ath10k: support msdu chaining
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24
25 #include <linux/log2.h>
26
27 /* slightly larger than one large A-MPDU */
28 #define HTT_RX_RING_SIZE_MIN 128
29
30 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
31 #define HTT_RX_RING_SIZE_MAX 2048
32
33 #define HTT_RX_AVG_FRM_BYTES 1000
34
35 /* ms, very conservative */
36 #define HTT_RX_HOST_LATENCY_MAX_MS 20
37
38 /* ms, conservative */
39 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
40
41 /* when under memory pressure rx ring refill may fail and needs a retry */
42 #define HTT_RX_RING_REFILL_RETRY_MS 50
43
44
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
46 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
47
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
49 {
50         int size;
51
52         /*
53          * It is expected that the host CPU will typically be able to
54          * service the rx indication from one A-MPDU before the rx
55          * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56          * later. However, the rx ring should be sized very conservatively,
57          * to accomodate the worst reasonable delay before the host CPU
58          * services a rx indication interrupt.
59          *
60          * The rx ring need not be kept full of empty buffers. In theory,
61          * the htt host SW can dynamically track the low-water mark in the
62          * rx ring, and dynamically adjust the level to which the rx ring
63          * is filled with empty buffers, to dynamically meet the desired
64          * low-water mark.
65          *
66          * In contrast, it's difficult to resize the rx ring itself, once
67          * it's in use. Thus, the ring itself should be sized very
68          * conservatively, while the degree to which the ring is filled
69          * with empty buffers should be sized moderately conservatively.
70          */
71
72         /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73         size =
74             htt->max_throughput_mbps +
75             1000  /
76             (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
77
78         if (size < HTT_RX_RING_SIZE_MIN)
79                 size = HTT_RX_RING_SIZE_MIN;
80
81         if (size > HTT_RX_RING_SIZE_MAX)
82                 size = HTT_RX_RING_SIZE_MAX;
83
84         size = roundup_pow_of_two(size);
85
86         return size;
87 }
88
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
90 {
91         int size;
92
93         /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94         size =
95             htt->max_throughput_mbps *
96             1000  /
97             (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
98
99         /*
100          * Make sure the fill level is at least 1 less than the ring size.
101          * Leaving 1 element empty allows the SW to easily distinguish
102          * between a full ring vs. an empty ring.
103          */
104         if (size >= htt->rx_ring.size)
105                 size = htt->rx_ring.size - 1;
106
107         return size;
108 }
109
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
111 {
112         struct sk_buff *skb;
113         struct ath10k_skb_cb *cb;
114         int i;
115
116         for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117                 skb = htt->rx_ring.netbufs_ring[i];
118                 cb = ATH10K_SKB_CB(skb);
119                 dma_unmap_single(htt->ar->dev, cb->paddr,
120                                  skb->len + skb_tailroom(skb),
121                                  DMA_FROM_DEVICE);
122                 dev_kfree_skb_any(skb);
123         }
124
125         htt->rx_ring.fill_cnt = 0;
126 }
127
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
129 {
130         struct htt_rx_desc *rx_desc;
131         struct sk_buff *skb;
132         dma_addr_t paddr;
133         int ret = 0, idx;
134
135         idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr));
136         while (num > 0) {
137                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138                 if (!skb) {
139                         ret = -ENOMEM;
140                         goto fail;
141                 }
142
143                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144                         skb_pull(skb,
145                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146                                  skb->data);
147
148                 /* Clear rx_desc attention word before posting to Rx ring */
149                 rx_desc = (struct htt_rx_desc *)skb->data;
150                 rx_desc->attention.flags = __cpu_to_le32(0);
151
152                 paddr = dma_map_single(htt->ar->dev, skb->data,
153                                        skb->len + skb_tailroom(skb),
154                                        DMA_FROM_DEVICE);
155
156                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157                         dev_kfree_skb_any(skb);
158                         ret = -ENOMEM;
159                         goto fail;
160                 }
161
162                 ATH10K_SKB_CB(skb)->paddr = paddr;
163                 htt->rx_ring.netbufs_ring[idx] = skb;
164                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165                 htt->rx_ring.fill_cnt++;
166
167                 num--;
168                 idx++;
169                 idx &= htt->rx_ring.size_mask;
170         }
171
172 fail:
173         *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx);
174         return ret;
175 }
176
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
178 {
179         lockdep_assert_held(&htt->rx_ring.lock);
180         return __ath10k_htt_rx_ring_fill_n(htt, num);
181 }
182
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
184 {
185         int ret, num_deficit, num_to_fill;
186
187         /* Refilling the whole RX ring buffer proves to be a bad idea. The
188          * reason is RX may take up significant amount of CPU cycles and starve
189          * other tasks, e.g. TX on an ethernet device while acting as a bridge
190          * with ath10k wlan interface. This ended up with very poor performance
191          * once CPU the host system was overwhelmed with RX on ath10k.
192          *
193          * By limiting the number of refills the replenishing occurs
194          * progressively. This in turns makes use of the fact tasklets are
195          * processed in FIFO order. This means actual RX processing can starve
196          * out refilling. If there's not enough buffers on RX ring FW will not
197          * report RX until it is refilled with enough buffers. This
198          * automatically balances load wrt to CPU power.
199          *
200          * This probably comes at a cost of lower maximum throughput but
201          * improves the avarage and stability. */
202         spin_lock_bh(&htt->rx_ring.lock);
203         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205         num_deficit -= num_to_fill;
206         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207         if (ret == -ENOMEM) {
208                 /*
209                  * Failed to fill it to the desired level -
210                  * we'll start a timer and try again next time.
211                  * As long as enough buffers are left in the ring for
212                  * another A-MPDU rx, no special recovery is needed.
213                  */
214                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216         } else if (num_deficit > 0) {
217                 tasklet_schedule(&htt->rx_replenish_task);
218         }
219         spin_unlock_bh(&htt->rx_ring.lock);
220 }
221
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
223 {
224         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225         ath10k_htt_rx_msdu_buff_replenish(htt);
226 }
227
228 void ath10k_htt_rx_detach(struct ath10k_htt *htt)
229 {
230         int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld;
231
232         del_timer_sync(&htt->rx_ring.refill_retry_timer);
233         tasklet_kill(&htt->rx_replenish_task);
234         tasklet_kill(&htt->txrx_compl_task);
235
236         skb_queue_purge(&htt->tx_compl_q);
237         skb_queue_purge(&htt->rx_compl_q);
238
239         while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) {
240                 struct sk_buff *skb =
241                                 htt->rx_ring.netbufs_ring[sw_rd_idx];
242                 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
243
244                 dma_unmap_single(htt->ar->dev, cb->paddr,
245                                  skb->len + skb_tailroom(skb),
246                                  DMA_FROM_DEVICE);
247                 dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]);
248                 sw_rd_idx++;
249                 sw_rd_idx &= htt->rx_ring.size_mask;
250         }
251
252         dma_free_coherent(htt->ar->dev,
253                           (htt->rx_ring.size *
254                            sizeof(htt->rx_ring.paddrs_ring)),
255                           htt->rx_ring.paddrs_ring,
256                           htt->rx_ring.base_paddr);
257
258         dma_free_coherent(htt->ar->dev,
259                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
260                           htt->rx_ring.alloc_idx.vaddr,
261                           htt->rx_ring.alloc_idx.paddr);
262
263         kfree(htt->rx_ring.netbufs_ring);
264 }
265
266 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
267 {
268         int idx;
269         struct sk_buff *msdu;
270
271         lockdep_assert_held(&htt->rx_ring.lock);
272
273         if (htt->rx_ring.fill_cnt == 0) {
274                 ath10k_warn("tried to pop sk_buff from an empty rx ring\n");
275                 return NULL;
276         }
277
278         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
279         msdu = htt->rx_ring.netbufs_ring[idx];
280
281         idx++;
282         idx &= htt->rx_ring.size_mask;
283         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
284         htt->rx_ring.fill_cnt--;
285
286         return msdu;
287 }
288
289 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
290 {
291         struct sk_buff *next;
292
293         while (skb) {
294                 next = skb->next;
295                 dev_kfree_skb_any(skb);
296                 skb = next;
297         }
298 }
299
300 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
301                                    u8 **fw_desc, int *fw_desc_len,
302                                    struct sk_buff **head_msdu,
303                                    struct sk_buff **tail_msdu)
304 {
305         int msdu_len, msdu_chaining = 0;
306         struct sk_buff *msdu;
307         struct htt_rx_desc *rx_desc;
308
309         lockdep_assert_held(&htt->rx_ring.lock);
310
311         if (htt->rx_confused) {
312                 ath10k_warn("htt is confused. refusing rx\n");
313                 return 0;
314         }
315
316         msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
317         while (msdu) {
318                 int last_msdu, msdu_len_invalid, msdu_chained;
319
320                 dma_unmap_single(htt->ar->dev,
321                                  ATH10K_SKB_CB(msdu)->paddr,
322                                  msdu->len + skb_tailroom(msdu),
323                                  DMA_FROM_DEVICE);
324
325                 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ",
326                                 msdu->data, msdu->len + skb_tailroom(msdu));
327
328                 rx_desc = (struct htt_rx_desc *)msdu->data;
329
330                 /* FIXME: we must report msdu payload since this is what caller
331                  *        expects now */
332                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
333                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
334
335                 /*
336                  * Sanity check - confirm the HW is finished filling in the
337                  * rx data.
338                  * If the HW and SW are working correctly, then it's guaranteed
339                  * that the HW's MAC DMA is done before this point in the SW.
340                  * To prevent the case that we handle a stale Rx descriptor,
341                  * just assert for now until we have a way to recover.
342                  */
343                 if (!(__le32_to_cpu(rx_desc->attention.flags)
344                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
345                         ath10k_htt_rx_free_msdu_chain(*head_msdu);
346                         *head_msdu = NULL;
347                         msdu = NULL;
348                         ath10k_err("htt rx stopped. cannot recover\n");
349                         htt->rx_confused = true;
350                         break;
351                 }
352
353                 /*
354                  * Copy the FW rx descriptor for this MSDU from the rx
355                  * indication message into the MSDU's netbuf. HL uses the
356                  * same rx indication message definition as LL, and simply
357                  * appends new info (fields from the HW rx desc, and the
358                  * MSDU payload itself). So, the offset into the rx
359                  * indication message only has to account for the standard
360                  * offset of the per-MSDU FW rx desc info within the
361                  * message, and how many bytes of the per-MSDU FW rx desc
362                  * info have already been consumed. (And the endianness of
363                  * the host, since for a big-endian host, the rx ind
364                  * message contents, including the per-MSDU rx desc bytes,
365                  * were byteswapped during upload.)
366                  */
367                 if (*fw_desc_len > 0) {
368                         rx_desc->fw_desc.info0 = **fw_desc;
369                         /*
370                          * The target is expected to only provide the basic
371                          * per-MSDU rx descriptors. Just to be sure, verify
372                          * that the target has not attached extension data
373                          * (e.g. LRO flow ID).
374                          */
375
376                         /* or more, if there's extension data */
377                         (*fw_desc)++;
378                         (*fw_desc_len)--;
379                 } else {
380                         /*
381                          * When an oversized AMSDU happened, FW will lost
382                          * some of MSDU status - in this case, the FW
383                          * descriptors provided will be less than the
384                          * actual MSDUs inside this MPDU. Mark the FW
385                          * descriptors so that it will still deliver to
386                          * upper stack, if no CRC error for this MPDU.
387                          *
388                          * FIX THIS - the FW descriptors are actually for
389                          * MSDUs in the end of this A-MSDU instead of the
390                          * beginning.
391                          */
392                         rx_desc->fw_desc.info0 = 0;
393                 }
394
395                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
396                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
397                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
398                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
399                               RX_MSDU_START_INFO0_MSDU_LENGTH);
400                 msdu_chained = rx_desc->frag_info.ring2_more_count;
401                 msdu_chaining = msdu_chained;
402
403                 if (msdu_len_invalid)
404                         msdu_len = 0;
405
406                 skb_trim(msdu, 0);
407                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
408                 msdu_len -= msdu->len;
409
410                 /* FIXME: Do chained buffers include htt_rx_desc or not? */
411                 while (msdu_chained--) {
412                         struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
413
414                         dma_unmap_single(htt->ar->dev,
415                                          ATH10K_SKB_CB(next)->paddr,
416                                          next->len + skb_tailroom(next),
417                                          DMA_FROM_DEVICE);
418
419                         ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL,
420                                         "htt rx chained: ", next->data,
421                                         next->len + skb_tailroom(next));
422
423                         skb_trim(next, 0);
424                         skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
425                         msdu_len -= next->len;
426
427                         msdu->next = next;
428                         msdu = next;
429                 }
430
431                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
432                                 RX_MSDU_END_INFO0_LAST_MSDU;
433
434                 if (last_msdu) {
435                         msdu->next = NULL;
436                         break;
437                 } else {
438                         struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
439                         msdu->next = next;
440                         msdu = next;
441                 }
442         }
443         *tail_msdu = msdu;
444
445         /*
446          * Don't refill the ring yet.
447          *
448          * First, the elements popped here are still in use - it is not
449          * safe to overwrite them until the matching call to
450          * mpdu_desc_list_next. Second, for efficiency it is preferable to
451          * refill the rx ring with 1 PPDU's worth of rx buffers (something
452          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
453          * (something like 3 buffers). Consequently, we'll rely on the txrx
454          * SW to tell us when it is done pulling all the PPDU's rx buffers
455          * out of the rx ring, and then refill it just once.
456          */
457
458         return msdu_chaining;
459 }
460
461 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
462 {
463         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
464         ath10k_htt_rx_msdu_buff_replenish(htt);
465 }
466
467 int ath10k_htt_rx_attach(struct ath10k_htt *htt)
468 {
469         dma_addr_t paddr;
470         void *vaddr;
471         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
472
473         htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
474         if (!is_power_of_2(htt->rx_ring.size)) {
475                 ath10k_warn("htt rx ring size is not power of 2\n");
476                 return -EINVAL;
477         }
478
479         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
480
481         /*
482          * Set the initial value for the level to which the rx ring
483          * should be filled, based on the max throughput and the
484          * worst likely latency for the host to fill the rx ring
485          * with new buffers. In theory, this fill level can be
486          * dynamically adjusted from the initial value set here, to
487          * reflect the actual host latency rather than a
488          * conservative assumption about the host latency.
489          */
490         htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
491
492         htt->rx_ring.netbufs_ring =
493                 kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
494                         GFP_KERNEL);
495         if (!htt->rx_ring.netbufs_ring)
496                 goto err_netbuf;
497
498         vaddr = dma_alloc_coherent(htt->ar->dev,
499                    (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)),
500                    &paddr, GFP_DMA);
501         if (!vaddr)
502                 goto err_dma_ring;
503
504         htt->rx_ring.paddrs_ring = vaddr;
505         htt->rx_ring.base_paddr = paddr;
506
507         vaddr = dma_alloc_coherent(htt->ar->dev,
508                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
509                                    &paddr, GFP_DMA);
510         if (!vaddr)
511                 goto err_dma_idx;
512
513         htt->rx_ring.alloc_idx.vaddr = vaddr;
514         htt->rx_ring.alloc_idx.paddr = paddr;
515         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
516         *htt->rx_ring.alloc_idx.vaddr = 0;
517
518         /* Initialize the Rx refill retry timer */
519         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
520
521         spin_lock_init(&htt->rx_ring.lock);
522
523         htt->rx_ring.fill_cnt = 0;
524         if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
525                 goto err_fill_ring;
526
527         tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
528                      (unsigned long)htt);
529
530         skb_queue_head_init(&htt->tx_compl_q);
531         skb_queue_head_init(&htt->rx_compl_q);
532
533         tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
534                      (unsigned long)htt);
535
536         ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
537                    htt->rx_ring.size, htt->rx_ring.fill_level);
538         return 0;
539
540 err_fill_ring:
541         ath10k_htt_rx_ring_free(htt);
542         dma_free_coherent(htt->ar->dev,
543                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
544                           htt->rx_ring.alloc_idx.vaddr,
545                           htt->rx_ring.alloc_idx.paddr);
546 err_dma_idx:
547         dma_free_coherent(htt->ar->dev,
548                           (htt->rx_ring.size *
549                            sizeof(htt->rx_ring.paddrs_ring)),
550                           htt->rx_ring.paddrs_ring,
551                           htt->rx_ring.base_paddr);
552 err_dma_ring:
553         kfree(htt->rx_ring.netbufs_ring);
554 err_netbuf:
555         return -ENOMEM;
556 }
557
558 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type)
559 {
560         switch (type) {
561         case HTT_RX_MPDU_ENCRYPT_WEP40:
562         case HTT_RX_MPDU_ENCRYPT_WEP104:
563                 return 4;
564         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
565         case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
566         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
567         case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
568         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
569                 return 8;
570         case HTT_RX_MPDU_ENCRYPT_NONE:
571                 return 0;
572         }
573
574         ath10k_warn("unknown encryption type %d\n", type);
575         return 0;
576 }
577
578 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type)
579 {
580         switch (type) {
581         case HTT_RX_MPDU_ENCRYPT_NONE:
582         case HTT_RX_MPDU_ENCRYPT_WEP40:
583         case HTT_RX_MPDU_ENCRYPT_WEP104:
584         case HTT_RX_MPDU_ENCRYPT_WEP128:
585         case HTT_RX_MPDU_ENCRYPT_WAPI:
586                 return 0;
587         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
588         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
589                 return 4;
590         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
591                 return 8;
592         }
593
594         ath10k_warn("unknown encryption type %d\n", type);
595         return 0;
596 }
597
598 /* Applies for first msdu in chain, before altering it. */
599 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
600 {
601         struct htt_rx_desc *rxd;
602         enum rx_msdu_decap_format fmt;
603
604         rxd = (void *)skb->data - sizeof(*rxd);
605         fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
606                         RX_MSDU_START_INFO1_DECAP_FORMAT);
607
608         if (fmt == RX_MSDU_DECAP_RAW)
609                 return (void *)skb->data;
610         else
611                 return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
612 }
613
614 /* This function only applies for first msdu in an msdu chain */
615 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
616 {
617         if (ieee80211_is_data_qos(hdr->frame_control)) {
618                 u8 *qc = ieee80211_get_qos_ctl(hdr);
619                 if (qc[0] & 0x80)
620                         return true;
621         }
622         return false;
623 }
624
625 struct rfc1042_hdr {
626         u8 llc_dsap;
627         u8 llc_ssap;
628         u8 llc_ctrl;
629         u8 snap_oui[3];
630         __be16 snap_type;
631 } __packed;
632
633 struct amsdu_subframe_hdr {
634         u8 dst[ETH_ALEN];
635         u8 src[ETH_ALEN];
636         __be16 len;
637 } __packed;
638
639 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
640 {
641         /* nwifi header is padded to 4 bytes. this fixes 4addr rx */
642         return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
643 }
644
645 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
646                                 struct htt_rx_info *info)
647 {
648         struct htt_rx_desc *rxd;
649         struct sk_buff *first;
650         struct sk_buff *skb = info->skb;
651         enum rx_msdu_decap_format fmt;
652         enum htt_rx_mpdu_encrypt_type enctype;
653         struct ieee80211_hdr *hdr;
654         u8 hdr_buf[64], addr[ETH_ALEN], *qos;
655         unsigned int hdr_len;
656
657         rxd = (void *)skb->data - sizeof(*rxd);
658         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
659                         RX_MPDU_START_INFO0_ENCRYPT_TYPE);
660
661         hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
662         hdr_len = ieee80211_hdrlen(hdr->frame_control);
663         memcpy(hdr_buf, hdr, hdr_len);
664         hdr = (struct ieee80211_hdr *)hdr_buf;
665
666         first = skb;
667         while (skb) {
668                 void *decap_hdr;
669                 int len;
670
671                 rxd = (void *)skb->data - sizeof(*rxd);
672                 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
673                          RX_MSDU_START_INFO1_DECAP_FORMAT);
674                 decap_hdr = (void *)rxd->rx_hdr_status;
675
676                 skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
677
678                 /* First frame in an A-MSDU chain has more decapped data. */
679                 if (skb == first) {
680                         len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
681                         len += round_up(ath10k_htt_rx_crypto_param_len(enctype),
682                                         4);
683                         decap_hdr += len;
684                 }
685
686                 switch (fmt) {
687                 case RX_MSDU_DECAP_RAW:
688                         /* remove trailing FCS */
689                         skb_trim(skb, skb->len - FCS_LEN);
690                         break;
691                 case RX_MSDU_DECAP_NATIVE_WIFI:
692                         /* pull decapped header and copy DA */
693                         hdr = (struct ieee80211_hdr *)skb->data;
694                         hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
695                         memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN);
696                         skb_pull(skb, hdr_len);
697
698                         /* push original 802.11 header */
699                         hdr = (struct ieee80211_hdr *)hdr_buf;
700                         hdr_len = ieee80211_hdrlen(hdr->frame_control);
701                         memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
702
703                         /* original A-MSDU header has the bit set but we're
704                          * not including A-MSDU subframe header */
705                         hdr = (struct ieee80211_hdr *)skb->data;
706                         qos = ieee80211_get_qos_ctl(hdr);
707                         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
708
709                         /* original 802.11 header has a different DA */
710                         memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN);
711                         break;
712                 case RX_MSDU_DECAP_ETHERNET2_DIX:
713                         /* strip ethernet header and insert decapped 802.11
714                          * header, amsdu subframe header and rfc1042 header */
715
716                         len = 0;
717                         len += sizeof(struct rfc1042_hdr);
718                         len += sizeof(struct amsdu_subframe_hdr);
719
720                         skb_pull(skb, sizeof(struct ethhdr));
721                         memcpy(skb_push(skb, len), decap_hdr, len);
722                         memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
723                         break;
724                 case RX_MSDU_DECAP_8023_SNAP_LLC:
725                         /* insert decapped 802.11 header making a singly
726                          * A-MSDU */
727                         memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
728                         break;
729                 }
730
731                 info->skb = skb;
732                 info->encrypt_type = enctype;
733                 skb = skb->next;
734                 info->skb->next = NULL;
735
736                 if (skb)
737                         info->amsdu_more = true;
738
739                 ath10k_process_rx(htt->ar, info);
740         }
741
742         /* FIXME: It might be nice to re-assemble the A-MSDU when there's a
743          * monitor interface active for sniffing purposes. */
744 }
745
746 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info)
747 {
748         struct sk_buff *skb = info->skb;
749         struct htt_rx_desc *rxd;
750         struct ieee80211_hdr *hdr;
751         enum rx_msdu_decap_format fmt;
752         enum htt_rx_mpdu_encrypt_type enctype;
753         int hdr_len;
754         void *rfc1042;
755
756         /* This shouldn't happen. If it does than it may be a FW bug. */
757         if (skb->next) {
758                 ath10k_warn("htt rx received chained non A-MSDU frame\n");
759                 ath10k_htt_rx_free_msdu_chain(skb->next);
760                 skb->next = NULL;
761         }
762
763         rxd = (void *)skb->data - sizeof(*rxd);
764         fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
765                         RX_MSDU_START_INFO1_DECAP_FORMAT);
766         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
767                         RX_MPDU_START_INFO0_ENCRYPT_TYPE);
768         hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
769         hdr_len = ieee80211_hdrlen(hdr->frame_control);
770
771         skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
772
773         switch (fmt) {
774         case RX_MSDU_DECAP_RAW:
775                 /* remove trailing FCS */
776                 skb_trim(skb, skb->len - FCS_LEN);
777                 break;
778         case RX_MSDU_DECAP_NATIVE_WIFI:
779                 /* Pull decapped header */
780                 hdr = (struct ieee80211_hdr *)skb->data;
781                 hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
782                 skb_pull(skb, hdr_len);
783
784                 /* Push original header */
785                 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
786                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
787                 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
788                 break;
789         case RX_MSDU_DECAP_ETHERNET2_DIX:
790                 /* strip ethernet header and insert decapped 802.11 header and
791                  * rfc1042 header */
792
793                 rfc1042 = hdr;
794                 rfc1042 += roundup(hdr_len, 4);
795                 rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4);
796
797                 skb_pull(skb, sizeof(struct ethhdr));
798                 memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
799                        rfc1042, sizeof(struct rfc1042_hdr));
800                 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
801                 break;
802         case RX_MSDU_DECAP_8023_SNAP_LLC:
803                 /* remove A-MSDU subframe header and insert
804                  * decapped 802.11 header. rfc1042 header is already there */
805
806                 skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
807                 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
808                 break;
809         }
810
811         info->skb = skb;
812         info->encrypt_type = enctype;
813
814         ath10k_process_rx(htt->ar, info);
815 }
816
817 static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb)
818 {
819         struct htt_rx_desc *rxd;
820         u32 flags;
821
822         rxd = (void *)skb->data - sizeof(*rxd);
823         flags = __le32_to_cpu(rxd->attention.flags);
824
825         if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR)
826                 return true;
827
828         return false;
829 }
830
831 static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb)
832 {
833         struct htt_rx_desc *rxd;
834         u32 flags;
835
836         rxd = (void *)skb->data - sizeof(*rxd);
837         flags = __le32_to_cpu(rxd->attention.flags);
838
839         if (flags & RX_ATTENTION_FLAGS_FCS_ERR)
840                 return true;
841
842         return false;
843 }
844
845 static bool ath10k_htt_rx_has_mic_err(struct sk_buff *skb)
846 {
847         struct htt_rx_desc *rxd;
848         u32 flags;
849
850         rxd = (void *)skb->data - sizeof(*rxd);
851         flags = __le32_to_cpu(rxd->attention.flags);
852
853         if (flags & RX_ATTENTION_FLAGS_TKIP_MIC_ERR)
854                 return true;
855
856         return false;
857 }
858
859 static bool ath10k_htt_rx_is_mgmt(struct sk_buff *skb)
860 {
861         struct htt_rx_desc *rxd;
862         u32 flags;
863
864         rxd = (void *)skb->data - sizeof(*rxd);
865         flags = __le32_to_cpu(rxd->attention.flags);
866
867         if (flags & RX_ATTENTION_FLAGS_MGMT_TYPE)
868                 return true;
869
870         return false;
871 }
872
873 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
874 {
875         struct htt_rx_desc *rxd;
876         u32 flags, info;
877         bool is_ip4, is_ip6;
878         bool is_tcp, is_udp;
879         bool ip_csum_ok, tcpudp_csum_ok;
880
881         rxd = (void *)skb->data - sizeof(*rxd);
882         flags = __le32_to_cpu(rxd->attention.flags);
883         info = __le32_to_cpu(rxd->msdu_start.info1);
884
885         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
886         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
887         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
888         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
889         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
890         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
891
892         if (!is_ip4 && !is_ip6)
893                 return CHECKSUM_NONE;
894         if (!is_tcp && !is_udp)
895                 return CHECKSUM_NONE;
896         if (!ip_csum_ok)
897                 return CHECKSUM_NONE;
898         if (!tcpudp_csum_ok)
899                 return CHECKSUM_NONE;
900
901         return CHECKSUM_UNNECESSARY;
902 }
903
904 static int ath10k_unchain_msdu(struct sk_buff *msdu_head)
905 {
906         struct sk_buff *next = msdu_head->next;
907         struct sk_buff *to_free = next;
908         int space;
909         int total_len = 0;
910
911         /* TODO:  Might could optimize this by using
912          * skb_try_coalesce or similar method to
913          * decrease copying, or maybe get mac80211 to
914          * provide a way to just receive a list of
915          * skb?
916          */
917
918         msdu_head->next = NULL;
919
920         /* Allocate total length all at once. */
921         while (next) {
922                 total_len += next->len;
923                 next = next->next;
924         }
925
926         space = total_len - skb_tailroom(msdu_head);
927         if ((space > 0) &&
928             (pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) {
929                 /* TODO:  bump some rx-oom error stat */
930                 /* put it back together so we can free the
931                  * whole list at once.
932                  */
933                 msdu_head->next = to_free;
934                 return -1;
935         }
936
937         /* Walk list again, copying contents into
938          * msdu_head
939          */
940         next = to_free;
941         while (next) {
942                 skb_copy_from_linear_data(next, skb_put(msdu_head, next->len),
943                                           next->len);
944                 next = next->next;
945         }
946
947         /* If here, we have consolidated skb.  Free the
948          * fragments and pass the main skb on up the
949          * stack.
950          */
951         ath10k_htt_rx_free_msdu_chain(to_free);
952         return 0;
953 }
954
955 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
956                                   struct htt_rx_indication *rx)
957 {
958         struct htt_rx_info info;
959         struct htt_rx_indication_mpdu_range *mpdu_ranges;
960         struct ieee80211_hdr *hdr;
961         int num_mpdu_ranges;
962         int fw_desc_len;
963         u8 *fw_desc;
964         int i, j;
965
966         lockdep_assert_held(&htt->rx_ring.lock);
967
968         memset(&info, 0, sizeof(info));
969
970         fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
971         fw_desc = (u8 *)&rx->fw_desc;
972
973         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
974                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
975         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
976
977         ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
978                         rx, sizeof(*rx) +
979                         (sizeof(struct htt_rx_indication_mpdu_range) *
980                                 num_mpdu_ranges));
981
982         for (i = 0; i < num_mpdu_ranges; i++) {
983                 info.status = mpdu_ranges[i].mpdu_range_status;
984
985                 for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
986                         struct sk_buff *msdu_head, *msdu_tail;
987                         enum htt_rx_mpdu_status status;
988                         int msdu_chaining;
989
990                         msdu_head = NULL;
991                         msdu_tail = NULL;
992                         msdu_chaining = ath10k_htt_rx_amsdu_pop(htt,
993                                                          &fw_desc,
994                                                          &fw_desc_len,
995                                                          &msdu_head,
996                                                          &msdu_tail);
997
998                         if (!msdu_head) {
999                                 ath10k_warn("htt rx no data!\n");
1000                                 continue;
1001                         }
1002
1003                         if (msdu_head->len == 0) {
1004                                 ath10k_dbg(ATH10K_DBG_HTT,
1005                                            "htt rx dropping due to zero-len\n");
1006                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1007                                 continue;
1008                         }
1009
1010                         if (ath10k_htt_rx_has_decrypt_err(msdu_head)) {
1011                                 ath10k_dbg(ATH10K_DBG_HTT,
1012                                            "htt rx dropping due to decrypt-err\n");
1013                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1014                                 continue;
1015                         }
1016
1017                         status = info.status;
1018
1019                         /* Skip mgmt frames while we handle this in WMI */
1020                         if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL ||
1021                             ath10k_htt_rx_is_mgmt(msdu_head)) {
1022                                 ath10k_dbg(ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1023                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1024                                 continue;
1025                         }
1026
1027                         if (status != HTT_RX_IND_MPDU_STATUS_OK &&
1028                             status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
1029                             status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER &&
1030                             !htt->ar->monitor_enabled) {
1031                                 ath10k_dbg(ATH10K_DBG_HTT,
1032                                            "htt rx ignoring frame w/ status %d\n",
1033                                            status);
1034                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1035                                 continue;
1036                         }
1037
1038                         if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) {
1039                                 ath10k_dbg(ATH10K_DBG_HTT,
1040                                            "htt rx CAC running\n");
1041                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1042                                 continue;
1043                         }
1044
1045                         if (msdu_chaining &&
1046                             (ath10k_unchain_msdu(msdu_head) < 0)) {
1047                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1048                                 continue;
1049                         }
1050
1051                         info.skb     = msdu_head;
1052                         info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head);
1053                         info.mic_err = ath10k_htt_rx_has_mic_err(msdu_head);
1054
1055                         if (info.fcs_err)
1056                                 ath10k_dbg(ATH10K_DBG_HTT,
1057                                            "htt rx has FCS err\n");
1058
1059                         if (info.mic_err)
1060                                 ath10k_dbg(ATH10K_DBG_HTT,
1061                                            "htt rx has MIC err\n");
1062
1063                         info.signal  = ATH10K_DEFAULT_NOISE_FLOOR;
1064                         info.signal += rx->ppdu.combined_rssi;
1065
1066                         info.rate.info0 = rx->ppdu.info0;
1067                         info.rate.info1 = __le32_to_cpu(rx->ppdu.info1);
1068                         info.rate.info2 = __le32_to_cpu(rx->ppdu.info2);
1069                         info.tsf = __le32_to_cpu(rx->ppdu.tsf);
1070
1071                         hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
1072
1073                         if (ath10k_htt_rx_hdr_is_amsdu(hdr))
1074                                 ath10k_htt_rx_amsdu(htt, &info);
1075                         else
1076                                 ath10k_htt_rx_msdu(htt, &info);
1077                 }
1078         }
1079
1080         tasklet_schedule(&htt->rx_replenish_task);
1081 }
1082
1083 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1084                                 struct htt_rx_fragment_indication *frag)
1085 {
1086         struct sk_buff *msdu_head, *msdu_tail;
1087         struct htt_rx_desc *rxd;
1088         enum rx_msdu_decap_format fmt;
1089         struct htt_rx_info info = {};
1090         struct ieee80211_hdr *hdr;
1091         int msdu_chaining;
1092         bool tkip_mic_err;
1093         bool decrypt_err;
1094         u8 *fw_desc;
1095         int fw_desc_len, hdrlen, paramlen;
1096         int trim;
1097
1098         fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1099         fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1100
1101         msdu_head = NULL;
1102         msdu_tail = NULL;
1103
1104         spin_lock_bh(&htt->rx_ring.lock);
1105         msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1106                                                 &msdu_head, &msdu_tail);
1107         spin_unlock_bh(&htt->rx_ring.lock);
1108
1109         ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1110
1111         if (!msdu_head) {
1112                 ath10k_warn("htt rx frag no data\n");
1113                 return;
1114         }
1115
1116         if (msdu_chaining || msdu_head != msdu_tail) {
1117                 ath10k_warn("aggregation with fragmentation?!\n");
1118                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1119                 return;
1120         }
1121
1122         /* FIXME: implement signal strength */
1123
1124         hdr = (struct ieee80211_hdr *)msdu_head->data;
1125         rxd = (void *)msdu_head->data - sizeof(*rxd);
1126         tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) &
1127                                 RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1128         decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) &
1129                                 RX_ATTENTION_FLAGS_DECRYPT_ERR);
1130         fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1131                         RX_MSDU_START_INFO1_DECAP_FORMAT);
1132
1133         if (fmt != RX_MSDU_DECAP_RAW) {
1134                 ath10k_warn("we dont support non-raw fragmented rx yet\n");
1135                 dev_kfree_skb_any(msdu_head);
1136                 goto end;
1137         }
1138
1139         info.skb = msdu_head;
1140         info.status = HTT_RX_IND_MPDU_STATUS_OK;
1141         info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1142                                 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1143         info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb);
1144
1145         if (tkip_mic_err) {
1146                 ath10k_warn("tkip mic error\n");
1147                 info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR;
1148         }
1149
1150         if (decrypt_err) {
1151                 ath10k_warn("decryption err in fragmented rx\n");
1152                 dev_kfree_skb_any(info.skb);
1153                 goto end;
1154         }
1155
1156         if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) {
1157                 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1158                 paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type);
1159
1160                 /* It is more efficient to move the header than the payload */
1161                 memmove((void *)info.skb->data + paramlen,
1162                         (void *)info.skb->data,
1163                         hdrlen);
1164                 skb_pull(info.skb, paramlen);
1165                 hdr = (struct ieee80211_hdr *)info.skb->data;
1166         }
1167
1168         /* remove trailing FCS */
1169         trim  = 4;
1170
1171         /* remove crypto trailer */
1172         trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type);
1173
1174         /* last fragment of TKIP frags has MIC */
1175         if (!ieee80211_has_morefrags(hdr->frame_control) &&
1176             info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1177                 trim += 8;
1178
1179         if (trim > info.skb->len) {
1180                 ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n");
1181                 dev_kfree_skb_any(info.skb);
1182                 goto end;
1183         }
1184
1185         skb_trim(info.skb, info.skb->len - trim);
1186
1187         ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ",
1188                         info.skb->data, info.skb->len);
1189         ath10k_process_rx(htt->ar, &info);
1190
1191 end:
1192         if (fw_desc_len > 0) {
1193                 ath10k_dbg(ATH10K_DBG_HTT,
1194                            "expecting more fragmented rx in one indication %d\n",
1195                            fw_desc_len);
1196         }
1197 }
1198
1199 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1200                                        struct sk_buff *skb)
1201 {
1202         struct ath10k_htt *htt = &ar->htt;
1203         struct htt_resp *resp = (struct htt_resp *)skb->data;
1204         struct htt_tx_done tx_done = {};
1205         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1206         __le16 msdu_id;
1207         int i;
1208
1209         lockdep_assert_held(&htt->tx_lock);
1210
1211         switch (status) {
1212         case HTT_DATA_TX_STATUS_NO_ACK:
1213                 tx_done.no_ack = true;
1214                 break;
1215         case HTT_DATA_TX_STATUS_OK:
1216                 break;
1217         case HTT_DATA_TX_STATUS_DISCARD:
1218         case HTT_DATA_TX_STATUS_POSTPONE:
1219         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1220                 tx_done.discard = true;
1221                 break;
1222         default:
1223                 ath10k_warn("unhandled tx completion status %d\n", status);
1224                 tx_done.discard = true;
1225                 break;
1226         }
1227
1228         ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1229                    resp->data_tx_completion.num_msdus);
1230
1231         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1232                 msdu_id = resp->data_tx_completion.msdus[i];
1233                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1234                 ath10k_txrx_tx_unref(htt, &tx_done);
1235         }
1236 }
1237
1238 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1239 {
1240         struct ath10k_htt *htt = &ar->htt;
1241         struct htt_resp *resp = (struct htt_resp *)skb->data;
1242
1243         /* confirm alignment */
1244         if (!IS_ALIGNED((unsigned long)skb->data, 4))
1245                 ath10k_warn("unaligned htt message, expect trouble\n");
1246
1247         ath10k_dbg(ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1248                    resp->hdr.msg_type);
1249         switch (resp->hdr.msg_type) {
1250         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1251                 htt->target_version_major = resp->ver_resp.major;
1252                 htt->target_version_minor = resp->ver_resp.minor;
1253                 complete(&htt->target_version_received);
1254                 break;
1255         }
1256         case HTT_T2H_MSG_TYPE_RX_IND:
1257                 spin_lock_bh(&htt->rx_ring.lock);
1258                 __skb_queue_tail(&htt->rx_compl_q, skb);
1259                 spin_unlock_bh(&htt->rx_ring.lock);
1260                 tasklet_schedule(&htt->txrx_compl_task);
1261                 return;
1262         case HTT_T2H_MSG_TYPE_PEER_MAP: {
1263                 struct htt_peer_map_event ev = {
1264                         .vdev_id = resp->peer_map.vdev_id,
1265                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1266                 };
1267                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1268                 ath10k_peer_map_event(htt, &ev);
1269                 break;
1270         }
1271         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1272                 struct htt_peer_unmap_event ev = {
1273                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1274                 };
1275                 ath10k_peer_unmap_event(htt, &ev);
1276                 break;
1277         }
1278         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1279                 struct htt_tx_done tx_done = {};
1280                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1281
1282                 tx_done.msdu_id =
1283                         __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1284
1285                 switch (status) {
1286                 case HTT_MGMT_TX_STATUS_OK:
1287                         break;
1288                 case HTT_MGMT_TX_STATUS_RETRY:
1289                         tx_done.no_ack = true;
1290                         break;
1291                 case HTT_MGMT_TX_STATUS_DROP:
1292                         tx_done.discard = true;
1293                         break;
1294                 }
1295
1296                 spin_lock_bh(&htt->tx_lock);
1297                 ath10k_txrx_tx_unref(htt, &tx_done);
1298                 spin_unlock_bh(&htt->tx_lock);
1299                 break;
1300         }
1301         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1302                 spin_lock_bh(&htt->tx_lock);
1303                 __skb_queue_tail(&htt->tx_compl_q, skb);
1304                 spin_unlock_bh(&htt->tx_lock);
1305                 tasklet_schedule(&htt->txrx_compl_task);
1306                 return;
1307         case HTT_T2H_MSG_TYPE_SEC_IND: {
1308                 struct ath10k *ar = htt->ar;
1309                 struct htt_security_indication *ev = &resp->security_indication;
1310
1311                 ath10k_dbg(ATH10K_DBG_HTT,
1312                            "sec ind peer_id %d unicast %d type %d\n",
1313                           __le16_to_cpu(ev->peer_id),
1314                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1315                           MS(ev->flags, HTT_SECURITY_TYPE));
1316                 complete(&ar->install_key_done);
1317                 break;
1318         }
1319         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1320                 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1321                                 skb->data, skb->len);
1322                 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1323                 break;
1324         }
1325         case HTT_T2H_MSG_TYPE_TEST:
1326                 /* FIX THIS */
1327                 break;
1328         case HTT_T2H_MSG_TYPE_STATS_CONF:
1329                 trace_ath10k_htt_stats(skb->data, skb->len);
1330                 break;
1331         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1332         case HTT_T2H_MSG_TYPE_RX_ADDBA:
1333         case HTT_T2H_MSG_TYPE_RX_DELBA:
1334         case HTT_T2H_MSG_TYPE_RX_FLUSH:
1335         default:
1336                 ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n",
1337                            resp->hdr.msg_type);
1338                 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1339                                 skb->data, skb->len);
1340                 break;
1341         };
1342
1343         /* Free the indication buffer */
1344         dev_kfree_skb_any(skb);
1345 }
1346
1347 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
1348 {
1349         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
1350         struct htt_resp *resp;
1351         struct sk_buff *skb;
1352
1353         spin_lock_bh(&htt->tx_lock);
1354         while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
1355                 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
1356                 dev_kfree_skb_any(skb);
1357         }
1358         spin_unlock_bh(&htt->tx_lock);
1359
1360         spin_lock_bh(&htt->rx_ring.lock);
1361         while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
1362                 resp = (struct htt_resp *)skb->data;
1363                 ath10k_htt_rx_handler(htt, &resp->rx_ind);
1364                 dev_kfree_skb_any(skb);
1365         }
1366         spin_unlock_bh(&htt->rx_ring.lock);
1367 }