev)
11616 {
11617         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11618         struct ipw_priv *priv = prom_priv->priv;
11619
11620         IPW_DEBUG_INFO("prom dev->open\n");
11621         netif_carrier_off(dev);
11622
11623         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11624                 priv->sys_config.accept_all_data_frames = 1;
11625                 priv->sys_config.accept_non_directed_frames = 1;
11626                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11627                 priv->sys_config.accept_all_mgmt_frames = 1;
11628
11629                 ipw_send_system_config(priv);
11630         }
11631
11632         return 0;
11633 }
11634
11635 static int ipw_prom_stop(struct net_device *dev)
11636 {
11637         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11638         struct ipw_priv *priv = prom_priv->priv;
11639
11640         IPW_DEBUG_INFO("prom dev->stop\n");
11641
11642         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11643                 priv->sys_config.accept_all_data_frames = 0;
11644                 priv->sys_config.accept_non_directed_frames = 0;
11645                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11646                 priv->sys_config.accept_all_mgmt_frames = 0;
11647
11648                 ipw_send_system_config(priv);
11649         }
11650
11651         return 0;
11652 }
11653
11654 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11655                                             struct net_device *dev)
11656 {
11657         IPW_DEBUG_INFO("prom dev->xmit\n");
11658         dev_kfree_skb(skb);
11659         return NETDEV_TX_OK;
11660 }
11661
11662 static const struct net_device_ops ipw_prom_netdev_ops = {
11663         .ndo_open               = ipw_prom_open,
11664         .ndo_stop               = ipw_prom_stop,
11665         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11666         .ndo_change_mtu         = libipw_change_mtu,
11667         .ndo_set_mac_address    = eth_mac_addr,
11668         .ndo_validate_addr      = eth_validate_addr,
11669 };
11670
11671 static int ipw_prom_alloc(struct ipw_priv *priv)
11672 {
11673         int rc = 0;
11674
11675         if (priv->prom_net_dev)
11676                 return -EPERM;
11677
11678         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11679         if (priv->prom_net_dev == NULL)
11680                 return -ENOMEM;
11681
11682         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11683         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11684         priv->prom_priv->priv = priv;
11685
11686         strcpy(priv->prom_net_dev->name, "rtap%d");
11687         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11688
11689         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11690         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11691
11692         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11693         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11694
11695         rc = register_netdev(priv->prom_net_dev);
11696         if (rc) {
11697                 free_libipw(priv->prom_net_dev, 1);
11698                 priv->prom_net_dev = NULL;
11699                 return rc;
11700         }
11701
11702         return 0;
11703 }
11704
11705 static void ipw_prom_free(struct ipw_priv *priv)
11706 {
11707         if (!priv->prom_net_dev)
11708                 return;
11709
11710         unregister_netdev(priv->prom_net_dev);
11711         free_libipw(priv->prom_net_dev, 1);
11712
11713         priv->prom_net_dev = NULL;
11714 }
11715
11716 #endif
11717
11718 static const struct net_device_ops ipw_netdev_ops = {
11719         .ndo_init               = ipw_net_init,
11720         .ndo_open               = ipw_net_open,
11721         .ndo_stop               = ipw_net_stop,
11722         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11723         .ndo_set_mac_address    = ipw_net_set_mac_address,
11724         .ndo_start_xmit         = libipw_xmit,
11725         .ndo_change_mtu         = libipw_change_mtu,
11726         .ndo_validate_addr      = eth_validate_addr,
11727 };
11728
11729 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11730                                    const struct pci_device_id *ent)
11731 {
11732         int err = 0;
11733         struct net_device *net_dev;
11734         void __iomem *base;
11735         u32 length, val;
11736         struct ipw_priv *priv;
11737         int i;
11738
11739         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11740         if (net_dev == NULL) {
11741                 err = -ENOMEM;
11742                 goto out;
11743         }
11744
11745         priv = libipw_priv(net_dev);
11746         priv->ieee = netdev_priv(net_dev);
11747
11748         priv->net_dev = net_dev;
11749         priv->pci_dev = pdev;
11750         ipw_debug_level = debug;
11751         spin_lock_init(&priv->irq_lock);
11752         spin_lock_init(&priv->lock);
11753         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11754                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11755
11756         mutex_init(&priv->mutex);
11757         if (pci_enable_device(pdev)) {
11758                 err = -ENODEV;
11759                 goto out_free_libipw;
11760         }
11761
11762         pci_set_master(pdev);
11763
11764         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11765         if (!err)
11766                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11767         if (err) {
11768                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11769                 goto out_pci_disable_device;
11770         }
11771
11772         pci_set_drvdata(pdev, priv);
11773
11774         err = pci_request_regions(pdev, DRV_NAME);
11775         if (err)
11776                 goto out_pci_disable_device;
11777
11778         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11779          * PCI Tx retries from interfering with C3 CPU state */
11780         pci_read_config_dword(pdev, 0x40, &val);
11781         if ((val & 0x0000ff00) != 0)
11782                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11783
11784         length = pci_resource_len(pdev, 0);
11785         priv->hw_len = length;
11786
11787         base = pci_ioremap_bar(pdev, 0);
11788         if (!base) {
11789                 err = -ENODEV;
11790                 goto out_pci_release_regions;
11791         }
11792
11793         priv->hw_base = base;
11794         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11795         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11796
11797         err = ipw_setup_deferred_work(priv);
11798         if (err) {
11799                 IPW_ERROR("Unable to setup deferred work\n");
11800                 goto out_iounmap;
11801         }
11802
11803         ipw_sw_reset(priv, 1);
11804
11805         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11806         if (err) {
11807                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11808                 goto out_destroy_workqueue;
11809         }
11810
11811         SET_NETDEV_DEV(net_dev, &pdev->dev);
11812
11813         mutex_lock(&priv->mutex);
11814
11815         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11816         priv->ieee->set_security = shim__set_security;
11817         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11818
11819 #ifdef CONFIG_IPW2200_QOS
11820         priv->ieee->is_qos_active = ipw_is_qos_active;
11821         priv->ieee->handle_probe_response = ipw_handle_beacon;
11822         priv->ieee->handle_beacon = ipw_handle_probe_response;
11823         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11824 #endif                          /* CONFIG_IPW2200_QOS */
11825
11826         priv->ieee->perfect_rssi = -20;
11827         priv->ieee->worst_rssi = -85;
11828
11829         net_dev->netdev_ops = &ipw_netdev_ops;
11830         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11831         net_dev->wireless_data = &priv->wireless_data;
11832         net_dev->wireless_handlers = &ipw_wx_handler_def;
11833         net_dev->ethtool_ops = &ipw_ethtool_ops;
11834         net_dev->irq = pdev->irq;
11835         net_dev->base_addr = (unsigned long)priv->hw_base;
11836         net_dev->mem_start = pci_resource_start(pdev, 0);
11837         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11838
11839         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11840         if (err) {
11841                 IPW_ERROR("failed to create sysfs device attributes\n");
11842                 mutex_unlock(&priv->mutex);
11843                 goto out_release_irq;
11844         }
11845
11846         mutex_unlock(&priv->mutex);
11847         err = register_netdev(net_dev);
11848         if (err) {
11849                 IPW_ERROR("failed to register network device\n");
11850                 goto out_remove_sysfs;
11851         }
11852
11853 #ifdef CONFIG_IPW2200_PROMISCUOUS
11854         if (rtap_iface) {
11855                 err = ipw_prom_alloc(priv);
11856                 if (err) {
11857                         IPW_ERROR("Failed to register promiscuous network "
11858                                   "device (error %d).\n", err);
11859                         unregister_netdev(priv->net_dev);
11860                         goto out_remove_sysfs;
11861                 }
11862         }
11863 #endif
11864
11865         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11866                "channels, %d 802.11a channels)\n",
11867                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11868                priv->ieee->geo.a_channels);
11869
11870         return 0;
11871
11872       out_remove_sysfs:
11873         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11874       out_release_irq:
11875         free_irq(pdev->irq, priv);
11876       out_destroy_workqueue:
11877         destroy_workqueue(priv->workqueue);
11878         priv->workqueue = NULL;
11879       out_iounmap:
11880         iounmap(priv->hw_base);
11881       out_pci_release_regions:
11882         pci_release_regions(pdev);
11883       out_pci_disable_device:
11884         pci_disable_device(pdev);
11885         pci_set_drvdata(pdev, NULL);
11886       out_free_libipw:
11887         free_libipw(priv->net_dev, 0);
11888       out:
11889         return err;
11890 }
11891
11892 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11893 {
11894         struct ipw_priv *priv = pci_get_drvdata(pdev);
11895         struct list_head *p, *q;
11896         int i;
11897
11898         if (!priv)
11899                 return;
11900
11901         mutex_lock(&priv->mutex);
11902
11903         priv->status |= STATUS_EXIT_PENDING;
11904         ipw_down(priv);
11905         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11906
11907         mutex_unlock(&priv->mutex);
11908
11909         unregister_netdev(priv->net_dev);
11910
11911         if (priv->rxq) {
11912                 ipw_rx_queue_free(priv, priv->rxq);
11913                 priv->rxq = NULL;
11914         }
11915         ipw_tx_queue_free(priv);
11916
11917         if (priv->cmdlog) {
11918                 kfree(priv->cmdlog);
11919                 priv->cmdlog = NULL;
11920         }
11921         /* ipw_down will ensure that there is no more pending work
11922          * in the workqueue's, so we can safely remove them now. */
11923         cancel_delayed_work(&priv->adhoc_check);
11924         cancel_delayed_work(&priv->gather_stats);
11925         cancel_delayed_work(&priv->request_scan);
11926         cancel_delayed_work(&priv->request_direct_scan);
11927         cancel_delayed_work(&priv->request_passive_scan);
11928         cancel_delayed_work(&priv->scan_event);
11929         cancel_delayed_work(&priv->rf_kill);
11930         cancel_delayed_work(&priv->scan_check);
11931         destroy_workqueue(priv->workqueue);
11932         priv->workqueue = NULL;
11933
11934         /* Free MAC hash list for ADHOC */
11935         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11936                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11937                         list_del(p);
11938                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11939                 }
11940         }
11941
11942         kfree(priv->error);
11943         priv->error = NULL;
11944
11945 #ifdef CONFIG_IPW2200_PROMISCUOUS
11946         ipw_prom_free(priv);
11947 #endif
11948
11949         free_irq(pdev->irq, priv);
11950         iounmap(priv->hw_base);
11951         pci_release_regions(pdev);
11952         pci_disable_device(pdev);
11953         pci_set_drvdata(pdev, NULL);
11954         /* wiphy_unregister needs to be here, before free_libipw */
11955         wiphy_unregister(priv->ieee->wdev.wiphy);
11956         kfree(priv->ieee->a_band.channels);
11957         kfree(priv->ieee->bg_band.channels);
11958         free_libipw(priv->net_dev, 0);
11959         free_firmware();
11960 }
11961
11962 #ifdef CONFIG_PM
11963 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11964 {
11965         struct ipw_priv *priv = pci_get_drvdata(pdev);
11966         struct net_device *dev = priv->net_dev;
11967
11968         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11969
11970         /* Take down the device; powers it off, etc. */
11971         ipw_down(priv);
11972
11973         /* Remove the PRESENT state of the device */
11974         netif_device_detach(dev);
11975
11976         pci_save_state(pdev);
11977         pci_disable_device(pdev);
11978         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11979
11980         priv->suspend_at = get_seconds();
11981
11982         return 0;
11983 }
11984
11985 static int ipw_pci_resume(struct pci_dev *pdev)
11986 {
11987         struct ipw_priv *priv = pci_get_drvdata(pdev);
11988         struct net_device *dev = priv->net_dev;
11989         int err;
11990         u32 val;
11991
11992         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11993
11994         pci_set_power_state(pdev, PCI_D0);
11995         err = pci_enable_device(pdev);
11996         if (err) {
11997                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11998                        dev->name);
11999                 return err;
12000         }
12001         pci_restore_state(pdev);
12002
12003         /*
12004          * Suspend/Resume resets the PCI configuration space, so we have to
12005          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12006          * from interfering with C3 CPU state. pci_restore_state won't help
12007          * here since it only restores the first 64 bytes pci config header.
12008          */
12009         pci_read_config_dword(pdev, 0x40, &val);
12010         if ((val & 0x0000ff00) != 0)
12011                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12012
12013         /* Set the device back into the PRESENT state; this will also wake
12014          * the queue of needed */
12015         netif_device_attach(dev);
12016
12017         priv->suspend_time = get_seconds() - priv->suspend_at;
12018
12019         /* Bring the device back up */
12020         queue_work(priv->workqueue, &priv->up);
12021
12022         return 0;
12023 }
12024 #endif
12025
12026 static void ipw_pci_shutdown(struct pci_dev *pdev)
12027 {
12028         struct ipw_priv *priv = pci_get_drvdata(pdev);
12029
12030         /* Take down the device; powers it off, etc. */
12031         ipw_down(priv);
12032
12033         pci_disable_device(pdev);
12034 }
12035
12036 /* driver initialization stuff */
12037 static struct pci_driver ipw_driver = {
12038         .name = DRV_NAME,
12039         .id_table = card_ids,
12040         .probe = ipw_pci_probe,
12041         .remove = __devexit_p(ipw_pci_remove),
12042 #ifdef CONFIG_PM
12043         .suspend = ipw_pci_suspend,
12044         .resume = ipw_pci_resume,
12045 #endif
12046         .shutdown = ipw_pci_shutdown,
12047 };
12048
12049 static int __init ipw_init(void)
12050 {
12051         int ret;
12052
12053         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12054         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12055
12056         ret = pci_register_driver(&ipw_driver);
12057         if (ret) {
12058                 IPW_ERROR("Unable to initialize PCI module\n");
12059                 return ret;
12060         }
12061
12062         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12063         if (ret) {
12064                 IPW_ERROR("Unable to create driver sysfs file\n");
12065                 pci_unregister_driver(&ipw_driver);
12066                 return ret;
12067         }
12068
12069         return ret;
12070 }
12071
12072 static void __exit ipw_exit(void)
12073 {
12074         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12075         pci_unregister_driver(&ipw_driver);
12076 }
12077
12078 module_param(disable, int, 0444);
12079 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12080
12081 module_param(associate, int, 0444);
12082 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12083
12084 module_param(auto_create, int, 0444);
12085 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12086
12087 module_param_named(led, led_support, int, 0444);
12088 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
12089
12090 module_param(debug, int, 0444);
12091 MODULE_PARM_DESC(debug, "debug output mask");
12092
12093 module_param_named(channel, default_channel, int, 0444);
12094 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12095
12096 #ifdef CONFIG_IPW2200_PROMISCUOUS
12097 module_param(rtap_iface, int, 0444);
12098 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12099 #endif
12100
12101 #ifdef CONFIG_IPW2200_QOS
12102 module_param(qos_enable, int, 0444);
12103 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12104
12105 module_param(qos_burst_enable, int, 0444);
12106 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12107
12108 module_param(qos_no_ack_mask, int, 0444);
12109 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12110
12111 module_param(burst_duration_CCK, int, 0444);
12112 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12113
12114 module_param(burst_duration_OFDM, int, 0444);
12115 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12116 #endif                          /* CONFIG_IPW2200_QOS */
12117
12118 #ifdef CONFIG_IPW2200_MONITOR
12119 module_param_named(mode, network_mode, int, 0444);
12120 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12121 #else
12122 module_param_named(mode, network_mode, int, 0444);
12123 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12124 #endif
12125
12126 module_param(bt_coexist, int, 0444);
12127 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12128
12129 module_param(hwcrypto, int, 0444);
12130 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12131
12132 module_param(cmdlog, int, 0444);
12133 MODULE_PARM_DESC(cmdlog,
12134                  "allocate a ring buffer for logging firmware commands");
12135
12136 module_param(roaming, int, 0444);
12137 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12138
12139 module_param(antenna, int, 0444);
12140 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12141
12142 module_exit(ipw_exit);
12143 module_init(ipw_init);