remove scatterlist.h generation from arch Kbuild files
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 static int igb_runtime_suspend(struct device *dev);
190 static int igb_runtime_resume(struct device *dev);
191 static int igb_runtime_idle(struct device *dev);
192 static const struct dev_pm_ops igb_pm_ops = {
193         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195                         igb_runtime_idle)
196 };
197 #endif
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
217
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219                      pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222
223 static const struct pci_error_handlers igb_err_handler = {
224         .error_detected = igb_io_error_detected,
225         .slot_reset = igb_io_slot_reset,
226         .resume = igb_io_resume,
227 };
228
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231 static struct pci_driver igb_driver = {
232         .name     = igb_driver_name,
233         .id_table = igb_pci_tbl,
234         .probe    = igb_probe,
235         .remove   = igb_remove,
236 #ifdef CONFIG_PM
237         .driver.pm = &igb_pm_ops,
238 #endif
239         .shutdown = igb_shutdown,
240         .sriov_configure = igb_pci_sriov_configure,
241         .err_handler = &igb_err_handler
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 struct igb_reg_info {
255         u32 ofs;
256         char *name;
257 };
258
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261         /* General Registers */
262         {E1000_CTRL, "CTRL"},
263         {E1000_STATUS, "STATUS"},
264         {E1000_CTRL_EXT, "CTRL_EXT"},
265
266         /* Interrupt Registers */
267         {E1000_ICR, "ICR"},
268
269         /* RX Registers */
270         {E1000_RCTL, "RCTL"},
271         {E1000_RDLEN(0), "RDLEN"},
272         {E1000_RDH(0), "RDH"},
273         {E1000_RDT(0), "RDT"},
274         {E1000_RXDCTL(0), "RXDCTL"},
275         {E1000_RDBAL(0), "RDBAL"},
276         {E1000_RDBAH(0), "RDBAH"},
277
278         /* TX Registers */
279         {E1000_TCTL, "TCTL"},
280         {E1000_TDBAL(0), "TDBAL"},
281         {E1000_TDBAH(0), "TDBAH"},
282         {E1000_TDLEN(0), "TDLEN"},
283         {E1000_TDH(0), "TDH"},
284         {E1000_TDT(0), "TDT"},
285         {E1000_TXDCTL(0), "TXDCTL"},
286         {E1000_TDFH, "TDFH"},
287         {E1000_TDFT, "TDFT"},
288         {E1000_TDFHS, "TDFHS"},
289         {E1000_TDFPC, "TDFPC"},
290
291         /* List Terminator */
292         {}
293 };
294
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297 {
298         int n = 0;
299         char rname[16];
300         u32 regs[8];
301
302         switch (reginfo->ofs) {
303         case E1000_RDLEN(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDLEN(n));
306                 break;
307         case E1000_RDH(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDH(n));
310                 break;
311         case E1000_RDT(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDT(n));
314                 break;
315         case E1000_RXDCTL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RXDCTL(n));
318                 break;
319         case E1000_RDBAL(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAL(n));
322                 break;
323         case E1000_RDBAH(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAH(n));
326                 break;
327         case E1000_TDBAL(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_RDBAL(n));
330                 break;
331         case E1000_TDBAH(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDBAH(n));
334                 break;
335         case E1000_TDLEN(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDLEN(n));
338                 break;
339         case E1000_TDH(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDH(n));
342                 break;
343         case E1000_TDT(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TDT(n));
346                 break;
347         case E1000_TXDCTL(0):
348                 for (n = 0; n < 4; n++)
349                         regs[n] = rd32(E1000_TXDCTL(n));
350                 break;
351         default:
352                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353                 return;
354         }
355
356         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358                 regs[2], regs[3]);
359 }
360
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364         struct net_device *netdev = adapter->netdev;
365         struct e1000_hw *hw = &adapter->hw;
366         struct igb_reg_info *reginfo;
367         struct igb_ring *tx_ring;
368         union e1000_adv_tx_desc *tx_desc;
369         struct my_u0 { u64 a; u64 b; } *u0;
370         struct igb_ring *rx_ring;
371         union e1000_adv_rx_desc *rx_desc;
372         u32 staterr;
373         u16 i, n;
374
375         if (!netif_msg_hw(adapter))
376                 return;
377
378         /* Print netdevice Info */
379         if (netdev) {
380                 dev_info(&adapter->pdev->dev, "Net device Info\n");
381                 pr_info("Device Name     state            trans_start      last_rx\n");
382                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383                         netdev->state, netdev->trans_start, netdev->last_rx);
384         }
385
386         /* Print Registers */
387         dev_info(&adapter->pdev->dev, "Register Dump\n");
388         pr_info(" Register Name   Value\n");
389         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390              reginfo->name; reginfo++) {
391                 igb_regdump(hw, reginfo);
392         }
393
394         /* Print TX Ring Summary */
395         if (!netdev || !netif_running(netdev))
396                 goto exit;
397
398         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400         for (n = 0; n < adapter->num_tx_queues; n++) {
401                 struct igb_tx_buffer *buffer_info;
402                 tx_ring = adapter->tx_ring[n];
403                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
406                         (u64)dma_unmap_addr(buffer_info, dma),
407                         dma_unmap_len(buffer_info, len),
408                         buffer_info->next_to_watch,
409                         (u64)buffer_info->time_stamp);
410         }
411
412         /* Print TX Rings */
413         if (!netif_msg_tx_done(adapter))
414                 goto rx_ring_summary;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418         /* Transmit Descriptor Formats
419          *
420          * Advanced Transmit Descriptor
421          *   +--------------------------------------------------------------+
422          * 0 |         Buffer Address [63:0]                                |
423          *   +--------------------------------------------------------------+
424          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425          *   +--------------------------------------------------------------+
426          *   63      46 45    40 39 38 36 35 32 31   24             15       0
427          */
428
429         for (n = 0; n < adapter->num_tx_queues; n++) {
430                 tx_ring = adapter->tx_ring[n];
431                 pr_info("------------------------------------\n");
432                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433                 pr_info("------------------------------------\n");
434                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
435
436                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437                         const char *next_desc;
438                         struct igb_tx_buffer *buffer_info;
439                         tx_desc = IGB_TX_DESC(tx_ring, i);
440                         buffer_info = &tx_ring->tx_buffer_info[i];
441                         u0 = (struct my_u0 *)tx_desc;
442                         if (i == tx_ring->next_to_use &&
443                             i == tx_ring->next_to_clean)
444                                 next_desc = " NTC/U";
445                         else if (i == tx_ring->next_to_use)
446                                 next_desc = " NTU";
447                         else if (i == tx_ring->next_to_clean)
448                                 next_desc = " NTC";
449                         else
450                                 next_desc = "";
451
452                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
453                                 i, le64_to_cpu(u0->a),
454                                 le64_to_cpu(u0->b),
455                                 (u64)dma_unmap_addr(buffer_info, dma),
456                                 dma_unmap_len(buffer_info, len),
457                                 buffer_info->next_to_watch,
458                                 (u64)buffer_info->time_stamp,
459                                 buffer_info->skb, next_desc);
460
461                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
462                                 print_hex_dump(KERN_INFO, "",
463                                         DUMP_PREFIX_ADDRESS,
464                                         16, 1, buffer_info->skb->data,
465                                         dma_unmap_len(buffer_info, len),
466                                         true);
467                 }
468         }
469
470         /* Print RX Rings Summary */
471 rx_ring_summary:
472         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473         pr_info("Queue [NTU] [NTC]\n");
474         for (n = 0; n < adapter->num_rx_queues; n++) {
475                 rx_ring = adapter->rx_ring[n];
476                 pr_info(" %5d %5X %5X\n",
477                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
478         }
479
480         /* Print RX Rings */
481         if (!netif_msg_rx_status(adapter))
482                 goto exit;
483
484         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486         /* Advanced Receive Descriptor (Read) Format
487          *    63                                           1        0
488          *    +-----------------------------------------------------+
489          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
490          *    +----------------------------------------------+------+
491          *  8 |       Header Buffer Address [63:1]           |  DD  |
492          *    +-----------------------------------------------------+
493          *
494          *
495          * Advanced Receive Descriptor (Write-Back) Format
496          *
497          *   63       48 47    32 31  30      21 20 17 16   4 3     0
498          *   +------------------------------------------------------+
499          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
500          *   | Checksum   Ident  |   |           |    | Type | Type |
501          *   +------------------------------------------------------+
502          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503          *   +------------------------------------------------------+
504          *   63       48 47    32 31            20 19               0
505          */
506
507         for (n = 0; n < adapter->num_rx_queues; n++) {
508                 rx_ring = adapter->rx_ring[n];
509                 pr_info("------------------------------------\n");
510                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511                 pr_info("------------------------------------\n");
512                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
513                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515                 for (i = 0; i < rx_ring->count; i++) {
516                         const char *next_desc;
517                         struct igb_rx_buffer *buffer_info;
518                         buffer_info = &rx_ring->rx_buffer_info[i];
519                         rx_desc = IGB_RX_DESC(rx_ring, i);
520                         u0 = (struct my_u0 *)rx_desc;
521                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523                         if (i == rx_ring->next_to_use)
524                                 next_desc = " NTU";
525                         else if (i == rx_ring->next_to_clean)
526                                 next_desc = " NTC";
527                         else
528                                 next_desc = "";
529
530                         if (staterr & E1000_RXD_STAT_DD) {
531                                 /* Descriptor Done */
532                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
533                                         "RWB", i,
534                                         le64_to_cpu(u0->a),
535                                         le64_to_cpu(u0->b),
536                                         next_desc);
537                         } else {
538                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
539                                         "R  ", i,
540                                         le64_to_cpu(u0->a),
541                                         le64_to_cpu(u0->b),
542                                         (u64)buffer_info->dma,
543                                         next_desc);
544
545                                 if (netif_msg_pktdata(adapter) &&
546                                     buffer_info->dma && buffer_info->page) {
547                                         print_hex_dump(KERN_INFO, "",
548                                           DUMP_PREFIX_ADDRESS,
549                                           16, 1,
550                                           page_address(buffer_info->page) +
551                                                       buffer_info->page_offset,
552                                           IGB_RX_BUFSZ, true);
553                                 }
554                         }
555                 }
556         }
557
558 exit:
559         return;
560 }
561
562 /**
563  *  igb_get_i2c_data - Reads the I2C SDA data bit
564  *  @hw: pointer to hardware structure
565  *  @i2cctl: Current value of I2CCTL register
566  *
567  *  Returns the I2C data bit value
568  **/
569 static int igb_get_i2c_data(void *data)
570 {
571         struct igb_adapter *adapter = (struct igb_adapter *)data;
572         struct e1000_hw *hw = &adapter->hw;
573         s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575         return !!(i2cctl & E1000_I2C_DATA_IN);
576 }
577
578 /**
579  *  igb_set_i2c_data - Sets the I2C data bit
580  *  @data: pointer to hardware structure
581  *  @state: I2C data value (0 or 1) to set
582  *
583  *  Sets the I2C data bit
584  **/
585 static void igb_set_i2c_data(void *data, int state)
586 {
587         struct igb_adapter *adapter = (struct igb_adapter *)data;
588         struct e1000_hw *hw = &adapter->hw;
589         s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591         if (state)
592                 i2cctl |= E1000_I2C_DATA_OUT;
593         else
594                 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596         i2cctl &= ~E1000_I2C_DATA_OE_N;
597         i2cctl |= E1000_I2C_CLK_OE_N;
598         wr32(E1000_I2CPARAMS, i2cctl);
599         wrfl();
600
601 }
602
603 /**
604  *  igb_set_i2c_clk - Sets the I2C SCL clock
605  *  @data: pointer to hardware structure
606  *  @state: state to set clock
607  *
608  *  Sets the I2C clock line to state
609  **/
610 static void igb_set_i2c_clk(void *data, int state)
611 {
612         struct igb_adapter *adapter = (struct igb_adapter *)data;
613         struct e1000_hw *hw = &adapter->hw;
614         s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616         if (state) {
617                 i2cctl |= E1000_I2C_CLK_OUT;
618                 i2cctl &= ~E1000_I2C_CLK_OE_N;
619         } else {
620                 i2cctl &= ~E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         }
623         wr32(E1000_I2CPARAMS, i2cctl);
624         wrfl();
625 }
626
627 /**
628  *  igb_get_i2c_clk - Gets the I2C SCL clock state
629  *  @data: pointer to hardware structure
630  *
631  *  Gets the I2C clock state
632  **/
633 static int igb_get_i2c_clk(void *data)
634 {
635         struct igb_adapter *adapter = (struct igb_adapter *)data;
636         struct e1000_hw *hw = &adapter->hw;
637         s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639         return !!(i2cctl & E1000_I2C_CLK_IN);
640 }
641
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643         .setsda         = igb_set_i2c_data,
644         .setscl         = igb_set_i2c_clk,
645         .getsda         = igb_get_i2c_data,
646         .getscl         = igb_get_i2c_clk,
647         .udelay         = 5,
648         .timeout        = 20,
649 };
650
651 /**
652  *  igb_get_hw_dev - return device
653  *  @hw: pointer to hardware structure
654  *
655  *  used by hardware layer to print debugging information
656  **/
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658 {
659         struct igb_adapter *adapter = hw->back;
660         return adapter->netdev;
661 }
662
663 /**
664  *  igb_init_module - Driver Registration Routine
665  *
666  *  igb_init_module is the first routine called when the driver is
667  *  loaded. All it does is register with the PCI subsystem.
668  **/
669 static int __init igb_init_module(void)
670 {
671         int ret;
672
673         pr_info("%s - version %s\n",
674                igb_driver_string, igb_driver_version);
675         pr_info("%s\n", igb_copyright);
676
677 #ifdef CONFIG_IGB_DCA
678         dca_register_notify(&dca_notifier);
679 #endif
680         ret = pci_register_driver(&igb_driver);
681         return ret;
682 }
683
684 module_init(igb_init_module);
685
686 /**
687  *  igb_exit_module - Driver Exit Cleanup Routine
688  *
689  *  igb_exit_module is called just before the driver is removed
690  *  from memory.
691  **/
692 static void __exit igb_exit_module(void)
693 {
694 #ifdef CONFIG_IGB_DCA
695         dca_unregister_notify(&dca_notifier);
696 #endif
697         pci_unregister_driver(&igb_driver);
698 }
699
700 module_exit(igb_exit_module);
701
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703 /**
704  *  igb_cache_ring_register - Descriptor ring to register mapping
705  *  @adapter: board private structure to initialize
706  *
707  *  Once we know the feature-set enabled for the device, we'll cache
708  *  the register offset the descriptor ring is assigned to.
709  **/
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
711 {
712         int i = 0, j = 0;
713         u32 rbase_offset = adapter->vfs_allocated_count;
714
715         switch (adapter->hw.mac.type) {
716         case e1000_82576:
717                 /* The queues are allocated for virtualization such that VF 0
718                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719                  * In order to avoid collision we start at the first free queue
720                  * and continue consuming queues in the same sequence
721                  */
722                 if (adapter->vfs_allocated_count) {
723                         for (; i < adapter->rss_queues; i++)
724                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
725                                                                Q_IDX_82576(i);
726                 }
727                 /* Fall through */
728         case e1000_82575:
729         case e1000_82580:
730         case e1000_i350:
731         case e1000_i354:
732         case e1000_i210:
733         case e1000_i211:
734                 /* Fall through */
735         default:
736                 for (; i < adapter->num_rx_queues; i++)
737                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738                 for (; j < adapter->num_tx_queues; j++)
739                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740                 break;
741         }
742 }
743
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748         u32 value = 0;
749
750         if (E1000_REMOVED(hw_addr))
751                 return ~value;
752
753         value = readl(&hw_addr[reg]);
754
755         /* reads should not return all F's */
756         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757                 struct net_device *netdev = igb->netdev;
758                 hw->hw_addr = NULL;
759                 netif_device_detach(netdev);
760                 netdev_err(netdev, "PCIe link lost, device now detached\n");
761         }
762
763         return value;
764 }
765
766 /**
767  *  igb_write_ivar - configure ivar for given MSI-X vector
768  *  @hw: pointer to the HW structure
769  *  @msix_vector: vector number we are allocating to a given ring
770  *  @index: row index of IVAR register to write within IVAR table
771  *  @offset: column offset of in IVAR, should be multiple of 8
772  *
773  *  This function is intended to handle the writing of the IVAR register
774  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775  *  each containing an cause allocation for an Rx and Tx ring, and a
776  *  variable number of rows depending on the number of queues supported.
777  **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779                            int index, int offset)
780 {
781         u32 ivar = array_rd32(E1000_IVAR0, index);
782
783         /* clear any bits that are currently set */
784         ivar &= ~((u32)0xFF << offset);
785
786         /* write vector and valid bit */
787         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789         array_wr32(E1000_IVAR0, index, ivar);
790 }
791
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795         struct igb_adapter *adapter = q_vector->adapter;
796         struct e1000_hw *hw = &adapter->hw;
797         int rx_queue = IGB_N0_QUEUE;
798         int tx_queue = IGB_N0_QUEUE;
799         u32 msixbm = 0;
800
801         if (q_vector->rx.ring)
802                 rx_queue = q_vector->rx.ring->reg_idx;
803         if (q_vector->tx.ring)
804                 tx_queue = q_vector->tx.ring->reg_idx;
805
806         switch (hw->mac.type) {
807         case e1000_82575:
808                 /* The 82575 assigns vectors using a bitmask, which matches the
809                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810                  * or more queues to a vector, we write the appropriate bits
811                  * into the MSIXBM register for that vector.
812                  */
813                 if (rx_queue > IGB_N0_QUEUE)
814                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815                 if (tx_queue > IGB_N0_QUEUE)
816                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818                         msixbm |= E1000_EIMS_OTHER;
819                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820                 q_vector->eims_value = msixbm;
821                 break;
822         case e1000_82576:
823                 /* 82576 uses a table that essentially consists of 2 columns
824                  * with 8 rows.  The ordering is column-major so we use the
825                  * lower 3 bits as the row index, and the 4th bit as the
826                  * column offset.
827                  */
828                 if (rx_queue > IGB_N0_QUEUE)
829                         igb_write_ivar(hw, msix_vector,
830                                        rx_queue & 0x7,
831                                        (rx_queue & 0x8) << 1);
832                 if (tx_queue > IGB_N0_QUEUE)
833                         igb_write_ivar(hw, msix_vector,
834                                        tx_queue & 0x7,
835                                        ((tx_queue & 0x8) << 1) + 8);
836                 q_vector->eims_value = 1 << msix_vector;
837                 break;
838         case e1000_82580:
839         case e1000_i350:
840         case e1000_i354:
841         case e1000_i210:
842         case e1000_i211:
843                 /* On 82580 and newer adapters the scheme is similar to 82576
844                  * however instead of ordering column-major we have things
845                  * ordered row-major.  So we traverse the table by using
846                  * bit 0 as the column offset, and the remaining bits as the
847                  * row index.
848                  */
849                 if (rx_queue > IGB_N0_QUEUE)
850                         igb_write_ivar(hw, msix_vector,
851                                        rx_queue >> 1,
852                                        (rx_queue & 0x1) << 4);
853                 if (tx_queue > IGB_N0_QUEUE)
854                         igb_write_ivar(hw, msix_vector,
855                                        tx_queue >> 1,
856                                        ((tx_queue & 0x1) << 4) + 8);
857                 q_vector->eims_value = 1 << msix_vector;
858                 break;
859         default:
860                 BUG();
861                 break;
862         }
863
864         /* add q_vector eims value to global eims_enable_mask */
865         adapter->eims_enable_mask |= q_vector->eims_value;
866
867         /* configure q_vector to set itr on first interrupt */
868         q_vector->set_itr = 1;
869 }
870
871 /**
872  *  igb_configure_msix - Configure MSI-X hardware
873  *  @adapter: board private structure to initialize
874  *
875  *  igb_configure_msix sets up the hardware to properly
876  *  generate MSI-X interrupts.
877  **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880         u32 tmp;
881         int i, vector = 0;
882         struct e1000_hw *hw = &adapter->hw;
883
884         adapter->eims_enable_mask = 0;
885
886         /* set vector for other causes, i.e. link changes */
887         switch (hw->mac.type) {
888         case e1000_82575:
889                 tmp = rd32(E1000_CTRL_EXT);
890                 /* enable MSI-X PBA support*/
891                 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893                 /* Auto-Mask interrupts upon ICR read. */
894                 tmp |= E1000_CTRL_EXT_EIAME;
895                 tmp |= E1000_CTRL_EXT_IRCA;
896
897                 wr32(E1000_CTRL_EXT, tmp);
898
899                 /* enable msix_other interrupt */
900                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901                 adapter->eims_other = E1000_EIMS_OTHER;
902
903                 break;
904
905         case e1000_82576:
906         case e1000_82580:
907         case e1000_i350:
908         case e1000_i354:
909         case e1000_i210:
910         case e1000_i211:
911                 /* Turn on MSI-X capability first, or our settings
912                  * won't stick.  And it will take days to debug.
913                  */
914                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
916                      E1000_GPIE_NSICR);
917
918                 /* enable msix_other interrupt */
919                 adapter->eims_other = 1 << vector;
920                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922                 wr32(E1000_IVAR_MISC, tmp);
923                 break;
924         default:
925                 /* do nothing, since nothing else supports MSI-X */
926                 break;
927         } /* switch (hw->mac.type) */
928
929         adapter->eims_enable_mask |= adapter->eims_other;
930
931         for (i = 0; i < adapter->num_q_vectors; i++)
932                 igb_assign_vector(adapter->q_vector[i], vector++);
933
934         wrfl();
935 }
936
937 /**
938  *  igb_request_msix - Initialize MSI-X interrupts
939  *  @adapter: board private structure to initialize
940  *
941  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942  *  kernel.
943  **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946         struct net_device *netdev = adapter->netdev;
947         struct e1000_hw *hw = &adapter->hw;
948         int i, err = 0, vector = 0, free_vector = 0;
949
950         err = request_irq(adapter->msix_entries[vector].vector,
951                           igb_msix_other, 0, netdev->name, adapter);
952         if (err)
953                 goto err_out;
954
955         for (i = 0; i < adapter->num_q_vectors; i++) {
956                 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958                 vector++;
959
960                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962                 if (q_vector->rx.ring && q_vector->tx.ring)
963                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964                                 q_vector->rx.ring->queue_index);
965                 else if (q_vector->tx.ring)
966                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967                                 q_vector->tx.ring->queue_index);
968                 else if (q_vector->rx.ring)
969                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970                                 q_vector->rx.ring->queue_index);
971                 else
972                         sprintf(q_vector->name, "%s-unused", netdev->name);
973
974                 err = request_irq(adapter->msix_entries[vector].vector,
975                                   igb_msix_ring, 0, q_vector->name,
976                                   q_vector);
977                 if (err)
978                         goto err_free;
979         }
980
981         igb_configure_msix(adapter);
982         return 0;
983
984 err_free:
985         /* free already assigned IRQs */
986         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988         vector--;
989         for (i = 0; i < vector; i++) {
990                 free_irq(adapter->msix_entries[free_vector++].vector,
991                          adapter->q_vector[i]);
992         }
993 err_out:
994         return err;
995 }
996
997 /**
998  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999  *  @adapter: board private structure to initialize
1000  *  @v_idx: Index of vector to be freed
1001  *
1002  *  This function frees the memory allocated to the q_vector.
1003  **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008         adapter->q_vector[v_idx] = NULL;
1009
1010         /* igb_get_stats64() might access the rings on this vector,
1011          * we must wait a grace period before freeing it.
1012          */
1013         if (q_vector)
1014                 kfree_rcu(q_vector, rcu);
1015 }
1016
1017 /**
1018  *  igb_reset_q_vector - Reset config for interrupt vector
1019  *  @adapter: board private structure to initialize
1020  *  @v_idx: Index of vector to be reset
1021  *
1022  *  If NAPI is enabled it will delete any references to the
1023  *  NAPI struct. This is preparation for igb_free_q_vector.
1024  **/
1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026 {
1027         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030          * allocated. So, q_vector is NULL so we should stop here.
1031          */
1032         if (!q_vector)
1033                 return;
1034
1035         if (q_vector->tx.ring)
1036                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038         if (q_vector->rx.ring)
1039                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041         netif_napi_del(&q_vector->napi);
1042
1043 }
1044
1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046 {
1047         int v_idx = adapter->num_q_vectors;
1048
1049         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050                 pci_disable_msix(adapter->pdev);
1051         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052                 pci_disable_msi(adapter->pdev);
1053
1054         while (v_idx--)
1055                 igb_reset_q_vector(adapter, v_idx);
1056 }
1057
1058 /**
1059  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1060  *  @adapter: board private structure to initialize
1061  *
1062  *  This function frees the memory allocated to the q_vectors.  In addition if
1063  *  NAPI is enabled it will delete any references to the NAPI struct prior
1064  *  to freeing the q_vector.
1065  **/
1066 static void igb_free_q_vectors(struct igb_adapter *adapter)
1067 {
1068         int v_idx = adapter->num_q_vectors;
1069
1070         adapter->num_tx_queues = 0;
1071         adapter->num_rx_queues = 0;
1072         adapter->num_q_vectors = 0;
1073
1074         while (v_idx--) {
1075                 igb_reset_q_vector(adapter, v_idx);
1076                 igb_free_q_vector(adapter, v_idx);
1077         }
1078 }
1079
1080 /**
1081  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082  *  @adapter: board private structure to initialize
1083  *
1084  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1085  *  MSI-X interrupts allocated.
1086  */
1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088 {
1089         igb_free_q_vectors(adapter);
1090         igb_reset_interrupt_capability(adapter);
1091 }
1092
1093 /**
1094  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1095  *  @adapter: board private structure to initialize
1096  *  @msix: boolean value of MSIX capability
1097  *
1098  *  Attempt to configure interrupts using the best available
1099  *  capabilities of the hardware and kernel.
1100  **/
1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 {
1103         int err;
1104         int numvecs, i;
1105
1106         if (!msix)
1107                 goto msi_only;
1108         adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110         /* Number of supported queues. */
1111         adapter->num_rx_queues = adapter->rss_queues;
1112         if (adapter->vfs_allocated_count)
1113                 adapter->num_tx_queues = 1;
1114         else
1115                 adapter->num_tx_queues = adapter->rss_queues;
1116
1117         /* start with one vector for every Rx queue */
1118         numvecs = adapter->num_rx_queues;
1119
1120         /* if Tx handler is separate add 1 for every Tx queue */
1121         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122                 numvecs += adapter->num_tx_queues;
1123
1124         /* store the number of vectors reserved for queues */
1125         adapter->num_q_vectors = numvecs;
1126
1127         /* add 1 vector for link status interrupts */
1128         numvecs++;
1129         for (i = 0; i < numvecs; i++)
1130                 adapter->msix_entries[i].entry = i;
1131
1132         err = pci_enable_msix_range(adapter->pdev,
1133                                     adapter->msix_entries,
1134                                     numvecs,
1135                                     numvecs);
1136         if (err > 0)
1137                 return;
1138
1139         igb_reset_interrupt_capability(adapter);
1140
1141         /* If we can't do MSI-X, try MSI */
1142 msi_only:
1143         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144 #ifdef CONFIG_PCI_IOV
1145         /* disable SR-IOV for non MSI-X configurations */
1146         if (adapter->vf_data) {
1147                 struct e1000_hw *hw = &adapter->hw;
1148                 /* disable iov and allow time for transactions to clear */
1149                 pci_disable_sriov(adapter->pdev);
1150                 msleep(500);
1151
1152                 kfree(adapter->vf_data);
1153                 adapter->vf_data = NULL;
1154                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155                 wrfl();
1156                 msleep(100);
1157                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158         }
1159 #endif
1160         adapter->vfs_allocated_count = 0;
1161         adapter->rss_queues = 1;
1162         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163         adapter->num_rx_queues = 1;
1164         adapter->num_tx_queues = 1;
1165         adapter->num_q_vectors = 1;
1166         if (!pci_enable_msi(adapter->pdev))
1167                 adapter->flags |= IGB_FLAG_HAS_MSI;
1168 }
1169
1170 static void igb_add_ring(struct igb_ring *ring,
1171                          struct igb_ring_container *head)
1172 {
1173         head->ring = ring;
1174         head->count++;
1175 }
1176
1177 /**
1178  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179  *  @adapter: board private structure to initialize
1180  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1181  *  @v_idx: index of vector in adapter struct
1182  *  @txr_count: total number of Tx rings to allocate
1183  *  @txr_idx: index of first Tx ring to allocate
1184  *  @rxr_count: total number of Rx rings to allocate
1185  *  @rxr_idx: index of first Rx ring to allocate
1186  *
1187  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1188  **/
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190                               int v_count, int v_idx,
1191                               int txr_count, int txr_idx,
1192                               int rxr_count, int rxr_idx)
1193 {
1194         struct igb_q_vector *q_vector;
1195         struct igb_ring *ring;
1196         int ring_count, size;
1197
1198         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199         if (txr_count > 1 || rxr_count > 1)
1200                 return -ENOMEM;
1201
1202         ring_count = txr_count + rxr_count;
1203         size = sizeof(struct igb_q_vector) +
1204                (sizeof(struct igb_ring) * ring_count);
1205
1206         /* allocate q_vector and rings */
1207         q_vector = adapter->q_vector[v_idx];
1208         if (!q_vector)
1209                 q_vector = kzalloc(size, GFP_KERNEL);
1210         if (!q_vector)
1211                 return -ENOMEM;
1212
1213         /* initialize NAPI */
1214         netif_napi_add(adapter->netdev, &q_vector->napi,
1215                        igb_poll, 64);
1216
1217         /* tie q_vector and adapter together */
1218         adapter->q_vector[v_idx] = q_vector;
1219         q_vector->adapter = adapter;
1220
1221         /* initialize work limits */
1222         q_vector->tx.work_limit = adapter->tx_work_limit;
1223
1224         /* initialize ITR configuration */
1225         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1226         q_vector->itr_val = IGB_START_ITR;
1227
1228         /* initialize pointer to rings */
1229         ring = q_vector->ring;
1230
1231         /* intialize ITR */
1232         if (rxr_count) {
1233                 /* rx or rx/tx vector */
1234                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1235                         q_vector->itr_val = adapter->rx_itr_setting;
1236         } else {
1237                 /* tx only vector */
1238                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1239                         q_vector->itr_val = adapter->tx_itr_setting;
1240         }
1241
1242         if (txr_count) {
1243                 /* assign generic ring traits */
1244                 ring->dev = &adapter->pdev->dev;
1245                 ring->netdev = adapter->netdev;
1246
1247                 /* configure backlink on ring */
1248                 ring->q_vector = q_vector;
1249
1250                 /* update q_vector Tx values */
1251                 igb_add_ring(ring, &q_vector->tx);
1252
1253                 /* For 82575, context index must be unique per ring. */
1254                 if (adapter->hw.mac.type == e1000_82575)
1255                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1256
1257                 /* apply Tx specific ring traits */
1258                 ring->count = adapter->tx_ring_count;
1259                 ring->queue_index = txr_idx;
1260
1261                 u64_stats_init(&ring->tx_syncp);
1262                 u64_stats_init(&ring->tx_syncp2);
1263
1264                 /* assign ring to adapter */
1265                 adapter->tx_ring[txr_idx] = ring;
1266
1267                 /* push pointer to next ring */
1268                 ring++;
1269         }
1270
1271         if (rxr_count) {
1272                 /* assign generic ring traits */
1273                 ring->dev = &adapter->pdev->dev;
1274                 ring->netdev = adapter->netdev;
1275
1276                 /* configure backlink on ring */
1277                 ring->q_vector = q_vector;
1278
1279                 /* update q_vector Rx values */
1280                 igb_add_ring(ring, &q_vector->rx);
1281
1282                 /* set flag indicating ring supports SCTP checksum offload */
1283                 if (adapter->hw.mac.type >= e1000_82576)
1284                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1285
1286                 /* On i350, i354, i210, and i211, loopback VLAN packets
1287                  * have the tag byte-swapped.
1288                  */
1289                 if (adapter->hw.mac.type >= e1000_i350)
1290                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1291
1292                 /* apply Rx specific ring traits */
1293                 ring->count = adapter->rx_ring_count;
1294                 ring->queue_index = rxr_idx;
1295
1296                 u64_stats_init(&ring->rx_syncp);
1297
1298                 /* assign ring to adapter */
1299                 adapter->rx_ring[rxr_idx] = ring;
1300         }
1301
1302         return 0;
1303 }
1304
1305
1306 /**
1307  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1308  *  @adapter: board private structure to initialize
1309  *
1310  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1311  *  return -ENOMEM.
1312  **/
1313 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1314 {
1315         int q_vectors = adapter->num_q_vectors;
1316         int rxr_remaining = adapter->num_rx_queues;
1317         int txr_remaining = adapter->num_tx_queues;
1318         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1319         int err;
1320
1321         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1322                 for (; rxr_remaining; v_idx++) {
1323                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1324                                                  0, 0, 1, rxr_idx);
1325
1326                         if (err)
1327                                 goto err_out;
1328
1329                         /* update counts and index */
1330                         rxr_remaining--;
1331                         rxr_idx++;
1332                 }
1333         }
1334
1335         for (; v_idx < q_vectors; v_idx++) {
1336                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1337                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1338
1339                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1340                                          tqpv, txr_idx, rqpv, rxr_idx);
1341
1342                 if (err)
1343                         goto err_out;
1344
1345                 /* update counts and index */
1346                 rxr_remaining -= rqpv;
1347                 txr_remaining -= tqpv;
1348                 rxr_idx++;
1349                 txr_idx++;
1350         }
1351
1352         return 0;
1353
1354 err_out:
1355         adapter->num_tx_queues = 0;
1356         adapter->num_rx_queues = 0;
1357         adapter->num_q_vectors = 0;
1358
1359         while (v_idx--)
1360                 igb_free_q_vector(adapter, v_idx);
1361
1362         return -ENOMEM;
1363 }
1364
1365 /**
1366  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1367  *  @adapter: board private structure to initialize
1368  *  @msix: boolean value of MSIX capability
1369  *
1370  *  This function initializes the interrupts and allocates all of the queues.
1371  **/
1372 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1373 {
1374         struct pci_dev *pdev = adapter->pdev;
1375         int err;
1376
1377         igb_set_interrupt_capability(adapter, msix);
1378
1379         err = igb_alloc_q_vectors(adapter);
1380         if (err) {
1381                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1382                 goto err_alloc_q_vectors;
1383         }
1384
1385         igb_cache_ring_register(adapter);
1386
1387         return 0;
1388
1389 err_alloc_q_vectors:
1390         igb_reset_interrupt_capability(adapter);
1391         return err;
1392 }
1393
1394 /**
1395  *  igb_request_irq - initialize interrupts
1396  *  @adapter: board private structure to initialize
1397  *
1398  *  Attempts to configure interrupts using the best available
1399  *  capabilities of the hardware and kernel.
1400  **/
1401 static int igb_request_irq(struct igb_adapter *adapter)
1402 {
1403         struct net_device *netdev = adapter->netdev;
1404         struct pci_dev *pdev = adapter->pdev;
1405         int err = 0;
1406
1407         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1408                 err = igb_request_msix(adapter);
1409                 if (!err)
1410                         goto request_done;
1411                 /* fall back to MSI */
1412                 igb_free_all_tx_resources(adapter);
1413                 igb_free_all_rx_resources(adapter);
1414
1415                 igb_clear_interrupt_scheme(adapter);
1416                 err = igb_init_interrupt_scheme(adapter, false);
1417                 if (err)
1418                         goto request_done;
1419
1420                 igb_setup_all_tx_resources(adapter);
1421                 igb_setup_all_rx_resources(adapter);
1422                 igb_configure(adapter);
1423         }
1424
1425         igb_assign_vector(adapter->q_vector[0], 0);
1426
1427         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1428                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1429                                   netdev->name, adapter);
1430                 if (!err)
1431                         goto request_done;
1432
1433                 /* fall back to legacy interrupts */
1434                 igb_reset_interrupt_capability(adapter);
1435                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1436         }
1437
1438         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1439                           netdev->name, adapter);
1440
1441         if (err)
1442                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1443                         err);
1444
1445 request_done:
1446         return err;
1447 }
1448
1449 static void igb_free_irq(struct igb_adapter *adapter)
1450 {
1451         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1452                 int vector = 0, i;
1453
1454                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1455
1456                 for (i = 0; i < adapter->num_q_vectors; i++)
1457                         free_irq(adapter->msix_entries[vector++].vector,
1458                                  adapter->q_vector[i]);
1459         } else {
1460                 free_irq(adapter->pdev->irq, adapter);
1461         }
1462 }
1463
1464 /**
1465  *  igb_irq_disable - Mask off interrupt generation on the NIC
1466  *  @adapter: board private structure
1467  **/
1468 static void igb_irq_disable(struct igb_adapter *adapter)
1469 {
1470         struct e1000_hw *hw = &adapter->hw;
1471
1472         /* we need to be careful when disabling interrupts.  The VFs are also
1473          * mapped into these registers and so clearing the bits can cause
1474          * issues on the VF drivers so we only need to clear what we set
1475          */
1476         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477                 u32 regval = rd32(E1000_EIAM);
1478
1479                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1480                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1481                 regval = rd32(E1000_EIAC);
1482                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1483         }
1484
1485         wr32(E1000_IAM, 0);
1486         wr32(E1000_IMC, ~0);
1487         wrfl();
1488         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489                 int i;
1490
1491                 for (i = 0; i < adapter->num_q_vectors; i++)
1492                         synchronize_irq(adapter->msix_entries[i].vector);
1493         } else {
1494                 synchronize_irq(adapter->pdev->irq);
1495         }
1496 }
1497
1498 /**
1499  *  igb_irq_enable - Enable default interrupt generation settings
1500  *  @adapter: board private structure
1501  **/
1502 static void igb_irq_enable(struct igb_adapter *adapter)
1503 {
1504         struct e1000_hw *hw = &adapter->hw;
1505
1506         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508                 u32 regval = rd32(E1000_EIAC);
1509
1510                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1511                 regval = rd32(E1000_EIAM);
1512                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1513                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1514                 if (adapter->vfs_allocated_count) {
1515                         wr32(E1000_MBVFIMR, 0xFF);
1516                         ims |= E1000_IMS_VMMB;
1517                 }
1518                 wr32(E1000_IMS, ims);
1519         } else {
1520                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1521                                 E1000_IMS_DRSTA);
1522                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1523                                 E1000_IMS_DRSTA);
1524         }
1525 }
1526
1527 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1528 {
1529         struct e1000_hw *hw = &adapter->hw;
1530         u16 vid = adapter->hw.mng_cookie.vlan_id;
1531         u16 old_vid = adapter->mng_vlan_id;
1532
1533         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1534                 /* add VID to filter table */
1535                 igb_vfta_set(hw, vid, true);
1536                 adapter->mng_vlan_id = vid;
1537         } else {
1538                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1539         }
1540
1541         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1542             (vid != old_vid) &&
1543             !test_bit(old_vid, adapter->active_vlans)) {
1544                 /* remove VID from filter table */
1545                 igb_vfta_set(hw, old_vid, false);
1546         }
1547 }
1548
1549 /**
1550  *  igb_release_hw_control - release control of the h/w to f/w
1551  *  @adapter: address of board private structure
1552  *
1553  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1554  *  For ASF and Pass Through versions of f/w this means that the
1555  *  driver is no longer loaded.
1556  **/
1557 static void igb_release_hw_control(struct igb_adapter *adapter)
1558 {
1559         struct e1000_hw *hw = &adapter->hw;
1560         u32 ctrl_ext;
1561
1562         /* Let firmware take over control of h/w */
1563         ctrl_ext = rd32(E1000_CTRL_EXT);
1564         wr32(E1000_CTRL_EXT,
1565                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1566 }
1567
1568 /**
1569  *  igb_get_hw_control - get control of the h/w from f/w
1570  *  @adapter: address of board private structure
1571  *
1572  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1573  *  For ASF and Pass Through versions of f/w this means that
1574  *  the driver is loaded.
1575  **/
1576 static void igb_get_hw_control(struct igb_adapter *adapter)
1577 {
1578         struct e1000_hw *hw = &adapter->hw;
1579         u32 ctrl_ext;
1580
1581         /* Let firmware know the driver has taken over */
1582         ctrl_ext = rd32(E1000_CTRL_EXT);
1583         wr32(E1000_CTRL_EXT,
1584                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1585 }
1586
1587 /**
1588  *  igb_configure - configure the hardware for RX and TX
1589  *  @adapter: private board structure
1590  **/
1591 static void igb_configure(struct igb_adapter *adapter)
1592 {
1593         struct net_device *netdev = adapter->netdev;
1594         int i;
1595
1596         igb_get_hw_control(adapter);
1597         igb_set_rx_mode(netdev);
1598
1599         igb_restore_vlan(adapter);
1600
1601         igb_setup_tctl(adapter);
1602         igb_setup_mrqc(adapter);
1603         igb_setup_rctl(adapter);
1604
1605         igb_configure_tx(adapter);
1606         igb_configure_rx(adapter);
1607
1608         igb_rx_fifo_flush_82575(&adapter->hw);
1609
1610         /* call igb_desc_unused which always leaves
1611          * at least 1 descriptor unused to make sure
1612          * next_to_use != next_to_clean
1613          */
1614         for (i = 0; i < adapter->num_rx_queues; i++) {
1615                 struct igb_ring *ring = adapter->rx_ring[i];
1616                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1617         }
1618 }
1619
1620 /**
1621  *  igb_power_up_link - Power up the phy/serdes link
1622  *  @adapter: address of board private structure
1623  **/
1624 void igb_power_up_link(struct igb_adapter *adapter)
1625 {
1626         igb_reset_phy(&adapter->hw);
1627
1628         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1629                 igb_power_up_phy_copper(&adapter->hw);
1630         else
1631                 igb_power_up_serdes_link_82575(&adapter->hw);
1632
1633         igb_setup_link(&adapter->hw);
1634 }
1635
1636 /**
1637  *  igb_power_down_link - Power down the phy/serdes link
1638  *  @adapter: address of board private structure
1639  */
1640 static void igb_power_down_link(struct igb_adapter *adapter)
1641 {
1642         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1643                 igb_power_down_phy_copper_82575(&adapter->hw);
1644         else
1645                 igb_shutdown_serdes_link_82575(&adapter->hw);
1646 }
1647
1648 /**
1649  * Detect and switch function for Media Auto Sense
1650  * @adapter: address of the board private structure
1651  **/
1652 static void igb_check_swap_media(struct igb_adapter *adapter)
1653 {
1654         struct e1000_hw *hw = &adapter->hw;
1655         u32 ctrl_ext, connsw;
1656         bool swap_now = false;
1657
1658         ctrl_ext = rd32(E1000_CTRL_EXT);
1659         connsw = rd32(E1000_CONNSW);
1660
1661         /* need to live swap if current media is copper and we have fiber/serdes
1662          * to go to.
1663          */
1664
1665         if ((hw->phy.media_type == e1000_media_type_copper) &&
1666             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1667                 swap_now = true;
1668         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1669                 /* copper signal takes time to appear */
1670                 if (adapter->copper_tries < 4) {
1671                         adapter->copper_tries++;
1672                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1673                         wr32(E1000_CONNSW, connsw);
1674                         return;
1675                 } else {
1676                         adapter->copper_tries = 0;
1677                         if ((connsw & E1000_CONNSW_PHYSD) &&
1678                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1679                                 swap_now = true;
1680                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1681                                 wr32(E1000_CONNSW, connsw);
1682                         }
1683                 }
1684         }
1685
1686         if (!swap_now)
1687                 return;
1688
1689         switch (hw->phy.media_type) {
1690         case e1000_media_type_copper:
1691                 netdev_info(adapter->netdev,
1692                         "MAS: changing media to fiber/serdes\n");
1693                 ctrl_ext |=
1694                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1695                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1696                 adapter->copper_tries = 0;
1697                 break;
1698         case e1000_media_type_internal_serdes:
1699         case e1000_media_type_fiber:
1700                 netdev_info(adapter->netdev,
1701                         "MAS: changing media to copper\n");
1702                 ctrl_ext &=
1703                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705                 break;
1706         default:
1707                 /* shouldn't get here during regular operation */
1708                 netdev_err(adapter->netdev,
1709                         "AMS: Invalid media type found, returning\n");
1710                 break;
1711         }
1712         wr32(E1000_CTRL_EXT, ctrl_ext);
1713 }
1714
1715 /**
1716  *  igb_up - Open the interface and prepare it to handle traffic
1717  *  @adapter: board private structure
1718  **/
1719 int igb_up(struct igb_adapter *adapter)
1720 {
1721         struct e1000_hw *hw = &adapter->hw;
1722         int i;
1723
1724         /* hardware has been reset, we need to reload some things */
1725         igb_configure(adapter);
1726
1727         clear_bit(__IGB_DOWN, &adapter->state);
1728
1729         for (i = 0; i < adapter->num_q_vectors; i++)
1730                 napi_enable(&(adapter->q_vector[i]->napi));
1731
1732         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1733                 igb_configure_msix(adapter);
1734         else
1735                 igb_assign_vector(adapter->q_vector[0], 0);
1736
1737         /* Clear any pending interrupts. */
1738         rd32(E1000_ICR);
1739         igb_irq_enable(adapter);
1740
1741         /* notify VFs that reset has been completed */
1742         if (adapter->vfs_allocated_count) {
1743                 u32 reg_data = rd32(E1000_CTRL_EXT);
1744
1745                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1746                 wr32(E1000_CTRL_EXT, reg_data);
1747         }
1748
1749         netif_tx_start_all_queues(adapter->netdev);
1750
1751         /* start the watchdog. */
1752         hw->mac.get_link_status = 1;
1753         schedule_work(&adapter->watchdog_task);
1754
1755         if ((adapter->flags & IGB_FLAG_EEE) &&
1756             (!hw->dev_spec._82575.eee_disable))
1757                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1758
1759         return 0;
1760 }
1761
1762 void igb_down(struct igb_adapter *adapter)
1763 {
1764         struct net_device *netdev = adapter->netdev;
1765         struct e1000_hw *hw = &adapter->hw;
1766         u32 tctl, rctl;
1767         int i;
1768
1769         /* signal that we're down so the interrupt handler does not
1770          * reschedule our watchdog timer
1771          */
1772         set_bit(__IGB_DOWN, &adapter->state);
1773
1774         /* disable receives in the hardware */
1775         rctl = rd32(E1000_RCTL);
1776         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1777         /* flush and sleep below */
1778
1779         netif_carrier_off(netdev);
1780         netif_tx_stop_all_queues(netdev);
1781
1782         /* disable transmits in the hardware */
1783         tctl = rd32(E1000_TCTL);
1784         tctl &= ~E1000_TCTL_EN;
1785         wr32(E1000_TCTL, tctl);
1786         /* flush both disables and wait for them to finish */
1787         wrfl();
1788         usleep_range(10000, 11000);
1789
1790         igb_irq_disable(adapter);
1791
1792         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1793
1794         for (i = 0; i < adapter->num_q_vectors; i++) {
1795                 if (adapter->q_vector[i]) {
1796                         napi_synchronize(&adapter->q_vector[i]->napi);
1797                         napi_disable(&adapter->q_vector[i]->napi);
1798                 }
1799         }
1800
1801         del_timer_sync(&adapter->watchdog_timer);
1802         del_timer_sync(&adapter->phy_info_timer);
1803
1804         /* record the stats before reset*/
1805         spin_lock(&adapter->stats64_lock);
1806         igb_update_stats(adapter, &adapter->stats64);
1807         spin_unlock(&adapter->stats64_lock);
1808
1809         adapter->link_speed = 0;
1810         adapter->link_duplex = 0;
1811
1812         if (!pci_channel_offline(adapter->pdev))
1813                 igb_reset(adapter);
1814         igb_clean_all_tx_rings(adapter);
1815         igb_clean_all_rx_rings(adapter);
1816 #ifdef CONFIG_IGB_DCA
1817
1818         /* since we reset the hardware DCA settings were cleared */
1819         igb_setup_dca(adapter);
1820 #endif
1821 }
1822
1823 void igb_reinit_locked(struct igb_adapter *adapter)
1824 {
1825         WARN_ON(in_interrupt());
1826         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1827                 usleep_range(1000, 2000);
1828         igb_down(adapter);
1829         igb_up(adapter);
1830         clear_bit(__IGB_RESETTING, &adapter->state);
1831 }
1832
1833 /** igb_enable_mas - Media Autosense re-enable after swap
1834  *
1835  * @adapter: adapter struct
1836  **/
1837 static s32 igb_enable_mas(struct igb_adapter *adapter)
1838 {
1839         struct e1000_hw *hw = &adapter->hw;
1840         u32 connsw;
1841         s32 ret_val = 0;
1842
1843         connsw = rd32(E1000_CONNSW);
1844         if (!(hw->phy.media_type == e1000_media_type_copper))
1845                 return ret_val;
1846
1847         /* configure for SerDes media detect */
1848         if (!(connsw & E1000_CONNSW_SERDESD)) {
1849                 connsw |= E1000_CONNSW_ENRGSRC;
1850                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1851                 wr32(E1000_CONNSW, connsw);
1852                 wrfl();
1853         } else if (connsw & E1000_CONNSW_SERDESD) {
1854                 /* already SerDes, no need to enable anything */
1855                 return ret_val;
1856         } else {
1857                 netdev_info(adapter->netdev,
1858                         "MAS: Unable to configure feature, disabling..\n");
1859                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1860         }
1861         return ret_val;
1862 }
1863
1864 void igb_reset(struct igb_adapter *adapter)
1865 {
1866         struct pci_dev *pdev = adapter->pdev;
1867         struct e1000_hw *hw = &adapter->hw;
1868         struct e1000_mac_info *mac = &hw->mac;
1869         struct e1000_fc_info *fc = &hw->fc;
1870         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1871
1872         /* Repartition Pba for greater than 9k mtu
1873          * To take effect CTRL.RST is required.
1874          */
1875         switch (mac->type) {
1876         case e1000_i350:
1877         case e1000_i354:
1878         case e1000_82580:
1879                 pba = rd32(E1000_RXPBS);
1880                 pba = igb_rxpbs_adjust_82580(pba);
1881                 break;
1882         case e1000_82576:
1883                 pba = rd32(E1000_RXPBS);
1884                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1885                 break;
1886         case e1000_82575:
1887         case e1000_i210:
1888         case e1000_i211:
1889         default:
1890                 pba = E1000_PBA_34K;
1891                 break;
1892         }
1893
1894         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1895             (mac->type < e1000_82576)) {
1896                 /* adjust PBA for jumbo frames */
1897                 wr32(E1000_PBA, pba);
1898
1899                 /* To maintain wire speed transmits, the Tx FIFO should be
1900                  * large enough to accommodate two full transmit packets,
1901                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1902                  * the Rx FIFO should be large enough to accommodate at least
1903                  * one full receive packet and is similarly rounded up and
1904                  * expressed in KB.
1905                  */
1906                 pba = rd32(E1000_PBA);
1907                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1908                 tx_space = pba >> 16;
1909                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1910                 pba &= 0xffff;
1911                 /* the Tx fifo also stores 16 bytes of information about the Tx
1912                  * but don't include ethernet FCS because hardware appends it
1913                  */
1914                 min_tx_space = (adapter->max_frame_size +
1915                                 sizeof(union e1000_adv_tx_desc) -
1916                                 ETH_FCS_LEN) * 2;
1917                 min_tx_space = ALIGN(min_tx_space, 1024);
1918                 min_tx_space >>= 10;
1919                 /* software strips receive CRC, so leave room for it */
1920                 min_rx_space = adapter->max_frame_size;
1921                 min_rx_space = ALIGN(min_rx_space, 1024);
1922                 min_rx_space >>= 10;
1923
1924                 /* If current Tx allocation is less than the min Tx FIFO size,
1925                  * and the min Tx FIFO size is less than the current Rx FIFO
1926                  * allocation, take space away from current Rx allocation
1927                  */
1928                 if (tx_space < min_tx_space &&
1929                     ((min_tx_space - tx_space) < pba)) {
1930                         pba = pba - (min_tx_space - tx_space);
1931
1932                         /* if short on Rx space, Rx wins and must trump Tx
1933                          * adjustment
1934                          */
1935                         if (pba < min_rx_space)
1936                                 pba = min_rx_space;
1937                 }
1938                 wr32(E1000_PBA, pba);
1939         }
1940
1941         /* flow control settings */
1942         /* The high water mark must be low enough to fit one full frame
1943          * (or the size used for early receive) above it in the Rx FIFO.
1944          * Set it to the lower of:
1945          * - 90% of the Rx FIFO size, or
1946          * - the full Rx FIFO size minus one full frame
1947          */
1948         hwm = min(((pba << 10) * 9 / 10),
1949                         ((pba << 10) - 2 * adapter->max_frame_size));
1950
1951         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1952         fc->low_water = fc->high_water - 16;
1953         fc->pause_time = 0xFFFF;
1954         fc->send_xon = 1;
1955         fc->current_mode = fc->requested_mode;
1956
1957         /* disable receive for all VFs and wait one second */
1958         if (adapter->vfs_allocated_count) {
1959                 int i;
1960
1961                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1962                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1963
1964                 /* ping all the active vfs to let them know we are going down */
1965                 igb_ping_all_vfs(adapter);
1966
1967                 /* disable transmits and receives */
1968                 wr32(E1000_VFRE, 0);
1969                 wr32(E1000_VFTE, 0);
1970         }
1971
1972         /* Allow time for pending master requests to run */
1973         hw->mac.ops.reset_hw(hw);
1974         wr32(E1000_WUC, 0);
1975
1976         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1977                 /* need to resetup here after media swap */
1978                 adapter->ei.get_invariants(hw);
1979                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1980         }
1981         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1982                 if (igb_enable_mas(adapter))
1983                         dev_err(&pdev->dev,
1984                                 "Error enabling Media Auto Sense\n");
1985         }
1986         if (hw->mac.ops.init_hw(hw))
1987                 dev_err(&pdev->dev, "Hardware Error\n");
1988
1989         /* Flow control settings reset on hardware reset, so guarantee flow
1990          * control is off when forcing speed.
1991          */
1992         if (!hw->mac.autoneg)
1993                 igb_force_mac_fc(hw);
1994
1995         igb_init_dmac(adapter, pba);
1996 #ifdef CONFIG_IGB_HWMON
1997         /* Re-initialize the thermal sensor on i350 devices. */
1998         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1999                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2000                         /* If present, re-initialize the external thermal sensor
2001                          * interface.
2002                          */
2003                         if (adapter->ets)
2004                                 mac->ops.init_thermal_sensor_thresh(hw);
2005                 }
2006         }
2007 #endif
2008         /* Re-establish EEE setting */
2009         if (hw->phy.media_type == e1000_media_type_copper) {
2010                 switch (mac->type) {
2011                 case e1000_i350:
2012                 case e1000_i210:
2013                 case e1000_i211:
2014                         igb_set_eee_i350(hw, true, true);
2015                         break;
2016                 case e1000_i354:
2017                         igb_set_eee_i354(hw, true, true);
2018                         break;
2019                 default:
2020                         break;
2021                 }
2022         }
2023         if (!netif_running(adapter->netdev))
2024                 igb_power_down_link(adapter);
2025
2026         igb_update_mng_vlan(adapter);
2027
2028         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2029         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2030
2031         /* Re-enable PTP, where applicable. */
2032         igb_ptp_reset(adapter);
2033
2034         igb_get_phy_info(hw);
2035 }
2036
2037 static netdev_features_t igb_fix_features(struct net_device *netdev,
2038         netdev_features_t features)
2039 {
2040         /* Since there is no support for separate Rx/Tx vlan accel
2041          * enable/disable make sure Tx flag is always in same state as Rx.
2042          */
2043         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2044                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2045         else
2046                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2047
2048         return features;
2049 }
2050
2051 static int igb_set_features(struct net_device *netdev,
2052         netdev_features_t features)
2053 {
2054         netdev_features_t changed = netdev->features ^ features;
2055         struct igb_adapter *adapter = netdev_priv(netdev);
2056
2057         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2058                 igb_vlan_mode(netdev, features);
2059
2060         if (!(changed & NETIF_F_RXALL))
2061                 return 0;
2062
2063         netdev->features = features;
2064
2065         if (netif_running(netdev))
2066                 igb_reinit_locked(adapter);
2067         else
2068                 igb_reset(adapter);
2069
2070         return 0;
2071 }
2072
2073 static const struct net_device_ops igb_netdev_ops = {
2074         .ndo_open               = igb_open,
2075         .ndo_stop               = igb_close,
2076         .ndo_start_xmit         = igb_xmit_frame,
2077         .ndo_get_stats64        = igb_get_stats64,
2078         .ndo_set_rx_mode        = igb_set_rx_mode,
2079         .ndo_set_mac_address    = igb_set_mac,
2080         .ndo_change_mtu         = igb_change_mtu,
2081         .ndo_do_ioctl           = igb_ioctl,
2082         .ndo_tx_timeout         = igb_tx_timeout,
2083         .ndo_validate_addr      = eth_validate_addr,
2084         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2085         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2086         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2087         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2088         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2089         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2090         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2091 #ifdef CONFIG_NET_POLL_CONTROLLER
2092         .ndo_poll_controller    = igb_netpoll,
2093 #endif
2094         .ndo_fix_features       = igb_fix_features,
2095         .ndo_set_features       = igb_set_features,
2096         .ndo_features_check     = passthru_features_check,
2097 };
2098
2099 /**
2100  * igb_set_fw_version - Configure version string for ethtool
2101  * @adapter: adapter struct
2102  **/
2103 void igb_set_fw_version(struct igb_adapter *adapter)
2104 {
2105         struct e1000_hw *hw = &adapter->hw;
2106         struct e1000_fw_version fw;
2107
2108         igb_get_fw_version(hw, &fw);
2109
2110         switch (hw->mac.type) {
2111         case e1000_i210:
2112         case e1000_i211:
2113                 if (!(igb_get_flash_presence_i210(hw))) {
2114                         snprintf(adapter->fw_version,
2115                                  sizeof(adapter->fw_version),
2116                                  "%2d.%2d-%d",
2117                                  fw.invm_major, fw.invm_minor,
2118                                  fw.invm_img_type);
2119                         break;
2120                 }
2121                 /* fall through */
2122         default:
2123                 /* if option is rom valid, display its version too */
2124                 if (fw.or_valid) {
2125                         snprintf(adapter->fw_version,
2126                                  sizeof(adapter->fw_version),
2127                                  "%d.%d, 0x%08x, %d.%d.%d",
2128                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2129                                  fw.or_major, fw.or_build, fw.or_patch);
2130                 /* no option rom */
2131                 } else if (fw.etrack_id != 0X0000) {
2132                         snprintf(adapter->fw_version,
2133                             sizeof(adapter->fw_version),
2134                             "%d.%d, 0x%08x",
2135                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2136                 } else {
2137                 snprintf(adapter->fw_version,
2138                     sizeof(adapter->fw_version),
2139                     "%d.%d.%d",
2140                     fw.eep_major, fw.eep_minor, fw.eep_build);
2141                 }
2142                 break;
2143         }
2144 }
2145
2146 /**
2147  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2148  *
2149  * @adapter: adapter struct
2150  **/
2151 static void igb_init_mas(struct igb_adapter *adapter)
2152 {
2153         struct e1000_hw *hw = &adapter->hw;
2154         u16 eeprom_data;
2155
2156         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2157         switch (hw->bus.func) {
2158         case E1000_FUNC_0:
2159                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2160                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2161                         netdev_info(adapter->netdev,
2162                                 "MAS: Enabling Media Autosense for port %d\n",
2163                                 hw->bus.func);
2164                 }
2165                 break;
2166         case E1000_FUNC_1:
2167                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2168                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2169                         netdev_info(adapter->netdev,
2170                                 "MAS: Enabling Media Autosense for port %d\n",
2171                                 hw->bus.func);
2172                 }
2173                 break;
2174         case E1000_FUNC_2:
2175                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2176                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2177                         netdev_info(adapter->netdev,
2178                                 "MAS: Enabling Media Autosense for port %d\n",
2179                                 hw->bus.func);
2180                 }
2181                 break;
2182         case E1000_FUNC_3:
2183                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2184                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2185                         netdev_info(adapter->netdev,
2186                                 "MAS: Enabling Media Autosense for port %d\n",
2187                                 hw->bus.func);
2188                 }
2189                 break;
2190         default:
2191                 /* Shouldn't get here */
2192                 netdev_err(adapter->netdev,
2193                         "MAS: Invalid port configuration, returning\n");
2194                 break;
2195         }
2196 }
2197
2198 /**
2199  *  igb_init_i2c - Init I2C interface
2200  *  @adapter: pointer to adapter structure
2201  **/
2202 static s32 igb_init_i2c(struct igb_adapter *adapter)
2203 {
2204         s32 status = 0;
2205
2206         /* I2C interface supported on i350 devices */
2207         if (adapter->hw.mac.type != e1000_i350)
2208                 return 0;
2209
2210         /* Initialize the i2c bus which is controlled by the registers.
2211          * This bus will use the i2c_algo_bit structue that implements
2212          * the protocol through toggling of the 4 bits in the register.
2213          */
2214         adapter->i2c_adap.owner = THIS_MODULE;
2215         adapter->i2c_algo = igb_i2c_algo;
2216         adapter->i2c_algo.data = adapter;
2217         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2218         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2219         strlcpy(adapter->i2c_adap.name, "igb BB",
2220                 sizeof(adapter->i2c_adap.name));
2221         status = i2c_bit_add_bus(&adapter->i2c_adap);
2222         return status;
2223 }
2224
2225 /**
2226  *  igb_probe - Device Initialization Routine
2227  *  @pdev: PCI device information struct
2228  *  @ent: entry in igb_pci_tbl
2229  *
2230  *  Returns 0 on success, negative on failure
2231  *
2232  *  igb_probe initializes an adapter identified by a pci_dev structure.
2233  *  The OS initialization, configuring of the adapter private structure,
2234  *  and a hardware reset occur.
2235  **/
2236 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2237 {
2238         struct net_device *netdev;
2239         struct igb_adapter *adapter;
2240         struct e1000_hw *hw;
2241         u16 eeprom_data = 0;
2242         s32 ret_val;
2243         static int global_quad_port_a; /* global quad port a indication */
2244         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2245         int err, pci_using_dac;
2246         u8 part_str[E1000_PBANUM_LENGTH];
2247
2248         /* Catch broken hardware that put the wrong VF device ID in
2249          * the PCIe SR-IOV capability.
2250          */
2251         if (pdev->is_virtfn) {
2252                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2253                         pci_name(pdev), pdev->vendor, pdev->device);
2254                 return -EINVAL;
2255         }
2256
2257         err = pci_enable_device_mem(pdev);
2258         if (err)
2259                 return err;
2260
2261         pci_using_dac = 0;
2262         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2263         if (!err) {
2264                 pci_using_dac = 1;
2265         } else {
2266                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2267                 if (err) {
2268                         dev_err(&pdev->dev,
2269                                 "No usable DMA configuration, aborting\n");
2270                         goto err_dma;
2271                 }
2272         }
2273
2274         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2275                                            IORESOURCE_MEM),
2276                                            igb_driver_name);
2277         if (err)
2278                 goto err_pci_reg;
2279
2280         pci_enable_pcie_error_reporting(pdev);
2281
2282         pci_set_master(pdev);
2283         pci_save_state(pdev);
2284
2285         err = -ENOMEM;
2286         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2287                                    IGB_MAX_TX_QUEUES);
2288         if (!netdev)
2289                 goto err_alloc_etherdev;
2290
2291         SET_NETDEV_DEV(netdev, &pdev->dev);
2292
2293         pci_set_drvdata(pdev, netdev);
2294         adapter = netdev_priv(netdev);
2295         adapter->netdev = netdev;
2296         adapter->pdev = pdev;
2297         hw = &adapter->hw;
2298         hw->back = adapter;
2299         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2300
2301         err = -EIO;
2302         hw->hw_addr = pci_iomap(pdev, 0, 0);
2303         if (!hw->hw_addr)
2304                 goto err_ioremap;
2305
2306         netdev->netdev_ops = &igb_netdev_ops;
2307         igb_set_ethtool_ops(netdev);
2308         netdev->watchdog_timeo = 5 * HZ;
2309
2310         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2311
2312         netdev->mem_start = pci_resource_start(pdev, 0);
2313         netdev->mem_end = pci_resource_end(pdev, 0);
2314
2315         /* PCI config space info */
2316         hw->vendor_id = pdev->vendor;
2317         hw->device_id = pdev->device;
2318         hw->revision_id = pdev->revision;
2319         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2320         hw->subsystem_device_id = pdev->subsystem_device;
2321
2322         /* Copy the default MAC, PHY and NVM function pointers */
2323         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2324         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2325         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2326         /* Initialize skew-specific constants */
2327         err = ei->get_invariants(hw);
2328         if (err)
2329                 goto err_sw_init;
2330
2331         /* setup the private structure */
2332         err = igb_sw_init(adapter);
2333         if (err)
2334                 goto err_sw_init;
2335
2336         igb_get_bus_info_pcie(hw);
2337
2338         hw->phy.autoneg_wait_to_complete = false;
2339
2340         /* Copper options */
2341         if (hw->phy.media_type == e1000_media_type_copper) {
2342                 hw->phy.mdix = AUTO_ALL_MODES;
2343                 hw->phy.disable_polarity_correction = false;
2344                 hw->phy.ms_type = e1000_ms_hw_default;
2345         }
2346
2347         if (igb_check_reset_block(hw))
2348                 dev_info(&pdev->dev,
2349                         "PHY reset is blocked due to SOL/IDER session.\n");
2350
2351         /* features is initialized to 0 in allocation, it might have bits
2352          * set by igb_sw_init so we should use an or instead of an
2353          * assignment.
2354          */
2355         netdev->features |= NETIF_F_SG |
2356                             NETIF_F_IP_CSUM |
2357                             NETIF_F_IPV6_CSUM |
2358                             NETIF_F_TSO |
2359                             NETIF_F_TSO6 |
2360                             NETIF_F_RXHASH |
2361                             NETIF_F_RXCSUM |
2362                             NETIF_F_HW_VLAN_CTAG_RX |
2363                             NETIF_F_HW_VLAN_CTAG_TX;
2364
2365         /* copy netdev features into list of user selectable features */
2366         netdev->hw_features |= netdev->features;
2367         netdev->hw_features |= NETIF_F_RXALL;
2368
2369         /* set this bit last since it cannot be part of hw_features */
2370         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2371
2372         netdev->vlan_features |= NETIF_F_TSO |
2373                                  NETIF_F_TSO6 |
2374                                  NETIF_F_IP_CSUM |
2375                                  NETIF_F_IPV6_CSUM |
2376                                  NETIF_F_SG;
2377
2378         netdev->priv_flags |= IFF_SUPP_NOFCS;
2379
2380         if (pci_using_dac) {
2381                 netdev->features |= NETIF_F_HIGHDMA;
2382                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2383         }
2384
2385         if (hw->mac.type >= e1000_82576) {
2386                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2387                 netdev->features |= NETIF_F_SCTP_CSUM;
2388         }
2389
2390         netdev->priv_flags |= IFF_UNICAST_FLT;
2391
2392         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2393
2394         /* before reading the NVM, reset the controller to put the device in a
2395          * known good starting state
2396          */
2397         hw->mac.ops.reset_hw(hw);
2398
2399         /* make sure the NVM is good , i211/i210 parts can have special NVM
2400          * that doesn't contain a checksum
2401          */
2402         switch (hw->mac.type) {
2403         case e1000_i210:
2404         case e1000_i211:
2405                 if (igb_get_flash_presence_i210(hw)) {
2406                         if (hw->nvm.ops.validate(hw) < 0) {
2407                                 dev_err(&pdev->dev,
2408                                         "The NVM Checksum Is Not Valid\n");
2409                                 err = -EIO;
2410                                 goto err_eeprom;
2411                         }
2412                 }
2413                 break;
2414         default:
2415                 if (hw->nvm.ops.validate(hw) < 0) {
2416                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2417                         err = -EIO;
2418                         goto err_eeprom;
2419                 }
2420                 break;
2421         }
2422
2423         /* copy the MAC address out of the NVM */
2424         if (hw->mac.ops.read_mac_addr(hw))
2425                 dev_err(&pdev->dev, "NVM Read Error\n");
2426
2427         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2428
2429         if (!is_valid_ether_addr(netdev->dev_addr)) {
2430                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2431                 err = -EIO;
2432                 goto err_eeprom;
2433         }
2434
2435         /* get firmware version for ethtool -i */
2436         igb_set_fw_version(adapter);
2437
2438         /* configure RXPBSIZE and TXPBSIZE */
2439         if (hw->mac.type == e1000_i210) {
2440                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2441                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2442         }
2443
2444         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2445                     (unsigned long) adapter);
2446         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2447                     (unsigned long) adapter);
2448
2449         INIT_WORK(&adapter->reset_task, igb_reset_task);
2450         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2451
2452         /* Initialize link properties that are user-changeable */
2453         adapter->fc_autoneg = true;
2454         hw->mac.autoneg = true;
2455         hw->phy.autoneg_advertised = 0x2f;
2456
2457         hw->fc.requested_mode = e1000_fc_default;
2458         hw->fc.current_mode = e1000_fc_default;
2459
2460         igb_validate_mdi_setting(hw);
2461
2462         /* By default, support wake on port A */
2463         if (hw->bus.func == 0)
2464                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466         /* Check the NVM for wake support on non-port A ports */
2467         if (hw->mac.type >= e1000_82580)
2468                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2469                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2470                                  &eeprom_data);
2471         else if (hw->bus.func == 1)
2472                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2473
2474         if (eeprom_data & IGB_EEPROM_APME)
2475                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2476
2477         /* now that we have the eeprom settings, apply the special cases where
2478          * the eeprom may be wrong or the board simply won't support wake on
2479          * lan on a particular port
2480          */
2481         switch (pdev->device) {
2482         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2483                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2484                 break;
2485         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2486         case E1000_DEV_ID_82576_FIBER:
2487         case E1000_DEV_ID_82576_SERDES:
2488                 /* Wake events only supported on port A for dual fiber
2489                  * regardless of eeprom setting
2490                  */
2491                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2492                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2493                 break;
2494         case E1000_DEV_ID_82576_QUAD_COPPER:
2495         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2496                 /* if quad port adapter, disable WoL on all but port A */
2497                 if (global_quad_port_a != 0)
2498                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2499                 else
2500                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2501                 /* Reset for multiple quad port adapters */
2502                 if (++global_quad_port_a == 4)
2503                         global_quad_port_a = 0;
2504                 break;
2505         default:
2506                 /* If the device can't wake, don't set software support */
2507                 if (!device_can_wakeup(&adapter->pdev->dev))
2508                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2509         }
2510
2511         /* initialize the wol settings based on the eeprom settings */
2512         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2513                 adapter->wol |= E1000_WUFC_MAG;
2514
2515         /* Some vendors want WoL disabled by default, but still supported */
2516         if ((hw->mac.type == e1000_i350) &&
2517             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2518                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2519                 adapter->wol = 0;
2520         }
2521
2522         device_set_wakeup_enable(&adapter->pdev->dev,
2523                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2524
2525         /* reset the hardware with the new settings */
2526         igb_reset(adapter);
2527
2528         /* Init the I2C interface */
2529         err = igb_init_i2c(adapter);
2530         if (err) {
2531                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2532                 goto err_eeprom;
2533         }
2534
2535         /* let the f/w know that the h/w is now under the control of the
2536          * driver.
2537          */
2538         igb_get_hw_control(adapter);
2539
2540         strcpy(netdev->name, "eth%d");
2541         err = register_netdev(netdev);
2542         if (err)
2543                 goto err_register;
2544
2545         /* carrier off reporting is important to ethtool even BEFORE open */
2546         netif_carrier_off(netdev);
2547
2548 #ifdef CONFIG_IGB_DCA
2549         if (dca_add_requester(&pdev->dev) == 0) {
2550                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2551                 dev_info(&pdev->dev, "DCA enabled\n");
2552                 igb_setup_dca(adapter);
2553         }
2554
2555 #endif
2556 #ifdef CONFIG_IGB_HWMON
2557         /* Initialize the thermal sensor on i350 devices. */
2558         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2559                 u16 ets_word;
2560
2561                 /* Read the NVM to determine if this i350 device supports an
2562                  * external thermal sensor.
2563                  */
2564                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2565                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2566                         adapter->ets = true;
2567                 else
2568                         adapter->ets = false;
2569                 if (igb_sysfs_init(adapter))
2570                         dev_err(&pdev->dev,
2571                                 "failed to allocate sysfs resources\n");
2572         } else {
2573                 adapter->ets = false;
2574         }
2575 #endif
2576         /* Check if Media Autosense is enabled */
2577         adapter->ei = *ei;
2578         if (hw->dev_spec._82575.mas_capable)
2579                 igb_init_mas(adapter);
2580
2581         /* do hw tstamp init after resetting */
2582         igb_ptp_init(adapter);
2583
2584         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2585         /* print bus type/speed/width info, not applicable to i354 */
2586         if (hw->mac.type != e1000_i354) {
2587                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2588                          netdev->name,
2589                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2590                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2591                            "unknown"),
2592                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2593                           "Width x4" :
2594                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2595                           "Width x2" :
2596                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2597                           "Width x1" : "unknown"), netdev->dev_addr);
2598         }
2599
2600         if ((hw->mac.type >= e1000_i210 ||
2601              igb_get_flash_presence_i210(hw))) {
2602                 ret_val = igb_read_part_string(hw, part_str,
2603                                                E1000_PBANUM_LENGTH);
2604         } else {
2605                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2606         }
2607
2608         if (ret_val)
2609                 strcpy(part_str, "Unknown");
2610         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2611         dev_info(&pdev->dev,
2612                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2613                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2614                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2615                 adapter->num_rx_queues, adapter->num_tx_queues);
2616         if (hw->phy.media_type == e1000_media_type_copper) {
2617                 switch (hw->mac.type) {
2618                 case e1000_i350:
2619                 case e1000_i210:
2620                 case e1000_i211:
2621                         /* Enable EEE for internal copper PHY devices */
2622                         err = igb_set_eee_i350(hw, true, true);
2623                         if ((!err) &&
2624                             (!hw->dev_spec._82575.eee_disable)) {
2625                                 adapter->eee_advert =
2626                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2627                                 adapter->flags |= IGB_FLAG_EEE;
2628                         }
2629                         break;
2630                 case e1000_i354:
2631                         if ((rd32(E1000_CTRL_EXT) &
2632                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2633                                 err = igb_set_eee_i354(hw, true, true);
2634                                 if ((!err) &&
2635                                         (!hw->dev_spec._82575.eee_disable)) {
2636                                         adapter->eee_advert =
2637                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2638                                         adapter->flags |= IGB_FLAG_EEE;
2639                                 }
2640                         }
2641                         break;
2642                 default:
2643                         break;
2644                 }
2645         }
2646         pm_runtime_put_noidle(&pdev->dev);
2647         return 0;
2648
2649 err_register:
2650         igb_release_hw_control(adapter);
2651         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2652 err_eeprom:
2653         if (!igb_check_reset_block(hw))
2654                 igb_reset_phy(hw);
2655
2656         if (hw->flash_address)
2657                 iounmap(hw->flash_address);
2658 err_sw_init:
2659         igb_clear_interrupt_scheme(adapter);
2660         pci_iounmap(pdev, hw->hw_addr);
2661 err_ioremap:
2662         free_netdev(netdev);
2663 err_alloc_etherdev:
2664         pci_release_selected_regions(pdev,
2665                                      pci_select_bars(pdev, IORESOURCE_MEM));
2666 err_pci_reg:
2667 err_dma:
2668         pci_disable_device(pdev);
2669         return err;
2670 }
2671
2672 #ifdef CONFIG_PCI_IOV
2673 static int igb_disable_sriov(struct pci_dev *pdev)
2674 {
2675         struct net_device *netdev = pci_get_drvdata(pdev);
2676         struct igb_adapter *adapter = netdev_priv(netdev);
2677         struct e1000_hw *hw = &adapter->hw;
2678
2679         /* reclaim resources allocated to VFs */
2680         if (adapter->vf_data) {
2681                 /* disable iov and allow time for transactions to clear */
2682                 if (pci_vfs_assigned(pdev)) {
2683                         dev_warn(&pdev->dev,
2684                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2685                         return -EPERM;
2686                 } else {
2687                         pci_disable_sriov(pdev);
2688                         msleep(500);
2689                 }
2690
2691                 kfree(adapter->vf_data);
2692                 adapter->vf_data = NULL;
2693                 adapter->vfs_allocated_count = 0;
2694                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2695                 wrfl();
2696                 msleep(100);
2697                 dev_info(&pdev->dev, "IOV Disabled\n");
2698
2699                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2700                 adapter->flags |= IGB_FLAG_DMAC;
2701         }
2702
2703         return 0;
2704 }
2705
2706 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2707 {
2708         struct net_device *netdev = pci_get_drvdata(pdev);
2709         struct igb_adapter *adapter = netdev_priv(netdev);
2710         int old_vfs = pci_num_vf(pdev);
2711         int err = 0;
2712         int i;
2713
2714         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2715                 err = -EPERM;
2716                 goto out;
2717         }
2718         if (!num_vfs)
2719                 goto out;
2720
2721         if (old_vfs) {
2722                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2723                          old_vfs, max_vfs);
2724                 adapter->vfs_allocated_count = old_vfs;
2725         } else
2726                 adapter->vfs_allocated_count = num_vfs;
2727
2728         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2729                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2730
2731         /* if allocation failed then we do not support SR-IOV */
2732         if (!adapter->vf_data) {
2733                 adapter->vfs_allocated_count = 0;
2734                 dev_err(&pdev->dev,
2735                         "Unable to allocate memory for VF Data Storage\n");
2736                 err = -ENOMEM;
2737                 goto out;
2738         }
2739
2740         /* only call pci_enable_sriov() if no VFs are allocated already */
2741         if (!old_vfs) {
2742                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2743                 if (err)
2744                         goto err_out;
2745         }
2746         dev_info(&pdev->dev, "%d VFs allocated\n",
2747                  adapter->vfs_allocated_count);
2748         for (i = 0; i < adapter->vfs_allocated_count; i++)
2749                 igb_vf_configure(adapter, i);
2750
2751         /* DMA Coalescing is not supported in IOV mode. */
2752         adapter->flags &= ~IGB_FLAG_DMAC;
2753         goto out;
2754
2755 err_out:
2756         kfree(adapter->vf_data);
2757         adapter->vf_data = NULL;
2758         adapter->vfs_allocated_count = 0;
2759 out:
2760         return err;
2761 }
2762
2763 #endif
2764 /**
2765  *  igb_remove_i2c - Cleanup  I2C interface
2766  *  @adapter: pointer to adapter structure
2767  **/
2768 static void igb_remove_i2c(struct igb_adapter *adapter)
2769 {
2770         /* free the adapter bus structure */
2771         i2c_del_adapter(&adapter->i2c_adap);
2772 }
2773
2774 /**
2775  *  igb_remove - Device Removal Routine
2776  *  @pdev: PCI device information struct
2777  *
2778  *  igb_remove is called by the PCI subsystem to alert the driver
2779  *  that it should release a PCI device.  The could be caused by a
2780  *  Hot-Plug event, or because the driver is going to be removed from
2781  *  memory.
2782  **/
2783 static void igb_remove(struct pci_dev *pdev)
2784 {
2785         struct net_device *netdev = pci_get_drvdata(pdev);
2786         struct igb_adapter *adapter = netdev_priv(netdev);
2787         struct e1000_hw *hw = &adapter->hw;
2788
2789         pm_runtime_get_noresume(&pdev->dev);
2790 #ifdef CONFIG_IGB_HWMON
2791         igb_sysfs_exit(adapter);
2792 #endif
2793         igb_remove_i2c(adapter);
2794         igb_ptp_stop(adapter);
2795         /* The watchdog timer may be rescheduled, so explicitly
2796          * disable watchdog from being rescheduled.
2797          */
2798         set_bit(__IGB_DOWN, &adapter->state);
2799         del_timer_sync(&adapter->watchdog_timer);
2800         del_timer_sync(&adapter->phy_info_timer);
2801
2802         cancel_work_sync(&adapter->reset_task);
2803         cancel_work_sync(&adapter->watchdog_task);
2804
2805 #ifdef CONFIG_IGB_DCA
2806         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2807                 dev_info(&pdev->dev, "DCA disabled\n");
2808                 dca_remove_requester(&pdev->dev);
2809                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2810                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2811         }
2812 #endif
2813
2814         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2815          * would have already happened in close and is redundant.
2816          */
2817         igb_release_hw_control(adapter);
2818
2819         unregister_netdev(netdev);
2820
2821         igb_clear_interrupt_scheme(adapter);
2822
2823 #ifdef CONFIG_PCI_IOV
2824         igb_disable_sriov(pdev);
2825 #endif
2826
2827         pci_iounmap(pdev, hw->hw_addr);
2828         if (hw->flash_address)
2829                 iounmap(hw->flash_address);
2830         pci_release_selected_regions(pdev,
2831                                      pci_select_bars(pdev, IORESOURCE_MEM));
2832
2833         kfree(adapter->shadow_vfta);
2834         free_netdev(netdev);
2835
2836         pci_disable_pcie_error_reporting(pdev);
2837
2838         pci_disable_device(pdev);
2839 }
2840
2841 /**
2842  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2843  *  @adapter: board private structure to initialize
2844  *
2845  *  This function initializes the vf specific data storage and then attempts to
2846  *  allocate the VFs.  The reason for ordering it this way is because it is much
2847  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2848  *  the memory for the VFs.
2849  **/
2850 static void igb_probe_vfs(struct igb_adapter *adapter)
2851 {
2852 #ifdef CONFIG_PCI_IOV
2853         struct pci_dev *pdev = adapter->pdev;
2854         struct e1000_hw *hw = &adapter->hw;
2855
2856         /* Virtualization features not supported on i210 family. */
2857         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2858                 return;
2859
2860         pci_sriov_set_totalvfs(pdev, 7);
2861         igb_pci_enable_sriov(pdev, max_vfs);
2862
2863 #endif /* CONFIG_PCI_IOV */
2864 }
2865
2866 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2867 {
2868         struct e1000_hw *hw = &adapter->hw;
2869         u32 max_rss_queues;
2870
2871         /* Determine the maximum number of RSS queues supported. */
2872         switch (hw->mac.type) {
2873         case e1000_i211:
2874                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2875                 break;
2876         case e1000_82575:
2877         case e1000_i210:
2878                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2879                 break;
2880         case e1000_i350:
2881                 /* I350 cannot do RSS and SR-IOV at the same time */
2882                 if (!!adapter->vfs_allocated_count) {
2883                         max_rss_queues = 1;
2884                         break;
2885                 }
2886                 /* fall through */
2887         case e1000_82576:
2888                 if (!!adapter->vfs_allocated_count) {
2889                         max_rss_queues = 2;
2890                         break;
2891                 }
2892                 /* fall through */
2893         case e1000_82580:
2894         case e1000_i354:
2895         default:
2896                 max_rss_queues = IGB_MAX_RX_QUEUES;
2897                 break;
2898         }
2899
2900         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2901
2902         /* Determine if we need to pair queues. */
2903         switch (hw->mac.type) {
2904         case e1000_82575:
2905         case e1000_i211:
2906                 /* Device supports enough interrupts without queue pairing. */
2907                 break;
2908         case e1000_82576:
2909                 /* If VFs are going to be allocated with RSS queues then we
2910                  * should pair the queues in order to conserve interrupts due
2911                  * to limited supply.
2912                  */
2913                 if ((adapter->rss_queues > 1) &&
2914                     (adapter->vfs_allocated_count > 6))
2915                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2916                 /* fall through */
2917         case e1000_82580:
2918         case e1000_i350:
2919         case e1000_i354:
2920         case e1000_i210:
2921         default:
2922                 /* If rss_queues > half of max_rss_queues, pair the queues in
2923                  * order to conserve interrupts due to limited supply.
2924                  */
2925                 if (adapter->rss_queues > (max_rss_queues / 2))
2926                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2927                 break;
2928         }
2929 }
2930
2931 /**
2932  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2933  *  @adapter: board private structure to initialize
2934  *
2935  *  igb_sw_init initializes the Adapter private data structure.
2936  *  Fields are initialized based on PCI device information and
2937  *  OS network device settings (MTU size).
2938  **/
2939 static int igb_sw_init(struct igb_adapter *adapter)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct net_device *netdev = adapter->netdev;
2943         struct pci_dev *pdev = adapter->pdev;
2944
2945         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2946
2947         /* set default ring sizes */
2948         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2949         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2950
2951         /* set default ITR values */
2952         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2953         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2954
2955         /* set default work limits */
2956         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2957
2958         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2959                                   VLAN_HLEN;
2960         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2961
2962         spin_lock_init(&adapter->stats64_lock);
2963 #ifdef CONFIG_PCI_IOV
2964         switch (hw->mac.type) {
2965         case e1000_82576:
2966         case e1000_i350:
2967                 if (max_vfs > 7) {
2968                         dev_warn(&pdev->dev,
2969                                  "Maximum of 7 VFs per PF, using max\n");
2970                         max_vfs = adapter->vfs_allocated_count = 7;
2971                 } else
2972                         adapter->vfs_allocated_count = max_vfs;
2973                 if (adapter->vfs_allocated_count)
2974                         dev_warn(&pdev->dev,
2975                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2976                 break;
2977         default:
2978                 break;
2979         }
2980 #endif /* CONFIG_PCI_IOV */
2981
2982         igb_init_queue_configuration(adapter);
2983
2984         /* Setup and initialize a copy of the hw vlan table array */
2985         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2986                                        GFP_ATOMIC);
2987
2988         /* This call may decrease the number of queues */
2989         if (igb_init_interrupt_scheme(adapter, true)) {
2990                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2991                 return -ENOMEM;
2992         }
2993
2994         igb_probe_vfs(adapter);
2995
2996         /* Explicitly disable IRQ since the NIC can be in any state. */
2997         igb_irq_disable(adapter);
2998
2999         if (hw->mac.type >= e1000_i350)
3000                 adapter->flags &= ~IGB_FLAG_DMAC;
3001
3002         set_bit(__IGB_DOWN, &adapter->state);
3003         return 0;
3004 }
3005
3006 /**
3007  *  igb_open - Called when a network interface is made active
3008  *  @netdev: network interface device structure
3009  *
3010  *  Returns 0 on success, negative value on failure
3011  *
3012  *  The open entry point is called when a network interface is made
3013  *  active by the system (IFF_UP).  At this point all resources needed
3014  *  for transmit and receive operations are allocated, the interrupt
3015  *  handler is registered with the OS, the watchdog timer is started,
3016  *  and the stack is notified that the interface is ready.
3017  **/
3018 static int __igb_open(struct net_device *netdev, bool resuming)
3019 {
3020         struct igb_adapter *adapter = netdev_priv(netdev);
3021         struct e1000_hw *hw = &adapter->hw;
3022         struct pci_dev *pdev = adapter->pdev;
3023         int err;
3024         int i;
3025
3026         /* disallow open during test */
3027         if (test_bit(__IGB_TESTING, &adapter->state)) {
3028                 WARN_ON(resuming);
3029                 return -EBUSY;
3030         }
3031
3032         if (!resuming)
3033                 pm_runtime_get_sync(&pdev->dev);
3034
3035         netif_carrier_off(netdev);
3036
3037         /* allocate transmit descriptors */
3038         err = igb_setup_all_tx_resources(adapter);
3039         if (err)
3040                 goto err_setup_tx;
3041
3042         /* allocate receive descriptors */
3043         err = igb_setup_all_rx_resources(adapter);
3044         if (err)
3045                 goto err_setup_rx;
3046
3047         igb_power_up_link(adapter);
3048
3049         /* before we allocate an interrupt, we must be ready to handle it.
3050          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3051          * as soon as we call pci_request_irq, so we have to setup our
3052          * clean_rx handler before we do so.
3053          */
3054         igb_configure(adapter);
3055
3056         err = igb_request_irq(adapter);
3057         if (err)
3058                 goto err_req_irq;
3059
3060         /* Notify the stack of the actual queue counts. */
3061         err = netif_set_real_num_tx_queues(adapter->netdev,
3062                                            adapter->num_tx_queues);
3063         if (err)
3064                 goto err_set_queues;
3065
3066         err = netif_set_real_num_rx_queues(adapter->netdev,
3067                                            adapter->num_rx_queues);
3068         if (err)
3069                 goto err_set_queues;
3070
3071         /* From here on the code is the same as igb_up() */
3072         clear_bit(__IGB_DOWN, &adapter->state);
3073
3074         for (i = 0; i < adapter->num_q_vectors; i++)
3075                 napi_enable(&(adapter->q_vector[i]->napi));
3076
3077         /* Clear any pending interrupts. */
3078         rd32(E1000_ICR);
3079
3080         igb_irq_enable(adapter);
3081
3082         /* notify VFs that reset has been completed */
3083         if (adapter->vfs_allocated_count) {
3084                 u32 reg_data = rd32(E1000_CTRL_EXT);
3085
3086                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3087                 wr32(E1000_CTRL_EXT, reg_data);
3088         }
3089
3090         netif_tx_start_all_queues(netdev);
3091
3092         if (!resuming)
3093                 pm_runtime_put(&pdev->dev);
3094
3095         /* start the watchdog. */
3096         hw->mac.get_link_status = 1;
3097         schedule_work(&adapter->watchdog_task);
3098
3099         return 0;
3100
3101 err_set_queues:
3102         igb_free_irq(adapter);
3103 err_req_irq:
3104         igb_release_hw_control(adapter);
3105         igb_power_down_link(adapter);
3106         igb_free_all_rx_resources(adapter);
3107 err_setup_rx:
3108         igb_free_all_tx_resources(adapter);
3109 err_setup_tx:
3110         igb_reset(adapter);
3111         if (!resuming)
3112                 pm_runtime_put(&pdev->dev);
3113
3114         return err;
3115 }
3116
3117 static int igb_open(struct net_device *netdev)
3118 {
3119         return __igb_open(netdev, false);
3120 }
3121
3122 /**
3123  *  igb_close - Disables a network interface
3124  *  @netdev: network interface device structure
3125  *
3126  *  Returns 0, this is not allowed to fail
3127  *
3128  *  The close entry point is called when an interface is de-activated
3129  *  by the OS.  The hardware is still under the driver's control, but
3130  *  needs to be disabled.  A global MAC reset is issued to stop the
3131  *  hardware, and all transmit and receive resources are freed.
3132  **/
3133 static int __igb_close(struct net_device *netdev, bool suspending)
3134 {
3135         struct igb_adapter *adapter = netdev_priv(netdev);
3136         struct pci_dev *pdev = adapter->pdev;
3137
3138         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3139
3140         if (!suspending)
3141                 pm_runtime_get_sync(&pdev->dev);
3142
3143         igb_down(adapter);
3144         igb_free_irq(adapter);
3145
3146         igb_free_all_tx_resources(adapter);
3147         igb_free_all_rx_resources(adapter);
3148
3149         if (!suspending)
3150                 pm_runtime_put_sync(&pdev->dev);
3151         return 0;
3152 }
3153
3154 static int igb_close(struct net_device *netdev)
3155 {
3156         return __igb_close(netdev, false);
3157 }
3158
3159 /**
3160  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3161  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3162  *
3163  *  Return 0 on success, negative on failure
3164  **/
3165 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3166 {
3167         struct device *dev = tx_ring->dev;
3168         int size;
3169
3170         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3171
3172         tx_ring->tx_buffer_info = vzalloc(size);
3173         if (!tx_ring->tx_buffer_info)
3174                 goto err;
3175
3176         /* round up to nearest 4K */
3177         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3178         tx_ring->size = ALIGN(tx_ring->size, 4096);
3179
3180         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3181                                            &tx_ring->dma, GFP_KERNEL);
3182         if (!tx_ring->desc)
3183                 goto err;
3184
3185         tx_ring->next_to_use = 0;
3186         tx_ring->next_to_clean = 0;
3187
3188         return 0;
3189
3190 err:
3191         vfree(tx_ring->tx_buffer_info);
3192         tx_ring->tx_buffer_info = NULL;
3193         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3194         return -ENOMEM;
3195 }
3196
3197 /**
3198  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3199  *                               (Descriptors) for all queues
3200  *  @adapter: board private structure
3201  *
3202  *  Return 0 on success, negative on failure
3203  **/
3204 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3205 {
3206         struct pci_dev *pdev = adapter->pdev;
3207         int i, err = 0;
3208
3209         for (i = 0; i < adapter->num_tx_queues; i++) {
3210                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3211                 if (err) {
3212                         dev_err(&pdev->dev,
3213                                 "Allocation for Tx Queue %u failed\n", i);
3214                         for (i--; i >= 0; i--)
3215                                 igb_free_tx_resources(adapter->tx_ring[i]);
3216                         break;
3217                 }
3218         }
3219
3220         return err;
3221 }
3222
3223 /**
3224  *  igb_setup_tctl - configure the transmit control registers
3225  *  @adapter: Board private structure
3226  **/
3227 void igb_setup_tctl(struct igb_adapter *adapter)
3228 {
3229         struct e1000_hw *hw = &adapter->hw;
3230         u32 tctl;
3231
3232         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3233         wr32(E1000_TXDCTL(0), 0);
3234
3235         /* Program the Transmit Control Register */
3236         tctl = rd32(E1000_TCTL);
3237         tctl &= ~E1000_TCTL_CT;
3238         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3239                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3240
3241         igb_config_collision_dist(hw);
3242
3243         /* Enable transmits */
3244         tctl |= E1000_TCTL_EN;
3245
3246         wr32(E1000_TCTL, tctl);
3247 }
3248
3249 /**
3250  *  igb_configure_tx_ring - Configure transmit ring after Reset
3251  *  @adapter: board private structure
3252  *  @ring: tx ring to configure
3253  *
3254  *  Configure a transmit ring after a reset.
3255  **/
3256 void igb_configure_tx_ring(struct igb_adapter *adapter,
3257                            struct igb_ring *ring)
3258 {
3259         struct e1000_hw *hw = &adapter->hw;
3260         u32 txdctl = 0;
3261         u64 tdba = ring->dma;
3262         int reg_idx = ring->reg_idx;
3263
3264         /* disable the queue */
3265         wr32(E1000_TXDCTL(reg_idx), 0);
3266         wrfl();
3267         mdelay(10);
3268
3269         wr32(E1000_TDLEN(reg_idx),
3270              ring->count * sizeof(union e1000_adv_tx_desc));
3271         wr32(E1000_TDBAL(reg_idx),
3272              tdba & 0x00000000ffffffffULL);
3273         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3274
3275         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3276         wr32(E1000_TDH(reg_idx), 0);
3277         writel(0, ring->tail);
3278
3279         txdctl |= IGB_TX_PTHRESH;
3280         txdctl |= IGB_TX_HTHRESH << 8;
3281         txdctl |= IGB_TX_WTHRESH << 16;
3282
3283         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3284         wr32(E1000_TXDCTL(reg_idx), txdctl);
3285 }
3286
3287 /**
3288  *  igb_configure_tx - Configure transmit Unit after Reset
3289  *  @adapter: board private structure
3290  *
3291  *  Configure the Tx unit of the MAC after a reset.
3292  **/
3293 static void igb_configure_tx(struct igb_adapter *adapter)
3294 {
3295         int i;
3296
3297         for (i = 0; i < adapter->num_tx_queues; i++)
3298                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3299 }
3300
3301 /**
3302  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3303  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3304  *
3305  *  Returns 0 on success, negative on failure
3306  **/
3307 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3308 {
3309         struct device *dev = rx_ring->dev;
3310         int size;
3311
3312         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3313
3314         rx_ring->rx_buffer_info = vzalloc(size);
3315         if (!rx_ring->rx_buffer_info)
3316                 goto err;
3317
3318         /* Round up to nearest 4K */
3319         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3320         rx_ring->size = ALIGN(rx_ring->size, 4096);
3321
3322         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3323                                            &rx_ring->dma, GFP_KERNEL);
3324         if (!rx_ring->desc)
3325                 goto err;
3326
3327         rx_ring->next_to_alloc = 0;
3328         rx_ring->next_to_clean = 0;
3329         rx_ring->next_to_use = 0;
3330
3331         return 0;
3332
3333 err:
3334         vfree(rx_ring->rx_buffer_info);
3335         rx_ring->rx_buffer_info = NULL;
3336         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3337         return -ENOMEM;
3338 }
3339
3340 /**
3341  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3342  *                               (Descriptors) for all queues
3343  *  @adapter: board private structure
3344  *
3345  *  Return 0 on success, negative on failure
3346  **/
3347 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3348 {
3349         struct pci_dev *pdev = adapter->pdev;
3350         int i, err = 0;
3351
3352         for (i = 0; i < adapter->num_rx_queues; i++) {
3353                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3354                 if (err) {
3355                         dev_err(&pdev->dev,
3356                                 "Allocation for Rx Queue %u failed\n", i);
3357                         for (i--; i >= 0; i--)
3358                                 igb_free_rx_resources(adapter->rx_ring[i]);
3359                         break;
3360                 }
3361         }
3362
3363         return err;
3364 }
3365
3366 /**
3367  *  igb_setup_mrqc - configure the multiple receive queue control registers
3368  *  @adapter: Board private structure
3369  **/
3370 static void igb_setup_mrqc(struct igb_adapter *adapter)
3371 {
3372         struct e1000_hw *hw = &adapter->hw;
3373         u32 mrqc, rxcsum;
3374         u32 j, num_rx_queues;
3375         u32 rss_key[10];
3376
3377         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3378         for (j = 0; j < 10; j++)
3379                 wr32(E1000_RSSRK(j), rss_key[j]);
3380
3381         num_rx_queues = adapter->rss_queues;
3382
3383         switch (hw->mac.type) {
3384         case e1000_82576:
3385                 /* 82576 supports 2 RSS queues for SR-IOV */
3386                 if (adapter->vfs_allocated_count)
3387                         num_rx_queues = 2;
3388                 break;
3389         default:
3390                 break;
3391         }
3392
3393         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3394                 for (j = 0; j < IGB_RETA_SIZE; j++)
3395                         adapter->rss_indir_tbl[j] =
3396                         (j * num_rx_queues) / IGB_RETA_SIZE;
3397                 adapter->rss_indir_tbl_init = num_rx_queues;
3398         }
3399         igb_write_rss_indir_tbl(adapter);
3400
3401         /* Disable raw packet checksumming so that RSS hash is placed in
3402          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3403          * offloads as they are enabled by default
3404          */
3405         rxcsum = rd32(E1000_RXCSUM);
3406         rxcsum |= E1000_RXCSUM_PCSD;
3407
3408         if (adapter->hw.mac.type >= e1000_82576)
3409                 /* Enable Receive Checksum Offload for SCTP */
3410                 rxcsum |= E1000_RXCSUM_CRCOFL;
3411
3412         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3413         wr32(E1000_RXCSUM, rxcsum);
3414
3415         /* Generate RSS hash based on packet types, TCP/UDP
3416          * port numbers and/or IPv4/v6 src and dst addresses
3417          */
3418         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3419                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3420                E1000_MRQC_RSS_FIELD_IPV6 |
3421                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3422                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3423
3424         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3425                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3426         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3427                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3428
3429         /* If VMDq is enabled then we set the appropriate mode for that, else
3430          * we default to RSS so that an RSS hash is calculated per packet even
3431          * if we are only using one queue
3432          */
3433         if (adapter->vfs_allocated_count) {
3434                 if (hw->mac.type > e1000_82575) {
3435                         /* Set the default pool for the PF's first queue */
3436                         u32 vtctl = rd32(E1000_VT_CTL);
3437
3438                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3439                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3440                         vtctl |= adapter->vfs_allocated_count <<
3441                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3442                         wr32(E1000_VT_CTL, vtctl);
3443                 }
3444                 if (adapter->rss_queues > 1)
3445                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3446                 else
3447                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3448         } else {
3449                 if (hw->mac.type != e1000_i211)
3450                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3451         }
3452         igb_vmm_control(adapter);
3453
3454         wr32(E1000_MRQC, mrqc);
3455 }
3456
3457 /**
3458  *  igb_setup_rctl - configure the receive control registers
3459  *  @adapter: Board private structure
3460  **/
3461 void igb_setup_rctl(struct igb_adapter *adapter)
3462 {
3463         struct e1000_hw *hw = &adapter->hw;
3464         u32 rctl;
3465
3466         rctl = rd32(E1000_RCTL);
3467
3468         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3469         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3470
3471         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3472                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3473
3474         /* enable stripping of CRC. It's unlikely this will break BMC
3475          * redirection as it did with e1000. Newer features require
3476          * that the HW strips the CRC.
3477          */
3478         rctl |= E1000_RCTL_SECRC;
3479
3480         /* disable store bad packets and clear size bits. */
3481         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3482
3483         /* enable LPE to prevent packets larger than max_frame_size */
3484         rctl |= E1000_RCTL_LPE;
3485
3486         /* disable queue 0 to prevent tail write w/o re-config */
3487         wr32(E1000_RXDCTL(0), 0);
3488
3489         /* Attention!!!  For SR-IOV PF driver operations you must enable
3490          * queue drop for all VF and PF queues to prevent head of line blocking
3491          * if an un-trusted VF does not provide descriptors to hardware.
3492          */
3493         if (adapter->vfs_allocated_count) {
3494                 /* set all queue drop enable bits */
3495                 wr32(E1000_QDE, ALL_QUEUES);
3496         }
3497
3498         /* This is useful for sniffing bad packets. */
3499         if (adapter->netdev->features & NETIF_F_RXALL) {
3500                 /* UPE and MPE will be handled by normal PROMISC logic
3501                  * in e1000e_set_rx_mode
3502                  */
3503                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3504                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3505                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3506
3507                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3508                           E1000_RCTL_DPF | /* Allow filtered pause */
3509                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3510                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3511                  * and that breaks VLANs.
3512                  */
3513         }
3514
3515         wr32(E1000_RCTL, rctl);
3516 }
3517
3518 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3519                                    int vfn)
3520 {
3521         struct e1000_hw *hw = &adapter->hw;
3522         u32 vmolr;
3523
3524         /* if it isn't the PF check to see if VFs are enabled and
3525          * increase the size to support vlan tags
3526          */
3527         if (vfn < adapter->vfs_allocated_count &&
3528             adapter->vf_data[vfn].vlans_enabled)
3529                 size += VLAN_TAG_SIZE;
3530
3531         vmolr = rd32(E1000_VMOLR(vfn));
3532         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3533         vmolr |= size | E1000_VMOLR_LPE;
3534         wr32(E1000_VMOLR(vfn), vmolr);
3535
3536         return 0;
3537 }
3538
3539 /**
3540  *  igb_rlpml_set - set maximum receive packet size
3541  *  @adapter: board private structure
3542  *
3543  *  Configure maximum receivable packet size.
3544  **/
3545 static void igb_rlpml_set(struct igb_adapter *adapter)
3546 {
3547         u32 max_frame_size = adapter->max_frame_size;
3548         struct e1000_hw *hw = &adapter->hw;
3549         u16 pf_id = adapter->vfs_allocated_count;
3550
3551         if (pf_id) {
3552                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3553                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3554                  * to our max jumbo frame size, in case we need to enable
3555                  * jumbo frames on one of the rings later.
3556                  * This will not pass over-length frames into the default
3557                  * queue because it's gated by the VMOLR.RLPML.
3558                  */
3559                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3560         }
3561
3562         wr32(E1000_RLPML, max_frame_size);
3563 }
3564
3565 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3566                                  int vfn, bool aupe)
3567 {
3568         struct e1000_hw *hw = &adapter->hw;
3569         u32 vmolr;
3570
3571         /* This register exists only on 82576 and newer so if we are older then
3572          * we should exit and do nothing
3573          */
3574         if (hw->mac.type < e1000_82576)
3575                 return;
3576
3577         vmolr = rd32(E1000_VMOLR(vfn));
3578         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3579         if (hw->mac.type == e1000_i350) {
3580                 u32 dvmolr;
3581
3582                 dvmolr = rd32(E1000_DVMOLR(vfn));
3583                 dvmolr |= E1000_DVMOLR_STRVLAN;
3584                 wr32(E1000_DVMOLR(vfn), dvmolr);
3585         }
3586         if (aupe)
3587                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3588         else
3589                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3590
3591         /* clear all bits that might not be set */
3592         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3593
3594         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3595                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3596         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3597          * multicast packets
3598          */
3599         if (vfn <= adapter->vfs_allocated_count)
3600                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3601
3602         wr32(E1000_VMOLR(vfn), vmolr);
3603 }
3604
3605 /**
3606  *  igb_configure_rx_ring - Configure a receive ring after Reset
3607  *  @adapter: board private structure
3608  *  @ring: receive ring to be configured
3609  *
3610  *  Configure the Rx unit of the MAC after a reset.
3611  **/
3612 void igb_configure_rx_ring(struct igb_adapter *adapter,
3613                            struct igb_ring *ring)
3614 {
3615         struct e1000_hw *hw = &adapter->hw;
3616         u64 rdba = ring->dma;
3617         int reg_idx = ring->reg_idx;
3618         u32 srrctl = 0, rxdctl = 0;
3619
3620         /* disable the queue */
3621         wr32(E1000_RXDCTL(reg_idx), 0);
3622
3623         /* Set DMA base address registers */
3624         wr32(E1000_RDBAL(reg_idx),
3625              rdba & 0x00000000ffffffffULL);
3626         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3627         wr32(E1000_RDLEN(reg_idx),
3628              ring->count * sizeof(union e1000_adv_rx_desc));
3629
3630         /* initialize head and tail */
3631         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3632         wr32(E1000_RDH(reg_idx), 0);
3633         writel(0, ring->tail);
3634
3635         /* set descriptor configuration */
3636         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3637         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3638         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3639         if (hw->mac.type >= e1000_82580)
3640                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3641         /* Only set Drop Enable if we are supporting multiple queues */
3642         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3643                 srrctl |= E1000_SRRCTL_DROP_EN;
3644
3645         wr32(E1000_SRRCTL(reg_idx), srrctl);
3646
3647         /* set filtering for VMDQ pools */
3648         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3649
3650         rxdctl |= IGB_RX_PTHRESH;
3651         rxdctl |= IGB_RX_HTHRESH << 8;
3652         rxdctl |= IGB_RX_WTHRESH << 16;
3653
3654         /* enable receive descriptor fetching */
3655         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3656         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3657 }
3658
3659 /**
3660  *  igb_configure_rx - Configure receive Unit after Reset
3661  *  @adapter: board private structure
3662  *
3663  *  Configure the Rx unit of the MAC after a reset.
3664  **/
3665 static void igb_configure_rx(struct igb_adapter *adapter)
3666 {
3667         int i;
3668
3669         /* set UTA to appropriate mode */
3670         igb_set_uta(adapter);
3671
3672         /* set the correct pool for the PF default MAC address in entry 0 */
3673         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3674                          adapter->vfs_allocated_count);
3675
3676         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3677          * the Base and Length of the Rx Descriptor Ring
3678          */
3679         for (i = 0; i < adapter->num_rx_queues; i++)
3680                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3681 }
3682
3683 /**
3684  *  igb_free_tx_resources - Free Tx Resources per Queue
3685  *  @tx_ring: Tx descriptor ring for a specific queue
3686  *
3687  *  Free all transmit software resources
3688  **/
3689 void igb_free_tx_resources(struct igb_ring *tx_ring)
3690 {
3691         igb_clean_tx_ring(tx_ring);
3692
3693         vfree(tx_ring->tx_buffer_info);
3694         tx_ring->tx_buffer_info = NULL;
3695
3696         /* if not set, then don't free */
3697         if (!tx_ring->desc)
3698                 return;
3699
3700         dma_free_coherent(tx_ring->dev, tx_ring->size,
3701                           tx_ring->desc, tx_ring->dma);
3702
3703         tx_ring->desc = NULL;
3704 }
3705
3706 /**
3707  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3708  *  @adapter: board private structure
3709  *
3710  *  Free all transmit software resources
3711  **/
3712 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3713 {
3714         int i;
3715
3716         for (i = 0; i < adapter->num_tx_queues; i++)
3717                 if (adapter->tx_ring[i])
3718                         igb_free_tx_resources(adapter->tx_ring[i]);
3719 }
3720
3721 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3722                                     struct igb_tx_buffer *tx_buffer)
3723 {
3724         if (tx_buffer->skb) {
3725                 dev_kfree_skb_any(tx_buffer->skb);
3726                 if (dma_unmap_len(tx_buffer, len))
3727                         dma_unmap_single(ring->dev,
3728                                          dma_unmap_addr(tx_buffer, dma),
3729                                          dma_unmap_len(tx_buffer, len),
3730                                          DMA_TO_DEVICE);
3731         } else if (dma_unmap_len(tx_buffer, len)) {
3732                 dma_unmap_page(ring->dev,
3733                                dma_unmap_addr(tx_buffer, dma),
3734                                dma_unmap_len(tx_buffer, len),
3735                                DMA_TO_DEVICE);
3736         }
3737         tx_buffer->next_to_watch = NULL;
3738         tx_buffer->skb = NULL;
3739         dma_unmap_len_set(tx_buffer, len, 0);
3740         /* buffer_info must be completely set up in the transmit path */
3741 }
3742
3743 /**
3744  *  igb_clean_tx_ring - Free Tx Buffers
3745  *  @tx_ring: ring to be cleaned
3746  **/
3747 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3748 {
3749         struct igb_tx_buffer *buffer_info;
3750         unsigned long size;
3751         u16 i;
3752
3753         if (!tx_ring->tx_buffer_info)
3754                 return;
3755         /* Free all the Tx ring sk_buffs */
3756
3757         for (i = 0; i < tx_ring->count; i++) {
3758                 buffer_info = &tx_ring->tx_buffer_info[i];
3759                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3760         }
3761
3762         netdev_tx_reset_queue(txring_txq(tx_ring));
3763
3764         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3765         memset(tx_ring->tx_buffer_info, 0, size);
3766
3767         /* Zero out the descriptor ring */
3768         memset(tx_ring->desc, 0, tx_ring->size);
3769
3770         tx_ring->next_to_use = 0;
3771         tx_ring->next_to_clean = 0;
3772 }
3773
3774 /**
3775  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3776  *  @adapter: board private structure
3777  **/
3778 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3779 {
3780         int i;
3781
3782         for (i = 0; i < adapter->num_tx_queues; i++)
3783                 if (adapter->tx_ring[i])
3784                         igb_clean_tx_ring(adapter->tx_ring[i]);
3785 }
3786
3787 /**
3788  *  igb_free_rx_resources - Free Rx Resources
3789  *  @rx_ring: ring to clean the resources from
3790  *
3791  *  Free all receive software resources
3792  **/
3793 void igb_free_rx_resources(struct igb_ring *rx_ring)
3794 {
3795         igb_clean_rx_ring(rx_ring);
3796
3797         vfree(rx_ring->rx_buffer_info);
3798         rx_ring->rx_buffer_info = NULL;
3799
3800         /* if not set, then don't free */
3801         if (!rx_ring->desc)
3802                 return;
3803
3804         dma_free_coherent(rx_ring->dev, rx_ring->size,
3805                           rx_ring->desc, rx_ring->dma);
3806
3807         rx_ring->desc = NULL;
3808 }
3809
3810 /**
3811  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3812  *  @adapter: board private structure
3813  *
3814  *  Free all receive software resources
3815  **/
3816 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3817 {
3818         int i;
3819
3820         for (i = 0; i < adapter->num_rx_queues; i++)
3821                 if (adapter->rx_ring[i])
3822                         igb_free_rx_resources(adapter->rx_ring[i]);
3823 }
3824
3825 /**
3826  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3827  *  @rx_ring: ring to free buffers from
3828  **/
3829 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3830 {
3831         unsigned long size;
3832         u16 i;
3833
3834         if (rx_ring->skb)
3835                 dev_kfree_skb(rx_ring->skb);
3836         rx_ring->skb = NULL;
3837
3838         if (!rx_ring->rx_buffer_info)
3839                 return;
3840
3841         /* Free all the Rx ring sk_buffs */
3842         for (i = 0; i < rx_ring->count; i++) {
3843                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3844
3845                 if (!buffer_info->page)
3846                         continue;
3847
3848                 dma_unmap_page(rx_ring->dev,
3849                                buffer_info->dma,
3850                                PAGE_SIZE,
3851                                DMA_FROM_DEVICE);
3852                 __free_page(buffer_info->page);
3853
3854                 buffer_info->page = NULL;
3855         }
3856
3857         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3858         memset(rx_ring->rx_buffer_info, 0, size);
3859
3860         /* Zero out the descriptor ring */
3861         memset(rx_ring->desc, 0, rx_ring->size);
3862
3863         rx_ring->next_to_alloc = 0;
3864         rx_ring->next_to_clean = 0;
3865         rx_ring->next_to_use = 0;
3866 }
3867
3868 /**
3869  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3870  *  @adapter: board private structure
3871  **/
3872 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3873 {
3874         int i;
3875
3876         for (i = 0; i < adapter->num_rx_queues; i++)
3877                 if (adapter->rx_ring[i])
3878                         igb_clean_rx_ring(adapter->rx_ring[i]);
3879 }
3880
3881 /**
3882  *  igb_set_mac - Change the Ethernet Address of the NIC
3883  *  @netdev: network interface device structure
3884  *  @p: pointer to an address structure
3885  *
3886  *  Returns 0 on success, negative on failure
3887  **/
3888 static int igb_set_mac(struct net_device *netdev, void *p)
3889 {
3890         struct igb_adapter *adapter = netdev_priv(netdev);
3891         struct e1000_hw *hw = &adapter->hw;
3892         struct sockaddr *addr = p;
3893
3894         if (!is_valid_ether_addr(addr->sa_data))
3895                 return -EADDRNOTAVAIL;
3896
3897         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3898         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3899
3900         /* set the correct pool for the new PF MAC address in entry 0 */
3901         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3902                          adapter->vfs_allocated_count);
3903
3904         return 0;
3905 }
3906
3907 /**
3908  *  igb_write_mc_addr_list - write multicast addresses to MTA
3909  *  @netdev: network interface device structure
3910  *
3911  *  Writes multicast address list to the MTA hash table.
3912  *  Returns: -ENOMEM on failure
3913  *           0 on no addresses written
3914  *           X on writing X addresses to MTA
3915  **/
3916 static int igb_write_mc_addr_list(struct net_device *netdev)
3917 {
3918         struct igb_adapter *adapter = netdev_priv(netdev);
3919         struct e1000_hw *hw = &adapter->hw;
3920         struct netdev_hw_addr *ha;
3921         u8  *mta_list;
3922         int i;
3923
3924         if (netdev_mc_empty(netdev)) {
3925                 /* nothing to program, so clear mc list */
3926                 igb_update_mc_addr_list(hw, NULL, 0);
3927                 igb_restore_vf_multicasts(adapter);
3928                 return 0;
3929         }
3930
3931         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3932         if (!mta_list)
3933                 return -ENOMEM;
3934
3935         /* The shared function expects a packed array of only addresses. */
3936         i = 0;
3937         netdev_for_each_mc_addr(ha, netdev)
3938                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3939
3940         igb_update_mc_addr_list(hw, mta_list, i);
3941         kfree(mta_list);
3942
3943         return netdev_mc_count(netdev);
3944 }
3945
3946 /**
3947  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3948  *  @netdev: network interface device structure
3949  *
3950  *  Writes unicast address list to the RAR table.
3951  *  Returns: -ENOMEM on failure/insufficient address space
3952  *           0 on no addresses written
3953  *           X on writing X addresses to the RAR table
3954  **/
3955 static int igb_write_uc_addr_list(struct net_device *netdev)
3956 {
3957         struct igb_adapter *adapter = netdev_priv(netdev);
3958         struct e1000_hw *hw = &adapter->hw;
3959         unsigned int vfn = adapter->vfs_allocated_count;
3960         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3961         int count = 0;
3962
3963         /* return ENOMEM indicating insufficient memory for addresses */
3964         if (netdev_uc_count(netdev) > rar_entries)
3965                 return -ENOMEM;
3966
3967         if (!netdev_uc_empty(netdev) && rar_entries) {
3968                 struct netdev_hw_addr *ha;
3969
3970                 netdev_for_each_uc_addr(ha, netdev) {
3971                         if (!rar_entries)
3972                                 break;
3973                         igb_rar_set_qsel(adapter, ha->addr,
3974                                          rar_entries--,
3975                                          vfn);
3976                         count++;
3977                 }
3978         }
3979         /* write the addresses in reverse order to avoid write combining */
3980         for (; rar_entries > 0 ; rar_entries--) {
3981                 wr32(E1000_RAH(rar_entries), 0);
3982                 wr32(E1000_RAL(rar_entries), 0);
3983         }
3984         wrfl();
3985
3986         return count;
3987 }
3988
3989 /**
3990  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3991  *  @netdev: network interface device structure
3992  *
3993  *  The set_rx_mode entry point is called whenever the unicast or multicast
3994  *  address lists or the network interface flags are updated.  This routine is
3995  *  responsible for configuring the hardware for proper unicast, multicast,
3996  *  promiscuous mode, and all-multi behavior.
3997  **/
3998 static void igb_set_rx_mode(struct net_device *netdev)
3999 {
4000         struct igb_adapter *adapter = netdev_priv(netdev);
4001         struct e1000_hw *hw = &adapter->hw;
4002         unsigned int vfn = adapter->vfs_allocated_count;
4003         u32 rctl, vmolr = 0;
4004         int count;
4005
4006         /* Check for Promiscuous and All Multicast modes */
4007         rctl = rd32(E1000_RCTL);
4008
4009         /* clear the effected bits */
4010         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4011
4012         if (netdev->flags & IFF_PROMISC) {
4013                 /* retain VLAN HW filtering if in VT mode */
4014                 if (adapter->vfs_allocated_count)
4015                         rctl |= E1000_RCTL_VFE;
4016                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4017                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4018         } else {
4019                 if (netdev->flags & IFF_ALLMULTI) {
4020                         rctl |= E1000_RCTL_MPE;
4021                         vmolr |= E1000_VMOLR_MPME;
4022                 } else {
4023                         /* Write addresses to the MTA, if the attempt fails
4024                          * then we should just turn on promiscuous mode so
4025                          * that we can at least receive multicast traffic
4026                          */
4027                         count = igb_write_mc_addr_list(netdev);
4028                         if (count < 0) {
4029                                 rctl |= E1000_RCTL_MPE;
4030                                 vmolr |= E1000_VMOLR_MPME;
4031                         } else if (count) {
4032                                 vmolr |= E1000_VMOLR_ROMPE;
4033                         }
4034                 }
4035                 /* Write addresses to available RAR registers, if there is not
4036                  * sufficient space to store all the addresses then enable
4037                  * unicast promiscuous mode
4038                  */
4039                 count = igb_write_uc_addr_list(netdev);
4040                 if (count < 0) {
4041                         rctl |= E1000_RCTL_UPE;
4042                         vmolr |= E1000_VMOLR_ROPE;
4043                 }
4044                 rctl |= E1000_RCTL_VFE;
4045         }
4046         wr32(E1000_RCTL, rctl);
4047
4048         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4049          * the VMOLR to enable the appropriate modes.  Without this workaround
4050          * we will have issues with VLAN tag stripping not being done for frames
4051          * that are only arriving because we are the default pool
4052          */
4053         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4054                 return;
4055
4056         vmolr |= rd32(E1000_VMOLR(vfn)) &
4057                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4058         wr32(E1000_VMOLR(vfn), vmolr);
4059         igb_restore_vf_multicasts(adapter);
4060 }
4061
4062 static void igb_check_wvbr(struct igb_adapter *adapter)
4063 {
4064         struct e1000_hw *hw = &adapter->hw;
4065         u32 wvbr = 0;
4066
4067         switch (hw->mac.type) {
4068         case e1000_82576:
4069         case e1000_i350:
4070                 wvbr = rd32(E1000_WVBR);
4071                 if (!wvbr)
4072                         return;
4073                 break;
4074         default:
4075                 break;
4076         }
4077
4078         adapter->wvbr |= wvbr;
4079 }
4080
4081 #define IGB_STAGGERED_QUEUE_OFFSET 8
4082
4083 static void igb_spoof_check(struct igb_adapter *adapter)
4084 {
4085         int j;
4086
4087         if (!adapter->wvbr)
4088                 return;
4089
4090         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4091                 if (adapter->wvbr & (1 << j) ||
4092                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4093                         dev_warn(&adapter->pdev->dev,
4094                                 "Spoof event(s) detected on VF %d\n", j);
4095                         adapter->wvbr &=
4096                                 ~((1 << j) |
4097                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4098                 }
4099         }
4100 }
4101
4102 /* Need to wait a few seconds after link up to get diagnostic information from
4103  * the phy
4104  */
4105 static void igb_update_phy_info(unsigned long data)
4106 {
4107         struct igb_adapter *adapter = (struct igb_adapter *) data;
4108         igb_get_phy_info(&adapter->hw);
4109 }
4110
4111 /**
4112  *  igb_has_link - check shared code for link and determine up/down
4113  *  @adapter: pointer to driver private info
4114  **/
4115 bool igb_has_link(struct igb_adapter *adapter)
4116 {
4117         struct e1000_hw *hw = &adapter->hw;
4118         bool link_active = false;
4119
4120         /* get_link_status is set on LSC (link status) interrupt or
4121          * rx sequence error interrupt.  get_link_status will stay
4122          * false until the e1000_check_for_link establishes link
4123          * for copper adapters ONLY
4124          */
4125         switch (hw->phy.media_type) {
4126         case e1000_media_type_copper:
4127                 if (!hw->mac.get_link_status)
4128                         return true;
4129         case e1000_media_type_internal_serdes:
4130                 hw->mac.ops.check_for_link(hw);
4131                 link_active = !hw->mac.get_link_status;
4132                 break;
4133         default:
4134         case e1000_media_type_unknown:
4135                 break;
4136         }
4137
4138         if (((hw->mac.type == e1000_i210) ||
4139              (hw->mac.type == e1000_i211)) &&
4140              (hw->phy.id == I210_I_PHY_ID)) {
4141                 if (!netif_carrier_ok(adapter->netdev)) {
4142                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4143                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4144                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4145                         adapter->link_check_timeout = jiffies;
4146                 }
4147         }
4148
4149         return link_active;
4150 }
4151
4152 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4153 {
4154         bool ret = false;
4155         u32 ctrl_ext, thstat;
4156
4157         /* check for thermal sensor event on i350 copper only */
4158         if (hw->mac.type == e1000_i350) {
4159                 thstat = rd32(E1000_THSTAT);
4160                 ctrl_ext = rd32(E1000_CTRL_EXT);
4161
4162                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4163                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4164                         ret = !!(thstat & event);
4165         }
4166
4167         return ret;
4168 }
4169
4170 /**
4171  *  igb_check_lvmmc - check for malformed packets received
4172  *  and indicated in LVMMC register
4173  *  @adapter: pointer to adapter
4174  **/
4175 static void igb_check_lvmmc(struct igb_adapter *adapter)
4176 {
4177         struct e1000_hw *hw = &adapter->hw;
4178         u32 lvmmc;
4179
4180         lvmmc = rd32(E1000_LVMMC);
4181         if (lvmmc) {
4182                 if (unlikely(net_ratelimit())) {
4183                         netdev_warn(adapter->netdev,
4184                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4185                                     lvmmc);
4186                 }
4187         }
4188 }
4189
4190 /**
4191  *  igb_watchdog - Timer Call-back
4192  *  @data: pointer to adapter cast into an unsigned long
4193  **/
4194 static void igb_watchdog(unsigned long data)
4195 {
4196         struct igb_adapter *adapter = (struct igb_adapter *)data;
4197         /* Do the rest outside of interrupt context */
4198         schedule_work(&adapter->watchdog_task);
4199 }
4200
4201 static void igb_watchdog_task(struct work_struct *work)
4202 {
4203         struct igb_adapter *adapter = container_of(work,
4204                                                    struct igb_adapter,
4205                                                    watchdog_task);
4206         struct e1000_hw *hw = &adapter->hw;
4207         struct e1000_phy_info *phy = &hw->phy;
4208         struct net_device *netdev = adapter->netdev;
4209         u32 link;
4210         int i;
4211         u32 connsw;
4212
4213         link = igb_has_link(adapter);
4214
4215         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4216                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4217                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4218                 else
4219                         link = false;
4220         }
4221
4222         /* Force link down if we have fiber to swap to */
4223         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4224                 if (hw->phy.media_type == e1000_media_type_copper) {
4225                         connsw = rd32(E1000_CONNSW);
4226                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4227                                 link = 0;
4228                 }
4229         }
4230         if (link) {
4231                 /* Perform a reset if the media type changed. */
4232                 if (hw->dev_spec._82575.media_changed) {
4233                         hw->dev_spec._82575.media_changed = false;
4234                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4235                         igb_reset(adapter);
4236                 }
4237                 /* Cancel scheduled suspend requests. */
4238                 pm_runtime_resume(netdev->dev.parent);
4239
4240                 if (!netif_carrier_ok(netdev)) {
4241                         u32 ctrl;
4242
4243                         hw->mac.ops.get_speed_and_duplex(hw,
4244                                                          &adapter->link_speed,
4245                                                          &adapter->link_duplex);
4246
4247                         ctrl = rd32(E1000_CTRL);
4248                         /* Links status message must follow this format */
4249                         netdev_info(netdev,
4250                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4251                                netdev->name,
4252                                adapter->link_speed,
4253                                adapter->link_duplex == FULL_DUPLEX ?
4254                                "Full" : "Half",
4255                                (ctrl & E1000_CTRL_TFCE) &&
4256                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4257                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4258                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4259
4260                         /* disable EEE if enabled */
4261                         if ((adapter->flags & IGB_FLAG_EEE) &&
4262                                 (adapter->link_duplex == HALF_DUPLEX)) {
4263                                 dev_info(&adapter->pdev->dev,
4264                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4265                                 adapter->hw.dev_spec._82575.eee_disable = true;
4266                                 adapter->flags &= ~IGB_FLAG_EEE;
4267                         }
4268
4269                         /* check if SmartSpeed worked */
4270                         igb_check_downshift(hw);
4271                         if (phy->speed_downgraded)
4272                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4273
4274                         /* check for thermal sensor event */
4275                         if (igb_thermal_sensor_event(hw,
4276                             E1000_THSTAT_LINK_THROTTLE))
4277                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4278
4279                         /* adjust timeout factor according to speed/duplex */
4280                         adapter->tx_timeout_factor = 1;
4281                         switch (adapter->link_speed) {
4282                         case SPEED_10:
4283                                 adapter->tx_timeout_factor = 14;
4284                                 break;
4285                         case SPEED_100:
4286                                 /* maybe add some timeout factor ? */
4287                                 break;
4288                         }
4289
4290                         netif_carrier_on(netdev);
4291
4292                         igb_ping_all_vfs(adapter);
4293                         igb_check_vf_rate_limit(adapter);
4294
4295                         /* link state has changed, schedule phy info update */
4296                         if (!test_bit(__IGB_DOWN, &adapter->state))
4297                                 mod_timer(&adapter->phy_info_timer,
4298                                           round_jiffies(jiffies + 2 * HZ));
4299                 }
4300         } else {
4301                 if (netif_carrier_ok(netdev)) {
4302                         adapter->link_speed = 0;
4303                         adapter->link_duplex = 0;
4304
4305                         /* check for thermal sensor event */
4306                         if (igb_thermal_sensor_event(hw,
4307                             E1000_THSTAT_PWR_DOWN)) {
4308                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4309                         }
4310
4311                         /* Links status message must follow this format */
4312                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4313                                netdev->name);
4314                         netif_carrier_off(netdev);
4315
4316                         igb_ping_all_vfs(adapter);
4317
4318                         /* link state has changed, schedule phy info update */
4319                         if (!test_bit(__IGB_DOWN, &adapter->state))
4320                                 mod_timer(&adapter->phy_info_timer,
4321                                           round_jiffies(jiffies + 2 * HZ));
4322
4323                         /* link is down, time to check for alternate media */
4324                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4325                                 igb_check_swap_media(adapter);
4326                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4327                                         schedule_work(&adapter->reset_task);
4328                                         /* return immediately */
4329                                         return;
4330                                 }
4331                         }
4332                         pm_schedule_suspend(netdev->dev.parent,
4333                                             MSEC_PER_SEC * 5);
4334
4335                 /* also check for alternate media here */
4336                 } else if (!netif_carrier_ok(netdev) &&
4337                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4338                         igb_check_swap_media(adapter);
4339                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4340                                 schedule_work(&adapter->reset_task);
4341                                 /* return immediately */
4342                                 return;
4343                         }
4344                 }
4345         }
4346
4347         spin_lock(&adapter->stats64_lock);
4348         igb_update_stats(adapter, &adapter->stats64);
4349         spin_unlock(&adapter->stats64_lock);
4350
4351         for (i = 0; i < adapter->num_tx_queues; i++) {
4352                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4353                 if (!netif_carrier_ok(netdev)) {
4354                         /* We've lost link, so the controller stops DMA,
4355                          * but we've got queued Tx work that's never going
4356                          * to get done, so reset controller to flush Tx.
4357                          * (Do the reset outside of interrupt context).
4358                          */
4359                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4360                                 adapter->tx_timeout_count++;
4361                                 schedule_work(&adapter->reset_task);
4362                                 /* return immediately since reset is imminent */
4363                                 return;
4364                         }
4365                 }
4366
4367                 /* Force detection of hung controller every watchdog period */
4368                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4369         }
4370
4371         /* Cause software interrupt to ensure Rx ring is cleaned */
4372         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4373                 u32 eics = 0;
4374
4375                 for (i = 0; i < adapter->num_q_vectors; i++)
4376                         eics |= adapter->q_vector[i]->eims_value;
4377                 wr32(E1000_EICS, eics);
4378         } else {
4379                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4380         }
4381
4382         igb_spoof_check(adapter);
4383         igb_ptp_rx_hang(adapter);
4384
4385         /* Check LVMMC register on i350/i354 only */
4386         if ((adapter->hw.mac.type == e1000_i350) ||
4387             (adapter->hw.mac.type == e1000_i354))
4388                 igb_check_lvmmc(adapter);
4389
4390         /* Reset the timer */
4391         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4392                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4393                         mod_timer(&adapter->watchdog_timer,
4394                                   round_jiffies(jiffies +  HZ));
4395                 else
4396                         mod_timer(&adapter->watchdog_timer,
4397                                   round_jiffies(jiffies + 2 * HZ));
4398         }
4399 }
4400
4401 enum latency_range {
4402         lowest_latency = 0,
4403         low_latency = 1,
4404         bulk_latency = 2,
4405         latency_invalid = 255
4406 };
4407
4408 /**
4409  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4410  *  @q_vector: pointer to q_vector
4411  *
4412  *  Stores a new ITR value based on strictly on packet size.  This
4413  *  algorithm is less sophisticated than that used in igb_update_itr,
4414  *  due to the difficulty of synchronizing statistics across multiple
4415  *  receive rings.  The divisors and thresholds used by this function
4416  *  were determined based on theoretical maximum wire speed and testing
4417  *  data, in order to minimize response time while increasing bulk
4418  *  throughput.
4419  *  This functionality is controlled by ethtool's coalescing settings.
4420  *  NOTE:  This function is called only when operating in a multiqueue
4421  *         receive environment.
4422  **/
4423 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4424 {
4425         int new_val = q_vector->itr_val;
4426         int avg_wire_size = 0;
4427         struct igb_adapter *adapter = q_vector->adapter;
4428         unsigned int packets;
4429
4430         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4431          * ints/sec - ITR timer value of 120 ticks.
4432          */
4433         if (adapter->link_speed != SPEED_1000) {
4434                 new_val = IGB_4K_ITR;
4435                 goto set_itr_val;
4436         }
4437
4438         packets = q_vector->rx.total_packets;
4439         if (packets)
4440                 avg_wire_size = q_vector->rx.total_bytes / packets;
4441
4442         packets = q_vector->tx.total_packets;
4443         if (packets)
4444                 avg_wire_size = max_t(u32, avg_wire_size,
4445                                       q_vector->tx.total_bytes / packets);
4446
4447         /* if avg_wire_size isn't set no work was done */
4448         if (!avg_wire_size)
4449                 goto clear_counts;
4450
4451         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4452         avg_wire_size += 24;
4453
4454         /* Don't starve jumbo frames */
4455         avg_wire_size = min(avg_wire_size, 3000);
4456
4457         /* Give a little boost to mid-size frames */
4458         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4459                 new_val = avg_wire_size / 3;
4460         else
4461                 new_val = avg_wire_size / 2;
4462
4463         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4464         if (new_val < IGB_20K_ITR &&
4465             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4466              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4467                 new_val = IGB_20K_ITR;
4468
4469 set_itr_val:
4470         if (new_val != q_vector->itr_val) {
4471                 q_vector->itr_val = new_val;
4472                 q_vector->set_itr = 1;
4473         }
4474 clear_counts:
4475         q_vector->rx.total_bytes = 0;
4476         q_vector->rx.total_packets = 0;
4477         q_vector->tx.total_bytes = 0;
4478         q_vector->tx.total_packets = 0;
4479 }
4480
4481 /**
4482  *  igb_update_itr - update the dynamic ITR value based on statistics
4483  *  @q_vector: pointer to q_vector
4484  *  @ring_container: ring info to update the itr for
4485  *
4486  *  Stores a new ITR value based on packets and byte
4487  *  counts during the last interrupt.  The advantage of per interrupt
4488  *  computation is faster updates and more accurate ITR for the current
4489  *  traffic pattern.  Constants in this function were computed
4490  *  based on theoretical maximum wire speed and thresholds were set based
4491  *  on testing data as well as attempting to minimize response time
4492  *  while increasing bulk throughput.
4493  *  This functionality is controlled by ethtool's coalescing settings.
4494  *  NOTE:  These calculations are only valid when operating in a single-
4495  *         queue environment.
4496  **/
4497 static void igb_update_itr(struct igb_q_vector *q_vector,
4498                            struct igb_ring_container *ring_container)
4499 {
4500         unsigned int packets = ring_container->total_packets;
4501         unsigned int bytes = ring_container->total_bytes;
4502         u8 itrval = ring_container->itr;
4503
4504         /* no packets, exit with status unchanged */
4505         if (packets == 0)
4506                 return;
4507
4508         switch (itrval) {
4509         case lowest_latency:
4510                 /* handle TSO and jumbo frames */
4511                 if (bytes/packets > 8000)
4512                         itrval = bulk_latency;
4513                 else if ((packets < 5) && (bytes > 512))
4514                         itrval = low_latency;
4515                 break;
4516         case low_latency:  /* 50 usec aka 20000 ints/s */
4517                 if (bytes > 10000) {
4518                         /* this if handles the TSO accounting */
4519                         if (bytes/packets > 8000)
4520                                 itrval = bulk_latency;
4521                         else if ((packets < 10) || ((bytes/packets) > 1200))
4522                                 itrval = bulk_latency;
4523                         else if ((packets > 35))
4524                                 itrval = lowest_latency;
4525                 } else if (bytes/packets > 2000) {
4526                         itrval = bulk_latency;
4527                 } else if (packets <= 2 && bytes < 512) {
4528                         itrval = lowest_latency;
4529                 }
4530                 break;
4531         case bulk_latency: /* 250 usec aka 4000 ints/s */
4532                 if (bytes > 25000) {
4533                         if (packets > 35)
4534                                 itrval = low_latency;
4535                 } else if (bytes < 1500) {
4536                         itrval = low_latency;
4537                 }
4538                 break;
4539         }
4540
4541         /* clear work counters since we have the values we need */
4542         ring_container->total_bytes = 0;
4543         ring_container->total_packets = 0;
4544
4545         /* write updated itr to ring container */
4546         ring_container->itr = itrval;
4547 }
4548
4549 static void igb_set_itr(struct igb_q_vector *q_vector)
4550 {
4551         struct igb_adapter *adapter = q_vector->adapter;
4552         u32 new_itr = q_vector->itr_val;
4553         u8 current_itr = 0;
4554
4555         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4556         if (adapter->link_speed != SPEED_1000) {
4557                 current_itr = 0;
4558                 new_itr = IGB_4K_ITR;
4559                 goto set_itr_now;
4560         }
4561
4562         igb_update_itr(q_vector, &q_vector->tx);
4563         igb_update_itr(q_vector, &q_vector->rx);
4564
4565         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4566
4567         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4568         if (current_itr == lowest_latency &&
4569             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4570              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4571                 current_itr = low_latency;
4572
4573         switch (current_itr) {
4574         /* counts and packets in update_itr are dependent on these numbers */
4575         case lowest_latency:
4576                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4577                 break;
4578         case low_latency:
4579                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4580                 break;
4581         case bulk_latency:
4582                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4583                 break;
4584         default:
4585                 break;
4586         }
4587
4588 set_itr_now:
4589         if (new_itr != q_vector->itr_val) {
4590                 /* this attempts to bias the interrupt rate towards Bulk
4591                  * by adding intermediate steps when interrupt rate is
4592                  * increasing
4593                  */
4594                 new_itr = new_itr > q_vector->itr_val ?
4595                           max((new_itr * q_vector->itr_val) /
4596                           (new_itr + (q_vector->itr_val >> 2)),
4597                           new_itr) : new_itr;
4598                 /* Don't write the value here; it resets the adapter's
4599                  * internal timer, and causes us to delay far longer than
4600                  * we should between interrupts.  Instead, we write the ITR
4601                  * value at the beginning of the next interrupt so the timing
4602                  * ends up being correct.
4603                  */
4604                 q_vector->itr_val = new_itr;
4605                 q_vector->set_itr = 1;
4606         }
4607 }
4608
4609 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4610                             u32 type_tucmd, u32 mss_l4len_idx)
4611 {
4612         struct e1000_adv_tx_context_desc *context_desc;
4613         u16 i = tx_ring->next_to_use;
4614
4615         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4616
4617         i++;
4618         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4619
4620         /* set bits to identify this as an advanced context descriptor */
4621         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4622
4623         /* For 82575, context index must be unique per ring. */
4624         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4625                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4626
4627         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4628         context_desc->seqnum_seed       = 0;
4629         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4630         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4631 }
4632
4633 static int igb_tso(struct igb_ring *tx_ring,
4634                    struct igb_tx_buffer *first,
4635                    u8 *hdr_len)
4636 {
4637         struct sk_buff *skb = first->skb;
4638         u32 vlan_macip_lens, type_tucmd;
4639         u32 mss_l4len_idx, l4len;
4640         int err;
4641
4642         if (skb->ip_summed != CHECKSUM_PARTIAL)
4643                 return 0;
4644
4645         if (!skb_is_gso(skb))
4646                 return 0;
4647
4648         err = skb_cow_head(skb, 0);
4649         if (err < 0)
4650                 return err;
4651
4652         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4653         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4654
4655         if (first->protocol == htons(ETH_P_IP)) {
4656                 struct iphdr *iph = ip_hdr(skb);
4657                 iph->tot_len = 0;
4658                 iph->check = 0;
4659                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4660                                                          iph->daddr, 0,
4661                                                          IPPROTO_TCP,
4662                                                          0);
4663                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4664                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4665                                    IGB_TX_FLAGS_CSUM |
4666                                    IGB_TX_FLAGS_IPV4;
4667         } else if (skb_is_gso_v6(skb)) {
4668                 ipv6_hdr(skb)->payload_len = 0;
4669                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4670                                                        &ipv6_hdr(skb)->daddr,
4671                                                        0, IPPROTO_TCP, 0);
4672                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4673                                    IGB_TX_FLAGS_CSUM;
4674         }
4675
4676         /* compute header lengths */
4677         l4len = tcp_hdrlen(skb);
4678         *hdr_len = skb_transport_offset(skb) + l4len;
4679
4680         /* update gso size and bytecount with header size */
4681         first->gso_segs = skb_shinfo(skb)->gso_segs;
4682         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4683
4684         /* MSS L4LEN IDX */
4685         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4686         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4687
4688         /* VLAN MACLEN IPLEN */
4689         vlan_macip_lens = skb_network_header_len(skb);
4690         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4691         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4692
4693         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4694
4695         return 1;
4696 }
4697
4698 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4699 {
4700         struct sk_buff *skb = first->skb;
4701         u32 vlan_macip_lens = 0;
4702         u32 mss_l4len_idx = 0;
4703         u32 type_tucmd = 0;
4704
4705         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4706                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4707                         return;
4708         } else {
4709                 u8 l4_hdr = 0;
4710
4711                 switch (first->protocol) {
4712                 case htons(ETH_P_IP):
4713                         vlan_macip_lens |= skb_network_header_len(skb);
4714                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4715                         l4_hdr = ip_hdr(skb)->protocol;
4716                         break;
4717                 case htons(ETH_P_IPV6):
4718                         vlan_macip_lens |= skb_network_header_len(skb);
4719                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4720                         break;
4721                 default:
4722                         if (unlikely(net_ratelimit())) {
4723                                 dev_warn(tx_ring->dev,
4724                                          "partial checksum but proto=%x!\n",
4725                                          first->protocol);
4726                         }
4727                         break;
4728                 }
4729
4730                 switch (l4_hdr) {
4731                 case IPPROTO_TCP:
4732                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4733                         mss_l4len_idx = tcp_hdrlen(skb) <<
4734                                         E1000_ADVTXD_L4LEN_SHIFT;
4735                         break;
4736                 case IPPROTO_SCTP:
4737                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4738                         mss_l4len_idx = sizeof(struct sctphdr) <<
4739                                         E1000_ADVTXD_L4LEN_SHIFT;
4740                         break;
4741                 case IPPROTO_UDP:
4742                         mss_l4len_idx = sizeof(struct udphdr) <<
4743                                         E1000_ADVTXD_L4LEN_SHIFT;
4744                         break;
4745                 default:
4746                         if (unlikely(net_ratelimit())) {
4747                                 dev_warn(tx_ring->dev,
4748                                          "partial checksum but l4 proto=%x!\n",
4749                                          l4_hdr);
4750                         }
4751                         break;
4752                 }
4753
4754                 /* update TX checksum flag */
4755                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4756         }
4757
4758         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4759         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4760
4761         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4762 }
4763
4764 #define IGB_SET_FLAG(_input, _flag, _result) \
4765         ((_flag <= _result) ? \
4766          ((u32)(_input & _flag) * (_result / _flag)) : \
4767          ((u32)(_input & _flag) / (_flag / _result)))
4768
4769 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4770 {
4771         /* set type for advanced descriptor with frame checksum insertion */
4772         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4773                        E1000_ADVTXD_DCMD_DEXT |
4774                        E1000_ADVTXD_DCMD_IFCS;
4775
4776         /* set HW vlan bit if vlan is present */
4777         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4778                                  (E1000_ADVTXD_DCMD_VLE));
4779
4780         /* set segmentation bits for TSO */
4781         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4782                                  (E1000_ADVTXD_DCMD_TSE));
4783
4784         /* set timestamp bit if present */
4785         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4786                                  (E1000_ADVTXD_MAC_TSTAMP));
4787
4788         /* insert frame checksum */
4789         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4790
4791         return cmd_type;
4792 }
4793
4794 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4795                                  union e1000_adv_tx_desc *tx_desc,
4796                                  u32 tx_flags, unsigned int paylen)
4797 {
4798         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4799
4800         /* 82575 requires a unique index per ring */
4801         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4802                 olinfo_status |= tx_ring->reg_idx << 4;
4803
4804         /* insert L4 checksum */
4805         olinfo_status |= IGB_SET_FLAG(tx_flags,
4806                                       IGB_TX_FLAGS_CSUM,
4807                                       (E1000_TXD_POPTS_TXSM << 8));
4808
4809         /* insert IPv4 checksum */
4810         olinfo_status |= IGB_SET_FLAG(tx_flags,
4811                                       IGB_TX_FLAGS_IPV4,
4812                                       (E1000_TXD_POPTS_IXSM << 8));
4813
4814         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4815 }
4816
4817 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4818 {
4819         struct net_device *netdev = tx_ring->netdev;
4820
4821         netif_stop_subqueue(netdev, tx_ring->queue_index);
4822
4823         /* Herbert's original patch had:
4824          *  smp_mb__after_netif_stop_queue();
4825          * but since that doesn't exist yet, just open code it.
4826          */
4827         smp_mb();
4828
4829         /* We need to check again in a case another CPU has just
4830          * made room available.
4831          */
4832         if (igb_desc_unused(tx_ring) < size)
4833                 return -EBUSY;
4834
4835         /* A reprieve! */
4836         netif_wake_subqueue(netdev, tx_ring->queue_index);
4837
4838         u64_stats_update_begin(&tx_ring->tx_syncp2);
4839         tx_ring->tx_stats.restart_queue2++;
4840         u64_stats_update_end(&tx_ring->tx_syncp2);
4841
4842         return 0;
4843 }
4844
4845 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4846 {
4847         if (igb_desc_unused(tx_ring) >= size)
4848                 return 0;
4849         return __igb_maybe_stop_tx(tx_ring, size);
4850 }
4851
4852 static void igb_tx_map(struct igb_ring *tx_ring,
4853                        struct igb_tx_buffer *first,
4854                        const u8 hdr_len)
4855 {
4856         struct sk_buff *skb = first->skb;
4857         struct igb_tx_buffer *tx_buffer;
4858         union e1000_adv_tx_desc *tx_desc;
4859         struct skb_frag_struct *frag;
4860         dma_addr_t dma;
4861         unsigned int data_len, size;
4862         u32 tx_flags = first->tx_flags;
4863         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4864         u16 i = tx_ring->next_to_use;
4865
4866         tx_desc = IGB_TX_DESC(tx_ring, i);
4867
4868         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4869
4870         size = skb_headlen(skb);
4871         data_len = skb->data_len;
4872
4873         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4874
4875         tx_buffer = first;
4876
4877         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4878                 if (dma_mapping_error(tx_ring->dev, dma))
4879                         goto dma_error;
4880
4881                 /* record length, and DMA address */
4882                 dma_unmap_len_set(tx_buffer, len, size);
4883                 dma_unmap_addr_set(tx_buffer, dma, dma);
4884
4885                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4886
4887                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4888                         tx_desc->read.cmd_type_len =
4889                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4890
4891                         i++;
4892                         tx_desc++;
4893                         if (i == tx_ring->count) {
4894                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4895                                 i = 0;
4896                         }
4897                         tx_desc->read.olinfo_status = 0;
4898
4899                         dma += IGB_MAX_DATA_PER_TXD;
4900                         size -= IGB_MAX_DATA_PER_TXD;
4901
4902                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4903                 }
4904
4905                 if (likely(!data_len))
4906                         break;
4907
4908                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4909
4910                 i++;
4911                 tx_desc++;
4912                 if (i == tx_ring->count) {
4913                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4914                         i = 0;
4915                 }
4916                 tx_desc->read.olinfo_status = 0;
4917
4918                 size = skb_frag_size(frag);
4919                 data_len -= size;
4920
4921                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4922                                        size, DMA_TO_DEVICE);
4923
4924                 tx_buffer = &tx_ring->tx_buffer_info[i];
4925         }
4926
4927         /* write last descriptor with RS and EOP bits */
4928         cmd_type |= size | IGB_TXD_DCMD;
4929         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4930
4931         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4932
4933         /* set the timestamp */
4934         first->time_stamp = jiffies;
4935
4936         /* Force memory writes to complete before letting h/w know there
4937          * are new descriptors to fetch.  (Only applicable for weak-ordered
4938          * memory model archs, such as IA-64).
4939          *
4940          * We also need this memory barrier to make certain all of the
4941          * status bits have been updated before next_to_watch is written.
4942          */
4943         wmb();
4944
4945         /* set next_to_watch value indicating a packet is present */
4946         first->next_to_watch = tx_desc;
4947
4948         i++;
4949         if (i == tx_ring->count)
4950                 i = 0;
4951
4952         tx_ring->next_to_use = i;
4953
4954         /* Make sure there is space in the ring for the next send. */
4955         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4956
4957         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4958                 writel(i, tx_ring->tail);
4959
4960                 /* we need this if more than one processor can write to our tail
4961                  * at a time, it synchronizes IO on IA64/Altix systems
4962                  */
4963                 mmiowb();
4964         }
4965         return;
4966
4967 dma_error:
4968         dev_err(tx_ring->dev, "TX DMA map failed\n");
4969
4970         /* clear dma mappings for failed tx_buffer_info map */
4971         for (;;) {
4972                 tx_buffer = &tx_ring->tx_buffer_info[i];
4973                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4974                 if (tx_buffer == first)
4975                         break;
4976                 if (i == 0)
4977                         i = tx_ring->count;
4978                 i--;
4979         }
4980
4981         tx_ring->next_to_use = i;
4982 }
4983
4984 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4985                                 struct igb_ring *tx_ring)
4986 {
4987         struct igb_tx_buffer *first;
4988         int tso;
4989         u32 tx_flags = 0;
4990         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4991         __be16 protocol = vlan_get_protocol(skb);
4992         u8 hdr_len = 0;
4993
4994         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4995          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4996          *       + 2 desc gap to keep tail from touching head,
4997          *       + 1 desc for context descriptor,
4998          * otherwise try next time
4999          */
5000         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5001                 unsigned short f;
5002
5003                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5004                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5005         } else {
5006                 count += skb_shinfo(skb)->nr_frags;
5007         }
5008
5009         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5010                 /* this is a hard error */
5011                 return NETDEV_TX_BUSY;
5012         }
5013
5014         /* record the location of the first descriptor for this packet */
5015         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5016         first->skb = skb;
5017         first->bytecount = skb->len;
5018         first->gso_segs = 1;
5019
5020         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5021                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5022
5023                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5024                                            &adapter->state)) {
5025                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5026                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5027
5028                         adapter->ptp_tx_skb = skb_get(skb);
5029                         adapter->ptp_tx_start = jiffies;
5030                         if (adapter->hw.mac.type == e1000_82576)
5031                                 schedule_work(&adapter->ptp_tx_work);
5032                 }
5033         }
5034
5035         skb_tx_timestamp(skb);
5036
5037         if (skb_vlan_tag_present(skb)) {
5038                 tx_flags |= IGB_TX_FLAGS_VLAN;
5039                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5040         }
5041
5042         /* record initial flags and protocol */
5043         first->tx_flags = tx_flags;
5044         first->protocol = protocol;
5045
5046         tso = igb_tso(tx_ring, first, &hdr_len);
5047         if (tso < 0)
5048                 goto out_drop;
5049         else if (!tso)
5050                 igb_tx_csum(tx_ring, first);
5051
5052         igb_tx_map(tx_ring, first, hdr_len);
5053
5054         return NETDEV_TX_OK;
5055
5056 out_drop:
5057         igb_unmap_and_free_tx_resource(tx_ring, first);
5058
5059         return NETDEV_TX_OK;
5060 }
5061
5062 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5063                                                     struct sk_buff *skb)
5064 {
5065         unsigned int r_idx = skb->queue_mapping;
5066
5067         if (r_idx >= adapter->num_tx_queues)
5068                 r_idx = r_idx % adapter->num_tx_queues;
5069
5070         return adapter->tx_ring[r_idx];
5071 }
5072
5073 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5074                                   struct net_device *netdev)
5075 {
5076         struct igb_adapter *adapter = netdev_priv(netdev);
5077
5078         if (test_bit(__IGB_DOWN, &adapter->state)) {
5079                 dev_kfree_skb_any(skb);
5080                 return NETDEV_TX_OK;
5081         }
5082
5083         if (skb->len <= 0) {
5084                 dev_kfree_skb_any(skb);
5085                 return NETDEV_TX_OK;
5086         }
5087
5088         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5089          * in order to meet this minimum size requirement.
5090          */
5091         if (skb_put_padto(skb, 17))
5092                 return NETDEV_TX_OK;
5093
5094         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5095 }
5096
5097 /**
5098  *  igb_tx_timeout - Respond to a Tx Hang
5099  *  @netdev: network interface device structure
5100  **/
5101 static void igb_tx_timeout(struct net_device *netdev)
5102 {
5103         struct igb_adapter *adapter = netdev_priv(netdev);
5104         struct e1000_hw *hw = &adapter->hw;
5105
5106         /* Do the reset outside of interrupt context */
5107         adapter->tx_timeout_count++;
5108
5109         if (hw->mac.type >= e1000_82580)
5110                 hw->dev_spec._82575.global_device_reset = true;
5111
5112         schedule_work(&adapter->reset_task);
5113         wr32(E1000_EICS,
5114              (adapter->eims_enable_mask & ~adapter->eims_other));
5115 }
5116
5117 static void igb_reset_task(struct work_struct *work)
5118 {
5119         struct igb_adapter *adapter;
5120         adapter = container_of(work, struct igb_adapter, reset_task);
5121
5122         igb_dump(adapter);
5123         netdev_err(adapter->netdev, "Reset adapter\n");
5124         igb_reinit_locked(adapter);
5125 }
5126
5127 /**
5128  *  igb_get_stats64 - Get System Network Statistics
5129  *  @netdev: network interface device structure
5130  *  @stats: rtnl_link_stats64 pointer
5131  **/
5132 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5133                                                 struct rtnl_link_stats64 *stats)
5134 {
5135         struct igb_adapter *adapter = netdev_priv(netdev);
5136
5137         spin_lock(&adapter->stats64_lock);
5138         igb_update_stats(adapter, &adapter->stats64);
5139         memcpy(stats, &adapter->stats64, sizeof(*stats));
5140         spin_unlock(&adapter->stats64_lock);
5141
5142         return stats;
5143 }
5144
5145 /**
5146  *  igb_change_mtu - Change the Maximum Transfer Unit
5147  *  @netdev: network interface device structure
5148  *  @new_mtu: new value for maximum frame size
5149  *
5150  *  Returns 0 on success, negative on failure
5151  **/
5152 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5153 {
5154         struct igb_adapter *adapter = netdev_priv(netdev);
5155         struct pci_dev *pdev = adapter->pdev;
5156         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5157
5158         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5159                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5160                 return -EINVAL;
5161         }
5162
5163 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5164         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5165                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5166                 return -EINVAL;
5167         }
5168
5169         /* adjust max frame to be at least the size of a standard frame */
5170         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5171                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5172
5173         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5174                 usleep_range(1000, 2000);
5175
5176         /* igb_down has a dependency on max_frame_size */
5177         adapter->max_frame_size = max_frame;
5178
5179         if (netif_running(netdev))
5180                 igb_down(adapter);
5181
5182         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5183                  netdev->mtu, new_mtu);
5184         netdev->mtu = new_mtu;
5185
5186         if (netif_running(netdev))
5187                 igb_up(adapter);
5188         else
5189                 igb_reset(adapter);
5190
5191         clear_bit(__IGB_RESETTING, &adapter->state);
5192
5193         return 0;
5194 }
5195
5196 /**
5197  *  igb_update_stats - Update the board statistics counters
5198  *  @adapter: board private structure
5199  **/
5200 void igb_update_stats(struct igb_adapter *adapter,
5201                       struct rtnl_link_stats64 *net_stats)
5202 {
5203         struct e1000_hw *hw = &adapter->hw;
5204         struct pci_dev *pdev = adapter->pdev;
5205         u32 reg, mpc;
5206         int i;
5207         u64 bytes, packets;
5208         unsigned int start;
5209         u64 _bytes, _packets;
5210
5211         /* Prevent stats update while adapter is being reset, or if the pci
5212          * connection is down.
5213          */
5214         if (adapter->link_speed == 0)
5215                 return;
5216         if (pci_channel_offline(pdev))
5217                 return;
5218
5219         bytes = 0;
5220         packets = 0;
5221
5222         rcu_read_lock();
5223         for (i = 0; i < adapter->num_rx_queues; i++) {
5224                 struct igb_ring *ring = adapter->rx_ring[i];
5225                 u32 rqdpc = rd32(E1000_RQDPC(i));
5226                 if (hw->mac.type >= e1000_i210)
5227                         wr32(E1000_RQDPC(i), 0);
5228
5229                 if (rqdpc) {
5230                         ring->rx_stats.drops += rqdpc;
5231                         net_stats->rx_fifo_errors += rqdpc;
5232                 }
5233
5234                 do {
5235                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5236                         _bytes = ring->rx_stats.bytes;
5237                         _packets = ring->rx_stats.packets;
5238                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5239                 bytes += _bytes;
5240                 packets += _packets;
5241         }
5242
5243         net_stats->rx_bytes = bytes;
5244         net_stats->rx_packets = packets;
5245
5246         bytes = 0;
5247         packets = 0;
5248         for (i = 0; i < adapter->num_tx_queues; i++) {
5249                 struct igb_ring *ring = adapter->tx_ring[i];
5250                 do {
5251                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5252                         _bytes = ring->tx_stats.bytes;
5253                         _packets = ring->tx_stats.packets;
5254                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5255                 bytes += _bytes;
5256                 packets += _packets;
5257         }
5258         net_stats->tx_bytes = bytes;
5259         net_stats->tx_packets = packets;
5260         rcu_read_unlock();
5261
5262         /* read stats registers */
5263         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5264         adapter->stats.gprc += rd32(E1000_GPRC);
5265         adapter->stats.gorc += rd32(E1000_GORCL);
5266         rd32(E1000_GORCH); /* clear GORCL */
5267         adapter->stats.bprc += rd32(E1000_BPRC);
5268         adapter->stats.mprc += rd32(E1000_MPRC);
5269         adapter->stats.roc += rd32(E1000_ROC);
5270
5271         adapter->stats.prc64 += rd32(E1000_PRC64);
5272         adapter->stats.prc127 += rd32(E1000_PRC127);
5273         adapter->stats.prc255 += rd32(E1000_PRC255);
5274         adapter->stats.prc511 += rd32(E1000_PRC511);
5275         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5276         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5277         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5278         adapter->stats.sec += rd32(E1000_SEC);
5279
5280         mpc = rd32(E1000_MPC);
5281         adapter->stats.mpc += mpc;
5282         net_stats->rx_fifo_errors += mpc;
5283         adapter->stats.scc += rd32(E1000_SCC);
5284         adapter->stats.ecol += rd32(E1000_ECOL);
5285         adapter->stats.mcc += rd32(E1000_MCC);
5286         adapter->stats.latecol += rd32(E1000_LATECOL);
5287         adapter->stats.dc += rd32(E1000_DC);
5288         adapter->stats.rlec += rd32(E1000_RLEC);
5289         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5290         adapter->stats.xontxc += rd32(E1000_XONTXC);
5291         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5292         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5293         adapter->stats.fcruc += rd32(E1000_FCRUC);
5294         adapter->stats.gptc += rd32(E1000_GPTC);
5295         adapter->stats.gotc += rd32(E1000_GOTCL);
5296         rd32(E1000_GOTCH); /* clear GOTCL */
5297         adapter->stats.rnbc += rd32(E1000_RNBC);
5298         adapter->stats.ruc += rd32(E1000_RUC);
5299         adapter->stats.rfc += rd32(E1000_RFC);
5300         adapter->stats.rjc += rd32(E1000_RJC);
5301         adapter->stats.tor += rd32(E1000_TORH);
5302         adapter->stats.tot += rd32(E1000_TOTH);
5303         adapter->stats.tpr += rd32(E1000_TPR);
5304
5305         adapter->stats.ptc64 += rd32(E1000_PTC64);
5306         adapter->stats.ptc127 += rd32(E1000_PTC127);
5307         adapter->stats.ptc255 += rd32(E1000_PTC255);
5308         adapter->stats.ptc511 += rd32(E1000_PTC511);
5309         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5310         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5311
5312         adapter->stats.mptc += rd32(E1000_MPTC);
5313         adapter->stats.bptc += rd32(E1000_BPTC);
5314
5315         adapter->stats.tpt += rd32(E1000_TPT);
5316         adapter->stats.colc += rd32(E1000_COLC);
5317
5318         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5319         /* read internal phy specific stats */
5320         reg = rd32(E1000_CTRL_EXT);
5321         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5322                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5323
5324                 /* this stat has invalid values on i210/i211 */
5325                 if ((hw->mac.type != e1000_i210) &&
5326                     (hw->mac.type != e1000_i211))
5327                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5328         }
5329
5330         adapter->stats.tsctc += rd32(E1000_TSCTC);
5331         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5332
5333         adapter->stats.iac += rd32(E1000_IAC);
5334         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5335         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5336         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5337         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5338         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5339         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5340         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5341         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5342
5343         /* Fill out the OS statistics structure */
5344         net_stats->multicast = adapter->stats.mprc;
5345         net_stats->collisions = adapter->stats.colc;
5346
5347         /* Rx Errors */
5348
5349         /* RLEC on some newer hardware can be incorrect so build
5350          * our own version based on RUC and ROC
5351          */
5352         net_stats->rx_errors = adapter->stats.rxerrc +
5353                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5354                 adapter->stats.ruc + adapter->stats.roc +
5355                 adapter->stats.cexterr;
5356         net_stats->rx_length_errors = adapter->stats.ruc +
5357                                       adapter->stats.roc;
5358         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5359         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5360         net_stats->rx_missed_errors = adapter->stats.mpc;
5361
5362         /* Tx Errors */
5363         net_stats->tx_errors = adapter->stats.ecol +
5364                                adapter->stats.latecol;
5365         net_stats->tx_aborted_errors = adapter->stats.ecol;
5366         net_stats->tx_window_errors = adapter->stats.latecol;
5367         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5368
5369         /* Tx Dropped needs to be maintained elsewhere */
5370
5371         /* Management Stats */
5372         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5373         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5374         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5375
5376         /* OS2BMC Stats */
5377         reg = rd32(E1000_MANC);
5378         if (reg & E1000_MANC_EN_BMC2OS) {
5379                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5380                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5381                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5382                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5383         }
5384 }
5385
5386 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5387 {
5388         struct e1000_hw *hw = &adapter->hw;
5389         struct ptp_clock_event event;
5390         struct timespec ts;
5391         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5392
5393         if (tsicr & TSINTR_SYS_WRAP) {
5394                 event.type = PTP_CLOCK_PPS;
5395                 if (adapter->ptp_caps.pps)
5396                         ptp_clock_event(adapter->ptp_clock, &event);
5397                 else
5398                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5399                 ack |= TSINTR_SYS_WRAP;
5400         }
5401
5402         if (tsicr & E1000_TSICR_TXTS) {
5403                 /* retrieve hardware timestamp */
5404                 schedule_work(&adapter->ptp_tx_work);
5405                 ack |= E1000_TSICR_TXTS;
5406         }
5407
5408         if (tsicr & TSINTR_TT0) {
5409                 spin_lock(&adapter->tmreg_lock);
5410                 ts = timespec_add(adapter->perout[0].start,
5411                                   adapter->perout[0].period);
5412                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5413                 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5414                 tsauxc = rd32(E1000_TSAUXC);
5415                 tsauxc |= TSAUXC_EN_TT0;
5416                 wr32(E1000_TSAUXC, tsauxc);
5417                 adapter->perout[0].start = ts;
5418                 spin_unlock(&adapter->tmreg_lock);
5419                 ack |= TSINTR_TT0;
5420         }
5421
5422         if (tsicr & TSINTR_TT1) {
5423                 spin_lock(&adapter->tmreg_lock);
5424                 ts = timespec_add(adapter->perout[1].start,
5425                                   adapter->perout[1].period);
5426                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5427                 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5428                 tsauxc = rd32(E1000_TSAUXC);
5429                 tsauxc |= TSAUXC_EN_TT1;
5430                 wr32(E1000_TSAUXC, tsauxc);
5431                 adapter->perout[1].start = ts;
5432                 spin_unlock(&adapter->tmreg_lock);
5433                 ack |= TSINTR_TT1;
5434         }
5435
5436         if (tsicr & TSINTR_AUTT0) {
5437                 nsec = rd32(E1000_AUXSTMPL0);
5438                 sec  = rd32(E1000_AUXSTMPH0);
5439                 event.type = PTP_CLOCK_EXTTS;
5440                 event.index = 0;
5441                 event.timestamp = sec * 1000000000ULL + nsec;
5442                 ptp_clock_event(adapter->ptp_clock, &event);
5443                 ack |= TSINTR_AUTT0;
5444         }
5445
5446         if (tsicr & TSINTR_AUTT1) {
5447                 nsec = rd32(E1000_AUXSTMPL1);
5448                 sec  = rd32(E1000_AUXSTMPH1);
5449                 event.type = PTP_CLOCK_EXTTS;
5450                 event.index = 1;
5451                 event.timestamp = sec * 1000000000ULL + nsec;
5452                 ptp_clock_event(adapter->ptp_clock, &event);
5453                 ack |= TSINTR_AUTT1;
5454         }
5455
5456         /* acknowledge the interrupts */
5457         wr32(E1000_TSICR, ack);
5458 }
5459
5460 static irqreturn_t igb_msix_other(int irq, void *data)
5461 {
5462         struct igb_adapter *adapter = data;
5463         struct e1000_hw *hw = &adapter->hw;
5464         u32 icr = rd32(E1000_ICR);
5465         /* reading ICR causes bit 31 of EICR to be cleared */
5466
5467         if (icr & E1000_ICR_DRSTA)
5468                 schedule_work(&adapter->reset_task);
5469
5470         if (icr & E1000_ICR_DOUTSYNC) {
5471                 /* HW is reporting DMA is out of sync */
5472                 adapter->stats.doosync++;
5473                 /* The DMA Out of Sync is also indication of a spoof event
5474                  * in IOV mode. Check the Wrong VM Behavior register to
5475                  * see if it is really a spoof event.
5476                  */
5477                 igb_check_wvbr(adapter);
5478         }
5479
5480         /* Check for a mailbox event */
5481         if (icr & E1000_ICR_VMMB)
5482                 igb_msg_task(adapter);
5483
5484         if (icr & E1000_ICR_LSC) {
5485                 hw->mac.get_link_status = 1;
5486                 /* guard against interrupt when we're going down */
5487                 if (!test_bit(__IGB_DOWN, &adapter->state))
5488                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5489         }
5490
5491         if (icr & E1000_ICR_TS)
5492                 igb_tsync_interrupt(adapter);
5493
5494         wr32(E1000_EIMS, adapter->eims_other);
5495
5496         return IRQ_HANDLED;
5497 }
5498
5499 static void igb_write_itr(struct igb_q_vector *q_vector)
5500 {
5501         struct igb_adapter *adapter = q_vector->adapter;
5502         u32 itr_val = q_vector->itr_val & 0x7FFC;
5503
5504         if (!q_vector->set_itr)
5505                 return;
5506
5507         if (!itr_val)
5508                 itr_val = 0x4;
5509
5510         if (adapter->hw.mac.type == e1000_82575)
5511                 itr_val |= itr_val << 16;
5512         else
5513                 itr_val |= E1000_EITR_CNT_IGNR;
5514
5515         writel(itr_val, q_vector->itr_register);
5516         q_vector->set_itr = 0;
5517 }
5518
5519 static irqreturn_t igb_msix_ring(int irq, void *data)
5520 {
5521         struct igb_q_vector *q_vector = data;
5522
5523         /* Write the ITR value calculated from the previous interrupt. */
5524         igb_write_itr(q_vector);
5525
5526         napi_schedule(&q_vector->napi);
5527
5528         return IRQ_HANDLED;
5529 }
5530
5531 #ifdef CONFIG_IGB_DCA
5532 static void igb_update_tx_dca(struct igb_adapter *adapter,
5533                               struct igb_ring *tx_ring,
5534                               int cpu)
5535 {
5536         struct e1000_hw *hw = &adapter->hw;
5537         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5538
5539         if (hw->mac.type != e1000_82575)
5540                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5541
5542         /* We can enable relaxed ordering for reads, but not writes when
5543          * DCA is enabled.  This is due to a known issue in some chipsets
5544          * which will cause the DCA tag to be cleared.
5545          */
5546         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5547                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5548                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5549
5550         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5551 }
5552
5553 static void igb_update_rx_dca(struct igb_adapter *adapter,
5554                               struct igb_ring *rx_ring,
5555                               int cpu)
5556 {
5557         struct e1000_hw *hw = &adapter->hw;
5558         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5559
5560         if (hw->mac.type != e1000_82575)
5561                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5562
5563         /* We can enable relaxed ordering for reads, but not writes when
5564          * DCA is enabled.  This is due to a known issue in some chipsets
5565          * which will cause the DCA tag to be cleared.
5566          */
5567         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5568                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5569
5570         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5571 }
5572
5573 static void igb_update_dca(struct igb_q_vector *q_vector)
5574 {
5575         struct igb_adapter *adapter = q_vector->adapter;
5576         int cpu = get_cpu();
5577
5578         if (q_vector->cpu == cpu)
5579                 goto out_no_update;
5580
5581         if (q_vector->tx.ring)
5582                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5583
5584         if (q_vector->rx.ring)
5585                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5586
5587         q_vector->cpu = cpu;
5588 out_no_update:
5589         put_cpu();
5590 }
5591
5592 static void igb_setup_dca(struct igb_adapter *adapter)
5593 {
5594         struct e1000_hw *hw = &adapter->hw;
5595         int i;
5596
5597         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5598                 return;
5599
5600         /* Always use CB2 mode, difference is masked in the CB driver. */
5601         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5602
5603         for (i = 0; i < adapter->num_q_vectors; i++) {
5604                 adapter->q_vector[i]->cpu = -1;
5605                 igb_update_dca(adapter->q_vector[i]);
5606         }
5607 }
5608
5609 static int __igb_notify_dca(struct device *dev, void *data)
5610 {
5611         struct net_device *netdev = dev_get_drvdata(dev);
5612         struct igb_adapter *adapter = netdev_priv(netdev);
5613         struct pci_dev *pdev = adapter->pdev;
5614         struct e1000_hw *hw = &adapter->hw;
5615         unsigned long event = *(unsigned long *)data;
5616
5617         switch (event) {
5618         case DCA_PROVIDER_ADD:
5619                 /* if already enabled, don't do it again */
5620                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5621                         break;
5622                 if (dca_add_requester(dev) == 0) {
5623                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5624                         dev_info(&pdev->dev, "DCA enabled\n");
5625                         igb_setup_dca(adapter);
5626                         break;
5627                 }
5628                 /* Fall Through since DCA is disabled. */
5629         case DCA_PROVIDER_REMOVE:
5630                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5631                         /* without this a class_device is left
5632                          * hanging around in the sysfs model
5633                          */
5634                         dca_remove_requester(dev);
5635                         dev_info(&pdev->dev, "DCA disabled\n");
5636                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5637                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5638                 }
5639                 break;
5640         }
5641
5642         return 0;
5643 }
5644
5645 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5646                           void *p)
5647 {
5648         int ret_val;
5649
5650         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5651                                          __igb_notify_dca);
5652
5653         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5654 }
5655 #endif /* CONFIG_IGB_DCA */
5656
5657 #ifdef CONFIG_PCI_IOV
5658 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5659 {
5660         unsigned char mac_addr[ETH_ALEN];
5661
5662         eth_zero_addr(mac_addr);
5663         igb_set_vf_mac(adapter, vf, mac_addr);
5664
5665         /* By default spoof check is enabled for all VFs */
5666         adapter->vf_data[vf].spoofchk_enabled = true;
5667
5668         return 0;
5669 }
5670
5671 #endif
5672 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5673 {
5674         struct e1000_hw *hw = &adapter->hw;
5675         u32 ping;
5676         int i;
5677
5678         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5679                 ping = E1000_PF_CONTROL_MSG;
5680                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5681                         ping |= E1000_VT_MSGTYPE_CTS;
5682                 igb_write_mbx(hw, &ping, 1, i);
5683         }
5684 }
5685
5686 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5687 {
5688         struct e1000_hw *hw = &adapter->hw;
5689         u32 vmolr = rd32(E1000_VMOLR(vf));
5690         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5691
5692         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5693                             IGB_VF_FLAG_MULTI_PROMISC);
5694         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5695
5696         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5697                 vmolr |= E1000_VMOLR_MPME;
5698                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5699                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5700         } else {
5701                 /* if we have hashes and we are clearing a multicast promisc
5702                  * flag we need to write the hashes to the MTA as this step
5703                  * was previously skipped
5704                  */
5705                 if (vf_data->num_vf_mc_hashes > 30) {
5706                         vmolr |= E1000_VMOLR_MPME;
5707                 } else if (vf_data->num_vf_mc_hashes) {
5708                         int j;
5709
5710                         vmolr |= E1000_VMOLR_ROMPE;
5711                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5712                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5713                 }
5714         }
5715
5716         wr32(E1000_VMOLR(vf), vmolr);
5717
5718         /* there are flags left unprocessed, likely not supported */
5719         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5720                 return -EINVAL;
5721
5722         return 0;
5723 }
5724
5725 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5726                                   u32 *msgbuf, u32 vf)
5727 {
5728         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5729         u16 *hash_list = (u16 *)&msgbuf[1];
5730         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5731         int i;
5732
5733         /* salt away the number of multicast addresses assigned
5734          * to this VF for later use to restore when the PF multi cast
5735          * list changes
5736          */
5737         vf_data->num_vf_mc_hashes = n;
5738
5739         /* only up to 30 hash values supported */
5740         if (n > 30)
5741                 n = 30;
5742
5743         /* store the hashes for later use */
5744         for (i = 0; i < n; i++)
5745                 vf_data->vf_mc_hashes[i] = hash_list[i];
5746
5747         /* Flush and reset the mta with the new values */
5748         igb_set_rx_mode(adapter->netdev);
5749
5750         return 0;
5751 }
5752
5753 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5754 {
5755         struct e1000_hw *hw = &adapter->hw;
5756         struct vf_data_storage *vf_data;
5757         int i, j;
5758
5759         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5760                 u32 vmolr = rd32(E1000_VMOLR(i));
5761
5762                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5763
5764                 vf_data = &adapter->vf_data[i];
5765
5766                 if ((vf_data->num_vf_mc_hashes > 30) ||
5767                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5768                         vmolr |= E1000_VMOLR_MPME;
5769                 } else if (vf_data->num_vf_mc_hashes) {
5770                         vmolr |= E1000_VMOLR_ROMPE;
5771                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5772                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5773                 }
5774                 wr32(E1000_VMOLR(i), vmolr);
5775         }
5776 }
5777
5778 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5779 {
5780         struct e1000_hw *hw = &adapter->hw;
5781         u32 pool_mask, reg, vid;
5782         int i;
5783
5784         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5785
5786         /* Find the vlan filter for this id */
5787         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5788                 reg = rd32(E1000_VLVF(i));
5789
5790                 /* remove the vf from the pool */
5791                 reg &= ~pool_mask;
5792
5793                 /* if pool is empty then remove entry from vfta */
5794                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5795                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5796                         reg = 0;
5797                         vid = reg & E1000_VLVF_VLANID_MASK;
5798                         igb_vfta_set(hw, vid, false);
5799                 }
5800
5801                 wr32(E1000_VLVF(i), reg);
5802         }
5803
5804         adapter->vf_data[vf].vlans_enabled = 0;
5805 }
5806
5807 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5808 {
5809         struct e1000_hw *hw = &adapter->hw;
5810         u32 reg, i;
5811
5812         /* The vlvf table only exists on 82576 hardware and newer */
5813         if (hw->mac.type < e1000_82576)
5814                 return -1;
5815
5816         /* we only need to do this if VMDq is enabled */
5817         if (!adapter->vfs_allocated_count)
5818                 return -1;
5819
5820         /* Find the vlan filter for this id */
5821         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5822                 reg = rd32(E1000_VLVF(i));
5823                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5824                     vid == (reg & E1000_VLVF_VLANID_MASK))
5825                         break;
5826         }
5827
5828         if (add) {
5829                 if (i == E1000_VLVF_ARRAY_SIZE) {
5830                         /* Did not find a matching VLAN ID entry that was
5831                          * enabled.  Search for a free filter entry, i.e.
5832                          * one without the enable bit set
5833                          */
5834                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5835                                 reg = rd32(E1000_VLVF(i));
5836                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5837                                         break;
5838                         }
5839                 }
5840                 if (i < E1000_VLVF_ARRAY_SIZE) {
5841                         /* Found an enabled/available entry */
5842                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5843
5844                         /* if !enabled we need to set this up in vfta */
5845                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5846                                 /* add VID to filter table */
5847                                 igb_vfta_set(hw, vid, true);
5848                                 reg |= E1000_VLVF_VLANID_ENABLE;
5849                         }
5850                         reg &= ~E1000_VLVF_VLANID_MASK;
5851                         reg |= vid;
5852                         wr32(E1000_VLVF(i), reg);
5853
5854                         /* do not modify RLPML for PF devices */
5855                         if (vf >= adapter->vfs_allocated_count)
5856                                 return 0;
5857
5858                         if (!adapter->vf_data[vf].vlans_enabled) {
5859                                 u32 size;
5860
5861                                 reg = rd32(E1000_VMOLR(vf));
5862                                 size = reg & E1000_VMOLR_RLPML_MASK;
5863                                 size += 4;
5864                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5865                                 reg |= size;
5866                                 wr32(E1000_VMOLR(vf), reg);
5867                         }
5868
5869                         adapter->vf_data[vf].vlans_enabled++;
5870                 }
5871         } else {
5872                 if (i < E1000_VLVF_ARRAY_SIZE) {
5873                         /* remove vf from the pool */
5874                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5875                         /* if pool is empty then remove entry from vfta */
5876                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5877                                 reg = 0;
5878                                 igb_vfta_set(hw, vid, false);
5879                         }
5880                         wr32(E1000_VLVF(i), reg);
5881
5882                         /* do not modify RLPML for PF devices */
5883                         if (vf >= adapter->vfs_allocated_count)
5884                                 return 0;
5885
5886                         adapter->vf_data[vf].vlans_enabled--;
5887                         if (!adapter->vf_data[vf].vlans_enabled) {
5888                                 u32 size;
5889
5890                                 reg = rd32(E1000_VMOLR(vf));
5891                                 size = reg & E1000_VMOLR_RLPML_MASK;
5892                                 size -= 4;
5893                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5894                                 reg |= size;
5895                                 wr32(E1000_VMOLR(vf), reg);
5896                         }
5897                 }
5898         }
5899         return 0;
5900 }
5901
5902 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5903 {
5904         struct e1000_hw *hw = &adapter->hw;
5905
5906         if (vid)
5907                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5908         else
5909                 wr32(E1000_VMVIR(vf), 0);
5910 }
5911
5912 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5913                                int vf, u16 vlan, u8 qos)
5914 {
5915         int err = 0;
5916         struct igb_adapter *adapter = netdev_priv(netdev);
5917
5918         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5919                 return -EINVAL;
5920         if (vlan || qos) {
5921                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5922                 if (err)
5923                         goto out;
5924                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5925                 igb_set_vmolr(adapter, vf, !vlan);
5926                 adapter->vf_data[vf].pf_vlan = vlan;
5927                 adapter->vf_data[vf].pf_qos = qos;
5928                 dev_info(&adapter->pdev->dev,
5929                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5930                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5931                         dev_warn(&adapter->pdev->dev,
5932                                  "The VF VLAN has been set, but the PF device is not up.\n");
5933                         dev_warn(&adapter->pdev->dev,
5934                                  "Bring the PF device up before attempting to use the VF device.\n");
5935                 }
5936         } else {
5937                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5938                              false, vf);
5939                 igb_set_vmvir(adapter, vlan, vf);
5940                 igb_set_vmolr(adapter, vf, true);
5941                 adapter->vf_data[vf].pf_vlan = 0;
5942                 adapter->vf_data[vf].pf_qos = 0;
5943         }
5944 out:
5945         return err;
5946 }
5947
5948 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5949 {
5950         struct e1000_hw *hw = &adapter->hw;
5951         int i;
5952         u32 reg;
5953
5954         /* Find the vlan filter for this id */
5955         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5956                 reg = rd32(E1000_VLVF(i));
5957                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5958                     vid == (reg & E1000_VLVF_VLANID_MASK))
5959                         break;
5960         }
5961
5962         if (i >= E1000_VLVF_ARRAY_SIZE)
5963                 i = -1;
5964
5965         return i;
5966 }
5967
5968 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5969 {
5970         struct e1000_hw *hw = &adapter->hw;
5971         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5972         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5973         int err = 0;
5974
5975         /* If in promiscuous mode we need to make sure the PF also has
5976          * the VLAN filter set.
5977          */
5978         if (add && (adapter->netdev->flags & IFF_PROMISC))
5979                 err = igb_vlvf_set(adapter, vid, add,
5980                                    adapter->vfs_allocated_count);
5981         if (err)
5982                 goto out;
5983
5984         err = igb_vlvf_set(adapter, vid, add, vf);
5985
5986         if (err)
5987                 goto out;
5988
5989         /* Go through all the checks to see if the VLAN filter should
5990          * be wiped completely.
5991          */
5992         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5993                 u32 vlvf, bits;
5994                 int regndx = igb_find_vlvf_entry(adapter, vid);
5995
5996                 if (regndx < 0)
5997                         goto out;
5998                 /* See if any other pools are set for this VLAN filter
5999                  * entry other than the PF.
6000                  */
6001                 vlvf = bits = rd32(E1000_VLVF(regndx));
6002                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6003                               adapter->vfs_allocated_count);
6004                 /* If the filter was removed then ensure PF pool bit
6005                  * is cleared if the PF only added itself to the pool
6006                  * because the PF is in promiscuous mode.
6007                  */
6008                 if ((vlvf & VLAN_VID_MASK) == vid &&
6009                     !test_bit(vid, adapter->active_vlans) &&
6010                     !bits)
6011                         igb_vlvf_set(adapter, vid, add,
6012                                      adapter->vfs_allocated_count);
6013         }
6014
6015 out:
6016         return err;
6017 }
6018
6019 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6020 {
6021         /* clear flags - except flag that indicates PF has set the MAC */
6022         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6023         adapter->vf_data[vf].last_nack = jiffies;
6024
6025         /* reset offloads to defaults */
6026         igb_set_vmolr(adapter, vf, true);
6027
6028         /* reset vlans for device */
6029         igb_clear_vf_vfta(adapter, vf);
6030         if (adapter->vf_data[vf].pf_vlan)
6031                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6032                                     adapter->vf_data[vf].pf_vlan,
6033                                     adapter->vf_data[vf].pf_qos);
6034         else
6035                 igb_clear_vf_vfta(adapter, vf);
6036
6037         /* reset multicast table array for vf */
6038         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6039
6040         /* Flush and reset the mta with the new values */
6041         igb_set_rx_mode(adapter->netdev);
6042 }
6043
6044 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6045 {
6046         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6047
6048         /* clear mac address as we were hotplug removed/added */
6049         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6050                 eth_zero_addr(vf_mac);
6051
6052         /* process remaining reset events */
6053         igb_vf_reset(adapter, vf);
6054 }
6055
6056 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6057 {
6058         struct e1000_hw *hw = &adapter->hw;
6059         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6060         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6061         u32 reg, msgbuf[3];
6062         u8 *addr = (u8 *)(&msgbuf[1]);
6063
6064         /* process all the same items cleared in a function level reset */
6065         igb_vf_reset(adapter, vf);
6066
6067         /* set vf mac address */
6068         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6069
6070         /* enable transmit and receive for vf */
6071         reg = rd32(E1000_VFTE);
6072         wr32(E1000_VFTE, reg | (1 << vf));
6073         reg = rd32(E1000_VFRE);
6074         wr32(E1000_VFRE, reg | (1 << vf));
6075
6076         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6077
6078         /* reply to reset with ack and vf mac address */
6079         if (!is_zero_ether_addr(vf_mac)) {
6080                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6081                 memcpy(addr, vf_mac, ETH_ALEN);
6082         } else {
6083                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6084         }
6085         igb_write_mbx(hw, msgbuf, 3, vf);
6086 }
6087
6088 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6089 {
6090         /* The VF MAC Address is stored in a packed array of bytes
6091          * starting at the second 32 bit word of the msg array
6092          */
6093         unsigned char *addr = (char *)&msg[1];
6094         int err = -1;
6095
6096         if (is_valid_ether_addr(addr))
6097                 err = igb_set_vf_mac(adapter, vf, addr);
6098
6099         return err;
6100 }
6101
6102 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6103 {
6104         struct e1000_hw *hw = &adapter->hw;
6105         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6106         u32 msg = E1000_VT_MSGTYPE_NACK;
6107
6108         /* if device isn't clear to send it shouldn't be reading either */
6109         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6110             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6111                 igb_write_mbx(hw, &msg, 1, vf);
6112                 vf_data->last_nack = jiffies;
6113         }
6114 }
6115
6116 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6117 {
6118         struct pci_dev *pdev = adapter->pdev;
6119         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6120         struct e1000_hw *hw = &adapter->hw;
6121         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6122         s32 retval;
6123
6124         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6125
6126         if (retval) {
6127                 /* if receive failed revoke VF CTS stats and restart init */
6128                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6129                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6130                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6131                         return;
6132                 goto out;
6133         }
6134
6135         /* this is a message we already processed, do nothing */
6136         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6137                 return;
6138
6139         /* until the vf completes a reset it should not be
6140          * allowed to start any configuration.
6141          */
6142         if (msgbuf[0] == E1000_VF_RESET) {
6143                 igb_vf_reset_msg(adapter, vf);
6144                 return;
6145         }
6146
6147         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6148                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6149                         return;
6150                 retval = -1;
6151                 goto out;
6152         }
6153
6154         switch ((msgbuf[0] & 0xFFFF)) {
6155         case E1000_VF_SET_MAC_ADDR:
6156                 retval = -EINVAL;
6157                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6158                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6159                 else
6160                         dev_warn(&pdev->dev,
6161                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6162                                  vf);
6163                 break;
6164         case E1000_VF_SET_PROMISC:
6165                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6166                 break;
6167         case E1000_VF_SET_MULTICAST:
6168                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6169                 break;
6170         case E1000_VF_SET_LPE:
6171                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6172                 break;
6173         case E1000_VF_SET_VLAN:
6174                 retval = -1;
6175                 if (vf_data->pf_vlan)
6176                         dev_warn(&pdev->dev,
6177                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6178                                  vf);
6179                 else
6180                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6181                 break;
6182         default:
6183                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6184                 retval = -1;
6185                 break;
6186         }
6187
6188         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6189 out:
6190         /* notify the VF of the results of what it sent us */
6191         if (retval)
6192                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6193         else
6194                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6195
6196         igb_write_mbx(hw, msgbuf, 1, vf);
6197 }
6198
6199 static void igb_msg_task(struct igb_adapter *adapter)
6200 {
6201         struct e1000_hw *hw = &adapter->hw;
6202         u32 vf;
6203
6204         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6205                 /* process any reset requests */
6206                 if (!igb_check_for_rst(hw, vf))
6207                         igb_vf_reset_event(adapter, vf);
6208
6209                 /* process any messages pending */
6210                 if (!igb_check_for_msg(hw, vf))
6211                         igb_rcv_msg_from_vf(adapter, vf);
6212
6213                 /* process any acks */
6214                 if (!igb_check_for_ack(hw, vf))
6215                         igb_rcv_ack_from_vf(adapter, vf);
6216         }
6217 }
6218
6219 /**
6220  *  igb_set_uta - Set unicast filter table address
6221  *  @adapter: board private structure
6222  *
6223  *  The unicast table address is a register array of 32-bit registers.
6224  *  The table is meant to be used in a way similar to how the MTA is used
6225  *  however due to certain limitations in the hardware it is necessary to
6226  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6227  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6228  **/
6229 static void igb_set_uta(struct igb_adapter *adapter)
6230 {
6231         struct e1000_hw *hw = &adapter->hw;
6232         int i;
6233
6234         /* The UTA table only exists on 82576 hardware and newer */
6235         if (hw->mac.type < e1000_82576)
6236                 return;
6237
6238         /* we only need to do this if VMDq is enabled */
6239         if (!adapter->vfs_allocated_count)
6240                 return;
6241
6242         for (i = 0; i < hw->mac.uta_reg_count; i++)
6243                 array_wr32(E1000_UTA, i, ~0);
6244 }
6245
6246 /**
6247  *  igb_intr_msi - Interrupt Handler
6248  *  @irq: interrupt number
6249  *  @data: pointer to a network interface device structure
6250  **/
6251 static irqreturn_t igb_intr_msi(int irq, void *data)
6252 {
6253         struct igb_adapter *adapter = data;
6254         struct igb_q_vector *q_vector = adapter->q_vector[0];
6255         struct e1000_hw *hw = &adapter->hw;
6256         /* read ICR disables interrupts using IAM */
6257         u32 icr = rd32(E1000_ICR);
6258
6259         igb_write_itr(q_vector);
6260
6261         if (icr & E1000_ICR_DRSTA)
6262                 schedule_work(&adapter->reset_task);
6263
6264         if (icr & E1000_ICR_DOUTSYNC) {
6265                 /* HW is reporting DMA is out of sync */
6266                 adapter->stats.doosync++;
6267         }
6268
6269         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6270                 hw->mac.get_link_status = 1;
6271                 if (!test_bit(__IGB_DOWN, &adapter->state))
6272                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6273         }
6274
6275         if (icr & E1000_ICR_TS)
6276                 igb_tsync_interrupt(adapter);
6277
6278         napi_schedule(&q_vector->napi);
6279
6280         return IRQ_HANDLED;
6281 }
6282
6283 /**
6284  *  igb_intr - Legacy Interrupt Handler
6285  *  @irq: interrupt number
6286  *  @data: pointer to a network interface device structure
6287  **/
6288 static irqreturn_t igb_intr(int irq, void *data)
6289 {
6290         struct igb_adapter *adapter = data;
6291         struct igb_q_vector *q_vector = adapter->q_vector[0];
6292         struct e1000_hw *hw = &adapter->hw;
6293         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6294          * need for the IMC write
6295          */
6296         u32 icr = rd32(E1000_ICR);
6297
6298         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6299          * not set, then the adapter didn't send an interrupt
6300          */
6301         if (!(icr & E1000_ICR_INT_ASSERTED))
6302                 return IRQ_NONE;
6303
6304         igb_write_itr(q_vector);
6305
6306         if (icr & E1000_ICR_DRSTA)
6307                 schedule_work(&adapter->reset_task);
6308
6309         if (icr & E1000_ICR_DOUTSYNC) {
6310                 /* HW is reporting DMA is out of sync */
6311                 adapter->stats.doosync++;
6312         }
6313
6314         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6315                 hw->mac.get_link_status = 1;
6316                 /* guard against interrupt when we're going down */
6317                 if (!test_bit(__IGB_DOWN, &adapter->state))
6318                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6319         }
6320
6321         if (icr & E1000_ICR_TS)
6322                 igb_tsync_interrupt(adapter);
6323
6324         napi_schedule(&q_vector->napi);
6325
6326         return IRQ_HANDLED;
6327 }
6328
6329 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6330 {
6331         struct igb_adapter *adapter = q_vector->adapter;
6332         struct e1000_hw *hw = &adapter->hw;
6333
6334         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6335             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6336                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6337                         igb_set_itr(q_vector);
6338                 else
6339                         igb_update_ring_itr(q_vector);
6340         }
6341
6342         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6343                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6344                         wr32(E1000_EIMS, q_vector->eims_value);
6345                 else
6346                         igb_irq_enable(adapter);
6347         }
6348 }
6349
6350 /**
6351  *  igb_poll - NAPI Rx polling callback
6352  *  @napi: napi polling structure
6353  *  @budget: count of how many packets we should handle
6354  **/
6355 static int igb_poll(struct napi_struct *napi, int budget)
6356 {
6357         struct igb_q_vector *q_vector = container_of(napi,
6358                                                      struct igb_q_vector,
6359                                                      napi);
6360         bool clean_complete = true;
6361
6362 #ifdef CONFIG_IGB_DCA
6363         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6364                 igb_update_dca(q_vector);
6365 #endif
6366         if (q_vector->tx.ring)
6367                 clean_complete = igb_clean_tx_irq(q_vector);
6368
6369         if (q_vector->rx.ring)
6370                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6371
6372         /* If all work not completed, return budget and keep polling */
6373         if (!clean_complete)
6374                 return budget;
6375
6376         /* If not enough Rx work done, exit the polling mode */
6377         napi_complete(napi);
6378         igb_ring_irq_enable(q_vector);
6379
6380         return 0;
6381 }
6382
6383 /**
6384  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6385  *  @q_vector: pointer to q_vector containing needed info
6386  *
6387  *  returns true if ring is completely cleaned
6388  **/
6389 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6390 {
6391         struct igb_adapter *adapter = q_vector->adapter;
6392         struct igb_ring *tx_ring = q_vector->tx.ring;
6393         struct igb_tx_buffer *tx_buffer;
6394         union e1000_adv_tx_desc *tx_desc;
6395         unsigned int total_bytes = 0, total_packets = 0;
6396         unsigned int budget = q_vector->tx.work_limit;
6397         unsigned int i = tx_ring->next_to_clean;
6398
6399         if (test_bit(__IGB_DOWN, &adapter->state))
6400                 return true;
6401
6402         tx_buffer = &tx_ring->tx_buffer_info[i];
6403         tx_desc = IGB_TX_DESC(tx_ring, i);
6404         i -= tx_ring->count;
6405
6406         do {
6407                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6408
6409                 /* if next_to_watch is not set then there is no work pending */
6410                 if (!eop_desc)
6411                         break;
6412
6413                 /* prevent any other reads prior to eop_desc */
6414                 read_barrier_depends();
6415
6416                 /* if DD is not set pending work has not been completed */
6417                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6418                         break;
6419
6420                 /* clear next_to_watch to prevent false hangs */
6421                 tx_buffer->next_to_watch = NULL;
6422
6423                 /* update the statistics for this packet */
6424                 total_bytes += tx_buffer->bytecount;
6425                 total_packets += tx_buffer->gso_segs;
6426
6427                 /* free the skb */
6428                 dev_consume_skb_any(tx_buffer->skb);
6429
6430                 /* unmap skb header data */
6431                 dma_unmap_single(tx_ring->dev,
6432                                  dma_unmap_addr(tx_buffer, dma),
6433                                  dma_unmap_len(tx_buffer, len),
6434                                  DMA_TO_DEVICE);
6435
6436                 /* clear tx_buffer data */
6437                 tx_buffer->skb = NULL;
6438                 dma_unmap_len_set(tx_buffer, len, 0);
6439
6440                 /* clear last DMA location and unmap remaining buffers */
6441                 while (tx_desc != eop_desc) {
6442                         tx_buffer++;
6443                         tx_desc++;
6444                         i++;
6445                         if (unlikely(!i)) {
6446                                 i -= tx_ring->count;
6447                                 tx_buffer = tx_ring->tx_buffer_info;
6448                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6449                         }
6450
6451                         /* unmap any remaining paged data */
6452                         if (dma_unmap_len(tx_buffer, len)) {
6453                                 dma_unmap_page(tx_ring->dev,
6454                                                dma_unmap_addr(tx_buffer, dma),
6455                                                dma_unmap_len(tx_buffer, len),
6456                                                DMA_TO_DEVICE);
6457                                 dma_unmap_len_set(tx_buffer, len, 0);
6458                         }
6459                 }
6460
6461                 /* move us one more past the eop_desc for start of next pkt */
6462                 tx_buffer++;
6463                 tx_desc++;
6464                 i++;
6465                 if (unlikely(!i)) {
6466                         i -= tx_ring->count;
6467                         tx_buffer = tx_ring->tx_buffer_info;
6468                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6469                 }
6470
6471                 /* issue prefetch for next Tx descriptor */
6472                 prefetch(tx_desc);
6473
6474                 /* update budget accounting */
6475                 budget--;
6476         } while (likely(budget));
6477
6478         netdev_tx_completed_queue(txring_txq(tx_ring),
6479                                   total_packets, total_bytes);
6480         i += tx_ring->count;
6481         tx_ring->next_to_clean = i;
6482         u64_stats_update_begin(&tx_ring->tx_syncp);
6483         tx_ring->tx_stats.bytes += total_bytes;
6484         tx_ring->tx_stats.packets += total_packets;
6485         u64_stats_update_end(&tx_ring->tx_syncp);
6486         q_vector->tx.total_bytes += total_bytes;
6487         q_vector->tx.total_packets += total_packets;
6488
6489         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6490                 struct e1000_hw *hw = &adapter->hw;
6491
6492                 /* Detect a transmit hang in hardware, this serializes the
6493                  * check with the clearing of time_stamp and movement of i
6494                  */
6495                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6496                 if (tx_buffer->next_to_watch &&
6497                     time_after(jiffies, tx_buffer->time_stamp +
6498                                (adapter->tx_timeout_factor * HZ)) &&
6499                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6500
6501                         /* detected Tx unit hang */
6502                         dev_err(tx_ring->dev,
6503                                 "Detected Tx Unit Hang\n"
6504                                 "  Tx Queue             <%d>\n"
6505                                 "  TDH                  <%x>\n"
6506                                 "  TDT                  <%x>\n"
6507                                 "  next_to_use          <%x>\n"
6508                                 "  next_to_clean        <%x>\n"
6509                                 "buffer_info[next_to_clean]\n"
6510                                 "  time_stamp           <%lx>\n"
6511                                 "  next_to_watch        <%p>\n"
6512                                 "  jiffies              <%lx>\n"
6513                                 "  desc.status          <%x>\n",
6514                                 tx_ring->queue_index,
6515                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6516                                 readl(tx_ring->tail),
6517                                 tx_ring->next_to_use,
6518                                 tx_ring->next_to_clean,
6519                                 tx_buffer->time_stamp,
6520                                 tx_buffer->next_to_watch,
6521                                 jiffies,
6522                                 tx_buffer->next_to_watch->wb.status);
6523                         netif_stop_subqueue(tx_ring->netdev,
6524                                             tx_ring->queue_index);
6525
6526                         /* we are about to reset, no point in enabling stuff */
6527                         return true;
6528                 }
6529         }
6530
6531 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6532         if (unlikely(total_packets &&
6533             netif_carrier_ok(tx_ring->netdev) &&
6534             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6535                 /* Make sure that anybody stopping the queue after this
6536                  * sees the new next_to_clean.
6537                  */
6538                 smp_mb();
6539                 if (__netif_subqueue_stopped(tx_ring->netdev,
6540                                              tx_ring->queue_index) &&
6541                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6542                         netif_wake_subqueue(tx_ring->netdev,
6543                                             tx_ring->queue_index);
6544
6545                         u64_stats_update_begin(&tx_ring->tx_syncp);
6546                         tx_ring->tx_stats.restart_queue++;
6547                         u64_stats_update_end(&tx_ring->tx_syncp);
6548                 }
6549         }
6550
6551         return !!budget;
6552 }
6553
6554 /**
6555  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6556  *  @rx_ring: rx descriptor ring to store buffers on
6557  *  @old_buff: donor buffer to have page reused
6558  *
6559  *  Synchronizes page for reuse by the adapter
6560  **/
6561 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6562                               struct igb_rx_buffer *old_buff)
6563 {
6564         struct igb_rx_buffer *new_buff;
6565         u16 nta = rx_ring->next_to_alloc;
6566
6567         new_buff = &rx_ring->rx_buffer_info[nta];
6568
6569         /* update, and store next to alloc */
6570         nta++;
6571         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6572
6573         /* transfer page from old buffer to new buffer */
6574         *new_buff = *old_buff;
6575
6576         /* sync the buffer for use by the device */
6577         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6578                                          old_buff->page_offset,
6579                                          IGB_RX_BUFSZ,
6580                                          DMA_FROM_DEVICE);
6581 }
6582
6583 static inline bool igb_page_is_reserved(struct page *page)
6584 {
6585         return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6586 }
6587
6588 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6589                                   struct page *page,
6590                                   unsigned int truesize)
6591 {
6592         /* avoid re-using remote pages */
6593         if (unlikely(igb_page_is_reserved(page)))
6594                 return false;
6595
6596 #if (PAGE_SIZE < 8192)
6597         /* if we are only owner of page we can reuse it */
6598         if (unlikely(page_count(page) != 1))
6599                 return false;
6600
6601         /* flip page offset to other buffer */
6602         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6603 #else
6604         /* move offset up to the next cache line */
6605         rx_buffer->page_offset += truesize;
6606
6607         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6608                 return false;
6609 #endif
6610
6611         /* Even if we own the page, we are not allowed to use atomic_set()
6612          * This would break get_page_unless_zero() users.
6613          */
6614         atomic_inc(&page->_count);
6615
6616         return true;
6617 }
6618
6619 /**
6620  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6621  *  @rx_ring: rx descriptor ring to transact packets on
6622  *  @rx_buffer: buffer containing page to add
6623  *  @rx_desc: descriptor containing length of buffer written by hardware
6624  *  @skb: sk_buff to place the data into
6625  *
6626  *  This function will add the data contained in rx_buffer->page to the skb.
6627  *  This is done either through a direct copy if the data in the buffer is
6628  *  less than the skb header size, otherwise it will just attach the page as
6629  *  a frag to the skb.
6630  *
6631  *  The function will then update the page offset if necessary and return
6632  *  true if the buffer can be reused by the adapter.
6633  **/
6634 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6635                             struct igb_rx_buffer *rx_buffer,
6636                             union e1000_adv_rx_desc *rx_desc,
6637                             struct sk_buff *skb)
6638 {
6639         struct page *page = rx_buffer->page;
6640         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6641 #if (PAGE_SIZE < 8192)
6642         unsigned int truesize = IGB_RX_BUFSZ;
6643 #else
6644         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6645 #endif
6646
6647         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6648                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6649
6650                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6651                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6652                         va += IGB_TS_HDR_LEN;
6653                         size -= IGB_TS_HDR_LEN;
6654                 }
6655
6656                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6657
6658                 /* page is not reserved, we can reuse buffer as-is */
6659                 if (likely(!igb_page_is_reserved(page)))
6660                         return true;
6661
6662                 /* this page cannot be reused so discard it */
6663                 __free_page(page);
6664                 return false;
6665         }
6666
6667         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6668                         rx_buffer->page_offset, size, truesize);
6669
6670         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6671 }
6672
6673 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6674                                            union e1000_adv_rx_desc *rx_desc,
6675                                            struct sk_buff *skb)
6676 {
6677         struct igb_rx_buffer *rx_buffer;
6678         struct page *page;
6679
6680         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6681         page = rx_buffer->page;
6682         prefetchw(page);
6683
6684         if (likely(!skb)) {
6685                 void *page_addr = page_address(page) +
6686                                   rx_buffer->page_offset;
6687
6688                 /* prefetch first cache line of first page */
6689                 prefetch(page_addr);
6690 #if L1_CACHE_BYTES < 128
6691                 prefetch(page_addr + L1_CACHE_BYTES);
6692 #endif
6693
6694                 /* allocate a skb to store the frags */
6695                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6696                 if (unlikely(!skb)) {
6697                         rx_ring->rx_stats.alloc_failed++;
6698                         return NULL;
6699                 }
6700
6701                 /* we will be copying header into skb->data in
6702                  * pskb_may_pull so it is in our interest to prefetch
6703                  * it now to avoid a possible cache miss
6704                  */
6705                 prefetchw(skb->data);
6706         }
6707
6708         /* we are reusing so sync this buffer for CPU use */
6709         dma_sync_single_range_for_cpu(rx_ring->dev,
6710                                       rx_buffer->dma,
6711                                       rx_buffer->page_offset,
6712                                       IGB_RX_BUFSZ,
6713                                       DMA_FROM_DEVICE);
6714
6715         /* pull page into skb */
6716         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6717                 /* hand second half of page back to the ring */
6718                 igb_reuse_rx_page(rx_ring, rx_buffer);
6719         } else {
6720                 /* we are not reusing the buffer so unmap it */
6721                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6722                                PAGE_SIZE, DMA_FROM_DEVICE);
6723         }
6724
6725         /* clear contents of rx_buffer */
6726         rx_buffer->page = NULL;
6727
6728         return skb;
6729 }
6730
6731 static inline void igb_rx_checksum(struct igb_ring *ring,
6732                                    union e1000_adv_rx_desc *rx_desc,
6733                                    struct sk_buff *skb)
6734 {
6735         skb_checksum_none_assert(skb);
6736
6737         /* Ignore Checksum bit is set */
6738         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6739                 return;
6740
6741         /* Rx checksum disabled via ethtool */
6742         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6743                 return;
6744
6745         /* TCP/UDP checksum error bit is set */
6746         if (igb_test_staterr(rx_desc,
6747                              E1000_RXDEXT_STATERR_TCPE |
6748                              E1000_RXDEXT_STATERR_IPE)) {
6749                 /* work around errata with sctp packets where the TCPE aka
6750                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6751                  * packets, (aka let the stack check the crc32c)
6752                  */
6753                 if (!((skb->len == 60) &&
6754                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6755                         u64_stats_update_begin(&ring->rx_syncp);
6756                         ring->rx_stats.csum_err++;
6757                         u64_stats_update_end(&ring->rx_syncp);
6758                 }
6759                 /* let the stack verify checksum errors */
6760                 return;
6761         }
6762         /* It must be a TCP or UDP packet with a valid checksum */
6763         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6764                                       E1000_RXD_STAT_UDPCS))
6765                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6766
6767         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6768                 le32_to_cpu(rx_desc->wb.upper.status_error));
6769 }
6770
6771 static inline void igb_rx_hash(struct igb_ring *ring,
6772                                union e1000_adv_rx_desc *rx_desc,
6773                                struct sk_buff *skb)
6774 {
6775         if (ring->netdev->features & NETIF_F_RXHASH)
6776                 skb_set_hash(skb,
6777                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6778                              PKT_HASH_TYPE_L3);
6779 }
6780
6781 /**
6782  *  igb_is_non_eop - process handling of non-EOP buffers
6783  *  @rx_ring: Rx ring being processed
6784  *  @rx_desc: Rx descriptor for current buffer
6785  *  @skb: current socket buffer containing buffer in progress
6786  *
6787  *  This function updates next to clean.  If the buffer is an EOP buffer
6788  *  this function exits returning false, otherwise it will place the
6789  *  sk_buff in the next buffer to be chained and return true indicating
6790  *  that this is in fact a non-EOP buffer.
6791  **/
6792 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6793                            union e1000_adv_rx_desc *rx_desc)
6794 {
6795         u32 ntc = rx_ring->next_to_clean + 1;
6796
6797         /* fetch, update, and store next to clean */
6798         ntc = (ntc < rx_ring->count) ? ntc : 0;
6799         rx_ring->next_to_clean = ntc;
6800
6801         prefetch(IGB_RX_DESC(rx_ring, ntc));
6802
6803         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6804                 return false;
6805
6806         return true;
6807 }
6808
6809 /**
6810  *  igb_pull_tail - igb specific version of skb_pull_tail
6811  *  @rx_ring: rx descriptor ring packet is being transacted on
6812  *  @rx_desc: pointer to the EOP Rx descriptor
6813  *  @skb: pointer to current skb being adjusted
6814  *
6815  *  This function is an igb specific version of __pskb_pull_tail.  The
6816  *  main difference between this version and the original function is that
6817  *  this function can make several assumptions about the state of things
6818  *  that allow for significant optimizations versus the standard function.
6819  *  As a result we can do things like drop a frag and maintain an accurate
6820  *  truesize for the skb.
6821  */
6822 static void igb_pull_tail(struct igb_ring *rx_ring,
6823                           union e1000_adv_rx_desc *rx_desc,
6824                           struct sk_buff *skb)
6825 {
6826         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6827         unsigned char *va;
6828         unsigned int pull_len;
6829
6830         /* it is valid to use page_address instead of kmap since we are
6831          * working with pages allocated out of the lomem pool per
6832          * alloc_page(GFP_ATOMIC)
6833          */
6834         va = skb_frag_address(frag);
6835
6836         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6837                 /* retrieve timestamp from buffer */
6838                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6839
6840                 /* update pointers to remove timestamp header */
6841                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6842                 frag->page_offset += IGB_TS_HDR_LEN;
6843                 skb->data_len -= IGB_TS_HDR_LEN;
6844                 skb->len -= IGB_TS_HDR_LEN;
6845
6846                 /* move va to start of packet data */
6847                 va += IGB_TS_HDR_LEN;
6848         }
6849
6850         /* we need the header to contain the greater of either ETH_HLEN or
6851          * 60 bytes if the skb->len is less than 60 for skb_pad.
6852          */
6853         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6854
6855         /* align pull length to size of long to optimize memcpy performance */
6856         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6857
6858         /* update all of the pointers */
6859         skb_frag_size_sub(frag, pull_len);
6860         frag->page_offset += pull_len;
6861         skb->data_len -= pull_len;
6862         skb->tail += pull_len;
6863 }
6864
6865 /**
6866  *  igb_cleanup_headers - Correct corrupted or empty headers
6867  *  @rx_ring: rx descriptor ring packet is being transacted on
6868  *  @rx_desc: pointer to the EOP Rx descriptor
6869  *  @skb: pointer to current skb being fixed
6870  *
6871  *  Address the case where we are pulling data in on pages only
6872  *  and as such no data is present in the skb header.
6873  *
6874  *  In addition if skb is not at least 60 bytes we need to pad it so that
6875  *  it is large enough to qualify as a valid Ethernet frame.
6876  *
6877  *  Returns true if an error was encountered and skb was freed.
6878  **/
6879 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6880                                 union e1000_adv_rx_desc *rx_desc,
6881                                 struct sk_buff *skb)
6882 {
6883         if (unlikely((igb_test_staterr(rx_desc,
6884                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6885                 struct net_device *netdev = rx_ring->netdev;
6886                 if (!(netdev->features & NETIF_F_RXALL)) {
6887                         dev_kfree_skb_any(skb);
6888                         return true;
6889                 }
6890         }
6891
6892         /* place header in linear portion of buffer */
6893         if (skb_is_nonlinear(skb))
6894                 igb_pull_tail(rx_ring, rx_desc, skb);
6895
6896         /* if eth_skb_pad returns an error the skb was freed */
6897         if (eth_skb_pad(skb))
6898                 return true;
6899
6900         return false;
6901 }
6902
6903 /**
6904  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6905  *  @rx_ring: rx descriptor ring packet is being transacted on
6906  *  @rx_desc: pointer to the EOP Rx descriptor
6907  *  @skb: pointer to current skb being populated
6908  *
6909  *  This function checks the ring, descriptor, and packet information in
6910  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6911  *  other fields within the skb.
6912  **/
6913 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6914                                    union e1000_adv_rx_desc *rx_desc,
6915                                    struct sk_buff *skb)
6916 {
6917         struct net_device *dev = rx_ring->netdev;
6918
6919         igb_rx_hash(rx_ring, rx_desc, skb);
6920
6921         igb_rx_checksum(rx_ring, rx_desc, skb);
6922
6923         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6924             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6925                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6926
6927         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6928             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6929                 u16 vid;
6930
6931                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6932                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6933                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6934                 else
6935                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6936
6937                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6938         }
6939
6940         skb_record_rx_queue(skb, rx_ring->queue_index);
6941
6942         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6943 }
6944
6945 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6946 {
6947         struct igb_ring *rx_ring = q_vector->rx.ring;
6948         struct sk_buff *skb = rx_ring->skb;
6949         unsigned int total_bytes = 0, total_packets = 0;
6950         u16 cleaned_count = igb_desc_unused(rx_ring);
6951
6952         while (likely(total_packets < budget)) {
6953                 union e1000_adv_rx_desc *rx_desc;
6954
6955                 /* return some buffers to hardware, one at a time is too slow */
6956                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6957                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6958                         cleaned_count = 0;
6959                 }
6960
6961                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6962
6963                 if (!rx_desc->wb.upper.status_error)
6964                         break;
6965
6966                 /* This memory barrier is needed to keep us from reading
6967                  * any other fields out of the rx_desc until we know the
6968                  * descriptor has been written back
6969                  */
6970                 dma_rmb();
6971
6972                 /* retrieve a buffer from the ring */
6973                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6974
6975                 /* exit if we failed to retrieve a buffer */
6976                 if (!skb)
6977                         break;
6978
6979                 cleaned_count++;
6980
6981                 /* fetch next buffer in frame if non-eop */
6982                 if (igb_is_non_eop(rx_ring, rx_desc))
6983                         continue;
6984
6985                 /* verify the packet layout is correct */
6986                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6987                         skb = NULL;
6988                         continue;
6989                 }
6990
6991                 /* probably a little skewed due to removing CRC */
6992                 total_bytes += skb->len;
6993
6994                 /* populate checksum, timestamp, VLAN, and protocol */
6995                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6996
6997                 napi_gro_receive(&q_vector->napi, skb);
6998
6999                 /* reset skb pointer */
7000                 skb = NULL;
7001
7002                 /* update budget accounting */
7003                 total_packets++;
7004         }
7005
7006         /* place incomplete frames back on ring for completion */
7007         rx_ring->skb = skb;
7008
7009         u64_stats_update_begin(&rx_ring->rx_syncp);
7010         rx_ring->rx_stats.packets += total_packets;
7011         rx_ring->rx_stats.bytes += total_bytes;
7012         u64_stats_update_end(&rx_ring->rx_syncp);
7013         q_vector->rx.total_packets += total_packets;
7014         q_vector->rx.total_bytes += total_bytes;
7015
7016         if (cleaned_count)
7017                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7018
7019         return total_packets < budget;
7020 }
7021
7022 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7023                                   struct igb_rx_buffer *bi)
7024 {
7025         struct page *page = bi->page;
7026         dma_addr_t dma;
7027
7028         /* since we are recycling buffers we should seldom need to alloc */
7029         if (likely(page))
7030                 return true;
7031
7032         /* alloc new page for storage */
7033         page = dev_alloc_page();
7034         if (unlikely(!page)) {
7035                 rx_ring->rx_stats.alloc_failed++;
7036                 return false;
7037         }
7038
7039         /* map page for use */
7040         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7041
7042         /* if mapping failed free memory back to system since
7043          * there isn't much point in holding memory we can't use
7044          */
7045         if (dma_mapping_error(rx_ring->dev, dma)) {
7046                 __free_page(page);
7047
7048                 rx_ring->rx_stats.alloc_failed++;
7049                 return false;
7050         }
7051
7052         bi->dma = dma;
7053         bi->page = page;
7054         bi->page_offset = 0;
7055
7056         return true;
7057 }
7058
7059 /**
7060  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7061  *  @adapter: address of board private structure
7062  **/
7063 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7064 {
7065         union e1000_adv_rx_desc *rx_desc;
7066         struct igb_rx_buffer *bi;
7067         u16 i = rx_ring->next_to_use;
7068
7069         /* nothing to do */
7070         if (!cleaned_count)
7071                 return;
7072
7073         rx_desc = IGB_RX_DESC(rx_ring, i);
7074         bi = &rx_ring->rx_buffer_info[i];
7075         i -= rx_ring->count;
7076
7077         do {
7078                 if (!igb_alloc_mapped_page(rx_ring, bi))
7079                         break;
7080
7081                 /* Refresh the desc even if buffer_addrs didn't change
7082                  * because each write-back erases this info.
7083                  */
7084                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7085
7086                 rx_desc++;
7087                 bi++;
7088                 i++;
7089                 if (unlikely(!i)) {
7090                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7091                         bi = rx_ring->rx_buffer_info;
7092                         i -= rx_ring->count;
7093                 }
7094
7095                 /* clear the status bits for the next_to_use descriptor */
7096                 rx_desc->wb.upper.status_error = 0;
7097
7098                 cleaned_count--;
7099         } while (cleaned_count);
7100
7101         i += rx_ring->count;
7102
7103         if (rx_ring->next_to_use != i) {
7104                 /* record the next descriptor to use */
7105                 rx_ring->next_to_use = i;
7106
7107                 /* update next to alloc since we have filled the ring */
7108                 rx_ring->next_to_alloc = i;
7109
7110                 /* Force memory writes to complete before letting h/w
7111                  * know there are new descriptors to fetch.  (Only
7112                  * applicable for weak-ordered memory model archs,
7113                  * such as IA-64).
7114                  */
7115                 wmb();
7116                 writel(i, rx_ring->tail);
7117         }
7118 }
7119
7120 /**
7121  * igb_mii_ioctl -
7122  * @netdev:
7123  * @ifreq:
7124  * @cmd:
7125  **/
7126 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7127 {
7128         struct igb_adapter *adapter = netdev_priv(netdev);
7129         struct mii_ioctl_data *data = if_mii(ifr);
7130
7131         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7132                 return -EOPNOTSUPP;
7133
7134         switch (cmd) {
7135         case SIOCGMIIPHY:
7136                 data->phy_id = adapter->hw.phy.addr;
7137                 break;
7138         case SIOCGMIIREG:
7139                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7140                                      &data->val_out))
7141                         return -EIO;
7142                 break;
7143         case SIOCSMIIREG:
7144         default:
7145                 return -EOPNOTSUPP;
7146         }
7147         return 0;
7148 }
7149
7150 /**
7151  * igb_ioctl -
7152  * @netdev:
7153  * @ifreq:
7154  * @cmd:
7155  **/
7156 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7157 {
7158         switch (cmd) {
7159         case SIOCGMIIPHY:
7160         case SIOCGMIIREG:
7161         case SIOCSMIIREG:
7162                 return igb_mii_ioctl(netdev, ifr, cmd);
7163         case SIOCGHWTSTAMP:
7164                 return igb_ptp_get_ts_config(netdev, ifr);
7165         case SIOCSHWTSTAMP:
7166                 return igb_ptp_set_ts_config(netdev, ifr);
7167         default:
7168                 return -EOPNOTSUPP;
7169         }
7170 }
7171
7172 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7173 {
7174         struct igb_adapter *adapter = hw->back;
7175
7176         pci_read_config_word(adapter->pdev, reg, value);
7177 }
7178
7179 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7180 {
7181         struct igb_adapter *adapter = hw->back;
7182
7183         pci_write_config_word(adapter->pdev, reg, *value);
7184 }
7185
7186 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7187 {
7188         struct igb_adapter *adapter = hw->back;
7189
7190         if (pcie_capability_read_word(adapter->pdev, reg, value))
7191                 return -E1000_ERR_CONFIG;
7192
7193         return 0;
7194 }
7195
7196 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7197 {
7198         struct igb_adapter *adapter = hw->back;
7199
7200         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7201                 return -E1000_ERR_CONFIG;
7202
7203         return 0;
7204 }
7205
7206 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7207 {
7208         struct igb_adapter *adapter = netdev_priv(netdev);
7209         struct e1000_hw *hw = &adapter->hw;
7210         u32 ctrl, rctl;
7211         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7212
7213         if (enable) {
7214                 /* enable VLAN tag insert/strip */
7215                 ctrl = rd32(E1000_CTRL);
7216                 ctrl |= E1000_CTRL_VME;
7217                 wr32(E1000_CTRL, ctrl);
7218
7219                 /* Disable CFI check */
7220                 rctl = rd32(E1000_RCTL);
7221                 rctl &= ~E1000_RCTL_CFIEN;
7222                 wr32(E1000_RCTL, rctl);
7223         } else {
7224                 /* disable VLAN tag insert/strip */
7225                 ctrl = rd32(E1000_CTRL);
7226                 ctrl &= ~E1000_CTRL_VME;
7227                 wr32(E1000_CTRL, ctrl);
7228         }
7229
7230         igb_rlpml_set(adapter);
7231 }
7232
7233 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7234                                __be16 proto, u16 vid)
7235 {
7236         struct igb_adapter *adapter = netdev_priv(netdev);
7237         struct e1000_hw *hw = &adapter->hw;
7238         int pf_id = adapter->vfs_allocated_count;
7239
7240         /* attempt to add filter to vlvf array */
7241         igb_vlvf_set(adapter, vid, true, pf_id);
7242
7243         /* add the filter since PF can receive vlans w/o entry in vlvf */
7244         igb_vfta_set(hw, vid, true);
7245
7246         set_bit(vid, adapter->active_vlans);
7247
7248         return 0;
7249 }
7250
7251 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7252                                 __be16 proto, u16 vid)
7253 {
7254         struct igb_adapter *adapter = netdev_priv(netdev);
7255         struct e1000_hw *hw = &adapter->hw;
7256         int pf_id = adapter->vfs_allocated_count;
7257         s32 err;
7258
7259         /* remove vlan from VLVF table array */
7260         err = igb_vlvf_set(adapter, vid, false, pf_id);
7261
7262         /* if vid was not present in VLVF just remove it from table */
7263         if (err)
7264                 igb_vfta_set(hw, vid, false);
7265
7266         clear_bit(vid, adapter->active_vlans);
7267
7268         return 0;
7269 }
7270
7271 static void igb_restore_vlan(struct igb_adapter *adapter)
7272 {
7273         u16 vid;
7274
7275         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7276
7277         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7278                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7279 }
7280
7281 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7282 {
7283         struct pci_dev *pdev = adapter->pdev;
7284         struct e1000_mac_info *mac = &adapter->hw.mac;
7285
7286         mac->autoneg = 0;
7287
7288         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7289          * for the switch() below to work
7290          */
7291         if ((spd & 1) || (dplx & ~1))
7292                 goto err_inval;
7293
7294         /* Fiber NIC's only allow 1000 gbps Full duplex
7295          * and 100Mbps Full duplex for 100baseFx sfp
7296          */
7297         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7298                 switch (spd + dplx) {
7299                 case SPEED_10 + DUPLEX_HALF:
7300                 case SPEED_10 + DUPLEX_FULL:
7301                 case SPEED_100 + DUPLEX_HALF:
7302                         goto err_inval;
7303                 default:
7304                         break;
7305                 }
7306         }
7307
7308         switch (spd + dplx) {
7309         case SPEED_10 + DUPLEX_HALF:
7310                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7311                 break;
7312         case SPEED_10 + DUPLEX_FULL:
7313                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7314                 break;
7315         case SPEED_100 + DUPLEX_HALF:
7316                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7317                 break;
7318         case SPEED_100 + DUPLEX_FULL:
7319                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7320                 break;
7321         case SPEED_1000 + DUPLEX_FULL:
7322                 mac->autoneg = 1;
7323                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7324                 break;
7325         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7326         default:
7327                 goto err_inval;
7328         }
7329
7330         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7331         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7332
7333         return 0;
7334
7335 err_inval:
7336         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7337         return -EINVAL;
7338 }
7339
7340 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7341                           bool runtime)
7342 {
7343         struct net_device *netdev = pci_get_drvdata(pdev);
7344         struct igb_adapter *adapter = netdev_priv(netdev);
7345         struct e1000_hw *hw = &adapter->hw;
7346         u32 ctrl, rctl, status;
7347         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7348 #ifdef CONFIG_PM
7349         int retval = 0;
7350 #endif
7351
7352         netif_device_detach(netdev);
7353
7354         if (netif_running(netdev))
7355                 __igb_close(netdev, true);
7356
7357         igb_clear_interrupt_scheme(adapter);
7358
7359 #ifdef CONFIG_PM
7360         retval = pci_save_state(pdev);
7361         if (retval)
7362                 return retval;
7363 #endif
7364
7365         status = rd32(E1000_STATUS);
7366         if (status & E1000_STATUS_LU)
7367                 wufc &= ~E1000_WUFC_LNKC;
7368
7369         if (wufc) {
7370                 igb_setup_rctl(adapter);
7371                 igb_set_rx_mode(netdev);
7372
7373                 /* turn on all-multi mode if wake on multicast is enabled */
7374                 if (wufc & E1000_WUFC_MC) {
7375                         rctl = rd32(E1000_RCTL);
7376                         rctl |= E1000_RCTL_MPE;
7377                         wr32(E1000_RCTL, rctl);
7378                 }
7379
7380                 ctrl = rd32(E1000_CTRL);
7381                 /* advertise wake from D3Cold */
7382                 #define E1000_CTRL_ADVD3WUC 0x00100000
7383                 /* phy power management enable */
7384                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7385                 ctrl |= E1000_CTRL_ADVD3WUC;
7386                 wr32(E1000_CTRL, ctrl);
7387
7388                 /* Allow time for pending master requests to run */
7389                 igb_disable_pcie_master(hw);
7390
7391                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7392                 wr32(E1000_WUFC, wufc);
7393         } else {
7394                 wr32(E1000_WUC, 0);
7395                 wr32(E1000_WUFC, 0);
7396         }
7397
7398         *enable_wake = wufc || adapter->en_mng_pt;
7399         if (!*enable_wake)
7400                 igb_power_down_link(adapter);
7401         else
7402                 igb_power_up_link(adapter);
7403
7404         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7405          * would have already happened in close and is redundant.
7406          */
7407         igb_release_hw_control(adapter);
7408
7409         pci_disable_device(pdev);
7410
7411         return 0;
7412 }
7413
7414 #ifdef CONFIG_PM
7415 #ifdef CONFIG_PM_SLEEP
7416 static int igb_suspend(struct device *dev)
7417 {
7418         int retval;
7419         bool wake;
7420         struct pci_dev *pdev = to_pci_dev(dev);
7421
7422         retval = __igb_shutdown(pdev, &wake, 0);
7423         if (retval)
7424                 return retval;
7425
7426         if (wake) {
7427                 pci_prepare_to_sleep(pdev);
7428         } else {
7429                 pci_wake_from_d3(pdev, false);
7430                 pci_set_power_state(pdev, PCI_D3hot);
7431         }
7432
7433         return 0;
7434 }
7435 #endif /* CONFIG_PM_SLEEP */
7436
7437 static int igb_resume(struct device *dev)
7438 {
7439         struct pci_dev *pdev = to_pci_dev(dev);
7440         struct net_device *netdev = pci_get_drvdata(pdev);
7441         struct igb_adapter *adapter = netdev_priv(netdev);
7442         struct e1000_hw *hw = &adapter->hw;
7443         u32 err;
7444
7445         pci_set_power_state(pdev, PCI_D0);
7446         pci_restore_state(pdev);
7447         pci_save_state(pdev);
7448
7449         if (!pci_device_is_present(pdev))
7450                 return -ENODEV;
7451         err = pci_enable_device_mem(pdev);
7452         if (err) {
7453                 dev_err(&pdev->dev,
7454                         "igb: Cannot enable PCI device from suspend\n");
7455                 return err;
7456         }
7457         pci_set_master(pdev);
7458
7459         pci_enable_wake(pdev, PCI_D3hot, 0);
7460         pci_enable_wake(pdev, PCI_D3cold, 0);
7461
7462         if (igb_init_interrupt_scheme(adapter, true)) {
7463                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7464                 return -ENOMEM;
7465         }
7466
7467         igb_reset(adapter);
7468
7469         /* let the f/w know that the h/w is now under the control of the
7470          * driver.
7471          */
7472         igb_get_hw_control(adapter);
7473
7474         wr32(E1000_WUS, ~0);
7475
7476         if (netdev->flags & IFF_UP) {
7477                 rtnl_lock();
7478                 err = __igb_open(netdev, true);
7479                 rtnl_unlock();
7480                 if (err)
7481                         return err;
7482         }
7483
7484         netif_device_attach(netdev);
7485         return 0;
7486 }
7487
7488 static int igb_runtime_idle(struct device *dev)
7489 {
7490         struct pci_dev *pdev = to_pci_dev(dev);
7491         struct net_device *netdev = pci_get_drvdata(pdev);
7492         struct igb_adapter *adapter = netdev_priv(netdev);
7493
7494         if (!igb_has_link(adapter))
7495                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7496
7497         return -EBUSY;
7498 }
7499
7500 static int igb_runtime_suspend(struct device *dev)
7501 {
7502         struct pci_dev *pdev = to_pci_dev(dev);
7503         int retval;
7504         bool wake;
7505
7506         retval = __igb_shutdown(pdev, &wake, 1);
7507         if (retval)
7508                 return retval;
7509
7510         if (wake) {
7511                 pci_prepare_to_sleep(pdev);
7512         } else {
7513                 pci_wake_from_d3(pdev, false);
7514                 pci_set_power_state(pdev, PCI_D3hot);
7515         }
7516
7517         return 0;
7518 }
7519
7520 static int igb_runtime_resume(struct device *dev)
7521 {
7522         return igb_resume(dev);
7523 }
7524 #endif /* CONFIG_PM */
7525
7526 static void igb_shutdown(struct pci_dev *pdev)
7527 {
7528         bool wake;
7529
7530         __igb_shutdown(pdev, &wake, 0);
7531
7532         if (system_state == SYSTEM_POWER_OFF) {
7533                 pci_wake_from_d3(pdev, wake);
7534                 pci_set_power_state(pdev, PCI_D3hot);
7535         }
7536 }
7537
7538 #ifdef CONFIG_PCI_IOV
7539 static int igb_sriov_reinit(struct pci_dev *dev)
7540 {
7541         struct net_device *netdev = pci_get_drvdata(dev);
7542         struct igb_adapter *adapter = netdev_priv(netdev);
7543         struct pci_dev *pdev = adapter->pdev;
7544
7545         rtnl_lock();
7546
7547         if (netif_running(netdev))
7548                 igb_close(netdev);
7549         else
7550                 igb_reset(adapter);
7551
7552         igb_clear_interrupt_scheme(adapter);
7553
7554         igb_init_queue_configuration(adapter);
7555
7556         if (igb_init_interrupt_scheme(adapter, true)) {
7557                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7558                 return -ENOMEM;
7559         }
7560
7561         if (netif_running(netdev))
7562                 igb_open(netdev);
7563
7564         rtnl_unlock();
7565
7566         return 0;
7567 }
7568
7569 static int igb_pci_disable_sriov(struct pci_dev *dev)
7570 {
7571         int err = igb_disable_sriov(dev);
7572
7573         if (!err)
7574                 err = igb_sriov_reinit(dev);
7575
7576         return err;
7577 }
7578
7579 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7580 {
7581         int err = igb_enable_sriov(dev, num_vfs);
7582
7583         if (err)
7584                 goto out;
7585
7586         err = igb_sriov_reinit(dev);
7587         if (!err)
7588                 return num_vfs;
7589
7590 out:
7591         return err;
7592 }
7593
7594 #endif
7595 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7596 {
7597 #ifdef CONFIG_PCI_IOV
7598         if (num_vfs == 0)
7599                 return igb_pci_disable_sriov(dev);
7600         else
7601                 return igb_pci_enable_sriov(dev, num_vfs);
7602 #endif
7603         return 0;
7604 }
7605
7606 #ifdef CONFIG_NET_POLL_CONTROLLER
7607 /* Polling 'interrupt' - used by things like netconsole to send skbs
7608  * without having to re-enable interrupts. It's not called while
7609  * the interrupt routine is executing.
7610  */
7611 static void igb_netpoll(struct net_device *netdev)
7612 {
7613         struct igb_adapter *adapter = netdev_priv(netdev);
7614         struct e1000_hw *hw = &adapter->hw;
7615         struct igb_q_vector *q_vector;
7616         int i;
7617
7618         for (i = 0; i < adapter->num_q_vectors; i++) {
7619                 q_vector = adapter->q_vector[i];
7620                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7621                         wr32(E1000_EIMC, q_vector->eims_value);
7622                 else
7623                         igb_irq_disable(adapter);
7624                 napi_schedule(&q_vector->napi);
7625         }
7626 }
7627 #endif /* CONFIG_NET_POLL_CONTROLLER */
7628
7629 /**
7630  *  igb_io_error_detected - called when PCI error is detected
7631  *  @pdev: Pointer to PCI device
7632  *  @state: The current pci connection state
7633  *
7634  *  This function is called after a PCI bus error affecting
7635  *  this device has been detected.
7636  **/
7637 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7638                                               pci_channel_state_t state)
7639 {
7640         struct net_device *netdev = pci_get_drvdata(pdev);
7641         struct igb_adapter *adapter = netdev_priv(netdev);
7642
7643         netif_device_detach(netdev);
7644
7645         if (state == pci_channel_io_perm_failure)
7646                 return PCI_ERS_RESULT_DISCONNECT;
7647
7648         if (netif_running(netdev))
7649                 igb_down(adapter);
7650         pci_disable_device(pdev);
7651
7652         /* Request a slot slot reset. */
7653         return PCI_ERS_RESULT_NEED_RESET;
7654 }
7655
7656 /**
7657  *  igb_io_slot_reset - called after the pci bus has been reset.
7658  *  @pdev: Pointer to PCI device
7659  *
7660  *  Restart the card from scratch, as if from a cold-boot. Implementation
7661  *  resembles the first-half of the igb_resume routine.
7662  **/
7663 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7664 {
7665         struct net_device *netdev = pci_get_drvdata(pdev);
7666         struct igb_adapter *adapter = netdev_priv(netdev);
7667         struct e1000_hw *hw = &adapter->hw;
7668         pci_ers_result_t result;
7669         int err;
7670
7671         if (pci_enable_device_mem(pdev)) {
7672                 dev_err(&pdev->dev,
7673                         "Cannot re-enable PCI device after reset.\n");
7674                 result = PCI_ERS_RESULT_DISCONNECT;
7675         } else {
7676                 pci_set_master(pdev);
7677                 pci_restore_state(pdev);
7678                 pci_save_state(pdev);
7679
7680                 pci_enable_wake(pdev, PCI_D3hot, 0);
7681                 pci_enable_wake(pdev, PCI_D3cold, 0);
7682
7683                 igb_reset(adapter);
7684                 wr32(E1000_WUS, ~0);
7685                 result = PCI_ERS_RESULT_RECOVERED;
7686         }
7687
7688         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7689         if (err) {
7690                 dev_err(&pdev->dev,
7691                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7692                         err);
7693                 /* non-fatal, continue */
7694         }
7695
7696         return result;
7697 }
7698
7699 /**
7700  *  igb_io_resume - called when traffic can start flowing again.
7701  *  @pdev: Pointer to PCI device
7702  *
7703  *  This callback is called when the error recovery driver tells us that
7704  *  its OK to resume normal operation. Implementation resembles the
7705  *  second-half of the igb_resume routine.
7706  */
7707 static void igb_io_resume(struct pci_dev *pdev)
7708 {
7709         struct net_device *netdev = pci_get_drvdata(pdev);
7710         struct igb_adapter *adapter = netdev_priv(netdev);
7711
7712         if (netif_running(netdev)) {
7713                 if (igb_up(adapter)) {
7714                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7715                         return;
7716                 }
7717         }
7718
7719         netif_device_attach(netdev);
7720
7721         /* let the f/w know that the h/w is now under the control of the
7722          * driver.
7723          */
7724         igb_get_hw_control(adapter);
7725 }
7726
7727 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7728                              u8 qsel)
7729 {
7730         u32 rar_low, rar_high;
7731         struct e1000_hw *hw = &adapter->hw;
7732
7733         /* HW expects these in little endian so we reverse the byte order
7734          * from network order (big endian) to little endian
7735          */
7736         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7737                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7738         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7739
7740         /* Indicate to hardware the Address is Valid. */
7741         rar_high |= E1000_RAH_AV;
7742
7743         if (hw->mac.type == e1000_82575)
7744                 rar_high |= E1000_RAH_POOL_1 * qsel;
7745         else
7746                 rar_high |= E1000_RAH_POOL_1 << qsel;
7747
7748         wr32(E1000_RAL(index), rar_low);
7749         wrfl();
7750         wr32(E1000_RAH(index), rar_high);
7751         wrfl();
7752 }
7753
7754 static int igb_set_vf_mac(struct igb_adapter *adapter,
7755                           int vf, unsigned char *mac_addr)
7756 {
7757         struct e1000_hw *hw = &adapter->hw;
7758         /* VF MAC addresses start at end of receive addresses and moves
7759          * towards the first, as a result a collision should not be possible
7760          */
7761         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7762
7763         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7764
7765         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7766
7767         return 0;
7768 }
7769
7770 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7771 {
7772         struct igb_adapter *adapter = netdev_priv(netdev);
7773         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7774                 return -EINVAL;
7775         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7776         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7777         dev_info(&adapter->pdev->dev,
7778                  "Reload the VF driver to make this change effective.");
7779         if (test_bit(__IGB_DOWN, &adapter->state)) {
7780                 dev_warn(&adapter->pdev->dev,
7781                          "The VF MAC address has been set, but the PF device is not up.\n");
7782                 dev_warn(&adapter->pdev->dev,
7783                          "Bring the PF device up before attempting to use the VF device.\n");
7784         }
7785         return igb_set_vf_mac(adapter, vf, mac);
7786 }
7787
7788 static int igb_link_mbps(int internal_link_speed)
7789 {
7790         switch (internal_link_speed) {
7791         case SPEED_100:
7792                 return 100;
7793         case SPEED_1000:
7794                 return 1000;
7795         default:
7796                 return 0;
7797         }
7798 }
7799
7800 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7801                                   int link_speed)
7802 {
7803         int rf_dec, rf_int;
7804         u32 bcnrc_val;
7805
7806         if (tx_rate != 0) {
7807                 /* Calculate the rate factor values to set */
7808                 rf_int = link_speed / tx_rate;
7809                 rf_dec = (link_speed - (rf_int * tx_rate));
7810                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7811                          tx_rate;
7812
7813                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7814                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7815                               E1000_RTTBCNRC_RF_INT_MASK);
7816                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7817         } else {
7818                 bcnrc_val = 0;
7819         }
7820
7821         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7822         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7823          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7824          */
7825         wr32(E1000_RTTBCNRM, 0x14);
7826         wr32(E1000_RTTBCNRC, bcnrc_val);
7827 }
7828
7829 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7830 {
7831         int actual_link_speed, i;
7832         bool reset_rate = false;
7833
7834         /* VF TX rate limit was not set or not supported */
7835         if ((adapter->vf_rate_link_speed == 0) ||
7836             (adapter->hw.mac.type != e1000_82576))
7837                 return;
7838
7839         actual_link_speed = igb_link_mbps(adapter->link_speed);
7840         if (actual_link_speed != adapter->vf_rate_link_speed) {
7841                 reset_rate = true;
7842                 adapter->vf_rate_link_speed = 0;
7843                 dev_info(&adapter->pdev->dev,
7844                          "Link speed has been changed. VF Transmit rate is disabled\n");
7845         }
7846
7847         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7848                 if (reset_rate)
7849                         adapter->vf_data[i].tx_rate = 0;
7850
7851                 igb_set_vf_rate_limit(&adapter->hw, i,
7852                                       adapter->vf_data[i].tx_rate,
7853                                       actual_link_speed);
7854         }
7855 }
7856
7857 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7858                              int min_tx_rate, int max_tx_rate)
7859 {
7860         struct igb_adapter *adapter = netdev_priv(netdev);
7861         struct e1000_hw *hw = &adapter->hw;
7862         int actual_link_speed;
7863
7864         if (hw->mac.type != e1000_82576)
7865                 return -EOPNOTSUPP;
7866
7867         if (min_tx_rate)
7868                 return -EINVAL;
7869
7870         actual_link_speed = igb_link_mbps(adapter->link_speed);
7871         if ((vf >= adapter->vfs_allocated_count) ||
7872             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7873             (max_tx_rate < 0) ||
7874             (max_tx_rate > actual_link_speed))
7875                 return -EINVAL;
7876
7877         adapter->vf_rate_link_speed = actual_link_speed;
7878         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7879         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7880
7881         return 0;
7882 }
7883
7884 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7885                                    bool setting)
7886 {
7887         struct igb_adapter *adapter = netdev_priv(netdev);
7888         struct e1000_hw *hw = &adapter->hw;
7889         u32 reg_val, reg_offset;
7890
7891         if (!adapter->vfs_allocated_count)
7892                 return -EOPNOTSUPP;
7893
7894         if (vf >= adapter->vfs_allocated_count)
7895                 return -EINVAL;
7896
7897         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7898         reg_val = rd32(reg_offset);
7899         if (setting)
7900                 reg_val |= ((1 << vf) |
7901                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7902         else
7903                 reg_val &= ~((1 << vf) |
7904                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7905         wr32(reg_offset, reg_val);
7906
7907         adapter->vf_data[vf].spoofchk_enabled = setting;
7908         return 0;
7909 }
7910
7911 static int igb_ndo_get_vf_config(struct net_device *netdev,
7912                                  int vf, struct ifla_vf_info *ivi)
7913 {
7914         struct igb_adapter *adapter = netdev_priv(netdev);
7915         if (vf >= adapter->vfs_allocated_count)
7916                 return -EINVAL;
7917         ivi->vf = vf;
7918         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7919         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7920         ivi->min_tx_rate = 0;
7921         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7922         ivi->qos = adapter->vf_data[vf].pf_qos;
7923         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7924         return 0;
7925 }
7926
7927 static void igb_vmm_control(struct igb_adapter *adapter)
7928 {
7929         struct e1000_hw *hw = &adapter->hw;
7930         u32 reg;
7931
7932         switch (hw->mac.type) {
7933         case e1000_82575:
7934         case e1000_i210:
7935         case e1000_i211:
7936         case e1000_i354:
7937         default:
7938                 /* replication is not supported for 82575 */
7939                 return;
7940         case e1000_82576:
7941                 /* notify HW that the MAC is adding vlan tags */
7942                 reg = rd32(E1000_DTXCTL);
7943                 reg |= E1000_DTXCTL_VLAN_ADDED;
7944                 wr32(E1000_DTXCTL, reg);
7945                 /* Fall through */
7946         case e1000_82580:
7947                 /* enable replication vlan tag stripping */
7948                 reg = rd32(E1000_RPLOLR);
7949                 reg |= E1000_RPLOLR_STRVLAN;
7950                 wr32(E1000_RPLOLR, reg);
7951                 /* Fall through */
7952         case e1000_i350:
7953                 /* none of the above registers are supported by i350 */
7954                 break;
7955         }
7956
7957         if (adapter->vfs_allocated_count) {
7958                 igb_vmdq_set_loopback_pf(hw, true);
7959                 igb_vmdq_set_replication_pf(hw, true);
7960                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7961                                               adapter->vfs_allocated_count);
7962         } else {
7963                 igb_vmdq_set_loopback_pf(hw, false);
7964                 igb_vmdq_set_replication_pf(hw, false);
7965         }
7966 }
7967
7968 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7969 {
7970         struct e1000_hw *hw = &adapter->hw;
7971         u32 dmac_thr;
7972         u16 hwm;
7973
7974         if (hw->mac.type > e1000_82580) {
7975                 if (adapter->flags & IGB_FLAG_DMAC) {
7976                         u32 reg;
7977
7978                         /* force threshold to 0. */
7979                         wr32(E1000_DMCTXTH, 0);
7980
7981                         /* DMA Coalescing high water mark needs to be greater
7982                          * than the Rx threshold. Set hwm to PBA - max frame
7983                          * size in 16B units, capping it at PBA - 6KB.
7984                          */
7985                         hwm = 64 * pba - adapter->max_frame_size / 16;
7986                         if (hwm < 64 * (pba - 6))
7987                                 hwm = 64 * (pba - 6);
7988                         reg = rd32(E1000_FCRTC);
7989                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7990                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7991                                 & E1000_FCRTC_RTH_COAL_MASK);
7992                         wr32(E1000_FCRTC, reg);
7993
7994                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7995                          * frame size, capping it at PBA - 10KB.
7996                          */
7997                         dmac_thr = pba - adapter->max_frame_size / 512;
7998                         if (dmac_thr < pba - 10)
7999                                 dmac_thr = pba - 10;
8000                         reg = rd32(E1000_DMACR);
8001                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8002                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8003                                 & E1000_DMACR_DMACTHR_MASK);
8004
8005                         /* transition to L0x or L1 if available..*/
8006                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8007
8008                         /* watchdog timer= +-1000 usec in 32usec intervals */
8009                         reg |= (1000 >> 5);
8010
8011                         /* Disable BMC-to-OS Watchdog Enable */
8012                         if (hw->mac.type != e1000_i354)
8013                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8014
8015                         wr32(E1000_DMACR, reg);
8016
8017                         /* no lower threshold to disable
8018                          * coalescing(smart fifb)-UTRESH=0
8019                          */
8020                         wr32(E1000_DMCRTRH, 0);
8021
8022                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8023
8024                         wr32(E1000_DMCTLX, reg);
8025
8026                         /* free space in tx packet buffer to wake from
8027                          * DMA coal
8028                          */
8029                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8030                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8031
8032                         /* make low power state decision controlled
8033                          * by DMA coal
8034                          */
8035                         reg = rd32(E1000_PCIEMISC);
8036                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8037                         wr32(E1000_PCIEMISC, reg);
8038                 } /* endif adapter->dmac is not disabled */
8039         } else if (hw->mac.type == e1000_82580) {
8040                 u32 reg = rd32(E1000_PCIEMISC);
8041
8042                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8043                 wr32(E1000_DMACR, 0);
8044         }
8045 }
8046
8047 /**
8048  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8049  *  @hw: pointer to hardware structure
8050  *  @byte_offset: byte offset to read
8051  *  @dev_addr: device address
8052  *  @data: value read
8053  *
8054  *  Performs byte read operation over I2C interface at
8055  *  a specified device address.
8056  **/
8057 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8058                       u8 dev_addr, u8 *data)
8059 {
8060         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8061         struct i2c_client *this_client = adapter->i2c_client;
8062         s32 status;
8063         u16 swfw_mask = 0;
8064
8065         if (!this_client)
8066                 return E1000_ERR_I2C;
8067
8068         swfw_mask = E1000_SWFW_PHY0_SM;
8069
8070         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8071                 return E1000_ERR_SWFW_SYNC;
8072
8073         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8074         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8075
8076         if (status < 0)
8077                 return E1000_ERR_I2C;
8078         else {
8079                 *data = status;
8080                 return 0;
8081         }
8082 }
8083
8084 /**
8085  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8086  *  @hw: pointer to hardware structure
8087  *  @byte_offset: byte offset to write
8088  *  @dev_addr: device address
8089  *  @data: value to write
8090  *
8091  *  Performs byte write operation over I2C interface at
8092  *  a specified device address.
8093  **/
8094 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8095                        u8 dev_addr, u8 data)
8096 {
8097         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8098         struct i2c_client *this_client = adapter->i2c_client;
8099         s32 status;
8100         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8101
8102         if (!this_client)
8103                 return E1000_ERR_I2C;
8104
8105         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8106                 return E1000_ERR_SWFW_SYNC;
8107         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8108         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8109
8110         if (status)
8111                 return E1000_ERR_I2C;
8112         else
8113                 return 0;
8114
8115 }
8116
8117 int igb_reinit_queues(struct igb_adapter *adapter)
8118 {
8119         struct net_device *netdev = adapter->netdev;
8120         struct pci_dev *pdev = adapter->pdev;
8121         int err = 0;
8122
8123         if (netif_running(netdev))
8124                 igb_close(netdev);
8125
8126         igb_reset_interrupt_capability(adapter);
8127
8128         if (igb_init_interrupt_scheme(adapter, true)) {
8129                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8130                 return -ENOMEM;
8131         }
8132
8133         if (netif_running(netdev))
8134                 err = igb_open(netdev);
8135
8136         return err;
8137 }
8138 /* igb_main.c */