ixgbevf: implement ethtool get/set coalesce
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/sctp.h>
46 #include <linux/ipv6.h>
47 #include <linux/slab.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/ethtool.h>
51 #include <linux/if.h>
52 #include <linux/if_vlan.h>
53 #include <linux/prefetch.h>
54
55 #include "ixgbevf.h"
56
57 const char ixgbevf_driver_name[] = "ixgbevf";
58 static const char ixgbevf_driver_string[] =
59         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
60
61 #define DRV_VERSION "2.7.12-k"
62 const char ixgbevf_driver_version[] = DRV_VERSION;
63 static char ixgbevf_copyright[] =
64         "Copyright (c) 2009 - 2012 Intel Corporation.";
65
66 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
67         [board_82599_vf] = &ixgbevf_82599_vf_info,
68         [board_X540_vf]  = &ixgbevf_X540_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72  *
73  * Wildcard entries (PCI_ANY_ID) should come last
74  * Last entry must be all 0s
75  *
76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77  *   Class, Class Mask, private data (not used) }
78  */
79 static DEFINE_PCI_DEVICE_TABLE(ixgbevf_pci_tbl) = {
80         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82         /* required last entry */
83         {0, }
84 };
85 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
86
87 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
88 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
93 static int debug = -1;
94 module_param(debug, int, 0);
95 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
96
97 /* forward decls */
98 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
99 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
100
101 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
102                                            struct ixgbevf_ring *rx_ring,
103                                            u32 val)
104 {
105         /*
106          * Force memory writes to complete before letting h/w
107          * know there are new descriptors to fetch.  (Only
108          * applicable for weak-ordered memory model archs,
109          * such as IA-64).
110          */
111         wmb();
112         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
113 }
114
115 /**
116  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
117  * @adapter: pointer to adapter struct
118  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
119  * @queue: queue to map the corresponding interrupt to
120  * @msix_vector: the vector to map to the corresponding queue
121  */
122 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
123                              u8 queue, u8 msix_vector)
124 {
125         u32 ivar, index;
126         struct ixgbe_hw *hw = &adapter->hw;
127         if (direction == -1) {
128                 /* other causes */
129                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
130                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
131                 ivar &= ~0xFF;
132                 ivar |= msix_vector;
133                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
134         } else {
135                 /* tx or rx causes */
136                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
137                 index = ((16 * (queue & 1)) + (8 * direction));
138                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
139                 ivar &= ~(0xFF << index);
140                 ivar |= (msix_vector << index);
141                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
142         }
143 }
144
145 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
146                                                struct ixgbevf_tx_buffer
147                                                *tx_buffer_info)
148 {
149         if (tx_buffer_info->dma) {
150                 if (tx_buffer_info->mapped_as_page)
151                         dma_unmap_page(tx_ring->dev,
152                                        tx_buffer_info->dma,
153                                        tx_buffer_info->length,
154                                        DMA_TO_DEVICE);
155                 else
156                         dma_unmap_single(tx_ring->dev,
157                                          tx_buffer_info->dma,
158                                          tx_buffer_info->length,
159                                          DMA_TO_DEVICE);
160                 tx_buffer_info->dma = 0;
161         }
162         if (tx_buffer_info->skb) {
163                 dev_kfree_skb_any(tx_buffer_info->skb);
164                 tx_buffer_info->skb = NULL;
165         }
166         tx_buffer_info->time_stamp = 0;
167         /* tx_buffer_info must be completely set up in the transmit path */
168 }
169
170 #define IXGBE_MAX_TXD_PWR       14
171 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
172
173 /* Tx Descriptors needed, worst case */
174 #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IXGBE_MAX_DATA_PER_TXD)
175 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
176
177 static void ixgbevf_tx_timeout(struct net_device *netdev);
178
179 /**
180  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
181  * @q_vector: board private structure
182  * @tx_ring: tx ring to clean
183  **/
184 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
185                                  struct ixgbevf_ring *tx_ring)
186 {
187         struct ixgbevf_adapter *adapter = q_vector->adapter;
188         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
189         struct ixgbevf_tx_buffer *tx_buffer_info;
190         unsigned int i, count = 0;
191         unsigned int total_bytes = 0, total_packets = 0;
192
193         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
194                 return true;
195
196         i = tx_ring->next_to_clean;
197         tx_buffer_info = &tx_ring->tx_buffer_info[i];
198         eop_desc = tx_buffer_info->next_to_watch;
199
200         do {
201                 bool cleaned = false;
202
203                 /* if next_to_watch is not set then there is no work pending */
204                 if (!eop_desc)
205                         break;
206
207                 /* prevent any other reads prior to eop_desc */
208                 read_barrier_depends();
209
210                 /* if DD is not set pending work has not been completed */
211                 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
212                         break;
213
214                 /* clear next_to_watch to prevent false hangs */
215                 tx_buffer_info->next_to_watch = NULL;
216
217                 for ( ; !cleaned; count++) {
218                         struct sk_buff *skb;
219                         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
220                         cleaned = (tx_desc == eop_desc);
221                         skb = tx_buffer_info->skb;
222
223                         if (cleaned && skb) {
224                                 unsigned int segs, bytecount;
225
226                                 /* gso_segs is currently only valid for tcp */
227                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
228                                 /* multiply data chunks by size of headers */
229                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
230                                             skb->len;
231                                 total_packets += segs;
232                                 total_bytes += bytecount;
233                         }
234
235                         ixgbevf_unmap_and_free_tx_resource(tx_ring,
236                                                            tx_buffer_info);
237
238                         tx_desc->wb.status = 0;
239
240                         i++;
241                         if (i == tx_ring->count)
242                                 i = 0;
243
244                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
245                 }
246
247                 eop_desc = tx_buffer_info->next_to_watch;
248         } while (count < tx_ring->count);
249
250         tx_ring->next_to_clean = i;
251
252 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
253         if (unlikely(count && netif_carrier_ok(tx_ring->netdev) &&
254                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
255                 /* Make sure that anybody stopping the queue after this
256                  * sees the new next_to_clean.
257                  */
258                 smp_mb();
259                 if (__netif_subqueue_stopped(tx_ring->netdev,
260                                              tx_ring->queue_index) &&
261                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
262                         netif_wake_subqueue(tx_ring->netdev,
263                                             tx_ring->queue_index);
264                         ++adapter->restart_queue;
265                 }
266         }
267
268         u64_stats_update_begin(&tx_ring->syncp);
269         tx_ring->total_bytes += total_bytes;
270         tx_ring->total_packets += total_packets;
271         u64_stats_update_end(&tx_ring->syncp);
272         q_vector->tx.total_bytes += total_bytes;
273         q_vector->tx.total_packets += total_packets;
274
275         return count < tx_ring->count;
276 }
277
278 /**
279  * ixgbevf_receive_skb - Send a completed packet up the stack
280  * @q_vector: structure containing interrupt and ring information
281  * @skb: packet to send up
282  * @status: hardware indication of status of receive
283  * @rx_desc: rx descriptor
284  **/
285 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
286                                 struct sk_buff *skb, u8 status,
287                                 union ixgbe_adv_rx_desc *rx_desc)
288 {
289         struct ixgbevf_adapter *adapter = q_vector->adapter;
290         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
291         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
292
293         if (is_vlan && test_bit(tag & VLAN_VID_MASK, adapter->active_vlans))
294                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
295
296         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
297                 napi_gro_receive(&q_vector->napi, skb);
298         else
299                 netif_rx(skb);
300 }
301
302 /**
303  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
304  * @ring: pointer to Rx descriptor ring structure
305  * @status_err: hardware indication of status of receive
306  * @skb: skb currently being received and modified
307  **/
308 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
309                                        u32 status_err, struct sk_buff *skb)
310 {
311         skb_checksum_none_assert(skb);
312
313         /* Rx csum disabled */
314         if (!(ring->netdev->features & NETIF_F_RXCSUM))
315                 return;
316
317         /* if IP and error */
318         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
319             (status_err & IXGBE_RXDADV_ERR_IPE)) {
320                 ring->hw_csum_rx_error++;
321                 return;
322         }
323
324         if (!(status_err & IXGBE_RXD_STAT_L4CS))
325                 return;
326
327         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
328                 ring->hw_csum_rx_error++;
329                 return;
330         }
331
332         /* It must be a TCP or UDP packet with a valid checksum */
333         skb->ip_summed = CHECKSUM_UNNECESSARY;
334         ring->hw_csum_rx_good++;
335 }
336
337 /**
338  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
339  * @adapter: address of board private structure
340  **/
341 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
342                                      struct ixgbevf_ring *rx_ring,
343                                      int cleaned_count)
344 {
345         struct pci_dev *pdev = adapter->pdev;
346         union ixgbe_adv_rx_desc *rx_desc;
347         struct ixgbevf_rx_buffer *bi;
348         unsigned int i = rx_ring->next_to_use;
349
350         bi = &rx_ring->rx_buffer_info[i];
351
352         while (cleaned_count--) {
353                 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
354
355                 if (!bi->skb) {
356                         struct sk_buff *skb;
357
358                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
359                                                         rx_ring->rx_buf_len);
360                         if (!skb) {
361                                 adapter->alloc_rx_buff_failed++;
362                                 goto no_buffers;
363                         }
364                         bi->skb = skb;
365
366                         bi->dma = dma_map_single(&pdev->dev, skb->data,
367                                                  rx_ring->rx_buf_len,
368                                                  DMA_FROM_DEVICE);
369                         if (dma_mapping_error(&pdev->dev, bi->dma)) {
370                                 dev_kfree_skb(skb);
371                                 bi->skb = NULL;
372                                 dev_err(&pdev->dev, "RX DMA map failed\n");
373                                 break;
374                         }
375                 }
376                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
377
378                 i++;
379                 if (i == rx_ring->count)
380                         i = 0;
381                 bi = &rx_ring->rx_buffer_info[i];
382         }
383
384 no_buffers:
385         if (rx_ring->next_to_use != i) {
386                 rx_ring->next_to_use = i;
387                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
388         }
389 }
390
391 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
392                                              u32 qmask)
393 {
394         struct ixgbe_hw *hw = &adapter->hw;
395
396         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
397 }
398
399 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
400                                  struct ixgbevf_ring *rx_ring,
401                                  int budget)
402 {
403         struct ixgbevf_adapter *adapter = q_vector->adapter;
404         struct pci_dev *pdev = adapter->pdev;
405         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
406         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
407         struct sk_buff *skb;
408         unsigned int i;
409         u32 len, staterr;
410         int cleaned_count = 0;
411         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
412
413         i = rx_ring->next_to_clean;
414         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
415         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
416         rx_buffer_info = &rx_ring->rx_buffer_info[i];
417
418         while (staterr & IXGBE_RXD_STAT_DD) {
419                 if (!budget)
420                         break;
421                 budget--;
422
423                 rmb(); /* read descriptor and rx_buffer_info after status DD */
424                 len = le16_to_cpu(rx_desc->wb.upper.length);
425                 skb = rx_buffer_info->skb;
426                 prefetch(skb->data - NET_IP_ALIGN);
427                 rx_buffer_info->skb = NULL;
428
429                 if (rx_buffer_info->dma) {
430                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
431                                          rx_ring->rx_buf_len,
432                                          DMA_FROM_DEVICE);
433                         rx_buffer_info->dma = 0;
434                         skb_put(skb, len);
435                 }
436
437                 i++;
438                 if (i == rx_ring->count)
439                         i = 0;
440
441                 next_rxd = IXGBEVF_RX_DESC(rx_ring, i);
442                 prefetch(next_rxd);
443                 cleaned_count++;
444
445                 next_buffer = &rx_ring->rx_buffer_info[i];
446
447                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
448                         skb->next = next_buffer->skb;
449                         IXGBE_CB(skb->next)->prev = skb;
450                         adapter->non_eop_descs++;
451                         goto next_desc;
452                 }
453
454                 /* we should not be chaining buffers, if we did drop the skb */
455                 if (IXGBE_CB(skb)->prev) {
456                         do {
457                                 struct sk_buff *this = skb;
458                                 skb = IXGBE_CB(skb)->prev;
459                                 dev_kfree_skb(this);
460                         } while (skb);
461                         goto next_desc;
462                 }
463
464                 /* ERR_MASK will only have valid bits if EOP set */
465                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
466                         dev_kfree_skb_irq(skb);
467                         goto next_desc;
468                 }
469
470                 ixgbevf_rx_checksum(rx_ring, staterr, skb);
471
472                 /* probably a little skewed due to removing CRC */
473                 total_rx_bytes += skb->len;
474                 total_rx_packets++;
475
476                 /*
477                  * Work around issue of some types of VM to VM loop back
478                  * packets not getting split correctly
479                  */
480                 if (staterr & IXGBE_RXD_STAT_LB) {
481                         u32 header_fixup_len = skb_headlen(skb);
482                         if (header_fixup_len < 14)
483                                 skb_push(skb, header_fixup_len);
484                 }
485                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
486
487                 /* Workaround hardware that can't do proper VEPA multicast
488                  * source pruning.
489                  */
490                 if ((skb->pkt_type & (PACKET_BROADCAST | PACKET_MULTICAST)) &&
491                     ether_addr_equal(adapter->netdev->dev_addr,
492                                      eth_hdr(skb)->h_source)) {
493                         dev_kfree_skb_irq(skb);
494                         goto next_desc;
495                 }
496
497                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_desc);
498
499 next_desc:
500                 rx_desc->wb.upper.status_error = 0;
501
502                 /* return some buffers to hardware, one at a time is too slow */
503                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
504                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
505                                                  cleaned_count);
506                         cleaned_count = 0;
507                 }
508
509                 /* use prefetched values */
510                 rx_desc = next_rxd;
511                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
512
513                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
514         }
515
516         rx_ring->next_to_clean = i;
517         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
518
519         if (cleaned_count)
520                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
521
522         u64_stats_update_begin(&rx_ring->syncp);
523         rx_ring->total_packets += total_rx_packets;
524         rx_ring->total_bytes += total_rx_bytes;
525         u64_stats_update_end(&rx_ring->syncp);
526         q_vector->rx.total_packets += total_rx_packets;
527         q_vector->rx.total_bytes += total_rx_bytes;
528
529         return !!budget;
530 }
531
532 /**
533  * ixgbevf_poll - NAPI polling calback
534  * @napi: napi struct with our devices info in it
535  * @budget: amount of work driver is allowed to do this pass, in packets
536  *
537  * This function will clean more than one or more rings associated with a
538  * q_vector.
539  **/
540 static int ixgbevf_poll(struct napi_struct *napi, int budget)
541 {
542         struct ixgbevf_q_vector *q_vector =
543                 container_of(napi, struct ixgbevf_q_vector, napi);
544         struct ixgbevf_adapter *adapter = q_vector->adapter;
545         struct ixgbevf_ring *ring;
546         int per_ring_budget;
547         bool clean_complete = true;
548
549         ixgbevf_for_each_ring(ring, q_vector->tx)
550                 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
551
552         /* attempt to distribute budget to each queue fairly, but don't allow
553          * the budget to go below 1 because we'll exit polling */
554         if (q_vector->rx.count > 1)
555                 per_ring_budget = max(budget/q_vector->rx.count, 1);
556         else
557                 per_ring_budget = budget;
558
559         adapter->flags |= IXGBE_FLAG_IN_NETPOLL;
560         ixgbevf_for_each_ring(ring, q_vector->rx)
561                 clean_complete &= ixgbevf_clean_rx_irq(q_vector, ring,
562                                                        per_ring_budget);
563         adapter->flags &= ~IXGBE_FLAG_IN_NETPOLL;
564
565         /* If all work not completed, return budget and keep polling */
566         if (!clean_complete)
567                 return budget;
568         /* all work done, exit the polling mode */
569         napi_complete(napi);
570         if (adapter->rx_itr_setting & 1)
571                 ixgbevf_set_itr(q_vector);
572         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
573                 ixgbevf_irq_enable_queues(adapter,
574                                           1 << q_vector->v_idx);
575
576         return 0;
577 }
578
579 /**
580  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
581  * @q_vector: structure containing interrupt and ring information
582  */
583 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
584 {
585         struct ixgbevf_adapter *adapter = q_vector->adapter;
586         struct ixgbe_hw *hw = &adapter->hw;
587         int v_idx = q_vector->v_idx;
588         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
589
590         /*
591          * set the WDIS bit to not clear the timer bits and cause an
592          * immediate assertion of the interrupt
593          */
594         itr_reg |= IXGBE_EITR_CNT_WDIS;
595
596         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
597 }
598
599 /**
600  * ixgbevf_configure_msix - Configure MSI-X hardware
601  * @adapter: board private structure
602  *
603  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
604  * interrupts.
605  **/
606 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
607 {
608         struct ixgbevf_q_vector *q_vector;
609         int q_vectors, v_idx;
610
611         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
612         adapter->eims_enable_mask = 0;
613
614         /*
615          * Populate the IVAR table and set the ITR values to the
616          * corresponding register.
617          */
618         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
619                 struct ixgbevf_ring *ring;
620                 q_vector = adapter->q_vector[v_idx];
621
622                 ixgbevf_for_each_ring(ring, q_vector->rx)
623                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
624
625                 ixgbevf_for_each_ring(ring, q_vector->tx)
626                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
627
628                 if (q_vector->tx.ring && !q_vector->rx.ring) {
629                         /* tx only vector */
630                         if (adapter->tx_itr_setting == 1)
631                                 q_vector->itr = IXGBE_10K_ITR;
632                         else
633                                 q_vector->itr = adapter->tx_itr_setting;
634                 } else {
635                         /* rx or rx/tx vector */
636                         if (adapter->rx_itr_setting == 1)
637                                 q_vector->itr = IXGBE_20K_ITR;
638                         else
639                                 q_vector->itr = adapter->rx_itr_setting;
640                 }
641
642                 /* add q_vector eims value to global eims_enable_mask */
643                 adapter->eims_enable_mask |= 1 << v_idx;
644
645                 ixgbevf_write_eitr(q_vector);
646         }
647
648         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
649         /* setup eims_other and add value to global eims_enable_mask */
650         adapter->eims_other = 1 << v_idx;
651         adapter->eims_enable_mask |= adapter->eims_other;
652 }
653
654 enum latency_range {
655         lowest_latency = 0,
656         low_latency = 1,
657         bulk_latency = 2,
658         latency_invalid = 255
659 };
660
661 /**
662  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
663  * @q_vector: structure containing interrupt and ring information
664  * @ring_container: structure containing ring performance data
665  *
666  *      Stores a new ITR value based on packets and byte
667  *      counts during the last interrupt.  The advantage of per interrupt
668  *      computation is faster updates and more accurate ITR for the current
669  *      traffic pattern.  Constants in this function were computed
670  *      based on theoretical maximum wire speed and thresholds were set based
671  *      on testing data as well as attempting to minimize response time
672  *      while increasing bulk throughput.
673  **/
674 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
675                                struct ixgbevf_ring_container *ring_container)
676 {
677         int bytes = ring_container->total_bytes;
678         int packets = ring_container->total_packets;
679         u32 timepassed_us;
680         u64 bytes_perint;
681         u8 itr_setting = ring_container->itr;
682
683         if (packets == 0)
684                 return;
685
686         /* simple throttlerate management
687          *    0-20MB/s lowest (100000 ints/s)
688          *   20-100MB/s low   (20000 ints/s)
689          *  100-1249MB/s bulk (8000 ints/s)
690          */
691         /* what was last interrupt timeslice? */
692         timepassed_us = q_vector->itr >> 2;
693         bytes_perint = bytes / timepassed_us; /* bytes/usec */
694
695         switch (itr_setting) {
696         case lowest_latency:
697                 if (bytes_perint > 10)
698                         itr_setting = low_latency;
699                 break;
700         case low_latency:
701                 if (bytes_perint > 20)
702                         itr_setting = bulk_latency;
703                 else if (bytes_perint <= 10)
704                         itr_setting = lowest_latency;
705                 break;
706         case bulk_latency:
707                 if (bytes_perint <= 20)
708                         itr_setting = low_latency;
709                 break;
710         }
711
712         /* clear work counters since we have the values we need */
713         ring_container->total_bytes = 0;
714         ring_container->total_packets = 0;
715
716         /* write updated itr to ring container */
717         ring_container->itr = itr_setting;
718 }
719
720 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
721 {
722         u32 new_itr = q_vector->itr;
723         u8 current_itr;
724
725         ixgbevf_update_itr(q_vector, &q_vector->tx);
726         ixgbevf_update_itr(q_vector, &q_vector->rx);
727
728         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
729
730         switch (current_itr) {
731         /* counts and packets in update_itr are dependent on these numbers */
732         case lowest_latency:
733                 new_itr = IXGBE_100K_ITR;
734                 break;
735         case low_latency:
736                 new_itr = IXGBE_20K_ITR;
737                 break;
738         case bulk_latency:
739         default:
740                 new_itr = IXGBE_8K_ITR;
741                 break;
742         }
743
744         if (new_itr != q_vector->itr) {
745                 /* do an exponential smoothing */
746                 new_itr = (10 * new_itr * q_vector->itr) /
747                           ((9 * new_itr) + q_vector->itr);
748
749                 /* save the algorithm value here */
750                 q_vector->itr = new_itr;
751
752                 ixgbevf_write_eitr(q_vector);
753         }
754 }
755
756 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
757 {
758         struct ixgbevf_adapter *adapter = data;
759         struct ixgbe_hw *hw = &adapter->hw;
760
761         hw->mac.get_link_status = 1;
762
763         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
764                 mod_timer(&adapter->watchdog_timer, jiffies);
765
766         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
767
768         return IRQ_HANDLED;
769 }
770
771 /**
772  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
773  * @irq: unused
774  * @data: pointer to our q_vector struct for this interrupt vector
775  **/
776 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
777 {
778         struct ixgbevf_q_vector *q_vector = data;
779
780         /* EIAM disabled interrupts (on this vector) for us */
781         if (q_vector->rx.ring || q_vector->tx.ring)
782                 napi_schedule(&q_vector->napi);
783
784         return IRQ_HANDLED;
785 }
786
787 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
788                                      int r_idx)
789 {
790         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
791
792         a->rx_ring[r_idx].next = q_vector->rx.ring;
793         q_vector->rx.ring = &a->rx_ring[r_idx];
794         q_vector->rx.count++;
795 }
796
797 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
798                                      int t_idx)
799 {
800         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
801
802         a->tx_ring[t_idx].next = q_vector->tx.ring;
803         q_vector->tx.ring = &a->tx_ring[t_idx];
804         q_vector->tx.count++;
805 }
806
807 /**
808  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
809  * @adapter: board private structure to initialize
810  *
811  * This function maps descriptor rings to the queue-specific vectors
812  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
813  * one vector per ring/queue, but on a constrained vector budget, we
814  * group the rings as "efficiently" as possible.  You would add new
815  * mapping configurations in here.
816  **/
817 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
818 {
819         int q_vectors;
820         int v_start = 0;
821         int rxr_idx = 0, txr_idx = 0;
822         int rxr_remaining = adapter->num_rx_queues;
823         int txr_remaining = adapter->num_tx_queues;
824         int i, j;
825         int rqpv, tqpv;
826         int err = 0;
827
828         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
829
830         /*
831          * The ideal configuration...
832          * We have enough vectors to map one per queue.
833          */
834         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
835                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
836                         map_vector_to_rxq(adapter, v_start, rxr_idx);
837
838                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
839                         map_vector_to_txq(adapter, v_start, txr_idx);
840                 goto out;
841         }
842
843         /*
844          * If we don't have enough vectors for a 1-to-1
845          * mapping, we'll have to group them so there are
846          * multiple queues per vector.
847          */
848         /* Re-adjusting *qpv takes care of the remainder. */
849         for (i = v_start; i < q_vectors; i++) {
850                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
851                 for (j = 0; j < rqpv; j++) {
852                         map_vector_to_rxq(adapter, i, rxr_idx);
853                         rxr_idx++;
854                         rxr_remaining--;
855                 }
856         }
857         for (i = v_start; i < q_vectors; i++) {
858                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
859                 for (j = 0; j < tqpv; j++) {
860                         map_vector_to_txq(adapter, i, txr_idx);
861                         txr_idx++;
862                         txr_remaining--;
863                 }
864         }
865
866 out:
867         return err;
868 }
869
870 /**
871  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
872  * @adapter: board private structure
873  *
874  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
875  * interrupts from the kernel.
876  **/
877 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
878 {
879         struct net_device *netdev = adapter->netdev;
880         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
881         int vector, err;
882         int ri = 0, ti = 0;
883
884         for (vector = 0; vector < q_vectors; vector++) {
885                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
886                 struct msix_entry *entry = &adapter->msix_entries[vector];
887
888                 if (q_vector->tx.ring && q_vector->rx.ring) {
889                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
890                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
891                         ti++;
892                 } else if (q_vector->rx.ring) {
893                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
894                                  "%s-%s-%d", netdev->name, "rx", ri++);
895                 } else if (q_vector->tx.ring) {
896                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
897                                  "%s-%s-%d", netdev->name, "tx", ti++);
898                 } else {
899                         /* skip this unused q_vector */
900                         continue;
901                 }
902                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
903                                   q_vector->name, q_vector);
904                 if (err) {
905                         hw_dbg(&adapter->hw,
906                                "request_irq failed for MSIX interrupt "
907                                "Error: %d\n", err);
908                         goto free_queue_irqs;
909                 }
910         }
911
912         err = request_irq(adapter->msix_entries[vector].vector,
913                           &ixgbevf_msix_other, 0, netdev->name, adapter);
914         if (err) {
915                 hw_dbg(&adapter->hw,
916                        "request_irq for msix_other failed: %d\n", err);
917                 goto free_queue_irqs;
918         }
919
920         return 0;
921
922 free_queue_irqs:
923         while (vector) {
924                 vector--;
925                 free_irq(adapter->msix_entries[vector].vector,
926                          adapter->q_vector[vector]);
927         }
928         /* This failure is non-recoverable - it indicates the system is
929          * out of MSIX vector resources and the VF driver cannot run
930          * without them.  Set the number of msix vectors to zero
931          * indicating that not enough can be allocated.  The error
932          * will be returned to the user indicating device open failed.
933          * Any further attempts to force the driver to open will also
934          * fail.  The only way to recover is to unload the driver and
935          * reload it again.  If the system has recovered some MSIX
936          * vectors then it may succeed.
937          */
938         adapter->num_msix_vectors = 0;
939         return err;
940 }
941
942 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
943 {
944         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
945
946         for (i = 0; i < q_vectors; i++) {
947                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
948                 q_vector->rx.ring = NULL;
949                 q_vector->tx.ring = NULL;
950                 q_vector->rx.count = 0;
951                 q_vector->tx.count = 0;
952         }
953 }
954
955 /**
956  * ixgbevf_request_irq - initialize interrupts
957  * @adapter: board private structure
958  *
959  * Attempts to configure interrupts using the best available
960  * capabilities of the hardware and kernel.
961  **/
962 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
963 {
964         int err = 0;
965
966         err = ixgbevf_request_msix_irqs(adapter);
967
968         if (err)
969                 hw_dbg(&adapter->hw,
970                        "request_irq failed, Error %d\n", err);
971
972         return err;
973 }
974
975 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
976 {
977         int i, q_vectors;
978
979         q_vectors = adapter->num_msix_vectors;
980         i = q_vectors - 1;
981
982         free_irq(adapter->msix_entries[i].vector, adapter);
983         i--;
984
985         for (; i >= 0; i--) {
986                 /* free only the irqs that were actually requested */
987                 if (!adapter->q_vector[i]->rx.ring &&
988                     !adapter->q_vector[i]->tx.ring)
989                         continue;
990
991                 free_irq(adapter->msix_entries[i].vector,
992                          adapter->q_vector[i]);
993         }
994
995         ixgbevf_reset_q_vectors(adapter);
996 }
997
998 /**
999  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1000  * @adapter: board private structure
1001  **/
1002 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1003 {
1004         struct ixgbe_hw *hw = &adapter->hw;
1005         int i;
1006
1007         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1008         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1009         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1010
1011         IXGBE_WRITE_FLUSH(hw);
1012
1013         for (i = 0; i < adapter->num_msix_vectors; i++)
1014                 synchronize_irq(adapter->msix_entries[i].vector);
1015 }
1016
1017 /**
1018  * ixgbevf_irq_enable - Enable default interrupt generation settings
1019  * @adapter: board private structure
1020  **/
1021 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1022 {
1023         struct ixgbe_hw *hw = &adapter->hw;
1024
1025         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1026         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1027         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1028 }
1029
1030 /**
1031  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1032  * @adapter: board private structure
1033  *
1034  * Configure the Tx unit of the MAC after a reset.
1035  **/
1036 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1037 {
1038         u64 tdba;
1039         struct ixgbe_hw *hw = &adapter->hw;
1040         u32 i, j, tdlen, txctrl;
1041
1042         /* Setup the HW Tx Head and Tail descriptor pointers */
1043         for (i = 0; i < adapter->num_tx_queues; i++) {
1044                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1045                 j = ring->reg_idx;
1046                 tdba = ring->dma;
1047                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1048                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1049                                 (tdba & DMA_BIT_MASK(32)));
1050                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1051                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1052                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1053                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1054                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1055                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1056                 /* Disable Tx Head Writeback RO bit, since this hoses
1057                  * bookkeeping if things aren't delivered in order.
1058                  */
1059                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1060                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1061                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1062         }
1063 }
1064
1065 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1066
1067 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1068 {
1069         struct ixgbevf_ring *rx_ring;
1070         struct ixgbe_hw *hw = &adapter->hw;
1071         u32 srrctl;
1072
1073         rx_ring = &adapter->rx_ring[index];
1074
1075         srrctl = IXGBE_SRRCTL_DROP_EN;
1076
1077         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1078
1079         srrctl |= ALIGN(rx_ring->rx_buf_len, 1024) >>
1080                   IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1081
1082         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1083 }
1084
1085 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1086 {
1087         struct ixgbe_hw *hw = &adapter->hw;
1088
1089         /* PSRTYPE must be initialized in 82599 */
1090         u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1091                       IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1092                       IXGBE_PSRTYPE_L2HDR;
1093
1094         if (adapter->num_rx_queues > 1)
1095                 psrtype |= 1 << 29;
1096
1097         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1098 }
1099
1100 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter)
1101 {
1102         struct ixgbe_hw *hw = &adapter->hw;
1103         struct net_device *netdev = adapter->netdev;
1104         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1105         int i;
1106         u16 rx_buf_len;
1107
1108         /* notify the PF of our intent to use this size of frame */
1109         ixgbevf_rlpml_set_vf(hw, max_frame);
1110
1111         /* PF will allow an extra 4 bytes past for vlan tagged frames */
1112         max_frame += VLAN_HLEN;
1113
1114         /*
1115          * Allocate buffer sizes that fit well into 32K and
1116          * take into account max frame size of 9.5K
1117          */
1118         if ((hw->mac.type == ixgbe_mac_X540_vf) &&
1119             (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE))
1120                 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1121         else if (max_frame <= IXGBEVF_RXBUFFER_2K)
1122                 rx_buf_len = IXGBEVF_RXBUFFER_2K;
1123         else if (max_frame <= IXGBEVF_RXBUFFER_4K)
1124                 rx_buf_len = IXGBEVF_RXBUFFER_4K;
1125         else if (max_frame <= IXGBEVF_RXBUFFER_8K)
1126                 rx_buf_len = IXGBEVF_RXBUFFER_8K;
1127         else
1128                 rx_buf_len = IXGBEVF_RXBUFFER_10K;
1129
1130         for (i = 0; i < adapter->num_rx_queues; i++)
1131                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1132 }
1133
1134 /**
1135  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1136  * @adapter: board private structure
1137  *
1138  * Configure the Rx unit of the MAC after a reset.
1139  **/
1140 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1141 {
1142         u64 rdba;
1143         struct ixgbe_hw *hw = &adapter->hw;
1144         int i, j;
1145         u32 rdlen;
1146
1147         ixgbevf_setup_psrtype(adapter);
1148
1149         /* set_rx_buffer_len must be called before ring initialization */
1150         ixgbevf_set_rx_buffer_len(adapter);
1151
1152         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1153         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1154          * the Base and Length of the Rx Descriptor Ring */
1155         for (i = 0; i < adapter->num_rx_queues; i++) {
1156                 rdba = adapter->rx_ring[i].dma;
1157                 j = adapter->rx_ring[i].reg_idx;
1158                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1159                                 (rdba & DMA_BIT_MASK(32)));
1160                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1161                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1162                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1163                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1164                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1165                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1166
1167                 ixgbevf_configure_srrctl(adapter, j);
1168         }
1169 }
1170
1171 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1172                                    __be16 proto, u16 vid)
1173 {
1174         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1175         struct ixgbe_hw *hw = &adapter->hw;
1176         int err;
1177
1178         spin_lock_bh(&adapter->mbx_lock);
1179
1180         /* add VID to filter table */
1181         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1182
1183         spin_unlock_bh(&adapter->mbx_lock);
1184
1185         /* translate error return types so error makes sense */
1186         if (err == IXGBE_ERR_MBX)
1187                 return -EIO;
1188
1189         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1190                 return -EACCES;
1191
1192         set_bit(vid, adapter->active_vlans);
1193
1194         return err;
1195 }
1196
1197 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1198                                     __be16 proto, u16 vid)
1199 {
1200         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1201         struct ixgbe_hw *hw = &adapter->hw;
1202         int err = -EOPNOTSUPP;
1203
1204         spin_lock_bh(&adapter->mbx_lock);
1205
1206         /* remove VID from filter table */
1207         err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1208
1209         spin_unlock_bh(&adapter->mbx_lock);
1210
1211         clear_bit(vid, adapter->active_vlans);
1212
1213         return err;
1214 }
1215
1216 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1217 {
1218         u16 vid;
1219
1220         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1221                 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1222                                         htons(ETH_P_8021Q), vid);
1223 }
1224
1225 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1226 {
1227         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1228         struct ixgbe_hw *hw = &adapter->hw;
1229         int count = 0;
1230
1231         if ((netdev_uc_count(netdev)) > 10) {
1232                 pr_err("Too many unicast filters - No Space\n");
1233                 return -ENOSPC;
1234         }
1235
1236         if (!netdev_uc_empty(netdev)) {
1237                 struct netdev_hw_addr *ha;
1238                 netdev_for_each_uc_addr(ha, netdev) {
1239                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1240                         udelay(200);
1241                 }
1242         } else {
1243                 /*
1244                  * If the list is empty then send message to PF driver to
1245                  * clear all macvlans on this VF.
1246                  */
1247                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1248         }
1249
1250         return count;
1251 }
1252
1253 /**
1254  * ixgbevf_set_rx_mode - Multicast and unicast set
1255  * @netdev: network interface device structure
1256  *
1257  * The set_rx_method entry point is called whenever the multicast address
1258  * list, unicast address list or the network interface flags are updated.
1259  * This routine is responsible for configuring the hardware for proper
1260  * multicast mode and configuring requested unicast filters.
1261  **/
1262 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1263 {
1264         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1265         struct ixgbe_hw *hw = &adapter->hw;
1266
1267         spin_lock_bh(&adapter->mbx_lock);
1268
1269         /* reprogram multicast list */
1270         hw->mac.ops.update_mc_addr_list(hw, netdev);
1271
1272         ixgbevf_write_uc_addr_list(netdev);
1273
1274         spin_unlock_bh(&adapter->mbx_lock);
1275 }
1276
1277 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1278 {
1279         int q_idx;
1280         struct ixgbevf_q_vector *q_vector;
1281         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1282
1283         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1284                 q_vector = adapter->q_vector[q_idx];
1285                 napi_enable(&q_vector->napi);
1286         }
1287 }
1288
1289 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1290 {
1291         int q_idx;
1292         struct ixgbevf_q_vector *q_vector;
1293         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1294
1295         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1296                 q_vector = adapter->q_vector[q_idx];
1297                 napi_disable(&q_vector->napi);
1298         }
1299 }
1300
1301 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1302 {
1303         struct net_device *netdev = adapter->netdev;
1304         int i;
1305
1306         ixgbevf_set_rx_mode(netdev);
1307
1308         ixgbevf_restore_vlan(adapter);
1309
1310         ixgbevf_configure_tx(adapter);
1311         ixgbevf_configure_rx(adapter);
1312         for (i = 0; i < adapter->num_rx_queues; i++) {
1313                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1314                 ixgbevf_alloc_rx_buffers(adapter, ring,
1315                                          IXGBE_DESC_UNUSED(ring));
1316         }
1317 }
1318
1319 #define IXGBEVF_MAX_RX_DESC_POLL 10
1320 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1321                                          int rxr)
1322 {
1323         struct ixgbe_hw *hw = &adapter->hw;
1324         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1325         u32 rxdctl;
1326         int j = adapter->rx_ring[rxr].reg_idx;
1327
1328         do {
1329                 usleep_range(1000, 2000);
1330                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1331         } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1332
1333         if (!wait_loop)
1334                 hw_dbg(hw, "RXDCTL.ENABLE queue %d not set while polling\n",
1335                        rxr);
1336
1337         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1338                                 (adapter->rx_ring[rxr].count - 1));
1339 }
1340
1341 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1342                                      struct ixgbevf_ring *ring)
1343 {
1344         struct ixgbe_hw *hw = &adapter->hw;
1345         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1346         u32 rxdctl;
1347         u8 reg_idx = ring->reg_idx;
1348
1349         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1350         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1351
1352         /* write value back with RXDCTL.ENABLE bit cleared */
1353         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1354
1355         /* the hardware may take up to 100us to really disable the rx queue */
1356         do {
1357                 udelay(10);
1358                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1359         } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1360
1361         if (!wait_loop)
1362                 hw_dbg(hw, "RXDCTL.ENABLE queue %d not cleared while polling\n",
1363                        reg_idx);
1364 }
1365
1366 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1367 {
1368         /* Only save pre-reset stats if there are some */
1369         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1370                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1371                         adapter->stats.base_vfgprc;
1372                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1373                         adapter->stats.base_vfgptc;
1374                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1375                         adapter->stats.base_vfgorc;
1376                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1377                         adapter->stats.base_vfgotc;
1378                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1379                         adapter->stats.base_vfmprc;
1380         }
1381 }
1382
1383 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1384 {
1385         struct ixgbe_hw *hw = &adapter->hw;
1386
1387         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1388         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1389         adapter->stats.last_vfgorc |=
1390                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1391         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1392         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1393         adapter->stats.last_vfgotc |=
1394                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1395         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1396
1397         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1398         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1399         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1400         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1401         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1402 }
1403
1404 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
1405 {
1406         struct ixgbe_hw *hw = &adapter->hw;
1407         int api[] = { ixgbe_mbox_api_11,
1408                       ixgbe_mbox_api_10,
1409                       ixgbe_mbox_api_unknown };
1410         int err = 0, idx = 0;
1411
1412         spin_lock_bh(&adapter->mbx_lock);
1413
1414         while (api[idx] != ixgbe_mbox_api_unknown) {
1415                 err = ixgbevf_negotiate_api_version(hw, api[idx]);
1416                 if (!err)
1417                         break;
1418                 idx++;
1419         }
1420
1421         spin_unlock_bh(&adapter->mbx_lock);
1422 }
1423
1424 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1425 {
1426         struct net_device *netdev = adapter->netdev;
1427         struct ixgbe_hw *hw = &adapter->hw;
1428         int i, j = 0;
1429         int num_rx_rings = adapter->num_rx_queues;
1430         u32 txdctl, rxdctl;
1431
1432         for (i = 0; i < adapter->num_tx_queues; i++) {
1433                 j = adapter->tx_ring[i].reg_idx;
1434                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1435                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1436                 txdctl |= (8 << 16);
1437                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1438         }
1439
1440         for (i = 0; i < adapter->num_tx_queues; i++) {
1441                 j = adapter->tx_ring[i].reg_idx;
1442                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1443                 txdctl |= IXGBE_TXDCTL_ENABLE;
1444                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1445         }
1446
1447         for (i = 0; i < num_rx_rings; i++) {
1448                 j = adapter->rx_ring[i].reg_idx;
1449                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1450                 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1451                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1452                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1453                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1454                                    IXGBE_RXDCTL_RLPML_EN);
1455                 }
1456                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1457                 ixgbevf_rx_desc_queue_enable(adapter, i);
1458         }
1459
1460         ixgbevf_configure_msix(adapter);
1461
1462         spin_lock_bh(&adapter->mbx_lock);
1463
1464         if (is_valid_ether_addr(hw->mac.addr))
1465                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1466         else
1467                 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1468
1469         spin_unlock_bh(&adapter->mbx_lock);
1470
1471         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1472         ixgbevf_napi_enable_all(adapter);
1473
1474         /* enable transmits */
1475         netif_tx_start_all_queues(netdev);
1476
1477         ixgbevf_save_reset_stats(adapter);
1478         ixgbevf_init_last_counter_stats(adapter);
1479
1480         hw->mac.get_link_status = 1;
1481         mod_timer(&adapter->watchdog_timer, jiffies);
1482 }
1483
1484 static int ixgbevf_reset_queues(struct ixgbevf_adapter *adapter)
1485 {
1486         struct ixgbe_hw *hw = &adapter->hw;
1487         struct ixgbevf_ring *rx_ring;
1488         unsigned int def_q = 0;
1489         unsigned int num_tcs = 0;
1490         unsigned int num_rx_queues = 1;
1491         int err, i;
1492
1493         spin_lock_bh(&adapter->mbx_lock);
1494
1495         /* fetch queue configuration from the PF */
1496         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1497
1498         spin_unlock_bh(&adapter->mbx_lock);
1499
1500         if (err)
1501                 return err;
1502
1503         if (num_tcs > 1) {
1504                 /* update default Tx ring register index */
1505                 adapter->tx_ring[0].reg_idx = def_q;
1506
1507                 /* we need as many queues as traffic classes */
1508                 num_rx_queues = num_tcs;
1509         }
1510
1511         /* nothing to do if we have the correct number of queues */
1512         if (adapter->num_rx_queues == num_rx_queues)
1513                 return 0;
1514
1515         /* allocate new rings */
1516         rx_ring = kcalloc(num_rx_queues,
1517                           sizeof(struct ixgbevf_ring), GFP_KERNEL);
1518         if (!rx_ring)
1519                 return -ENOMEM;
1520
1521         /* setup ring fields */
1522         for (i = 0; i < num_rx_queues; i++) {
1523                 rx_ring[i].count = adapter->rx_ring_count;
1524                 rx_ring[i].queue_index = i;
1525                 rx_ring[i].reg_idx = i;
1526                 rx_ring[i].dev = &adapter->pdev->dev;
1527                 rx_ring[i].netdev = adapter->netdev;
1528
1529                 /* allocate resources on the ring */
1530                 err = ixgbevf_setup_rx_resources(adapter, &rx_ring[i]);
1531                 if (err) {
1532                         while (i) {
1533                                 i--;
1534                                 ixgbevf_free_rx_resources(adapter, &rx_ring[i]);
1535                         }
1536                         kfree(rx_ring);
1537                         return err;
1538                 }
1539         }
1540
1541         /* free the existing rings and queues */
1542         ixgbevf_free_all_rx_resources(adapter);
1543         adapter->num_rx_queues = 0;
1544         kfree(adapter->rx_ring);
1545
1546         /* move new rings into position on the adapter struct */
1547         adapter->rx_ring = rx_ring;
1548         adapter->num_rx_queues = num_rx_queues;
1549
1550         /* reset ring to vector mapping */
1551         ixgbevf_reset_q_vectors(adapter);
1552         ixgbevf_map_rings_to_vectors(adapter);
1553
1554         return 0;
1555 }
1556
1557 void ixgbevf_up(struct ixgbevf_adapter *adapter)
1558 {
1559         struct ixgbe_hw *hw = &adapter->hw;
1560
1561         ixgbevf_reset_queues(adapter);
1562
1563         ixgbevf_configure(adapter);
1564
1565         ixgbevf_up_complete(adapter);
1566
1567         /* clear any pending interrupts, may auto mask */
1568         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1569
1570         ixgbevf_irq_enable(adapter);
1571 }
1572
1573 /**
1574  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1575  * @adapter: board private structure
1576  * @rx_ring: ring to free buffers from
1577  **/
1578 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1579                                   struct ixgbevf_ring *rx_ring)
1580 {
1581         struct pci_dev *pdev = adapter->pdev;
1582         unsigned long size;
1583         unsigned int i;
1584
1585         if (!rx_ring->rx_buffer_info)
1586                 return;
1587
1588         /* Free all the Rx ring sk_buffs */
1589         for (i = 0; i < rx_ring->count; i++) {
1590                 struct ixgbevf_rx_buffer *rx_buffer_info;
1591
1592                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1593                 if (rx_buffer_info->dma) {
1594                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1595                                          rx_ring->rx_buf_len,
1596                                          DMA_FROM_DEVICE);
1597                         rx_buffer_info->dma = 0;
1598                 }
1599                 if (rx_buffer_info->skb) {
1600                         struct sk_buff *skb = rx_buffer_info->skb;
1601                         rx_buffer_info->skb = NULL;
1602                         do {
1603                                 struct sk_buff *this = skb;
1604                                 skb = IXGBE_CB(skb)->prev;
1605                                 dev_kfree_skb(this);
1606                         } while (skb);
1607                 }
1608         }
1609
1610         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1611         memset(rx_ring->rx_buffer_info, 0, size);
1612
1613         /* Zero out the descriptor ring */
1614         memset(rx_ring->desc, 0, rx_ring->size);
1615
1616         rx_ring->next_to_clean = 0;
1617         rx_ring->next_to_use = 0;
1618
1619         if (rx_ring->head)
1620                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1621         if (rx_ring->tail)
1622                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1623 }
1624
1625 /**
1626  * ixgbevf_clean_tx_ring - Free Tx Buffers
1627  * @adapter: board private structure
1628  * @tx_ring: ring to be cleaned
1629  **/
1630 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1631                                   struct ixgbevf_ring *tx_ring)
1632 {
1633         struct ixgbevf_tx_buffer *tx_buffer_info;
1634         unsigned long size;
1635         unsigned int i;
1636
1637         if (!tx_ring->tx_buffer_info)
1638                 return;
1639
1640         /* Free all the Tx ring sk_buffs */
1641         for (i = 0; i < tx_ring->count; i++) {
1642                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1643                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1644         }
1645
1646         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1647         memset(tx_ring->tx_buffer_info, 0, size);
1648
1649         memset(tx_ring->desc, 0, tx_ring->size);
1650
1651         tx_ring->next_to_use = 0;
1652         tx_ring->next_to_clean = 0;
1653
1654         if (tx_ring->head)
1655                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1656         if (tx_ring->tail)
1657                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1658 }
1659
1660 /**
1661  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1662  * @adapter: board private structure
1663  **/
1664 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1665 {
1666         int i;
1667
1668         for (i = 0; i < adapter->num_rx_queues; i++)
1669                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1670 }
1671
1672 /**
1673  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1674  * @adapter: board private structure
1675  **/
1676 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1677 {
1678         int i;
1679
1680         for (i = 0; i < adapter->num_tx_queues; i++)
1681                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1682 }
1683
1684 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1685 {
1686         struct net_device *netdev = adapter->netdev;
1687         struct ixgbe_hw *hw = &adapter->hw;
1688         u32 txdctl;
1689         int i, j;
1690
1691         /* signal that we are down to the interrupt handler */
1692         set_bit(__IXGBEVF_DOWN, &adapter->state);
1693
1694         /* disable all enabled rx queues */
1695         for (i = 0; i < adapter->num_rx_queues; i++)
1696                 ixgbevf_disable_rx_queue(adapter, &adapter->rx_ring[i]);
1697
1698         netif_tx_disable(netdev);
1699
1700         msleep(10);
1701
1702         netif_tx_stop_all_queues(netdev);
1703
1704         ixgbevf_irq_disable(adapter);
1705
1706         ixgbevf_napi_disable_all(adapter);
1707
1708         del_timer_sync(&adapter->watchdog_timer);
1709         /* can't call flush scheduled work here because it can deadlock
1710          * if linkwatch_event tries to acquire the rtnl_lock which we are
1711          * holding */
1712         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1713                 msleep(1);
1714
1715         /* disable transmits in the hardware now that interrupts are off */
1716         for (i = 0; i < adapter->num_tx_queues; i++) {
1717                 j = adapter->tx_ring[i].reg_idx;
1718                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1719                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1720                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1721         }
1722
1723         netif_carrier_off(netdev);
1724
1725         if (!pci_channel_offline(adapter->pdev))
1726                 ixgbevf_reset(adapter);
1727
1728         ixgbevf_clean_all_tx_rings(adapter);
1729         ixgbevf_clean_all_rx_rings(adapter);
1730 }
1731
1732 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1733 {
1734         WARN_ON(in_interrupt());
1735
1736         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1737                 msleep(1);
1738
1739         ixgbevf_down(adapter);
1740         ixgbevf_up(adapter);
1741
1742         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1743 }
1744
1745 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1746 {
1747         struct ixgbe_hw *hw = &adapter->hw;
1748         struct net_device *netdev = adapter->netdev;
1749
1750         if (hw->mac.ops.reset_hw(hw)) {
1751                 hw_dbg(hw, "PF still resetting\n");
1752         } else {
1753                 hw->mac.ops.init_hw(hw);
1754                 ixgbevf_negotiate_api(adapter);
1755         }
1756
1757         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1758                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1759                        netdev->addr_len);
1760                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1761                        netdev->addr_len);
1762         }
1763 }
1764
1765 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1766                                         int vectors)
1767 {
1768         int err = 0;
1769         int vector_threshold;
1770
1771         /* We'll want at least 2 (vector_threshold):
1772          * 1) TxQ[0] + RxQ[0] handler
1773          * 2) Other (Link Status Change, etc.)
1774          */
1775         vector_threshold = MIN_MSIX_COUNT;
1776
1777         /* The more we get, the more we will assign to Tx/Rx Cleanup
1778          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1779          * Right now, we simply care about how many we'll get; we'll
1780          * set them up later while requesting irq's.
1781          */
1782         while (vectors >= vector_threshold) {
1783                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1784                                       vectors);
1785                 if (!err || err < 0) /* Success or a nasty failure. */
1786                         break;
1787                 else /* err == number of vectors we should try again with */
1788                         vectors = err;
1789         }
1790
1791         if (vectors < vector_threshold)
1792                 err = -ENOMEM;
1793
1794         if (err) {
1795                 dev_err(&adapter->pdev->dev,
1796                         "Unable to allocate MSI-X interrupts\n");
1797                 kfree(adapter->msix_entries);
1798                 adapter->msix_entries = NULL;
1799         } else {
1800                 /*
1801                  * Adjust for only the vectors we'll use, which is minimum
1802                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1803                  * vectors we were allocated.
1804                  */
1805                 adapter->num_msix_vectors = vectors;
1806         }
1807
1808         return err;
1809 }
1810
1811 /**
1812  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
1813  * @adapter: board private structure to initialize
1814  *
1815  * This is the top level queue allocation routine.  The order here is very
1816  * important, starting with the "most" number of features turned on at once,
1817  * and ending with the smallest set of features.  This way large combinations
1818  * can be allocated if they're turned on, and smaller combinations are the
1819  * fallthrough conditions.
1820  *
1821  **/
1822 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1823 {
1824         /* Start with base case */
1825         adapter->num_rx_queues = 1;
1826         adapter->num_tx_queues = 1;
1827 }
1828
1829 /**
1830  * ixgbevf_alloc_queues - Allocate memory for all rings
1831  * @adapter: board private structure to initialize
1832  *
1833  * We allocate one ring per queue at run-time since we don't know the
1834  * number of queues at compile-time.  The polling_netdev array is
1835  * intended for Multiqueue, but should work fine with a single queue.
1836  **/
1837 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1838 {
1839         int i;
1840
1841         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1842                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1843         if (!adapter->tx_ring)
1844                 goto err_tx_ring_allocation;
1845
1846         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1847                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1848         if (!adapter->rx_ring)
1849                 goto err_rx_ring_allocation;
1850
1851         for (i = 0; i < adapter->num_tx_queues; i++) {
1852                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1853                 adapter->tx_ring[i].queue_index = i;
1854                 /* reg_idx may be remapped later by DCB config */
1855                 adapter->tx_ring[i].reg_idx = i;
1856                 adapter->tx_ring[i].dev = &adapter->pdev->dev;
1857                 adapter->tx_ring[i].netdev = adapter->netdev;
1858         }
1859
1860         for (i = 0; i < adapter->num_rx_queues; i++) {
1861                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1862                 adapter->rx_ring[i].queue_index = i;
1863                 adapter->rx_ring[i].reg_idx = i;
1864                 adapter->rx_ring[i].dev = &adapter->pdev->dev;
1865                 adapter->rx_ring[i].netdev = adapter->netdev;
1866         }
1867
1868         return 0;
1869
1870 err_rx_ring_allocation:
1871         kfree(adapter->tx_ring);
1872 err_tx_ring_allocation:
1873         return -ENOMEM;
1874 }
1875
1876 /**
1877  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1878  * @adapter: board private structure to initialize
1879  *
1880  * Attempt to configure the interrupts using the best available
1881  * capabilities of the hardware and the kernel.
1882  **/
1883 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1884 {
1885         struct net_device *netdev = adapter->netdev;
1886         int err = 0;
1887         int vector, v_budget;
1888
1889         /*
1890          * It's easy to be greedy for MSI-X vectors, but it really
1891          * doesn't do us much good if we have a lot more vectors
1892          * than CPU's.  So let's be conservative and only ask for
1893          * (roughly) the same number of vectors as there are CPU's.
1894          * The default is to use pairs of vectors.
1895          */
1896         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
1897         v_budget = min_t(int, v_budget, num_online_cpus());
1898         v_budget += NON_Q_VECTORS;
1899
1900         /* A failure in MSI-X entry allocation isn't fatal, but it does
1901          * mean we disable MSI-X capabilities of the adapter. */
1902         adapter->msix_entries = kcalloc(v_budget,
1903                                         sizeof(struct msix_entry), GFP_KERNEL);
1904         if (!adapter->msix_entries) {
1905                 err = -ENOMEM;
1906                 goto out;
1907         }
1908
1909         for (vector = 0; vector < v_budget; vector++)
1910                 adapter->msix_entries[vector].entry = vector;
1911
1912         err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
1913         if (err)
1914                 goto out;
1915
1916         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
1917         if (err)
1918                 goto out;
1919
1920         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
1921
1922 out:
1923         return err;
1924 }
1925
1926 /**
1927  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
1928  * @adapter: board private structure to initialize
1929  *
1930  * We allocate one q_vector per queue interrupt.  If allocation fails we
1931  * return -ENOMEM.
1932  **/
1933 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
1934 {
1935         int q_idx, num_q_vectors;
1936         struct ixgbevf_q_vector *q_vector;
1937
1938         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1939
1940         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1941                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
1942                 if (!q_vector)
1943                         goto err_out;
1944                 q_vector->adapter = adapter;
1945                 q_vector->v_idx = q_idx;
1946                 netif_napi_add(adapter->netdev, &q_vector->napi,
1947                                ixgbevf_poll, 64);
1948                 adapter->q_vector[q_idx] = q_vector;
1949         }
1950
1951         return 0;
1952
1953 err_out:
1954         while (q_idx) {
1955                 q_idx--;
1956                 q_vector = adapter->q_vector[q_idx];
1957                 netif_napi_del(&q_vector->napi);
1958                 kfree(q_vector);
1959                 adapter->q_vector[q_idx] = NULL;
1960         }
1961         return -ENOMEM;
1962 }
1963
1964 /**
1965  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
1966  * @adapter: board private structure to initialize
1967  *
1968  * This function frees the memory allocated to the q_vectors.  In addition if
1969  * NAPI is enabled it will delete any references to the NAPI struct prior
1970  * to freeing the q_vector.
1971  **/
1972 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
1973 {
1974         int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1975
1976         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1977                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
1978
1979                 adapter->q_vector[q_idx] = NULL;
1980                 netif_napi_del(&q_vector->napi);
1981                 kfree(q_vector);
1982         }
1983 }
1984
1985 /**
1986  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
1987  * @adapter: board private structure
1988  *
1989  **/
1990 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
1991 {
1992         pci_disable_msix(adapter->pdev);
1993         kfree(adapter->msix_entries);
1994         adapter->msix_entries = NULL;
1995 }
1996
1997 /**
1998  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
1999  * @adapter: board private structure to initialize
2000  *
2001  **/
2002 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2003 {
2004         int err;
2005
2006         /* Number of supported queues */
2007         ixgbevf_set_num_queues(adapter);
2008
2009         err = ixgbevf_set_interrupt_capability(adapter);
2010         if (err) {
2011                 hw_dbg(&adapter->hw,
2012                        "Unable to setup interrupt capabilities\n");
2013                 goto err_set_interrupt;
2014         }
2015
2016         err = ixgbevf_alloc_q_vectors(adapter);
2017         if (err) {
2018                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2019                        "vectors\n");
2020                 goto err_alloc_q_vectors;
2021         }
2022
2023         err = ixgbevf_alloc_queues(adapter);
2024         if (err) {
2025                 pr_err("Unable to allocate memory for queues\n");
2026                 goto err_alloc_queues;
2027         }
2028
2029         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2030                "Tx Queue count = %u\n",
2031                (adapter->num_rx_queues > 1) ? "Enabled" :
2032                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2033
2034         set_bit(__IXGBEVF_DOWN, &adapter->state);
2035
2036         return 0;
2037 err_alloc_queues:
2038         ixgbevf_free_q_vectors(adapter);
2039 err_alloc_q_vectors:
2040         ixgbevf_reset_interrupt_capability(adapter);
2041 err_set_interrupt:
2042         return err;
2043 }
2044
2045 /**
2046  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2047  * @adapter: board private structure to clear interrupt scheme on
2048  *
2049  * We go through and clear interrupt specific resources and reset the structure
2050  * to pre-load conditions
2051  **/
2052 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2053 {
2054         adapter->num_tx_queues = 0;
2055         adapter->num_rx_queues = 0;
2056
2057         ixgbevf_free_q_vectors(adapter);
2058         ixgbevf_reset_interrupt_capability(adapter);
2059 }
2060
2061 /**
2062  * ixgbevf_sw_init - Initialize general software structures
2063  * (struct ixgbevf_adapter)
2064  * @adapter: board private structure to initialize
2065  *
2066  * ixgbevf_sw_init initializes the Adapter private data structure.
2067  * Fields are initialized based on PCI device information and
2068  * OS network device settings (MTU size).
2069  **/
2070 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2071 {
2072         struct ixgbe_hw *hw = &adapter->hw;
2073         struct pci_dev *pdev = adapter->pdev;
2074         struct net_device *netdev = adapter->netdev;
2075         int err;
2076
2077         /* PCI config space info */
2078
2079         hw->vendor_id = pdev->vendor;
2080         hw->device_id = pdev->device;
2081         hw->revision_id = pdev->revision;
2082         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2083         hw->subsystem_device_id = pdev->subsystem_device;
2084
2085         hw->mbx.ops.init_params(hw);
2086
2087         /* assume legacy case in which PF would only give VF 2 queues */
2088         hw->mac.max_tx_queues = 2;
2089         hw->mac.max_rx_queues = 2;
2090
2091         /* lock to protect mailbox accesses */
2092         spin_lock_init(&adapter->mbx_lock);
2093
2094         err = hw->mac.ops.reset_hw(hw);
2095         if (err) {
2096                 dev_info(&pdev->dev,
2097                          "PF still in reset state.  Is the PF interface up?\n");
2098         } else {
2099                 err = hw->mac.ops.init_hw(hw);
2100                 if (err) {
2101                         pr_err("init_shared_code failed: %d\n", err);
2102                         goto out;
2103                 }
2104                 ixgbevf_negotiate_api(adapter);
2105                 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2106                 if (err)
2107                         dev_info(&pdev->dev, "Error reading MAC address\n");
2108                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2109                         dev_info(&pdev->dev,
2110                                  "MAC address not assigned by administrator.\n");
2111                 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2112         }
2113
2114         if (!is_valid_ether_addr(netdev->dev_addr)) {
2115                 dev_info(&pdev->dev, "Assigning random MAC address\n");
2116                 eth_hw_addr_random(netdev);
2117                 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2118         }
2119
2120         /* Enable dynamic interrupt throttling rates */
2121         adapter->rx_itr_setting = 1;
2122         adapter->tx_itr_setting = 1;
2123
2124         /* set default ring sizes */
2125         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2126         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2127
2128         set_bit(__IXGBEVF_DOWN, &adapter->state);
2129         return 0;
2130
2131 out:
2132         return err;
2133 }
2134
2135 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2136         {                                                       \
2137                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2138                 if (current_counter < last_counter)             \
2139                         counter += 0x100000000LL;               \
2140                 last_counter = current_counter;                 \
2141                 counter &= 0xFFFFFFFF00000000LL;                \
2142                 counter |= current_counter;                     \
2143         }
2144
2145 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2146         {                                                                \
2147                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2148                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2149                 u64 current_counter = (current_counter_msb << 32) |      \
2150                         current_counter_lsb;                             \
2151                 if (current_counter < last_counter)                      \
2152                         counter += 0x1000000000LL;                       \
2153                 last_counter = current_counter;                          \
2154                 counter &= 0xFFFFFFF000000000LL;                         \
2155                 counter |= current_counter;                              \
2156         }
2157 /**
2158  * ixgbevf_update_stats - Update the board statistics counters.
2159  * @adapter: board private structure
2160  **/
2161 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2162 {
2163         struct ixgbe_hw *hw = &adapter->hw;
2164         int i;
2165
2166         if (!adapter->link_up)
2167                 return;
2168
2169         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2170                                 adapter->stats.vfgprc);
2171         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2172                                 adapter->stats.vfgptc);
2173         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2174                                 adapter->stats.last_vfgorc,
2175                                 adapter->stats.vfgorc);
2176         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2177                                 adapter->stats.last_vfgotc,
2178                                 adapter->stats.vfgotc);
2179         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2180                                 adapter->stats.vfmprc);
2181
2182         for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2183                 adapter->hw_csum_rx_error +=
2184                         adapter->rx_ring[i].hw_csum_rx_error;
2185                 adapter->hw_csum_rx_good +=
2186                         adapter->rx_ring[i].hw_csum_rx_good;
2187                 adapter->rx_ring[i].hw_csum_rx_error = 0;
2188                 adapter->rx_ring[i].hw_csum_rx_good = 0;
2189         }
2190 }
2191
2192 /**
2193  * ixgbevf_watchdog - Timer Call-back
2194  * @data: pointer to adapter cast into an unsigned long
2195  **/
2196 static void ixgbevf_watchdog(unsigned long data)
2197 {
2198         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2199         struct ixgbe_hw *hw = &adapter->hw;
2200         u32 eics = 0;
2201         int i;
2202
2203         /*
2204          * Do the watchdog outside of interrupt context due to the lovely
2205          * delays that some of the newer hardware requires
2206          */
2207
2208         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2209                 goto watchdog_short_circuit;
2210
2211         /* get one bit for every active tx/rx interrupt vector */
2212         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2213                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2214                 if (qv->rx.ring || qv->tx.ring)
2215                         eics |= 1 << i;
2216         }
2217
2218         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2219
2220 watchdog_short_circuit:
2221         schedule_work(&adapter->watchdog_task);
2222 }
2223
2224 /**
2225  * ixgbevf_tx_timeout - Respond to a Tx Hang
2226  * @netdev: network interface device structure
2227  **/
2228 static void ixgbevf_tx_timeout(struct net_device *netdev)
2229 {
2230         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2231
2232         /* Do the reset outside of interrupt context */
2233         schedule_work(&adapter->reset_task);
2234 }
2235
2236 static void ixgbevf_reset_task(struct work_struct *work)
2237 {
2238         struct ixgbevf_adapter *adapter;
2239         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2240
2241         /* If we're already down or resetting, just bail */
2242         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2243             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2244                 return;
2245
2246         adapter->tx_timeout_count++;
2247
2248         ixgbevf_reinit_locked(adapter);
2249 }
2250
2251 /**
2252  * ixgbevf_watchdog_task - worker thread to bring link up
2253  * @work: pointer to work_struct containing our data
2254  **/
2255 static void ixgbevf_watchdog_task(struct work_struct *work)
2256 {
2257         struct ixgbevf_adapter *adapter = container_of(work,
2258                                                        struct ixgbevf_adapter,
2259                                                        watchdog_task);
2260         struct net_device *netdev = adapter->netdev;
2261         struct ixgbe_hw *hw = &adapter->hw;
2262         u32 link_speed = adapter->link_speed;
2263         bool link_up = adapter->link_up;
2264         s32 need_reset;
2265
2266         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2267
2268         /*
2269          * Always check the link on the watchdog because we have
2270          * no LSC interrupt
2271          */
2272         spin_lock_bh(&adapter->mbx_lock);
2273
2274         need_reset = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2275
2276         spin_unlock_bh(&adapter->mbx_lock);
2277
2278         if (need_reset) {
2279                 adapter->link_up = link_up;
2280                 adapter->link_speed = link_speed;
2281                 netif_carrier_off(netdev);
2282                 netif_tx_stop_all_queues(netdev);
2283                 schedule_work(&adapter->reset_task);
2284                 goto pf_has_reset;
2285         }
2286         adapter->link_up = link_up;
2287         adapter->link_speed = link_speed;
2288
2289         if (link_up) {
2290                 if (!netif_carrier_ok(netdev)) {
2291                         char *link_speed_string;
2292                         switch (link_speed) {
2293                         case IXGBE_LINK_SPEED_10GB_FULL:
2294                                 link_speed_string = "10 Gbps";
2295                                 break;
2296                         case IXGBE_LINK_SPEED_1GB_FULL:
2297                                 link_speed_string = "1 Gbps";
2298                                 break;
2299                         case IXGBE_LINK_SPEED_100_FULL:
2300                                 link_speed_string = "100 Mbps";
2301                                 break;
2302                         default:
2303                                 link_speed_string = "unknown speed";
2304                                 break;
2305                         }
2306                         dev_info(&adapter->pdev->dev,
2307                                 "NIC Link is Up, %s\n", link_speed_string);
2308                         netif_carrier_on(netdev);
2309                         netif_tx_wake_all_queues(netdev);
2310                 }
2311         } else {
2312                 adapter->link_up = false;
2313                 adapter->link_speed = 0;
2314                 if (netif_carrier_ok(netdev)) {
2315                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2316                         netif_carrier_off(netdev);
2317                         netif_tx_stop_all_queues(netdev);
2318                 }
2319         }
2320
2321         ixgbevf_update_stats(adapter);
2322
2323 pf_has_reset:
2324         /* Reset the timer */
2325         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2326                 mod_timer(&adapter->watchdog_timer,
2327                           round_jiffies(jiffies + (2 * HZ)));
2328
2329         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2330 }
2331
2332 /**
2333  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2334  * @adapter: board private structure
2335  * @tx_ring: Tx descriptor ring for a specific queue
2336  *
2337  * Free all transmit software resources
2338  **/
2339 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2340                                struct ixgbevf_ring *tx_ring)
2341 {
2342         struct pci_dev *pdev = adapter->pdev;
2343
2344         ixgbevf_clean_tx_ring(adapter, tx_ring);
2345
2346         vfree(tx_ring->tx_buffer_info);
2347         tx_ring->tx_buffer_info = NULL;
2348
2349         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2350                           tx_ring->dma);
2351
2352         tx_ring->desc = NULL;
2353 }
2354
2355 /**
2356  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2357  * @adapter: board private structure
2358  *
2359  * Free all transmit software resources
2360  **/
2361 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2362 {
2363         int i;
2364
2365         for (i = 0; i < adapter->num_tx_queues; i++)
2366                 if (adapter->tx_ring[i].desc)
2367                         ixgbevf_free_tx_resources(adapter,
2368                                                   &adapter->tx_ring[i]);
2369
2370 }
2371
2372 /**
2373  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2374  * @adapter: board private structure
2375  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2376  *
2377  * Return 0 on success, negative on failure
2378  **/
2379 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2380                                struct ixgbevf_ring *tx_ring)
2381 {
2382         struct pci_dev *pdev = adapter->pdev;
2383         int size;
2384
2385         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2386         tx_ring->tx_buffer_info = vzalloc(size);
2387         if (!tx_ring->tx_buffer_info)
2388                 goto err;
2389
2390         /* round up to nearest 4K */
2391         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2392         tx_ring->size = ALIGN(tx_ring->size, 4096);
2393
2394         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2395                                            &tx_ring->dma, GFP_KERNEL);
2396         if (!tx_ring->desc)
2397                 goto err;
2398
2399         tx_ring->next_to_use = 0;
2400         tx_ring->next_to_clean = 0;
2401         return 0;
2402
2403 err:
2404         vfree(tx_ring->tx_buffer_info);
2405         tx_ring->tx_buffer_info = NULL;
2406         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2407                "descriptor ring\n");
2408         return -ENOMEM;
2409 }
2410
2411 /**
2412  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2413  * @adapter: board private structure
2414  *
2415  * If this function returns with an error, then it's possible one or
2416  * more of the rings is populated (while the rest are not).  It is the
2417  * callers duty to clean those orphaned rings.
2418  *
2419  * Return 0 on success, negative on failure
2420  **/
2421 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2422 {
2423         int i, err = 0;
2424
2425         for (i = 0; i < adapter->num_tx_queues; i++) {
2426                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2427                 if (!err)
2428                         continue;
2429                 hw_dbg(&adapter->hw,
2430                        "Allocation for Tx Queue %u failed\n", i);
2431                 break;
2432         }
2433
2434         return err;
2435 }
2436
2437 /**
2438  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2439  * @adapter: board private structure
2440  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2441  *
2442  * Returns 0 on success, negative on failure
2443  **/
2444 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2445                                struct ixgbevf_ring *rx_ring)
2446 {
2447         struct pci_dev *pdev = adapter->pdev;
2448         int size;
2449
2450         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2451         rx_ring->rx_buffer_info = vzalloc(size);
2452         if (!rx_ring->rx_buffer_info)
2453                 goto alloc_failed;
2454
2455         /* Round up to nearest 4K */
2456         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2457         rx_ring->size = ALIGN(rx_ring->size, 4096);
2458
2459         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2460                                            &rx_ring->dma, GFP_KERNEL);
2461
2462         if (!rx_ring->desc) {
2463                 vfree(rx_ring->rx_buffer_info);
2464                 rx_ring->rx_buffer_info = NULL;
2465                 goto alloc_failed;
2466         }
2467
2468         rx_ring->next_to_clean = 0;
2469         rx_ring->next_to_use = 0;
2470
2471         return 0;
2472 alloc_failed:
2473         return -ENOMEM;
2474 }
2475
2476 /**
2477  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2478  * @adapter: board private structure
2479  *
2480  * If this function returns with an error, then it's possible one or
2481  * more of the rings is populated (while the rest are not).  It is the
2482  * callers duty to clean those orphaned rings.
2483  *
2484  * Return 0 on success, negative on failure
2485  **/
2486 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2487 {
2488         int i, err = 0;
2489
2490         for (i = 0; i < adapter->num_rx_queues; i++) {
2491                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2492                 if (!err)
2493                         continue;
2494                 hw_dbg(&adapter->hw,
2495                        "Allocation for Rx Queue %u failed\n", i);
2496                 break;
2497         }
2498         return err;
2499 }
2500
2501 /**
2502  * ixgbevf_free_rx_resources - Free Rx Resources
2503  * @adapter: board private structure
2504  * @rx_ring: ring to clean the resources from
2505  *
2506  * Free all receive software resources
2507  **/
2508 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2509                                struct ixgbevf_ring *rx_ring)
2510 {
2511         struct pci_dev *pdev = adapter->pdev;
2512
2513         ixgbevf_clean_rx_ring(adapter, rx_ring);
2514
2515         vfree(rx_ring->rx_buffer_info);
2516         rx_ring->rx_buffer_info = NULL;
2517
2518         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2519                           rx_ring->dma);
2520
2521         rx_ring->desc = NULL;
2522 }
2523
2524 /**
2525  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2526  * @adapter: board private structure
2527  *
2528  * Free all receive software resources
2529  **/
2530 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2531 {
2532         int i;
2533
2534         for (i = 0; i < adapter->num_rx_queues; i++)
2535                 if (adapter->rx_ring[i].desc)
2536                         ixgbevf_free_rx_resources(adapter,
2537                                                   &adapter->rx_ring[i]);
2538 }
2539
2540 static int ixgbevf_setup_queues(struct ixgbevf_adapter *adapter)
2541 {
2542         struct ixgbe_hw *hw = &adapter->hw;
2543         struct ixgbevf_ring *rx_ring;
2544         unsigned int def_q = 0;
2545         unsigned int num_tcs = 0;
2546         unsigned int num_rx_queues = 1;
2547         int err, i;
2548
2549         spin_lock_bh(&adapter->mbx_lock);
2550
2551         /* fetch queue configuration from the PF */
2552         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2553
2554         spin_unlock_bh(&adapter->mbx_lock);
2555
2556         if (err)
2557                 return err;
2558
2559         if (num_tcs > 1) {
2560                 /* update default Tx ring register index */
2561                 adapter->tx_ring[0].reg_idx = def_q;
2562
2563                 /* we need as many queues as traffic classes */
2564                 num_rx_queues = num_tcs;
2565         }
2566
2567         /* nothing to do if we have the correct number of queues */
2568         if (adapter->num_rx_queues == num_rx_queues)
2569                 return 0;
2570
2571         /* allocate new rings */
2572         rx_ring = kcalloc(num_rx_queues,
2573                           sizeof(struct ixgbevf_ring), GFP_KERNEL);
2574         if (!rx_ring)
2575                 return -ENOMEM;
2576
2577         /* setup ring fields */
2578         for (i = 0; i < num_rx_queues; i++) {
2579                 rx_ring[i].count = adapter->rx_ring_count;
2580                 rx_ring[i].queue_index = i;
2581                 rx_ring[i].reg_idx = i;
2582                 rx_ring[i].dev = &adapter->pdev->dev;
2583                 rx_ring[i].netdev = adapter->netdev;
2584         }
2585
2586         /* free the existing ring and queues */
2587         adapter->num_rx_queues = 0;
2588         kfree(adapter->rx_ring);
2589
2590         /* move new rings into position on the adapter struct */
2591         adapter->rx_ring = rx_ring;
2592         adapter->num_rx_queues = num_rx_queues;
2593
2594         return 0;
2595 }
2596
2597 /**
2598  * ixgbevf_open - Called when a network interface is made active
2599  * @netdev: network interface device structure
2600  *
2601  * Returns 0 on success, negative value on failure
2602  *
2603  * The open entry point is called when a network interface is made
2604  * active by the system (IFF_UP).  At this point all resources needed
2605  * for transmit and receive operations are allocated, the interrupt
2606  * handler is registered with the OS, the watchdog timer is started,
2607  * and the stack is notified that the interface is ready.
2608  **/
2609 static int ixgbevf_open(struct net_device *netdev)
2610 {
2611         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2612         struct ixgbe_hw *hw = &adapter->hw;
2613         int err;
2614
2615         /* A previous failure to open the device because of a lack of
2616          * available MSIX vector resources may have reset the number
2617          * of msix vectors variable to zero.  The only way to recover
2618          * is to unload/reload the driver and hope that the system has
2619          * been able to recover some MSIX vector resources.
2620          */
2621         if (!adapter->num_msix_vectors)
2622                 return -ENOMEM;
2623
2624         /* disallow open during test */
2625         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2626                 return -EBUSY;
2627
2628         if (hw->adapter_stopped) {
2629                 ixgbevf_reset(adapter);
2630                 /* if adapter is still stopped then PF isn't up and
2631                  * the vf can't start. */
2632                 if (hw->adapter_stopped) {
2633                         err = IXGBE_ERR_MBX;
2634                         pr_err("Unable to start - perhaps the PF Driver isn't "
2635                                "up yet\n");
2636                         goto err_setup_reset;
2637                 }
2638         }
2639
2640         /* setup queue reg_idx and Rx queue count */
2641         err = ixgbevf_setup_queues(adapter);
2642         if (err)
2643                 goto err_setup_queues;
2644
2645         /* allocate transmit descriptors */
2646         err = ixgbevf_setup_all_tx_resources(adapter);
2647         if (err)
2648                 goto err_setup_tx;
2649
2650         /* allocate receive descriptors */
2651         err = ixgbevf_setup_all_rx_resources(adapter);
2652         if (err)
2653                 goto err_setup_rx;
2654
2655         ixgbevf_configure(adapter);
2656
2657         /*
2658          * Map the Tx/Rx rings to the vectors we were allotted.
2659          * if request_irq will be called in this function map_rings
2660          * must be called *before* up_complete
2661          */
2662         ixgbevf_map_rings_to_vectors(adapter);
2663
2664         ixgbevf_up_complete(adapter);
2665
2666         /* clear any pending interrupts, may auto mask */
2667         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2668         err = ixgbevf_request_irq(adapter);
2669         if (err)
2670                 goto err_req_irq;
2671
2672         ixgbevf_irq_enable(adapter);
2673
2674         return 0;
2675
2676 err_req_irq:
2677         ixgbevf_down(adapter);
2678 err_setup_rx:
2679         ixgbevf_free_all_rx_resources(adapter);
2680 err_setup_tx:
2681         ixgbevf_free_all_tx_resources(adapter);
2682 err_setup_queues:
2683         ixgbevf_reset(adapter);
2684
2685 err_setup_reset:
2686
2687         return err;
2688 }
2689
2690 /**
2691  * ixgbevf_close - Disables a network interface
2692  * @netdev: network interface device structure
2693  *
2694  * Returns 0, this is not allowed to fail
2695  *
2696  * The close entry point is called when an interface is de-activated
2697  * by the OS.  The hardware is still under the drivers control, but
2698  * needs to be disabled.  A global MAC reset is issued to stop the
2699  * hardware, and all transmit and receive resources are freed.
2700  **/
2701 static int ixgbevf_close(struct net_device *netdev)
2702 {
2703         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2704
2705         ixgbevf_down(adapter);
2706         ixgbevf_free_irq(adapter);
2707
2708         ixgbevf_free_all_tx_resources(adapter);
2709         ixgbevf_free_all_rx_resources(adapter);
2710
2711         return 0;
2712 }
2713
2714 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
2715                                 u32 vlan_macip_lens, u32 type_tucmd,
2716                                 u32 mss_l4len_idx)
2717 {
2718         struct ixgbe_adv_tx_context_desc *context_desc;
2719         u16 i = tx_ring->next_to_use;
2720
2721         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
2722
2723         i++;
2724         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2725
2726         /* set bits to identify this as an advanced context descriptor */
2727         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
2728
2729         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
2730         context_desc->seqnum_seed       = 0;
2731         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
2732         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
2733 }
2734
2735 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
2736                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2737 {
2738         u32 vlan_macip_lens, type_tucmd;
2739         u32 mss_l4len_idx, l4len;
2740
2741         if (!skb_is_gso(skb))
2742                 return 0;
2743
2744         if (skb_header_cloned(skb)) {
2745                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2746                 if (err)
2747                         return err;
2748         }
2749
2750         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2751         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
2752
2753         if (skb->protocol == htons(ETH_P_IP)) {
2754                 struct iphdr *iph = ip_hdr(skb);
2755                 iph->tot_len = 0;
2756                 iph->check = 0;
2757                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2758                                                          iph->daddr, 0,
2759                                                          IPPROTO_TCP,
2760                                                          0);
2761                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2762         } else if (skb_is_gso_v6(skb)) {
2763                 ipv6_hdr(skb)->payload_len = 0;
2764                 tcp_hdr(skb)->check =
2765                     ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2766                                      &ipv6_hdr(skb)->daddr,
2767                                      0, IPPROTO_TCP, 0);
2768         }
2769
2770         /* compute header lengths */
2771         l4len = tcp_hdrlen(skb);
2772         *hdr_len += l4len;
2773         *hdr_len = skb_transport_offset(skb) + l4len;
2774
2775         /* mss_l4len_id: use 1 as index for TSO */
2776         mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
2777         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
2778         mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
2779
2780         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
2781         vlan_macip_lens = skb_network_header_len(skb);
2782         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2783         vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2784
2785         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2786                             type_tucmd, mss_l4len_idx);
2787
2788         return 1;
2789 }
2790
2791 static bool ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
2792                             struct sk_buff *skb, u32 tx_flags)
2793 {
2794         u32 vlan_macip_lens = 0;
2795         u32 mss_l4len_idx = 0;
2796         u32 type_tucmd = 0;
2797
2798         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2799                 u8 l4_hdr = 0;
2800                 switch (skb->protocol) {
2801                 case __constant_htons(ETH_P_IP):
2802                         vlan_macip_lens |= skb_network_header_len(skb);
2803                         type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2804                         l4_hdr = ip_hdr(skb)->protocol;
2805                         break;
2806                 case __constant_htons(ETH_P_IPV6):
2807                         vlan_macip_lens |= skb_network_header_len(skb);
2808                         l4_hdr = ipv6_hdr(skb)->nexthdr;
2809                         break;
2810                 default:
2811                         if (unlikely(net_ratelimit())) {
2812                                 dev_warn(tx_ring->dev,
2813                                  "partial checksum but proto=%x!\n",
2814                                  skb->protocol);
2815                         }
2816                         break;
2817                 }
2818
2819                 switch (l4_hdr) {
2820                 case IPPROTO_TCP:
2821                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2822                         mss_l4len_idx = tcp_hdrlen(skb) <<
2823                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2824                         break;
2825                 case IPPROTO_SCTP:
2826                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
2827                         mss_l4len_idx = sizeof(struct sctphdr) <<
2828                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2829                         break;
2830                 case IPPROTO_UDP:
2831                         mss_l4len_idx = sizeof(struct udphdr) <<
2832                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2833                         break;
2834                 default:
2835                         if (unlikely(net_ratelimit())) {
2836                                 dev_warn(tx_ring->dev,
2837                                  "partial checksum but l4 proto=%x!\n",
2838                                  l4_hdr);
2839                         }
2840                         break;
2841                 }
2842         }
2843
2844         /* vlan_macip_lens: MACLEN, VLAN tag */
2845         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2846         vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2847
2848         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2849                             type_tucmd, mss_l4len_idx);
2850
2851         return (skb->ip_summed == CHECKSUM_PARTIAL);
2852 }
2853
2854 static int ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
2855                           struct sk_buff *skb, u32 tx_flags)
2856 {
2857         struct ixgbevf_tx_buffer *tx_buffer_info;
2858         unsigned int len;
2859         unsigned int total = skb->len;
2860         unsigned int offset = 0, size;
2861         int count = 0;
2862         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2863         unsigned int f;
2864         int i;
2865
2866         i = tx_ring->next_to_use;
2867
2868         len = min(skb_headlen(skb), total);
2869         while (len) {
2870                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2871                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2872
2873                 tx_buffer_info->length = size;
2874                 tx_buffer_info->mapped_as_page = false;
2875                 tx_buffer_info->dma = dma_map_single(tx_ring->dev,
2876                                                      skb->data + offset,
2877                                                      size, DMA_TO_DEVICE);
2878                 if (dma_mapping_error(tx_ring->dev, tx_buffer_info->dma))
2879                         goto dma_error;
2880
2881                 len -= size;
2882                 total -= size;
2883                 offset += size;
2884                 count++;
2885                 i++;
2886                 if (i == tx_ring->count)
2887                         i = 0;
2888         }
2889
2890         for (f = 0; f < nr_frags; f++) {
2891                 const struct skb_frag_struct *frag;
2892
2893                 frag = &skb_shinfo(skb)->frags[f];
2894                 len = min((unsigned int)skb_frag_size(frag), total);
2895                 offset = 0;
2896
2897                 while (len) {
2898                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2899                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2900
2901                         tx_buffer_info->length = size;
2902                         tx_buffer_info->dma =
2903                                 skb_frag_dma_map(tx_ring->dev, frag,
2904                                                  offset, size, DMA_TO_DEVICE);
2905                         if (dma_mapping_error(tx_ring->dev,
2906                                               tx_buffer_info->dma))
2907                                 goto dma_error;
2908                         tx_buffer_info->mapped_as_page = true;
2909
2910                         len -= size;
2911                         total -= size;
2912                         offset += size;
2913                         count++;
2914                         i++;
2915                         if (i == tx_ring->count)
2916                                 i = 0;
2917                 }
2918                 if (total == 0)
2919                         break;
2920         }
2921
2922         if (i == 0)
2923                 i = tx_ring->count - 1;
2924         else
2925                 i = i - 1;
2926         tx_ring->tx_buffer_info[i].skb = skb;
2927
2928         return count;
2929
2930 dma_error:
2931         dev_err(tx_ring->dev, "TX DMA map failed\n");
2932
2933         /* clear timestamp and dma mappings for failed tx_buffer_info map */
2934         tx_buffer_info->dma = 0;
2935         count--;
2936
2937         /* clear timestamp and dma mappings for remaining portion of packet */
2938         while (count >= 0) {
2939                 count--;
2940                 i--;
2941                 if (i < 0)
2942                         i += tx_ring->count;
2943                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2944                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2945         }
2946
2947         return count;
2948 }
2949
2950 static void ixgbevf_tx_queue(struct ixgbevf_ring *tx_ring, int tx_flags,
2951                              int count, unsigned int first, u32 paylen,
2952                              u8 hdr_len)
2953 {
2954         union ixgbe_adv_tx_desc *tx_desc = NULL;
2955         struct ixgbevf_tx_buffer *tx_buffer_info;
2956         u32 olinfo_status = 0, cmd_type_len = 0;
2957         unsigned int i;
2958
2959         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2960
2961         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2962
2963         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2964
2965         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2966                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2967
2968         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
2969                 olinfo_status |= IXGBE_ADVTXD_POPTS_TXSM;
2970
2971         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2972                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2973
2974                 /* use index 1 context for tso */
2975                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2976                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
2977                         olinfo_status |= IXGBE_ADVTXD_POPTS_IXSM;
2978         }
2979
2980         /*
2981          * Check Context must be set if Tx switch is enabled, which it
2982          * always is for case where virtual functions are running
2983          */
2984         olinfo_status |= IXGBE_ADVTXD_CC;
2985
2986         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
2987
2988         i = tx_ring->next_to_use;
2989         while (count--) {
2990                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2991                 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2992                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
2993                 tx_desc->read.cmd_type_len =
2994                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
2995                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2996                 i++;
2997                 if (i == tx_ring->count)
2998                         i = 0;
2999         }
3000
3001         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3002
3003         tx_ring->tx_buffer_info[first].time_stamp = jiffies;
3004
3005         /* Force memory writes to complete before letting h/w
3006          * know there are new descriptors to fetch.  (Only
3007          * applicable for weak-ordered memory model archs,
3008          * such as IA-64).
3009          */
3010         wmb();
3011
3012         tx_ring->tx_buffer_info[first].next_to_watch = tx_desc;
3013         tx_ring->next_to_use = i;
3014 }
3015
3016 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3017 {
3018         struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3019
3020         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3021         /* Herbert's original patch had:
3022          *  smp_mb__after_netif_stop_queue();
3023          * but since that doesn't exist yet, just open code it. */
3024         smp_mb();
3025
3026         /* We need to check again in a case another CPU has just
3027          * made room available. */
3028         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3029                 return -EBUSY;
3030
3031         /* A reprieve! - use start_queue because it doesn't call schedule */
3032         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3033         ++adapter->restart_queue;
3034         return 0;
3035 }
3036
3037 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3038 {
3039         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3040                 return 0;
3041         return __ixgbevf_maybe_stop_tx(tx_ring, size);
3042 }
3043
3044 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3045 {
3046         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3047         struct ixgbevf_ring *tx_ring;
3048         unsigned int first;
3049         unsigned int tx_flags = 0;
3050         u8 hdr_len = 0;
3051         int r_idx = 0, tso;
3052         u16 count = TXD_USE_COUNT(skb_headlen(skb));
3053 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3054         unsigned short f;
3055 #endif
3056         u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3057         if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3058                 dev_kfree_skb(skb);
3059                 return NETDEV_TX_OK;
3060         }
3061
3062         tx_ring = &adapter->tx_ring[r_idx];
3063
3064         /*
3065          * need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3066          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3067          *       + 2 desc gap to keep tail from touching head,
3068          *       + 1 desc for context descriptor,
3069          * otherwise try next time
3070          */
3071 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3072         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3073                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3074 #else
3075         count += skb_shinfo(skb)->nr_frags;
3076 #endif
3077         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3078                 adapter->tx_busy++;
3079                 return NETDEV_TX_BUSY;
3080         }
3081
3082         if (vlan_tx_tag_present(skb)) {
3083                 tx_flags |= vlan_tx_tag_get(skb);
3084                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3085                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3086         }
3087
3088         first = tx_ring->next_to_use;
3089
3090         if (skb->protocol == htons(ETH_P_IP))
3091                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3092         tso = ixgbevf_tso(tx_ring, skb, tx_flags, &hdr_len);
3093         if (tso < 0) {
3094                 dev_kfree_skb_any(skb);
3095                 return NETDEV_TX_OK;
3096         }
3097
3098         if (tso)
3099                 tx_flags |= IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_CSUM;
3100         else if (ixgbevf_tx_csum(tx_ring, skb, tx_flags))
3101                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3102
3103         ixgbevf_tx_queue(tx_ring, tx_flags,
3104                          ixgbevf_tx_map(tx_ring, skb, tx_flags),
3105                          first, skb->len, hdr_len);
3106
3107         writel(tx_ring->next_to_use, adapter->hw.hw_addr + tx_ring->tail);
3108
3109         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3110
3111         return NETDEV_TX_OK;
3112 }
3113
3114 /**
3115  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3116  * @netdev: network interface device structure
3117  * @p: pointer to an address structure
3118  *
3119  * Returns 0 on success, negative on failure
3120  **/
3121 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3122 {
3123         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3124         struct ixgbe_hw *hw = &adapter->hw;
3125         struct sockaddr *addr = p;
3126
3127         if (!is_valid_ether_addr(addr->sa_data))
3128                 return -EADDRNOTAVAIL;
3129
3130         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3131         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3132
3133         spin_lock_bh(&adapter->mbx_lock);
3134
3135         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3136
3137         spin_unlock_bh(&adapter->mbx_lock);
3138
3139         return 0;
3140 }
3141
3142 /**
3143  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3144  * @netdev: network interface device structure
3145  * @new_mtu: new value for maximum frame size
3146  *
3147  * Returns 0 on success, negative on failure
3148  **/
3149 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3150 {
3151         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3152         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3153         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3154
3155         switch (adapter->hw.api_version) {
3156         case ixgbe_mbox_api_11:
3157                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3158                 break;
3159         default:
3160                 if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3161                         max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3162                 break;
3163         }
3164
3165         /* MTU < 68 is an error and causes problems on some kernels */
3166         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3167                 return -EINVAL;
3168
3169         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3170                netdev->mtu, new_mtu);
3171         /* must set new MTU before calling down or up */
3172         netdev->mtu = new_mtu;
3173
3174         if (netif_running(netdev))
3175                 ixgbevf_reinit_locked(adapter);
3176
3177         return 0;
3178 }
3179
3180 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3181 {
3182         struct net_device *netdev = pci_get_drvdata(pdev);
3183         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3184 #ifdef CONFIG_PM
3185         int retval = 0;
3186 #endif
3187
3188         netif_device_detach(netdev);
3189
3190         if (netif_running(netdev)) {
3191                 rtnl_lock();
3192                 ixgbevf_down(adapter);
3193                 ixgbevf_free_irq(adapter);
3194                 ixgbevf_free_all_tx_resources(adapter);
3195                 ixgbevf_free_all_rx_resources(adapter);
3196                 rtnl_unlock();
3197         }
3198
3199         ixgbevf_clear_interrupt_scheme(adapter);
3200
3201 #ifdef CONFIG_PM
3202         retval = pci_save_state(pdev);
3203         if (retval)
3204                 return retval;
3205
3206 #endif
3207         pci_disable_device(pdev);
3208
3209         return 0;
3210 }
3211
3212 #ifdef CONFIG_PM
3213 static int ixgbevf_resume(struct pci_dev *pdev)
3214 {
3215         struct ixgbevf_adapter *adapter = pci_get_drvdata(pdev);
3216         struct net_device *netdev = adapter->netdev;
3217         u32 err;
3218
3219         pci_set_power_state(pdev, PCI_D0);
3220         pci_restore_state(pdev);
3221         /*
3222          * pci_restore_state clears dev->state_saved so call
3223          * pci_save_state to restore it.
3224          */
3225         pci_save_state(pdev);
3226
3227         err = pci_enable_device_mem(pdev);
3228         if (err) {
3229                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3230                 return err;
3231         }
3232         pci_set_master(pdev);
3233
3234         ixgbevf_reset(adapter);
3235
3236         rtnl_lock();
3237         err = ixgbevf_init_interrupt_scheme(adapter);
3238         rtnl_unlock();
3239         if (err) {
3240                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3241                 return err;
3242         }
3243
3244         if (netif_running(netdev)) {
3245                 err = ixgbevf_open(netdev);
3246                 if (err)
3247                         return err;
3248         }
3249
3250         netif_device_attach(netdev);
3251
3252         return err;
3253 }
3254
3255 #endif /* CONFIG_PM */
3256 static void ixgbevf_shutdown(struct pci_dev *pdev)
3257 {
3258         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3259 }
3260
3261 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3262                                                 struct rtnl_link_stats64 *stats)
3263 {
3264         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3265         unsigned int start;
3266         u64 bytes, packets;
3267         const struct ixgbevf_ring *ring;
3268         int i;
3269
3270         ixgbevf_update_stats(adapter);
3271
3272         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3273
3274         for (i = 0; i < adapter->num_rx_queues; i++) {
3275                 ring = &adapter->rx_ring[i];
3276                 do {
3277                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3278                         bytes = ring->total_bytes;
3279                         packets = ring->total_packets;
3280                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3281                 stats->rx_bytes += bytes;
3282                 stats->rx_packets += packets;
3283         }
3284
3285         for (i = 0; i < adapter->num_tx_queues; i++) {
3286                 ring = &adapter->tx_ring[i];
3287                 do {
3288                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3289                         bytes = ring->total_bytes;
3290                         packets = ring->total_packets;
3291                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3292                 stats->tx_bytes += bytes;
3293                 stats->tx_packets += packets;
3294         }
3295
3296         return stats;
3297 }
3298
3299 static const struct net_device_ops ixgbevf_netdev_ops = {
3300         .ndo_open               = ixgbevf_open,
3301         .ndo_stop               = ixgbevf_close,
3302         .ndo_start_xmit         = ixgbevf_xmit_frame,
3303         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3304         .ndo_get_stats64        = ixgbevf_get_stats,
3305         .ndo_validate_addr      = eth_validate_addr,
3306         .ndo_set_mac_address    = ixgbevf_set_mac,
3307         .ndo_change_mtu         = ixgbevf_change_mtu,
3308         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3309         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3310         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3311 };
3312
3313 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3314 {
3315         dev->netdev_ops = &ixgbevf_netdev_ops;
3316         ixgbevf_set_ethtool_ops(dev);
3317         dev->watchdog_timeo = 5 * HZ;
3318 }
3319
3320 /**
3321  * ixgbevf_probe - Device Initialization Routine
3322  * @pdev: PCI device information struct
3323  * @ent: entry in ixgbevf_pci_tbl
3324  *
3325  * Returns 0 on success, negative on failure
3326  *
3327  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3328  * The OS initialization, configuring of the adapter private structure,
3329  * and a hardware reset occur.
3330  **/
3331 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3332 {
3333         struct net_device *netdev;
3334         struct ixgbevf_adapter *adapter = NULL;
3335         struct ixgbe_hw *hw = NULL;
3336         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3337         static int cards_found;
3338         int err, pci_using_dac;
3339
3340         err = pci_enable_device(pdev);
3341         if (err)
3342                 return err;
3343
3344         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3345             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3346                 pci_using_dac = 1;
3347         } else {
3348                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3349                 if (err) {
3350                         err = dma_set_coherent_mask(&pdev->dev,
3351                                                     DMA_BIT_MASK(32));
3352                         if (err) {
3353                                 dev_err(&pdev->dev, "No usable DMA "
3354                                         "configuration, aborting\n");
3355                                 goto err_dma;
3356                         }
3357                 }
3358                 pci_using_dac = 0;
3359         }
3360
3361         err = pci_request_regions(pdev, ixgbevf_driver_name);
3362         if (err) {
3363                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3364                 goto err_pci_reg;
3365         }
3366
3367         pci_set_master(pdev);
3368
3369         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3370                                    MAX_TX_QUEUES);
3371         if (!netdev) {
3372                 err = -ENOMEM;
3373                 goto err_alloc_etherdev;
3374         }
3375
3376         SET_NETDEV_DEV(netdev, &pdev->dev);
3377
3378         pci_set_drvdata(pdev, netdev);
3379         adapter = netdev_priv(netdev);
3380
3381         adapter->netdev = netdev;
3382         adapter->pdev = pdev;
3383         hw = &adapter->hw;
3384         hw->back = adapter;
3385         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3386
3387         /*
3388          * call save state here in standalone driver because it relies on
3389          * adapter struct to exist, and needs to call netdev_priv
3390          */
3391         pci_save_state(pdev);
3392
3393         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3394                               pci_resource_len(pdev, 0));
3395         if (!hw->hw_addr) {
3396                 err = -EIO;
3397                 goto err_ioremap;
3398         }
3399
3400         ixgbevf_assign_netdev_ops(netdev);
3401
3402         adapter->bd_number = cards_found;
3403
3404         /* Setup hw api */
3405         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3406         hw->mac.type  = ii->mac;
3407
3408         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3409                sizeof(struct ixgbe_mbx_operations));
3410
3411         /* setup the private structure */
3412         err = ixgbevf_sw_init(adapter);
3413         if (err)
3414                 goto err_sw_init;
3415
3416         /* The HW MAC address was set and/or determined in sw_init */
3417         if (!is_valid_ether_addr(netdev->dev_addr)) {
3418                 pr_err("invalid MAC address\n");
3419                 err = -EIO;
3420                 goto err_sw_init;
3421         }
3422
3423         netdev->hw_features = NETIF_F_SG |
3424                            NETIF_F_IP_CSUM |
3425                            NETIF_F_IPV6_CSUM |
3426                            NETIF_F_TSO |
3427                            NETIF_F_TSO6 |
3428                            NETIF_F_RXCSUM;
3429
3430         netdev->features = netdev->hw_features |
3431                            NETIF_F_HW_VLAN_CTAG_TX |
3432                            NETIF_F_HW_VLAN_CTAG_RX |
3433                            NETIF_F_HW_VLAN_CTAG_FILTER;
3434
3435         netdev->vlan_features |= NETIF_F_TSO;
3436         netdev->vlan_features |= NETIF_F_TSO6;
3437         netdev->vlan_features |= NETIF_F_IP_CSUM;
3438         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3439         netdev->vlan_features |= NETIF_F_SG;
3440
3441         if (pci_using_dac)
3442                 netdev->features |= NETIF_F_HIGHDMA;
3443
3444         netdev->priv_flags |= IFF_UNICAST_FLT;
3445
3446         init_timer(&adapter->watchdog_timer);
3447         adapter->watchdog_timer.function = ixgbevf_watchdog;
3448         adapter->watchdog_timer.data = (unsigned long)adapter;
3449
3450         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3451         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3452
3453         err = ixgbevf_init_interrupt_scheme(adapter);
3454         if (err)
3455                 goto err_sw_init;
3456
3457         strcpy(netdev->name, "eth%d");
3458
3459         err = register_netdev(netdev);
3460         if (err)
3461                 goto err_register;
3462
3463         netif_carrier_off(netdev);
3464
3465         ixgbevf_init_last_counter_stats(adapter);
3466
3467         /* print the MAC address */
3468         hw_dbg(hw, "%pM\n", netdev->dev_addr);
3469
3470         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3471
3472         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3473         cards_found++;
3474         return 0;
3475
3476 err_register:
3477         ixgbevf_clear_interrupt_scheme(adapter);
3478 err_sw_init:
3479         ixgbevf_reset_interrupt_capability(adapter);
3480         iounmap(hw->hw_addr);
3481 err_ioremap:
3482         free_netdev(netdev);
3483 err_alloc_etherdev:
3484         pci_release_regions(pdev);
3485 err_pci_reg:
3486 err_dma:
3487         pci_disable_device(pdev);
3488         return err;
3489 }
3490
3491 /**
3492  * ixgbevf_remove - Device Removal Routine
3493  * @pdev: PCI device information struct
3494  *
3495  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3496  * that it should release a PCI device.  The could be caused by a
3497  * Hot-Plug event, or because the driver is going to be removed from
3498  * memory.
3499  **/
3500 static void ixgbevf_remove(struct pci_dev *pdev)
3501 {
3502         struct net_device *netdev = pci_get_drvdata(pdev);
3503         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3504
3505         set_bit(__IXGBEVF_DOWN, &adapter->state);
3506
3507         del_timer_sync(&adapter->watchdog_timer);
3508
3509         cancel_work_sync(&adapter->reset_task);
3510         cancel_work_sync(&adapter->watchdog_task);
3511
3512         if (netdev->reg_state == NETREG_REGISTERED)
3513                 unregister_netdev(netdev);
3514
3515         ixgbevf_clear_interrupt_scheme(adapter);
3516         ixgbevf_reset_interrupt_capability(adapter);
3517
3518         iounmap(adapter->hw.hw_addr);
3519         pci_release_regions(pdev);
3520
3521         hw_dbg(&adapter->hw, "Remove complete\n");
3522
3523         kfree(adapter->tx_ring);
3524         kfree(adapter->rx_ring);
3525
3526         free_netdev(netdev);
3527
3528         pci_disable_device(pdev);
3529 }
3530
3531 /**
3532  * ixgbevf_io_error_detected - called when PCI error is detected
3533  * @pdev: Pointer to PCI device
3534  * @state: The current pci connection state
3535  *
3536  * This function is called after a PCI bus error affecting
3537  * this device has been detected.
3538  */
3539 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
3540                                                   pci_channel_state_t state)
3541 {
3542         struct net_device *netdev = pci_get_drvdata(pdev);
3543         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3544
3545         netif_device_detach(netdev);
3546
3547         if (state == pci_channel_io_perm_failure)
3548                 return PCI_ERS_RESULT_DISCONNECT;
3549
3550         if (netif_running(netdev))
3551                 ixgbevf_down(adapter);
3552
3553         pci_disable_device(pdev);
3554
3555         /* Request a slot slot reset. */
3556         return PCI_ERS_RESULT_NEED_RESET;
3557 }
3558
3559 /**
3560  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
3561  * @pdev: Pointer to PCI device
3562  *
3563  * Restart the card from scratch, as if from a cold-boot. Implementation
3564  * resembles the first-half of the ixgbevf_resume routine.
3565  */
3566 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
3567 {
3568         struct net_device *netdev = pci_get_drvdata(pdev);
3569         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3570
3571         if (pci_enable_device_mem(pdev)) {
3572                 dev_err(&pdev->dev,
3573                         "Cannot re-enable PCI device after reset.\n");
3574                 return PCI_ERS_RESULT_DISCONNECT;
3575         }
3576
3577         pci_set_master(pdev);
3578
3579         ixgbevf_reset(adapter);
3580
3581         return PCI_ERS_RESULT_RECOVERED;
3582 }
3583
3584 /**
3585  * ixgbevf_io_resume - called when traffic can start flowing again.
3586  * @pdev: Pointer to PCI device
3587  *
3588  * This callback is called when the error recovery driver tells us that
3589  * its OK to resume normal operation. Implementation resembles the
3590  * second-half of the ixgbevf_resume routine.
3591  */
3592 static void ixgbevf_io_resume(struct pci_dev *pdev)
3593 {
3594         struct net_device *netdev = pci_get_drvdata(pdev);
3595         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3596
3597         if (netif_running(netdev))
3598                 ixgbevf_up(adapter);
3599
3600         netif_device_attach(netdev);
3601 }
3602
3603 /* PCI Error Recovery (ERS) */
3604 static const struct pci_error_handlers ixgbevf_err_handler = {
3605         .error_detected = ixgbevf_io_error_detected,
3606         .slot_reset = ixgbevf_io_slot_reset,
3607         .resume = ixgbevf_io_resume,
3608 };
3609
3610 static struct pci_driver ixgbevf_driver = {
3611         .name     = ixgbevf_driver_name,
3612         .id_table = ixgbevf_pci_tbl,
3613         .probe    = ixgbevf_probe,
3614         .remove   = ixgbevf_remove,
3615 #ifdef CONFIG_PM
3616         /* Power Management Hooks */
3617         .suspend  = ixgbevf_suspend,
3618         .resume   = ixgbevf_resume,
3619 #endif
3620         .shutdown = ixgbevf_shutdown,
3621         .err_handler = &ixgbevf_err_handler
3622 };
3623
3624 /**
3625  * ixgbevf_init_module - Driver Registration Routine
3626  *
3627  * ixgbevf_init_module is the first routine called when the driver is
3628  * loaded. All it does is register with the PCI subsystem.
3629  **/
3630 static int __init ixgbevf_init_module(void)
3631 {
3632         int ret;
3633         pr_info("%s - version %s\n", ixgbevf_driver_string,
3634                 ixgbevf_driver_version);
3635
3636         pr_info("%s\n", ixgbevf_copyright);
3637
3638         ret = pci_register_driver(&ixgbevf_driver);
3639         return ret;
3640 }
3641
3642 module_init(ixgbevf_init_module);
3643
3644 /**
3645  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3646  *
3647  * ixgbevf_exit_module is called just before the driver is removed
3648  * from memory.
3649  **/
3650 static void __exit ixgbevf_exit_module(void)
3651 {
3652         pci_unregister_driver(&ixgbevf_driver);
3653 }
3654
3655 #ifdef DEBUG
3656 /**
3657  * ixgbevf_get_hw_dev_name - return device name string
3658  * used by hardware layer to print debugging information
3659  **/
3660 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3661 {
3662         struct ixgbevf_adapter *adapter = hw->back;
3663         return adapter->netdev->name;
3664 }
3665
3666 #endif
3667 module_exit(ixgbevf_exit_module);
3668
3669 /* ixgbevf_main.c */