Merge branch 'acpi-cleanup'
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN       9000
56
57 /* Module parameters */
58 #define TX_TIMEO        5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66
67 int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93
94 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
101                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102
103 #define STMMAC_DEFAULT_LPI_TIMER        1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110  * but passing this value so user can force to use the chain instead of the ring
111  */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124
125 /**
126  * stmmac_verify_args - verify the driver parameters.
127  * Description: it verifies if some wrong parameter is passed to the driver.
128  * Note that wrong parameters are replaced with the default values.
129  */
130 static void stmmac_verify_args(void)
131 {
132         if (unlikely(watchdog < 0))
133                 watchdog = TX_TIMEO;
134         if (unlikely(dma_rxsize < 0))
135                 dma_rxsize = DMA_RX_SIZE;
136         if (unlikely(dma_txsize < 0))
137                 dma_txsize = DMA_TX_SIZE;
138         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139                 buf_sz = DMA_BUFFER_SIZE;
140         if (unlikely(flow_ctrl > 1))
141                 flow_ctrl = FLOW_AUTO;
142         else if (likely(flow_ctrl < 0))
143                 flow_ctrl = FLOW_OFF;
144         if (unlikely((pause < 0) || (pause > 0xffff)))
145                 pause = PAUSE_TIME;
146         if (eee_timer < 0)
147                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149
150 /**
151  * stmmac_clk_csr_set - dynamically set the MDC clock
152  * @priv: driver private structure
153  * Description: this is to dynamically set the MDC clock according to the csr
154  * clock input.
155  * Note:
156  *      If a specific clk_csr value is passed from the platform
157  *      this means that the CSR Clock Range selection cannot be
158  *      changed at run-time and it is fixed (as reported in the driver
159  *      documentation). Viceversa the driver will try to set the MDC
160  *      clock dynamically according to the actual clock input.
161  */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164         u32 clk_rate;
165
166         clk_rate = clk_get_rate(priv->stmmac_clk);
167
168         /* Platform provided default clk_csr would be assumed valid
169          * for all other cases except for the below mentioned ones.
170          * For values higher than the IEEE 802.3 specified frequency
171          * we can not estimate the proper divider as it is not known
172          * the frequency of clk_csr_i. So we do not change the default
173          * divider.
174          */
175         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176                 if (clk_rate < CSR_F_35M)
177                         priv->clk_csr = STMMAC_CSR_20_35M;
178                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179                         priv->clk_csr = STMMAC_CSR_35_60M;
180                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181                         priv->clk_csr = STMMAC_CSR_60_100M;
182                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183                         priv->clk_csr = STMMAC_CSR_100_150M;
184                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185                         priv->clk_csr = STMMAC_CSR_150_250M;
186                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187                         priv->clk_csr = STMMAC_CSR_250_300M;
188         }
189 }
190
191 static void print_pkt(unsigned char *buf, int len)
192 {
193         int j;
194         pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195         for (j = 0; j < len; j++) {
196                 if ((j % 16) == 0)
197                         pr_debug("\n %03x:", j);
198                 pr_debug(" %02x", buf[j]);
199         }
200         pr_debug("\n");
201 }
202
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
205
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210
211 /**
212  * stmmac_hw_fix_mac_speed: callback for speed selection
213  * @priv: driver private structure
214  * Description: on some platforms (e.g. ST), some HW system configuraton
215  * registers have to be set according to the link speed negotiated.
216  */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219         struct phy_device *phydev = priv->phydev;
220
221         if (likely(priv->plat->fix_mac_speed))
222                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224
225 /**
226  * stmmac_enable_eee_mode: Check and enter in LPI mode
227  * @priv: driver private structure
228  * Description: this function is to verify and enter in LPI mode for EEE.
229  */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232         /* Check and enter in LPI mode */
233         if ((priv->dirty_tx == priv->cur_tx) &&
234             (priv->tx_path_in_lpi_mode == false))
235                 priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237
238 /**
239  * stmmac_disable_eee_mode: disable/exit from EEE
240  * @priv: driver private structure
241  * Description: this function is to exit and disable EEE in case of
242  * LPI state is true. This is called by the xmit.
243  */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246         priv->hw->mac->reset_eee_mode(priv->ioaddr);
247         del_timer_sync(&priv->eee_ctrl_timer);
248         priv->tx_path_in_lpi_mode = false;
249 }
250
251 /**
252  * stmmac_eee_ctrl_timer: EEE TX SW timer.
253  * @arg : data hook
254  * Description:
255  *  if there is no data transfer and if we are not in LPI state,
256  *  then MAC Transmitter can be moved to LPI state.
257  */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261
262         stmmac_enable_eee_mode(priv);
263         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265
266 /**
267  * stmmac_eee_init: init EEE
268  * @priv: driver private structure
269  * Description:
270  *  If the EEE support has been enabled while configuring the driver,
271  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
272  *  phy can also manage EEE, so enable the LPI state and start the timer
273  *  to verify if the tx path can enter in LPI state.
274  */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277         bool ret = false;
278
279         /* Using PCS we cannot dial with the phy registers at this stage
280          * so we do not support extra feature like EEE.
281          */
282         if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283             (priv->pcs == STMMAC_PCS_RTBI))
284                 goto out;
285
286         /* MAC core supports the EEE feature. */
287         if (priv->dma_cap.eee) {
288                 /* Check if the PHY supports EEE */
289                 if (phy_init_eee(priv->phydev, 1))
290                         goto out;
291
292                 if (!priv->eee_active) {
293                         priv->eee_active = 1;
294                         init_timer(&priv->eee_ctrl_timer);
295                         priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296                         priv->eee_ctrl_timer.data = (unsigned long)priv;
297                         priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298                         add_timer(&priv->eee_ctrl_timer);
299
300                         priv->hw->mac->set_eee_timer(priv->ioaddr,
301                                                      STMMAC_DEFAULT_LIT_LS,
302                                                      priv->tx_lpi_timer);
303                 } else
304                         /* Set HW EEE according to the speed */
305                         priv->hw->mac->set_eee_pls(priv->ioaddr,
306                                                    priv->phydev->link);
307
308                 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309
310                 ret = true;
311         }
312 out:
313         return ret;
314 }
315
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317  * @priv: driver private structure
318  * @entry : descriptor index to be used.
319  * @skb : the socket buffer
320  * Description :
321  * This function will read timestamp from the descriptor & pass it to stack.
322  * and also perform some sanity checks.
323  */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325                                    unsigned int entry, struct sk_buff *skb)
326 {
327         struct skb_shared_hwtstamps shhwtstamp;
328         u64 ns;
329         void *desc = NULL;
330
331         if (!priv->hwts_tx_en)
332                 return;
333
334         /* exit if skb doesn't support hw tstamp */
335         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336                 return;
337
338         if (priv->adv_ts)
339                 desc = (priv->dma_etx + entry);
340         else
341                 desc = (priv->dma_tx + entry);
342
343         /* check tx tstamp status */
344         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345                 return;
346
347         /* get the valid tstamp */
348         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349
350         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351         shhwtstamp.hwtstamp = ns_to_ktime(ns);
352         /* pass tstamp to stack */
353         skb_tstamp_tx(skb, &shhwtstamp);
354
355         return;
356 }
357
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359  * @priv: driver private structure
360  * @entry : descriptor index to be used.
361  * @skb : the socket buffer
362  * Description :
363  * This function will read received packet's timestamp from the descriptor
364  * and pass it to stack. It also perform some sanity checks.
365  */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367                                    unsigned int entry, struct sk_buff *skb)
368 {
369         struct skb_shared_hwtstamps *shhwtstamp = NULL;
370         u64 ns;
371         void *desc = NULL;
372
373         if (!priv->hwts_rx_en)
374                 return;
375
376         if (priv->adv_ts)
377                 desc = (priv->dma_erx + entry);
378         else
379                 desc = (priv->dma_rx + entry);
380
381         /* exit if rx tstamp is not valid */
382         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383                 return;
384
385         /* get valid tstamp */
386         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387         shhwtstamp = skb_hwtstamps(skb);
388         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389         shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391
392 /**
393  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
394  *  @dev: device pointer.
395  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
396  *  a proprietary structure used to pass information to the driver.
397  *  Description:
398  *  This function configures the MAC to enable/disable both outgoing(TX)
399  *  and incoming(RX) packets time stamping based on user input.
400  *  Return Value:
401  *  0 on success and an appropriate -ve integer on failure.
402  */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405         struct stmmac_priv *priv = netdev_priv(dev);
406         struct hwtstamp_config config;
407         struct timespec now;
408         u64 temp = 0;
409         u32 ptp_v2 = 0;
410         u32 tstamp_all = 0;
411         u32 ptp_over_ipv4_udp = 0;
412         u32 ptp_over_ipv6_udp = 0;
413         u32 ptp_over_ethernet = 0;
414         u32 snap_type_sel = 0;
415         u32 ts_master_en = 0;
416         u32 ts_event_en = 0;
417         u32 value = 0;
418
419         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420                 netdev_alert(priv->dev, "No support for HW time stamping\n");
421                 priv->hwts_tx_en = 0;
422                 priv->hwts_rx_en = 0;
423
424                 return -EOPNOTSUPP;
425         }
426
427         if (copy_from_user(&config, ifr->ifr_data,
428                            sizeof(struct hwtstamp_config)))
429                 return -EFAULT;
430
431         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432                  __func__, config.flags, config.tx_type, config.rx_filter);
433
434         /* reserved for future extensions */
435         if (config.flags)
436                 return -EINVAL;
437
438         switch (config.tx_type) {
439         case HWTSTAMP_TX_OFF:
440                 priv->hwts_tx_en = 0;
441                 break;
442         case HWTSTAMP_TX_ON:
443                 priv->hwts_tx_en = 1;
444                 break;
445         default:
446                 return -ERANGE;
447         }
448
449         if (priv->adv_ts) {
450                 switch (config.rx_filter) {
451                 case HWTSTAMP_FILTER_NONE:
452                         /* time stamp no incoming packet at all */
453                         config.rx_filter = HWTSTAMP_FILTER_NONE;
454                         break;
455
456                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
457                         /* PTP v1, UDP, any kind of event packet */
458                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
459                         /* take time stamp for all event messages */
460                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
461
462                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
463                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
464                         break;
465
466                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
467                         /* PTP v1, UDP, Sync packet */
468                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
469                         /* take time stamp for SYNC messages only */
470                         ts_event_en = PTP_TCR_TSEVNTENA;
471
472                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
473                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
474                         break;
475
476                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
477                         /* PTP v1, UDP, Delay_req packet */
478                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
479                         /* take time stamp for Delay_Req messages only */
480                         ts_master_en = PTP_TCR_TSMSTRENA;
481                         ts_event_en = PTP_TCR_TSEVNTENA;
482
483                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
484                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
485                         break;
486
487                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
488                         /* PTP v2, UDP, any kind of event packet */
489                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
490                         ptp_v2 = PTP_TCR_TSVER2ENA;
491                         /* take time stamp for all event messages */
492                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
493
494                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
495                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
496                         break;
497
498                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
499                         /* PTP v2, UDP, Sync packet */
500                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
501                         ptp_v2 = PTP_TCR_TSVER2ENA;
502                         /* take time stamp for SYNC messages only */
503                         ts_event_en = PTP_TCR_TSEVNTENA;
504
505                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
506                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
507                         break;
508
509                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
510                         /* PTP v2, UDP, Delay_req packet */
511                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
512                         ptp_v2 = PTP_TCR_TSVER2ENA;
513                         /* take time stamp for Delay_Req messages only */
514                         ts_master_en = PTP_TCR_TSMSTRENA;
515                         ts_event_en = PTP_TCR_TSEVNTENA;
516
517                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519                         break;
520
521                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
522                         /* PTP v2/802.AS1 any layer, any kind of event packet */
523                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
524                         ptp_v2 = PTP_TCR_TSVER2ENA;
525                         /* take time stamp for all event messages */
526                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
527
528                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
529                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
530                         ptp_over_ethernet = PTP_TCR_TSIPENA;
531                         break;
532
533                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
534                         /* PTP v2/802.AS1, any layer, Sync packet */
535                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
536                         ptp_v2 = PTP_TCR_TSVER2ENA;
537                         /* take time stamp for SYNC messages only */
538                         ts_event_en = PTP_TCR_TSEVNTENA;
539
540                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542                         ptp_over_ethernet = PTP_TCR_TSIPENA;
543                         break;
544
545                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
546                         /* PTP v2/802.AS1, any layer, Delay_req packet */
547                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
548                         ptp_v2 = PTP_TCR_TSVER2ENA;
549                         /* take time stamp for Delay_Req messages only */
550                         ts_master_en = PTP_TCR_TSMSTRENA;
551                         ts_event_en = PTP_TCR_TSEVNTENA;
552
553                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555                         ptp_over_ethernet = PTP_TCR_TSIPENA;
556                         break;
557
558                 case HWTSTAMP_FILTER_ALL:
559                         /* time stamp any incoming packet */
560                         config.rx_filter = HWTSTAMP_FILTER_ALL;
561                         tstamp_all = PTP_TCR_TSENALL;
562                         break;
563
564                 default:
565                         return -ERANGE;
566                 }
567         } else {
568                 switch (config.rx_filter) {
569                 case HWTSTAMP_FILTER_NONE:
570                         config.rx_filter = HWTSTAMP_FILTER_NONE;
571                         break;
572                 default:
573                         /* PTP v1, UDP, any kind of event packet */
574                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
575                         break;
576                 }
577         }
578         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
579
580         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
581                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
582         else {
583                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
584                          tstamp_all | ptp_v2 | ptp_over_ethernet |
585                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
586                          ts_master_en | snap_type_sel);
587
588                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
589
590                 /* program Sub Second Increment reg */
591                 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
592
593                 /* calculate default added value:
594                  * formula is :
595                  * addend = (2^32)/freq_div_ratio;
596                  * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
597                  * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
598                  * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
599                  *       achive 20ns accuracy.
600                  *
601                  * 2^x * y == (y << x), hence
602                  * 2^32 * 50000000 ==> (50000000 << 32)
603                  */
604                 temp = (u64) (50000000ULL << 32);
605                 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
606                 priv->hw->ptp->config_addend(priv->ioaddr,
607                                              priv->default_addend);
608
609                 /* initialize system time */
610                 getnstimeofday(&now);
611                 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
612                                             now.tv_nsec);
613         }
614
615         return copy_to_user(ifr->ifr_data, &config,
616                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
617 }
618
619 /**
620  * stmmac_init_ptp: init PTP
621  * @priv: driver private structure
622  * Description: this is to verify if the HW supports the PTPv1 or v2.
623  * This is done by looking at the HW cap. register.
624  * Also it registers the ptp driver.
625  */
626 static int stmmac_init_ptp(struct stmmac_priv *priv)
627 {
628         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
629                 return -EOPNOTSUPP;
630
631         if (netif_msg_hw(priv)) {
632                 if (priv->dma_cap.time_stamp) {
633                         pr_debug("IEEE 1588-2002 Time Stamp supported\n");
634                         priv->adv_ts = 0;
635                 }
636                 if (priv->dma_cap.atime_stamp && priv->extend_desc) {
637                         pr_debug
638                             ("IEEE 1588-2008 Advanced Time Stamp supported\n");
639                         priv->adv_ts = 1;
640                 }
641         }
642
643         priv->hw->ptp = &stmmac_ptp;
644         priv->hwts_tx_en = 0;
645         priv->hwts_rx_en = 0;
646
647         return stmmac_ptp_register(priv);
648 }
649
650 static void stmmac_release_ptp(struct stmmac_priv *priv)
651 {
652         stmmac_ptp_unregister(priv);
653 }
654
655 /**
656  * stmmac_adjust_link
657  * @dev: net device structure
658  * Description: it adjusts the link parameters.
659  */
660 static void stmmac_adjust_link(struct net_device *dev)
661 {
662         struct stmmac_priv *priv = netdev_priv(dev);
663         struct phy_device *phydev = priv->phydev;
664         unsigned long flags;
665         int new_state = 0;
666         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
667
668         if (phydev == NULL)
669                 return;
670
671         spin_lock_irqsave(&priv->lock, flags);
672
673         if (phydev->link) {
674                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
675
676                 /* Now we make sure that we can be in full duplex mode.
677                  * If not, we operate in half-duplex mode. */
678                 if (phydev->duplex != priv->oldduplex) {
679                         new_state = 1;
680                         if (!(phydev->duplex))
681                                 ctrl &= ~priv->hw->link.duplex;
682                         else
683                                 ctrl |= priv->hw->link.duplex;
684                         priv->oldduplex = phydev->duplex;
685                 }
686                 /* Flow Control operation */
687                 if (phydev->pause)
688                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
689                                                  fc, pause_time);
690
691                 if (phydev->speed != priv->speed) {
692                         new_state = 1;
693                         switch (phydev->speed) {
694                         case 1000:
695                                 if (likely(priv->plat->has_gmac))
696                                         ctrl &= ~priv->hw->link.port;
697                                 stmmac_hw_fix_mac_speed(priv);
698                                 break;
699                         case 100:
700                         case 10:
701                                 if (priv->plat->has_gmac) {
702                                         ctrl |= priv->hw->link.port;
703                                         if (phydev->speed == SPEED_100) {
704                                                 ctrl |= priv->hw->link.speed;
705                                         } else {
706                                                 ctrl &= ~(priv->hw->link.speed);
707                                         }
708                                 } else {
709                                         ctrl &= ~priv->hw->link.port;
710                                 }
711                                 stmmac_hw_fix_mac_speed(priv);
712                                 break;
713                         default:
714                                 if (netif_msg_link(priv))
715                                         pr_warn("%s: Speed (%d) not 10/100\n",
716                                                 dev->name, phydev->speed);
717                                 break;
718                         }
719
720                         priv->speed = phydev->speed;
721                 }
722
723                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
724
725                 if (!priv->oldlink) {
726                         new_state = 1;
727                         priv->oldlink = 1;
728                 }
729         } else if (priv->oldlink) {
730                 new_state = 1;
731                 priv->oldlink = 0;
732                 priv->speed = 0;
733                 priv->oldduplex = -1;
734         }
735
736         if (new_state && netif_msg_link(priv))
737                 phy_print_status(phydev);
738
739         /* At this stage, it could be needed to setup the EEE or adjust some
740          * MAC related HW registers.
741          */
742         priv->eee_enabled = stmmac_eee_init(priv);
743
744         spin_unlock_irqrestore(&priv->lock, flags);
745 }
746
747 /**
748  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
749  * @priv: driver private structure
750  * Description: this is to verify if the HW supports the PCS.
751  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
752  * configured for the TBI, RTBI, or SGMII PHY interface.
753  */
754 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
755 {
756         int interface = priv->plat->interface;
757
758         if (priv->dma_cap.pcs) {
759                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
760                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
761                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
762                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
763                         pr_debug("STMMAC: PCS RGMII support enable\n");
764                         priv->pcs = STMMAC_PCS_RGMII;
765                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
766                         pr_debug("STMMAC: PCS SGMII support enable\n");
767                         priv->pcs = STMMAC_PCS_SGMII;
768                 }
769         }
770 }
771
772 /**
773  * stmmac_init_phy - PHY initialization
774  * @dev: net device structure
775  * Description: it initializes the driver's PHY state, and attaches the PHY
776  * to the mac driver.
777  *  Return value:
778  *  0 on success
779  */
780 static int stmmac_init_phy(struct net_device *dev)
781 {
782         struct stmmac_priv *priv = netdev_priv(dev);
783         struct phy_device *phydev;
784         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
785         char bus_id[MII_BUS_ID_SIZE];
786         int interface = priv->plat->interface;
787         priv->oldlink = 0;
788         priv->speed = 0;
789         priv->oldduplex = -1;
790
791         if (priv->plat->phy_bus_name)
792                 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
793                          priv->plat->phy_bus_name, priv->plat->bus_id);
794         else
795                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
796                          priv->plat->bus_id);
797
798         snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
799                  priv->plat->phy_addr);
800         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
801
802         phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
803
804         if (IS_ERR(phydev)) {
805                 pr_err("%s: Could not attach to PHY\n", dev->name);
806                 return PTR_ERR(phydev);
807         }
808
809         /* Stop Advertising 1000BASE Capability if interface is not GMII */
810         if ((interface == PHY_INTERFACE_MODE_MII) ||
811             (interface == PHY_INTERFACE_MODE_RMII))
812                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
813                                          SUPPORTED_1000baseT_Full);
814
815         /*
816          * Broken HW is sometimes missing the pull-up resistor on the
817          * MDIO line, which results in reads to non-existent devices returning
818          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
819          * device as well.
820          * Note: phydev->phy_id is the result of reading the UID PHY registers.
821          */
822         if (phydev->phy_id == 0) {
823                 phy_disconnect(phydev);
824                 return -ENODEV;
825         }
826         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
827                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
828
829         priv->phydev = phydev;
830
831         return 0;
832 }
833
834 /**
835  * stmmac_display_ring: display ring
836  * @head: pointer to the head of the ring passed.
837  * @size: size of the ring.
838  * @extend_desc: to verify if extended descriptors are used.
839  * Description: display the control/status and buffer descriptors.
840  */
841 static void stmmac_display_ring(void *head, int size, int extend_desc)
842 {
843         int i;
844         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
845         struct dma_desc *p = (struct dma_desc *)head;
846
847         for (i = 0; i < size; i++) {
848                 u64 x;
849                 if (extend_desc) {
850                         x = *(u64 *) ep;
851                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
852                                 i, (unsigned int)virt_to_phys(ep),
853                                 (unsigned int)x, (unsigned int)(x >> 32),
854                                 ep->basic.des2, ep->basic.des3);
855                         ep++;
856                 } else {
857                         x = *(u64 *) p;
858                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
859                                 i, (unsigned int)virt_to_phys(p),
860                                 (unsigned int)x, (unsigned int)(x >> 32),
861                                 p->des2, p->des3);
862                         p++;
863                 }
864                 pr_info("\n");
865         }
866 }
867
868 static void stmmac_display_rings(struct stmmac_priv *priv)
869 {
870         unsigned int txsize = priv->dma_tx_size;
871         unsigned int rxsize = priv->dma_rx_size;
872
873         if (priv->extend_desc) {
874                 pr_info("Extended RX descriptor ring:\n");
875                 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
876                 pr_info("Extended TX descriptor ring:\n");
877                 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
878         } else {
879                 pr_info("RX descriptor ring:\n");
880                 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
881                 pr_info("TX descriptor ring:\n");
882                 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
883         }
884 }
885
886 static int stmmac_set_bfsize(int mtu, int bufsize)
887 {
888         int ret = bufsize;
889
890         if (mtu >= BUF_SIZE_4KiB)
891                 ret = BUF_SIZE_8KiB;
892         else if (mtu >= BUF_SIZE_2KiB)
893                 ret = BUF_SIZE_4KiB;
894         else if (mtu >= DMA_BUFFER_SIZE)
895                 ret = BUF_SIZE_2KiB;
896         else
897                 ret = DMA_BUFFER_SIZE;
898
899         return ret;
900 }
901
902 /**
903  * stmmac_clear_descriptors: clear descriptors
904  * @priv: driver private structure
905  * Description: this function is called to clear the tx and rx descriptors
906  * in case of both basic and extended descriptors are used.
907  */
908 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
909 {
910         int i;
911         unsigned int txsize = priv->dma_tx_size;
912         unsigned int rxsize = priv->dma_rx_size;
913
914         /* Clear the Rx/Tx descriptors */
915         for (i = 0; i < rxsize; i++)
916                 if (priv->extend_desc)
917                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
918                                                      priv->use_riwt, priv->mode,
919                                                      (i == rxsize - 1));
920                 else
921                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
922                                                      priv->use_riwt, priv->mode,
923                                                      (i == rxsize - 1));
924         for (i = 0; i < txsize; i++)
925                 if (priv->extend_desc)
926                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
927                                                      priv->mode,
928                                                      (i == txsize - 1));
929                 else
930                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
931                                                      priv->mode,
932                                                      (i == txsize - 1));
933 }
934
935 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
936                                   int i)
937 {
938         struct sk_buff *skb;
939
940         skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
941                                  GFP_KERNEL);
942         if (!skb) {
943                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
944                 return -ENOMEM;
945         }
946         skb_reserve(skb, NET_IP_ALIGN);
947         priv->rx_skbuff[i] = skb;
948         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
949                                                 priv->dma_buf_sz,
950                                                 DMA_FROM_DEVICE);
951         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
952                 pr_err("%s: DMA mapping error\n", __func__);
953                 dev_kfree_skb_any(skb);
954                 return -EINVAL;
955         }
956
957         p->des2 = priv->rx_skbuff_dma[i];
958
959         if ((priv->mode == STMMAC_RING_MODE) &&
960             (priv->dma_buf_sz == BUF_SIZE_16KiB))
961                 priv->hw->ring->init_desc3(p);
962
963         return 0;
964 }
965
966 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
967 {
968         if (priv->rx_skbuff[i]) {
969                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
970                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
971                 dev_kfree_skb_any(priv->rx_skbuff[i]);
972         }
973         priv->rx_skbuff[i] = NULL;
974 }
975
976 /**
977  * init_dma_desc_rings - init the RX/TX descriptor rings
978  * @dev: net device structure
979  * Description:  this function initializes the DMA RX/TX descriptors
980  * and allocates the socket buffers. It suppors the chained and ring
981  * modes.
982  */
983 static int init_dma_desc_rings(struct net_device *dev)
984 {
985         int i;
986         struct stmmac_priv *priv = netdev_priv(dev);
987         unsigned int txsize = priv->dma_tx_size;
988         unsigned int rxsize = priv->dma_rx_size;
989         unsigned int bfsize = 0;
990         int ret = -ENOMEM;
991
992         /* Set the max buffer size according to the DESC mode
993          * and the MTU. Note that RING mode allows 16KiB bsize.
994          */
995         if (priv->mode == STMMAC_RING_MODE)
996                 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
997
998         if (bfsize < BUF_SIZE_16KiB)
999                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1000
1001         if (netif_msg_probe(priv))
1002                 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1003                          txsize, rxsize, bfsize);
1004
1005         if (priv->extend_desc) {
1006                 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1007                                                    sizeof(struct
1008                                                           dma_extended_desc),
1009                                                    &priv->dma_rx_phy,
1010                                                    GFP_KERNEL);
1011                 if (!priv->dma_erx)
1012                         goto err_dma;
1013
1014                 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1015                                                    sizeof(struct
1016                                                           dma_extended_desc),
1017                                                    &priv->dma_tx_phy,
1018                                                    GFP_KERNEL);
1019                 if (!priv->dma_etx) {
1020                         dma_free_coherent(priv->device, priv->dma_rx_size *
1021                                         sizeof(struct dma_extended_desc),
1022                                         priv->dma_erx, priv->dma_rx_phy);
1023                         goto err_dma;
1024                 }
1025         } else {
1026                 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1027                                                   sizeof(struct dma_desc),
1028                                                   &priv->dma_rx_phy,
1029                                                   GFP_KERNEL);
1030                 if (!priv->dma_rx)
1031                         goto err_dma;
1032
1033                 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1034                                                   sizeof(struct dma_desc),
1035                                                   &priv->dma_tx_phy,
1036                                                   GFP_KERNEL);
1037                 if (!priv->dma_tx) {
1038                         dma_free_coherent(priv->device, priv->dma_rx_size *
1039                                         sizeof(struct dma_desc),
1040                                         priv->dma_rx, priv->dma_rx_phy);
1041                         goto err_dma;
1042                 }
1043         }
1044
1045         priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1046                                             GFP_KERNEL);
1047         if (!priv->rx_skbuff_dma)
1048                 goto err_rx_skbuff_dma;
1049
1050         priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1051                                         GFP_KERNEL);
1052         if (!priv->rx_skbuff)
1053                 goto err_rx_skbuff;
1054
1055         priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1056                                             GFP_KERNEL);
1057         if (!priv->tx_skbuff_dma)
1058                 goto err_tx_skbuff_dma;
1059
1060         priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1061                                         GFP_KERNEL);
1062         if (!priv->tx_skbuff)
1063                 goto err_tx_skbuff;
1064
1065         if (netif_msg_probe(priv)) {
1066                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1067                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1068
1069                 /* RX INITIALIZATION */
1070                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1071         }
1072         for (i = 0; i < rxsize; i++) {
1073                 struct dma_desc *p;
1074                 if (priv->extend_desc)
1075                         p = &((priv->dma_erx + i)->basic);
1076                 else
1077                         p = priv->dma_rx + i;
1078
1079                 ret = stmmac_init_rx_buffers(priv, p, i);
1080                 if (ret)
1081                         goto err_init_rx_buffers;
1082
1083                 if (netif_msg_probe(priv))
1084                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1085                                  priv->rx_skbuff[i]->data,
1086                                  (unsigned int)priv->rx_skbuff_dma[i]);
1087         }
1088         priv->cur_rx = 0;
1089         priv->dirty_rx = (unsigned int)(i - rxsize);
1090         priv->dma_buf_sz = bfsize;
1091         buf_sz = bfsize;
1092
1093         /* Setup the chained descriptor addresses */
1094         if (priv->mode == STMMAC_CHAIN_MODE) {
1095                 if (priv->extend_desc) {
1096                         priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1097                                               rxsize, 1);
1098                         priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1099                                               txsize, 1);
1100                 } else {
1101                         priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1102                                               rxsize, 0);
1103                         priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1104                                               txsize, 0);
1105                 }
1106         }
1107
1108         /* TX INITIALIZATION */
1109         for (i = 0; i < txsize; i++) {
1110                 struct dma_desc *p;
1111                 if (priv->extend_desc)
1112                         p = &((priv->dma_etx + i)->basic);
1113                 else
1114                         p = priv->dma_tx + i;
1115                 p->des2 = 0;
1116                 priv->tx_skbuff_dma[i] = 0;
1117                 priv->tx_skbuff[i] = NULL;
1118         }
1119
1120         priv->dirty_tx = 0;
1121         priv->cur_tx = 0;
1122
1123         stmmac_clear_descriptors(priv);
1124
1125         if (netif_msg_hw(priv))
1126                 stmmac_display_rings(priv);
1127
1128         return 0;
1129 err_init_rx_buffers:
1130         while (--i >= 0)
1131                 stmmac_free_rx_buffers(priv, i);
1132         kfree(priv->tx_skbuff);
1133 err_tx_skbuff:
1134         kfree(priv->tx_skbuff_dma);
1135 err_tx_skbuff_dma:
1136         kfree(priv->rx_skbuff);
1137 err_rx_skbuff:
1138         kfree(priv->rx_skbuff_dma);
1139 err_rx_skbuff_dma:
1140         if (priv->extend_desc) {
1141                 dma_free_coherent(priv->device, priv->dma_tx_size *
1142                                   sizeof(struct dma_extended_desc),
1143                                   priv->dma_etx, priv->dma_tx_phy);
1144                 dma_free_coherent(priv->device, priv->dma_rx_size *
1145                                   sizeof(struct dma_extended_desc),
1146                                   priv->dma_erx, priv->dma_rx_phy);
1147         } else {
1148                 dma_free_coherent(priv->device,
1149                                 priv->dma_tx_size * sizeof(struct dma_desc),
1150                                 priv->dma_tx, priv->dma_tx_phy);
1151                 dma_free_coherent(priv->device,
1152                                 priv->dma_rx_size * sizeof(struct dma_desc),
1153                                 priv->dma_rx, priv->dma_rx_phy);
1154         }
1155 err_dma:
1156         return ret;
1157 }
1158
1159 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1160 {
1161         int i;
1162
1163         for (i = 0; i < priv->dma_rx_size; i++)
1164                 stmmac_free_rx_buffers(priv, i);
1165 }
1166
1167 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1168 {
1169         int i;
1170
1171         for (i = 0; i < priv->dma_tx_size; i++) {
1172                 if (priv->tx_skbuff[i] != NULL) {
1173                         struct dma_desc *p;
1174                         if (priv->extend_desc)
1175                                 p = &((priv->dma_etx + i)->basic);
1176                         else
1177                                 p = priv->dma_tx + i;
1178
1179                         if (priv->tx_skbuff_dma[i])
1180                                 dma_unmap_single(priv->device,
1181                                                  priv->tx_skbuff_dma[i],
1182                                                  priv->hw->desc->get_tx_len(p),
1183                                                  DMA_TO_DEVICE);
1184                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1185                         priv->tx_skbuff[i] = NULL;
1186                         priv->tx_skbuff_dma[i] = 0;
1187                 }
1188         }
1189 }
1190
1191 static void free_dma_desc_resources(struct stmmac_priv *priv)
1192 {
1193         /* Release the DMA TX/RX socket buffers */
1194         dma_free_rx_skbufs(priv);
1195         dma_free_tx_skbufs(priv);
1196
1197         /* Free DMA regions of consistent memory previously allocated */
1198         if (!priv->extend_desc) {
1199                 dma_free_coherent(priv->device,
1200                                   priv->dma_tx_size * sizeof(struct dma_desc),
1201                                   priv->dma_tx, priv->dma_tx_phy);
1202                 dma_free_coherent(priv->device,
1203                                   priv->dma_rx_size * sizeof(struct dma_desc),
1204                                   priv->dma_rx, priv->dma_rx_phy);
1205         } else {
1206                 dma_free_coherent(priv->device, priv->dma_tx_size *
1207                                   sizeof(struct dma_extended_desc),
1208                                   priv->dma_etx, priv->dma_tx_phy);
1209                 dma_free_coherent(priv->device, priv->dma_rx_size *
1210                                   sizeof(struct dma_extended_desc),
1211                                   priv->dma_erx, priv->dma_rx_phy);
1212         }
1213         kfree(priv->rx_skbuff_dma);
1214         kfree(priv->rx_skbuff);
1215         kfree(priv->tx_skbuff_dma);
1216         kfree(priv->tx_skbuff);
1217 }
1218
1219 /**
1220  *  stmmac_dma_operation_mode - HW DMA operation mode
1221  *  @priv: driver private structure
1222  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1223  *  or Store-And-Forward capability.
1224  */
1225 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1226 {
1227         if (likely(priv->plat->force_sf_dma_mode ||
1228                    ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1229                 /*
1230                  * In case of GMAC, SF mode can be enabled
1231                  * to perform the TX COE in HW. This depends on:
1232                  * 1) TX COE if actually supported
1233                  * 2) There is no bugged Jumbo frame support
1234                  *    that needs to not insert csum in the TDES.
1235                  */
1236                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1237                 tc = SF_DMA_MODE;
1238         } else
1239                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1240 }
1241
1242 /**
1243  * stmmac_tx_clean:
1244  * @priv: driver private structure
1245  * Description: it reclaims resources after transmission completes.
1246  */
1247 static void stmmac_tx_clean(struct stmmac_priv *priv)
1248 {
1249         unsigned int txsize = priv->dma_tx_size;
1250
1251         spin_lock(&priv->tx_lock);
1252
1253         priv->xstats.tx_clean++;
1254
1255         while (priv->dirty_tx != priv->cur_tx) {
1256                 int last;
1257                 unsigned int entry = priv->dirty_tx % txsize;
1258                 struct sk_buff *skb = priv->tx_skbuff[entry];
1259                 struct dma_desc *p;
1260
1261                 if (priv->extend_desc)
1262                         p = (struct dma_desc *)(priv->dma_etx + entry);
1263                 else
1264                         p = priv->dma_tx + entry;
1265
1266                 /* Check if the descriptor is owned by the DMA. */
1267                 if (priv->hw->desc->get_tx_owner(p))
1268                         break;
1269
1270                 /* Verify tx error by looking at the last segment. */
1271                 last = priv->hw->desc->get_tx_ls(p);
1272                 if (likely(last)) {
1273                         int tx_error =
1274                             priv->hw->desc->tx_status(&priv->dev->stats,
1275                                                       &priv->xstats, p,
1276                                                       priv->ioaddr);
1277                         if (likely(tx_error == 0)) {
1278                                 priv->dev->stats.tx_packets++;
1279                                 priv->xstats.tx_pkt_n++;
1280                         } else
1281                                 priv->dev->stats.tx_errors++;
1282
1283                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1284                 }
1285                 if (netif_msg_tx_done(priv))
1286                         pr_debug("%s: curr %d, dirty %d\n", __func__,
1287                                  priv->cur_tx, priv->dirty_tx);
1288
1289                 if (likely(priv->tx_skbuff_dma[entry])) {
1290                         dma_unmap_single(priv->device,
1291                                          priv->tx_skbuff_dma[entry],
1292                                          priv->hw->desc->get_tx_len(p),
1293                                          DMA_TO_DEVICE);
1294                         priv->tx_skbuff_dma[entry] = 0;
1295                 }
1296                 priv->hw->ring->clean_desc3(priv, p);
1297
1298                 if (likely(skb != NULL)) {
1299                         dev_kfree_skb(skb);
1300                         priv->tx_skbuff[entry] = NULL;
1301                 }
1302
1303                 priv->hw->desc->release_tx_desc(p, priv->mode);
1304
1305                 priv->dirty_tx++;
1306         }
1307         if (unlikely(netif_queue_stopped(priv->dev) &&
1308                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1309                 netif_tx_lock(priv->dev);
1310                 if (netif_queue_stopped(priv->dev) &&
1311                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1312                         if (netif_msg_tx_done(priv))
1313                                 pr_debug("%s: restart transmit\n", __func__);
1314                         netif_wake_queue(priv->dev);
1315                 }
1316                 netif_tx_unlock(priv->dev);
1317         }
1318
1319         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1320                 stmmac_enable_eee_mode(priv);
1321                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1322         }
1323         spin_unlock(&priv->tx_lock);
1324 }
1325
1326 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1327 {
1328         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1329 }
1330
1331 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1332 {
1333         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1334 }
1335
1336 /**
1337  * stmmac_tx_err: irq tx error mng function
1338  * @priv: driver private structure
1339  * Description: it cleans the descriptors and restarts the transmission
1340  * in case of errors.
1341  */
1342 static void stmmac_tx_err(struct stmmac_priv *priv)
1343 {
1344         int i;
1345         int txsize = priv->dma_tx_size;
1346         netif_stop_queue(priv->dev);
1347
1348         priv->hw->dma->stop_tx(priv->ioaddr);
1349         dma_free_tx_skbufs(priv);
1350         for (i = 0; i < txsize; i++)
1351                 if (priv->extend_desc)
1352                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1353                                                      priv->mode,
1354                                                      (i == txsize - 1));
1355                 else
1356                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1357                                                      priv->mode,
1358                                                      (i == txsize - 1));
1359         priv->dirty_tx = 0;
1360         priv->cur_tx = 0;
1361         priv->hw->dma->start_tx(priv->ioaddr);
1362
1363         priv->dev->stats.tx_errors++;
1364         netif_wake_queue(priv->dev);
1365 }
1366
1367 /**
1368  * stmmac_dma_interrupt: DMA ISR
1369  * @priv: driver private structure
1370  * Description: this is the DMA ISR. It is called by the main ISR.
1371  * It calls the dwmac dma routine to understand which type of interrupt
1372  * happened. In case of there is a Normal interrupt and either TX or RX
1373  * interrupt happened so the NAPI is scheduled.
1374  */
1375 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1376 {
1377         int status;
1378
1379         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1380         if (likely((status & handle_rx)) || (status & handle_tx)) {
1381                 if (likely(napi_schedule_prep(&priv->napi))) {
1382                         stmmac_disable_dma_irq(priv);
1383                         __napi_schedule(&priv->napi);
1384                 }
1385         }
1386         if (unlikely(status & tx_hard_error_bump_tc)) {
1387                 /* Try to bump up the dma threshold on this failure */
1388                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1389                         tc += 64;
1390                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1391                         priv->xstats.threshold = tc;
1392                 }
1393         } else if (unlikely(status == tx_hard_error))
1394                 stmmac_tx_err(priv);
1395 }
1396
1397 /**
1398  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1399  * @priv: driver private structure
1400  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1401  */
1402 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1403 {
1404         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1405             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1406
1407         dwmac_mmc_intr_all_mask(priv->ioaddr);
1408
1409         if (priv->dma_cap.rmon) {
1410                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1411                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1412         } else
1413                 pr_info(" No MAC Management Counters available\n");
1414 }
1415
1416 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1417 {
1418         u32 hwid = priv->hw->synopsys_uid;
1419
1420         /* Check Synopsys Id (not available on old chips) */
1421         if (likely(hwid)) {
1422                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1423                 u32 synid = (hwid & 0x000000ff);
1424
1425                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1426                         uid, synid);
1427
1428                 return synid;
1429         }
1430         return 0;
1431 }
1432
1433 /**
1434  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1435  * @priv: driver private structure
1436  * Description: select the Enhanced/Alternate or Normal descriptors.
1437  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1438  * supported by the HW cap. register.
1439  */
1440 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1441 {
1442         if (priv->plat->enh_desc) {
1443                 pr_info(" Enhanced/Alternate descriptors\n");
1444
1445                 /* GMAC older than 3.50 has no extended descriptors */
1446                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1447                         pr_info("\tEnabled extended descriptors\n");
1448                         priv->extend_desc = 1;
1449                 } else
1450                         pr_warn("Extended descriptors not supported\n");
1451
1452                 priv->hw->desc = &enh_desc_ops;
1453         } else {
1454                 pr_info(" Normal descriptors\n");
1455                 priv->hw->desc = &ndesc_ops;
1456         }
1457 }
1458
1459 /**
1460  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1461  * @priv: driver private structure
1462  * Description:
1463  *  new GMAC chip generations have a new register to indicate the
1464  *  presence of the optional feature/functions.
1465  *  This can be also used to override the value passed through the
1466  *  platform and necessary for old MAC10/100 and GMAC chips.
1467  */
1468 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1469 {
1470         u32 hw_cap = 0;
1471
1472         if (priv->hw->dma->get_hw_feature) {
1473                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1474
1475                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1476                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1477                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1478                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1479                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1480                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1481                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1482                 priv->dma_cap.pmt_remote_wake_up =
1483                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1484                 priv->dma_cap.pmt_magic_frame =
1485                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1486                 /* MMC */
1487                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1488                 /* IEEE 1588-2002 */
1489                 priv->dma_cap.time_stamp =
1490                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1491                 /* IEEE 1588-2008 */
1492                 priv->dma_cap.atime_stamp =
1493                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1494                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1495                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1496                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1497                 /* TX and RX csum */
1498                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1499                 priv->dma_cap.rx_coe_type1 =
1500                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1501                 priv->dma_cap.rx_coe_type2 =
1502                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1503                 priv->dma_cap.rxfifo_over_2048 =
1504                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1505                 /* TX and RX number of channels */
1506                 priv->dma_cap.number_rx_channel =
1507                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1508                 priv->dma_cap.number_tx_channel =
1509                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1510                 /* Alternate (enhanced) DESC mode */
1511                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1512         }
1513
1514         return hw_cap;
1515 }
1516
1517 /**
1518  * stmmac_check_ether_addr: check if the MAC addr is valid
1519  * @priv: driver private structure
1520  * Description:
1521  * it is to verify if the MAC address is valid, in case of failures it
1522  * generates a random MAC address
1523  */
1524 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1525 {
1526         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1527                 priv->hw->mac->get_umac_addr((void __iomem *)
1528                                              priv->dev->base_addr,
1529                                              priv->dev->dev_addr, 0);
1530                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1531                         eth_hw_addr_random(priv->dev);
1532         }
1533         pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1534                 priv->dev->dev_addr);
1535 }
1536
1537 /**
1538  * stmmac_init_dma_engine: DMA init.
1539  * @priv: driver private structure
1540  * Description:
1541  * It inits the DMA invoking the specific MAC/GMAC callback.
1542  * Some DMA parameters can be passed from the platform;
1543  * in case of these are not passed a default is kept for the MAC or GMAC.
1544  */
1545 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1546 {
1547         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1548         int mixed_burst = 0;
1549         int atds = 0;
1550
1551         if (priv->plat->dma_cfg) {
1552                 pbl = priv->plat->dma_cfg->pbl;
1553                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1554                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1555                 burst_len = priv->plat->dma_cfg->burst_len;
1556         }
1557
1558         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1559                 atds = 1;
1560
1561         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1562                                    burst_len, priv->dma_tx_phy,
1563                                    priv->dma_rx_phy, atds);
1564 }
1565
1566 /**
1567  * stmmac_tx_timer: mitigation sw timer for tx.
1568  * @data: data pointer
1569  * Description:
1570  * This is the timer handler to directly invoke the stmmac_tx_clean.
1571  */
1572 static void stmmac_tx_timer(unsigned long data)
1573 {
1574         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1575
1576         stmmac_tx_clean(priv);
1577 }
1578
1579 /**
1580  * stmmac_init_tx_coalesce: init tx mitigation options.
1581  * @priv: driver private structure
1582  * Description:
1583  * This inits the transmit coalesce parameters: i.e. timer rate,
1584  * timer handler and default threshold used for enabling the
1585  * interrupt on completion bit.
1586  */
1587 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1588 {
1589         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1590         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1591         init_timer(&priv->txtimer);
1592         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1593         priv->txtimer.data = (unsigned long)priv;
1594         priv->txtimer.function = stmmac_tx_timer;
1595         add_timer(&priv->txtimer);
1596 }
1597
1598 /**
1599  *  stmmac_open - open entry point of the driver
1600  *  @dev : pointer to the device structure.
1601  *  Description:
1602  *  This function is the open entry point of the driver.
1603  *  Return value:
1604  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1605  *  file on failure.
1606  */
1607 static int stmmac_open(struct net_device *dev)
1608 {
1609         struct stmmac_priv *priv = netdev_priv(dev);
1610         int ret;
1611
1612         clk_prepare_enable(priv->stmmac_clk);
1613
1614         stmmac_check_ether_addr(priv);
1615
1616         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1617             priv->pcs != STMMAC_PCS_RTBI) {
1618                 ret = stmmac_init_phy(dev);
1619                 if (ret) {
1620                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1621                                __func__, ret);
1622                         goto phy_error;
1623                 }
1624         }
1625
1626         /* Create and initialize the TX/RX descriptors chains. */
1627         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1628         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1629         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1630
1631         ret = init_dma_desc_rings(dev);
1632         if (ret < 0) {
1633                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1634                 goto dma_desc_error;
1635         }
1636
1637         /* DMA initialization and SW reset */
1638         ret = stmmac_init_dma_engine(priv);
1639         if (ret < 0) {
1640                 pr_err("%s: DMA engine initialization failed\n", __func__);
1641                 goto init_error;
1642         }
1643
1644         /* Copy the MAC addr into the HW  */
1645         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1646
1647         /* If required, perform hw setup of the bus. */
1648         if (priv->plat->bus_setup)
1649                 priv->plat->bus_setup(priv->ioaddr);
1650
1651         /* Initialize the MAC Core */
1652         priv->hw->mac->core_init(priv->ioaddr);
1653
1654         /* Request the IRQ lines */
1655         ret = request_irq(dev->irq, stmmac_interrupt,
1656                           IRQF_SHARED, dev->name, dev);
1657         if (unlikely(ret < 0)) {
1658                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1659                        __func__, dev->irq, ret);
1660                 goto init_error;
1661         }
1662
1663         /* Request the Wake IRQ in case of another line is used for WoL */
1664         if (priv->wol_irq != dev->irq) {
1665                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1666                                   IRQF_SHARED, dev->name, dev);
1667                 if (unlikely(ret < 0)) {
1668                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1669                                __func__, priv->wol_irq, ret);
1670                         goto wolirq_error;
1671                 }
1672         }
1673
1674         /* Request the IRQ lines */
1675         if (priv->lpi_irq != -ENXIO) {
1676                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1677                                   dev->name, dev);
1678                 if (unlikely(ret < 0)) {
1679                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1680                                __func__, priv->lpi_irq, ret);
1681                         goto lpiirq_error;
1682                 }
1683         }
1684
1685         /* Enable the MAC Rx/Tx */
1686         stmmac_set_mac(priv->ioaddr, true);
1687
1688         /* Set the HW DMA mode and the COE */
1689         stmmac_dma_operation_mode(priv);
1690
1691         /* Extra statistics */
1692         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1693         priv->xstats.threshold = tc;
1694
1695         stmmac_mmc_setup(priv);
1696
1697         ret = stmmac_init_ptp(priv);
1698         if (ret)
1699                 pr_warn("%s: failed PTP initialisation\n", __func__);
1700
1701 #ifdef CONFIG_STMMAC_DEBUG_FS
1702         ret = stmmac_init_fs(dev);
1703         if (ret < 0)
1704                 pr_warn("%s: failed debugFS registration\n", __func__);
1705 #endif
1706         /* Start the ball rolling... */
1707         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1708         priv->hw->dma->start_tx(priv->ioaddr);
1709         priv->hw->dma->start_rx(priv->ioaddr);
1710
1711         /* Dump DMA/MAC registers */
1712         if (netif_msg_hw(priv)) {
1713                 priv->hw->mac->dump_regs(priv->ioaddr);
1714                 priv->hw->dma->dump_regs(priv->ioaddr);
1715         }
1716
1717         if (priv->phydev)
1718                 phy_start(priv->phydev);
1719
1720         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1721
1722         priv->eee_enabled = stmmac_eee_init(priv);
1723
1724         stmmac_init_tx_coalesce(priv);
1725
1726         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1727                 priv->rx_riwt = MAX_DMA_RIWT;
1728                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1729         }
1730
1731         if (priv->pcs && priv->hw->mac->ctrl_ane)
1732                 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1733
1734         napi_enable(&priv->napi);
1735         netif_start_queue(dev);
1736
1737         return 0;
1738
1739 lpiirq_error:
1740         if (priv->wol_irq != dev->irq)
1741                 free_irq(priv->wol_irq, dev);
1742 wolirq_error:
1743         free_irq(dev->irq, dev);
1744
1745 init_error:
1746         free_dma_desc_resources(priv);
1747 dma_desc_error:
1748         if (priv->phydev)
1749                 phy_disconnect(priv->phydev);
1750 phy_error:
1751         clk_disable_unprepare(priv->stmmac_clk);
1752
1753         return ret;
1754 }
1755
1756 /**
1757  *  stmmac_release - close entry point of the driver
1758  *  @dev : device pointer.
1759  *  Description:
1760  *  This is the stop entry point of the driver.
1761  */
1762 static int stmmac_release(struct net_device *dev)
1763 {
1764         struct stmmac_priv *priv = netdev_priv(dev);
1765
1766         if (priv->eee_enabled)
1767                 del_timer_sync(&priv->eee_ctrl_timer);
1768
1769         /* Stop and disconnect the PHY */
1770         if (priv->phydev) {
1771                 phy_stop(priv->phydev);
1772                 phy_disconnect(priv->phydev);
1773                 priv->phydev = NULL;
1774         }
1775
1776         netif_stop_queue(dev);
1777
1778         napi_disable(&priv->napi);
1779
1780         del_timer_sync(&priv->txtimer);
1781
1782         /* Free the IRQ lines */
1783         free_irq(dev->irq, dev);
1784         if (priv->wol_irq != dev->irq)
1785                 free_irq(priv->wol_irq, dev);
1786         if (priv->lpi_irq != -ENXIO)
1787                 free_irq(priv->lpi_irq, dev);
1788
1789         /* Stop TX/RX DMA and clear the descriptors */
1790         priv->hw->dma->stop_tx(priv->ioaddr);
1791         priv->hw->dma->stop_rx(priv->ioaddr);
1792
1793         /* Release and free the Rx/Tx resources */
1794         free_dma_desc_resources(priv);
1795
1796         /* Disable the MAC Rx/Tx */
1797         stmmac_set_mac(priv->ioaddr, false);
1798
1799         netif_carrier_off(dev);
1800
1801 #ifdef CONFIG_STMMAC_DEBUG_FS
1802         stmmac_exit_fs();
1803 #endif
1804         clk_disable_unprepare(priv->stmmac_clk);
1805
1806         stmmac_release_ptp(priv);
1807
1808         return 0;
1809 }
1810
1811 /**
1812  *  stmmac_xmit: Tx entry point of the driver
1813  *  @skb : the socket buffer
1814  *  @dev : device pointer
1815  *  Description : this is the tx entry point of the driver.
1816  *  It programs the chain or the ring and supports oversized frames
1817  *  and SG feature.
1818  */
1819 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1820 {
1821         struct stmmac_priv *priv = netdev_priv(dev);
1822         unsigned int txsize = priv->dma_tx_size;
1823         unsigned int entry;
1824         int i, csum_insertion = 0, is_jumbo = 0;
1825         int nfrags = skb_shinfo(skb)->nr_frags;
1826         struct dma_desc *desc, *first;
1827         unsigned int nopaged_len = skb_headlen(skb);
1828
1829         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1830                 if (!netif_queue_stopped(dev)) {
1831                         netif_stop_queue(dev);
1832                         /* This is a hard error, log it. */
1833                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1834                 }
1835                 return NETDEV_TX_BUSY;
1836         }
1837
1838         spin_lock(&priv->tx_lock);
1839
1840         if (priv->tx_path_in_lpi_mode)
1841                 stmmac_disable_eee_mode(priv);
1842
1843         entry = priv->cur_tx % txsize;
1844
1845         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1846
1847         if (priv->extend_desc)
1848                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1849         else
1850                 desc = priv->dma_tx + entry;
1851
1852         first = desc;
1853
1854         priv->tx_skbuff[entry] = skb;
1855
1856         /* To program the descriptors according to the size of the frame */
1857         if (priv->mode == STMMAC_RING_MODE) {
1858                 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1859                                                         priv->plat->enh_desc);
1860                 if (unlikely(is_jumbo))
1861                         entry = priv->hw->ring->jumbo_frm(priv, skb,
1862                                                           csum_insertion);
1863         } else {
1864                 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1865                                                          priv->plat->enh_desc);
1866                 if (unlikely(is_jumbo))
1867                         entry = priv->hw->chain->jumbo_frm(priv, skb,
1868                                                            csum_insertion);
1869         }
1870         if (likely(!is_jumbo)) {
1871                 desc->des2 = dma_map_single(priv->device, skb->data,
1872                                             nopaged_len, DMA_TO_DEVICE);
1873                 priv->tx_skbuff_dma[entry] = desc->des2;
1874                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1875                                                 csum_insertion, priv->mode);
1876         } else
1877                 desc = first;
1878
1879         for (i = 0; i < nfrags; i++) {
1880                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1881                 int len = skb_frag_size(frag);
1882
1883                 entry = (++priv->cur_tx) % txsize;
1884                 if (priv->extend_desc)
1885                         desc = (struct dma_desc *)(priv->dma_etx + entry);
1886                 else
1887                         desc = priv->dma_tx + entry;
1888
1889                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1890                                               DMA_TO_DEVICE);
1891                 priv->tx_skbuff_dma[entry] = desc->des2;
1892                 priv->tx_skbuff[entry] = NULL;
1893                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1894                                                 priv->mode);
1895                 wmb();
1896                 priv->hw->desc->set_tx_owner(desc);
1897                 wmb();
1898         }
1899
1900         /* Finalize the latest segment. */
1901         priv->hw->desc->close_tx_desc(desc);
1902
1903         wmb();
1904         /* According to the coalesce parameter the IC bit for the latest
1905          * segment could be reset and the timer re-started to invoke the
1906          * stmmac_tx function. This approach takes care about the fragments.
1907          */
1908         priv->tx_count_frames += nfrags + 1;
1909         if (priv->tx_coal_frames > priv->tx_count_frames) {
1910                 priv->hw->desc->clear_tx_ic(desc);
1911                 priv->xstats.tx_reset_ic_bit++;
1912                 mod_timer(&priv->txtimer,
1913                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
1914         } else
1915                 priv->tx_count_frames = 0;
1916
1917         /* To avoid raise condition */
1918         priv->hw->desc->set_tx_owner(first);
1919         wmb();
1920
1921         priv->cur_tx++;
1922
1923         if (netif_msg_pktdata(priv)) {
1924                 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1925                         __func__, (priv->cur_tx % txsize),
1926                         (priv->dirty_tx % txsize), entry, first, nfrags);
1927
1928                 if (priv->extend_desc)
1929                         stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1930                 else
1931                         stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1932
1933                 pr_debug(">>> frame to be transmitted: ");
1934                 print_pkt(skb->data, skb->len);
1935         }
1936         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1937                 if (netif_msg_hw(priv))
1938                         pr_debug("%s: stop transmitted packets\n", __func__);
1939                 netif_stop_queue(dev);
1940         }
1941
1942         dev->stats.tx_bytes += skb->len;
1943
1944         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1945                      priv->hwts_tx_en)) {
1946                 /* declare that device is doing timestamping */
1947                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1948                 priv->hw->desc->enable_tx_timestamp(first);
1949         }
1950
1951         if (!priv->hwts_tx_en)
1952                 skb_tx_timestamp(skb);
1953
1954         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1955
1956         spin_unlock(&priv->tx_lock);
1957
1958         return NETDEV_TX_OK;
1959 }
1960
1961 /**
1962  * stmmac_rx_refill: refill used skb preallocated buffers
1963  * @priv: driver private structure
1964  * Description : this is to reallocate the skb for the reception process
1965  * that is based on zero-copy.
1966  */
1967 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1968 {
1969         unsigned int rxsize = priv->dma_rx_size;
1970         int bfsize = priv->dma_buf_sz;
1971
1972         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1973                 unsigned int entry = priv->dirty_rx % rxsize;
1974                 struct dma_desc *p;
1975
1976                 if (priv->extend_desc)
1977                         p = (struct dma_desc *)(priv->dma_erx + entry);
1978                 else
1979                         p = priv->dma_rx + entry;
1980
1981                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1982                         struct sk_buff *skb;
1983
1984                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1985
1986                         if (unlikely(skb == NULL))
1987                                 break;
1988
1989                         priv->rx_skbuff[entry] = skb;
1990                         priv->rx_skbuff_dma[entry] =
1991                             dma_map_single(priv->device, skb->data, bfsize,
1992                                            DMA_FROM_DEVICE);
1993
1994                         p->des2 = priv->rx_skbuff_dma[entry];
1995
1996                         priv->hw->ring->refill_desc3(priv, p);
1997
1998                         if (netif_msg_rx_status(priv))
1999                                 pr_debug("\trefill entry #%d\n", entry);
2000                 }
2001                 wmb();
2002                 priv->hw->desc->set_rx_owner(p);
2003                 wmb();
2004         }
2005 }
2006
2007 /**
2008  * stmmac_rx_refill: refill used skb preallocated buffers
2009  * @priv: driver private structure
2010  * @limit: napi bugget.
2011  * Description :  this the function called by the napi poll method.
2012  * It gets all the frames inside the ring.
2013  */
2014 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2015 {
2016         unsigned int rxsize = priv->dma_rx_size;
2017         unsigned int entry = priv->cur_rx % rxsize;
2018         unsigned int next_entry;
2019         unsigned int count = 0;
2020         int coe = priv->plat->rx_coe;
2021
2022         if (netif_msg_rx_status(priv)) {
2023                 pr_debug("%s: descriptor ring:\n", __func__);
2024                 if (priv->extend_desc)
2025                         stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2026                 else
2027                         stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2028         }
2029         while (count < limit) {
2030                 int status;
2031                 struct dma_desc *p;
2032
2033                 if (priv->extend_desc)
2034                         p = (struct dma_desc *)(priv->dma_erx + entry);
2035                 else
2036                         p = priv->dma_rx + entry;
2037
2038                 if (priv->hw->desc->get_rx_owner(p))
2039                         break;
2040
2041                 count++;
2042
2043                 next_entry = (++priv->cur_rx) % rxsize;
2044                 if (priv->extend_desc)
2045                         prefetch(priv->dma_erx + next_entry);
2046                 else
2047                         prefetch(priv->dma_rx + next_entry);
2048
2049                 /* read the status of the incoming frame */
2050                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2051                                                    &priv->xstats, p);
2052                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2053                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2054                                                            &priv->xstats,
2055                                                            priv->dma_erx +
2056                                                            entry);
2057                 if (unlikely(status == discard_frame)) {
2058                         priv->dev->stats.rx_errors++;
2059                         if (priv->hwts_rx_en && !priv->extend_desc) {
2060                                 /* DESC2 & DESC3 will be overwitten by device
2061                                  * with timestamp value, hence reinitialize
2062                                  * them in stmmac_rx_refill() function so that
2063                                  * device can reuse it.
2064                                  */
2065                                 priv->rx_skbuff[entry] = NULL;
2066                                 dma_unmap_single(priv->device,
2067                                                  priv->rx_skbuff_dma[entry],
2068                                                  priv->dma_buf_sz,
2069                                                  DMA_FROM_DEVICE);
2070                         }
2071                 } else {
2072                         struct sk_buff *skb;
2073                         int frame_len;
2074
2075                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2076
2077                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2078                          * Type frames (LLC/LLC-SNAP)
2079                          */
2080                         if (unlikely(status != llc_snap))
2081                                 frame_len -= ETH_FCS_LEN;
2082
2083                         if (netif_msg_rx_status(priv)) {
2084                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2085                                          p, entry, p->des2);
2086                                 if (frame_len > ETH_FRAME_LEN)
2087                                         pr_debug("\tframe size %d, COE: %d\n",
2088                                                  frame_len, status);
2089                         }
2090                         skb = priv->rx_skbuff[entry];
2091                         if (unlikely(!skb)) {
2092                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2093                                        priv->dev->name);
2094                                 priv->dev->stats.rx_dropped++;
2095                                 break;
2096                         }
2097                         prefetch(skb->data - NET_IP_ALIGN);
2098                         priv->rx_skbuff[entry] = NULL;
2099
2100                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2101
2102                         skb_put(skb, frame_len);
2103                         dma_unmap_single(priv->device,
2104                                          priv->rx_skbuff_dma[entry],
2105                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2106
2107                         if (netif_msg_pktdata(priv)) {
2108                                 pr_debug("frame received (%dbytes)", frame_len);
2109                                 print_pkt(skb->data, frame_len);
2110                         }
2111
2112                         skb->protocol = eth_type_trans(skb, priv->dev);
2113
2114                         if (unlikely(!coe))
2115                                 skb_checksum_none_assert(skb);
2116                         else
2117                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2118
2119                         napi_gro_receive(&priv->napi, skb);
2120
2121                         priv->dev->stats.rx_packets++;
2122                         priv->dev->stats.rx_bytes += frame_len;
2123                 }
2124                 entry = next_entry;
2125         }
2126
2127         stmmac_rx_refill(priv);
2128
2129         priv->xstats.rx_pkt_n += count;
2130
2131         return count;
2132 }
2133
2134 /**
2135  *  stmmac_poll - stmmac poll method (NAPI)
2136  *  @napi : pointer to the napi structure.
2137  *  @budget : maximum number of packets that the current CPU can receive from
2138  *            all interfaces.
2139  *  Description :
2140  *  To look at the incoming frames and clear the tx resources.
2141  */
2142 static int stmmac_poll(struct napi_struct *napi, int budget)
2143 {
2144         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2145         int work_done = 0;
2146
2147         priv->xstats.napi_poll++;
2148         stmmac_tx_clean(priv);
2149
2150         work_done = stmmac_rx(priv, budget);
2151         if (work_done < budget) {
2152                 napi_complete(napi);
2153                 stmmac_enable_dma_irq(priv);
2154         }
2155         return work_done;
2156 }
2157
2158 /**
2159  *  stmmac_tx_timeout
2160  *  @dev : Pointer to net device structure
2161  *  Description: this function is called when a packet transmission fails to
2162  *   complete within a reasonable time. The driver will mark the error in the
2163  *   netdev structure and arrange for the device to be reset to a sane state
2164  *   in order to transmit a new packet.
2165  */
2166 static void stmmac_tx_timeout(struct net_device *dev)
2167 {
2168         struct stmmac_priv *priv = netdev_priv(dev);
2169
2170         /* Clear Tx resources and restart transmitting again */
2171         stmmac_tx_err(priv);
2172 }
2173
2174 /* Configuration changes (passed on by ifconfig) */
2175 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2176 {
2177         if (dev->flags & IFF_UP)        /* can't act on a running interface */
2178                 return -EBUSY;
2179
2180         /* Don't allow changing the I/O address */
2181         if (map->base_addr != dev->base_addr) {
2182                 pr_warn("%s: can't change I/O address\n", dev->name);
2183                 return -EOPNOTSUPP;
2184         }
2185
2186         /* Don't allow changing the IRQ */
2187         if (map->irq != dev->irq) {
2188                 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2189                 return -EOPNOTSUPP;
2190         }
2191
2192         return 0;
2193 }
2194
2195 /**
2196  *  stmmac_set_rx_mode - entry point for multicast addressing
2197  *  @dev : pointer to the device structure
2198  *  Description:
2199  *  This function is a driver entry point which gets called by the kernel
2200  *  whenever multicast addresses must be enabled/disabled.
2201  *  Return value:
2202  *  void.
2203  */
2204 static void stmmac_set_rx_mode(struct net_device *dev)
2205 {
2206         struct stmmac_priv *priv = netdev_priv(dev);
2207
2208         spin_lock(&priv->lock);
2209         priv->hw->mac->set_filter(dev, priv->synopsys_id);
2210         spin_unlock(&priv->lock);
2211 }
2212
2213 /**
2214  *  stmmac_change_mtu - entry point to change MTU size for the device.
2215  *  @dev : device pointer.
2216  *  @new_mtu : the new MTU size for the device.
2217  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2218  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2219  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2220  *  Return value:
2221  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2222  *  file on failure.
2223  */
2224 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2225 {
2226         struct stmmac_priv *priv = netdev_priv(dev);
2227         int max_mtu;
2228
2229         if (netif_running(dev)) {
2230                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2231                 return -EBUSY;
2232         }
2233
2234         if (priv->plat->enh_desc)
2235                 max_mtu = JUMBO_LEN;
2236         else
2237                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2238
2239         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2240                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2241                 return -EINVAL;
2242         }
2243
2244         dev->mtu = new_mtu;
2245         netdev_update_features(dev);
2246
2247         return 0;
2248 }
2249
2250 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2251                                              netdev_features_t features)
2252 {
2253         struct stmmac_priv *priv = netdev_priv(dev);
2254
2255         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2256                 features &= ~NETIF_F_RXCSUM;
2257         else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2258                 features &= ~NETIF_F_IPV6_CSUM;
2259         if (!priv->plat->tx_coe)
2260                 features &= ~NETIF_F_ALL_CSUM;
2261
2262         /* Some GMAC devices have a bugged Jumbo frame support that
2263          * needs to have the Tx COE disabled for oversized frames
2264          * (due to limited buffer sizes). In this case we disable
2265          * the TX csum insertionin the TDES and not use SF.
2266          */
2267         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2268                 features &= ~NETIF_F_ALL_CSUM;
2269
2270         return features;
2271 }
2272
2273 /**
2274  *  stmmac_interrupt - main ISR
2275  *  @irq: interrupt number.
2276  *  @dev_id: to pass the net device pointer.
2277  *  Description: this is the main driver interrupt service routine.
2278  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2279  *  interrupts.
2280  */
2281 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2282 {
2283         struct net_device *dev = (struct net_device *)dev_id;
2284         struct stmmac_priv *priv = netdev_priv(dev);
2285
2286         if (unlikely(!dev)) {
2287                 pr_err("%s: invalid dev pointer\n", __func__);
2288                 return IRQ_NONE;
2289         }
2290
2291         /* To handle GMAC own interrupts */
2292         if (priv->plat->has_gmac) {
2293                 int status = priv->hw->mac->host_irq_status((void __iomem *)
2294                                                             dev->base_addr,
2295                                                             &priv->xstats);
2296                 if (unlikely(status)) {
2297                         /* For LPI we need to save the tx status */
2298                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2299                                 priv->tx_path_in_lpi_mode = true;
2300                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2301                                 priv->tx_path_in_lpi_mode = false;
2302                 }
2303         }
2304
2305         /* To handle DMA interrupts */
2306         stmmac_dma_interrupt(priv);
2307
2308         return IRQ_HANDLED;
2309 }
2310
2311 #ifdef CONFIG_NET_POLL_CONTROLLER
2312 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2313  * to allow network I/O with interrupts disabled.
2314  */
2315 static void stmmac_poll_controller(struct net_device *dev)
2316 {
2317         disable_irq(dev->irq);
2318         stmmac_interrupt(dev->irq, dev);
2319         enable_irq(dev->irq);
2320 }
2321 #endif
2322
2323 /**
2324  *  stmmac_ioctl - Entry point for the Ioctl
2325  *  @dev: Device pointer.
2326  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2327  *  a proprietary structure used to pass information to the driver.
2328  *  @cmd: IOCTL command
2329  *  Description:
2330  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2331  */
2332 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2333 {
2334         struct stmmac_priv *priv = netdev_priv(dev);
2335         int ret = -EOPNOTSUPP;
2336
2337         if (!netif_running(dev))
2338                 return -EINVAL;
2339
2340         switch (cmd) {
2341         case SIOCGMIIPHY:
2342         case SIOCGMIIREG:
2343         case SIOCSMIIREG:
2344                 if (!priv->phydev)
2345                         return -EINVAL;
2346                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2347                 break;
2348         case SIOCSHWTSTAMP:
2349                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2350                 break;
2351         default:
2352                 break;
2353         }
2354
2355         return ret;
2356 }
2357
2358 #ifdef CONFIG_STMMAC_DEBUG_FS
2359 static struct dentry *stmmac_fs_dir;
2360 static struct dentry *stmmac_rings_status;
2361 static struct dentry *stmmac_dma_cap;
2362
2363 static void sysfs_display_ring(void *head, int size, int extend_desc,
2364                                struct seq_file *seq)
2365 {
2366         int i;
2367         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2368         struct dma_desc *p = (struct dma_desc *)head;
2369
2370         for (i = 0; i < size; i++) {
2371                 u64 x;
2372                 if (extend_desc) {
2373                         x = *(u64 *) ep;
2374                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2375                                    i, (unsigned int)virt_to_phys(ep),
2376                                    (unsigned int)x, (unsigned int)(x >> 32),
2377                                    ep->basic.des2, ep->basic.des3);
2378                         ep++;
2379                 } else {
2380                         x = *(u64 *) p;
2381                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2382                                    i, (unsigned int)virt_to_phys(ep),
2383                                    (unsigned int)x, (unsigned int)(x >> 32),
2384                                    p->des2, p->des3);
2385                         p++;
2386                 }
2387                 seq_printf(seq, "\n");
2388         }
2389 }
2390
2391 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2392 {
2393         struct net_device *dev = seq->private;
2394         struct stmmac_priv *priv = netdev_priv(dev);
2395         unsigned int txsize = priv->dma_tx_size;
2396         unsigned int rxsize = priv->dma_rx_size;
2397
2398         if (priv->extend_desc) {
2399                 seq_printf(seq, "Extended RX descriptor ring:\n");
2400                 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2401                 seq_printf(seq, "Extended TX descriptor ring:\n");
2402                 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2403         } else {
2404                 seq_printf(seq, "RX descriptor ring:\n");
2405                 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2406                 seq_printf(seq, "TX descriptor ring:\n");
2407                 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2408         }
2409
2410         return 0;
2411 }
2412
2413 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2414 {
2415         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2416 }
2417
2418 static const struct file_operations stmmac_rings_status_fops = {
2419         .owner = THIS_MODULE,
2420         .open = stmmac_sysfs_ring_open,
2421         .read = seq_read,
2422         .llseek = seq_lseek,
2423         .release = single_release,
2424 };
2425
2426 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2427 {
2428         struct net_device *dev = seq->private;
2429         struct stmmac_priv *priv = netdev_priv(dev);
2430
2431         if (!priv->hw_cap_support) {
2432                 seq_printf(seq, "DMA HW features not supported\n");
2433                 return 0;
2434         }
2435
2436         seq_printf(seq, "==============================\n");
2437         seq_printf(seq, "\tDMA HW features\n");
2438         seq_printf(seq, "==============================\n");
2439
2440         seq_printf(seq, "\t10/100 Mbps %s\n",
2441                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2442         seq_printf(seq, "\t1000 Mbps %s\n",
2443                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2444         seq_printf(seq, "\tHalf duple %s\n",
2445                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2446         seq_printf(seq, "\tHash Filter: %s\n",
2447                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2448         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2449                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2450         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2451                    (priv->dma_cap.pcs) ? "Y" : "N");
2452         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2453                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2454         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2455                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2456         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2457                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2458         seq_printf(seq, "\tRMON module: %s\n",
2459                    (priv->dma_cap.rmon) ? "Y" : "N");
2460         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2461                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2462         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2463                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2464         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2465                    (priv->dma_cap.eee) ? "Y" : "N");
2466         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2467         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2468                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2469         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2470                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2471         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2472                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2473         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2474                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2475         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2476                    priv->dma_cap.number_rx_channel);
2477         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2478                    priv->dma_cap.number_tx_channel);
2479         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2480                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2481
2482         return 0;
2483 }
2484
2485 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2486 {
2487         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2488 }
2489
2490 static const struct file_operations stmmac_dma_cap_fops = {
2491         .owner = THIS_MODULE,
2492         .open = stmmac_sysfs_dma_cap_open,
2493         .read = seq_read,
2494         .llseek = seq_lseek,
2495         .release = single_release,
2496 };
2497
2498 static int stmmac_init_fs(struct net_device *dev)
2499 {
2500         /* Create debugfs entries */
2501         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2502
2503         if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2504                 pr_err("ERROR %s, debugfs create directory failed\n",
2505                        STMMAC_RESOURCE_NAME);
2506
2507                 return -ENOMEM;
2508         }
2509
2510         /* Entry to report DMA RX/TX rings */
2511         stmmac_rings_status = debugfs_create_file("descriptors_status",
2512                                                   S_IRUGO, stmmac_fs_dir, dev,
2513                                                   &stmmac_rings_status_fops);
2514
2515         if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2516                 pr_info("ERROR creating stmmac ring debugfs file\n");
2517                 debugfs_remove(stmmac_fs_dir);
2518
2519                 return -ENOMEM;
2520         }
2521
2522         /* Entry to report the DMA HW features */
2523         stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2524                                              dev, &stmmac_dma_cap_fops);
2525
2526         if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2527                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2528                 debugfs_remove(stmmac_rings_status);
2529                 debugfs_remove(stmmac_fs_dir);
2530
2531                 return -ENOMEM;
2532         }
2533
2534         return 0;
2535 }
2536
2537 static void stmmac_exit_fs(void)
2538 {
2539         debugfs_remove(stmmac_rings_status);
2540         debugfs_remove(stmmac_dma_cap);
2541         debugfs_remove(stmmac_fs_dir);
2542 }
2543 #endif /* CONFIG_STMMAC_DEBUG_FS */
2544
2545 static const struct net_device_ops stmmac_netdev_ops = {
2546         .ndo_open = stmmac_open,
2547         .ndo_start_xmit = stmmac_xmit,
2548         .ndo_stop = stmmac_release,
2549         .ndo_change_mtu = stmmac_change_mtu,
2550         .ndo_fix_features = stmmac_fix_features,
2551         .ndo_set_rx_mode = stmmac_set_rx_mode,
2552         .ndo_tx_timeout = stmmac_tx_timeout,
2553         .ndo_do_ioctl = stmmac_ioctl,
2554         .ndo_set_config = stmmac_config,
2555 #ifdef CONFIG_NET_POLL_CONTROLLER
2556         .ndo_poll_controller = stmmac_poll_controller,
2557 #endif
2558         .ndo_set_mac_address = eth_mac_addr,
2559 };
2560
2561 /**
2562  *  stmmac_hw_init - Init the MAC device
2563  *  @priv: driver private structure
2564  *  Description: this function detects which MAC device
2565  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2566  *  (if supported) and sets the driver's features (for example
2567  *  to use the ring or chaine mode or support the normal/enh
2568  *  descriptor structure).
2569  */
2570 static int stmmac_hw_init(struct stmmac_priv *priv)
2571 {
2572         int ret;
2573         struct mac_device_info *mac;
2574
2575         /* Identify the MAC HW device */
2576         if (priv->plat->has_gmac) {
2577                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2578                 mac = dwmac1000_setup(priv->ioaddr);
2579         } else {
2580                 mac = dwmac100_setup(priv->ioaddr);
2581         }
2582         if (!mac)
2583                 return -ENOMEM;
2584
2585         priv->hw = mac;
2586
2587         /* Get and dump the chip ID */
2588         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2589
2590         /* To use the chained or ring mode */
2591         if (chain_mode) {
2592                 priv->hw->chain = &chain_mode_ops;
2593                 pr_info(" Chain mode enabled\n");
2594                 priv->mode = STMMAC_CHAIN_MODE;
2595         } else {
2596                 priv->hw->ring = &ring_mode_ops;
2597                 pr_info(" Ring mode enabled\n");
2598                 priv->mode = STMMAC_RING_MODE;
2599         }
2600
2601         /* Get the HW capability (new GMAC newer than 3.50a) */
2602         priv->hw_cap_support = stmmac_get_hw_features(priv);
2603         if (priv->hw_cap_support) {
2604                 pr_info(" DMA HW capability register supported");
2605
2606                 /* We can override some gmac/dma configuration fields: e.g.
2607                  * enh_desc, tx_coe (e.g. that are passed through the
2608                  * platform) with the values from the HW capability
2609                  * register (if supported).
2610                  */
2611                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2612                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2613
2614                 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2615
2616                 if (priv->dma_cap.rx_coe_type2)
2617                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2618                 else if (priv->dma_cap.rx_coe_type1)
2619                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2620
2621         } else
2622                 pr_info(" No HW DMA feature register supported");
2623
2624         /* To use alternate (extended) or normal descriptor structures */
2625         stmmac_selec_desc_mode(priv);
2626
2627         ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2628         if (!ret) {
2629                 pr_warn(" RX IPC Checksum Offload not configured.\n");
2630                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2631         }
2632
2633         if (priv->plat->rx_coe)
2634                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2635                         priv->plat->rx_coe);
2636         if (priv->plat->tx_coe)
2637                 pr_info(" TX Checksum insertion supported\n");
2638
2639         if (priv->plat->pmt) {
2640                 pr_info(" Wake-Up On Lan supported\n");
2641                 device_set_wakeup_capable(priv->device, 1);
2642         }
2643
2644         return 0;
2645 }
2646
2647 /**
2648  * stmmac_dvr_probe
2649  * @device: device pointer
2650  * @plat_dat: platform data pointer
2651  * @addr: iobase memory address
2652  * Description: this is the main probe function used to
2653  * call the alloc_etherdev, allocate the priv structure.
2654  */
2655 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2656                                      struct plat_stmmacenet_data *plat_dat,
2657                                      void __iomem *addr)
2658 {
2659         int ret = 0;
2660         struct net_device *ndev = NULL;
2661         struct stmmac_priv *priv;
2662
2663         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2664         if (!ndev)
2665                 return NULL;
2666
2667         SET_NETDEV_DEV(ndev, device);
2668
2669         priv = netdev_priv(ndev);
2670         priv->device = device;
2671         priv->dev = ndev;
2672
2673         ether_setup(ndev);
2674
2675         stmmac_set_ethtool_ops(ndev);
2676         priv->pause = pause;
2677         priv->plat = plat_dat;
2678         priv->ioaddr = addr;
2679         priv->dev->base_addr = (unsigned long)addr;
2680
2681         /* Verify driver arguments */
2682         stmmac_verify_args();
2683
2684         /* Override with kernel parameters if supplied XXX CRS XXX
2685          * this needs to have multiple instances
2686          */
2687         if ((phyaddr >= 0) && (phyaddr <= 31))
2688                 priv->plat->phy_addr = phyaddr;
2689
2690         /* Init MAC and get the capabilities */
2691         ret = stmmac_hw_init(priv);
2692         if (ret)
2693                 goto error_free_netdev;
2694
2695         ndev->netdev_ops = &stmmac_netdev_ops;
2696
2697         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2698                             NETIF_F_RXCSUM;
2699         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2700         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2701 #ifdef STMMAC_VLAN_TAG_USED
2702         /* Both mac100 and gmac support receive VLAN tag detection */
2703         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2704 #endif
2705         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2706
2707         if (flow_ctrl)
2708                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2709
2710         /* Rx Watchdog is available in the COREs newer than the 3.40.
2711          * In some case, for example on bugged HW this feature
2712          * has to be disable and this can be done by passing the
2713          * riwt_off field from the platform.
2714          */
2715         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2716                 priv->use_riwt = 1;
2717                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2718         }
2719
2720         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2721
2722         spin_lock_init(&priv->lock);
2723         spin_lock_init(&priv->tx_lock);
2724
2725         ret = register_netdev(ndev);
2726         if (ret) {
2727                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2728                 goto error_netdev_register;
2729         }
2730
2731         priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2732         if (IS_ERR(priv->stmmac_clk)) {
2733                 pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2734                 goto error_clk_get;
2735         }
2736
2737         /* If a specific clk_csr value is passed from the platform
2738          * this means that the CSR Clock Range selection cannot be
2739          * changed at run-time and it is fixed. Viceversa the driver'll try to
2740          * set the MDC clock dynamically according to the csr actual
2741          * clock input.
2742          */
2743         if (!priv->plat->clk_csr)
2744                 stmmac_clk_csr_set(priv);
2745         else
2746                 priv->clk_csr = priv->plat->clk_csr;
2747
2748         stmmac_check_pcs_mode(priv);
2749
2750         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2751             priv->pcs != STMMAC_PCS_RTBI) {
2752                 /* MDIO bus Registration */
2753                 ret = stmmac_mdio_register(ndev);
2754                 if (ret < 0) {
2755                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2756                                  __func__, priv->plat->bus_id);
2757                         goto error_mdio_register;
2758                 }
2759         }
2760
2761         return priv;
2762
2763 error_mdio_register:
2764         clk_put(priv->stmmac_clk);
2765 error_clk_get:
2766         unregister_netdev(ndev);
2767 error_netdev_register:
2768         netif_napi_del(&priv->napi);
2769 error_free_netdev:
2770         free_netdev(ndev);
2771
2772         return NULL;
2773 }
2774
2775 /**
2776  * stmmac_dvr_remove
2777  * @ndev: net device pointer
2778  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2779  * changes the link status, releases the DMA descriptor rings.
2780  */
2781 int stmmac_dvr_remove(struct net_device *ndev)
2782 {
2783         struct stmmac_priv *priv = netdev_priv(ndev);
2784
2785         pr_info("%s:\n\tremoving driver", __func__);
2786
2787         priv->hw->dma->stop_rx(priv->ioaddr);
2788         priv->hw->dma->stop_tx(priv->ioaddr);
2789
2790         stmmac_set_mac(priv->ioaddr, false);
2791         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2792             priv->pcs != STMMAC_PCS_RTBI)
2793                 stmmac_mdio_unregister(ndev);
2794         netif_carrier_off(ndev);
2795         unregister_netdev(ndev);
2796         free_netdev(ndev);
2797
2798         return 0;
2799 }
2800
2801 #ifdef CONFIG_PM
2802 int stmmac_suspend(struct net_device *ndev)
2803 {
2804         struct stmmac_priv *priv = netdev_priv(ndev);
2805         unsigned long flags;
2806
2807         if (!ndev || !netif_running(ndev))
2808                 return 0;
2809
2810         if (priv->phydev)
2811                 phy_stop(priv->phydev);
2812
2813         spin_lock_irqsave(&priv->lock, flags);
2814
2815         netif_device_detach(ndev);
2816         netif_stop_queue(ndev);
2817
2818         napi_disable(&priv->napi);
2819
2820         /* Stop TX/RX DMA */
2821         priv->hw->dma->stop_tx(priv->ioaddr);
2822         priv->hw->dma->stop_rx(priv->ioaddr);
2823
2824         stmmac_clear_descriptors(priv);
2825
2826         /* Enable Power down mode by programming the PMT regs */
2827         if (device_may_wakeup(priv->device))
2828                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2829         else {
2830                 stmmac_set_mac(priv->ioaddr, false);
2831                 /* Disable clock in case of PWM is off */
2832                 clk_disable_unprepare(priv->stmmac_clk);
2833         }
2834         spin_unlock_irqrestore(&priv->lock, flags);
2835         return 0;
2836 }
2837
2838 int stmmac_resume(struct net_device *ndev)
2839 {
2840         struct stmmac_priv *priv = netdev_priv(ndev);
2841         unsigned long flags;
2842
2843         if (!netif_running(ndev))
2844                 return 0;
2845
2846         spin_lock_irqsave(&priv->lock, flags);
2847
2848         /* Power Down bit, into the PM register, is cleared
2849          * automatically as soon as a magic packet or a Wake-up frame
2850          * is received. Anyway, it's better to manually clear
2851          * this bit because it can generate problems while resuming
2852          * from another devices (e.g. serial console).
2853          */
2854         if (device_may_wakeup(priv->device))
2855                 priv->hw->mac->pmt(priv->ioaddr, 0);
2856         else
2857                 /* enable the clk prevously disabled */
2858                 clk_prepare_enable(priv->stmmac_clk);
2859
2860         netif_device_attach(ndev);
2861
2862         /* Enable the MAC and DMA */
2863         stmmac_set_mac(priv->ioaddr, true);
2864         priv->hw->dma->start_tx(priv->ioaddr);
2865         priv->hw->dma->start_rx(priv->ioaddr);
2866
2867         napi_enable(&priv->napi);
2868
2869         netif_start_queue(ndev);
2870
2871         spin_unlock_irqrestore(&priv->lock, flags);
2872
2873         if (priv->phydev)
2874                 phy_start(priv->phydev);
2875
2876         return 0;
2877 }
2878
2879 int stmmac_freeze(struct net_device *ndev)
2880 {
2881         if (!ndev || !netif_running(ndev))
2882                 return 0;
2883
2884         return stmmac_release(ndev);
2885 }
2886
2887 int stmmac_restore(struct net_device *ndev)
2888 {
2889         if (!ndev || !netif_running(ndev))
2890                 return 0;
2891
2892         return stmmac_open(ndev);
2893 }
2894 #endif /* CONFIG_PM */
2895
2896 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2897  * depending on the configuration selected.
2898  */
2899 static int __init stmmac_init(void)
2900 {
2901         int ret;
2902
2903         ret = stmmac_register_platform();
2904         if (ret)
2905                 goto err;
2906         ret = stmmac_register_pci();
2907         if (ret)
2908                 goto err_pci;
2909         return 0;
2910 err_pci:
2911         stmmac_unregister_platform();
2912 err:
2913         pr_err("stmmac: driver registration failed\n");
2914         return ret;
2915 }
2916
2917 static void __exit stmmac_exit(void)
2918 {
2919         stmmac_unregister_platform();
2920         stmmac_unregister_pci();
2921 }
2922
2923 module_init(stmmac_init);
2924 module_exit(stmmac_exit);
2925
2926 #ifndef MODULE
2927 static int __init stmmac_cmdline_opt(char *str)
2928 {
2929         char *opt;
2930
2931         if (!str || !*str)
2932                 return -EINVAL;
2933         while ((opt = strsep(&str, ",")) != NULL) {
2934                 if (!strncmp(opt, "debug:", 6)) {
2935                         if (kstrtoint(opt + 6, 0, &debug))
2936                                 goto err;
2937                 } else if (!strncmp(opt, "phyaddr:", 8)) {
2938                         if (kstrtoint(opt + 8, 0, &phyaddr))
2939                                 goto err;
2940                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2941                         if (kstrtoint(opt + 11, 0, &dma_txsize))
2942                                 goto err;
2943                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2944                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
2945                                 goto err;
2946                 } else if (!strncmp(opt, "buf_sz:", 7)) {
2947                         if (kstrtoint(opt + 7, 0, &buf_sz))
2948                                 goto err;
2949                 } else if (!strncmp(opt, "tc:", 3)) {
2950                         if (kstrtoint(opt + 3, 0, &tc))
2951                                 goto err;
2952                 } else if (!strncmp(opt, "watchdog:", 9)) {
2953                         if (kstrtoint(opt + 9, 0, &watchdog))
2954                                 goto err;
2955                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2956                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
2957                                 goto err;
2958                 } else if (!strncmp(opt, "pause:", 6)) {
2959                         if (kstrtoint(opt + 6, 0, &pause))
2960                                 goto err;
2961                 } else if (!strncmp(opt, "eee_timer:", 10)) {
2962                         if (kstrtoint(opt + 10, 0, &eee_timer))
2963                                 goto err;
2964                 } else if (!strncmp(opt, "chain_mode:", 11)) {
2965                         if (kstrtoint(opt + 11, 0, &chain_mode))
2966                                 goto err;
2967                 }
2968         }
2969         return 0;
2970
2971 err:
2972         pr_err("%s: ERROR broken module parameter conversion", __func__);
2973         return -EINVAL;
2974 }
2975
2976 __setup("stmmaceth=", stmmac_cmdline_opt);
2977 #endif /* MODULE */
2978
2979 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2980 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2981 MODULE_LICENSE("GPL");