e1000e: remove unnecessary parentheses
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38
39 #include "e1000.h"
40
41 enum {NETDEV_STATS, E1000_STATS};
42
43 struct e1000_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int type;
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define E1000_STAT(str, m) { \
51                 .stat_string = str, \
52                 .type = E1000_STATS, \
53                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54                 .stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56                 .stat_string = str, \
57                 .type = NETDEV_STATS, \
58                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62         E1000_STAT("rx_packets", stats.gprc),
63         E1000_STAT("tx_packets", stats.gptc),
64         E1000_STAT("rx_bytes", stats.gorc),
65         E1000_STAT("tx_bytes", stats.gotc),
66         E1000_STAT("rx_broadcast", stats.bprc),
67         E1000_STAT("tx_broadcast", stats.bptc),
68         E1000_STAT("rx_multicast", stats.mprc),
69         E1000_STAT("tx_multicast", stats.mptc),
70         E1000_NETDEV_STAT("rx_errors", rx_errors),
71         E1000_NETDEV_STAT("tx_errors", tx_errors),
72         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73         E1000_STAT("multicast", stats.mprc),
74         E1000_STAT("collisions", stats.colc),
75         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77         E1000_STAT("rx_crc_errors", stats.crcerrs),
78         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79         E1000_STAT("rx_no_buffer_count", stats.rnbc),
80         E1000_STAT("rx_missed_errors", stats.mpc),
81         E1000_STAT("tx_aborted_errors", stats.ecol),
82         E1000_STAT("tx_carrier_errors", stats.tncrs),
83         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85         E1000_STAT("tx_window_errors", stats.latecol),
86         E1000_STAT("tx_abort_late_coll", stats.latecol),
87         E1000_STAT("tx_deferred_ok", stats.dc),
88         E1000_STAT("tx_single_coll_ok", stats.scc),
89         E1000_STAT("tx_multi_coll_ok", stats.mcc),
90         E1000_STAT("tx_timeout_count", tx_timeout_count),
91         E1000_STAT("tx_restart_queue", restart_queue),
92         E1000_STAT("rx_long_length_errors", stats.roc),
93         E1000_STAT("rx_short_length_errors", stats.ruc),
94         E1000_STAT("rx_align_errors", stats.algnerrc),
95         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99         E1000_STAT("tx_flow_control_xon", stats.xontxc),
100         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101         E1000_STAT("rx_long_byte_count", stats.gorc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112
113 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116         "Register test  (offline)", "Eeprom test    (offline)",
117         "Interrupt test (offline)", "Loopback test  (offline)",
118         "Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122 static int e1000_get_settings(struct net_device *netdev,
123                               struct ethtool_cmd *ecmd)
124 {
125         struct e1000_adapter *adapter = netdev_priv(netdev);
126         struct e1000_hw *hw = &adapter->hw;
127         u32 speed;
128
129         if (hw->phy.media_type == e1000_media_type_copper) {
130
131                 ecmd->supported = (SUPPORTED_10baseT_Half |
132                                    SUPPORTED_10baseT_Full |
133                                    SUPPORTED_100baseT_Half |
134                                    SUPPORTED_100baseT_Full |
135                                    SUPPORTED_1000baseT_Full |
136                                    SUPPORTED_Autoneg |
137                                    SUPPORTED_TP);
138                 if (hw->phy.type == e1000_phy_ife)
139                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140                 ecmd->advertising = ADVERTISED_TP;
141
142                 if (hw->mac.autoneg == 1) {
143                         ecmd->advertising |= ADVERTISED_Autoneg;
144                         /* the e1000 autoneg seems to match ethtool nicely */
145                         ecmd->advertising |= hw->phy.autoneg_advertised;
146                 }
147
148                 ecmd->port = PORT_TP;
149                 ecmd->phy_address = hw->phy.addr;
150                 ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162                 ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         speed = -1;
166         ecmd->duplex = -1;
167
168         if (netif_running(netdev)) {
169                 if (netif_carrier_ok(netdev)) {
170                         speed = adapter->link_speed;
171                         ecmd->duplex = adapter->link_duplex - 1;
172                 }
173         } else {
174                 u32 status = er32(STATUS);
175                 if (status & E1000_STATUS_LU) {
176                         if (status & E1000_STATUS_SPEED_1000)
177                                 speed = SPEED_1000;
178                         else if (status & E1000_STATUS_SPEED_100)
179                                 speed = SPEED_100;
180                         else
181                                 speed = SPEED_10;
182
183                         if (status & E1000_STATUS_FD)
184                                 ecmd->duplex = DUPLEX_FULL;
185                         else
186                                 ecmd->duplex = DUPLEX_HALF;
187                 }
188         }
189
190         ethtool_cmd_speed_set(ecmd, speed);
191         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193
194         /* MDI-X => 2; MDI =>1; Invalid =>0 */
195         if ((hw->phy.media_type == e1000_media_type_copper) &&
196             netif_carrier_ok(netdev))
197                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198                                                       ETH_TP_MDI;
199         else
200                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201
202         return 0;
203 }
204
205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206 {
207         struct e1000_mac_info *mac = &adapter->hw.mac;
208
209         mac->autoneg = 0;
210
211         /* Make sure dplx is at most 1 bit and lsb of speed is not set
212          * for the switch() below to work */
213         if ((spd & 1) || (dplx & ~1))
214                 goto err_inval;
215
216         /* Fiber NICs only allow 1000 gbps Full duplex */
217         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218             spd != SPEED_1000 &&
219             dplx != DUPLEX_FULL) {
220                 goto err_inval;
221         }
222
223         switch (spd + dplx) {
224         case SPEED_10 + DUPLEX_HALF:
225                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
226                 break;
227         case SPEED_10 + DUPLEX_FULL:
228                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
229                 break;
230         case SPEED_100 + DUPLEX_HALF:
231                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
232                 break;
233         case SPEED_100 + DUPLEX_FULL:
234                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
235                 break;
236         case SPEED_1000 + DUPLEX_FULL:
237                 mac->autoneg = 1;
238                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239                 break;
240         case SPEED_1000 + DUPLEX_HALF: /* not supported */
241         default:
242                 goto err_inval;
243         }
244         return 0;
245
246 err_inval:
247         e_err("Unsupported Speed/Duplex configuration\n");
248         return -EINVAL;
249 }
250
251 static int e1000_set_settings(struct net_device *netdev,
252                               struct ethtool_cmd *ecmd)
253 {
254         struct e1000_adapter *adapter = netdev_priv(netdev);
255         struct e1000_hw *hw = &adapter->hw;
256
257         /*
258          * When SoL/IDER sessions are active, autoneg/speed/duplex
259          * cannot be changed
260          */
261         if (e1000_check_reset_block(hw)) {
262                 e_err("Cannot change link characteristics when SoL/IDER is "
263                       "active.\n");
264                 return -EINVAL;
265         }
266
267         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
268                 usleep_range(1000, 2000);
269
270         if (ecmd->autoneg == AUTONEG_ENABLE) {
271                 hw->mac.autoneg = 1;
272                 if (hw->phy.media_type == e1000_media_type_fiber)
273                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
274                                                      ADVERTISED_FIBRE |
275                                                      ADVERTISED_Autoneg;
276                 else
277                         hw->phy.autoneg_advertised = ecmd->advertising |
278                                                      ADVERTISED_TP |
279                                                      ADVERTISED_Autoneg;
280                 ecmd->advertising = hw->phy.autoneg_advertised;
281                 if (adapter->fc_autoneg)
282                         hw->fc.requested_mode = e1000_fc_default;
283         } else {
284                 u32 speed = ethtool_cmd_speed(ecmd);
285                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
286                         clear_bit(__E1000_RESETTING, &adapter->state);
287                         return -EINVAL;
288                 }
289         }
290
291         /* reset the link */
292
293         if (netif_running(adapter->netdev)) {
294                 e1000e_down(adapter);
295                 e1000e_up(adapter);
296         } else {
297                 e1000e_reset(adapter);
298         }
299
300         clear_bit(__E1000_RESETTING, &adapter->state);
301         return 0;
302 }
303
304 static void e1000_get_pauseparam(struct net_device *netdev,
305                                  struct ethtool_pauseparam *pause)
306 {
307         struct e1000_adapter *adapter = netdev_priv(netdev);
308         struct e1000_hw *hw = &adapter->hw;
309
310         pause->autoneg =
311                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
312
313         if (hw->fc.current_mode == e1000_fc_rx_pause) {
314                 pause->rx_pause = 1;
315         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
316                 pause->tx_pause = 1;
317         } else if (hw->fc.current_mode == e1000_fc_full) {
318                 pause->rx_pause = 1;
319                 pause->tx_pause = 1;
320         }
321 }
322
323 static int e1000_set_pauseparam(struct net_device *netdev,
324                                 struct ethtool_pauseparam *pause)
325 {
326         struct e1000_adapter *adapter = netdev_priv(netdev);
327         struct e1000_hw *hw = &adapter->hw;
328         int retval = 0;
329
330         adapter->fc_autoneg = pause->autoneg;
331
332         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
333                 usleep_range(1000, 2000);
334
335         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
336                 hw->fc.requested_mode = e1000_fc_default;
337                 if (netif_running(adapter->netdev)) {
338                         e1000e_down(adapter);
339                         e1000e_up(adapter);
340                 } else {
341                         e1000e_reset(adapter);
342                 }
343         } else {
344                 if (pause->rx_pause && pause->tx_pause)
345                         hw->fc.requested_mode = e1000_fc_full;
346                 else if (pause->rx_pause && !pause->tx_pause)
347                         hw->fc.requested_mode = e1000_fc_rx_pause;
348                 else if (!pause->rx_pause && pause->tx_pause)
349                         hw->fc.requested_mode = e1000_fc_tx_pause;
350                 else if (!pause->rx_pause && !pause->tx_pause)
351                         hw->fc.requested_mode = e1000_fc_none;
352
353                 hw->fc.current_mode = hw->fc.requested_mode;
354
355                 if (hw->phy.media_type == e1000_media_type_fiber) {
356                         retval = hw->mac.ops.setup_link(hw);
357                         /* implicit goto out */
358                 } else {
359                         retval = e1000e_force_mac_fc(hw);
360                         if (retval)
361                                 goto out;
362                         e1000e_set_fc_watermarks(hw);
363                 }
364         }
365
366 out:
367         clear_bit(__E1000_RESETTING, &adapter->state);
368         return retval;
369 }
370
371 static u32 e1000_get_msglevel(struct net_device *netdev)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374         return adapter->msg_enable;
375 }
376
377 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
378 {
379         struct e1000_adapter *adapter = netdev_priv(netdev);
380         adapter->msg_enable = data;
381 }
382
383 static int e1000_get_regs_len(struct net_device *netdev)
384 {
385 #define E1000_REGS_LEN 32 /* overestimate */
386         return E1000_REGS_LEN * sizeof(u32);
387 }
388
389 static void e1000_get_regs(struct net_device *netdev,
390                            struct ethtool_regs *regs, void *p)
391 {
392         struct e1000_adapter *adapter = netdev_priv(netdev);
393         struct e1000_hw *hw = &adapter->hw;
394         u32 *regs_buff = p;
395         u16 phy_data;
396
397         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
398
399         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
400                         adapter->pdev->device;
401
402         regs_buff[0]  = er32(CTRL);
403         regs_buff[1]  = er32(STATUS);
404
405         regs_buff[2]  = er32(RCTL);
406         regs_buff[3]  = er32(RDLEN);
407         regs_buff[4]  = er32(RDH);
408         regs_buff[5]  = er32(RDT);
409         regs_buff[6]  = er32(RDTR);
410
411         regs_buff[7]  = er32(TCTL);
412         regs_buff[8]  = er32(TDLEN);
413         regs_buff[9]  = er32(TDH);
414         regs_buff[10] = er32(TDT);
415         regs_buff[11] = er32(TIDV);
416
417         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
418
419         /* ethtool doesn't use anything past this point, so all this
420          * code is likely legacy junk for apps that may or may not
421          * exist */
422         if (hw->phy.type == e1000_phy_m88) {
423                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
424                 regs_buff[13] = (u32)phy_data; /* cable length */
425                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
429                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
430                 regs_buff[18] = regs_buff[13]; /* cable polarity */
431                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
432                 regs_buff[20] = regs_buff[17]; /* polarity correction */
433                 /* phy receive errors */
434                 regs_buff[22] = adapter->phy_stats.receive_errors;
435                 regs_buff[23] = regs_buff[13]; /* mdix mode */
436         }
437         regs_buff[21] = 0; /* was idle_errors */
438         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
439         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
440         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
441 }
442
443 static int e1000_get_eeprom_len(struct net_device *netdev)
444 {
445         struct e1000_adapter *adapter = netdev_priv(netdev);
446         return adapter->hw.nvm.word_size * 2;
447 }
448
449 static int e1000_get_eeprom(struct net_device *netdev,
450                             struct ethtool_eeprom *eeprom, u8 *bytes)
451 {
452         struct e1000_adapter *adapter = netdev_priv(netdev);
453         struct e1000_hw *hw = &adapter->hw;
454         u16 *eeprom_buff;
455         int first_word;
456         int last_word;
457         int ret_val = 0;
458         u16 i;
459
460         if (eeprom->len == 0)
461                 return -EINVAL;
462
463         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
464
465         first_word = eeprom->offset >> 1;
466         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
467
468         eeprom_buff = kmalloc(sizeof(u16) *
469                         (last_word - first_word + 1), GFP_KERNEL);
470         if (!eeprom_buff)
471                 return -ENOMEM;
472
473         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
474                 ret_val = e1000_read_nvm(hw, first_word,
475                                          last_word - first_word + 1,
476                                          eeprom_buff);
477         } else {
478                 for (i = 0; i < last_word - first_word + 1; i++) {
479                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
480                                                       &eeprom_buff[i]);
481                         if (ret_val)
482                                 break;
483                 }
484         }
485
486         if (ret_val) {
487                 /* a read error occurred, throw away the result */
488                 memset(eeprom_buff, 0xff, sizeof(u16) *
489                        (last_word - first_word + 1));
490         } else {
491                 /* Device's eeprom is always little-endian, word addressable */
492                 for (i = 0; i < last_word - first_word + 1; i++)
493                         le16_to_cpus(&eeprom_buff[i]);
494         }
495
496         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
497         kfree(eeprom_buff);
498
499         return ret_val;
500 }
501
502 static int e1000_set_eeprom(struct net_device *netdev,
503                             struct ethtool_eeprom *eeprom, u8 *bytes)
504 {
505         struct e1000_adapter *adapter = netdev_priv(netdev);
506         struct e1000_hw *hw = &adapter->hw;
507         u16 *eeprom_buff;
508         void *ptr;
509         int max_len;
510         int first_word;
511         int last_word;
512         int ret_val = 0;
513         u16 i;
514
515         if (eeprom->len == 0)
516                 return -EOPNOTSUPP;
517
518         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
519                 return -EFAULT;
520
521         if (adapter->flags & FLAG_READ_ONLY_NVM)
522                 return -EINVAL;
523
524         max_len = hw->nvm.word_size * 2;
525
526         first_word = eeprom->offset >> 1;
527         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
528         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
529         if (!eeprom_buff)
530                 return -ENOMEM;
531
532         ptr = (void *)eeprom_buff;
533
534         if (eeprom->offset & 1) {
535                 /* need read/modify/write of first changed EEPROM word */
536                 /* only the second byte of the word is being modified */
537                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
538                 ptr++;
539         }
540         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
541                 /* need read/modify/write of last changed EEPROM word */
542                 /* only the first byte of the word is being modified */
543                 ret_val = e1000_read_nvm(hw, last_word, 1,
544                                   &eeprom_buff[last_word - first_word]);
545
546         if (ret_val)
547                 goto out;
548
549         /* Device's eeprom is always little-endian, word addressable */
550         for (i = 0; i < last_word - first_word + 1; i++)
551                 le16_to_cpus(&eeprom_buff[i]);
552
553         memcpy(ptr, bytes, eeprom->len);
554
555         for (i = 0; i < last_word - first_word + 1; i++)
556                 cpu_to_le16s(&eeprom_buff[i]);
557
558         ret_val = e1000_write_nvm(hw, first_word,
559                                   last_word - first_word + 1, eeprom_buff);
560
561         if (ret_val)
562                 goto out;
563
564         /*
565          * Update the checksum over the first part of the EEPROM if needed
566          * and flush shadow RAM for applicable controllers
567          */
568         if ((first_word <= NVM_CHECKSUM_REG) ||
569             (hw->mac.type == e1000_82583) ||
570             (hw->mac.type == e1000_82574) ||
571             (hw->mac.type == e1000_82573))
572                 ret_val = e1000e_update_nvm_checksum(hw);
573
574 out:
575         kfree(eeprom_buff);
576         return ret_val;
577 }
578
579 static void e1000_get_drvinfo(struct net_device *netdev,
580                               struct ethtool_drvinfo *drvinfo)
581 {
582         struct e1000_adapter *adapter = netdev_priv(netdev);
583
584         strlcpy(drvinfo->driver,  e1000e_driver_name,
585                 sizeof(drvinfo->driver));
586         strlcpy(drvinfo->version, e1000e_driver_version,
587                 sizeof(drvinfo->version));
588
589         /*
590          * EEPROM image version # is reported as firmware version # for
591          * PCI-E controllers
592          */
593         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
594                 "%d.%d-%d",
595                 (adapter->eeprom_vers & 0xF000) >> 12,
596                 (adapter->eeprom_vers & 0x0FF0) >> 4,
597                 (adapter->eeprom_vers & 0x000F));
598
599         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
600                 sizeof(drvinfo->bus_info));
601         drvinfo->regdump_len = e1000_get_regs_len(netdev);
602         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603 }
604
605 static void e1000_get_ringparam(struct net_device *netdev,
606                                 struct ethtool_ringparam *ring)
607 {
608         struct e1000_adapter *adapter = netdev_priv(netdev);
609
610         ring->rx_max_pending = E1000_MAX_RXD;
611         ring->tx_max_pending = E1000_MAX_TXD;
612         ring->rx_pending = adapter->rx_ring_count;
613         ring->tx_pending = adapter->tx_ring_count;
614 }
615
616 static int e1000_set_ringparam(struct net_device *netdev,
617                                struct ethtool_ringparam *ring)
618 {
619         struct e1000_adapter *adapter = netdev_priv(netdev);
620         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
621         int err = 0, size = sizeof(struct e1000_ring);
622         bool set_tx = false, set_rx = false;
623         u16 new_rx_count, new_tx_count;
624
625         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
626                 return -EINVAL;
627
628         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
629                                E1000_MAX_RXD);
630         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
631
632         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
633                                E1000_MAX_TXD);
634         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
635
636         if ((new_tx_count == adapter->tx_ring_count) &&
637             (new_rx_count == adapter->rx_ring_count))
638                 /* nothing to do */
639                 return 0;
640
641         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
642                 usleep_range(1000, 2000);
643
644         if (!netif_running(adapter->netdev)) {
645                 /* Set counts now and allocate resources during open() */
646                 adapter->tx_ring->count = new_tx_count;
647                 adapter->rx_ring->count = new_rx_count;
648                 adapter->tx_ring_count = new_tx_count;
649                 adapter->rx_ring_count = new_rx_count;
650                 goto clear_reset;
651         }
652
653         set_tx = (new_tx_count != adapter->tx_ring_count);
654         set_rx = (new_rx_count != adapter->rx_ring_count);
655
656         /* Allocate temporary storage for ring updates */
657         if (set_tx) {
658                 temp_tx = vmalloc(size);
659                 if (!temp_tx) {
660                         err = -ENOMEM;
661                         goto free_temp;
662                 }
663         }
664         if (set_rx) {
665                 temp_rx = vmalloc(size);
666                 if (!temp_rx) {
667                         err = -ENOMEM;
668                         goto free_temp;
669                 }
670         }
671
672         e1000e_down(adapter);
673
674         /*
675          * We can't just free everything and then setup again, because the
676          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
677          * structs.  First, attempt to allocate new resources...
678          */
679         if (set_tx) {
680                 memcpy(temp_tx, adapter->tx_ring, size);
681                 temp_tx->count = new_tx_count;
682                 err = e1000e_setup_tx_resources(temp_tx);
683                 if (err)
684                         goto err_setup;
685         }
686         if (set_rx) {
687                 memcpy(temp_rx, adapter->rx_ring, size);
688                 temp_rx->count = new_rx_count;
689                 err = e1000e_setup_rx_resources(temp_rx);
690                 if (err)
691                         goto err_setup_rx;
692         }
693
694         /* ...then free the old resources and copy back any new ring data */
695         if (set_tx) {
696                 e1000e_free_tx_resources(adapter->tx_ring);
697                 memcpy(adapter->tx_ring, temp_tx, size);
698                 adapter->tx_ring_count = new_tx_count;
699         }
700         if (set_rx) {
701                 e1000e_free_rx_resources(adapter->rx_ring);
702                 memcpy(adapter->rx_ring, temp_rx, size);
703                 adapter->rx_ring_count = new_rx_count;
704         }
705
706 err_setup_rx:
707         if (err && set_tx)
708                 e1000e_free_tx_resources(temp_tx);
709 err_setup:
710         e1000e_up(adapter);
711 free_temp:
712         vfree(temp_tx);
713         vfree(temp_rx);
714 clear_reset:
715         clear_bit(__E1000_RESETTING, &adapter->state);
716         return err;
717 }
718
719 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
720                              int reg, int offset, u32 mask, u32 write)
721 {
722         u32 pat, val;
723         static const u32 test[] = {
724                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
726                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
727                                       (test[pat] & write));
728                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
729                 if (val != (test[pat] & write & mask)) {
730                         e_err("pattern test reg %04X failed: got 0x%08X "
731                               "expected 0x%08X\n", reg + offset, val,
732                               (test[pat] & write & mask));
733                         *data = reg;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739
740 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
741                               int reg, u32 mask, u32 write)
742 {
743         u32 val;
744         __ew32(&adapter->hw, reg, write & mask);
745         val = __er32(&adapter->hw, reg);
746         if ((write & mask) != (val & mask)) {
747                 e_err("set/check reg %04X test failed: got 0x%08X "
748                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
749                 *data = reg;
750                 return 1;
751         }
752         return 0;
753 }
754 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
755         do {                                                                   \
756                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
757                         return 1;                                              \
758         } while (0)
759 #define REG_PATTERN_TEST(reg, mask, write)                                     \
760         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
761
762 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
763         do {                                                                   \
764                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
765                         return 1;                                              \
766         } while (0)
767
768 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
769 {
770         struct e1000_hw *hw = &adapter->hw;
771         struct e1000_mac_info *mac = &adapter->hw.mac;
772         u32 value;
773         u32 before;
774         u32 after;
775         u32 i;
776         u32 toggle;
777         u32 mask;
778
779         /*
780          * The status register is Read Only, so a write should fail.
781          * Some bits that get toggled are ignored.
782          */
783         switch (mac->type) {
784         /* there are several bits on newer hardware that are r/w */
785         case e1000_82571:
786         case e1000_82572:
787         case e1000_80003es2lan:
788                 toggle = 0x7FFFF3FF;
789                 break;
790         default:
791                 toggle = 0x7FFFF033;
792                 break;
793         }
794
795         before = er32(STATUS);
796         value = (er32(STATUS) & toggle);
797         ew32(STATUS, toggle);
798         after = er32(STATUS) & toggle;
799         if (value != after) {
800                 e_err("failed STATUS register test got: 0x%08X expected: "
801                       "0x%08X\n", after, value);
802                 *data = 1;
803                 return 1;
804         }
805         /* restore previous status */
806         ew32(STATUS, before);
807
808         if (!(adapter->flags & FLAG_IS_ICH)) {
809                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
813         }
814
815         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
817         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
818         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
820         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
821         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
822         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
824         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
825
826         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
827
828         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
829         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831
832         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834         if (!(adapter->flags & FLAG_IS_ICH))
835                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
836         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
838         mask = 0x8003FFFF;
839         switch (mac->type) {
840         case e1000_ich10lan:
841         case e1000_pchlan:
842         case e1000_pch2lan:
843                 mask |= (1 << 18);
844                 break;
845         default:
846                 break;
847         }
848         for (i = 0; i < mac->rar_entry_count; i++)
849                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
850                                        mask, 0xFFFFFFFF);
851
852         for (i = 0; i < mac->mta_reg_count; i++)
853                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
854
855         *data = 0;
856         return 0;
857 }
858
859 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
860 {
861         u16 temp;
862         u16 checksum = 0;
863         u16 i;
864
865         *data = 0;
866         /* Read and add up the contents of the EEPROM */
867         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
868                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
869                         *data = 1;
870                         return *data;
871                 }
872                 checksum += temp;
873         }
874
875         /* If Checksum is not Correct return error else test passed */
876         if ((checksum != (u16) NVM_SUM) && !(*data))
877                 *data = 2;
878
879         return *data;
880 }
881
882 static irqreturn_t e1000_test_intr(int irq, void *data)
883 {
884         struct net_device *netdev = (struct net_device *) data;
885         struct e1000_adapter *adapter = netdev_priv(netdev);
886         struct e1000_hw *hw = &adapter->hw;
887
888         adapter->test_icr |= er32(ICR);
889
890         return IRQ_HANDLED;
891 }
892
893 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
894 {
895         struct net_device *netdev = adapter->netdev;
896         struct e1000_hw *hw = &adapter->hw;
897         u32 mask;
898         u32 shared_int = 1;
899         u32 irq = adapter->pdev->irq;
900         int i;
901         int ret_val = 0;
902         int int_mode = E1000E_INT_MODE_LEGACY;
903
904         *data = 0;
905
906         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
907         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
908                 int_mode = adapter->int_mode;
909                 e1000e_reset_interrupt_capability(adapter);
910                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
911                 e1000e_set_interrupt_capability(adapter);
912         }
913         /* Hook up test interrupt handler just for this test */
914         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
915                          netdev)) {
916                 shared_int = 0;
917         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
918                  netdev->name, netdev)) {
919                 *data = 1;
920                 ret_val = -1;
921                 goto out;
922         }
923         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
924
925         /* Disable all the interrupts */
926         ew32(IMC, 0xFFFFFFFF);
927         e1e_flush();
928         usleep_range(10000, 20000);
929
930         /* Test each interrupt */
931         for (i = 0; i < 10; i++) {
932                 /* Interrupt to test */
933                 mask = 1 << i;
934
935                 if (adapter->flags & FLAG_IS_ICH) {
936                         switch (mask) {
937                         case E1000_ICR_RXSEQ:
938                                 continue;
939                         case 0x00000100:
940                                 if (adapter->hw.mac.type == e1000_ich8lan ||
941                                     adapter->hw.mac.type == e1000_ich9lan)
942                                         continue;
943                                 break;
944                         default:
945                                 break;
946                         }
947                 }
948
949                 if (!shared_int) {
950                         /*
951                          * Disable the interrupt to be reported in
952                          * the cause register and then force the same
953                          * interrupt and see if one gets posted.  If
954                          * an interrupt was posted to the bus, the
955                          * test failed.
956                          */
957                         adapter->test_icr = 0;
958                         ew32(IMC, mask);
959                         ew32(ICS, mask);
960                         e1e_flush();
961                         usleep_range(10000, 20000);
962
963                         if (adapter->test_icr & mask) {
964                                 *data = 3;
965                                 break;
966                         }
967                 }
968
969                 /*
970                  * Enable the interrupt to be reported in
971                  * the cause register and then force the same
972                  * interrupt and see if one gets posted.  If
973                  * an interrupt was not posted to the bus, the
974                  * test failed.
975                  */
976                 adapter->test_icr = 0;
977                 ew32(IMS, mask);
978                 ew32(ICS, mask);
979                 e1e_flush();
980                 usleep_range(10000, 20000);
981
982                 if (!(adapter->test_icr & mask)) {
983                         *data = 4;
984                         break;
985                 }
986
987                 if (!shared_int) {
988                         /*
989                          * Disable the other interrupts to be reported in
990                          * the cause register and then force the other
991                          * interrupts and see if any get posted.  If
992                          * an interrupt was posted to the bus, the
993                          * test failed.
994                          */
995                         adapter->test_icr = 0;
996                         ew32(IMC, ~mask & 0x00007FFF);
997                         ew32(ICS, ~mask & 0x00007FFF);
998                         e1e_flush();
999                         usleep_range(10000, 20000);
1000
1001                         if (adapter->test_icr) {
1002                                 *data = 5;
1003                                 break;
1004                         }
1005                 }
1006         }
1007
1008         /* Disable all the interrupts */
1009         ew32(IMC, 0xFFFFFFFF);
1010         e1e_flush();
1011         usleep_range(10000, 20000);
1012
1013         /* Unhook test interrupt handler */
1014         free_irq(irq, netdev);
1015
1016 out:
1017         if (int_mode == E1000E_INT_MODE_MSIX) {
1018                 e1000e_reset_interrupt_capability(adapter);
1019                 adapter->int_mode = int_mode;
1020                 e1000e_set_interrupt_capability(adapter);
1021         }
1022
1023         return ret_val;
1024 }
1025
1026 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1027 {
1028         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1029         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1030         struct pci_dev *pdev = adapter->pdev;
1031         int i;
1032
1033         if (tx_ring->desc && tx_ring->buffer_info) {
1034                 for (i = 0; i < tx_ring->count; i++) {
1035                         if (tx_ring->buffer_info[i].dma)
1036                                 dma_unmap_single(&pdev->dev,
1037                                         tx_ring->buffer_info[i].dma,
1038                                         tx_ring->buffer_info[i].length,
1039                                         DMA_TO_DEVICE);
1040                         if (tx_ring->buffer_info[i].skb)
1041                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1042                 }
1043         }
1044
1045         if (rx_ring->desc && rx_ring->buffer_info) {
1046                 for (i = 0; i < rx_ring->count; i++) {
1047                         if (rx_ring->buffer_info[i].dma)
1048                                 dma_unmap_single(&pdev->dev,
1049                                         rx_ring->buffer_info[i].dma,
1050                                         2048, DMA_FROM_DEVICE);
1051                         if (rx_ring->buffer_info[i].skb)
1052                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1053                 }
1054         }
1055
1056         if (tx_ring->desc) {
1057                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1058                                   tx_ring->dma);
1059                 tx_ring->desc = NULL;
1060         }
1061         if (rx_ring->desc) {
1062                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1063                                   rx_ring->dma);
1064                 rx_ring->desc = NULL;
1065         }
1066
1067         kfree(tx_ring->buffer_info);
1068         tx_ring->buffer_info = NULL;
1069         kfree(rx_ring->buffer_info);
1070         rx_ring->buffer_info = NULL;
1071 }
1072
1073 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1074 {
1075         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1076         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1077         struct pci_dev *pdev = adapter->pdev;
1078         struct e1000_hw *hw = &adapter->hw;
1079         u32 rctl;
1080         int i;
1081         int ret_val;
1082
1083         /* Setup Tx descriptor ring and Tx buffers */
1084
1085         if (!tx_ring->count)
1086                 tx_ring->count = E1000_DEFAULT_TXD;
1087
1088         tx_ring->buffer_info = kcalloc(tx_ring->count,
1089                                        sizeof(struct e1000_buffer),
1090                                        GFP_KERNEL);
1091         if (!tx_ring->buffer_info) {
1092                 ret_val = 1;
1093                 goto err_nomem;
1094         }
1095
1096         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1097         tx_ring->size = ALIGN(tx_ring->size, 4096);
1098         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1099                                            &tx_ring->dma, GFP_KERNEL);
1100         if (!tx_ring->desc) {
1101                 ret_val = 2;
1102                 goto err_nomem;
1103         }
1104         tx_ring->next_to_use = 0;
1105         tx_ring->next_to_clean = 0;
1106
1107         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1108         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1109         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1110         ew32(TDH, 0);
1111         ew32(TDT, 0);
1112         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1113              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1114              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1115
1116         for (i = 0; i < tx_ring->count; i++) {
1117                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1118                 struct sk_buff *skb;
1119                 unsigned int skb_size = 1024;
1120
1121                 skb = alloc_skb(skb_size, GFP_KERNEL);
1122                 if (!skb) {
1123                         ret_val = 3;
1124                         goto err_nomem;
1125                 }
1126                 skb_put(skb, skb_size);
1127                 tx_ring->buffer_info[i].skb = skb;
1128                 tx_ring->buffer_info[i].length = skb->len;
1129                 tx_ring->buffer_info[i].dma =
1130                         dma_map_single(&pdev->dev, skb->data, skb->len,
1131                                        DMA_TO_DEVICE);
1132                 if (dma_mapping_error(&pdev->dev,
1133                                       tx_ring->buffer_info[i].dma)) {
1134                         ret_val = 4;
1135                         goto err_nomem;
1136                 }
1137                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1138                 tx_desc->lower.data = cpu_to_le32(skb->len);
1139                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1140                                                    E1000_TXD_CMD_IFCS |
1141                                                    E1000_TXD_CMD_RS);
1142                 tx_desc->upper.data = 0;
1143         }
1144
1145         /* Setup Rx descriptor ring and Rx buffers */
1146
1147         if (!rx_ring->count)
1148                 rx_ring->count = E1000_DEFAULT_RXD;
1149
1150         rx_ring->buffer_info = kcalloc(rx_ring->count,
1151                                        sizeof(struct e1000_buffer),
1152                                        GFP_KERNEL);
1153         if (!rx_ring->buffer_info) {
1154                 ret_val = 5;
1155                 goto err_nomem;
1156         }
1157
1158         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1159         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1160                                            &rx_ring->dma, GFP_KERNEL);
1161         if (!rx_ring->desc) {
1162                 ret_val = 6;
1163                 goto err_nomem;
1164         }
1165         rx_ring->next_to_use = 0;
1166         rx_ring->next_to_clean = 0;
1167
1168         rctl = er32(RCTL);
1169         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1170                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1171         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1172         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1173         ew32(RDLEN, rx_ring->size);
1174         ew32(RDH, 0);
1175         ew32(RDT, 0);
1176         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1177                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1178                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1179                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1180                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1181         ew32(RCTL, rctl);
1182
1183         for (i = 0; i < rx_ring->count; i++) {
1184                 union e1000_rx_desc_extended *rx_desc;
1185                 struct sk_buff *skb;
1186
1187                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1188                 if (!skb) {
1189                         ret_val = 7;
1190                         goto err_nomem;
1191                 }
1192                 skb_reserve(skb, NET_IP_ALIGN);
1193                 rx_ring->buffer_info[i].skb = skb;
1194                 rx_ring->buffer_info[i].dma =
1195                         dma_map_single(&pdev->dev, skb->data, 2048,
1196                                        DMA_FROM_DEVICE);
1197                 if (dma_mapping_error(&pdev->dev,
1198                                       rx_ring->buffer_info[i].dma)) {
1199                         ret_val = 8;
1200                         goto err_nomem;
1201                 }
1202                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1203                 rx_desc->read.buffer_addr =
1204                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1205                 memset(skb->data, 0x00, skb->len);
1206         }
1207
1208         return 0;
1209
1210 err_nomem:
1211         e1000_free_desc_rings(adapter);
1212         return ret_val;
1213 }
1214
1215 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1216 {
1217         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1218         e1e_wphy(&adapter->hw, 29, 0x001F);
1219         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1220         e1e_wphy(&adapter->hw, 29, 0x001A);
1221         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1222 }
1223
1224 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225 {
1226         struct e1000_hw *hw = &adapter->hw;
1227         u32 ctrl_reg = 0;
1228         u16 phy_reg = 0;
1229         s32 ret_val = 0;
1230
1231         hw->mac.autoneg = 0;
1232
1233         if (hw->phy.type == e1000_phy_ife) {
1234                 /* force 100, set loopback */
1235                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1236
1237                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1238                 ctrl_reg = er32(CTRL);
1239                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1240                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1241                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1242                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1243                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1244
1245                 ew32(CTRL, ctrl_reg);
1246                 e1e_flush();
1247                 udelay(500);
1248
1249                 return 0;
1250         }
1251
1252         /* Specific PHY configuration for loopback */
1253         switch (hw->phy.type) {
1254         case e1000_phy_m88:
1255                 /* Auto-MDI/MDIX Off */
1256                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1257                 /* reset to update Auto-MDI/MDIX */
1258                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1259                 /* autoneg off */
1260                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1261                 break;
1262         case e1000_phy_gg82563:
1263                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1264                 break;
1265         case e1000_phy_bm:
1266                 /* Set Default MAC Interface speed to 1GB */
1267                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1268                 phy_reg &= ~0x0007;
1269                 phy_reg |= 0x006;
1270                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1271                 /* Assert SW reset for above settings to take effect */
1272                 e1000e_commit_phy(hw);
1273                 mdelay(1);
1274                 /* Force Full Duplex */
1275                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1276                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1277                 /* Set Link Up (in force link) */
1278                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1279                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1280                 /* Force Link */
1281                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1282                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1283                 /* Set Early Link Enable */
1284                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1285                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1286                 break;
1287         case e1000_phy_82577:
1288         case e1000_phy_82578:
1289                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1290                 ret_val = hw->phy.ops.acquire(hw);
1291                 if (ret_val) {
1292                         e_err("Cannot setup 1Gbps loopback.\n");
1293                         return ret_val;
1294                 }
1295                 e1000_configure_k1_ich8lan(hw, false);
1296                 hw->phy.ops.release(hw);
1297                 break;
1298         case e1000_phy_82579:
1299                 /* Disable PHY energy detect power down */
1300                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1301                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1302                 /* Disable full chip energy detect */
1303                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1304                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1305                 /* Enable loopback on the PHY */
1306 #define I82577_PHY_LBK_CTRL          19
1307                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1308                 break;
1309         default:
1310                 break;
1311         }
1312
1313         /* force 1000, set loopback */
1314         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1315         mdelay(250);
1316
1317         /* Now set up the MAC to the same speed/duplex as the PHY. */
1318         ctrl_reg = er32(CTRL);
1319         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1320         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1321                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1322                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1323                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1324
1325         if (adapter->flags & FLAG_IS_ICH)
1326                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1327
1328         if (hw->phy.media_type == e1000_media_type_copper &&
1329             hw->phy.type == e1000_phy_m88) {
1330                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1331         } else {
1332                 /*
1333                  * Set the ILOS bit on the fiber Nic if half duplex link is
1334                  * detected.
1335                  */
1336                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1337                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1338         }
1339
1340         ew32(CTRL, ctrl_reg);
1341
1342         /*
1343          * Disable the receiver on the PHY so when a cable is plugged in, the
1344          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1345          */
1346         if (hw->phy.type == e1000_phy_m88)
1347                 e1000_phy_disable_receiver(adapter);
1348
1349         udelay(500);
1350
1351         return 0;
1352 }
1353
1354 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1355 {
1356         struct e1000_hw *hw = &adapter->hw;
1357         u32 ctrl = er32(CTRL);
1358         int link = 0;
1359
1360         /* special requirements for 82571/82572 fiber adapters */
1361
1362         /*
1363          * jump through hoops to make sure link is up because serdes
1364          * link is hardwired up
1365          */
1366         ctrl |= E1000_CTRL_SLU;
1367         ew32(CTRL, ctrl);
1368
1369         /* disable autoneg */
1370         ctrl = er32(TXCW);
1371         ctrl &= ~(1 << 31);
1372         ew32(TXCW, ctrl);
1373
1374         link = (er32(STATUS) & E1000_STATUS_LU);
1375
1376         if (!link) {
1377                 /* set invert loss of signal */
1378                 ctrl = er32(CTRL);
1379                 ctrl |= E1000_CTRL_ILOS;
1380                 ew32(CTRL, ctrl);
1381         }
1382
1383         /*
1384          * special write to serdes control register to enable SerDes analog
1385          * loopback
1386          */
1387 #define E1000_SERDES_LB_ON 0x410
1388         ew32(SCTL, E1000_SERDES_LB_ON);
1389         e1e_flush();
1390         usleep_range(10000, 20000);
1391
1392         return 0;
1393 }
1394
1395 /* only call this for fiber/serdes connections to es2lan */
1396 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1397 {
1398         struct e1000_hw *hw = &adapter->hw;
1399         u32 ctrlext = er32(CTRL_EXT);
1400         u32 ctrl = er32(CTRL);
1401
1402         /*
1403          * save CTRL_EXT to restore later, reuse an empty variable (unused
1404          * on mac_type 80003es2lan)
1405          */
1406         adapter->tx_fifo_head = ctrlext;
1407
1408         /* clear the serdes mode bits, putting the device into mac loopback */
1409         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1410         ew32(CTRL_EXT, ctrlext);
1411
1412         /* force speed to 1000/FD, link up */
1413         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1414         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1415                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1416         ew32(CTRL, ctrl);
1417
1418         /* set mac loopback */
1419         ctrl = er32(RCTL);
1420         ctrl |= E1000_RCTL_LBM_MAC;
1421         ew32(RCTL, ctrl);
1422
1423         /* set testing mode parameters (no need to reset later) */
1424 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1425 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1426         ew32(KMRNCTRLSTA,
1427              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1428
1429         return 0;
1430 }
1431
1432 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1433 {
1434         struct e1000_hw *hw = &adapter->hw;
1435         u32 rctl;
1436
1437         if (hw->phy.media_type == e1000_media_type_fiber ||
1438             hw->phy.media_type == e1000_media_type_internal_serdes) {
1439                 switch (hw->mac.type) {
1440                 case e1000_80003es2lan:
1441                         return e1000_set_es2lan_mac_loopback(adapter);
1442                         break;
1443                 case e1000_82571:
1444                 case e1000_82572:
1445                         return e1000_set_82571_fiber_loopback(adapter);
1446                         break;
1447                 default:
1448                         rctl = er32(RCTL);
1449                         rctl |= E1000_RCTL_LBM_TCVR;
1450                         ew32(RCTL, rctl);
1451                         return 0;
1452                 }
1453         } else if (hw->phy.media_type == e1000_media_type_copper) {
1454                 return e1000_integrated_phy_loopback(adapter);
1455         }
1456
1457         return 7;
1458 }
1459
1460 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1461 {
1462         struct e1000_hw *hw = &adapter->hw;
1463         u32 rctl;
1464         u16 phy_reg;
1465
1466         rctl = er32(RCTL);
1467         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1468         ew32(RCTL, rctl);
1469
1470         switch (hw->mac.type) {
1471         case e1000_80003es2lan:
1472                 if (hw->phy.media_type == e1000_media_type_fiber ||
1473                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1474                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1475                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1476                         adapter->tx_fifo_head = 0;
1477                 }
1478                 /* fall through */
1479         case e1000_82571:
1480         case e1000_82572:
1481                 if (hw->phy.media_type == e1000_media_type_fiber ||
1482                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1483 #define E1000_SERDES_LB_OFF 0x400
1484                         ew32(SCTL, E1000_SERDES_LB_OFF);
1485                         e1e_flush();
1486                         usleep_range(10000, 20000);
1487                         break;
1488                 }
1489                 /* Fall Through */
1490         default:
1491                 hw->mac.autoneg = 1;
1492                 if (hw->phy.type == e1000_phy_gg82563)
1493                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1494                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1495                 if (phy_reg & MII_CR_LOOPBACK) {
1496                         phy_reg &= ~MII_CR_LOOPBACK;
1497                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1498                         e1000e_commit_phy(hw);
1499                 }
1500                 break;
1501         }
1502 }
1503
1504 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1505                                       unsigned int frame_size)
1506 {
1507         memset(skb->data, 0xFF, frame_size);
1508         frame_size &= ~1;
1509         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1510         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1511         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1512 }
1513
1514 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1515                                     unsigned int frame_size)
1516 {
1517         frame_size &= ~1;
1518         if (*(skb->data + 3) == 0xFF)
1519                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1520                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1521                         return 0;
1522         return 13;
1523 }
1524
1525 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1526 {
1527         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1528         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1529         struct pci_dev *pdev = adapter->pdev;
1530         struct e1000_hw *hw = &adapter->hw;
1531         int i, j, k, l;
1532         int lc;
1533         int good_cnt;
1534         int ret_val = 0;
1535         unsigned long time;
1536
1537         ew32(RDT, rx_ring->count - 1);
1538
1539         /*
1540          * Calculate the loop count based on the largest descriptor ring
1541          * The idea is to wrap the largest ring a number of times using 64
1542          * send/receive pairs during each loop
1543          */
1544
1545         if (rx_ring->count <= tx_ring->count)
1546                 lc = ((tx_ring->count / 64) * 2) + 1;
1547         else
1548                 lc = ((rx_ring->count / 64) * 2) + 1;
1549
1550         k = 0;
1551         l = 0;
1552         for (j = 0; j <= lc; j++) { /* loop count loop */
1553                 for (i = 0; i < 64; i++) { /* send the packets */
1554                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1555                                                   1024);
1556                         dma_sync_single_for_device(&pdev->dev,
1557                                         tx_ring->buffer_info[k].dma,
1558                                         tx_ring->buffer_info[k].length,
1559                                         DMA_TO_DEVICE);
1560                         k++;
1561                         if (k == tx_ring->count)
1562                                 k = 0;
1563                 }
1564                 ew32(TDT, k);
1565                 e1e_flush();
1566                 msleep(200);
1567                 time = jiffies; /* set the start time for the receive */
1568                 good_cnt = 0;
1569                 do { /* receive the sent packets */
1570                         dma_sync_single_for_cpu(&pdev->dev,
1571                                         rx_ring->buffer_info[l].dma, 2048,
1572                                         DMA_FROM_DEVICE);
1573
1574                         ret_val = e1000_check_lbtest_frame(
1575                                         rx_ring->buffer_info[l].skb, 1024);
1576                         if (!ret_val)
1577                                 good_cnt++;
1578                         l++;
1579                         if (l == rx_ring->count)
1580                                 l = 0;
1581                         /*
1582                          * time + 20 msecs (200 msecs on 2.4) is more than
1583                          * enough time to complete the receives, if it's
1584                          * exceeded, break and error off
1585                          */
1586                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1587                 if (good_cnt != 64) {
1588                         ret_val = 13; /* ret_val is the same as mis-compare */
1589                         break;
1590                 }
1591                 if (jiffies >= (time + 20)) {
1592                         ret_val = 14; /* error code for time out error */
1593                         break;
1594                 }
1595         } /* end loop count loop */
1596         return ret_val;
1597 }
1598
1599 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1600 {
1601         /*
1602          * PHY loopback cannot be performed if SoL/IDER
1603          * sessions are active
1604          */
1605         if (e1000_check_reset_block(&adapter->hw)) {
1606                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1607                 *data = 0;
1608                 goto out;
1609         }
1610
1611         *data = e1000_setup_desc_rings(adapter);
1612         if (*data)
1613                 goto out;
1614
1615         *data = e1000_setup_loopback_test(adapter);
1616         if (*data)
1617                 goto err_loopback;
1618
1619         *data = e1000_run_loopback_test(adapter);
1620         e1000_loopback_cleanup(adapter);
1621
1622 err_loopback:
1623         e1000_free_desc_rings(adapter);
1624 out:
1625         return *data;
1626 }
1627
1628 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1629 {
1630         struct e1000_hw *hw = &adapter->hw;
1631
1632         *data = 0;
1633         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1634                 int i = 0;
1635                 hw->mac.serdes_has_link = false;
1636
1637                 /*
1638                  * On some blade server designs, link establishment
1639                  * could take as long as 2-3 minutes
1640                  */
1641                 do {
1642                         hw->mac.ops.check_for_link(hw);
1643                         if (hw->mac.serdes_has_link)
1644                                 return *data;
1645                         msleep(20);
1646                 } while (i++ < 3750);
1647
1648                 *data = 1;
1649         } else {
1650                 hw->mac.ops.check_for_link(hw);
1651                 if (hw->mac.autoneg)
1652                         /*
1653                          * On some Phy/switch combinations, link establishment
1654                          * can take a few seconds more than expected.
1655                          */
1656                         msleep(5000);
1657
1658                 if (!(er32(STATUS) & E1000_STATUS_LU))
1659                         *data = 1;
1660         }
1661         return *data;
1662 }
1663
1664 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1665 {
1666         switch (sset) {
1667         case ETH_SS_TEST:
1668                 return E1000_TEST_LEN;
1669         case ETH_SS_STATS:
1670                 return E1000_STATS_LEN;
1671         default:
1672                 return -EOPNOTSUPP;
1673         }
1674 }
1675
1676 static void e1000_diag_test(struct net_device *netdev,
1677                             struct ethtool_test *eth_test, u64 *data)
1678 {
1679         struct e1000_adapter *adapter = netdev_priv(netdev);
1680         u16 autoneg_advertised;
1681         u8 forced_speed_duplex;
1682         u8 autoneg;
1683         bool if_running = netif_running(netdev);
1684
1685         set_bit(__E1000_TESTING, &adapter->state);
1686
1687         if (!if_running) {
1688                 /* Get control of and reset hardware */
1689                 if (adapter->flags & FLAG_HAS_AMT)
1690                         e1000e_get_hw_control(adapter);
1691
1692                 e1000e_power_up_phy(adapter);
1693
1694                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1695                 e1000e_reset(adapter);
1696                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1697         }
1698
1699         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1700                 /* Offline tests */
1701
1702                 /* save speed, duplex, autoneg settings */
1703                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1704                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1705                 autoneg = adapter->hw.mac.autoneg;
1706
1707                 e_info("offline testing starting\n");
1708
1709                 if (if_running)
1710                         /* indicate we're in test mode */
1711                         dev_close(netdev);
1712
1713                 if (e1000_reg_test(adapter, &data[0]))
1714                         eth_test->flags |= ETH_TEST_FL_FAILED;
1715
1716                 e1000e_reset(adapter);
1717                 if (e1000_eeprom_test(adapter, &data[1]))
1718                         eth_test->flags |= ETH_TEST_FL_FAILED;
1719
1720                 e1000e_reset(adapter);
1721                 if (e1000_intr_test(adapter, &data[2]))
1722                         eth_test->flags |= ETH_TEST_FL_FAILED;
1723
1724                 e1000e_reset(adapter);
1725                 if (e1000_loopback_test(adapter, &data[3]))
1726                         eth_test->flags |= ETH_TEST_FL_FAILED;
1727
1728                 /* force this routine to wait until autoneg complete/timeout */
1729                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1730                 e1000e_reset(adapter);
1731                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1732
1733                 if (e1000_link_test(adapter, &data[4]))
1734                         eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736                 /* restore speed, duplex, autoneg settings */
1737                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1738                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1739                 adapter->hw.mac.autoneg = autoneg;
1740                 e1000e_reset(adapter);
1741
1742                 clear_bit(__E1000_TESTING, &adapter->state);
1743                 if (if_running)
1744                         dev_open(netdev);
1745         } else {
1746                 /* Online tests */
1747
1748                 e_info("online testing starting\n");
1749
1750                 /* register, eeprom, intr and loopback tests not run online */
1751                 data[0] = 0;
1752                 data[1] = 0;
1753                 data[2] = 0;
1754                 data[3] = 0;
1755
1756                 if (e1000_link_test(adapter, &data[4]))
1757                         eth_test->flags |= ETH_TEST_FL_FAILED;
1758
1759                 clear_bit(__E1000_TESTING, &adapter->state);
1760         }
1761
1762         if (!if_running) {
1763                 e1000e_reset(adapter);
1764
1765                 if (adapter->flags & FLAG_HAS_AMT)
1766                         e1000e_release_hw_control(adapter);
1767         }
1768
1769         msleep_interruptible(4 * 1000);
1770 }
1771
1772 static void e1000_get_wol(struct net_device *netdev,
1773                           struct ethtool_wolinfo *wol)
1774 {
1775         struct e1000_adapter *adapter = netdev_priv(netdev);
1776
1777         wol->supported = 0;
1778         wol->wolopts = 0;
1779
1780         if (!(adapter->flags & FLAG_HAS_WOL) ||
1781             !device_can_wakeup(&adapter->pdev->dev))
1782                 return;
1783
1784         wol->supported = WAKE_UCAST | WAKE_MCAST |
1785             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1786
1787         /* apply any specific unsupported masks here */
1788         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1789                 wol->supported &= ~WAKE_UCAST;
1790
1791                 if (adapter->wol & E1000_WUFC_EX)
1792                         e_err("Interface does not support directed (unicast) "
1793                               "frame wake-up packets\n");
1794         }
1795
1796         if (adapter->wol & E1000_WUFC_EX)
1797                 wol->wolopts |= WAKE_UCAST;
1798         if (adapter->wol & E1000_WUFC_MC)
1799                 wol->wolopts |= WAKE_MCAST;
1800         if (adapter->wol & E1000_WUFC_BC)
1801                 wol->wolopts |= WAKE_BCAST;
1802         if (adapter->wol & E1000_WUFC_MAG)
1803                 wol->wolopts |= WAKE_MAGIC;
1804         if (adapter->wol & E1000_WUFC_LNKC)
1805                 wol->wolopts |= WAKE_PHY;
1806 }
1807
1808 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1809 {
1810         struct e1000_adapter *adapter = netdev_priv(netdev);
1811
1812         if (!(adapter->flags & FLAG_HAS_WOL) ||
1813             !device_can_wakeup(&adapter->pdev->dev) ||
1814             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1815                               WAKE_MAGIC | WAKE_PHY)))
1816                 return -EOPNOTSUPP;
1817
1818         /* these settings will always override what we currently have */
1819         adapter->wol = 0;
1820
1821         if (wol->wolopts & WAKE_UCAST)
1822                 adapter->wol |= E1000_WUFC_EX;
1823         if (wol->wolopts & WAKE_MCAST)
1824                 adapter->wol |= E1000_WUFC_MC;
1825         if (wol->wolopts & WAKE_BCAST)
1826                 adapter->wol |= E1000_WUFC_BC;
1827         if (wol->wolopts & WAKE_MAGIC)
1828                 adapter->wol |= E1000_WUFC_MAG;
1829         if (wol->wolopts & WAKE_PHY)
1830                 adapter->wol |= E1000_WUFC_LNKC;
1831
1832         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1833
1834         return 0;
1835 }
1836
1837 static int e1000_set_phys_id(struct net_device *netdev,
1838                              enum ethtool_phys_id_state state)
1839 {
1840         struct e1000_adapter *adapter = netdev_priv(netdev);
1841         struct e1000_hw *hw = &adapter->hw;
1842
1843         switch (state) {
1844         case ETHTOOL_ID_ACTIVE:
1845                 if (!hw->mac.ops.blink_led)
1846                         return 2;       /* cycle on/off twice per second */
1847
1848                 hw->mac.ops.blink_led(hw);
1849                 break;
1850
1851         case ETHTOOL_ID_INACTIVE:
1852                 if (hw->phy.type == e1000_phy_ife)
1853                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1854                 hw->mac.ops.led_off(hw);
1855                 hw->mac.ops.cleanup_led(hw);
1856                 break;
1857
1858         case ETHTOOL_ID_ON:
1859                 hw->mac.ops.led_on(hw);
1860                 break;
1861
1862         case ETHTOOL_ID_OFF:
1863                 hw->mac.ops.led_off(hw);
1864                 break;
1865         }
1866         return 0;
1867 }
1868
1869 static int e1000_get_coalesce(struct net_device *netdev,
1870                               struct ethtool_coalesce *ec)
1871 {
1872         struct e1000_adapter *adapter = netdev_priv(netdev);
1873
1874         if (adapter->itr_setting <= 4)
1875                 ec->rx_coalesce_usecs = adapter->itr_setting;
1876         else
1877                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1878
1879         return 0;
1880 }
1881
1882 static int e1000_set_coalesce(struct net_device *netdev,
1883                               struct ethtool_coalesce *ec)
1884 {
1885         struct e1000_adapter *adapter = netdev_priv(netdev);
1886         struct e1000_hw *hw = &adapter->hw;
1887
1888         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1889             ((ec->rx_coalesce_usecs > 4) &&
1890              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1891             (ec->rx_coalesce_usecs == 2))
1892                 return -EINVAL;
1893
1894         if (ec->rx_coalesce_usecs == 4) {
1895                 adapter->itr = adapter->itr_setting = 4;
1896         } else if (ec->rx_coalesce_usecs <= 3) {
1897                 adapter->itr = 20000;
1898                 adapter->itr_setting = ec->rx_coalesce_usecs;
1899         } else {
1900                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1901                 adapter->itr_setting = adapter->itr & ~3;
1902         }
1903
1904         if (adapter->itr_setting != 0)
1905                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1906         else
1907                 ew32(ITR, 0);
1908
1909         return 0;
1910 }
1911
1912 static int e1000_nway_reset(struct net_device *netdev)
1913 {
1914         struct e1000_adapter *adapter = netdev_priv(netdev);
1915
1916         if (!netif_running(netdev))
1917                 return -EAGAIN;
1918
1919         if (!adapter->hw.mac.autoneg)
1920                 return -EINVAL;
1921
1922         e1000e_reinit_locked(adapter);
1923
1924         return 0;
1925 }
1926
1927 static void e1000_get_ethtool_stats(struct net_device *netdev,
1928                                     struct ethtool_stats *stats,
1929                                     u64 *data)
1930 {
1931         struct e1000_adapter *adapter = netdev_priv(netdev);
1932         struct rtnl_link_stats64 net_stats;
1933         int i;
1934         char *p = NULL;
1935
1936         e1000e_get_stats64(netdev, &net_stats);
1937         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1938                 switch (e1000_gstrings_stats[i].type) {
1939                 case NETDEV_STATS:
1940                         p = (char *) &net_stats +
1941                                         e1000_gstrings_stats[i].stat_offset;
1942                         break;
1943                 case E1000_STATS:
1944                         p = (char *) adapter +
1945                                         e1000_gstrings_stats[i].stat_offset;
1946                         break;
1947                 default:
1948                         data[i] = 0;
1949                         continue;
1950                 }
1951
1952                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1953                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1954         }
1955 }
1956
1957 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1958                               u8 *data)
1959 {
1960         u8 *p = data;
1961         int i;
1962
1963         switch (stringset) {
1964         case ETH_SS_TEST:
1965                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1966                 break;
1967         case ETH_SS_STATS:
1968                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1969                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1970                                ETH_GSTRING_LEN);
1971                         p += ETH_GSTRING_LEN;
1972                 }
1973                 break;
1974         }
1975 }
1976
1977 static int e1000_get_rxnfc(struct net_device *netdev,
1978                            struct ethtool_rxnfc *info, u32 *rule_locs)
1979 {
1980         info->data = 0;
1981
1982         switch (info->cmd) {
1983         case ETHTOOL_GRXFH: {
1984                 struct e1000_adapter *adapter = netdev_priv(netdev);
1985                 struct e1000_hw *hw = &adapter->hw;
1986                 u32 mrqc = er32(MRQC);
1987
1988                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
1989                         return 0;
1990
1991                 switch (info->flow_type) {
1992                 case TCP_V4_FLOW:
1993                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
1994                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1995                         /* fall through */
1996                 case UDP_V4_FLOW:
1997                 case SCTP_V4_FLOW:
1998                 case AH_ESP_V4_FLOW:
1999                 case IPV4_FLOW:
2000                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2001                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2002                         break;
2003                 case TCP_V6_FLOW:
2004                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2005                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2006                         /* fall through */
2007                 case UDP_V6_FLOW:
2008                 case SCTP_V6_FLOW:
2009                 case AH_ESP_V6_FLOW:
2010                 case IPV6_FLOW:
2011                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2012                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2013                         break;
2014                 default:
2015                         break;
2016                 }
2017                 return 0;
2018         }
2019         default:
2020                 return -EOPNOTSUPP;
2021         }
2022 }
2023
2024 static const struct ethtool_ops e1000_ethtool_ops = {
2025         .get_settings           = e1000_get_settings,
2026         .set_settings           = e1000_set_settings,
2027         .get_drvinfo            = e1000_get_drvinfo,
2028         .get_regs_len           = e1000_get_regs_len,
2029         .get_regs               = e1000_get_regs,
2030         .get_wol                = e1000_get_wol,
2031         .set_wol                = e1000_set_wol,
2032         .get_msglevel           = e1000_get_msglevel,
2033         .set_msglevel           = e1000_set_msglevel,
2034         .nway_reset             = e1000_nway_reset,
2035         .get_link               = ethtool_op_get_link,
2036         .get_eeprom_len         = e1000_get_eeprom_len,
2037         .get_eeprom             = e1000_get_eeprom,
2038         .set_eeprom             = e1000_set_eeprom,
2039         .get_ringparam          = e1000_get_ringparam,
2040         .set_ringparam          = e1000_set_ringparam,
2041         .get_pauseparam         = e1000_get_pauseparam,
2042         .set_pauseparam         = e1000_set_pauseparam,
2043         .self_test              = e1000_diag_test,
2044         .get_strings            = e1000_get_strings,
2045         .set_phys_id            = e1000_set_phys_id,
2046         .get_ethtool_stats      = e1000_get_ethtool_stats,
2047         .get_sset_count         = e1000e_get_sset_count,
2048         .get_coalesce           = e1000_get_coalesce,
2049         .set_coalesce           = e1000_set_coalesce,
2050         .get_rxnfc              = e1000_get_rxnfc,
2051 };
2052
2053 void e1000e_set_ethtool_ops(struct net_device *netdev)
2054 {
2055         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2056 }