Merge branch 'for-3.9/core' of git://git.kernel.dk/linux-block
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER |    */
58     NETIF_MSG_IFDOWN |
59     NETIF_MSG_IFUP |
60     NETIF_MSG_RX_ERR |
61     NETIF_MSG_TX_ERR |
62 /*  NETIF_MSG_TX_QUEUED | */
63 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1;  /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81                 "Option to enable MPI firmware dump. "
82                 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87                 "Option to allow force of firmware core dump. "
88                 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103  * resources shared between the NIC driver, MPI firmware,
104  * FCOE firmware and the FC driver.
105  */
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108         u32 sem_bits = 0;
109
110         switch (sem_mask) {
111         case SEM_XGMAC0_MASK:
112                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113                 break;
114         case SEM_XGMAC1_MASK:
115                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116                 break;
117         case SEM_ICB_MASK:
118                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119                 break;
120         case SEM_MAC_ADDR_MASK:
121                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122                 break;
123         case SEM_FLASH_MASK:
124                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125                 break;
126         case SEM_PROBE_MASK:
127                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128                 break;
129         case SEM_RT_IDX_MASK:
130                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131                 break;
132         case SEM_PROC_REG_MASK:
133                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134                 break;
135         default:
136                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137                 return -EINVAL;
138         }
139
140         ql_write32(qdev, SEM, sem_bits | sem_mask);
141         return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146         unsigned int wait_count = 30;
147         do {
148                 if (!ql_sem_trylock(qdev, sem_mask))
149                         return 0;
150                 udelay(100);
151         } while (--wait_count);
152         return -ETIMEDOUT;
153 }
154
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157         ql_write32(qdev, SEM, sem_mask);
158         ql_read32(qdev, SEM);   /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162  * in a given register.  It is used mostly by the initialize
163  * process, but is also used in kernel thread API such as
164  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165  */
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168         u32 temp;
169         int count = UDELAY_COUNT;
170
171         while (count) {
172                 temp = ql_read32(qdev, reg);
173
174                 /* check for errors */
175                 if (temp & err_bit) {
176                         netif_alert(qdev, probe, qdev->ndev,
177                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
178                                     reg, temp);
179                         return -EIO;
180                 } else if (temp & bit)
181                         return 0;
182                 udelay(UDELAY_DELAY);
183                 count--;
184         }
185         netif_alert(qdev, probe, qdev->ndev,
186                     "Timed out waiting for reg %x to come ready.\n", reg);
187         return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191  * to the chip. This function waits for an operation to complete.
192  */
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195         int count = UDELAY_COUNT;
196         u32 temp;
197
198         while (count) {
199                 temp = ql_read32(qdev, CFG);
200                 if (temp & CFG_LE)
201                         return -EIO;
202                 if (!(temp & bit))
203                         return 0;
204                 udelay(UDELAY_DELAY);
205                 count--;
206         }
207         return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212  * sets address, triggers download, waits for completion.
213  */
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215                  u16 q_id)
216 {
217         u64 map;
218         int status = 0;
219         int direction;
220         u32 mask;
221         u32 value;
222
223         direction =
224             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225             PCI_DMA_FROMDEVICE;
226
227         map = pci_map_single(qdev->pdev, ptr, size, direction);
228         if (pci_dma_mapping_error(qdev->pdev, map)) {
229                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230                 return -ENOMEM;
231         }
232
233         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234         if (status)
235                 return status;
236
237         status = ql_wait_cfg(qdev, bit);
238         if (status) {
239                 netif_err(qdev, ifup, qdev->ndev,
240                           "Timed out waiting for CFG to come ready.\n");
241                 goto exit;
242         }
243
244         ql_write32(qdev, ICB_L, (u32) map);
245         ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247         mask = CFG_Q_MASK | (bit << 16);
248         value = bit | (q_id << CFG_Q_SHIFT);
249         ql_write32(qdev, CFG, (mask | value));
250
251         /*
252          * Wait for the bit to clear after signaling hw.
253          */
254         status = ql_wait_cfg(qdev, bit);
255 exit:
256         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
257         pci_unmap_single(qdev->pdev, map, size, direction);
258         return status;
259 }
260
261 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263                         u32 *value)
264 {
265         u32 offset = 0;
266         int status;
267
268         switch (type) {
269         case MAC_ADDR_TYPE_MULTI_MAC:
270         case MAC_ADDR_TYPE_CAM_MAC:
271                 {
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         status =
287                             ql_wait_reg_rdy(qdev,
288                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                         if (status)
290                                 goto exit;
291                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                         status =
295                             ql_wait_reg_rdy(qdev,
296                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297                         if (status)
298                                 goto exit;
299                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
301                                 status =
302                                     ql_wait_reg_rdy(qdev,
303                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304                                 if (status)
305                                         goto exit;
306                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
308                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309                                 status =
310                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311                                                     MAC_ADDR_MR, 0);
312                                 if (status)
313                                         goto exit;
314                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315                         }
316                         break;
317                 }
318         case MAC_ADDR_TYPE_VLAN:
319         case MAC_ADDR_TYPE_MULTI_FLTR:
320         default:
321                 netif_crit(qdev, ifup, qdev->ndev,
322                            "Address type %d not yet supported.\n", type);
323                 status = -EPERM;
324         }
325 exit:
326         return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330  * inbound frame matching.
331  */
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333                                u16 index)
334 {
335         u32 offset = 0;
336         int status = 0;
337
338         switch (type) {
339         case MAC_ADDR_TYPE_MULTI_MAC:
340                 {
341                         u32 upper = (addr[0] << 8) | addr[1];
342                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343                                         (addr[4] << 8) | (addr[5]);
344
345                         status =
346                                 ql_wait_reg_rdy(qdev,
347                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348                         if (status)
349                                 goto exit;
350                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351                                 (index << MAC_ADDR_IDX_SHIFT) |
352                                 type | MAC_ADDR_E);
353                         ql_write32(qdev, MAC_ADDR_DATA, lower);
354                         status =
355                                 ql_wait_reg_rdy(qdev,
356                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357                         if (status)
358                                 goto exit;
359                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360                                 (index << MAC_ADDR_IDX_SHIFT) |
361                                 type | MAC_ADDR_E);
362
363                         ql_write32(qdev, MAC_ADDR_DATA, upper);
364                         status =
365                                 ql_wait_reg_rdy(qdev,
366                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367                         if (status)
368                                 goto exit;
369                         break;
370                 }
371         case MAC_ADDR_TYPE_CAM_MAC:
372                 {
373                         u32 cam_output;
374                         u32 upper = (addr[0] << 8) | addr[1];
375                         u32 lower =
376                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377                             (addr[5]);
378                         status =
379                             ql_wait_reg_rdy(qdev,
380                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381                         if (status)
382                                 goto exit;
383                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
385                                    type);       /* type */
386                         ql_write32(qdev, MAC_ADDR_DATA, lower);
387                         status =
388                             ql_wait_reg_rdy(qdev,
389                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390                         if (status)
391                                 goto exit;
392                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
394                                    type);       /* type */
395                         ql_write32(qdev, MAC_ADDR_DATA, upper);
396                         status =
397                             ql_wait_reg_rdy(qdev,
398                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399                         if (status)
400                                 goto exit;
401                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
402                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
403                                    type);       /* type */
404                         /* This field should also include the queue id
405                            and possibly the function id.  Right now we hardcode
406                            the route field to NIC core.
407                          */
408                         cam_output = (CAM_OUT_ROUTE_NIC |
409                                       (qdev->
410                                        func << CAM_OUT_FUNC_SHIFT) |
411                                         (0 << CAM_OUT_CQ_ID_SHIFT));
412                         if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
413                                 cam_output |= CAM_OUT_RV;
414                         /* route to NIC core */
415                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416                         break;
417                 }
418         case MAC_ADDR_TYPE_VLAN:
419                 {
420                         u32 enable_bit = *((u32 *) &addr[0]);
421                         /* For VLAN, the addr actually holds a bit that
422                          * either enables or disables the vlan id we are
423                          * addressing. It's either MAC_ADDR_E on or off.
424                          * That's bit-27 we're talking about.
425                          */
426                         status =
427                             ql_wait_reg_rdy(qdev,
428                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429                         if (status)
430                                 goto exit;
431                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
433                                    type |       /* type */
434                                    enable_bit); /* enable/disable */
435                         break;
436                 }
437         case MAC_ADDR_TYPE_MULTI_FLTR:
438         default:
439                 netif_crit(qdev, ifup, qdev->ndev,
440                            "Address type %d not yet supported.\n", type);
441                 status = -EPERM;
442         }
443 exit:
444         return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448  * have to clear it to prevent wrong frame routing
449  * especially in a bonding environment.
450  */
451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453         int status;
454         char zero_mac_addr[ETH_ALEN];
455         char *addr;
456
457         if (set) {
458                 addr = &qdev->current_mac_addr[0];
459                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460                              "Set Mac addr %pM\n", addr);
461         } else {
462                 memset(zero_mac_addr, 0, ETH_ALEN);
463                 addr = &zero_mac_addr[0];
464                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465                              "Clearing MAC address\n");
466         }
467         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468         if (status)
469                 return status;
470         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473         if (status)
474                 netif_err(qdev, ifup, qdev->ndev,
475                           "Failed to init mac address.\n");
476         return status;
477 }
478
479 void ql_link_on(struct ql_adapter *qdev)
480 {
481         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482         netif_carrier_on(qdev->ndev);
483         ql_set_mac_addr(qdev, 1);
484 }
485
486 void ql_link_off(struct ql_adapter *qdev)
487 {
488         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489         netif_carrier_off(qdev->ndev);
490         ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494  * Used for debug and reg dump.
495  */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498         int status = 0;
499
500         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501         if (status)
502                 goto exit;
503
504         ql_write32(qdev, RT_IDX,
505                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507         if (status)
508                 goto exit;
509         *value = ql_read32(qdev, RT_DATA);
510 exit:
511         return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
515  * to route different frame types to various inbound queues.  We send broadcast/
516  * multicast/error frames to the default queue for slow handling,
517  * and CAM hit/RSS frames to the fast handling queues.
518  */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520                               int enable)
521 {
522         int status = -EINVAL; /* Return error if no mask match. */
523         u32 value = 0;
524
525         switch (mask) {
526         case RT_IDX_CAM_HIT:
527                 {
528                         value = RT_IDX_DST_CAM_Q |      /* dest */
529                             RT_IDX_TYPE_NICQ |  /* type */
530                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531                         break;
532                 }
533         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
534                 {
535                         value = RT_IDX_DST_DFLT_Q |     /* dest */
536                             RT_IDX_TYPE_NICQ |  /* type */
537                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538                         break;
539                 }
540         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
541                 {
542                         value = RT_IDX_DST_DFLT_Q |     /* dest */
543                             RT_IDX_TYPE_NICQ |  /* type */
544                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545                         break;
546                 }
547         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548                 {
549                         value = RT_IDX_DST_DFLT_Q | /* dest */
550                                 RT_IDX_TYPE_NICQ | /* type */
551                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
552                                 RT_IDX_IDX_SHIFT); /* index */
553                         break;
554                 }
555         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556                 {
557                         value = RT_IDX_DST_DFLT_Q | /* dest */
558                                 RT_IDX_TYPE_NICQ | /* type */
559                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560                                 RT_IDX_IDX_SHIFT); /* index */
561                         break;
562                 }
563         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
564                 {
565                         value = RT_IDX_DST_DFLT_Q |     /* dest */
566                             RT_IDX_TYPE_NICQ |  /* type */
567                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568                         break;
569                 }
570         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
571                 {
572                         value = RT_IDX_DST_DFLT_Q |     /* dest */
573                             RT_IDX_TYPE_NICQ |  /* type */
574                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575                         break;
576                 }
577         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
578                 {
579                         value = RT_IDX_DST_DFLT_Q |     /* dest */
580                             RT_IDX_TYPE_NICQ |  /* type */
581                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582                         break;
583                 }
584         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
585                 {
586                         value = RT_IDX_DST_RSS |        /* dest */
587                             RT_IDX_TYPE_NICQ |  /* type */
588                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589                         break;
590                 }
591         case 0:         /* Clear the E-bit on an entry. */
592                 {
593                         value = RT_IDX_DST_DFLT_Q |     /* dest */
594                             RT_IDX_TYPE_NICQ |  /* type */
595                             (index << RT_IDX_IDX_SHIFT);/* index */
596                         break;
597                 }
598         default:
599                 netif_err(qdev, ifup, qdev->ndev,
600                           "Mask type %d not yet supported.\n", mask);
601                 status = -EPERM;
602                 goto exit;
603         }
604
605         if (value) {
606                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607                 if (status)
608                         goto exit;
609                 value |= (enable ? RT_IDX_E : 0);
610                 ql_write32(qdev, RT_IDX, value);
611                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612         }
613 exit:
614         return status;
615 }
616
617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628  * Otherwise, we may have multiple outstanding workers and don't want to
629  * enable until the last one finishes. In this case, the irq_cnt gets
630  * incremented every time we queue a worker and decremented every time
631  * a worker finishes.  Once it hits zero we enable the interrupt.
632  */
633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635         u32 var = 0;
636         unsigned long hw_flags = 0;
637         struct intr_context *ctx = qdev->intr_context + intr;
638
639         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640                 /* Always enable if we're MSIX multi interrupts and
641                  * it's not the default (zeroeth) interrupt.
642                  */
643                 ql_write32(qdev, INTR_EN,
644                            ctx->intr_en_mask);
645                 var = ql_read32(qdev, STS);
646                 return var;
647         }
648
649         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650         if (atomic_dec_and_test(&ctx->irq_cnt)) {
651                 ql_write32(qdev, INTR_EN,
652                            ctx->intr_en_mask);
653                 var = ql_read32(qdev, STS);
654         }
655         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656         return var;
657 }
658
659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661         u32 var = 0;
662         struct intr_context *ctx;
663
664         /* HW disables for us if we're MSIX multi interrupts and
665          * it's not the default (zeroeth) interrupt.
666          */
667         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668                 return 0;
669
670         ctx = qdev->intr_context + intr;
671         spin_lock(&qdev->hw_lock);
672         if (!atomic_read(&ctx->irq_cnt)) {
673                 ql_write32(qdev, INTR_EN,
674                 ctx->intr_dis_mask);
675                 var = ql_read32(qdev, STS);
676         }
677         atomic_inc(&ctx->irq_cnt);
678         spin_unlock(&qdev->hw_lock);
679         return var;
680 }
681
682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684         int i;
685         for (i = 0; i < qdev->intr_count; i++) {
686                 /* The enable call does a atomic_dec_and_test
687                  * and enables only if the result is zero.
688                  * So we precharge it here.
689                  */
690                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691                         i == 0))
692                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693                 ql_enable_completion_interrupt(qdev, i);
694         }
695
696 }
697
698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700         int status, i;
701         u16 csum = 0;
702         __le16 *flash = (__le16 *)&qdev->flash;
703
704         status = strncmp((char *)&qdev->flash, str, 4);
705         if (status) {
706                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707                 return  status;
708         }
709
710         for (i = 0; i < size; i++)
711                 csum += le16_to_cpu(*flash++);
712
713         if (csum)
714                 netif_err(qdev, ifup, qdev->ndev,
715                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717         return csum;
718 }
719
720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733         if (status)
734                 goto exit;
735          /* This data is stored on flash as an array of
736          * __le32.  Since ql_read32() returns cpu endian
737          * we need to swap it back.
738          */
739         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741         return status;
742 }
743
744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746         u32 i, size;
747         int status;
748         __le32 *p = (__le32 *)&qdev->flash;
749         u32 offset;
750         u8 mac_addr[6];
751
752         /* Get flash offset for function and adjust
753          * for dword access.
754          */
755         if (!qdev->port)
756                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757         else
758                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761                 return -ETIMEDOUT;
762
763         size = sizeof(struct flash_params_8000) / sizeof(u32);
764         for (i = 0; i < size; i++, p++) {
765                 status = ql_read_flash_word(qdev, i+offset, p);
766                 if (status) {
767                         netif_err(qdev, ifup, qdev->ndev,
768                                   "Error reading flash.\n");
769                         goto exit;
770                 }
771         }
772
773         status = ql_validate_flash(qdev,
774                         sizeof(struct flash_params_8000) / sizeof(u16),
775                         "8000");
776         if (status) {
777                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778                 status = -EINVAL;
779                 goto exit;
780         }
781
782         /* Extract either manufacturer or BOFM modified
783          * MAC address.
784          */
785         if (qdev->flash.flash_params_8000.data_type1 == 2)
786                 memcpy(mac_addr,
787                         qdev->flash.flash_params_8000.mac_addr1,
788                         qdev->ndev->addr_len);
789         else
790                 memcpy(mac_addr,
791                         qdev->flash.flash_params_8000.mac_addr,
792                         qdev->ndev->addr_len);
793
794         if (!is_valid_ether_addr(mac_addr)) {
795                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796                 status = -EINVAL;
797                 goto exit;
798         }
799
800         memcpy(qdev->ndev->dev_addr,
801                 mac_addr,
802                 qdev->ndev->addr_len);
803
804 exit:
805         ql_sem_unlock(qdev, SEM_FLASH_MASK);
806         return status;
807 }
808
809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811         int i;
812         int status;
813         __le32 *p = (__le32 *)&qdev->flash;
814         u32 offset = 0;
815         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817         /* Second function's parameters follow the first
818          * function's.
819          */
820         if (qdev->port)
821                 offset = size;
822
823         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824                 return -ETIMEDOUT;
825
826         for (i = 0; i < size; i++, p++) {
827                 status = ql_read_flash_word(qdev, i+offset, p);
828                 if (status) {
829                         netif_err(qdev, ifup, qdev->ndev,
830                                   "Error reading flash.\n");
831                         goto exit;
832                 }
833
834         }
835
836         status = ql_validate_flash(qdev,
837                         sizeof(struct flash_params_8012) / sizeof(u16),
838                         "8012");
839         if (status) {
840                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841                 status = -EINVAL;
842                 goto exit;
843         }
844
845         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846                 status = -EINVAL;
847                 goto exit;
848         }
849
850         memcpy(qdev->ndev->dev_addr,
851                 qdev->flash.flash_params_8012.mac_addr,
852                 qdev->ndev->addr_len);
853
854 exit:
855         ql_sem_unlock(qdev, SEM_FLASH_MASK);
856         return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860  * register pair.  Each read/write requires us to wait for the ready
861  * bit before reading/writing the data.
862  */
863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865         int status;
866         /* wait for reg to come ready */
867         status = ql_wait_reg_rdy(qdev,
868                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869         if (status)
870                 return status;
871         /* write the data to the data reg */
872         ql_write32(qdev, XGMAC_DATA, data);
873         /* trigger the write */
874         ql_write32(qdev, XGMAC_ADDR, reg);
875         return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879  * register pair.  Each read/write requires us to wait for the ready
880  * bit before reading/writing the data.
881  */
882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884         int status = 0;
885         /* wait for reg to come ready */
886         status = ql_wait_reg_rdy(qdev,
887                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888         if (status)
889                 goto exit;
890         /* set up for reg read */
891         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892         /* wait for reg to come ready */
893         status = ql_wait_reg_rdy(qdev,
894                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895         if (status)
896                 goto exit;
897         /* get the data */
898         *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900         return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906         int status = 0;
907         u32 hi = 0;
908         u32 lo = 0;
909
910         status = ql_read_xgmac_reg(qdev, reg, &lo);
911         if (status)
912                 goto exit;
913
914         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915         if (status)
916                 goto exit;
917
918         *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921         return status;
922 }
923
924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926         int status;
927         /*
928          * Get MPI firmware version for driver banner
929          * and ethool info.
930          */
931         status = ql_mb_about_fw(qdev);
932         if (status)
933                 goto exit;
934         status = ql_mb_get_fw_state(qdev);
935         if (status)
936                 goto exit;
937         /* Wake up a worker to get/set the TX/RX frame sizes. */
938         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940         return status;
941 }
942
943 /* Take the MAC Core out of reset.
944  * Enable statistics counting.
945  * Take the transmitter/receiver out of reset.
946  * This functionality may be done in the MPI firmware at a
947  * later date.
948  */
949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951         int status = 0;
952         u32 data;
953
954         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955                 /* Another function has the semaphore, so
956                  * wait for the port init bit to come ready.
957                  */
958                 netif_info(qdev, link, qdev->ndev,
959                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961                 if (status) {
962                         netif_crit(qdev, link, qdev->ndev,
963                                    "Port initialize timed out.\n");
964                 }
965                 return status;
966         }
967
968         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969         /* Set the core reset. */
970         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971         if (status)
972                 goto end;
973         data |= GLOBAL_CFG_RESET;
974         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975         if (status)
976                 goto end;
977
978         /* Clear the core reset and turn on jumbo for receiver. */
979         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
980         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
981         data |= GLOBAL_CFG_TX_STAT_EN;
982         data |= GLOBAL_CFG_RX_STAT_EN;
983         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984         if (status)
985                 goto end;
986
987         /* Enable transmitter, and clear it's reset. */
988         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989         if (status)
990                 goto end;
991         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
992         data |= TX_CFG_EN;      /* Enable the transmitter. */
993         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994         if (status)
995                 goto end;
996
997         /* Enable receiver and clear it's reset. */
998         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999         if (status)
1000                 goto end;
1001         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1002         data |= RX_CFG_EN;      /* Enable the receiver. */
1003         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004         if (status)
1005                 goto end;
1006
1007         /* Turn on jumbo. */
1008         status =
1009             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010         if (status)
1011                 goto end;
1012         status =
1013             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014         if (status)
1015                 goto end;
1016
1017         /* Signal to the world that the port is enabled.        */
1018         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021         return status;
1022 }
1023
1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026         return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033         rx_ring->lbq_curr_idx++;
1034         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035                 rx_ring->lbq_curr_idx = 0;
1036         rx_ring->lbq_free_cnt++;
1037         return lbq_desc;
1038 }
1039
1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041                 struct rx_ring *rx_ring)
1042 {
1043         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045         pci_dma_sync_single_for_cpu(qdev->pdev,
1046                                         dma_unmap_addr(lbq_desc, mapaddr),
1047                                     rx_ring->lbq_buf_size,
1048                                         PCI_DMA_FROMDEVICE);
1049
1050         /* If it's the last chunk of our master page then
1051          * we unmap it.
1052          */
1053         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054                                         == ql_lbq_block_size(qdev))
1055                 pci_unmap_page(qdev->pdev,
1056                                 lbq_desc->p.pg_chunk.map,
1057                                 ql_lbq_block_size(qdev),
1058                                 PCI_DMA_FROMDEVICE);
1059         return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066         rx_ring->sbq_curr_idx++;
1067         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068                 rx_ring->sbq_curr_idx = 0;
1069         rx_ring->sbq_free_cnt++;
1070         return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076         rx_ring->cnsmr_idx++;
1077         rx_ring->curr_entry++;
1078         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079                 rx_ring->cnsmr_idx = 0;
1080                 rx_ring->curr_entry = rx_ring->cq_base;
1081         }
1082 }
1083
1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090                                                 struct bq_desc *lbq_desc)
1091 {
1092         if (!rx_ring->pg_chunk.page) {
1093                 u64 map;
1094                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095                                                 GFP_ATOMIC,
1096                                                 qdev->lbq_buf_order);
1097                 if (unlikely(!rx_ring->pg_chunk.page)) {
1098                         netif_err(qdev, drv, qdev->ndev,
1099                                   "page allocation failed.\n");
1100                         return -ENOMEM;
1101                 }
1102                 rx_ring->pg_chunk.offset = 0;
1103                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104                                         0, ql_lbq_block_size(qdev),
1105                                         PCI_DMA_FROMDEVICE);
1106                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107                         __free_pages(rx_ring->pg_chunk.page,
1108                                         qdev->lbq_buf_order);
1109                         netif_err(qdev, drv, qdev->ndev,
1110                                   "PCI mapping failed.\n");
1111                         return -ENOMEM;
1112                 }
1113                 rx_ring->pg_chunk.map = map;
1114                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115         }
1116
1117         /* Copy the current master pg_chunk info
1118          * to the current descriptor.
1119          */
1120         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122         /* Adjust the master page chunk for next
1123          * buffer get.
1124          */
1125         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127                 rx_ring->pg_chunk.page = NULL;
1128                 lbq_desc->p.pg_chunk.last_flag = 1;
1129         } else {
1130                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131                 get_page(rx_ring->pg_chunk.page);
1132                 lbq_desc->p.pg_chunk.last_flag = 0;
1133         }
1134         return 0;
1135 }
1136 /* Process (refill) a large buffer queue. */
1137 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138 {
1139         u32 clean_idx = rx_ring->lbq_clean_idx;
1140         u32 start_idx = clean_idx;
1141         struct bq_desc *lbq_desc;
1142         u64 map;
1143         int i;
1144
1145         while (rx_ring->lbq_free_cnt > 32) {
1146                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148                                      "lbq: try cleaning clean_idx = %d.\n",
1149                                      clean_idx);
1150                         lbq_desc = &rx_ring->lbq[clean_idx];
1151                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152                                 rx_ring->lbq_clean_idx = clean_idx;
1153                                 netif_err(qdev, ifup, qdev->ndev,
1154                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155                                                 i, clean_idx);
1156                                 return;
1157                         }
1158
1159                         map = lbq_desc->p.pg_chunk.map +
1160                                 lbq_desc->p.pg_chunk.offset;
1161                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162                         dma_unmap_len_set(lbq_desc, maplen,
1163                                         rx_ring->lbq_buf_size);
1164                                 *lbq_desc->addr = cpu_to_le64(map);
1165
1166                         pci_dma_sync_single_for_device(qdev->pdev, map,
1167                                                 rx_ring->lbq_buf_size,
1168                                                 PCI_DMA_FROMDEVICE);
1169                         clean_idx++;
1170                         if (clean_idx == rx_ring->lbq_len)
1171                                 clean_idx = 0;
1172                 }
1173
1174                 rx_ring->lbq_clean_idx = clean_idx;
1175                 rx_ring->lbq_prod_idx += 16;
1176                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177                         rx_ring->lbq_prod_idx = 0;
1178                 rx_ring->lbq_free_cnt -= 16;
1179         }
1180
1181         if (start_idx != clean_idx) {
1182                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183                              "lbq: updating prod idx = %d.\n",
1184                              rx_ring->lbq_prod_idx);
1185                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186                                 rx_ring->lbq_prod_idx_db_reg);
1187         }
1188 }
1189
1190 /* Process (refill) a small buffer queue. */
1191 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192 {
1193         u32 clean_idx = rx_ring->sbq_clean_idx;
1194         u32 start_idx = clean_idx;
1195         struct bq_desc *sbq_desc;
1196         u64 map;
1197         int i;
1198
1199         while (rx_ring->sbq_free_cnt > 16) {
1200                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201                         sbq_desc = &rx_ring->sbq[clean_idx];
1202                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203                                      "sbq: try cleaning clean_idx = %d.\n",
1204                                      clean_idx);
1205                         if (sbq_desc->p.skb == NULL) {
1206                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1207                                              qdev->ndev,
1208                                              "sbq: getting new skb for index %d.\n",
1209                                              sbq_desc->index);
1210                                 sbq_desc->p.skb =
1211                                     netdev_alloc_skb(qdev->ndev,
1212                                                      SMALL_BUFFER_SIZE);
1213                                 if (sbq_desc->p.skb == NULL) {
1214                                         netif_err(qdev, probe, qdev->ndev,
1215                                                   "Couldn't get an skb.\n");
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err)
1438 {
1439         struct nic_stats *stats = &qdev->nic_stats;
1440
1441         stats->rx_err_count++;
1442
1443         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1444         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1445                 stats->rx_code_err++;
1446                 break;
1447         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1448                 stats->rx_oversize_err++;
1449                 break;
1450         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1451                 stats->rx_undersize_err++;
1452                 break;
1453         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1454                 stats->rx_preamble_err++;
1455                 break;
1456         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1457                 stats->rx_frame_len_err++;
1458                 break;
1459         case IB_MAC_IOCB_RSP_ERR_CRC:
1460                 stats->rx_crc_err++;
1461         default:
1462                 break;
1463         }
1464 }
1465
1466 /* Process an inbound completion from an rx ring. */
1467 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1468                                         struct rx_ring *rx_ring,
1469                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1470                                         u32 length,
1471                                         u16 vlan_id)
1472 {
1473         struct sk_buff *skb;
1474         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1475         struct napi_struct *napi = &rx_ring->napi;
1476
1477         napi->dev = qdev->ndev;
1478
1479         skb = napi_get_frags(napi);
1480         if (!skb) {
1481                 netif_err(qdev, drv, qdev->ndev,
1482                           "Couldn't get an skb, exiting.\n");
1483                 rx_ring->rx_dropped++;
1484                 put_page(lbq_desc->p.pg_chunk.page);
1485                 return;
1486         }
1487         prefetch(lbq_desc->p.pg_chunk.va);
1488         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1489                              lbq_desc->p.pg_chunk.page,
1490                              lbq_desc->p.pg_chunk.offset,
1491                              length);
1492
1493         skb->len += length;
1494         skb->data_len += length;
1495         skb->truesize += length;
1496         skb_shinfo(skb)->nr_frags++;
1497
1498         rx_ring->rx_packets++;
1499         rx_ring->rx_bytes += length;
1500         skb->ip_summed = CHECKSUM_UNNECESSARY;
1501         skb_record_rx_queue(skb, rx_ring->cq_id);
1502         if (vlan_id != 0xffff)
1503                 __vlan_hwaccel_put_tag(skb, vlan_id);
1504         napi_gro_frags(napi);
1505 }
1506
1507 /* Process an inbound completion from an rx ring. */
1508 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1509                                         struct rx_ring *rx_ring,
1510                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1511                                         u32 length,
1512                                         u16 vlan_id)
1513 {
1514         struct net_device *ndev = qdev->ndev;
1515         struct sk_buff *skb = NULL;
1516         void *addr;
1517         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1518         struct napi_struct *napi = &rx_ring->napi;
1519
1520         skb = netdev_alloc_skb(ndev, length);
1521         if (!skb) {
1522                 netif_err(qdev, drv, qdev->ndev,
1523                           "Couldn't get an skb, need to unwind!.\n");
1524                 rx_ring->rx_dropped++;
1525                 put_page(lbq_desc->p.pg_chunk.page);
1526                 return;
1527         }
1528
1529         addr = lbq_desc->p.pg_chunk.va;
1530         prefetch(addr);
1531
1532         /* The max framesize filter on this chip is set higher than
1533          * MTU since FCoE uses 2k frames.
1534          */
1535         if (skb->len > ndev->mtu + ETH_HLEN) {
1536                 netif_err(qdev, drv, qdev->ndev,
1537                           "Segment too small, dropping.\n");
1538                 rx_ring->rx_dropped++;
1539                 goto err_out;
1540         }
1541         memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1542         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1543                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1544                      length);
1545         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1546                                 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1547                                 length-ETH_HLEN);
1548         skb->len += length-ETH_HLEN;
1549         skb->data_len += length-ETH_HLEN;
1550         skb->truesize += length-ETH_HLEN;
1551
1552         rx_ring->rx_packets++;
1553         rx_ring->rx_bytes += skb->len;
1554         skb->protocol = eth_type_trans(skb, ndev);
1555         skb_checksum_none_assert(skb);
1556
1557         if ((ndev->features & NETIF_F_RXCSUM) &&
1558                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1559                 /* TCP frame. */
1560                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1561                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1562                                      "TCP checksum done!\n");
1563                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1564                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1565                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1566                         /* Unfragmented ipv4 UDP frame. */
1567                         struct iphdr *iph =
1568                                 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1569                         if (!(iph->frag_off &
1570                                 htons(IP_MF|IP_OFFSET))) {
1571                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1572                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1573                                              qdev->ndev,
1574                                              "UDP checksum done!\n");
1575                         }
1576                 }
1577         }
1578
1579         skb_record_rx_queue(skb, rx_ring->cq_id);
1580         if (vlan_id != 0xffff)
1581                 __vlan_hwaccel_put_tag(skb, vlan_id);
1582         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1583                 napi_gro_receive(napi, skb);
1584         else
1585                 netif_receive_skb(skb);
1586         return;
1587 err_out:
1588         dev_kfree_skb_any(skb);
1589         put_page(lbq_desc->p.pg_chunk.page);
1590 }
1591
1592 /* Process an inbound completion from an rx ring. */
1593 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1594                                         struct rx_ring *rx_ring,
1595                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1596                                         u32 length,
1597                                         u16 vlan_id)
1598 {
1599         struct net_device *ndev = qdev->ndev;
1600         struct sk_buff *skb = NULL;
1601         struct sk_buff *new_skb = NULL;
1602         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1603
1604         skb = sbq_desc->p.skb;
1605         /* Allocate new_skb and copy */
1606         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1607         if (new_skb == NULL) {
1608                 netif_err(qdev, probe, qdev->ndev,
1609                           "No skb available, drop the packet.\n");
1610                 rx_ring->rx_dropped++;
1611                 return;
1612         }
1613         skb_reserve(new_skb, NET_IP_ALIGN);
1614         memcpy(skb_put(new_skb, length), skb->data, length);
1615         skb = new_skb;
1616
1617         /* loopback self test for ethtool */
1618         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1619                 ql_check_lb_frame(qdev, skb);
1620                 dev_kfree_skb_any(skb);
1621                 return;
1622         }
1623
1624         /* The max framesize filter on this chip is set higher than
1625          * MTU since FCoE uses 2k frames.
1626          */
1627         if (skb->len > ndev->mtu + ETH_HLEN) {
1628                 dev_kfree_skb_any(skb);
1629                 rx_ring->rx_dropped++;
1630                 return;
1631         }
1632
1633         prefetch(skb->data);
1634         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1635                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1636                              "%s Multicast.\n",
1637                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1638                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1639                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1641                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1643         }
1644         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1645                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1646                              "Promiscuous Packet.\n");
1647
1648         rx_ring->rx_packets++;
1649         rx_ring->rx_bytes += skb->len;
1650         skb->protocol = eth_type_trans(skb, ndev);
1651         skb_checksum_none_assert(skb);
1652
1653         /* If rx checksum is on, and there are no
1654          * csum or frame errors.
1655          */
1656         if ((ndev->features & NETIF_F_RXCSUM) &&
1657                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1658                 /* TCP frame. */
1659                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1660                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1661                                      "TCP checksum done!\n");
1662                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1663                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665                         /* Unfragmented ipv4 UDP frame. */
1666                         struct iphdr *iph = (struct iphdr *) skb->data;
1667                         if (!(iph->frag_off &
1668                                 htons(IP_MF|IP_OFFSET))) {
1669                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1670                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1671                                              qdev->ndev,
1672                                              "UDP checksum done!\n");
1673                         }
1674                 }
1675         }
1676
1677         skb_record_rx_queue(skb, rx_ring->cq_id);
1678         if (vlan_id != 0xffff)
1679                 __vlan_hwaccel_put_tag(skb, vlan_id);
1680         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1681                 napi_gro_receive(&rx_ring->napi, skb);
1682         else
1683                 netif_receive_skb(skb);
1684 }
1685
1686 static void ql_realign_skb(struct sk_buff *skb, int len)
1687 {
1688         void *temp_addr = skb->data;
1689
1690         /* Undo the skb_reserve(skb,32) we did before
1691          * giving to hardware, and realign data on
1692          * a 2-byte boundary.
1693          */
1694         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1695         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1696         skb_copy_to_linear_data(skb, temp_addr,
1697                 (unsigned int)len);
1698 }
1699
1700 /*
1701  * This function builds an skb for the given inbound
1702  * completion.  It will be rewritten for readability in the near
1703  * future, but for not it works well.
1704  */
1705 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1706                                        struct rx_ring *rx_ring,
1707                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1708 {
1709         struct bq_desc *lbq_desc;
1710         struct bq_desc *sbq_desc;
1711         struct sk_buff *skb = NULL;
1712         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1713        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1714
1715         /*
1716          * Handle the header buffer if present.
1717          */
1718         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1719             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1720                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1721                              "Header of %d bytes in small buffer.\n", hdr_len);
1722                 /*
1723                  * Headers fit nicely into a small buffer.
1724                  */
1725                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1726                 pci_unmap_single(qdev->pdev,
1727                                 dma_unmap_addr(sbq_desc, mapaddr),
1728                                 dma_unmap_len(sbq_desc, maplen),
1729                                 PCI_DMA_FROMDEVICE);
1730                 skb = sbq_desc->p.skb;
1731                 ql_realign_skb(skb, hdr_len);
1732                 skb_put(skb, hdr_len);
1733                 sbq_desc->p.skb = NULL;
1734         }
1735
1736         /*
1737          * Handle the data buffer(s).
1738          */
1739         if (unlikely(!length)) {        /* Is there data too? */
1740                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1741                              "No Data buffer in this packet.\n");
1742                 return skb;
1743         }
1744
1745         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1746                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1747                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1748                                      "Headers in small, data of %d bytes in small, combine them.\n",
1749                                      length);
1750                         /*
1751                          * Data is less than small buffer size so it's
1752                          * stuffed in a small buffer.
1753                          * For this case we append the data
1754                          * from the "data" small buffer to the "header" small
1755                          * buffer.
1756                          */
1757                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1758                         pci_dma_sync_single_for_cpu(qdev->pdev,
1759                                                     dma_unmap_addr
1760                                                     (sbq_desc, mapaddr),
1761                                                     dma_unmap_len
1762                                                     (sbq_desc, maplen),
1763                                                     PCI_DMA_FROMDEVICE);
1764                         memcpy(skb_put(skb, length),
1765                                sbq_desc->p.skb->data, length);
1766                         pci_dma_sync_single_for_device(qdev->pdev,
1767                                                        dma_unmap_addr
1768                                                        (sbq_desc,
1769                                                         mapaddr),
1770                                                        dma_unmap_len
1771                                                        (sbq_desc,
1772                                                         maplen),
1773                                                        PCI_DMA_FROMDEVICE);
1774                 } else {
1775                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1776                                      "%d bytes in a single small buffer.\n",
1777                                      length);
1778                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1779                         skb = sbq_desc->p.skb;
1780                         ql_realign_skb(skb, length);
1781                         skb_put(skb, length);
1782                         pci_unmap_single(qdev->pdev,
1783                                          dma_unmap_addr(sbq_desc,
1784                                                         mapaddr),
1785                                          dma_unmap_len(sbq_desc,
1786                                                        maplen),
1787                                          PCI_DMA_FROMDEVICE);
1788                         sbq_desc->p.skb = NULL;
1789                 }
1790         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1791                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793                                      "Header in small, %d bytes in large. Chain large to small!\n",
1794                                      length);
1795                         /*
1796                          * The data is in a single large buffer.  We
1797                          * chain it to the header buffer's skb and let
1798                          * it rip.
1799                          */
1800                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1801                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1803                                      lbq_desc->p.pg_chunk.offset, length);
1804                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1805                                                 lbq_desc->p.pg_chunk.offset,
1806                                                 length);
1807                         skb->len += length;
1808                         skb->data_len += length;
1809                         skb->truesize += length;
1810                 } else {
1811                         /*
1812                          * The headers and data are in a single large buffer. We
1813                          * copy it to a new skb and let it go. This can happen with
1814                          * jumbo mtu on a non-TCP/UDP frame.
1815                          */
1816                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1817                         skb = netdev_alloc_skb(qdev->ndev, length);
1818                         if (skb == NULL) {
1819                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1820                                              "No skb available, drop the packet.\n");
1821                                 return NULL;
1822                         }
1823                         pci_unmap_page(qdev->pdev,
1824                                        dma_unmap_addr(lbq_desc,
1825                                                       mapaddr),
1826                                        dma_unmap_len(lbq_desc, maplen),
1827                                        PCI_DMA_FROMDEVICE);
1828                         skb_reserve(skb, NET_IP_ALIGN);
1829                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1830                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1831                                      length);
1832                         skb_fill_page_desc(skb, 0,
1833                                                 lbq_desc->p.pg_chunk.page,
1834                                                 lbq_desc->p.pg_chunk.offset,
1835                                                 length);
1836                         skb->len += length;
1837                         skb->data_len += length;
1838                         skb->truesize += length;
1839                         length -= length;
1840                         __pskb_pull_tail(skb,
1841                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1842                                 VLAN_ETH_HLEN : ETH_HLEN);
1843                 }
1844         } else {
1845                 /*
1846                  * The data is in a chain of large buffers
1847                  * pointed to by a small buffer.  We loop
1848                  * thru and chain them to the our small header
1849                  * buffer's skb.
1850                  * frags:  There are 18 max frags and our small
1851                  *         buffer will hold 32 of them. The thing is,
1852                  *         we'll use 3 max for our 9000 byte jumbo
1853                  *         frames.  If the MTU goes up we could
1854                  *          eventually be in trouble.
1855                  */
1856                 int size, i = 0;
1857                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1858                 pci_unmap_single(qdev->pdev,
1859                                  dma_unmap_addr(sbq_desc, mapaddr),
1860                                  dma_unmap_len(sbq_desc, maplen),
1861                                  PCI_DMA_FROMDEVICE);
1862                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1863                         /*
1864                          * This is an non TCP/UDP IP frame, so
1865                          * the headers aren't split into a small
1866                          * buffer.  We have to use the small buffer
1867                          * that contains our sg list as our skb to
1868                          * send upstairs. Copy the sg list here to
1869                          * a local buffer and use it to find the
1870                          * pages to chain.
1871                          */
1872                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1873                                      "%d bytes of headers & data in chain of large.\n",
1874                                      length);
1875                         skb = sbq_desc->p.skb;
1876                         sbq_desc->p.skb = NULL;
1877                         skb_reserve(skb, NET_IP_ALIGN);
1878                 }
1879                 while (length > 0) {
1880                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1881                         size = (length < rx_ring->lbq_buf_size) ? length :
1882                                 rx_ring->lbq_buf_size;
1883
1884                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1885                                      "Adding page %d to skb for %d bytes.\n",
1886                                      i, size);
1887                         skb_fill_page_desc(skb, i,
1888                                                 lbq_desc->p.pg_chunk.page,
1889                                                 lbq_desc->p.pg_chunk.offset,
1890                                                 size);
1891                         skb->len += size;
1892                         skb->data_len += size;
1893                         skb->truesize += size;
1894                         length -= size;
1895                         i++;
1896                 }
1897                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1898                                 VLAN_ETH_HLEN : ETH_HLEN);
1899         }
1900         return skb;
1901 }
1902
1903 /* Process an inbound completion from an rx ring. */
1904 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1905                                    struct rx_ring *rx_ring,
1906                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1907                                    u16 vlan_id)
1908 {
1909         struct net_device *ndev = qdev->ndev;
1910         struct sk_buff *skb = NULL;
1911
1912         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1913
1914         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1915         if (unlikely(!skb)) {
1916                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1917                              "No skb available, drop packet.\n");
1918                 rx_ring->rx_dropped++;
1919                 return;
1920         }
1921
1922         /* The max framesize filter on this chip is set higher than
1923          * MTU since FCoE uses 2k frames.
1924          */
1925         if (skb->len > ndev->mtu + ETH_HLEN) {
1926                 dev_kfree_skb_any(skb);
1927                 rx_ring->rx_dropped++;
1928                 return;
1929         }
1930
1931         /* loopback self test for ethtool */
1932         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1933                 ql_check_lb_frame(qdev, skb);
1934                 dev_kfree_skb_any(skb);
1935                 return;
1936         }
1937
1938         prefetch(skb->data);
1939         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1940                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1941                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1942                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1943                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1944                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1945                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1946                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1947                 rx_ring->rx_multicast++;
1948         }
1949         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1950                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1951                              "Promiscuous Packet.\n");
1952         }
1953
1954         skb->protocol = eth_type_trans(skb, ndev);
1955         skb_checksum_none_assert(skb);
1956
1957         /* If rx checksum is on, and there are no
1958          * csum or frame errors.
1959          */
1960         if ((ndev->features & NETIF_F_RXCSUM) &&
1961                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1962                 /* TCP frame. */
1963                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1964                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1965                                      "TCP checksum done!\n");
1966                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1967                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1968                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1969                 /* Unfragmented ipv4 UDP frame. */
1970                         struct iphdr *iph = (struct iphdr *) skb->data;
1971                         if (!(iph->frag_off &
1972                                 htons(IP_MF|IP_OFFSET))) {
1973                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1974                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975                                              "TCP checksum done!\n");
1976                         }
1977                 }
1978         }
1979
1980         rx_ring->rx_packets++;
1981         rx_ring->rx_bytes += skb->len;
1982         skb_record_rx_queue(skb, rx_ring->cq_id);
1983         if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1984                 __vlan_hwaccel_put_tag(skb, vlan_id);
1985         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1986                 napi_gro_receive(&rx_ring->napi, skb);
1987         else
1988                 netif_receive_skb(skb);
1989 }
1990
1991 /* Process an inbound completion from an rx ring. */
1992 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1993                                         struct rx_ring *rx_ring,
1994                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
1995 {
1996         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1997         u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1998                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1999                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2000
2001         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2002
2003         /* Frame error, so drop the packet. */
2004         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
2005                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2);
2006                 return (unsigned long)length;
2007         }
2008
2009         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2010                 /* The data and headers are split into
2011                  * separate buffers.
2012                  */
2013                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2014                                                 vlan_id);
2015         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2016                 /* The data fit in a single small buffer.
2017                  * Allocate a new skb, copy the data and
2018                  * return the buffer to the free pool.
2019                  */
2020                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2021                                                 length, vlan_id);
2022         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2023                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2024                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2025                 /* TCP packet in a page chunk that's been checksummed.
2026                  * Tack it on to our GRO skb and let it go.
2027                  */
2028                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2029                                                 length, vlan_id);
2030         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2031                 /* Non-TCP packet in a page chunk. Allocate an
2032                  * skb, tack it on frags, and send it up.
2033                  */
2034                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2035                                                 length, vlan_id);
2036         } else {
2037                 /* Non-TCP/UDP large frames that span multiple buffers
2038                  * can be processed corrrectly by the split frame logic.
2039                  */
2040                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2041                                                 vlan_id);
2042         }
2043
2044         return (unsigned long)length;
2045 }
2046
2047 /* Process an outbound completion from an rx ring. */
2048 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2049                                    struct ob_mac_iocb_rsp *mac_rsp)
2050 {
2051         struct tx_ring *tx_ring;
2052         struct tx_ring_desc *tx_ring_desc;
2053
2054         QL_DUMP_OB_MAC_RSP(mac_rsp);
2055         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2056         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2057         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2058         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2059         tx_ring->tx_packets++;
2060         dev_kfree_skb(tx_ring_desc->skb);
2061         tx_ring_desc->skb = NULL;
2062
2063         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2064                                         OB_MAC_IOCB_RSP_S |
2065                                         OB_MAC_IOCB_RSP_L |
2066                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2067                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2068                         netif_warn(qdev, tx_done, qdev->ndev,
2069                                    "Total descriptor length did not match transfer length.\n");
2070                 }
2071                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2072                         netif_warn(qdev, tx_done, qdev->ndev,
2073                                    "Frame too short to be valid, not sent.\n");
2074                 }
2075                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2076                         netif_warn(qdev, tx_done, qdev->ndev,
2077                                    "Frame too long, but sent anyway.\n");
2078                 }
2079                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2080                         netif_warn(qdev, tx_done, qdev->ndev,
2081                                    "PCI backplane error. Frame not sent.\n");
2082                 }
2083         }
2084         atomic_inc(&tx_ring->tx_count);
2085 }
2086
2087 /* Fire up a handler to reset the MPI processor. */
2088 void ql_queue_fw_error(struct ql_adapter *qdev)
2089 {
2090         ql_link_off(qdev);
2091         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2092 }
2093
2094 void ql_queue_asic_error(struct ql_adapter *qdev)
2095 {
2096         ql_link_off(qdev);
2097         ql_disable_interrupts(qdev);
2098         /* Clear adapter up bit to signal the recovery
2099          * process that it shouldn't kill the reset worker
2100          * thread
2101          */
2102         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2103         /* Set asic recovery bit to indicate reset process that we are
2104          * in fatal error recovery process rather than normal close
2105          */
2106         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2107         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2108 }
2109
2110 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2111                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2112 {
2113         switch (ib_ae_rsp->event) {
2114         case MGMT_ERR_EVENT:
2115                 netif_err(qdev, rx_err, qdev->ndev,
2116                           "Management Processor Fatal Error.\n");
2117                 ql_queue_fw_error(qdev);
2118                 return;
2119
2120         case CAM_LOOKUP_ERR_EVENT:
2121                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2122                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2123                 ql_queue_asic_error(qdev);
2124                 return;
2125
2126         case SOFT_ECC_ERROR_EVENT:
2127                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2128                 ql_queue_asic_error(qdev);
2129                 break;
2130
2131         case PCI_ERR_ANON_BUF_RD:
2132                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2133                                         "anonymous buffers from rx_ring %d.\n",
2134                                         ib_ae_rsp->q_id);
2135                 ql_queue_asic_error(qdev);
2136                 break;
2137
2138         default:
2139                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2140                           ib_ae_rsp->event);
2141                 ql_queue_asic_error(qdev);
2142                 break;
2143         }
2144 }
2145
2146 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2147 {
2148         struct ql_adapter *qdev = rx_ring->qdev;
2149         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2150         struct ob_mac_iocb_rsp *net_rsp = NULL;
2151         int count = 0;
2152
2153         struct tx_ring *tx_ring;
2154         /* While there are entries in the completion queue. */
2155         while (prod != rx_ring->cnsmr_idx) {
2156
2157                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2158                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2159                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2160
2161                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2162                 rmb();
2163                 switch (net_rsp->opcode) {
2164
2165                 case OPCODE_OB_MAC_TSO_IOCB:
2166                 case OPCODE_OB_MAC_IOCB:
2167                         ql_process_mac_tx_intr(qdev, net_rsp);
2168                         break;
2169                 default:
2170                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2171                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2172                                      net_rsp->opcode);
2173                 }
2174                 count++;
2175                 ql_update_cq(rx_ring);
2176                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2177         }
2178         if (!net_rsp)
2179                 return 0;
2180         ql_write_cq_idx(rx_ring);
2181         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2182         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2183                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2184                         /*
2185                          * The queue got stopped because the tx_ring was full.
2186                          * Wake it up, because it's now at least 25% empty.
2187                          */
2188                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2189         }
2190
2191         return count;
2192 }
2193
2194 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2195 {
2196         struct ql_adapter *qdev = rx_ring->qdev;
2197         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2198         struct ql_net_rsp_iocb *net_rsp;
2199         int count = 0;
2200
2201         /* While there are entries in the completion queue. */
2202         while (prod != rx_ring->cnsmr_idx) {
2203
2204                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2205                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2206                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2207
2208                 net_rsp = rx_ring->curr_entry;
2209                 rmb();
2210                 switch (net_rsp->opcode) {
2211                 case OPCODE_IB_MAC_IOCB:
2212                         ql_process_mac_rx_intr(qdev, rx_ring,
2213                                                (struct ib_mac_iocb_rsp *)
2214                                                net_rsp);
2215                         break;
2216
2217                 case OPCODE_IB_AE_IOCB:
2218                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2219                                                 net_rsp);
2220                         break;
2221                 default:
2222                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2223                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2224                                      net_rsp->opcode);
2225                         break;
2226                 }
2227                 count++;
2228                 ql_update_cq(rx_ring);
2229                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2230                 if (count == budget)
2231                         break;
2232         }
2233         ql_update_buffer_queues(qdev, rx_ring);
2234         ql_write_cq_idx(rx_ring);
2235         return count;
2236 }
2237
2238 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2239 {
2240         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2241         struct ql_adapter *qdev = rx_ring->qdev;
2242         struct rx_ring *trx_ring;
2243         int i, work_done = 0;
2244         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2245
2246         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2247                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2248
2249         /* Service the TX rings first.  They start
2250          * right after the RSS rings. */
2251         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2252                 trx_ring = &qdev->rx_ring[i];
2253                 /* If this TX completion ring belongs to this vector and
2254                  * it's not empty then service it.
2255                  */
2256                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2257                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2258                                         trx_ring->cnsmr_idx)) {
2259                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2260                                      "%s: Servicing TX completion ring %d.\n",
2261                                      __func__, trx_ring->cq_id);
2262                         ql_clean_outbound_rx_ring(trx_ring);
2263                 }
2264         }
2265
2266         /*
2267          * Now service the RSS ring if it's active.
2268          */
2269         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2270                                         rx_ring->cnsmr_idx) {
2271                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2272                              "%s: Servicing RX completion ring %d.\n",
2273                              __func__, rx_ring->cq_id);
2274                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2275         }
2276
2277         if (work_done < budget) {
2278                 napi_complete(napi);
2279                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2280         }
2281         return work_done;
2282 }
2283
2284 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2285 {
2286         struct ql_adapter *qdev = netdev_priv(ndev);
2287
2288         if (features & NETIF_F_HW_VLAN_RX) {
2289                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2290                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2291         } else {
2292                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2293         }
2294 }
2295
2296 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2297         netdev_features_t features)
2298 {
2299         /*
2300          * Since there is no support for separate rx/tx vlan accel
2301          * enable/disable make sure tx flag is always in same state as rx.
2302          */
2303         if (features & NETIF_F_HW_VLAN_RX)
2304                 features |= NETIF_F_HW_VLAN_TX;
2305         else
2306                 features &= ~NETIF_F_HW_VLAN_TX;
2307
2308         return features;
2309 }
2310
2311 static int qlge_set_features(struct net_device *ndev,
2312         netdev_features_t features)
2313 {
2314         netdev_features_t changed = ndev->features ^ features;
2315
2316         if (changed & NETIF_F_HW_VLAN_RX)
2317                 qlge_vlan_mode(ndev, features);
2318
2319         return 0;
2320 }
2321
2322 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2323 {
2324         u32 enable_bit = MAC_ADDR_E;
2325         int err;
2326
2327         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2328                                   MAC_ADDR_TYPE_VLAN, vid);
2329         if (err)
2330                 netif_err(qdev, ifup, qdev->ndev,
2331                           "Failed to init vlan address.\n");
2332         return err;
2333 }
2334
2335 static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2336 {
2337         struct ql_adapter *qdev = netdev_priv(ndev);
2338         int status;
2339         int err;
2340
2341         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2342         if (status)
2343                 return status;
2344
2345         err = __qlge_vlan_rx_add_vid(qdev, vid);
2346         set_bit(vid, qdev->active_vlans);
2347
2348         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2349
2350         return err;
2351 }
2352
2353 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2354 {
2355         u32 enable_bit = 0;
2356         int err;
2357
2358         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2359                                   MAC_ADDR_TYPE_VLAN, vid);
2360         if (err)
2361                 netif_err(qdev, ifup, qdev->ndev,
2362                           "Failed to clear vlan address.\n");
2363         return err;
2364 }
2365
2366 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2367 {
2368         struct ql_adapter *qdev = netdev_priv(ndev);
2369         int status;
2370         int err;
2371
2372         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2373         if (status)
2374                 return status;
2375
2376         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2377         clear_bit(vid, qdev->active_vlans);
2378
2379         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2380
2381         return err;
2382 }
2383
2384 static void qlge_restore_vlan(struct ql_adapter *qdev)
2385 {
2386         int status;
2387         u16 vid;
2388
2389         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2390         if (status)
2391                 return;
2392
2393         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2394                 __qlge_vlan_rx_add_vid(qdev, vid);
2395
2396         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2397 }
2398
2399 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2400 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2401 {
2402         struct rx_ring *rx_ring = dev_id;
2403         napi_schedule(&rx_ring->napi);
2404         return IRQ_HANDLED;
2405 }
2406
2407 /* This handles a fatal error, MPI activity, and the default
2408  * rx_ring in an MSI-X multiple vector environment.
2409  * In MSI/Legacy environment it also process the rest of
2410  * the rx_rings.
2411  */
2412 static irqreturn_t qlge_isr(int irq, void *dev_id)
2413 {
2414         struct rx_ring *rx_ring = dev_id;
2415         struct ql_adapter *qdev = rx_ring->qdev;
2416         struct intr_context *intr_context = &qdev->intr_context[0];
2417         u32 var;
2418         int work_done = 0;
2419
2420         spin_lock(&qdev->hw_lock);
2421         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2422                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2423                              "Shared Interrupt, Not ours!\n");
2424                 spin_unlock(&qdev->hw_lock);
2425                 return IRQ_NONE;
2426         }
2427         spin_unlock(&qdev->hw_lock);
2428
2429         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2430
2431         /*
2432          * Check for fatal error.
2433          */
2434         if (var & STS_FE) {
2435                 ql_queue_asic_error(qdev);
2436                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2437                 var = ql_read32(qdev, ERR_STS);
2438                 netdev_err(qdev->ndev, "Resetting chip. "
2439                                         "Error Status Register = 0x%x\n", var);
2440                 return IRQ_HANDLED;
2441         }
2442
2443         /*
2444          * Check MPI processor activity.
2445          */
2446         if ((var & STS_PI) &&
2447                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2448                 /*
2449                  * We've got an async event or mailbox completion.
2450                  * Handle it and clear the source of the interrupt.
2451                  */
2452                 netif_err(qdev, intr, qdev->ndev,
2453                           "Got MPI processor interrupt.\n");
2454                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2455                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2456                 queue_delayed_work_on(smp_processor_id(),
2457                                 qdev->workqueue, &qdev->mpi_work, 0);
2458                 work_done++;
2459         }
2460
2461         /*
2462          * Get the bit-mask that shows the active queues for this
2463          * pass.  Compare it to the queues that this irq services
2464          * and call napi if there's a match.
2465          */
2466         var = ql_read32(qdev, ISR1);
2467         if (var & intr_context->irq_mask) {
2468                 netif_info(qdev, intr, qdev->ndev,
2469                            "Waking handler for rx_ring[0].\n");
2470                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2471                 napi_schedule(&rx_ring->napi);
2472                 work_done++;
2473         }
2474         ql_enable_completion_interrupt(qdev, intr_context->intr);
2475         return work_done ? IRQ_HANDLED : IRQ_NONE;
2476 }
2477
2478 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2479 {
2480
2481         if (skb_is_gso(skb)) {
2482                 int err;
2483                 if (skb_header_cloned(skb)) {
2484                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2485                         if (err)
2486                                 return err;
2487                 }
2488
2489                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2490                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2491                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2492                 mac_iocb_ptr->total_hdrs_len =
2493                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2494                 mac_iocb_ptr->net_trans_offset =
2495                     cpu_to_le16(skb_network_offset(skb) |
2496                                 skb_transport_offset(skb)
2497                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2498                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2499                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2500                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2501                         struct iphdr *iph = ip_hdr(skb);
2502                         iph->check = 0;
2503                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2504                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2505                                                                  iph->daddr, 0,
2506                                                                  IPPROTO_TCP,
2507                                                                  0);
2508                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2509                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2510                         tcp_hdr(skb)->check =
2511                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2512                                              &ipv6_hdr(skb)->daddr,
2513                                              0, IPPROTO_TCP, 0);
2514                 }
2515                 return 1;
2516         }
2517         return 0;
2518 }
2519
2520 static void ql_hw_csum_setup(struct sk_buff *skb,
2521                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2522 {
2523         int len;
2524         struct iphdr *iph = ip_hdr(skb);
2525         __sum16 *check;
2526         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2527         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2528         mac_iocb_ptr->net_trans_offset =
2529                 cpu_to_le16(skb_network_offset(skb) |
2530                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2531
2532         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2533         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2534         if (likely(iph->protocol == IPPROTO_TCP)) {
2535                 check = &(tcp_hdr(skb)->check);
2536                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2537                 mac_iocb_ptr->total_hdrs_len =
2538                     cpu_to_le16(skb_transport_offset(skb) +
2539                                 (tcp_hdr(skb)->doff << 2));
2540         } else {
2541                 check = &(udp_hdr(skb)->check);
2542                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2543                 mac_iocb_ptr->total_hdrs_len =
2544                     cpu_to_le16(skb_transport_offset(skb) +
2545                                 sizeof(struct udphdr));
2546         }
2547         *check = ~csum_tcpudp_magic(iph->saddr,
2548                                     iph->daddr, len, iph->protocol, 0);
2549 }
2550
2551 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2552 {
2553         struct tx_ring_desc *tx_ring_desc;
2554         struct ob_mac_iocb_req *mac_iocb_ptr;
2555         struct ql_adapter *qdev = netdev_priv(ndev);
2556         int tso;
2557         struct tx_ring *tx_ring;
2558         u32 tx_ring_idx = (u32) skb->queue_mapping;
2559
2560         tx_ring = &qdev->tx_ring[tx_ring_idx];
2561
2562         if (skb_padto(skb, ETH_ZLEN))
2563                 return NETDEV_TX_OK;
2564
2565         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2566                 netif_info(qdev, tx_queued, qdev->ndev,
2567                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2568                            __func__, tx_ring_idx);
2569                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2570                 tx_ring->tx_errors++;
2571                 return NETDEV_TX_BUSY;
2572         }
2573         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2574         mac_iocb_ptr = tx_ring_desc->queue_entry;
2575         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2576
2577         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2578         mac_iocb_ptr->tid = tx_ring_desc->index;
2579         /* We use the upper 32-bits to store the tx queue for this IO.
2580          * When we get the completion we can use it to establish the context.
2581          */
2582         mac_iocb_ptr->txq_idx = tx_ring_idx;
2583         tx_ring_desc->skb = skb;
2584
2585         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2586
2587         if (vlan_tx_tag_present(skb)) {
2588                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2589                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2590                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2591                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2592         }
2593         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2594         if (tso < 0) {
2595                 dev_kfree_skb_any(skb);
2596                 return NETDEV_TX_OK;
2597         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2598                 ql_hw_csum_setup(skb,
2599                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2600         }
2601         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2602                         NETDEV_TX_OK) {
2603                 netif_err(qdev, tx_queued, qdev->ndev,
2604                           "Could not map the segments.\n");
2605                 tx_ring->tx_errors++;
2606                 return NETDEV_TX_BUSY;
2607         }
2608         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2609         tx_ring->prod_idx++;
2610         if (tx_ring->prod_idx == tx_ring->wq_len)
2611                 tx_ring->prod_idx = 0;
2612         wmb();
2613
2614         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2615         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2616                      "tx queued, slot %d, len %d\n",
2617                      tx_ring->prod_idx, skb->len);
2618
2619         atomic_dec(&tx_ring->tx_count);
2620
2621         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2622                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2623                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2624                         /*
2625                          * The queue got stopped because the tx_ring was full.
2626                          * Wake it up, because it's now at least 25% empty.
2627                          */
2628                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2629         }
2630         return NETDEV_TX_OK;
2631 }
2632
2633
2634 static void ql_free_shadow_space(struct ql_adapter *qdev)
2635 {
2636         if (qdev->rx_ring_shadow_reg_area) {
2637                 pci_free_consistent(qdev->pdev,
2638                                     PAGE_SIZE,
2639                                     qdev->rx_ring_shadow_reg_area,
2640                                     qdev->rx_ring_shadow_reg_dma);
2641                 qdev->rx_ring_shadow_reg_area = NULL;
2642         }
2643         if (qdev->tx_ring_shadow_reg_area) {
2644                 pci_free_consistent(qdev->pdev,
2645                                     PAGE_SIZE,
2646                                     qdev->tx_ring_shadow_reg_area,
2647                                     qdev->tx_ring_shadow_reg_dma);
2648                 qdev->tx_ring_shadow_reg_area = NULL;
2649         }
2650 }
2651
2652 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2653 {
2654         qdev->rx_ring_shadow_reg_area =
2655             pci_alloc_consistent(qdev->pdev,
2656                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2657         if (qdev->rx_ring_shadow_reg_area == NULL) {
2658                 netif_err(qdev, ifup, qdev->ndev,
2659                           "Allocation of RX shadow space failed.\n");
2660                 return -ENOMEM;
2661         }
2662         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2663         qdev->tx_ring_shadow_reg_area =
2664             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2665                                  &qdev->tx_ring_shadow_reg_dma);
2666         if (qdev->tx_ring_shadow_reg_area == NULL) {
2667                 netif_err(qdev, ifup, qdev->ndev,
2668                           "Allocation of TX shadow space failed.\n");
2669                 goto err_wqp_sh_area;
2670         }
2671         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2672         return 0;
2673
2674 err_wqp_sh_area:
2675         pci_free_consistent(qdev->pdev,
2676                             PAGE_SIZE,
2677                             qdev->rx_ring_shadow_reg_area,
2678                             qdev->rx_ring_shadow_reg_dma);
2679         return -ENOMEM;
2680 }
2681
2682 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2683 {
2684         struct tx_ring_desc *tx_ring_desc;
2685         int i;
2686         struct ob_mac_iocb_req *mac_iocb_ptr;
2687
2688         mac_iocb_ptr = tx_ring->wq_base;
2689         tx_ring_desc = tx_ring->q;
2690         for (i = 0; i < tx_ring->wq_len; i++) {
2691                 tx_ring_desc->index = i;
2692                 tx_ring_desc->skb = NULL;
2693                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2694                 mac_iocb_ptr++;
2695                 tx_ring_desc++;
2696         }
2697         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2698 }
2699
2700 static void ql_free_tx_resources(struct ql_adapter *qdev,
2701                                  struct tx_ring *tx_ring)
2702 {
2703         if (tx_ring->wq_base) {
2704                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2705                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2706                 tx_ring->wq_base = NULL;
2707         }
2708         kfree(tx_ring->q);
2709         tx_ring->q = NULL;
2710 }
2711
2712 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2713                                  struct tx_ring *tx_ring)
2714 {
2715         tx_ring->wq_base =
2716             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2717                                  &tx_ring->wq_base_dma);
2718
2719         if ((tx_ring->wq_base == NULL) ||
2720             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2721                 goto pci_alloc_err;
2722
2723         tx_ring->q =
2724             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2725         if (tx_ring->q == NULL)
2726                 goto err;
2727
2728         return 0;
2729 err:
2730         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2731                             tx_ring->wq_base, tx_ring->wq_base_dma);
2732         tx_ring->wq_base = NULL;
2733 pci_alloc_err:
2734         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2735         return -ENOMEM;
2736 }
2737
2738 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2739 {
2740         struct bq_desc *lbq_desc;
2741
2742         uint32_t  curr_idx, clean_idx;
2743
2744         curr_idx = rx_ring->lbq_curr_idx;
2745         clean_idx = rx_ring->lbq_clean_idx;
2746         while (curr_idx != clean_idx) {
2747                 lbq_desc = &rx_ring->lbq[curr_idx];
2748
2749                 if (lbq_desc->p.pg_chunk.last_flag) {
2750                         pci_unmap_page(qdev->pdev,
2751                                 lbq_desc->p.pg_chunk.map,
2752                                 ql_lbq_block_size(qdev),
2753                                        PCI_DMA_FROMDEVICE);
2754                         lbq_desc->p.pg_chunk.last_flag = 0;
2755                 }
2756
2757                 put_page(lbq_desc->p.pg_chunk.page);
2758                 lbq_desc->p.pg_chunk.page = NULL;
2759
2760                 if (++curr_idx == rx_ring->lbq_len)
2761                         curr_idx = 0;
2762
2763         }
2764 }
2765
2766 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2767 {
2768         int i;
2769         struct bq_desc *sbq_desc;
2770
2771         for (i = 0; i < rx_ring->sbq_len; i++) {
2772                 sbq_desc = &rx_ring->sbq[i];
2773                 if (sbq_desc == NULL) {
2774                         netif_err(qdev, ifup, qdev->ndev,
2775                                   "sbq_desc %d is NULL.\n", i);
2776                         return;
2777                 }
2778                 if (sbq_desc->p.skb) {
2779                         pci_unmap_single(qdev->pdev,
2780                                          dma_unmap_addr(sbq_desc, mapaddr),
2781                                          dma_unmap_len(sbq_desc, maplen),
2782                                          PCI_DMA_FROMDEVICE);
2783                         dev_kfree_skb(sbq_desc->p.skb);
2784                         sbq_desc->p.skb = NULL;
2785                 }
2786         }
2787 }
2788
2789 /* Free all large and small rx buffers associated
2790  * with the completion queues for this device.
2791  */
2792 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2793 {
2794         int i;
2795         struct rx_ring *rx_ring;
2796
2797         for (i = 0; i < qdev->rx_ring_count; i++) {
2798                 rx_ring = &qdev->rx_ring[i];
2799                 if (rx_ring->lbq)
2800                         ql_free_lbq_buffers(qdev, rx_ring);
2801                 if (rx_ring->sbq)
2802                         ql_free_sbq_buffers(qdev, rx_ring);
2803         }
2804 }
2805
2806 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2807 {
2808         struct rx_ring *rx_ring;
2809         int i;
2810
2811         for (i = 0; i < qdev->rx_ring_count; i++) {
2812                 rx_ring = &qdev->rx_ring[i];
2813                 if (rx_ring->type != TX_Q)
2814                         ql_update_buffer_queues(qdev, rx_ring);
2815         }
2816 }
2817
2818 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2819                                 struct rx_ring *rx_ring)
2820 {
2821         int i;
2822         struct bq_desc *lbq_desc;
2823         __le64 *bq = rx_ring->lbq_base;
2824
2825         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2826         for (i = 0; i < rx_ring->lbq_len; i++) {
2827                 lbq_desc = &rx_ring->lbq[i];
2828                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2829                 lbq_desc->index = i;
2830                 lbq_desc->addr = bq;
2831                 bq++;
2832         }
2833 }
2834
2835 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2836                                 struct rx_ring *rx_ring)
2837 {
2838         int i;
2839         struct bq_desc *sbq_desc;
2840         __le64 *bq = rx_ring->sbq_base;
2841
2842         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2843         for (i = 0; i < rx_ring->sbq_len; i++) {
2844                 sbq_desc = &rx_ring->sbq[i];
2845                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2846                 sbq_desc->index = i;
2847                 sbq_desc->addr = bq;
2848                 bq++;
2849         }
2850 }
2851
2852 static void ql_free_rx_resources(struct ql_adapter *qdev,
2853                                  struct rx_ring *rx_ring)
2854 {
2855         /* Free the small buffer queue. */
2856         if (rx_ring->sbq_base) {
2857                 pci_free_consistent(qdev->pdev,
2858                                     rx_ring->sbq_size,
2859                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2860                 rx_ring->sbq_base = NULL;
2861         }
2862
2863         /* Free the small buffer queue control blocks. */
2864         kfree(rx_ring->sbq);
2865         rx_ring->sbq = NULL;
2866
2867         /* Free the large buffer queue. */
2868         if (rx_ring->lbq_base) {
2869                 pci_free_consistent(qdev->pdev,
2870                                     rx_ring->lbq_size,
2871                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2872                 rx_ring->lbq_base = NULL;
2873         }
2874
2875         /* Free the large buffer queue control blocks. */
2876         kfree(rx_ring->lbq);
2877         rx_ring->lbq = NULL;
2878
2879         /* Free the rx queue. */
2880         if (rx_ring->cq_base) {
2881                 pci_free_consistent(qdev->pdev,
2882                                     rx_ring->cq_size,
2883                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2884                 rx_ring->cq_base = NULL;
2885         }
2886 }
2887
2888 /* Allocate queues and buffers for this completions queue based
2889  * on the values in the parameter structure. */
2890 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2891                                  struct rx_ring *rx_ring)
2892 {
2893
2894         /*
2895          * Allocate the completion queue for this rx_ring.
2896          */
2897         rx_ring->cq_base =
2898             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2899                                  &rx_ring->cq_base_dma);
2900
2901         if (rx_ring->cq_base == NULL) {
2902                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2903                 return -ENOMEM;
2904         }
2905
2906         if (rx_ring->sbq_len) {
2907                 /*
2908                  * Allocate small buffer queue.
2909                  */
2910                 rx_ring->sbq_base =
2911                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2912                                          &rx_ring->sbq_base_dma);
2913
2914                 if (rx_ring->sbq_base == NULL) {
2915                         netif_err(qdev, ifup, qdev->ndev,
2916                                   "Small buffer queue allocation failed.\n");
2917                         goto err_mem;
2918                 }
2919
2920                 /*
2921                  * Allocate small buffer queue control blocks.
2922                  */
2923                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
2924                                              sizeof(struct bq_desc),
2925                                              GFP_KERNEL);
2926                 if (rx_ring->sbq == NULL)
2927                         goto err_mem;
2928
2929                 ql_init_sbq_ring(qdev, rx_ring);
2930         }
2931
2932         if (rx_ring->lbq_len) {
2933                 /*
2934                  * Allocate large buffer queue.
2935                  */
2936                 rx_ring->lbq_base =
2937                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2938                                          &rx_ring->lbq_base_dma);
2939
2940                 if (rx_ring->lbq_base == NULL) {
2941                         netif_err(qdev, ifup, qdev->ndev,
2942                                   "Large buffer queue allocation failed.\n");
2943                         goto err_mem;
2944                 }
2945                 /*
2946                  * Allocate large buffer queue control blocks.
2947                  */
2948                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
2949                                              sizeof(struct bq_desc),
2950                                              GFP_KERNEL);
2951                 if (rx_ring->lbq == NULL)
2952                         goto err_mem;
2953
2954                 ql_init_lbq_ring(qdev, rx_ring);
2955         }
2956
2957         return 0;
2958
2959 err_mem:
2960         ql_free_rx_resources(qdev, rx_ring);
2961         return -ENOMEM;
2962 }
2963
2964 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2965 {
2966         struct tx_ring *tx_ring;
2967         struct tx_ring_desc *tx_ring_desc;
2968         int i, j;
2969
2970         /*
2971          * Loop through all queues and free
2972          * any resources.
2973          */
2974         for (j = 0; j < qdev->tx_ring_count; j++) {
2975                 tx_ring = &qdev->tx_ring[j];
2976                 for (i = 0; i < tx_ring->wq_len; i++) {
2977                         tx_ring_desc = &tx_ring->q[i];
2978                         if (tx_ring_desc && tx_ring_desc->skb) {
2979                                 netif_err(qdev, ifdown, qdev->ndev,
2980                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
2981                                           tx_ring_desc->skb, j,
2982                                           tx_ring_desc->index);
2983                                 ql_unmap_send(qdev, tx_ring_desc,
2984                                               tx_ring_desc->map_cnt);
2985                                 dev_kfree_skb(tx_ring_desc->skb);
2986                                 tx_ring_desc->skb = NULL;
2987                         }
2988                 }
2989         }
2990 }
2991
2992 static void ql_free_mem_resources(struct ql_adapter *qdev)
2993 {
2994         int i;
2995
2996         for (i = 0; i < qdev->tx_ring_count; i++)
2997                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2998         for (i = 0; i < qdev->rx_ring_count; i++)
2999                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3000         ql_free_shadow_space(qdev);
3001 }
3002
3003 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3004 {
3005         int i;
3006
3007         /* Allocate space for our shadow registers and such. */
3008         if (ql_alloc_shadow_space(qdev))
3009                 return -ENOMEM;
3010
3011         for (i = 0; i < qdev->rx_ring_count; i++) {
3012                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3013                         netif_err(qdev, ifup, qdev->ndev,
3014                                   "RX resource allocation failed.\n");
3015                         goto err_mem;
3016                 }
3017         }
3018         /* Allocate tx queue resources */
3019         for (i = 0; i < qdev->tx_ring_count; i++) {
3020                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3021                         netif_err(qdev, ifup, qdev->ndev,
3022                                   "TX resource allocation failed.\n");
3023                         goto err_mem;
3024                 }
3025         }
3026         return 0;
3027
3028 err_mem:
3029         ql_free_mem_resources(qdev);
3030         return -ENOMEM;
3031 }
3032
3033 /* Set up the rx ring control block and pass it to the chip.
3034  * The control block is defined as
3035  * "Completion Queue Initialization Control Block", or cqicb.
3036  */
3037 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3038 {
3039         struct cqicb *cqicb = &rx_ring->cqicb;
3040         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3041                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3042         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3043                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3044         void __iomem *doorbell_area =
3045             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3046         int err = 0;
3047         u16 bq_len;
3048         u64 tmp;
3049         __le64 *base_indirect_ptr;
3050         int page_entries;
3051
3052         /* Set up the shadow registers for this ring. */
3053         rx_ring->prod_idx_sh_reg = shadow_reg;
3054         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3055         *rx_ring->prod_idx_sh_reg = 0;
3056         shadow_reg += sizeof(u64);
3057         shadow_reg_dma += sizeof(u64);
3058         rx_ring->lbq_base_indirect = shadow_reg;
3059         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3060         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3061         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3062         rx_ring->sbq_base_indirect = shadow_reg;
3063         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3064
3065         /* PCI doorbell mem area + 0x00 for consumer index register */
3066         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3067         rx_ring->cnsmr_idx = 0;
3068         rx_ring->curr_entry = rx_ring->cq_base;
3069
3070         /* PCI doorbell mem area + 0x04 for valid register */
3071         rx_ring->valid_db_reg = doorbell_area + 0x04;
3072
3073         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3074         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3075
3076         /* PCI doorbell mem area + 0x1c */
3077         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3078
3079         memset((void *)cqicb, 0, sizeof(struct cqicb));
3080         cqicb->msix_vect = rx_ring->irq;
3081
3082         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3083         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3084
3085         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3086
3087         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3088
3089         /*
3090          * Set up the control block load flags.
3091          */
3092         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3093             FLAGS_LV |          /* Load MSI-X vector */
3094             FLAGS_LI;           /* Load irq delay values */
3095         if (rx_ring->lbq_len) {
3096                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3097                 tmp = (u64)rx_ring->lbq_base_dma;
3098                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3099                 page_entries = 0;
3100                 do {
3101                         *base_indirect_ptr = cpu_to_le64(tmp);
3102                         tmp += DB_PAGE_SIZE;
3103                         base_indirect_ptr++;
3104                         page_entries++;
3105                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3106                 cqicb->lbq_addr =
3107                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3108                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3109                         (u16) rx_ring->lbq_buf_size;
3110                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3111                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3112                         (u16) rx_ring->lbq_len;
3113                 cqicb->lbq_len = cpu_to_le16(bq_len);
3114                 rx_ring->lbq_prod_idx = 0;
3115                 rx_ring->lbq_curr_idx = 0;
3116                 rx_ring->lbq_clean_idx = 0;
3117                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3118         }
3119         if (rx_ring->sbq_len) {
3120                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3121                 tmp = (u64)rx_ring->sbq_base_dma;
3122                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3123                 page_entries = 0;
3124                 do {
3125                         *base_indirect_ptr = cpu_to_le64(tmp);
3126                         tmp += DB_PAGE_SIZE;
3127                         base_indirect_ptr++;
3128                         page_entries++;
3129                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3130                 cqicb->sbq_addr =
3131                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3132                 cqicb->sbq_buf_size =
3133                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3134                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3135                         (u16) rx_ring->sbq_len;
3136                 cqicb->sbq_len = cpu_to_le16(bq_len);
3137                 rx_ring->sbq_prod_idx = 0;
3138                 rx_ring->sbq_curr_idx = 0;
3139                 rx_ring->sbq_clean_idx = 0;
3140                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3141         }
3142         switch (rx_ring->type) {
3143         case TX_Q:
3144                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3145                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3146                 break;
3147         case RX_Q:
3148                 /* Inbound completion handling rx_rings run in
3149                  * separate NAPI contexts.
3150                  */
3151                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3152                                64);
3153                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3154                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3155                 break;
3156         default:
3157                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3158                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3159         }
3160         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3161                            CFG_LCQ, rx_ring->cq_id);
3162         if (err) {
3163                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3164                 return err;
3165         }
3166         return err;
3167 }
3168
3169 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3170 {
3171         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3172         void __iomem *doorbell_area =
3173             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3174         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3175             (tx_ring->wq_id * sizeof(u64));
3176         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3177             (tx_ring->wq_id * sizeof(u64));
3178         int err = 0;
3179
3180         /*
3181          * Assign doorbell registers for this tx_ring.
3182          */
3183         /* TX PCI doorbell mem area for tx producer index */
3184         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3185         tx_ring->prod_idx = 0;
3186         /* TX PCI doorbell mem area + 0x04 */
3187         tx_ring->valid_db_reg = doorbell_area + 0x04;
3188
3189         /*
3190          * Assign shadow registers for this tx_ring.
3191          */
3192         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3193         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3194
3195         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3196         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3197                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3198         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3199         wqicb->rid = 0;
3200         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3201
3202         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3203
3204         ql_init_tx_ring(qdev, tx_ring);
3205
3206         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3207                            (u16) tx_ring->wq_id);
3208         if (err) {
3209                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3210                 return err;
3211         }
3212         return err;
3213 }
3214
3215 static void ql_disable_msix(struct ql_adapter *qdev)
3216 {
3217         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3218                 pci_disable_msix(qdev->pdev);
3219                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3220                 kfree(qdev->msi_x_entry);
3221                 qdev->msi_x_entry = NULL;
3222         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3223                 pci_disable_msi(qdev->pdev);
3224                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3225         }
3226 }
3227
3228 /* We start by trying to get the number of vectors
3229  * stored in qdev->intr_count. If we don't get that
3230  * many then we reduce the count and try again.
3231  */
3232 static void ql_enable_msix(struct ql_adapter *qdev)
3233 {
3234         int i, err;
3235
3236         /* Get the MSIX vectors. */
3237         if (qlge_irq_type == MSIX_IRQ) {
3238                 /* Try to alloc space for the msix struct,
3239                  * if it fails then go to MSI/legacy.
3240                  */
3241                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3242                                             sizeof(struct msix_entry),
3243                                             GFP_KERNEL);
3244                 if (!qdev->msi_x_entry) {
3245                         qlge_irq_type = MSI_IRQ;
3246                         goto msi;
3247                 }
3248
3249                 for (i = 0; i < qdev->intr_count; i++)
3250                         qdev->msi_x_entry[i].entry = i;
3251
3252                 /* Loop to get our vectors.  We start with
3253                  * what we want and settle for what we get.
3254                  */
3255                 do {
3256                         err = pci_enable_msix(qdev->pdev,
3257                                 qdev->msi_x_entry, qdev->intr_count);
3258                         if (err > 0)
3259                                 qdev->intr_count = err;
3260                 } while (err > 0);
3261
3262                 if (err < 0) {
3263                         kfree(qdev->msi_x_entry);
3264                         qdev->msi_x_entry = NULL;
3265                         netif_warn(qdev, ifup, qdev->ndev,
3266                                    "MSI-X Enable failed, trying MSI.\n");
3267                         qdev->intr_count = 1;
3268                         qlge_irq_type = MSI_IRQ;
3269                 } else if (err == 0) {
3270                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3271                         netif_info(qdev, ifup, qdev->ndev,
3272                                    "MSI-X Enabled, got %d vectors.\n",
3273                                    qdev->intr_count);
3274                         return;
3275                 }
3276         }
3277 msi:
3278         qdev->intr_count = 1;
3279         if (qlge_irq_type == MSI_IRQ) {
3280                 if (!pci_enable_msi(qdev->pdev)) {
3281                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3282                         netif_info(qdev, ifup, qdev->ndev,
3283                                    "Running with MSI interrupts.\n");
3284                         return;
3285                 }
3286         }
3287         qlge_irq_type = LEG_IRQ;
3288         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3289                      "Running with legacy interrupts.\n");
3290 }
3291
3292 /* Each vector services 1 RSS ring and and 1 or more
3293  * TX completion rings.  This function loops through
3294  * the TX completion rings and assigns the vector that
3295  * will service it.  An example would be if there are
3296  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3297  * This would mean that vector 0 would service RSS ring 0
3298  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3299  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3300  */
3301 static void ql_set_tx_vect(struct ql_adapter *qdev)
3302 {
3303         int i, j, vect;
3304         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3305
3306         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3307                 /* Assign irq vectors to TX rx_rings.*/
3308                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3309                                          i < qdev->rx_ring_count; i++) {
3310                         if (j == tx_rings_per_vector) {
3311                                 vect++;
3312                                 j = 0;
3313                         }
3314                         qdev->rx_ring[i].irq = vect;
3315                         j++;
3316                 }
3317         } else {
3318                 /* For single vector all rings have an irq
3319                  * of zero.
3320                  */
3321                 for (i = 0; i < qdev->rx_ring_count; i++)
3322                         qdev->rx_ring[i].irq = 0;
3323         }
3324 }
3325
3326 /* Set the interrupt mask for this vector.  Each vector
3327  * will service 1 RSS ring and 1 or more TX completion
3328  * rings.  This function sets up a bit mask per vector
3329  * that indicates which rings it services.
3330  */
3331 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3332 {
3333         int j, vect = ctx->intr;
3334         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3335
3336         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3337                 /* Add the RSS ring serviced by this vector
3338                  * to the mask.
3339                  */
3340                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3341                 /* Add the TX ring(s) serviced by this vector
3342                  * to the mask. */
3343                 for (j = 0; j < tx_rings_per_vector; j++) {
3344                         ctx->irq_mask |=
3345                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3346                         (vect * tx_rings_per_vector) + j].cq_id);
3347                 }
3348         } else {
3349                 /* For single vector we just shift each queue's
3350                  * ID into the mask.
3351                  */
3352                 for (j = 0; j < qdev->rx_ring_count; j++)
3353                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3354         }
3355 }
3356
3357 /*
3358  * Here we build the intr_context structures based on
3359  * our rx_ring count and intr vector count.
3360  * The intr_context structure is used to hook each vector
3361  * to possibly different handlers.
3362  */
3363 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3364 {
3365         int i = 0;
3366         struct intr_context *intr_context = &qdev->intr_context[0];
3367
3368         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3369                 /* Each rx_ring has it's
3370                  * own intr_context since we have separate
3371                  * vectors for each queue.
3372                  */
3373                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3374                         qdev->rx_ring[i].irq = i;
3375                         intr_context->intr = i;
3376                         intr_context->qdev = qdev;
3377                         /* Set up this vector's bit-mask that indicates
3378                          * which queues it services.
3379                          */
3380                         ql_set_irq_mask(qdev, intr_context);
3381                         /*
3382                          * We set up each vectors enable/disable/read bits so
3383                          * there's no bit/mask calculations in the critical path.
3384                          */
3385                         intr_context->intr_en_mask =
3386                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3387                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3388                             | i;
3389                         intr_context->intr_dis_mask =
3390                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3391                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3392                             INTR_EN_IHD | i;
3393                         intr_context->intr_read_mask =
3394                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3395                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3396                             i;
3397                         if (i == 0) {
3398                                 /* The first vector/queue handles
3399                                  * broadcast/multicast, fatal errors,
3400                                  * and firmware events.  This in addition
3401                                  * to normal inbound NAPI processing.
3402                                  */
3403                                 intr_context->handler = qlge_isr;
3404                                 sprintf(intr_context->name, "%s-rx-%d",
3405                                         qdev->ndev->name, i);
3406                         } else {
3407                                 /*
3408                                  * Inbound queues handle unicast frames only.
3409                                  */
3410                                 intr_context->handler = qlge_msix_rx_isr;
3411                                 sprintf(intr_context->name, "%s-rx-%d",
3412                                         qdev->ndev->name, i);
3413                         }
3414                 }
3415         } else {
3416                 /*
3417                  * All rx_rings use the same intr_context since
3418                  * there is only one vector.
3419                  */
3420                 intr_context->intr = 0;
3421                 intr_context->qdev = qdev;
3422                 /*
3423                  * We set up each vectors enable/disable/read bits so
3424                  * there's no bit/mask calculations in the critical path.
3425                  */
3426                 intr_context->intr_en_mask =
3427                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3428                 intr_context->intr_dis_mask =
3429                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3430                     INTR_EN_TYPE_DISABLE;
3431                 intr_context->intr_read_mask =
3432                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3433                 /*
3434                  * Single interrupt means one handler for all rings.
3435                  */
3436                 intr_context->handler = qlge_isr;
3437                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3438                 /* Set up this vector's bit-mask that indicates
3439                  * which queues it services. In this case there is
3440                  * a single vector so it will service all RSS and
3441                  * TX completion rings.
3442                  */
3443                 ql_set_irq_mask(qdev, intr_context);
3444         }
3445         /* Tell the TX completion rings which MSIx vector
3446          * they will be using.
3447          */
3448         ql_set_tx_vect(qdev);
3449 }
3450
3451 static void ql_free_irq(struct ql_adapter *qdev)
3452 {
3453         int i;
3454         struct intr_context *intr_context = &qdev->intr_context[0];
3455
3456         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3457                 if (intr_context->hooked) {
3458                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3459                                 free_irq(qdev->msi_x_entry[i].vector,
3460                                          &qdev->rx_ring[i]);
3461                         } else {
3462                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3463                         }
3464                 }
3465         }
3466         ql_disable_msix(qdev);
3467 }
3468
3469 static int ql_request_irq(struct ql_adapter *qdev)
3470 {
3471         int i;
3472         int status = 0;
3473         struct pci_dev *pdev = qdev->pdev;
3474         struct intr_context *intr_context = &qdev->intr_context[0];
3475
3476         ql_resolve_queues_to_irqs(qdev);
3477
3478         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3479                 atomic_set(&intr_context->irq_cnt, 0);
3480                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3481                         status = request_irq(qdev->msi_x_entry[i].vector,
3482                                              intr_context->handler,
3483                                              0,
3484                                              intr_context->name,
3485                                              &qdev->rx_ring[i]);
3486                         if (status) {
3487                                 netif_err(qdev, ifup, qdev->ndev,
3488                                           "Failed request for MSIX interrupt %d.\n",
3489                                           i);
3490                                 goto err_irq;
3491                         }
3492                 } else {
3493                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3494                                      "trying msi or legacy interrupts.\n");
3495                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3496                                      "%s: irq = %d.\n", __func__, pdev->irq);
3497                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3498                                      "%s: context->name = %s.\n", __func__,
3499                                      intr_context->name);
3500                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3501                                      "%s: dev_id = 0x%p.\n", __func__,
3502                                      &qdev->rx_ring[0]);
3503                         status =
3504                             request_irq(pdev->irq, qlge_isr,
3505                                         test_bit(QL_MSI_ENABLED,
3506                                                  &qdev->
3507                                                  flags) ? 0 : IRQF_SHARED,
3508                                         intr_context->name, &qdev->rx_ring[0]);
3509                         if (status)
3510                                 goto err_irq;
3511
3512                         netif_err(qdev, ifup, qdev->ndev,
3513                                   "Hooked intr %d, queue type %s, with name %s.\n",
3514                                   i,
3515                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3516                                   "DEFAULT_Q" :
3517                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3518                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3519                                   intr_context->name);
3520                 }
3521                 intr_context->hooked = 1;
3522         }
3523         return status;
3524 err_irq:
3525         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3526         ql_free_irq(qdev);
3527         return status;
3528 }
3529
3530 static int ql_start_rss(struct ql_adapter *qdev)
3531 {
3532         static const u8 init_hash_seed[] = {
3533                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3534                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3535                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3536                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3537                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3538         };
3539         struct ricb *ricb = &qdev->ricb;
3540         int status = 0;
3541         int i;
3542         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3543
3544         memset((void *)ricb, 0, sizeof(*ricb));
3545
3546         ricb->base_cq = RSS_L4K;
3547         ricb->flags =
3548                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3549         ricb->mask = cpu_to_le16((u16)(0x3ff));
3550
3551         /*
3552          * Fill out the Indirection Table.
3553          */
3554         for (i = 0; i < 1024; i++)
3555                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3556
3557         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3558         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3559
3560         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3561         if (status) {
3562                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3563                 return status;
3564         }
3565         return status;
3566 }
3567
3568 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3569 {
3570         int i, status = 0;
3571
3572         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3573         if (status)
3574                 return status;
3575         /* Clear all the entries in the routing table. */
3576         for (i = 0; i < 16; i++) {
3577                 status = ql_set_routing_reg(qdev, i, 0, 0);
3578                 if (status) {
3579                         netif_err(qdev, ifup, qdev->ndev,
3580                                   "Failed to init routing register for CAM packets.\n");
3581                         break;
3582                 }
3583         }
3584         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3585         return status;
3586 }
3587
3588 /* Initialize the frame-to-queue routing. */
3589 static int ql_route_initialize(struct ql_adapter *qdev)
3590 {
3591         int status = 0;
3592
3593         /* Clear all the entries in the routing table. */
3594         status = ql_clear_routing_entries(qdev);
3595         if (status)
3596                 return status;
3597
3598         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3599         if (status)
3600                 return status;
3601
3602         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3603                                                 RT_IDX_IP_CSUM_ERR, 1);
3604         if (status) {
3605                 netif_err(qdev, ifup, qdev->ndev,
3606                         "Failed to init routing register "
3607                         "for IP CSUM error packets.\n");
3608                 goto exit;
3609         }
3610         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3611                                                 RT_IDX_TU_CSUM_ERR, 1);
3612         if (status) {
3613                 netif_err(qdev, ifup, qdev->ndev,
3614                         "Failed to init routing register "
3615                         "for TCP/UDP CSUM error packets.\n");
3616                 goto exit;
3617         }
3618         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3619         if (status) {
3620                 netif_err(qdev, ifup, qdev->ndev,
3621                           "Failed to init routing register for broadcast packets.\n");
3622                 goto exit;
3623         }
3624         /* If we have more than one inbound queue, then turn on RSS in the
3625          * routing block.
3626          */
3627         if (qdev->rss_ring_count > 1) {
3628                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3629                                         RT_IDX_RSS_MATCH, 1);
3630                 if (status) {
3631                         netif_err(qdev, ifup, qdev->ndev,
3632                                   "Failed to init routing register for MATCH RSS packets.\n");
3633                         goto exit;
3634                 }
3635         }
3636
3637         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3638                                     RT_IDX_CAM_HIT, 1);
3639         if (status)
3640                 netif_err(qdev, ifup, qdev->ndev,
3641                           "Failed to init routing register for CAM packets.\n");
3642 exit:
3643         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3644         return status;
3645 }
3646
3647 int ql_cam_route_initialize(struct ql_adapter *qdev)
3648 {
3649         int status, set;
3650
3651         /* If check if the link is up and use to
3652          * determine if we are setting or clearing
3653          * the MAC address in the CAM.
3654          */
3655         set = ql_read32(qdev, STS);
3656         set &= qdev->port_link_up;
3657         status = ql_set_mac_addr(qdev, set);
3658         if (status) {
3659                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3660                 return status;
3661         }
3662
3663         status = ql_route_initialize(qdev);
3664         if (status)
3665                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3666
3667         return status;
3668 }
3669
3670 static int ql_adapter_initialize(struct ql_adapter *qdev)
3671 {
3672         u32 value, mask;
3673         int i;
3674         int status = 0;
3675
3676         /*
3677          * Set up the System register to halt on errors.
3678          */
3679         value = SYS_EFE | SYS_FAE;
3680         mask = value << 16;
3681         ql_write32(qdev, SYS, mask | value);
3682
3683         /* Set the default queue, and VLAN behavior. */
3684         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3685         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3686         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3687
3688         /* Set the MPI interrupt to enabled. */
3689         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3690
3691         /* Enable the function, set pagesize, enable error checking. */
3692         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3693             FSC_EC | FSC_VM_PAGE_4K;
3694         value |= SPLT_SETTING;
3695
3696         /* Set/clear header splitting. */
3697         mask = FSC_VM_PAGESIZE_MASK |
3698             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3699         ql_write32(qdev, FSC, mask | value);
3700
3701         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3702
3703         /* Set RX packet routing to use port/pci function on which the
3704          * packet arrived on in addition to usual frame routing.
3705          * This is helpful on bonding where both interfaces can have
3706          * the same MAC address.
3707          */
3708         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3709         /* Reroute all packets to our Interface.
3710          * They may have been routed to MPI firmware
3711          * due to WOL.
3712          */
3713         value = ql_read32(qdev, MGMT_RCV_CFG);
3714         value &= ~MGMT_RCV_CFG_RM;
3715         mask = 0xffff0000;
3716
3717         /* Sticky reg needs clearing due to WOL. */
3718         ql_write32(qdev, MGMT_RCV_CFG, mask);
3719         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3720
3721         /* Default WOL is enable on Mezz cards */
3722         if (qdev->pdev->subsystem_device == 0x0068 ||
3723                         qdev->pdev->subsystem_device == 0x0180)
3724                 qdev->wol = WAKE_MAGIC;
3725
3726         /* Start up the rx queues. */
3727         for (i = 0; i < qdev->rx_ring_count; i++) {
3728                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3729                 if (status) {
3730                         netif_err(qdev, ifup, qdev->ndev,
3731                                   "Failed to start rx ring[%d].\n", i);
3732                         return status;
3733                 }
3734         }
3735
3736         /* If there is more than one inbound completion queue
3737          * then download a RICB to configure RSS.
3738          */
3739         if (qdev->rss_ring_count > 1) {
3740                 status = ql_start_rss(qdev);
3741                 if (status) {
3742                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3743                         return status;
3744                 }
3745         }
3746
3747         /* Start up the tx queues. */
3748         for (i = 0; i < qdev->tx_ring_count; i++) {
3749                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3750                 if (status) {
3751                         netif_err(qdev, ifup, qdev->ndev,
3752                                   "Failed to start tx ring[%d].\n", i);
3753                         return status;
3754                 }
3755         }
3756
3757         /* Initialize the port and set the max framesize. */
3758         status = qdev->nic_ops->port_initialize(qdev);
3759         if (status)
3760                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3761
3762         /* Set up the MAC address and frame routing filter. */
3763         status = ql_cam_route_initialize(qdev);
3764         if (status) {
3765                 netif_err(qdev, ifup, qdev->ndev,
3766                           "Failed to init CAM/Routing tables.\n");
3767                 return status;
3768         }
3769
3770         /* Start NAPI for the RSS queues. */
3771         for (i = 0; i < qdev->rss_ring_count; i++)
3772                 napi_enable(&qdev->rx_ring[i].napi);
3773
3774         return status;
3775 }
3776
3777 /* Issue soft reset to chip. */
3778 static int ql_adapter_reset(struct ql_adapter *qdev)
3779 {
3780         u32 value;
3781         int status = 0;
3782         unsigned long end_jiffies;
3783
3784         /* Clear all the entries in the routing table. */
3785         status = ql_clear_routing_entries(qdev);
3786         if (status) {
3787                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3788                 return status;
3789         }
3790
3791         end_jiffies = jiffies +
3792                 max((unsigned long)1, usecs_to_jiffies(30));
3793
3794         /* Check if bit is set then skip the mailbox command and
3795          * clear the bit, else we are in normal reset process.
3796          */
3797         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3798                 /* Stop management traffic. */
3799                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3800
3801                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3802                 ql_wait_fifo_empty(qdev);
3803         } else
3804                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3805
3806         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3807
3808         do {
3809                 value = ql_read32(qdev, RST_FO);
3810                 if ((value & RST_FO_FR) == 0)
3811                         break;
3812                 cpu_relax();
3813         } while (time_before(jiffies, end_jiffies));
3814
3815         if (value & RST_FO_FR) {
3816                 netif_err(qdev, ifdown, qdev->ndev,
3817                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3818                 status = -ETIMEDOUT;
3819         }
3820
3821         /* Resume management traffic. */
3822         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3823         return status;
3824 }
3825
3826 static void ql_display_dev_info(struct net_device *ndev)
3827 {
3828         struct ql_adapter *qdev = netdev_priv(ndev);
3829
3830         netif_info(qdev, probe, qdev->ndev,
3831                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3832                    "XG Roll = %d, XG Rev = %d.\n",
3833                    qdev->func,
3834                    qdev->port,
3835                    qdev->chip_rev_id & 0x0000000f,
3836                    qdev->chip_rev_id >> 4 & 0x0000000f,
3837                    qdev->chip_rev_id >> 8 & 0x0000000f,
3838                    qdev->chip_rev_id >> 12 & 0x0000000f);
3839         netif_info(qdev, probe, qdev->ndev,
3840                    "MAC address %pM\n", ndev->dev_addr);
3841 }
3842
3843 static int ql_wol(struct ql_adapter *qdev)
3844 {
3845         int status = 0;
3846         u32 wol = MB_WOL_DISABLE;
3847
3848         /* The CAM is still intact after a reset, but if we
3849          * are doing WOL, then we may need to program the
3850          * routing regs. We would also need to issue the mailbox
3851          * commands to instruct the MPI what to do per the ethtool
3852          * settings.
3853          */
3854
3855         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3856                         WAKE_MCAST | WAKE_BCAST)) {
3857                 netif_err(qdev, ifdown, qdev->ndev,
3858                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3859                           qdev->wol);
3860                 return -EINVAL;
3861         }
3862
3863         if (qdev->wol & WAKE_MAGIC) {
3864                 status = ql_mb_wol_set_magic(qdev, 1);
3865                 if (status) {
3866                         netif_err(qdev, ifdown, qdev->ndev,
3867                                   "Failed to set magic packet on %s.\n",
3868                                   qdev->ndev->name);
3869                         return status;
3870                 } else
3871                         netif_info(qdev, drv, qdev->ndev,
3872                                    "Enabled magic packet successfully on %s.\n",
3873                                    qdev->ndev->name);
3874
3875                 wol |= MB_WOL_MAGIC_PKT;
3876         }
3877
3878         if (qdev->wol) {
3879                 wol |= MB_WOL_MODE_ON;
3880                 status = ql_mb_wol_mode(qdev, wol);
3881                 netif_err(qdev, drv, qdev->ndev,
3882                           "WOL %s (wol code 0x%x) on %s\n",
3883                           (status == 0) ? "Successfully set" : "Failed",
3884                           wol, qdev->ndev->name);
3885         }
3886
3887         return status;
3888 }
3889
3890 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3891 {
3892
3893         /* Don't kill the reset worker thread if we
3894          * are in the process of recovery.
3895          */
3896         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3897                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3898         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3899         cancel_delayed_work_sync(&qdev->mpi_work);
3900         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3901         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3902         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3903 }
3904
3905 static int ql_adapter_down(struct ql_adapter *qdev)
3906 {
3907         int i, status = 0;
3908
3909         ql_link_off(qdev);
3910
3911         ql_cancel_all_work_sync(qdev);
3912
3913         for (i = 0; i < qdev->rss_ring_count; i++)
3914                 napi_disable(&qdev->rx_ring[i].napi);
3915
3916         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3917
3918         ql_disable_interrupts(qdev);
3919
3920         ql_tx_ring_clean(qdev);
3921
3922         /* Call netif_napi_del() from common point.
3923          */
3924         for (i = 0; i < qdev->rss_ring_count; i++)
3925                 netif_napi_del(&qdev->rx_ring[i].napi);
3926
3927         status = ql_adapter_reset(qdev);
3928         if (status)
3929                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3930                           qdev->func);
3931         ql_free_rx_buffers(qdev);
3932
3933         return status;
3934 }
3935
3936 static int ql_adapter_up(struct ql_adapter *qdev)
3937 {
3938         int err = 0;
3939
3940         err = ql_adapter_initialize(qdev);
3941         if (err) {
3942                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3943                 goto err_init;
3944         }
3945         set_bit(QL_ADAPTER_UP, &qdev->flags);
3946         ql_alloc_rx_buffers(qdev);
3947         /* If the port is initialized and the
3948          * link is up the turn on the carrier.
3949          */
3950         if ((ql_read32(qdev, STS) & qdev->port_init) &&
3951                         (ql_read32(qdev, STS) & qdev->port_link_up))
3952                 ql_link_on(qdev);
3953         /* Restore rx mode. */
3954         clear_bit(QL_ALLMULTI, &qdev->flags);
3955         clear_bit(QL_PROMISCUOUS, &qdev->flags);
3956         qlge_set_multicast_list(qdev->ndev);
3957
3958         /* Restore vlan setting. */
3959         qlge_restore_vlan(qdev);
3960
3961         ql_enable_interrupts(qdev);
3962         ql_enable_all_completion_interrupts(qdev);
3963         netif_tx_start_all_queues(qdev->ndev);
3964
3965         return 0;
3966 err_init:
3967         ql_adapter_reset(qdev);
3968         return err;
3969 }
3970
3971 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3972 {
3973         ql_free_mem_resources(qdev);
3974         ql_free_irq(qdev);
3975 }
3976
3977 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3978 {
3979         int status = 0;
3980
3981         if (ql_alloc_mem_resources(qdev)) {
3982                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
3983                 return -ENOMEM;
3984         }
3985         status = ql_request_irq(qdev);
3986         return status;
3987 }
3988
3989 static int qlge_close(struct net_device *ndev)
3990 {
3991         struct ql_adapter *qdev = netdev_priv(ndev);
3992
3993         /* If we hit pci_channel_io_perm_failure
3994          * failure condition, then we already
3995          * brought the adapter down.
3996          */
3997         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
3998                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
3999                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4000                 return 0;
4001         }
4002
4003         /*
4004          * Wait for device to recover from a reset.
4005          * (Rarely happens, but possible.)
4006          */
4007         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4008                 msleep(1);
4009         ql_adapter_down(qdev);
4010         ql_release_adapter_resources(qdev);
4011         return 0;
4012 }
4013
4014 static int ql_configure_rings(struct ql_adapter *qdev)
4015 {
4016         int i;
4017         struct rx_ring *rx_ring;
4018         struct tx_ring *tx_ring;
4019         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4020         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4021                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4022
4023         qdev->lbq_buf_order = get_order(lbq_buf_len);
4024
4025         /* In a perfect world we have one RSS ring for each CPU
4026          * and each has it's own vector.  To do that we ask for
4027          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4028          * vector count to what we actually get.  We then
4029          * allocate an RSS ring for each.
4030          * Essentially, we are doing min(cpu_count, msix_vector_count).
4031          */
4032         qdev->intr_count = cpu_cnt;
4033         ql_enable_msix(qdev);
4034         /* Adjust the RSS ring count to the actual vector count. */
4035         qdev->rss_ring_count = qdev->intr_count;
4036         qdev->tx_ring_count = cpu_cnt;
4037         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4038
4039         for (i = 0; i < qdev->tx_ring_count; i++) {
4040                 tx_ring = &qdev->tx_ring[i];
4041                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4042                 tx_ring->qdev = qdev;
4043                 tx_ring->wq_id = i;
4044                 tx_ring->wq_len = qdev->tx_ring_size;
4045                 tx_ring->wq_size =
4046                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4047
4048                 /*
4049                  * The completion queue ID for the tx rings start
4050                  * immediately after the rss rings.
4051                  */
4052                 tx_ring->cq_id = qdev->rss_ring_count + i;
4053         }
4054
4055         for (i = 0; i < qdev->rx_ring_count; i++) {
4056                 rx_ring = &qdev->rx_ring[i];
4057                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4058                 rx_ring->qdev = qdev;
4059                 rx_ring->cq_id = i;
4060                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4061                 if (i < qdev->rss_ring_count) {
4062                         /*
4063                          * Inbound (RSS) queues.
4064                          */
4065                         rx_ring->cq_len = qdev->rx_ring_size;
4066                         rx_ring->cq_size =
4067                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4068                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4069                         rx_ring->lbq_size =
4070                             rx_ring->lbq_len * sizeof(__le64);
4071                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4072                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4073                         rx_ring->sbq_size =
4074                             rx_ring->sbq_len * sizeof(__le64);
4075                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4076                         rx_ring->type = RX_Q;
4077                 } else {
4078                         /*
4079                          * Outbound queue handles outbound completions only.
4080                          */
4081                         /* outbound cq is same size as tx_ring it services. */
4082                         rx_ring->cq_len = qdev->tx_ring_size;
4083                         rx_ring->cq_size =
4084                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4085                         rx_ring->lbq_len = 0;
4086                         rx_ring->lbq_size = 0;
4087                         rx_ring->lbq_buf_size = 0;
4088                         rx_ring->sbq_len = 0;
4089                         rx_ring->sbq_size = 0;
4090                         rx_ring->sbq_buf_size = 0;
4091                         rx_ring->type = TX_Q;
4092                 }
4093         }
4094         return 0;
4095 }
4096
4097 static int qlge_open(struct net_device *ndev)
4098 {
4099         int err = 0;
4100         struct ql_adapter *qdev = netdev_priv(ndev);
4101
4102         err = ql_adapter_reset(qdev);
4103         if (err)
4104                 return err;
4105
4106         err = ql_configure_rings(qdev);
4107         if (err)
4108                 return err;
4109
4110         err = ql_get_adapter_resources(qdev);
4111         if (err)
4112                 goto error_up;
4113
4114         err = ql_adapter_up(qdev);
4115         if (err)
4116                 goto error_up;
4117
4118         return err;
4119
4120 error_up:
4121         ql_release_adapter_resources(qdev);
4122         return err;
4123 }
4124
4125 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4126 {
4127         struct rx_ring *rx_ring;
4128         int i, status;
4129         u32 lbq_buf_len;
4130
4131         /* Wait for an outstanding reset to complete. */
4132         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4133                 int i = 3;
4134                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4135                         netif_err(qdev, ifup, qdev->ndev,
4136                                   "Waiting for adapter UP...\n");
4137                         ssleep(1);
4138                 }
4139
4140                 if (!i) {
4141                         netif_err(qdev, ifup, qdev->ndev,
4142                                   "Timed out waiting for adapter UP\n");
4143                         return -ETIMEDOUT;
4144                 }
4145         }
4146
4147         status = ql_adapter_down(qdev);
4148         if (status)
4149                 goto error;
4150
4151         /* Get the new rx buffer size. */
4152         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4153                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4154         qdev->lbq_buf_order = get_order(lbq_buf_len);
4155
4156         for (i = 0; i < qdev->rss_ring_count; i++) {
4157                 rx_ring = &qdev->rx_ring[i];
4158                 /* Set the new size. */
4159                 rx_ring->lbq_buf_size = lbq_buf_len;
4160         }
4161
4162         status = ql_adapter_up(qdev);
4163         if (status)
4164                 goto error;
4165
4166         return status;
4167 error:
4168         netif_alert(qdev, ifup, qdev->ndev,
4169                     "Driver up/down cycle failed, closing device.\n");
4170         set_bit(QL_ADAPTER_UP, &qdev->flags);
4171         dev_close(qdev->ndev);
4172         return status;
4173 }
4174
4175 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4176 {
4177         struct ql_adapter *qdev = netdev_priv(ndev);
4178         int status;
4179
4180         if (ndev->mtu == 1500 && new_mtu == 9000) {
4181                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4182         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4183                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4184         } else
4185                 return -EINVAL;
4186
4187         queue_delayed_work(qdev->workqueue,
4188                         &qdev->mpi_port_cfg_work, 3*HZ);
4189
4190         ndev->mtu = new_mtu;
4191
4192         if (!netif_running(qdev->ndev)) {
4193                 return 0;
4194         }
4195
4196         status = ql_change_rx_buffers(qdev);
4197         if (status) {
4198                 netif_err(qdev, ifup, qdev->ndev,
4199                           "Changing MTU failed.\n");
4200         }
4201
4202         return status;
4203 }
4204
4205 static struct net_device_stats *qlge_get_stats(struct net_device
4206                                                *ndev)
4207 {
4208         struct ql_adapter *qdev = netdev_priv(ndev);
4209         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4210         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4211         unsigned long pkts, mcast, dropped, errors, bytes;
4212         int i;
4213
4214         /* Get RX stats. */
4215         pkts = mcast = dropped = errors = bytes = 0;
4216         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4217                         pkts += rx_ring->rx_packets;
4218                         bytes += rx_ring->rx_bytes;
4219                         dropped += rx_ring->rx_dropped;
4220                         errors += rx_ring->rx_errors;
4221                         mcast += rx_ring->rx_multicast;
4222         }
4223         ndev->stats.rx_packets = pkts;
4224         ndev->stats.rx_bytes = bytes;
4225         ndev->stats.rx_dropped = dropped;
4226         ndev->stats.rx_errors = errors;
4227         ndev->stats.multicast = mcast;
4228
4229         /* Get TX stats. */
4230         pkts = errors = bytes = 0;
4231         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4232                         pkts += tx_ring->tx_packets;
4233                         bytes += tx_ring->tx_bytes;
4234                         errors += tx_ring->tx_errors;
4235         }
4236         ndev->stats.tx_packets = pkts;
4237         ndev->stats.tx_bytes = bytes;
4238         ndev->stats.tx_errors = errors;
4239         return &ndev->stats;
4240 }
4241
4242 static void qlge_set_multicast_list(struct net_device *ndev)
4243 {
4244         struct ql_adapter *qdev = netdev_priv(ndev);
4245         struct netdev_hw_addr *ha;
4246         int i, status;
4247
4248         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4249         if (status)
4250                 return;
4251         /*
4252          * Set or clear promiscuous mode if a
4253          * transition is taking place.
4254          */
4255         if (ndev->flags & IFF_PROMISC) {
4256                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4257                         if (ql_set_routing_reg
4258                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4259                                 netif_err(qdev, hw, qdev->ndev,
4260                                           "Failed to set promiscuous mode.\n");
4261                         } else {
4262                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4263                         }
4264                 }
4265         } else {
4266                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4267                         if (ql_set_routing_reg
4268                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4269                                 netif_err(qdev, hw, qdev->ndev,
4270                                           "Failed to clear promiscuous mode.\n");
4271                         } else {
4272                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4273                         }
4274                 }
4275         }
4276
4277         /*
4278          * Set or clear all multicast mode if a
4279          * transition is taking place.
4280          */
4281         if ((ndev->flags & IFF_ALLMULTI) ||
4282             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4283                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4284                         if (ql_set_routing_reg
4285                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4286                                 netif_err(qdev, hw, qdev->ndev,
4287                                           "Failed to set all-multi mode.\n");
4288                         } else {
4289                                 set_bit(QL_ALLMULTI, &qdev->flags);
4290                         }
4291                 }
4292         } else {
4293                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4294                         if (ql_set_routing_reg
4295                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4296                                 netif_err(qdev, hw, qdev->ndev,
4297                                           "Failed to clear all-multi mode.\n");
4298                         } else {
4299                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4300                         }
4301                 }
4302         }
4303
4304         if (!netdev_mc_empty(ndev)) {
4305                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4306                 if (status)
4307                         goto exit;
4308                 i = 0;
4309                 netdev_for_each_mc_addr(ha, ndev) {
4310                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4311                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4312                                 netif_err(qdev, hw, qdev->ndev,
4313                                           "Failed to loadmulticast address.\n");
4314                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4315                                 goto exit;
4316                         }
4317                         i++;
4318                 }
4319                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4320                 if (ql_set_routing_reg
4321                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4322                         netif_err(qdev, hw, qdev->ndev,
4323                                   "Failed to set multicast match mode.\n");
4324                 } else {
4325                         set_bit(QL_ALLMULTI, &qdev->flags);
4326                 }
4327         }
4328 exit:
4329         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4330 }
4331
4332 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4333 {
4334         struct ql_adapter *qdev = netdev_priv(ndev);
4335         struct sockaddr *addr = p;
4336         int status;
4337
4338         if (!is_valid_ether_addr(addr->sa_data))
4339                 return -EADDRNOTAVAIL;
4340         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4341         /* Update local copy of current mac address. */
4342         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4343
4344         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4345         if (status)
4346                 return status;
4347         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4348                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4349         if (status)
4350                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4351         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4352         return status;
4353 }
4354
4355 static void qlge_tx_timeout(struct net_device *ndev)
4356 {
4357         struct ql_adapter *qdev = netdev_priv(ndev);
4358         ql_queue_asic_error(qdev);
4359 }
4360
4361 static void ql_asic_reset_work(struct work_struct *work)
4362 {
4363         struct ql_adapter *qdev =
4364             container_of(work, struct ql_adapter, asic_reset_work.work);
4365         int status;
4366         rtnl_lock();
4367         status = ql_adapter_down(qdev);
4368         if (status)
4369                 goto error;
4370
4371         status = ql_adapter_up(qdev);
4372         if (status)
4373                 goto error;
4374
4375         /* Restore rx mode. */
4376         clear_bit(QL_ALLMULTI, &qdev->flags);
4377         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4378         qlge_set_multicast_list(qdev->ndev);
4379
4380         rtnl_unlock();
4381         return;
4382 error:
4383         netif_alert(qdev, ifup, qdev->ndev,
4384                     "Driver up/down cycle failed, closing device\n");
4385
4386         set_bit(QL_ADAPTER_UP, &qdev->flags);
4387         dev_close(qdev->ndev);
4388         rtnl_unlock();
4389 }
4390
4391 static const struct nic_operations qla8012_nic_ops = {
4392         .get_flash              = ql_get_8012_flash_params,
4393         .port_initialize        = ql_8012_port_initialize,
4394 };
4395
4396 static const struct nic_operations qla8000_nic_ops = {
4397         .get_flash              = ql_get_8000_flash_params,
4398         .port_initialize        = ql_8000_port_initialize,
4399 };
4400
4401 /* Find the pcie function number for the other NIC
4402  * on this chip.  Since both NIC functions share a
4403  * common firmware we have the lowest enabled function
4404  * do any common work.  Examples would be resetting
4405  * after a fatal firmware error, or doing a firmware
4406  * coredump.
4407  */
4408 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4409 {
4410         int status = 0;
4411         u32 temp;
4412         u32 nic_func1, nic_func2;
4413
4414         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4415                         &temp);
4416         if (status)
4417                 return status;
4418
4419         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4420                         MPI_TEST_NIC_FUNC_MASK);
4421         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4422                         MPI_TEST_NIC_FUNC_MASK);
4423
4424         if (qdev->func == nic_func1)
4425                 qdev->alt_func = nic_func2;
4426         else if (qdev->func == nic_func2)
4427                 qdev->alt_func = nic_func1;
4428         else
4429                 status = -EIO;
4430
4431         return status;
4432 }
4433
4434 static int ql_get_board_info(struct ql_adapter *qdev)
4435 {
4436         int status;
4437         qdev->func =
4438             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4439         if (qdev->func > 3)
4440                 return -EIO;
4441
4442         status = ql_get_alt_pcie_func(qdev);
4443         if (status)
4444                 return status;
4445
4446         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4447         if (qdev->port) {
4448                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4449                 qdev->port_link_up = STS_PL1;
4450                 qdev->port_init = STS_PI1;
4451                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4452                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4453         } else {
4454                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4455                 qdev->port_link_up = STS_PL0;
4456                 qdev->port_init = STS_PI0;
4457                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4458                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4459         }
4460         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4461         qdev->device_id = qdev->pdev->device;
4462         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4463                 qdev->nic_ops = &qla8012_nic_ops;
4464         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4465                 qdev->nic_ops = &qla8000_nic_ops;
4466         return status;
4467 }
4468
4469 static void ql_release_all(struct pci_dev *pdev)
4470 {
4471         struct net_device *ndev = pci_get_drvdata(pdev);
4472         struct ql_adapter *qdev = netdev_priv(ndev);
4473
4474         if (qdev->workqueue) {
4475                 destroy_workqueue(qdev->workqueue);
4476                 qdev->workqueue = NULL;
4477         }
4478
4479         if (qdev->reg_base)
4480                 iounmap(qdev->reg_base);
4481         if (qdev->doorbell_area)
4482                 iounmap(qdev->doorbell_area);
4483         vfree(qdev->mpi_coredump);
4484         pci_release_regions(pdev);
4485         pci_set_drvdata(pdev, NULL);
4486 }
4487
4488 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4489                           int cards_found)
4490 {
4491         struct ql_adapter *qdev = netdev_priv(ndev);
4492         int err = 0;
4493
4494         memset((void *)qdev, 0, sizeof(*qdev));
4495         err = pci_enable_device(pdev);
4496         if (err) {
4497                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4498                 return err;
4499         }
4500
4501         qdev->ndev = ndev;
4502         qdev->pdev = pdev;
4503         pci_set_drvdata(pdev, ndev);
4504
4505         /* Set PCIe read request size */
4506         err = pcie_set_readrq(pdev, 4096);
4507         if (err) {
4508                 dev_err(&pdev->dev, "Set readrq failed.\n");
4509                 goto err_out1;
4510         }
4511
4512         err = pci_request_regions(pdev, DRV_NAME);
4513         if (err) {
4514                 dev_err(&pdev->dev, "PCI region request failed.\n");
4515                 return err;
4516         }
4517
4518         pci_set_master(pdev);
4519         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4520                 set_bit(QL_DMA64, &qdev->flags);
4521                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4522         } else {
4523                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4524                 if (!err)
4525                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4526         }
4527
4528         if (err) {
4529                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4530                 goto err_out2;
4531         }
4532
4533         /* Set PCIe reset type for EEH to fundamental. */
4534         pdev->needs_freset = 1;
4535         pci_save_state(pdev);
4536         qdev->reg_base =
4537             ioremap_nocache(pci_resource_start(pdev, 1),
4538                             pci_resource_len(pdev, 1));
4539         if (!qdev->reg_base) {
4540                 dev_err(&pdev->dev, "Register mapping failed.\n");
4541                 err = -ENOMEM;
4542                 goto err_out2;
4543         }
4544
4545         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4546         qdev->doorbell_area =
4547             ioremap_nocache(pci_resource_start(pdev, 3),
4548                             pci_resource_len(pdev, 3));
4549         if (!qdev->doorbell_area) {
4550                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4551                 err = -ENOMEM;
4552                 goto err_out2;
4553         }
4554
4555         err = ql_get_board_info(qdev);
4556         if (err) {
4557                 dev_err(&pdev->dev, "Register access failed.\n");
4558                 err = -EIO;
4559                 goto err_out2;
4560         }
4561         qdev->msg_enable = netif_msg_init(debug, default_msg);
4562         spin_lock_init(&qdev->hw_lock);
4563         spin_lock_init(&qdev->stats_lock);
4564
4565         if (qlge_mpi_coredump) {
4566                 qdev->mpi_coredump =
4567                         vmalloc(sizeof(struct ql_mpi_coredump));
4568                 if (qdev->mpi_coredump == NULL) {
4569                         err = -ENOMEM;
4570                         goto err_out2;
4571                 }
4572                 if (qlge_force_coredump)
4573                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4574         }
4575         /* make sure the EEPROM is good */
4576         err = qdev->nic_ops->get_flash(qdev);
4577         if (err) {
4578                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4579                 goto err_out2;
4580         }
4581
4582         /* Keep local copy of current mac address. */
4583         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4584
4585         /* Set up the default ring sizes. */
4586         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4587         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4588
4589         /* Set up the coalescing parameters. */
4590         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4591         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4592         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4593         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4594
4595         /*
4596          * Set up the operating parameters.
4597          */
4598         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4599         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4600         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4601         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4602         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4603         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4604         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4605         init_completion(&qdev->ide_completion);
4606         mutex_init(&qdev->mpi_mutex);
4607
4608         if (!cards_found) {
4609                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4610                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4611                          DRV_NAME, DRV_VERSION);
4612         }
4613         return 0;
4614 err_out2:
4615         ql_release_all(pdev);
4616 err_out1:
4617         pci_disable_device(pdev);
4618         return err;
4619 }
4620
4621 static const struct net_device_ops qlge_netdev_ops = {
4622         .ndo_open               = qlge_open,
4623         .ndo_stop               = qlge_close,
4624         .ndo_start_xmit         = qlge_send,
4625         .ndo_change_mtu         = qlge_change_mtu,
4626         .ndo_get_stats          = qlge_get_stats,
4627         .ndo_set_rx_mode        = qlge_set_multicast_list,
4628         .ndo_set_mac_address    = qlge_set_mac_address,
4629         .ndo_validate_addr      = eth_validate_addr,
4630         .ndo_tx_timeout         = qlge_tx_timeout,
4631         .ndo_fix_features       = qlge_fix_features,
4632         .ndo_set_features       = qlge_set_features,
4633         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4634         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4635 };
4636
4637 static void ql_timer(unsigned long data)
4638 {
4639         struct ql_adapter *qdev = (struct ql_adapter *)data;
4640         u32 var = 0;
4641
4642         var = ql_read32(qdev, STS);
4643         if (pci_channel_offline(qdev->pdev)) {
4644                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4645                 return;
4646         }
4647
4648         mod_timer(&qdev->timer, jiffies + (5*HZ));
4649 }
4650
4651 static int qlge_probe(struct pci_dev *pdev,
4652                       const struct pci_device_id *pci_entry)
4653 {
4654         struct net_device *ndev = NULL;
4655         struct ql_adapter *qdev = NULL;
4656         static int cards_found = 0;
4657         int err = 0;
4658
4659         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4660                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4661         if (!ndev)
4662                 return -ENOMEM;
4663
4664         err = ql_init_device(pdev, ndev, cards_found);
4665         if (err < 0) {
4666                 free_netdev(ndev);
4667                 return err;
4668         }
4669
4670         qdev = netdev_priv(ndev);
4671         SET_NETDEV_DEV(ndev, &pdev->dev);
4672         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4673                 NETIF_F_TSO | NETIF_F_TSO_ECN |
4674                 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4675         ndev->features = ndev->hw_features |
4676                 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4677         ndev->vlan_features = ndev->hw_features;
4678
4679         if (test_bit(QL_DMA64, &qdev->flags))
4680                 ndev->features |= NETIF_F_HIGHDMA;
4681
4682         /*
4683          * Set up net_device structure.
4684          */
4685         ndev->tx_queue_len = qdev->tx_ring_size;
4686         ndev->irq = pdev->irq;
4687
4688         ndev->netdev_ops = &qlge_netdev_ops;
4689         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4690         ndev->watchdog_timeo = 10 * HZ;
4691
4692         err = register_netdev(ndev);
4693         if (err) {
4694                 dev_err(&pdev->dev, "net device registration failed.\n");
4695                 ql_release_all(pdev);
4696                 pci_disable_device(pdev);
4697                 return err;
4698         }
4699         /* Start up the timer to trigger EEH if
4700          * the bus goes dead
4701          */
4702         init_timer_deferrable(&qdev->timer);
4703         qdev->timer.data = (unsigned long)qdev;
4704         qdev->timer.function = ql_timer;
4705         qdev->timer.expires = jiffies + (5*HZ);
4706         add_timer(&qdev->timer);
4707         ql_link_off(qdev);
4708         ql_display_dev_info(ndev);
4709         atomic_set(&qdev->lb_count, 0);
4710         cards_found++;
4711         return 0;
4712 }
4713
4714 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4715 {
4716         return qlge_send(skb, ndev);
4717 }
4718
4719 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4720 {
4721         return ql_clean_inbound_rx_ring(rx_ring, budget);
4722 }
4723
4724 static void qlge_remove(struct pci_dev *pdev)
4725 {
4726         struct net_device *ndev = pci_get_drvdata(pdev);
4727         struct ql_adapter *qdev = netdev_priv(ndev);
4728         del_timer_sync(&qdev->timer);
4729         ql_cancel_all_work_sync(qdev);
4730         unregister_netdev(ndev);
4731         ql_release_all(pdev);
4732         pci_disable_device(pdev);
4733         free_netdev(ndev);
4734 }
4735
4736 /* Clean up resources without touching hardware. */
4737 static void ql_eeh_close(struct net_device *ndev)
4738 {
4739         int i;
4740         struct ql_adapter *qdev = netdev_priv(ndev);
4741
4742         if (netif_carrier_ok(ndev)) {
4743                 netif_carrier_off(ndev);
4744                 netif_stop_queue(ndev);
4745         }
4746
4747         /* Disabling the timer */
4748         del_timer_sync(&qdev->timer);
4749         ql_cancel_all_work_sync(qdev);
4750
4751         for (i = 0; i < qdev->rss_ring_count; i++)
4752                 netif_napi_del(&qdev->rx_ring[i].napi);
4753
4754         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4755         ql_tx_ring_clean(qdev);
4756         ql_free_rx_buffers(qdev);
4757         ql_release_adapter_resources(qdev);
4758 }
4759
4760 /*
4761  * This callback is called by the PCI subsystem whenever
4762  * a PCI bus error is detected.
4763  */
4764 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4765                                                enum pci_channel_state state)
4766 {
4767         struct net_device *ndev = pci_get_drvdata(pdev);
4768         struct ql_adapter *qdev = netdev_priv(ndev);
4769
4770         switch (state) {
4771         case pci_channel_io_normal:
4772                 return PCI_ERS_RESULT_CAN_RECOVER;
4773         case pci_channel_io_frozen:
4774                 netif_device_detach(ndev);
4775                 if (netif_running(ndev))
4776                         ql_eeh_close(ndev);
4777                 pci_disable_device(pdev);
4778                 return PCI_ERS_RESULT_NEED_RESET;
4779         case pci_channel_io_perm_failure:
4780                 dev_err(&pdev->dev,
4781                         "%s: pci_channel_io_perm_failure.\n", __func__);
4782                 ql_eeh_close(ndev);
4783                 set_bit(QL_EEH_FATAL, &qdev->flags);
4784                 return PCI_ERS_RESULT_DISCONNECT;
4785         }
4786
4787         /* Request a slot reset. */
4788         return PCI_ERS_RESULT_NEED_RESET;
4789 }
4790
4791 /*
4792  * This callback is called after the PCI buss has been reset.
4793  * Basically, this tries to restart the card from scratch.
4794  * This is a shortened version of the device probe/discovery code,
4795  * it resembles the first-half of the () routine.
4796  */
4797 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4798 {
4799         struct net_device *ndev = pci_get_drvdata(pdev);
4800         struct ql_adapter *qdev = netdev_priv(ndev);
4801
4802         pdev->error_state = pci_channel_io_normal;
4803
4804         pci_restore_state(pdev);
4805         if (pci_enable_device(pdev)) {
4806                 netif_err(qdev, ifup, qdev->ndev,
4807                           "Cannot re-enable PCI device after reset.\n");
4808                 return PCI_ERS_RESULT_DISCONNECT;
4809         }
4810         pci_set_master(pdev);
4811
4812         if (ql_adapter_reset(qdev)) {
4813                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4814                 set_bit(QL_EEH_FATAL, &qdev->flags);
4815                 return PCI_ERS_RESULT_DISCONNECT;
4816         }
4817
4818         return PCI_ERS_RESULT_RECOVERED;
4819 }
4820
4821 static void qlge_io_resume(struct pci_dev *pdev)
4822 {
4823         struct net_device *ndev = pci_get_drvdata(pdev);
4824         struct ql_adapter *qdev = netdev_priv(ndev);
4825         int err = 0;
4826
4827         if (netif_running(ndev)) {
4828                 err = qlge_open(ndev);
4829                 if (err) {
4830                         netif_err(qdev, ifup, qdev->ndev,
4831                                   "Device initialization failed after reset.\n");
4832                         return;
4833                 }
4834         } else {
4835                 netif_err(qdev, ifup, qdev->ndev,
4836                           "Device was not running prior to EEH.\n");
4837         }
4838         mod_timer(&qdev->timer, jiffies + (5*HZ));
4839         netif_device_attach(ndev);
4840 }
4841
4842 static const struct pci_error_handlers qlge_err_handler = {
4843         .error_detected = qlge_io_error_detected,
4844         .slot_reset = qlge_io_slot_reset,
4845         .resume = qlge_io_resume,
4846 };
4847
4848 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4849 {
4850         struct net_device *ndev = pci_get_drvdata(pdev);
4851         struct ql_adapter *qdev = netdev_priv(ndev);
4852         int err;
4853
4854         netif_device_detach(ndev);
4855         del_timer_sync(&qdev->timer);
4856
4857         if (netif_running(ndev)) {
4858                 err = ql_adapter_down(qdev);
4859                 if (!err)
4860                         return err;
4861         }
4862
4863         ql_wol(qdev);
4864         err = pci_save_state(pdev);
4865         if (err)
4866                 return err;
4867
4868         pci_disable_device(pdev);
4869
4870         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4871
4872         return 0;
4873 }
4874
4875 #ifdef CONFIG_PM
4876 static int qlge_resume(struct pci_dev *pdev)
4877 {
4878         struct net_device *ndev = pci_get_drvdata(pdev);
4879         struct ql_adapter *qdev = netdev_priv(ndev);
4880         int err;
4881
4882         pci_set_power_state(pdev, PCI_D0);
4883         pci_restore_state(pdev);
4884         err = pci_enable_device(pdev);
4885         if (err) {
4886                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4887                 return err;
4888         }
4889         pci_set_master(pdev);
4890
4891         pci_enable_wake(pdev, PCI_D3hot, 0);
4892         pci_enable_wake(pdev, PCI_D3cold, 0);
4893
4894         if (netif_running(ndev)) {
4895                 err = ql_adapter_up(qdev);
4896                 if (err)
4897                         return err;
4898         }
4899
4900         mod_timer(&qdev->timer, jiffies + (5*HZ));
4901         netif_device_attach(ndev);
4902
4903         return 0;
4904 }
4905 #endif /* CONFIG_PM */
4906
4907 static void qlge_shutdown(struct pci_dev *pdev)
4908 {
4909         qlge_suspend(pdev, PMSG_SUSPEND);
4910 }
4911
4912 static struct pci_driver qlge_driver = {
4913         .name = DRV_NAME,
4914         .id_table = qlge_pci_tbl,
4915         .probe = qlge_probe,
4916         .remove = qlge_remove,
4917 #ifdef CONFIG_PM
4918         .suspend = qlge_suspend,
4919         .resume = qlge_resume,
4920 #endif
4921         .shutdown = qlge_shutdown,
4922         .err_handler = &qlge_err_handler
4923 };
4924
4925 static int __init qlge_init_module(void)
4926 {
4927         return pci_register_driver(&qlge_driver);
4928 }
4929
4930 static void __exit qlge_exit(void)
4931 {
4932         pci_unregister_driver(&qlge_driver);
4933 }
4934
4935 module_init(qlge_init_module);
4936 module_exit(qlge_exit);