HID: picolcd: sanity check report size in raw_event() callback
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168                                      bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170                                  __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172                                   __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190         "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static const struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = e1000_remove,
208 #ifdef CONFIG_PM
209         /* Power Management Hooks */
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234         struct e1000_adapter *adapter = hw->back;
235         return adapter->netdev;
236 }
237
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246         int ret;
247         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249         pr_info("%s\n", e1000_copyright);
250
251         ret = pci_register_driver(&e1000_driver);
252         if (copybreak != COPYBREAK_DEFAULT) {
253                 if (copybreak == 0)
254                         pr_info("copybreak disabled\n");
255                 else
256                         pr_info("copybreak enabled for "
257                                    "packets <= %u bytes\n", copybreak);
258         }
259         return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272         pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279         struct net_device *netdev = adapter->netdev;
280         irq_handler_t handler = e1000_intr;
281         int irq_flags = IRQF_SHARED;
282         int err;
283
284         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285                           netdev);
286         if (err) {
287                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288         }
289
290         return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296
297         free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306         struct e1000_hw *hw = &adapter->hw;
307
308         ew32(IMC, ~0);
309         E1000_WRITE_FLUSH();
310         synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320
321         ew32(IMS, IMS_ENABLE_MASK);
322         E1000_WRITE_FLUSH();
323 }
324
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327         struct e1000_hw *hw = &adapter->hw;
328         struct net_device *netdev = adapter->netdev;
329         u16 vid = hw->mng_cookie.vlan_id;
330         u16 old_vid = adapter->mng_vlan_id;
331
332         if (!e1000_vlan_used(adapter))
333                 return;
334
335         if (!test_bit(vid, adapter->active_vlans)) {
336                 if (hw->mng_cookie.status &
337                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339                         adapter->mng_vlan_id = vid;
340                 } else {
341                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342                 }
343                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344                     (vid != old_vid) &&
345                     !test_bit(old_vid, adapter->active_vlans))
346                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347                                                old_vid);
348         } else {
349                 adapter->mng_vlan_id = vid;
350         }
351 }
352
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355         struct e1000_hw *hw = &adapter->hw;
356
357         if (adapter->en_mng_pt) {
358                 u32 manc = er32(MANC);
359
360                 /* disable hardware interception of ARP */
361                 manc &= ~(E1000_MANC_ARP_EN);
362
363                 ew32(MANC, manc);
364         }
365 }
366
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369         struct e1000_hw *hw = &adapter->hw;
370
371         if (adapter->en_mng_pt) {
372                 u32 manc = er32(MANC);
373
374                 /* re-enable hardware interception of ARP */
375                 manc |= E1000_MANC_ARP_EN;
376
377                 ew32(MANC, manc);
378         }
379 }
380
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387         struct net_device *netdev = adapter->netdev;
388         int i;
389
390         e1000_set_rx_mode(netdev);
391
392         e1000_restore_vlan(adapter);
393         e1000_init_manageability(adapter);
394
395         e1000_configure_tx(adapter);
396         e1000_setup_rctl(adapter);
397         e1000_configure_rx(adapter);
398         /* call E1000_DESC_UNUSED which always leaves
399          * at least 1 descriptor unused to make sure
400          * next_to_use != next_to_clean
401          */
402         for (i = 0; i < adapter->num_rx_queues; i++) {
403                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404                 adapter->alloc_rx_buf(adapter, ring,
405                                       E1000_DESC_UNUSED(ring));
406         }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411         struct e1000_hw *hw = &adapter->hw;
412
413         /* hardware has been reset, we need to reload some things */
414         e1000_configure(adapter);
415
416         clear_bit(__E1000_DOWN, &adapter->flags);
417
418         napi_enable(&adapter->napi);
419
420         e1000_irq_enable(adapter);
421
422         netif_wake_queue(adapter->netdev);
423
424         /* fire a link change interrupt to start the watchdog */
425         ew32(ICS, E1000_ICS_LSC);
426         return 0;
427 }
428
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439         struct e1000_hw *hw = &adapter->hw;
440         u16 mii_reg = 0;
441
442         /* Just clear the power down bit to wake the phy back up */
443         if (hw->media_type == e1000_media_type_copper) {
444                 /* according to the manual, the phy will retain its
445                  * settings across a power-down/up cycle
446                  */
447                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448                 mii_reg &= ~MII_CR_POWER_DOWN;
449                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450         }
451 }
452
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455         struct e1000_hw *hw = &adapter->hw;
456
457         /* Power down the PHY so no link is implied when interface is down *
458          * The PHY cannot be powered down if any of the following is true *
459          * (a) WoL is enabled
460          * (b) AMT is active
461          * (c) SoL/IDER session is active
462          */
463         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464            hw->media_type == e1000_media_type_copper) {
465                 u16 mii_reg = 0;
466
467                 switch (hw->mac_type) {
468                 case e1000_82540:
469                 case e1000_82545:
470                 case e1000_82545_rev_3:
471                 case e1000_82546:
472                 case e1000_ce4100:
473                 case e1000_82546_rev_3:
474                 case e1000_82541:
475                 case e1000_82541_rev_2:
476                 case e1000_82547:
477                 case e1000_82547_rev_2:
478                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
479                                 goto out;
480                         break;
481                 default:
482                         goto out;
483                 }
484                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485                 mii_reg |= MII_CR_POWER_DOWN;
486                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487                 msleep(1);
488         }
489 out:
490         return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495         set_bit(__E1000_DOWN, &adapter->flags);
496
497         cancel_delayed_work_sync(&adapter->watchdog_task);
498
499         /*
500          * Since the watchdog task can reschedule other tasks, we should cancel
501          * it first, otherwise we can run into the situation when a work is
502          * still running after the adapter has been turned down.
503          */
504
505         cancel_delayed_work_sync(&adapter->phy_info_task);
506         cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508         /* Only kill reset task if adapter is not resetting */
509         if (!test_bit(__E1000_RESETTING, &adapter->flags))
510                 cancel_work_sync(&adapter->reset_task);
511 }
512
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515         struct e1000_hw *hw = &adapter->hw;
516         struct net_device *netdev = adapter->netdev;
517         u32 rctl, tctl;
518
519
520         /* disable receives in the hardware */
521         rctl = er32(RCTL);
522         ew32(RCTL, rctl & ~E1000_RCTL_EN);
523         /* flush and sleep below */
524
525         netif_tx_disable(netdev);
526
527         /* disable transmits in the hardware */
528         tctl = er32(TCTL);
529         tctl &= ~E1000_TCTL_EN;
530         ew32(TCTL, tctl);
531         /* flush both disables and wait for them to finish */
532         E1000_WRITE_FLUSH();
533         msleep(10);
534
535         napi_disable(&adapter->napi);
536
537         e1000_irq_disable(adapter);
538
539         /* Setting DOWN must be after irq_disable to prevent
540          * a screaming interrupt.  Setting DOWN also prevents
541          * tasks from rescheduling.
542          */
543         e1000_down_and_stop(adapter);
544
545         adapter->link_speed = 0;
546         adapter->link_duplex = 0;
547         netif_carrier_off(netdev);
548
549         e1000_reset(adapter);
550         e1000_clean_all_tx_rings(adapter);
551         e1000_clean_all_rx_rings(adapter);
552 }
553
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556         WARN_ON(in_interrupt());
557         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558                 msleep(1);
559         e1000_down(adapter);
560         e1000_up(adapter);
561         clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566         struct e1000_hw *hw = &adapter->hw;
567         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568         bool legacy_pba_adjust = false;
569         u16 hwm;
570
571         /* Repartition Pba for greater than 9k mtu
572          * To take effect CTRL.RST is required.
573          */
574
575         switch (hw->mac_type) {
576         case e1000_82542_rev2_0:
577         case e1000_82542_rev2_1:
578         case e1000_82543:
579         case e1000_82544:
580         case e1000_82540:
581         case e1000_82541:
582         case e1000_82541_rev_2:
583                 legacy_pba_adjust = true;
584                 pba = E1000_PBA_48K;
585                 break;
586         case e1000_82545:
587         case e1000_82545_rev_3:
588         case e1000_82546:
589         case e1000_ce4100:
590         case e1000_82546_rev_3:
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82547:
594         case e1000_82547_rev_2:
595                 legacy_pba_adjust = true;
596                 pba = E1000_PBA_30K;
597                 break;
598         case e1000_undefined:
599         case e1000_num_macs:
600                 break;
601         }
602
603         if (legacy_pba_adjust) {
604                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605                         pba -= 8; /* allocate more FIFO for Tx */
606
607                 if (hw->mac_type == e1000_82547) {
608                         adapter->tx_fifo_head = 0;
609                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610                         adapter->tx_fifo_size =
611                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612                         atomic_set(&adapter->tx_fifo_stall, 0);
613                 }
614         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615                 /* adjust PBA for jumbo frames */
616                 ew32(PBA, pba);
617
618                 /* To maintain wire speed transmits, the Tx FIFO should be
619                  * large enough to accommodate two full transmit packets,
620                  * rounded up to the next 1KB and expressed in KB.  Likewise,
621                  * the Rx FIFO should be large enough to accommodate at least
622                  * one full receive packet and is similarly rounded up and
623                  * expressed in KB.
624                  */
625                 pba = er32(PBA);
626                 /* upper 16 bits has Tx packet buffer allocation size in KB */
627                 tx_space = pba >> 16;
628                 /* lower 16 bits has Rx packet buffer allocation size in KB */
629                 pba &= 0xffff;
630                 /* the Tx fifo also stores 16 bytes of information about the Tx
631                  * but don't include ethernet FCS because hardware appends it
632                  */
633                 min_tx_space = (hw->max_frame_size +
634                                 sizeof(struct e1000_tx_desc) -
635                                 ETH_FCS_LEN) * 2;
636                 min_tx_space = ALIGN(min_tx_space, 1024);
637                 min_tx_space >>= 10;
638                 /* software strips receive CRC, so leave room for it */
639                 min_rx_space = hw->max_frame_size;
640                 min_rx_space = ALIGN(min_rx_space, 1024);
641                 min_rx_space >>= 10;
642
643                 /* If current Tx allocation is less than the min Tx FIFO size,
644                  * and the min Tx FIFO size is less than the current Rx FIFO
645                  * allocation, take space away from current Rx allocation
646                  */
647                 if (tx_space < min_tx_space &&
648                     ((min_tx_space - tx_space) < pba)) {
649                         pba = pba - (min_tx_space - tx_space);
650
651                         /* PCI/PCIx hardware has PBA alignment constraints */
652                         switch (hw->mac_type) {
653                         case e1000_82545 ... e1000_82546_rev_3:
654                                 pba &= ~(E1000_PBA_8K - 1);
655                                 break;
656                         default:
657                                 break;
658                         }
659
660                         /* if short on Rx space, Rx wins and must trump Tx
661                          * adjustment or use Early Receive if available
662                          */
663                         if (pba < min_rx_space)
664                                 pba = min_rx_space;
665                 }
666         }
667
668         ew32(PBA, pba);
669
670         /* flow control settings:
671          * The high water mark must be low enough to fit one full frame
672          * (or the size used for early receive) above it in the Rx FIFO.
673          * Set it to the lower of:
674          * - 90% of the Rx FIFO size, and
675          * - the full Rx FIFO size minus the early receive size (for parts
676          *   with ERT support assuming ERT set to E1000_ERT_2048), or
677          * - the full Rx FIFO size minus one full frame
678          */
679         hwm = min(((pba << 10) * 9 / 10),
680                   ((pba << 10) - hw->max_frame_size));
681
682         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
683         hw->fc_low_water = hw->fc_high_water - 8;
684         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685         hw->fc_send_xon = 1;
686         hw->fc = hw->original_fc;
687
688         /* Allow time for pending master requests to run */
689         e1000_reset_hw(hw);
690         if (hw->mac_type >= e1000_82544)
691                 ew32(WUC, 0);
692
693         if (e1000_init_hw(hw))
694                 e_dev_err("Hardware Error\n");
695         e1000_update_mng_vlan(adapter);
696
697         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698         if (hw->mac_type >= e1000_82544 &&
699             hw->autoneg == 1 &&
700             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701                 u32 ctrl = er32(CTRL);
702                 /* clear phy power management bit if we are in gig only mode,
703                  * which if enabled will attempt negotiation to 100Mb, which
704                  * can cause a loss of link at power off or driver unload
705                  */
706                 ctrl &= ~E1000_CTRL_SWDPIN3;
707                 ew32(CTRL, ctrl);
708         }
709
710         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713         e1000_reset_adaptive(hw);
714         e1000_phy_get_info(hw, &adapter->phy_info);
715
716         e1000_release_manageability(adapter);
717 }
718
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722         struct net_device *netdev = adapter->netdev;
723         struct ethtool_eeprom eeprom;
724         const struct ethtool_ops *ops = netdev->ethtool_ops;
725         u8 *data;
726         int i;
727         u16 csum_old, csum_new = 0;
728
729         eeprom.len = ops->get_eeprom_len(netdev);
730         eeprom.offset = 0;
731
732         data = kmalloc(eeprom.len, GFP_KERNEL);
733         if (!data)
734                 return;
735
736         ops->get_eeprom(netdev, &eeprom, data);
737
738         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741                 csum_new += data[i] + (data[i + 1] << 8);
742         csum_new = EEPROM_SUM - csum_new;
743
744         pr_err("/*********************/\n");
745         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746         pr_err("Calculated              : 0x%04x\n", csum_new);
747
748         pr_err("Offset    Values\n");
749         pr_err("========  ======\n");
750         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752         pr_err("Include this output when contacting your support provider.\n");
753         pr_err("This is not a software error! Something bad happened to\n");
754         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755         pr_err("result in further problems, possibly loss of data,\n");
756         pr_err("corruption or system hangs!\n");
757         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758         pr_err("which is invalid and requires you to set the proper MAC\n");
759         pr_err("address manually before continuing to enable this network\n");
760         pr_err("device. Please inspect the EEPROM dump and report the\n");
761         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762         pr_err("/*********************/\n");
763
764         kfree(data);
765 }
766
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775         switch (pdev->device) {
776         case E1000_DEV_ID_82540EM:
777         case E1000_DEV_ID_82540EM_LOM:
778         case E1000_DEV_ID_82540EP:
779         case E1000_DEV_ID_82540EP_LOM:
780         case E1000_DEV_ID_82540EP_LP:
781         case E1000_DEV_ID_82541EI:
782         case E1000_DEV_ID_82541EI_MOBILE:
783         case E1000_DEV_ID_82541ER:
784         case E1000_DEV_ID_82541ER_LOM:
785         case E1000_DEV_ID_82541GI:
786         case E1000_DEV_ID_82541GI_LF:
787         case E1000_DEV_ID_82541GI_MOBILE:
788         case E1000_DEV_ID_82544EI_COPPER:
789         case E1000_DEV_ID_82544EI_FIBER:
790         case E1000_DEV_ID_82544GC_COPPER:
791         case E1000_DEV_ID_82544GC_LOM:
792         case E1000_DEV_ID_82545EM_COPPER:
793         case E1000_DEV_ID_82545EM_FIBER:
794         case E1000_DEV_ID_82546EB_COPPER:
795         case E1000_DEV_ID_82546EB_FIBER:
796         case E1000_DEV_ID_82546EB_QUAD_COPPER:
797                 return true;
798         default:
799                 return false;
800         }
801 }
802
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804         netdev_features_t features)
805 {
806         /* Since there is no support for separate Rx/Tx vlan accel
807          * enable/disable make sure Tx flag is always in same state as Rx.
808          */
809         if (features & NETIF_F_HW_VLAN_CTAG_RX)
810                 features |= NETIF_F_HW_VLAN_CTAG_TX;
811         else
812                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814         return features;
815 }
816
817 static int e1000_set_features(struct net_device *netdev,
818         netdev_features_t features)
819 {
820         struct e1000_adapter *adapter = netdev_priv(netdev);
821         netdev_features_t changed = features ^ netdev->features;
822
823         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824                 e1000_vlan_mode(netdev, features);
825
826         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827                 return 0;
828
829         netdev->features = features;
830         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832         if (netif_running(netdev))
833                 e1000_reinit_locked(adapter);
834         else
835                 e1000_reset(adapter);
836
837         return 0;
838 }
839
840 static const struct net_device_ops e1000_netdev_ops = {
841         .ndo_open               = e1000_open,
842         .ndo_stop               = e1000_close,
843         .ndo_start_xmit         = e1000_xmit_frame,
844         .ndo_get_stats          = e1000_get_stats,
845         .ndo_set_rx_mode        = e1000_set_rx_mode,
846         .ndo_set_mac_address    = e1000_set_mac,
847         .ndo_tx_timeout         = e1000_tx_timeout,
848         .ndo_change_mtu         = e1000_change_mtu,
849         .ndo_do_ioctl           = e1000_ioctl,
850         .ndo_validate_addr      = eth_validate_addr,
851         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
852         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854         .ndo_poll_controller    = e1000_netpoll,
855 #endif
856         .ndo_fix_features       = e1000_fix_features,
857         .ndo_set_features       = e1000_set_features,
858 };
859
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872                                 struct e1000_hw *hw)
873 {
874         struct pci_dev *pdev = adapter->pdev;
875
876         /* PCI config space info */
877         hw->vendor_id = pdev->vendor;
878         hw->device_id = pdev->device;
879         hw->subsystem_vendor_id = pdev->subsystem_vendor;
880         hw->subsystem_id = pdev->subsystem_device;
881         hw->revision_id = pdev->revision;
882
883         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885         hw->max_frame_size = adapter->netdev->mtu +
886                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889         /* identify the MAC */
890         if (e1000_set_mac_type(hw)) {
891                 e_err(probe, "Unknown MAC Type\n");
892                 return -EIO;
893         }
894
895         switch (hw->mac_type) {
896         default:
897                 break;
898         case e1000_82541:
899         case e1000_82547:
900         case e1000_82541_rev_2:
901         case e1000_82547_rev_2:
902                 hw->phy_init_script = 1;
903                 break;
904         }
905
906         e1000_set_media_type(hw);
907         e1000_get_bus_info(hw);
908
909         hw->wait_autoneg_complete = false;
910         hw->tbi_compatibility_en = true;
911         hw->adaptive_ifs = true;
912
913         /* Copper options */
914
915         if (hw->media_type == e1000_media_type_copper) {
916                 hw->mdix = AUTO_ALL_MODES;
917                 hw->disable_polarity_correction = false;
918                 hw->master_slave = E1000_MASTER_SLAVE;
919         }
920
921         return 0;
922 }
923
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937         struct net_device *netdev;
938         struct e1000_adapter *adapter;
939         struct e1000_hw *hw;
940
941         static int cards_found = 0;
942         static int global_quad_port_a = 0; /* global ksp3 port a indication */
943         int i, err, pci_using_dac;
944         u16 eeprom_data = 0;
945         u16 tmp = 0;
946         u16 eeprom_apme_mask = E1000_EEPROM_APME;
947         int bars, need_ioport;
948
949         /* do not allocate ioport bars when not needed */
950         need_ioport = e1000_is_need_ioport(pdev);
951         if (need_ioport) {
952                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953                 err = pci_enable_device(pdev);
954         } else {
955                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956                 err = pci_enable_device_mem(pdev);
957         }
958         if (err)
959                 return err;
960
961         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962         if (err)
963                 goto err_pci_reg;
964
965         pci_set_master(pdev);
966         err = pci_save_state(pdev);
967         if (err)
968                 goto err_alloc_etherdev;
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         /* make ready for any if (hw->...) below */
1005         err = e1000_init_hw_struct(adapter, hw);
1006         if (err)
1007                 goto err_sw_init;
1008
1009         /* there is a workaround being applied below that limits
1010          * 64-bit DMA addresses to 64-bit hardware.  There are some
1011          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012          */
1013         pci_using_dac = 0;
1014         if ((hw->bus_type == e1000_bus_type_pcix) &&
1015             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016                 pci_using_dac = 1;
1017         } else {
1018                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019                 if (err) {
1020                         pr_err("No usable DMA config, aborting\n");
1021                         goto err_dma;
1022                 }
1023         }
1024
1025         netdev->netdev_ops = &e1000_netdev_ops;
1026         e1000_set_ethtool_ops(netdev);
1027         netdev->watchdog_timeo = 5 * HZ;
1028         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032         adapter->bd_number = cards_found;
1033
1034         /* setup the private structure */
1035
1036         err = e1000_sw_init(adapter);
1037         if (err)
1038                 goto err_sw_init;
1039
1040         err = -EIO;
1041         if (hw->mac_type == e1000_ce4100) {
1042                 hw->ce4100_gbe_mdio_base_virt =
1043                                         ioremap(pci_resource_start(pdev, BAR_1),
1044                                                 pci_resource_len(pdev, BAR_1));
1045
1046                 if (!hw->ce4100_gbe_mdio_base_virt)
1047                         goto err_mdio_ioremap;
1048         }
1049
1050         if (hw->mac_type >= e1000_82543) {
1051                 netdev->hw_features = NETIF_F_SG |
1052                                    NETIF_F_HW_CSUM |
1053                                    NETIF_F_HW_VLAN_CTAG_RX;
1054                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1056         }
1057
1058         if ((hw->mac_type >= e1000_82544) &&
1059            (hw->mac_type != e1000_82547))
1060                 netdev->hw_features |= NETIF_F_TSO;
1061
1062         netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064         netdev->features |= netdev->hw_features;
1065         netdev->hw_features |= (NETIF_F_RXCSUM |
1066                                 NETIF_F_RXALL |
1067                                 NETIF_F_RXFCS);
1068
1069         if (pci_using_dac) {
1070                 netdev->features |= NETIF_F_HIGHDMA;
1071                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072         }
1073
1074         netdev->vlan_features |= (NETIF_F_TSO |
1075                                   NETIF_F_HW_CSUM |
1076                                   NETIF_F_SG);
1077
1078         netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1080         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082         /* initialize eeprom parameters */
1083         if (e1000_init_eeprom_params(hw)) {
1084                 e_err(probe, "EEPROM initialization failed\n");
1085                 goto err_eeprom;
1086         }
1087
1088         /* before reading the EEPROM, reset the controller to
1089          * put the device in a known good starting state
1090          */
1091
1092         e1000_reset_hw(hw);
1093
1094         /* make sure the EEPROM is good */
1095         if (e1000_validate_eeprom_checksum(hw) < 0) {
1096                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097                 e1000_dump_eeprom(adapter);
1098                 /* set MAC address to all zeroes to invalidate and temporary
1099                  * disable this device for the user. This blocks regular
1100                  * traffic while still permitting ethtool ioctls from reaching
1101                  * the hardware as well as allowing the user to run the
1102                  * interface after manually setting a hw addr using
1103                  * `ip set address`
1104                  */
1105                 memset(hw->mac_addr, 0, netdev->addr_len);
1106         } else {
1107                 /* copy the MAC address out of the EEPROM */
1108                 if (e1000_read_mac_addr(hw))
1109                         e_err(probe, "EEPROM Read Error\n");
1110         }
1111         /* don't block initalization here due to bad MAC address */
1112         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114         if (!is_valid_ether_addr(netdev->dev_addr))
1115                 e_err(probe, "Invalid MAC Address\n");
1116
1117
1118         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120                           e1000_82547_tx_fifo_stall_task);
1121         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124         e1000_check_options(adapter);
1125
1126         /* Initial Wake on LAN setting
1127          * If APM wake is enabled in the EEPROM,
1128          * enable the ACPI Magic Packet filter
1129          */
1130
1131         switch (hw->mac_type) {
1132         case e1000_82542_rev2_0:
1133         case e1000_82542_rev2_1:
1134         case e1000_82543:
1135                 break;
1136         case e1000_82544:
1137                 e1000_read_eeprom(hw,
1138                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140                 break;
1141         case e1000_82546:
1142         case e1000_82546_rev_3:
1143                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144                         e1000_read_eeprom(hw,
1145                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146                         break;
1147                 }
1148                 /* Fall Through */
1149         default:
1150                 e1000_read_eeprom(hw,
1151                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152                 break;
1153         }
1154         if (eeprom_data & eeprom_apme_mask)
1155                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157         /* now that we have the eeprom settings, apply the special cases
1158          * where the eeprom may be wrong or the board simply won't support
1159          * wake on lan on a particular port
1160          */
1161         switch (pdev->device) {
1162         case E1000_DEV_ID_82546GB_PCIE:
1163                 adapter->eeprom_wol = 0;
1164                 break;
1165         case E1000_DEV_ID_82546EB_FIBER:
1166         case E1000_DEV_ID_82546GB_FIBER:
1167                 /* Wake events only supported on port A for dual fiber
1168                  * regardless of eeprom setting
1169                  */
1170                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171                         adapter->eeprom_wol = 0;
1172                 break;
1173         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174                 /* if quad port adapter, disable WoL on all but port A */
1175                 if (global_quad_port_a != 0)
1176                         adapter->eeprom_wol = 0;
1177                 else
1178                         adapter->quad_port_a = true;
1179                 /* Reset for multiple quad port adapters */
1180                 if (++global_quad_port_a == 4)
1181                         global_quad_port_a = 0;
1182                 break;
1183         }
1184
1185         /* initialize the wol settings based on the eeprom settings */
1186         adapter->wol = adapter->eeprom_wol;
1187         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189         /* Auto detect PHY address */
1190         if (hw->mac_type == e1000_ce4100) {
1191                 for (i = 0; i < 32; i++) {
1192                         hw->phy_addr = i;
1193                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194                         if (tmp == 0 || tmp == 0xFF) {
1195                                 if (i == 31)
1196                                         goto err_eeprom;
1197                                 continue;
1198                         } else
1199                                 break;
1200                 }
1201         }
1202
1203         /* reset the hardware with the new settings */
1204         e1000_reset(adapter);
1205
1206         strcpy(netdev->name, "eth%d");
1207         err = register_netdev(netdev);
1208         if (err)
1209                 goto err_register;
1210
1211         e1000_vlan_filter_on_off(adapter, false);
1212
1213         /* print bus type/speed/width info */
1214         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221                netdev->dev_addr);
1222
1223         /* carrier off reporting is important to ethtool even BEFORE open */
1224         netif_carrier_off(netdev);
1225
1226         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228         cards_found++;
1229         return 0;
1230
1231 err_register:
1232 err_eeprom:
1233         e1000_phy_hw_reset(hw);
1234
1235         if (hw->flash_address)
1236                 iounmap(hw->flash_address);
1237         kfree(adapter->tx_ring);
1238         kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242         iounmap(hw->ce4100_gbe_mdio_base_virt);
1243         iounmap(hw->hw_addr);
1244 err_ioremap:
1245         free_netdev(netdev);
1246 err_alloc_etherdev:
1247         pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249         pci_disable_device(pdev);
1250         return err;
1251 }
1252
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device.  The could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264         struct net_device *netdev = pci_get_drvdata(pdev);
1265         struct e1000_adapter *adapter = netdev_priv(netdev);
1266         struct e1000_hw *hw = &adapter->hw;
1267
1268         e1000_down_and_stop(adapter);
1269         e1000_release_manageability(adapter);
1270
1271         unregister_netdev(netdev);
1272
1273         e1000_phy_hw_reset(hw);
1274
1275         kfree(adapter->tx_ring);
1276         kfree(adapter->rx_ring);
1277
1278         if (hw->mac_type == e1000_ce4100)
1279                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1280         iounmap(hw->hw_addr);
1281         if (hw->flash_address)
1282                 iounmap(hw->flash_address);
1283         pci_release_selected_regions(pdev, adapter->bars);
1284
1285         free_netdev(netdev);
1286
1287         pci_disable_device(pdev);
1288 }
1289
1290 /**
1291  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292  * @adapter: board private structure to initialize
1293  *
1294  * e1000_sw_init initializes the Adapter private data structure.
1295  * e1000_init_hw_struct MUST be called before this function
1296  **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301         adapter->num_tx_queues = 1;
1302         adapter->num_rx_queues = 1;
1303
1304         if (e1000_alloc_queues(adapter)) {
1305                 e_err(probe, "Unable to allocate memory for queues\n");
1306                 return -ENOMEM;
1307         }
1308
1309         /* Explicitly disable IRQ since the NIC can be in any state. */
1310         e1000_irq_disable(adapter);
1311
1312         spin_lock_init(&adapter->stats_lock);
1313
1314         set_bit(__E1000_DOWN, &adapter->flags);
1315
1316         return 0;
1317 }
1318
1319 /**
1320  * e1000_alloc_queues - Allocate memory for all rings
1321  * @adapter: board private structure to initialize
1322  *
1323  * We allocate one ring per queue at run-time since we don't know the
1324  * number of queues at compile-time.
1325  **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330         if (!adapter->tx_ring)
1331                 return -ENOMEM;
1332
1333         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335         if (!adapter->rx_ring) {
1336                 kfree(adapter->tx_ring);
1337                 return -ENOMEM;
1338         }
1339
1340         return E1000_SUCCESS;
1341 }
1342
1343 /**
1344  * e1000_open - Called when a network interface is made active
1345  * @netdev: network interface device structure
1346  *
1347  * Returns 0 on success, negative value on failure
1348  *
1349  * The open entry point is called when a network interface is made
1350  * active by the system (IFF_UP).  At this point all resources needed
1351  * for transmit and receive operations are allocated, the interrupt
1352  * handler is registered with the OS, the watchdog task is started,
1353  * and the stack is notified that the interface is ready.
1354  **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357         struct e1000_adapter *adapter = netdev_priv(netdev);
1358         struct e1000_hw *hw = &adapter->hw;
1359         int err;
1360
1361         /* disallow open during test */
1362         if (test_bit(__E1000_TESTING, &adapter->flags))
1363                 return -EBUSY;
1364
1365         netif_carrier_off(netdev);
1366
1367         /* allocate transmit descriptors */
1368         err = e1000_setup_all_tx_resources(adapter);
1369         if (err)
1370                 goto err_setup_tx;
1371
1372         /* allocate receive descriptors */
1373         err = e1000_setup_all_rx_resources(adapter);
1374         if (err)
1375                 goto err_setup_rx;
1376
1377         e1000_power_up_phy(adapter);
1378
1379         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380         if ((hw->mng_cookie.status &
1381                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382                 e1000_update_mng_vlan(adapter);
1383         }
1384
1385         /* before we allocate an interrupt, we must be ready to handle it.
1386          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387          * as soon as we call pci_request_irq, so we have to setup our
1388          * clean_rx handler before we do so.
1389          */
1390         e1000_configure(adapter);
1391
1392         err = e1000_request_irq(adapter);
1393         if (err)
1394                 goto err_req_irq;
1395
1396         /* From here on the code is the same as e1000_up() */
1397         clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399         napi_enable(&adapter->napi);
1400
1401         e1000_irq_enable(adapter);
1402
1403         netif_start_queue(netdev);
1404
1405         /* fire a link status change interrupt to start the watchdog */
1406         ew32(ICS, E1000_ICS_LSC);
1407
1408         return E1000_SUCCESS;
1409
1410 err_req_irq:
1411         e1000_power_down_phy(adapter);
1412         e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414         e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416         e1000_reset(adapter);
1417
1418         return err;
1419 }
1420
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434         struct e1000_adapter *adapter = netdev_priv(netdev);
1435         struct e1000_hw *hw = &adapter->hw;
1436         int count = E1000_CHECK_RESET_COUNT;
1437
1438         while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439                 usleep_range(10000, 20000);
1440
1441         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442         e1000_down(adapter);
1443         e1000_power_down_phy(adapter);
1444         e1000_free_irq(adapter);
1445
1446         e1000_free_all_tx_resources(adapter);
1447         e1000_free_all_rx_resources(adapter);
1448
1449         /* kill manageability vlan ID if supported, but not if a vlan with
1450          * the same ID is registered on the host OS (let 8021q kill it)
1451          */
1452         if ((hw->mng_cookie.status &
1453              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456                                        adapter->mng_vlan_id);
1457         }
1458
1459         return 0;
1460 }
1461
1462 /**
1463  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464  * @adapter: address of board private structure
1465  * @start: address of beginning of memory
1466  * @len: length of memory
1467  **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469                                   unsigned long len)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472         unsigned long begin = (unsigned long)start;
1473         unsigned long end = begin + len;
1474
1475         /* First rev 82545 and 82546 need to not allow any memory
1476          * write location to cross 64k boundary due to errata 23
1477          */
1478         if (hw->mac_type == e1000_82545 ||
1479             hw->mac_type == e1000_ce4100 ||
1480             hw->mac_type == e1000_82546) {
1481                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482         }
1483
1484         return true;
1485 }
1486
1487 /**
1488  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489  * @adapter: board private structure
1490  * @txdr:    tx descriptor ring (for a specific queue) to setup
1491  *
1492  * Return 0 on success, negative on failure
1493  **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495                                     struct e1000_tx_ring *txdr)
1496 {
1497         struct pci_dev *pdev = adapter->pdev;
1498         int size;
1499
1500         size = sizeof(struct e1000_buffer) * txdr->count;
1501         txdr->buffer_info = vzalloc(size);
1502         if (!txdr->buffer_info)
1503                 return -ENOMEM;
1504
1505         /* round up to nearest 4K */
1506
1507         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508         txdr->size = ALIGN(txdr->size, 4096);
1509
1510         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511                                         GFP_KERNEL);
1512         if (!txdr->desc) {
1513 setup_tx_desc_die:
1514                 vfree(txdr->buffer_info);
1515                 return -ENOMEM;
1516         }
1517
1518         /* Fix for errata 23, can't cross 64kB boundary */
1519         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520                 void *olddesc = txdr->desc;
1521                 dma_addr_t olddma = txdr->dma;
1522                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523                       txdr->size, txdr->desc);
1524                 /* Try again, without freeing the previous */
1525                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526                                                 &txdr->dma, GFP_KERNEL);
1527                 /* Failed allocation, critical failure */
1528                 if (!txdr->desc) {
1529                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530                                           olddma);
1531                         goto setup_tx_desc_die;
1532                 }
1533
1534                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535                         /* give up */
1536                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537                                           txdr->dma);
1538                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539                                           olddma);
1540                         e_err(probe, "Unable to allocate aligned memory "
1541                               "for the transmit descriptor ring\n");
1542                         vfree(txdr->buffer_info);
1543                         return -ENOMEM;
1544                 } else {
1545                         /* Free old allocation, new allocation was successful */
1546                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                           olddma);
1548                 }
1549         }
1550         memset(txdr->desc, 0, txdr->size);
1551
1552         txdr->next_to_use = 0;
1553         txdr->next_to_clean = 0;
1554
1555         return 0;
1556 }
1557
1558 /**
1559  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560  *                                (Descriptors) for all queues
1561  * @adapter: board private structure
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567         int i, err = 0;
1568
1569         for (i = 0; i < adapter->num_tx_queues; i++) {
1570                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571                 if (err) {
1572                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573                         for (i-- ; i >= 0; i--)
1574                                 e1000_free_tx_resources(adapter,
1575                                                         &adapter->tx_ring[i]);
1576                         break;
1577                 }
1578         }
1579
1580         return err;
1581 }
1582
1583 /**
1584  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585  * @adapter: board private structure
1586  *
1587  * Configure the Tx unit of the MAC after a reset.
1588  **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591         u64 tdba;
1592         struct e1000_hw *hw = &adapter->hw;
1593         u32 tdlen, tctl, tipg;
1594         u32 ipgr1, ipgr2;
1595
1596         /* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598         switch (adapter->num_tx_queues) {
1599         case 1:
1600         default:
1601                 tdba = adapter->tx_ring[0].dma;
1602                 tdlen = adapter->tx_ring[0].count *
1603                         sizeof(struct e1000_tx_desc);
1604                 ew32(TDLEN, tdlen);
1605                 ew32(TDBAH, (tdba >> 32));
1606                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607                 ew32(TDT, 0);
1608                 ew32(TDH, 0);
1609                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610                                            E1000_TDH : E1000_82542_TDH);
1611                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612                                            E1000_TDT : E1000_82542_TDT);
1613                 break;
1614         }
1615
1616         /* Set the default values for the Tx Inter Packet Gap timer */
1617         if ((hw->media_type == e1000_media_type_fiber ||
1618              hw->media_type == e1000_media_type_internal_serdes))
1619                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620         else
1621                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623         switch (hw->mac_type) {
1624         case e1000_82542_rev2_0:
1625         case e1000_82542_rev2_1:
1626                 tipg = DEFAULT_82542_TIPG_IPGT;
1627                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629                 break;
1630         default:
1631                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633                 break;
1634         }
1635         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637         ew32(TIPG, tipg);
1638
1639         /* Set the Tx Interrupt Delay register */
1640
1641         ew32(TIDV, adapter->tx_int_delay);
1642         if (hw->mac_type >= e1000_82540)
1643                 ew32(TADV, adapter->tx_abs_int_delay);
1644
1645         /* Program the Transmit Control Register */
1646
1647         tctl = er32(TCTL);
1648         tctl &= ~E1000_TCTL_CT;
1649         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652         e1000_config_collision_dist(hw);
1653
1654         /* Setup Transmit Descriptor Settings for eop descriptor */
1655         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657         /* only set IDE if we are delaying interrupts using the timers */
1658         if (adapter->tx_int_delay)
1659                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661         if (hw->mac_type < e1000_82543)
1662                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663         else
1664                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666         /* Cache if we're 82544 running in PCI-X because we'll
1667          * need this to apply a workaround later in the send path.
1668          */
1669         if (hw->mac_type == e1000_82544 &&
1670             hw->bus_type == e1000_bus_type_pcix)
1671                 adapter->pcix_82544 = true;
1672
1673         ew32(TCTL, tctl);
1674
1675 }
1676
1677 /**
1678  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679  * @adapter: board private structure
1680  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681  *
1682  * Returns 0 on success, negative on failure
1683  **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685                                     struct e1000_rx_ring *rxdr)
1686 {
1687         struct pci_dev *pdev = adapter->pdev;
1688         int size, desc_len;
1689
1690         size = sizeof(struct e1000_buffer) * rxdr->count;
1691         rxdr->buffer_info = vzalloc(size);
1692         if (!rxdr->buffer_info)
1693                 return -ENOMEM;
1694
1695         desc_len = sizeof(struct e1000_rx_desc);
1696
1697         /* Round up to nearest 4K */
1698
1699         rxdr->size = rxdr->count * desc_len;
1700         rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703                                         GFP_KERNEL);
1704         if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706                 vfree(rxdr->buffer_info);
1707                 return -ENOMEM;
1708         }
1709
1710         /* Fix for errata 23, can't cross 64kB boundary */
1711         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712                 void *olddesc = rxdr->desc;
1713                 dma_addr_t olddma = rxdr->dma;
1714                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715                       rxdr->size, rxdr->desc);
1716                 /* Try again, without freeing the previous */
1717                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718                                                 &rxdr->dma, GFP_KERNEL);
1719                 /* Failed allocation, critical failure */
1720                 if (!rxdr->desc) {
1721                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722                                           olddma);
1723                         goto setup_rx_desc_die;
1724                 }
1725
1726                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727                         /* give up */
1728                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729                                           rxdr->dma);
1730                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731                                           olddma);
1732                         e_err(probe, "Unable to allocate aligned memory for "
1733                               "the Rx descriptor ring\n");
1734                         goto setup_rx_desc_die;
1735                 } else {
1736                         /* Free old allocation, new allocation was successful */
1737                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738                                           olddma);
1739                 }
1740         }
1741         memset(rxdr->desc, 0, rxdr->size);
1742
1743         rxdr->next_to_clean = 0;
1744         rxdr->next_to_use = 0;
1745         rxdr->rx_skb_top = NULL;
1746
1747         return 0;
1748 }
1749
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  *                                (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759         int i, err = 0;
1760
1761         for (i = 0; i < adapter->num_rx_queues; i++) {
1762                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763                 if (err) {
1764                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765                         for (i-- ; i >= 0; i--)
1766                                 e1000_free_rx_resources(adapter,
1767                                                         &adapter->rx_ring[i]);
1768                         break;
1769                 }
1770         }
1771
1772         return err;
1773 }
1774
1775 /**
1776  * e1000_setup_rctl - configure the receive control registers
1777  * @adapter: Board private structure
1778  **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781         struct e1000_hw *hw = &adapter->hw;
1782         u32 rctl;
1783
1784         rctl = er32(RCTL);
1785
1786         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789                 E1000_RCTL_RDMTS_HALF |
1790                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792         if (hw->tbi_compatibility_on == 1)
1793                 rctl |= E1000_RCTL_SBP;
1794         else
1795                 rctl &= ~E1000_RCTL_SBP;
1796
1797         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798                 rctl &= ~E1000_RCTL_LPE;
1799         else
1800                 rctl |= E1000_RCTL_LPE;
1801
1802         /* Setup buffer sizes */
1803         rctl &= ~E1000_RCTL_SZ_4096;
1804         rctl |= E1000_RCTL_BSEX;
1805         switch (adapter->rx_buffer_len) {
1806                 case E1000_RXBUFFER_2048:
1807                 default:
1808                         rctl |= E1000_RCTL_SZ_2048;
1809                         rctl &= ~E1000_RCTL_BSEX;
1810                         break;
1811                 case E1000_RXBUFFER_4096:
1812                         rctl |= E1000_RCTL_SZ_4096;
1813                         break;
1814                 case E1000_RXBUFFER_8192:
1815                         rctl |= E1000_RCTL_SZ_8192;
1816                         break;
1817                 case E1000_RXBUFFER_16384:
1818                         rctl |= E1000_RCTL_SZ_16384;
1819                         break;
1820         }
1821
1822         /* This is useful for sniffing bad packets. */
1823         if (adapter->netdev->features & NETIF_F_RXALL) {
1824                 /* UPE and MPE will be handled by normal PROMISC logic
1825                  * in e1000e_set_rx_mode
1826                  */
1827                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832                           E1000_RCTL_DPF | /* Allow filtered pause */
1833                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835                  * and that breaks VLANs.
1836                  */
1837         }
1838
1839         ew32(RCTL, rctl);
1840 }
1841
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850         u64 rdba;
1851         struct e1000_hw *hw = &adapter->hw;
1852         u32 rdlen, rctl, rxcsum;
1853
1854         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855                 rdlen = adapter->rx_ring[0].count *
1856                         sizeof(struct e1000_rx_desc);
1857                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859         } else {
1860                 rdlen = adapter->rx_ring[0].count *
1861                         sizeof(struct e1000_rx_desc);
1862                 adapter->clean_rx = e1000_clean_rx_irq;
1863                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864         }
1865
1866         /* disable receives while setting up the descriptors */
1867         rctl = er32(RCTL);
1868         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870         /* set the Receive Delay Timer Register */
1871         ew32(RDTR, adapter->rx_int_delay);
1872
1873         if (hw->mac_type >= e1000_82540) {
1874                 ew32(RADV, adapter->rx_abs_int_delay);
1875                 if (adapter->itr_setting != 0)
1876                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1877         }
1878
1879         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880          * the Base and Length of the Rx Descriptor Ring
1881          */
1882         switch (adapter->num_rx_queues) {
1883         case 1:
1884         default:
1885                 rdba = adapter->rx_ring[0].dma;
1886                 ew32(RDLEN, rdlen);
1887                 ew32(RDBAH, (rdba >> 32));
1888                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889                 ew32(RDT, 0);
1890                 ew32(RDH, 0);
1891                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892                                            E1000_RDH : E1000_82542_RDH);
1893                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894                                            E1000_RDT : E1000_82542_RDT);
1895                 break;
1896         }
1897
1898         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899         if (hw->mac_type >= e1000_82543) {
1900                 rxcsum = er32(RXCSUM);
1901                 if (adapter->rx_csum)
1902                         rxcsum |= E1000_RXCSUM_TUOFL;
1903                 else
1904                         /* don't need to clear IPPCSE as it defaults to 0 */
1905                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1906                 ew32(RXCSUM, rxcsum);
1907         }
1908
1909         /* Enable Receives */
1910         ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912
1913 /**
1914  * e1000_free_tx_resources - Free Tx Resources per Queue
1915  * @adapter: board private structure
1916  * @tx_ring: Tx descriptor ring for a specific queue
1917  *
1918  * Free all transmit software resources
1919  **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921                                     struct e1000_tx_ring *tx_ring)
1922 {
1923         struct pci_dev *pdev = adapter->pdev;
1924
1925         e1000_clean_tx_ring(adapter, tx_ring);
1926
1927         vfree(tx_ring->buffer_info);
1928         tx_ring->buffer_info = NULL;
1929
1930         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931                           tx_ring->dma);
1932
1933         tx_ring->desc = NULL;
1934 }
1935
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944         int i;
1945
1946         for (i = 0; i < adapter->num_tx_queues; i++)
1947                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951                                              struct e1000_buffer *buffer_info)
1952 {
1953         if (buffer_info->dma) {
1954                 if (buffer_info->mapped_as_page)
1955                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956                                        buffer_info->length, DMA_TO_DEVICE);
1957                 else
1958                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959                                          buffer_info->length,
1960                                          DMA_TO_DEVICE);
1961                 buffer_info->dma = 0;
1962         }
1963         if (buffer_info->skb) {
1964                 dev_kfree_skb_any(buffer_info->skb);
1965                 buffer_info->skb = NULL;
1966         }
1967         buffer_info->time_stamp = 0;
1968         /* buffer_info must be completely set up in the transmit path */
1969 }
1970
1971 /**
1972  * e1000_clean_tx_ring - Free Tx Buffers
1973  * @adapter: board private structure
1974  * @tx_ring: ring to be cleaned
1975  **/
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977                                 struct e1000_tx_ring *tx_ring)
1978 {
1979         struct e1000_hw *hw = &adapter->hw;
1980         struct e1000_buffer *buffer_info;
1981         unsigned long size;
1982         unsigned int i;
1983
1984         /* Free all the Tx ring sk_buffs */
1985
1986         for (i = 0; i < tx_ring->count; i++) {
1987                 buffer_info = &tx_ring->buffer_info[i];
1988                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989         }
1990
1991         netdev_reset_queue(adapter->netdev);
1992         size = sizeof(struct e1000_buffer) * tx_ring->count;
1993         memset(tx_ring->buffer_info, 0, size);
1994
1995         /* Zero out the descriptor ring */
1996
1997         memset(tx_ring->desc, 0, tx_ring->size);
1998
1999         tx_ring->next_to_use = 0;
2000         tx_ring->next_to_clean = 0;
2001         tx_ring->last_tx_tso = false;
2002
2003         writel(0, hw->hw_addr + tx_ring->tdh);
2004         writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006
2007 /**
2008  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009  * @adapter: board private structure
2010  **/
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013         int i;
2014
2015         for (i = 0; i < adapter->num_tx_queues; i++)
2016                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018
2019 /**
2020  * e1000_free_rx_resources - Free Rx Resources
2021  * @adapter: board private structure
2022  * @rx_ring: ring to clean the resources from
2023  *
2024  * Free all receive software resources
2025  **/
2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027                                     struct e1000_rx_ring *rx_ring)
2028 {
2029         struct pci_dev *pdev = adapter->pdev;
2030
2031         e1000_clean_rx_ring(adapter, rx_ring);
2032
2033         vfree(rx_ring->buffer_info);
2034         rx_ring->buffer_info = NULL;
2035
2036         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037                           rx_ring->dma);
2038
2039         rx_ring->desc = NULL;
2040 }
2041
2042 /**
2043  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044  * @adapter: board private structure
2045  *
2046  * Free all receive software resources
2047  **/
2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049 {
2050         int i;
2051
2052         for (i = 0; i < adapter->num_rx_queues; i++)
2053                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054 }
2055
2056 /**
2057  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058  * @adapter: board private structure
2059  * @rx_ring: ring to free buffers from
2060  **/
2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062                                 struct e1000_rx_ring *rx_ring)
2063 {
2064         struct e1000_hw *hw = &adapter->hw;
2065         struct e1000_buffer *buffer_info;
2066         struct pci_dev *pdev = adapter->pdev;
2067         unsigned long size;
2068         unsigned int i;
2069
2070         /* Free all the Rx ring sk_buffs */
2071         for (i = 0; i < rx_ring->count; i++) {
2072                 buffer_info = &rx_ring->buffer_info[i];
2073                 if (buffer_info->dma &&
2074                     adapter->clean_rx == e1000_clean_rx_irq) {
2075                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2076                                          buffer_info->length,
2077                                          DMA_FROM_DEVICE);
2078                 } else if (buffer_info->dma &&
2079                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2081                                        buffer_info->length,
2082                                        DMA_FROM_DEVICE);
2083                 }
2084
2085                 buffer_info->dma = 0;
2086                 if (buffer_info->page) {
2087                         put_page(buffer_info->page);
2088                         buffer_info->page = NULL;
2089                 }
2090                 if (buffer_info->skb) {
2091                         dev_kfree_skb(buffer_info->skb);
2092                         buffer_info->skb = NULL;
2093                 }
2094         }
2095
2096         /* there also may be some cached data from a chained receive */
2097         if (rx_ring->rx_skb_top) {
2098                 dev_kfree_skb(rx_ring->rx_skb_top);
2099                 rx_ring->rx_skb_top = NULL;
2100         }
2101
2102         size = sizeof(struct e1000_buffer) * rx_ring->count;
2103         memset(rx_ring->buffer_info, 0, size);
2104
2105         /* Zero out the descriptor ring */
2106         memset(rx_ring->desc, 0, rx_ring->size);
2107
2108         rx_ring->next_to_clean = 0;
2109         rx_ring->next_to_use = 0;
2110
2111         writel(0, hw->hw_addr + rx_ring->rdh);
2112         writel(0, hw->hw_addr + rx_ring->rdt);
2113 }
2114
2115 /**
2116  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117  * @adapter: board private structure
2118  **/
2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120 {
2121         int i;
2122
2123         for (i = 0; i < adapter->num_rx_queues; i++)
2124                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125 }
2126
2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128  * and memory write and invalidate disabled for certain operations
2129  */
2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131 {
2132         struct e1000_hw *hw = &adapter->hw;
2133         struct net_device *netdev = adapter->netdev;
2134         u32 rctl;
2135
2136         e1000_pci_clear_mwi(hw);
2137
2138         rctl = er32(RCTL);
2139         rctl |= E1000_RCTL_RST;
2140         ew32(RCTL, rctl);
2141         E1000_WRITE_FLUSH();
2142         mdelay(5);
2143
2144         if (netif_running(netdev))
2145                 e1000_clean_all_rx_rings(adapter);
2146 }
2147
2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149 {
2150         struct e1000_hw *hw = &adapter->hw;
2151         struct net_device *netdev = adapter->netdev;
2152         u32 rctl;
2153
2154         rctl = er32(RCTL);
2155         rctl &= ~E1000_RCTL_RST;
2156         ew32(RCTL, rctl);
2157         E1000_WRITE_FLUSH();
2158         mdelay(5);
2159
2160         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161                 e1000_pci_set_mwi(hw);
2162
2163         if (netif_running(netdev)) {
2164                 /* No need to loop, because 82542 supports only 1 queue */
2165                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166                 e1000_configure_rx(adapter);
2167                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168         }
2169 }
2170
2171 /**
2172  * e1000_set_mac - Change the Ethernet Address of the NIC
2173  * @netdev: network interface device structure
2174  * @p: pointer to an address structure
2175  *
2176  * Returns 0 on success, negative on failure
2177  **/
2178 static int e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180         struct e1000_adapter *adapter = netdev_priv(netdev);
2181         struct e1000_hw *hw = &adapter->hw;
2182         struct sockaddr *addr = p;
2183
2184         if (!is_valid_ether_addr(addr->sa_data))
2185                 return -EADDRNOTAVAIL;
2186
2187         /* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189         if (hw->mac_type == e1000_82542_rev2_0)
2190                 e1000_enter_82542_rst(adapter);
2191
2192         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195         e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197         if (hw->mac_type == e1000_82542_rev2_0)
2198                 e1000_leave_82542_rst(adapter);
2199
2200         return 0;
2201 }
2202
2203 /**
2204  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205  * @netdev: network interface device structure
2206  *
2207  * The set_rx_mode entry point is called whenever the unicast or multicast
2208  * address lists or the network interface flags are updated. This routine is
2209  * responsible for configuring the hardware for proper unicast, multicast,
2210  * promiscuous mode, and all-multi behavior.
2211  **/
2212 static void e1000_set_rx_mode(struct net_device *netdev)
2213 {
2214         struct e1000_adapter *adapter = netdev_priv(netdev);
2215         struct e1000_hw *hw = &adapter->hw;
2216         struct netdev_hw_addr *ha;
2217         bool use_uc = false;
2218         u32 rctl;
2219         u32 hash_value;
2220         int i, rar_entries = E1000_RAR_ENTRIES;
2221         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224         if (!mcarray)
2225                 return;
2226
2227         /* Check for Promiscuous and All Multicast modes */
2228
2229         rctl = er32(RCTL);
2230
2231         if (netdev->flags & IFF_PROMISC) {
2232                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233                 rctl &= ~E1000_RCTL_VFE;
2234         } else {
2235                 if (netdev->flags & IFF_ALLMULTI)
2236                         rctl |= E1000_RCTL_MPE;
2237                 else
2238                         rctl &= ~E1000_RCTL_MPE;
2239                 /* Enable VLAN filter if there is a VLAN */
2240                 if (e1000_vlan_used(adapter))
2241                         rctl |= E1000_RCTL_VFE;
2242         }
2243
2244         if (netdev_uc_count(netdev) > rar_entries - 1) {
2245                 rctl |= E1000_RCTL_UPE;
2246         } else if (!(netdev->flags & IFF_PROMISC)) {
2247                 rctl &= ~E1000_RCTL_UPE;
2248                 use_uc = true;
2249         }
2250
2251         ew32(RCTL, rctl);
2252
2253         /* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255         if (hw->mac_type == e1000_82542_rev2_0)
2256                 e1000_enter_82542_rst(adapter);
2257
2258         /* load the first 14 addresses into the exact filters 1-14. Unicast
2259          * addresses take precedence to avoid disabling unicast filtering
2260          * when possible.
2261          *
2262          * RAR 0 is used for the station MAC address
2263          * if there are not 14 addresses, go ahead and clear the filters
2264          */
2265         i = 1;
2266         if (use_uc)
2267                 netdev_for_each_uc_addr(ha, netdev) {
2268                         if (i == rar_entries)
2269                                 break;
2270                         e1000_rar_set(hw, ha->addr, i++);
2271                 }
2272
2273         netdev_for_each_mc_addr(ha, netdev) {
2274                 if (i == rar_entries) {
2275                         /* load any remaining addresses into the hash table */
2276                         u32 hash_reg, hash_bit, mta;
2277                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278                         hash_reg = (hash_value >> 5) & 0x7F;
2279                         hash_bit = hash_value & 0x1F;
2280                         mta = (1 << hash_bit);
2281                         mcarray[hash_reg] |= mta;
2282                 } else {
2283                         e1000_rar_set(hw, ha->addr, i++);
2284                 }
2285         }
2286
2287         for (; i < rar_entries; i++) {
2288                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289                 E1000_WRITE_FLUSH();
2290                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291                 E1000_WRITE_FLUSH();
2292         }
2293
2294         /* write the hash table completely, write from bottom to avoid
2295          * both stupid write combining chipsets, and flushing each write
2296          */
2297         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298                 /* If we are on an 82544 has an errata where writing odd
2299                  * offsets overwrites the previous even offset, but writing
2300                  * backwards over the range solves the issue by always
2301                  * writing the odd offset first
2302                  */
2303                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304         }
2305         E1000_WRITE_FLUSH();
2306
2307         if (hw->mac_type == e1000_82542_rev2_0)
2308                 e1000_leave_82542_rst(adapter);
2309
2310         kfree(mcarray);
2311 }
2312
2313 /**
2314  * e1000_update_phy_info_task - get phy info
2315  * @work: work struct contained inside adapter struct
2316  *
2317  * Need to wait a few seconds after link up to get diagnostic information from
2318  * the phy
2319  */
2320 static void e1000_update_phy_info_task(struct work_struct *work)
2321 {
2322         struct e1000_adapter *adapter = container_of(work,
2323                                                      struct e1000_adapter,
2324                                                      phy_info_task.work);
2325
2326         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327 }
2328
2329 /**
2330  * e1000_82547_tx_fifo_stall_task - task to complete work
2331  * @work: work struct contained inside adapter struct
2332  **/
2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334 {
2335         struct e1000_adapter *adapter = container_of(work,
2336                                                      struct e1000_adapter,
2337                                                      fifo_stall_task.work);
2338         struct e1000_hw *hw = &adapter->hw;
2339         struct net_device *netdev = adapter->netdev;
2340         u32 tctl;
2341
2342         if (atomic_read(&adapter->tx_fifo_stall)) {
2343                 if ((er32(TDT) == er32(TDH)) &&
2344                    (er32(TDFT) == er32(TDFH)) &&
2345                    (er32(TDFTS) == er32(TDFHS))) {
2346                         tctl = er32(TCTL);
2347                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348                         ew32(TDFT, adapter->tx_head_addr);
2349                         ew32(TDFH, adapter->tx_head_addr);
2350                         ew32(TDFTS, adapter->tx_head_addr);
2351                         ew32(TDFHS, adapter->tx_head_addr);
2352                         ew32(TCTL, tctl);
2353                         E1000_WRITE_FLUSH();
2354
2355                         adapter->tx_fifo_head = 0;
2356                         atomic_set(&adapter->tx_fifo_stall, 0);
2357                         netif_wake_queue(netdev);
2358                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360                 }
2361         }
2362 }
2363
2364 bool e1000_has_link(struct e1000_adapter *adapter)
2365 {
2366         struct e1000_hw *hw = &adapter->hw;
2367         bool link_active = false;
2368
2369         /* get_link_status is set on LSC (link status) interrupt or rx
2370          * sequence error interrupt (except on intel ce4100).
2371          * get_link_status will stay false until the
2372          * e1000_check_for_link establishes link for copper adapters
2373          * ONLY
2374          */
2375         switch (hw->media_type) {
2376         case e1000_media_type_copper:
2377                 if (hw->mac_type == e1000_ce4100)
2378                         hw->get_link_status = 1;
2379                 if (hw->get_link_status) {
2380                         e1000_check_for_link(hw);
2381                         link_active = !hw->get_link_status;
2382                 } else {
2383                         link_active = true;
2384                 }
2385                 break;
2386         case e1000_media_type_fiber:
2387                 e1000_check_for_link(hw);
2388                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389                 break;
2390         case e1000_media_type_internal_serdes:
2391                 e1000_check_for_link(hw);
2392                 link_active = hw->serdes_has_link;
2393                 break;
2394         default:
2395                 break;
2396         }
2397
2398         return link_active;
2399 }
2400
2401 /**
2402  * e1000_watchdog - work function
2403  * @work: work struct contained inside adapter struct
2404  **/
2405 static void e1000_watchdog(struct work_struct *work)
2406 {
2407         struct e1000_adapter *adapter = container_of(work,
2408                                                      struct e1000_adapter,
2409                                                      watchdog_task.work);
2410         struct e1000_hw *hw = &adapter->hw;
2411         struct net_device *netdev = adapter->netdev;
2412         struct e1000_tx_ring *txdr = adapter->tx_ring;
2413         u32 link, tctl;
2414
2415         link = e1000_has_link(adapter);
2416         if ((netif_carrier_ok(netdev)) && link)
2417                 goto link_up;
2418
2419         if (link) {
2420                 if (!netif_carrier_ok(netdev)) {
2421                         u32 ctrl;
2422                         bool txb2b = true;
2423                         /* update snapshot of PHY registers on LSC */
2424                         e1000_get_speed_and_duplex(hw,
2425                                                    &adapter->link_speed,
2426                                                    &adapter->link_duplex);
2427
2428                         ctrl = er32(CTRL);
2429                         pr_info("%s NIC Link is Up %d Mbps %s, "
2430                                 "Flow Control: %s\n",
2431                                 netdev->name,
2432                                 adapter->link_speed,
2433                                 adapter->link_duplex == FULL_DUPLEX ?
2434                                 "Full Duplex" : "Half Duplex",
2435                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440                         /* adjust timeout factor according to speed/duplex */
2441                         adapter->tx_timeout_factor = 1;
2442                         switch (adapter->link_speed) {
2443                         case SPEED_10:
2444                                 txb2b = false;
2445                                 adapter->tx_timeout_factor = 16;
2446                                 break;
2447                         case SPEED_100:
2448                                 txb2b = false;
2449                                 /* maybe add some timeout factor ? */
2450                                 break;
2451                         }
2452
2453                         /* enable transmits in the hardware */
2454                         tctl = er32(TCTL);
2455                         tctl |= E1000_TCTL_EN;
2456                         ew32(TCTL, tctl);
2457
2458                         netif_carrier_on(netdev);
2459                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2460                                 schedule_delayed_work(&adapter->phy_info_task,
2461                                                       2 * HZ);
2462                         adapter->smartspeed = 0;
2463                 }
2464         } else {
2465                 if (netif_carrier_ok(netdev)) {
2466                         adapter->link_speed = 0;
2467                         adapter->link_duplex = 0;
2468                         pr_info("%s NIC Link is Down\n",
2469                                 netdev->name);
2470                         netif_carrier_off(netdev);
2471
2472                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2473                                 schedule_delayed_work(&adapter->phy_info_task,
2474                                                       2 * HZ);
2475                 }
2476
2477                 e1000_smartspeed(adapter);
2478         }
2479
2480 link_up:
2481         e1000_update_stats(adapter);
2482
2483         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484         adapter->tpt_old = adapter->stats.tpt;
2485         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486         adapter->colc_old = adapter->stats.colc;
2487
2488         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489         adapter->gorcl_old = adapter->stats.gorcl;
2490         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491         adapter->gotcl_old = adapter->stats.gotcl;
2492
2493         e1000_update_adaptive(hw);
2494
2495         if (!netif_carrier_ok(netdev)) {
2496                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497                         /* We've lost link, so the controller stops DMA,
2498                          * but we've got queued Tx work that's never going
2499                          * to get done, so reset controller to flush Tx.
2500                          * (Do the reset outside of interrupt context).
2501                          */
2502                         adapter->tx_timeout_count++;
2503                         schedule_work(&adapter->reset_task);
2504                         /* exit immediately since reset is imminent */
2505                         return;
2506                 }
2507         }
2508
2509         /* Simple mode for Interrupt Throttle Rate (ITR) */
2510         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2512                  * Total asymmetrical Tx or Rx gets ITR=8000;
2513                  * everyone else is between 2000-8000.
2514                  */
2515                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517                             adapter->gotcl - adapter->gorcl :
2518                             adapter->gorcl - adapter->gotcl) / 10000;
2519                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521                 ew32(ITR, 1000000000 / (itr * 256));
2522         }
2523
2524         /* Cause software interrupt to ensure rx ring is cleaned */
2525         ew32(ICS, E1000_ICS_RXDMT0);
2526
2527         /* Force detection of hung controller every watchdog period */
2528         adapter->detect_tx_hung = true;
2529
2530         /* Reschedule the task */
2531         if (!test_bit(__E1000_DOWN, &adapter->flags))
2532                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533 }
2534
2535 enum latency_range {
2536         lowest_latency = 0,
2537         low_latency = 1,
2538         bulk_latency = 2,
2539         latency_invalid = 255
2540 };
2541
2542 /**
2543  * e1000_update_itr - update the dynamic ITR value based on statistics
2544  * @adapter: pointer to adapter
2545  * @itr_setting: current adapter->itr
2546  * @packets: the number of packets during this measurement interval
2547  * @bytes: the number of bytes during this measurement interval
2548  *
2549  *      Stores a new ITR value based on packets and byte
2550  *      counts during the last interrupt.  The advantage of per interrupt
2551  *      computation is faster updates and more accurate ITR for the current
2552  *      traffic pattern.  Constants in this function were computed
2553  *      based on theoretical maximum wire speed and thresholds were set based
2554  *      on testing data as well as attempting to minimize response time
2555  *      while increasing bulk throughput.
2556  *      this functionality is controlled by the InterruptThrottleRate module
2557  *      parameter (see e1000_param.c)
2558  **/
2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560                                      u16 itr_setting, int packets, int bytes)
2561 {
2562         unsigned int retval = itr_setting;
2563         struct e1000_hw *hw = &adapter->hw;
2564
2565         if (unlikely(hw->mac_type < e1000_82540))
2566                 goto update_itr_done;
2567
2568         if (packets == 0)
2569                 goto update_itr_done;
2570
2571         switch (itr_setting) {
2572         case lowest_latency:
2573                 /* jumbo frames get bulk treatment*/
2574                 if (bytes/packets > 8000)
2575                         retval = bulk_latency;
2576                 else if ((packets < 5) && (bytes > 512))
2577                         retval = low_latency;
2578                 break;
2579         case low_latency:  /* 50 usec aka 20000 ints/s */
2580                 if (bytes > 10000) {
2581                         /* jumbo frames need bulk latency setting */
2582                         if (bytes/packets > 8000)
2583                                 retval = bulk_latency;
2584                         else if ((packets < 10) || ((bytes/packets) > 1200))
2585                                 retval = bulk_latency;
2586                         else if ((packets > 35))
2587                                 retval = lowest_latency;
2588                 } else if (bytes/packets > 2000)
2589                         retval = bulk_latency;
2590                 else if (packets <= 2 && bytes < 512)
2591                         retval = lowest_latency;
2592                 break;
2593         case bulk_latency: /* 250 usec aka 4000 ints/s */
2594                 if (bytes > 25000) {
2595                         if (packets > 35)
2596                                 retval = low_latency;
2597                 } else if (bytes < 6000) {
2598                         retval = low_latency;
2599                 }
2600                 break;
2601         }
2602
2603 update_itr_done:
2604         return retval;
2605 }
2606
2607 static void e1000_set_itr(struct e1000_adapter *adapter)
2608 {
2609         struct e1000_hw *hw = &adapter->hw;
2610         u16 current_itr;
2611         u32 new_itr = adapter->itr;
2612
2613         if (unlikely(hw->mac_type < e1000_82540))
2614                 return;
2615
2616         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617         if (unlikely(adapter->link_speed != SPEED_1000)) {
2618                 current_itr = 0;
2619                 new_itr = 4000;
2620                 goto set_itr_now;
2621         }
2622
2623         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624                                            adapter->total_tx_packets,
2625                                            adapter->total_tx_bytes);
2626         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628                 adapter->tx_itr = low_latency;
2629
2630         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631                                            adapter->total_rx_packets,
2632                                            adapter->total_rx_bytes);
2633         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635                 adapter->rx_itr = low_latency;
2636
2637         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639         switch (current_itr) {
2640         /* counts and packets in update_itr are dependent on these numbers */
2641         case lowest_latency:
2642                 new_itr = 70000;
2643                 break;
2644         case low_latency:
2645                 new_itr = 20000; /* aka hwitr = ~200 */
2646                 break;
2647         case bulk_latency:
2648                 new_itr = 4000;
2649                 break;
2650         default:
2651                 break;
2652         }
2653
2654 set_itr_now:
2655         if (new_itr != adapter->itr) {
2656                 /* this attempts to bias the interrupt rate towards Bulk
2657                  * by adding intermediate steps when interrupt rate is
2658                  * increasing
2659                  */
2660                 new_itr = new_itr > adapter->itr ?
2661                           min(adapter->itr + (new_itr >> 2), new_itr) :
2662                           new_itr;
2663                 adapter->itr = new_itr;
2664                 ew32(ITR, 1000000000 / (new_itr * 256));
2665         }
2666 }
2667
2668 #define E1000_TX_FLAGS_CSUM             0x00000001
2669 #define E1000_TX_FLAGS_VLAN             0x00000002
2670 #define E1000_TX_FLAGS_TSO              0x00000004
2671 #define E1000_TX_FLAGS_IPV4             0x00000008
2672 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2673 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2674 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2675
2676 static int e1000_tso(struct e1000_adapter *adapter,
2677                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2678 {
2679         struct e1000_context_desc *context_desc;
2680         struct e1000_buffer *buffer_info;
2681         unsigned int i;
2682         u32 cmd_length = 0;
2683         u16 ipcse = 0, tucse, mss;
2684         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685
2686         if (skb_is_gso(skb)) {
2687                 int err;
2688
2689                 err = skb_cow_head(skb, 0);
2690                 if (err < 0)
2691                         return err;
2692
2693                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2694                 mss = skb_shinfo(skb)->gso_size;
2695                 if (skb->protocol == htons(ETH_P_IP)) {
2696                         struct iphdr *iph = ip_hdr(skb);
2697                         iph->tot_len = 0;
2698                         iph->check = 0;
2699                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700                                                                  iph->daddr, 0,
2701                                                                  IPPROTO_TCP,
2702                                                                  0);
2703                         cmd_length = E1000_TXD_CMD_IP;
2704                         ipcse = skb_transport_offset(skb) - 1;
2705                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2706                         ipv6_hdr(skb)->payload_len = 0;
2707                         tcp_hdr(skb)->check =
2708                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709                                                  &ipv6_hdr(skb)->daddr,
2710                                                  0, IPPROTO_TCP, 0);
2711                         ipcse = 0;
2712                 }
2713                 ipcss = skb_network_offset(skb);
2714                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2715                 tucss = skb_transport_offset(skb);
2716                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2717                 tucse = 0;
2718
2719                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2720                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2721
2722                 i = tx_ring->next_to_use;
2723                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2724                 buffer_info = &tx_ring->buffer_info[i];
2725
2726                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2727                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2728                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2729                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2730                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2731                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2732                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2733                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2734                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2735
2736                 buffer_info->time_stamp = jiffies;
2737                 buffer_info->next_to_watch = i;
2738
2739                 if (++i == tx_ring->count) i = 0;
2740                 tx_ring->next_to_use = i;
2741
2742                 return true;
2743         }
2744         return false;
2745 }
2746
2747 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2748                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2749 {
2750         struct e1000_context_desc *context_desc;
2751         struct e1000_buffer *buffer_info;
2752         unsigned int i;
2753         u8 css;
2754         u32 cmd_len = E1000_TXD_CMD_DEXT;
2755
2756         if (skb->ip_summed != CHECKSUM_PARTIAL)
2757                 return false;
2758
2759         switch (skb->protocol) {
2760         case cpu_to_be16(ETH_P_IP):
2761                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2762                         cmd_len |= E1000_TXD_CMD_TCP;
2763                 break;
2764         case cpu_to_be16(ETH_P_IPV6):
2765                 /* XXX not handling all IPV6 headers */
2766                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2767                         cmd_len |= E1000_TXD_CMD_TCP;
2768                 break;
2769         default:
2770                 if (unlikely(net_ratelimit()))
2771                         e_warn(drv, "checksum_partial proto=%x!\n",
2772                                skb->protocol);
2773                 break;
2774         }
2775
2776         css = skb_checksum_start_offset(skb);
2777
2778         i = tx_ring->next_to_use;
2779         buffer_info = &tx_ring->buffer_info[i];
2780         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2781
2782         context_desc->lower_setup.ip_config = 0;
2783         context_desc->upper_setup.tcp_fields.tucss = css;
2784         context_desc->upper_setup.tcp_fields.tucso =
2785                 css + skb->csum_offset;
2786         context_desc->upper_setup.tcp_fields.tucse = 0;
2787         context_desc->tcp_seg_setup.data = 0;
2788         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2789
2790         buffer_info->time_stamp = jiffies;
2791         buffer_info->next_to_watch = i;
2792
2793         if (unlikely(++i == tx_ring->count)) i = 0;
2794         tx_ring->next_to_use = i;
2795
2796         return true;
2797 }
2798
2799 #define E1000_MAX_TXD_PWR       12
2800 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2801
2802 static int e1000_tx_map(struct e1000_adapter *adapter,
2803                         struct e1000_tx_ring *tx_ring,
2804                         struct sk_buff *skb, unsigned int first,
2805                         unsigned int max_per_txd, unsigned int nr_frags,
2806                         unsigned int mss)
2807 {
2808         struct e1000_hw *hw = &adapter->hw;
2809         struct pci_dev *pdev = adapter->pdev;
2810         struct e1000_buffer *buffer_info;
2811         unsigned int len = skb_headlen(skb);
2812         unsigned int offset = 0, size, count = 0, i;
2813         unsigned int f, bytecount, segs;
2814
2815         i = tx_ring->next_to_use;
2816
2817         while (len) {
2818                 buffer_info = &tx_ring->buffer_info[i];
2819                 size = min(len, max_per_txd);
2820                 /* Workaround for Controller erratum --
2821                  * descriptor for non-tso packet in a linear SKB that follows a
2822                  * tso gets written back prematurely before the data is fully
2823                  * DMA'd to the controller
2824                  */
2825                 if (!skb->data_len && tx_ring->last_tx_tso &&
2826                     !skb_is_gso(skb)) {
2827                         tx_ring->last_tx_tso = false;
2828                         size -= 4;
2829                 }
2830
2831                 /* Workaround for premature desc write-backs
2832                  * in TSO mode.  Append 4-byte sentinel desc
2833                  */
2834                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2835                         size -= 4;
2836                 /* work-around for errata 10 and it applies
2837                  * to all controllers in PCI-X mode
2838                  * The fix is to make sure that the first descriptor of a
2839                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2840                  */
2841                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2842                                 (size > 2015) && count == 0))
2843                         size = 2015;
2844
2845                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2846                  * terminating buffers within evenly-aligned dwords.
2847                  */
2848                 if (unlikely(adapter->pcix_82544 &&
2849                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2850                    size > 4))
2851                         size -= 4;
2852
2853                 buffer_info->length = size;
2854                 /* set time_stamp *before* dma to help avoid a possible race */
2855                 buffer_info->time_stamp = jiffies;
2856                 buffer_info->mapped_as_page = false;
2857                 buffer_info->dma = dma_map_single(&pdev->dev,
2858                                                   skb->data + offset,
2859                                                   size, DMA_TO_DEVICE);
2860                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2861                         goto dma_error;
2862                 buffer_info->next_to_watch = i;
2863
2864                 len -= size;
2865                 offset += size;
2866                 count++;
2867                 if (len) {
2868                         i++;
2869                         if (unlikely(i == tx_ring->count))
2870                                 i = 0;
2871                 }
2872         }
2873
2874         for (f = 0; f < nr_frags; f++) {
2875                 const struct skb_frag_struct *frag;
2876
2877                 frag = &skb_shinfo(skb)->frags[f];
2878                 len = skb_frag_size(frag);
2879                 offset = 0;
2880
2881                 while (len) {
2882                         unsigned long bufend;
2883                         i++;
2884                         if (unlikely(i == tx_ring->count))
2885                                 i = 0;
2886
2887                         buffer_info = &tx_ring->buffer_info[i];
2888                         size = min(len, max_per_txd);
2889                         /* Workaround for premature desc write-backs
2890                          * in TSO mode.  Append 4-byte sentinel desc
2891                          */
2892                         if (unlikely(mss && f == (nr_frags-1) &&
2893                             size == len && size > 8))
2894                                 size -= 4;
2895                         /* Workaround for potential 82544 hang in PCI-X.
2896                          * Avoid terminating buffers within evenly-aligned
2897                          * dwords.
2898                          */
2899                         bufend = (unsigned long)
2900                                 page_to_phys(skb_frag_page(frag));
2901                         bufend += offset + size - 1;
2902                         if (unlikely(adapter->pcix_82544 &&
2903                                      !(bufend & 4) &&
2904                                      size > 4))
2905                                 size -= 4;
2906
2907                         buffer_info->length = size;
2908                         buffer_info->time_stamp = jiffies;
2909                         buffer_info->mapped_as_page = true;
2910                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2911                                                 offset, size, DMA_TO_DEVICE);
2912                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2913                                 goto dma_error;
2914                         buffer_info->next_to_watch = i;
2915
2916                         len -= size;
2917                         offset += size;
2918                         count++;
2919                 }
2920         }
2921
2922         segs = skb_shinfo(skb)->gso_segs ?: 1;
2923         /* multiply data chunks by size of headers */
2924         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2925
2926         tx_ring->buffer_info[i].skb = skb;
2927         tx_ring->buffer_info[i].segs = segs;
2928         tx_ring->buffer_info[i].bytecount = bytecount;
2929         tx_ring->buffer_info[first].next_to_watch = i;
2930
2931         return count;
2932
2933 dma_error:
2934         dev_err(&pdev->dev, "TX DMA map failed\n");
2935         buffer_info->dma = 0;
2936         if (count)
2937                 count--;
2938
2939         while (count--) {
2940                 if (i==0)
2941                         i += tx_ring->count;
2942                 i--;
2943                 buffer_info = &tx_ring->buffer_info[i];
2944                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2945         }
2946
2947         return 0;
2948 }
2949
2950 static void e1000_tx_queue(struct e1000_adapter *adapter,
2951                            struct e1000_tx_ring *tx_ring, int tx_flags,
2952                            int count)
2953 {
2954         struct e1000_hw *hw = &adapter->hw;
2955         struct e1000_tx_desc *tx_desc = NULL;
2956         struct e1000_buffer *buffer_info;
2957         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2958         unsigned int i;
2959
2960         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2961                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2962                              E1000_TXD_CMD_TSE;
2963                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2964
2965                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2966                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2967         }
2968
2969         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2970                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2971                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972         }
2973
2974         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2975                 txd_lower |= E1000_TXD_CMD_VLE;
2976                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2977         }
2978
2979         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2980                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2981
2982         i = tx_ring->next_to_use;
2983
2984         while (count--) {
2985                 buffer_info = &tx_ring->buffer_info[i];
2986                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2987                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2988                 tx_desc->lower.data =
2989                         cpu_to_le32(txd_lower | buffer_info->length);
2990                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2991                 if (unlikely(++i == tx_ring->count)) i = 0;
2992         }
2993
2994         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2995
2996         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2997         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
2999
3000         /* Force memory writes to complete before letting h/w
3001          * know there are new descriptors to fetch.  (Only
3002          * applicable for weak-ordered memory model archs,
3003          * such as IA-64).
3004          */
3005         wmb();
3006
3007         tx_ring->next_to_use = i;
3008         writel(i, hw->hw_addr + tx_ring->tdt);
3009         /* we need this if more than one processor can write to our tail
3010          * at a time, it synchronizes IO on IA64/Altix systems
3011          */
3012         mmiowb();
3013 }
3014
3015 /* 82547 workaround to avoid controller hang in half-duplex environment.
3016  * The workaround is to avoid queuing a large packet that would span
3017  * the internal Tx FIFO ring boundary by notifying the stack to resend
3018  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3019  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3020  * to the beginning of the Tx FIFO.
3021  */
3022
3023 #define E1000_FIFO_HDR                  0x10
3024 #define E1000_82547_PAD_LEN             0x3E0
3025
3026 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3027                                        struct sk_buff *skb)
3028 {
3029         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3033
3034         if (adapter->link_duplex != HALF_DUPLEX)
3035                 goto no_fifo_stall_required;
3036
3037         if (atomic_read(&adapter->tx_fifo_stall))
3038                 return 1;
3039
3040         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041                 atomic_set(&adapter->tx_fifo_stall, 1);
3042                 return 1;
3043         }
3044
3045 no_fifo_stall_required:
3046         adapter->tx_fifo_head += skb_fifo_len;
3047         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049         return 0;
3050 }
3051
3052 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3053 {
3054         struct e1000_adapter *adapter = netdev_priv(netdev);
3055         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3056
3057         netif_stop_queue(netdev);
3058         /* Herbert's original patch had:
3059          *  smp_mb__after_netif_stop_queue();
3060          * but since that doesn't exist yet, just open code it.
3061          */
3062         smp_mb();
3063
3064         /* We need to check again in a case another CPU has just
3065          * made room available.
3066          */
3067         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3068                 return -EBUSY;
3069
3070         /* A reprieve! */
3071         netif_start_queue(netdev);
3072         ++adapter->restart_queue;
3073         return 0;
3074 }
3075
3076 static int e1000_maybe_stop_tx(struct net_device *netdev,
3077                                struct e1000_tx_ring *tx_ring, int size)
3078 {
3079         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3080                 return 0;
3081         return __e1000_maybe_stop_tx(netdev, size);
3082 }
3083
3084 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3085 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3086                                     struct net_device *netdev)
3087 {
3088         struct e1000_adapter *adapter = netdev_priv(netdev);
3089         struct e1000_hw *hw = &adapter->hw;
3090         struct e1000_tx_ring *tx_ring;
3091         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3092         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3093         unsigned int tx_flags = 0;
3094         unsigned int len = skb_headlen(skb);
3095         unsigned int nr_frags;
3096         unsigned int mss;
3097         int count = 0;
3098         int tso;
3099         unsigned int f;
3100
3101         /* This goes back to the question of how to logically map a Tx queue
3102          * to a flow.  Right now, performance is impacted slightly negatively
3103          * if using multiple Tx queues.  If the stack breaks away from a
3104          * single qdisc implementation, we can look at this again.
3105          */
3106         tx_ring = adapter->tx_ring;
3107
3108         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3109          * packets may get corrupted during padding by HW.
3110          * To WA this issue, pad all small packets manually.
3111          */
3112         if (skb->len < ETH_ZLEN) {
3113                 if (skb_pad(skb, ETH_ZLEN - skb->len))
3114                         return NETDEV_TX_OK;
3115                 skb->len = ETH_ZLEN;
3116                 skb_set_tail_pointer(skb, ETH_ZLEN);
3117         }
3118
3119         mss = skb_shinfo(skb)->gso_size;
3120         /* The controller does a simple calculation to
3121          * make sure there is enough room in the FIFO before
3122          * initiating the DMA for each buffer.  The calc is:
3123          * 4 = ceil(buffer len/mss).  To make sure we don't
3124          * overrun the FIFO, adjust the max buffer len if mss
3125          * drops.
3126          */
3127         if (mss) {
3128                 u8 hdr_len;
3129                 max_per_txd = min(mss << 2, max_per_txd);
3130                 max_txd_pwr = fls(max_per_txd) - 1;
3131
3132                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3133                 if (skb->data_len && hdr_len == len) {
3134                         switch (hw->mac_type) {
3135                                 unsigned int pull_size;
3136                         case e1000_82544:
3137                                 /* Make sure we have room to chop off 4 bytes,
3138                                  * and that the end alignment will work out to
3139                                  * this hardware's requirements
3140                                  * NOTE: this is a TSO only workaround
3141                                  * if end byte alignment not correct move us
3142                                  * into the next dword
3143                                  */
3144                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3145                                     & 4)
3146                                         break;
3147                                 /* fall through */
3148                                 pull_size = min((unsigned int)4, skb->data_len);
3149                                 if (!__pskb_pull_tail(skb, pull_size)) {
3150                                         e_err(drv, "__pskb_pull_tail "
3151                                               "failed.\n");
3152                                         dev_kfree_skb_any(skb);
3153                                         return NETDEV_TX_OK;
3154                                 }
3155                                 len = skb_headlen(skb);
3156                                 break;
3157                         default:
3158                                 /* do nothing */
3159                                 break;
3160                         }
3161                 }
3162         }
3163
3164         /* reserve a descriptor for the offload context */
3165         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3166                 count++;
3167         count++;
3168
3169         /* Controller Erratum workaround */
3170         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3171                 count++;
3172
3173         count += TXD_USE_COUNT(len, max_txd_pwr);
3174
3175         if (adapter->pcix_82544)
3176                 count++;
3177
3178         /* work-around for errata 10 and it applies to all controllers
3179          * in PCI-X mode, so add one more descriptor to the count
3180          */
3181         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3182                         (len > 2015)))
3183                 count++;
3184
3185         nr_frags = skb_shinfo(skb)->nr_frags;
3186         for (f = 0; f < nr_frags; f++)
3187                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3188                                        max_txd_pwr);
3189         if (adapter->pcix_82544)
3190                 count += nr_frags;
3191
3192         /* need: count + 2 desc gap to keep tail from touching
3193          * head, otherwise try next time
3194          */
3195         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3196                 return NETDEV_TX_BUSY;
3197
3198         if (unlikely((hw->mac_type == e1000_82547) &&
3199                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3200                 netif_stop_queue(netdev);
3201                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3202                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3203                 return NETDEV_TX_BUSY;
3204         }
3205
3206         if (vlan_tx_tag_present(skb)) {
3207                 tx_flags |= E1000_TX_FLAGS_VLAN;
3208                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3209         }
3210
3211         first = tx_ring->next_to_use;
3212
3213         tso = e1000_tso(adapter, tx_ring, skb);
3214         if (tso < 0) {
3215                 dev_kfree_skb_any(skb);
3216                 return NETDEV_TX_OK;
3217         }
3218
3219         if (likely(tso)) {
3220                 if (likely(hw->mac_type != e1000_82544))
3221                         tx_ring->last_tx_tso = true;
3222                 tx_flags |= E1000_TX_FLAGS_TSO;
3223         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3224                 tx_flags |= E1000_TX_FLAGS_CSUM;
3225
3226         if (likely(skb->protocol == htons(ETH_P_IP)))
3227                 tx_flags |= E1000_TX_FLAGS_IPV4;
3228
3229         if (unlikely(skb->no_fcs))
3230                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3231
3232         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3233                              nr_frags, mss);
3234
3235         if (count) {
3236                 netdev_sent_queue(netdev, skb->len);
3237                 skb_tx_timestamp(skb);
3238
3239                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3240                 /* Make sure there is space in the ring for the next send. */
3241                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3242
3243         } else {
3244                 dev_kfree_skb_any(skb);
3245                 tx_ring->buffer_info[first].time_stamp = 0;
3246                 tx_ring->next_to_use = first;
3247         }
3248
3249         return NETDEV_TX_OK;
3250 }
3251
3252 #define NUM_REGS 38 /* 1 based count */
3253 static void e1000_regdump(struct e1000_adapter *adapter)
3254 {
3255         struct e1000_hw *hw = &adapter->hw;
3256         u32 regs[NUM_REGS];
3257         u32 *regs_buff = regs;
3258         int i = 0;
3259
3260         static const char * const reg_name[] = {
3261                 "CTRL",  "STATUS",
3262                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3263                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3264                 "TIDV", "TXDCTL", "TADV", "TARC0",
3265                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3266                 "TXDCTL1", "TARC1",
3267                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3268                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3269                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3270         };
3271
3272         regs_buff[0]  = er32(CTRL);
3273         regs_buff[1]  = er32(STATUS);
3274
3275         regs_buff[2]  = er32(RCTL);
3276         regs_buff[3]  = er32(RDLEN);
3277         regs_buff[4]  = er32(RDH);
3278         regs_buff[5]  = er32(RDT);
3279         regs_buff[6]  = er32(RDTR);
3280
3281         regs_buff[7]  = er32(TCTL);
3282         regs_buff[8]  = er32(TDBAL);
3283         regs_buff[9]  = er32(TDBAH);
3284         regs_buff[10] = er32(TDLEN);
3285         regs_buff[11] = er32(TDH);
3286         regs_buff[12] = er32(TDT);
3287         regs_buff[13] = er32(TIDV);
3288         regs_buff[14] = er32(TXDCTL);
3289         regs_buff[15] = er32(TADV);
3290         regs_buff[16] = er32(TARC0);
3291
3292         regs_buff[17] = er32(TDBAL1);
3293         regs_buff[18] = er32(TDBAH1);
3294         regs_buff[19] = er32(TDLEN1);
3295         regs_buff[20] = er32(TDH1);
3296         regs_buff[21] = er32(TDT1);
3297         regs_buff[22] = er32(TXDCTL1);
3298         regs_buff[23] = er32(TARC1);
3299         regs_buff[24] = er32(CTRL_EXT);
3300         regs_buff[25] = er32(ERT);
3301         regs_buff[26] = er32(RDBAL0);
3302         regs_buff[27] = er32(RDBAH0);
3303         regs_buff[28] = er32(TDFH);
3304         regs_buff[29] = er32(TDFT);
3305         regs_buff[30] = er32(TDFHS);
3306         regs_buff[31] = er32(TDFTS);
3307         regs_buff[32] = er32(TDFPC);
3308         regs_buff[33] = er32(RDFH);
3309         regs_buff[34] = er32(RDFT);
3310         regs_buff[35] = er32(RDFHS);
3311         regs_buff[36] = er32(RDFTS);
3312         regs_buff[37] = er32(RDFPC);
3313
3314         pr_info("Register dump\n");
3315         for (i = 0; i < NUM_REGS; i++)
3316                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3317 }
3318
3319 /*
3320  * e1000_dump: Print registers, tx ring and rx ring
3321  */
3322 static void e1000_dump(struct e1000_adapter *adapter)
3323 {
3324         /* this code doesn't handle multiple rings */
3325         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3326         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3327         int i;
3328
3329         if (!netif_msg_hw(adapter))
3330                 return;
3331
3332         /* Print Registers */
3333         e1000_regdump(adapter);
3334
3335         /* transmit dump */
3336         pr_info("TX Desc ring0 dump\n");
3337
3338         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3339          *
3340          * Legacy Transmit Descriptor
3341          *   +--------------------------------------------------------------+
3342          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3343          *   +--------------------------------------------------------------+
3344          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3345          *   +--------------------------------------------------------------+
3346          *   63       48 47        36 35    32 31     24 23    16 15        0
3347          *
3348          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3349          *   63      48 47    40 39       32 31             16 15    8 7      0
3350          *   +----------------------------------------------------------------+
3351          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3352          *   +----------------------------------------------------------------+
3353          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3354          *   +----------------------------------------------------------------+
3355          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3356          *
3357          * Extended Data Descriptor (DTYP=0x1)
3358          *   +----------------------------------------------------------------+
3359          * 0 |                     Buffer Address [63:0]                      |
3360          *   +----------------------------------------------------------------+
3361          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3362          *   +----------------------------------------------------------------+
3363          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3364          */
3365         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3366         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3367
3368         if (!netif_msg_tx_done(adapter))
3369                 goto rx_ring_summary;
3370
3371         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3372                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3373                 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3374                 struct my_u { __le64 a; __le64 b; };
3375                 struct my_u *u = (struct my_u *)tx_desc;
3376                 const char *type;
3377
3378                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3379                         type = "NTC/U";
3380                 else if (i == tx_ring->next_to_use)
3381                         type = "NTU";
3382                 else if (i == tx_ring->next_to_clean)
3383                         type = "NTC";
3384                 else
3385                         type = "";
3386
3387                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3388                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3389                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3390                         (u64)buffer_info->dma, buffer_info->length,
3391                         buffer_info->next_to_watch,
3392                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3393         }
3394
3395 rx_ring_summary:
3396         /* receive dump */
3397         pr_info("\nRX Desc ring dump\n");
3398
3399         /* Legacy Receive Descriptor Format
3400          *
3401          * +-----------------------------------------------------+
3402          * |                Buffer Address [63:0]                |
3403          * +-----------------------------------------------------+
3404          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3405          * +-----------------------------------------------------+
3406          * 63       48 47    40 39      32 31         16 15      0
3407          */
3408         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3409
3410         if (!netif_msg_rx_status(adapter))
3411                 goto exit;
3412
3413         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3414                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3415                 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3416                 struct my_u { __le64 a; __le64 b; };
3417                 struct my_u *u = (struct my_u *)rx_desc;
3418                 const char *type;
3419
3420                 if (i == rx_ring->next_to_use)
3421                         type = "NTU";
3422                 else if (i == rx_ring->next_to_clean)
3423                         type = "NTC";
3424                 else
3425                         type = "";
3426
3427                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3428                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3429                         (u64)buffer_info->dma, buffer_info->skb, type);
3430         } /* for */
3431
3432         /* dump the descriptor caches */
3433         /* rx */
3434         pr_info("Rx descriptor cache in 64bit format\n");
3435         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3436                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3437                         i,
3438                         readl(adapter->hw.hw_addr + i+4),
3439                         readl(adapter->hw.hw_addr + i),
3440                         readl(adapter->hw.hw_addr + i+12),
3441                         readl(adapter->hw.hw_addr + i+8));
3442         }
3443         /* tx */
3444         pr_info("Tx descriptor cache in 64bit format\n");
3445         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3446                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3447                         i,
3448                         readl(adapter->hw.hw_addr + i+4),
3449                         readl(adapter->hw.hw_addr + i),
3450                         readl(adapter->hw.hw_addr + i+12),
3451                         readl(adapter->hw.hw_addr + i+8));
3452         }
3453 exit:
3454         return;
3455 }
3456
3457 /**
3458  * e1000_tx_timeout - Respond to a Tx Hang
3459  * @netdev: network interface device structure
3460  **/
3461 static void e1000_tx_timeout(struct net_device *netdev)
3462 {
3463         struct e1000_adapter *adapter = netdev_priv(netdev);
3464
3465         /* Do the reset outside of interrupt context */
3466         adapter->tx_timeout_count++;
3467         schedule_work(&adapter->reset_task);
3468 }
3469
3470 static void e1000_reset_task(struct work_struct *work)
3471 {
3472         struct e1000_adapter *adapter =
3473                 container_of(work, struct e1000_adapter, reset_task);
3474
3475         e_err(drv, "Reset adapter\n");
3476         e1000_reinit_locked(adapter);
3477 }
3478
3479 /**
3480  * e1000_get_stats - Get System Network Statistics
3481  * @netdev: network interface device structure
3482  *
3483  * Returns the address of the device statistics structure.
3484  * The statistics are actually updated from the watchdog.
3485  **/
3486 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3487 {
3488         /* only return the current stats */
3489         return &netdev->stats;
3490 }
3491
3492 /**
3493  * e1000_change_mtu - Change the Maximum Transfer Unit
3494  * @netdev: network interface device structure
3495  * @new_mtu: new value for maximum frame size
3496  *
3497  * Returns 0 on success, negative on failure
3498  **/
3499 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3500 {
3501         struct e1000_adapter *adapter = netdev_priv(netdev);
3502         struct e1000_hw *hw = &adapter->hw;
3503         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3504
3505         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3506             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3507                 e_err(probe, "Invalid MTU setting\n");
3508                 return -EINVAL;
3509         }
3510
3511         /* Adapter-specific max frame size limits. */
3512         switch (hw->mac_type) {
3513         case e1000_undefined ... e1000_82542_rev2_1:
3514                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3515                         e_err(probe, "Jumbo Frames not supported.\n");
3516                         return -EINVAL;
3517                 }
3518                 break;
3519         default:
3520                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3521                 break;
3522         }
3523
3524         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3525                 msleep(1);
3526         /* e1000_down has a dependency on max_frame_size */
3527         hw->max_frame_size = max_frame;
3528         if (netif_running(netdev))
3529                 e1000_down(adapter);
3530
3531         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3532          * means we reserve 2 more, this pushes us to allocate from the next
3533          * larger slab size.
3534          * i.e. RXBUFFER_2048 --> size-4096 slab
3535          * however with the new *_jumbo_rx* routines, jumbo receives will use
3536          * fragmented skbs
3537          */
3538
3539         if (max_frame <= E1000_RXBUFFER_2048)
3540                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3541         else
3542 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3543                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3544 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3545                 adapter->rx_buffer_len = PAGE_SIZE;
3546 #endif
3547
3548         /* adjust allocation if LPE protects us, and we aren't using SBP */
3549         if (!hw->tbi_compatibility_on &&
3550             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3551              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3552                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3553
3554         pr_info("%s changing MTU from %d to %d\n",
3555                 netdev->name, netdev->mtu, new_mtu);
3556         netdev->mtu = new_mtu;
3557
3558         if (netif_running(netdev))
3559                 e1000_up(adapter);
3560         else
3561                 e1000_reset(adapter);
3562
3563         clear_bit(__E1000_RESETTING, &adapter->flags);
3564
3565         return 0;
3566 }
3567
3568 /**
3569  * e1000_update_stats - Update the board statistics counters
3570  * @adapter: board private structure
3571  **/
3572 void e1000_update_stats(struct e1000_adapter *adapter)
3573 {
3574         struct net_device *netdev = adapter->netdev;
3575         struct e1000_hw *hw = &adapter->hw;
3576         struct pci_dev *pdev = adapter->pdev;
3577         unsigned long flags;
3578         u16 phy_tmp;
3579
3580 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3581
3582         /* Prevent stats update while adapter is being reset, or if the pci
3583          * connection is down.
3584          */
3585         if (adapter->link_speed == 0)
3586                 return;
3587         if (pci_channel_offline(pdev))
3588                 return;
3589
3590         spin_lock_irqsave(&adapter->stats_lock, flags);
3591
3592         /* these counters are modified from e1000_tbi_adjust_stats,
3593          * called from the interrupt context, so they must only
3594          * be written while holding adapter->stats_lock
3595          */
3596
3597         adapter->stats.crcerrs += er32(CRCERRS);
3598         adapter->stats.gprc += er32(GPRC);
3599         adapter->stats.gorcl += er32(GORCL);
3600         adapter->stats.gorch += er32(GORCH);
3601         adapter->stats.bprc += er32(BPRC);
3602         adapter->stats.mprc += er32(MPRC);
3603         adapter->stats.roc += er32(ROC);
3604
3605         adapter->stats.prc64 += er32(PRC64);
3606         adapter->stats.prc127 += er32(PRC127);
3607         adapter->stats.prc255 += er32(PRC255);
3608         adapter->stats.prc511 += er32(PRC511);
3609         adapter->stats.prc1023 += er32(PRC1023);
3610         adapter->stats.prc1522 += er32(PRC1522);
3611
3612         adapter->stats.symerrs += er32(SYMERRS);
3613         adapter->stats.mpc += er32(MPC);
3614         adapter->stats.scc += er32(SCC);
3615         adapter->stats.ecol += er32(ECOL);
3616         adapter->stats.mcc += er32(MCC);
3617         adapter->stats.latecol += er32(LATECOL);
3618         adapter->stats.dc += er32(DC);
3619         adapter->stats.sec += er32(SEC);
3620         adapter->stats.rlec += er32(RLEC);
3621         adapter->stats.xonrxc += er32(XONRXC);
3622         adapter->stats.xontxc += er32(XONTXC);
3623         adapter->stats.xoffrxc += er32(XOFFRXC);
3624         adapter->stats.xofftxc += er32(XOFFTXC);
3625         adapter->stats.fcruc += er32(FCRUC);
3626         adapter->stats.gptc += er32(GPTC);
3627         adapter->stats.gotcl += er32(GOTCL);
3628         adapter->stats.gotch += er32(GOTCH);
3629         adapter->stats.rnbc += er32(RNBC);
3630         adapter->stats.ruc += er32(RUC);
3631         adapter->stats.rfc += er32(RFC);
3632         adapter->stats.rjc += er32(RJC);
3633         adapter->stats.torl += er32(TORL);
3634         adapter->stats.torh += er32(TORH);
3635         adapter->stats.totl += er32(TOTL);
3636         adapter->stats.toth += er32(TOTH);
3637         adapter->stats.tpr += er32(TPR);
3638
3639         adapter->stats.ptc64 += er32(PTC64);
3640         adapter->stats.ptc127 += er32(PTC127);
3641         adapter->stats.ptc255 += er32(PTC255);
3642         adapter->stats.ptc511 += er32(PTC511);
3643         adapter->stats.ptc1023 += er32(PTC1023);
3644         adapter->stats.ptc1522 += er32(PTC1522);
3645
3646         adapter->stats.mptc += er32(MPTC);
3647         adapter->stats.bptc += er32(BPTC);
3648
3649         /* used for adaptive IFS */
3650
3651         hw->tx_packet_delta = er32(TPT);
3652         adapter->stats.tpt += hw->tx_packet_delta;
3653         hw->collision_delta = er32(COLC);
3654         adapter->stats.colc += hw->collision_delta;
3655
3656         if (hw->mac_type >= e1000_82543) {
3657                 adapter->stats.algnerrc += er32(ALGNERRC);
3658                 adapter->stats.rxerrc += er32(RXERRC);
3659                 adapter->stats.tncrs += er32(TNCRS);
3660                 adapter->stats.cexterr += er32(CEXTERR);
3661                 adapter->stats.tsctc += er32(TSCTC);
3662                 adapter->stats.tsctfc += er32(TSCTFC);
3663         }
3664
3665         /* Fill out the OS statistics structure */
3666         netdev->stats.multicast = adapter->stats.mprc;
3667         netdev->stats.collisions = adapter->stats.colc;
3668
3669         /* Rx Errors */
3670
3671         /* RLEC on some newer hardware can be incorrect so build
3672          * our own version based on RUC and ROC
3673          */
3674         netdev->stats.rx_errors = adapter->stats.rxerrc +
3675                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3676                 adapter->stats.ruc + adapter->stats.roc +
3677                 adapter->stats.cexterr;
3678         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3679         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3680         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3681         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3682         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3683
3684         /* Tx Errors */
3685         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3686         netdev->stats.tx_errors = adapter->stats.txerrc;
3687         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3688         netdev->stats.tx_window_errors = adapter->stats.latecol;
3689         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3690         if (hw->bad_tx_carr_stats_fd &&
3691             adapter->link_duplex == FULL_DUPLEX) {
3692                 netdev->stats.tx_carrier_errors = 0;
3693                 adapter->stats.tncrs = 0;
3694         }
3695
3696         /* Tx Dropped needs to be maintained elsewhere */
3697
3698         /* Phy Stats */
3699         if (hw->media_type == e1000_media_type_copper) {
3700                 if ((adapter->link_speed == SPEED_1000) &&
3701                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3702                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3703                         adapter->phy_stats.idle_errors += phy_tmp;
3704                 }
3705
3706                 if ((hw->mac_type <= e1000_82546) &&
3707                    (hw->phy_type == e1000_phy_m88) &&
3708                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3709                         adapter->phy_stats.receive_errors += phy_tmp;
3710         }
3711
3712         /* Management Stats */
3713         if (hw->has_smbus) {
3714                 adapter->stats.mgptc += er32(MGTPTC);
3715                 adapter->stats.mgprc += er32(MGTPRC);
3716                 adapter->stats.mgpdc += er32(MGTPDC);
3717         }
3718
3719         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3720 }
3721
3722 /**
3723  * e1000_intr - Interrupt Handler
3724  * @irq: interrupt number
3725  * @data: pointer to a network interface device structure
3726  **/
3727 static irqreturn_t e1000_intr(int irq, void *data)
3728 {
3729         struct net_device *netdev = data;
3730         struct e1000_adapter *adapter = netdev_priv(netdev);
3731         struct e1000_hw *hw = &adapter->hw;
3732         u32 icr = er32(ICR);
3733
3734         if (unlikely((!icr)))
3735                 return IRQ_NONE;  /* Not our interrupt */
3736
3737         /* we might have caused the interrupt, but the above
3738          * read cleared it, and just in case the driver is
3739          * down there is nothing to do so return handled
3740          */
3741         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3742                 return IRQ_HANDLED;
3743
3744         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3745                 hw->get_link_status = 1;
3746                 /* guard against interrupt when we're going down */
3747                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3748                         schedule_delayed_work(&adapter->watchdog_task, 1);
3749         }
3750
3751         /* disable interrupts, without the synchronize_irq bit */
3752         ew32(IMC, ~0);
3753         E1000_WRITE_FLUSH();
3754
3755         if (likely(napi_schedule_prep(&adapter->napi))) {
3756                 adapter->total_tx_bytes = 0;
3757                 adapter->total_tx_packets = 0;
3758                 adapter->total_rx_bytes = 0;
3759                 adapter->total_rx_packets = 0;
3760                 __napi_schedule(&adapter->napi);
3761         } else {
3762                 /* this really should not happen! if it does it is basically a
3763                  * bug, but not a hard error, so enable ints and continue
3764                  */
3765                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3766                         e1000_irq_enable(adapter);
3767         }
3768
3769         return IRQ_HANDLED;
3770 }
3771
3772 /**
3773  * e1000_clean - NAPI Rx polling callback
3774  * @adapter: board private structure
3775  **/
3776 static int e1000_clean(struct napi_struct *napi, int budget)
3777 {
3778         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3779                                                      napi);
3780         int tx_clean_complete = 0, work_done = 0;
3781
3782         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3783
3784         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3785
3786         if (!tx_clean_complete)
3787                 work_done = budget;
3788
3789         /* If budget not fully consumed, exit the polling mode */
3790         if (work_done < budget) {
3791                 if (likely(adapter->itr_setting & 3))
3792                         e1000_set_itr(adapter);
3793                 napi_complete(napi);
3794                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3795                         e1000_irq_enable(adapter);
3796         }
3797
3798         return work_done;
3799 }
3800
3801 /**
3802  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3803  * @adapter: board private structure
3804  **/
3805 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3806                                struct e1000_tx_ring *tx_ring)
3807 {
3808         struct e1000_hw *hw = &adapter->hw;
3809         struct net_device *netdev = adapter->netdev;
3810         struct e1000_tx_desc *tx_desc, *eop_desc;
3811         struct e1000_buffer *buffer_info;
3812         unsigned int i, eop;
3813         unsigned int count = 0;
3814         unsigned int total_tx_bytes=0, total_tx_packets=0;
3815         unsigned int bytes_compl = 0, pkts_compl = 0;
3816
3817         i = tx_ring->next_to_clean;
3818         eop = tx_ring->buffer_info[i].next_to_watch;
3819         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3820
3821         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3822                (count < tx_ring->count)) {
3823                 bool cleaned = false;
3824                 rmb();  /* read buffer_info after eop_desc */
3825                 for ( ; !cleaned; count++) {
3826                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3827                         buffer_info = &tx_ring->buffer_info[i];
3828                         cleaned = (i == eop);
3829
3830                         if (cleaned) {
3831                                 total_tx_packets += buffer_info->segs;
3832                                 total_tx_bytes += buffer_info->bytecount;
3833                                 if (buffer_info->skb) {
3834                                         bytes_compl += buffer_info->skb->len;
3835                                         pkts_compl++;
3836                                 }
3837
3838                         }
3839                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3840                         tx_desc->upper.data = 0;
3841
3842                         if (unlikely(++i == tx_ring->count)) i = 0;
3843                 }
3844
3845                 eop = tx_ring->buffer_info[i].next_to_watch;
3846                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3847         }
3848
3849         tx_ring->next_to_clean = i;
3850
3851         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3852
3853 #define TX_WAKE_THRESHOLD 32
3854         if (unlikely(count && netif_carrier_ok(netdev) &&
3855                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3856                 /* Make sure that anybody stopping the queue after this
3857                  * sees the new next_to_clean.
3858                  */
3859                 smp_mb();
3860
3861                 if (netif_queue_stopped(netdev) &&
3862                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3863                         netif_wake_queue(netdev);
3864                         ++adapter->restart_queue;
3865                 }
3866         }
3867
3868         if (adapter->detect_tx_hung) {
3869                 /* Detect a transmit hang in hardware, this serializes the
3870                  * check with the clearing of time_stamp and movement of i
3871                  */
3872                 adapter->detect_tx_hung = false;
3873                 if (tx_ring->buffer_info[eop].time_stamp &&
3874                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3875                                (adapter->tx_timeout_factor * HZ)) &&
3876                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3877
3878                         /* detected Tx unit hang */
3879                         e_err(drv, "Detected Tx Unit Hang\n"
3880                               "  Tx Queue             <%lu>\n"
3881                               "  TDH                  <%x>\n"
3882                               "  TDT                  <%x>\n"
3883                               "  next_to_use          <%x>\n"
3884                               "  next_to_clean        <%x>\n"
3885                               "buffer_info[next_to_clean]\n"
3886                               "  time_stamp           <%lx>\n"
3887                               "  next_to_watch        <%x>\n"
3888                               "  jiffies              <%lx>\n"
3889                               "  next_to_watch.status <%x>\n",
3890                                 (unsigned long)(tx_ring - adapter->tx_ring),
3891                                 readl(hw->hw_addr + tx_ring->tdh),
3892                                 readl(hw->hw_addr + tx_ring->tdt),
3893                                 tx_ring->next_to_use,
3894                                 tx_ring->next_to_clean,
3895                                 tx_ring->buffer_info[eop].time_stamp,
3896                                 eop,
3897                                 jiffies,
3898                                 eop_desc->upper.fields.status);
3899                         e1000_dump(adapter);
3900                         netif_stop_queue(netdev);
3901                 }
3902         }
3903         adapter->total_tx_bytes += total_tx_bytes;
3904         adapter->total_tx_packets += total_tx_packets;
3905         netdev->stats.tx_bytes += total_tx_bytes;
3906         netdev->stats.tx_packets += total_tx_packets;
3907         return count < tx_ring->count;
3908 }
3909
3910 /**
3911  * e1000_rx_checksum - Receive Checksum Offload for 82543
3912  * @adapter:     board private structure
3913  * @status_err:  receive descriptor status and error fields
3914  * @csum:        receive descriptor csum field
3915  * @sk_buff:     socket buffer with received data
3916  **/
3917 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3918                               u32 csum, struct sk_buff *skb)
3919 {
3920         struct e1000_hw *hw = &adapter->hw;
3921         u16 status = (u16)status_err;
3922         u8 errors = (u8)(status_err >> 24);
3923
3924         skb_checksum_none_assert(skb);
3925
3926         /* 82543 or newer only */
3927         if (unlikely(hw->mac_type < e1000_82543)) return;
3928         /* Ignore Checksum bit is set */
3929         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3930         /* TCP/UDP checksum error bit is set */
3931         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3932                 /* let the stack verify checksum errors */
3933                 adapter->hw_csum_err++;
3934                 return;
3935         }
3936         /* TCP/UDP Checksum has not been calculated */
3937         if (!(status & E1000_RXD_STAT_TCPCS))
3938                 return;
3939
3940         /* It must be a TCP or UDP packet with a valid checksum */
3941         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3942                 /* TCP checksum is good */
3943                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3944         }
3945         adapter->hw_csum_good++;
3946 }
3947
3948 /**
3949  * e1000_consume_page - helper function
3950  **/
3951 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3952                                u16 length)
3953 {
3954         bi->page = NULL;
3955         skb->len += length;
3956         skb->data_len += length;
3957         skb->truesize += PAGE_SIZE;
3958 }
3959
3960 /**
3961  * e1000_receive_skb - helper function to handle rx indications
3962  * @adapter: board private structure
3963  * @status: descriptor status field as written by hardware
3964  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3965  * @skb: pointer to sk_buff to be indicated to stack
3966  */
3967 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3968                               __le16 vlan, struct sk_buff *skb)
3969 {
3970         skb->protocol = eth_type_trans(skb, adapter->netdev);
3971
3972         if (status & E1000_RXD_STAT_VP) {
3973                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3974
3975                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3976         }
3977         napi_gro_receive(&adapter->napi, skb);
3978 }
3979
3980 /**
3981  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3982  * @adapter: board private structure
3983  * @rx_ring: ring to clean
3984  * @work_done: amount of napi work completed this call
3985  * @work_to_do: max amount of work allowed for this call to do
3986  *
3987  * the return value indicates whether actual cleaning was done, there
3988  * is no guarantee that everything was cleaned
3989  */
3990 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3991                                      struct e1000_rx_ring *rx_ring,
3992                                      int *work_done, int work_to_do)
3993 {
3994         struct e1000_hw *hw = &adapter->hw;
3995         struct net_device *netdev = adapter->netdev;
3996         struct pci_dev *pdev = adapter->pdev;
3997         struct e1000_rx_desc *rx_desc, *next_rxd;
3998         struct e1000_buffer *buffer_info, *next_buffer;
3999         unsigned long irq_flags;
4000         u32 length;
4001         unsigned int i;
4002         int cleaned_count = 0;
4003         bool cleaned = false;
4004         unsigned int total_rx_bytes=0, total_rx_packets=0;
4005
4006         i = rx_ring->next_to_clean;
4007         rx_desc = E1000_RX_DESC(*rx_ring, i);
4008         buffer_info = &rx_ring->buffer_info[i];
4009
4010         while (rx_desc->status & E1000_RXD_STAT_DD) {
4011                 struct sk_buff *skb;
4012                 u8 status;
4013
4014                 if (*work_done >= work_to_do)
4015                         break;
4016                 (*work_done)++;
4017                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4018
4019                 status = rx_desc->status;
4020                 skb = buffer_info->skb;
4021                 buffer_info->skb = NULL;
4022
4023                 if (++i == rx_ring->count) i = 0;
4024                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4025                 prefetch(next_rxd);
4026
4027                 next_buffer = &rx_ring->buffer_info[i];
4028
4029                 cleaned = true;
4030                 cleaned_count++;
4031                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4032                                buffer_info->length, DMA_FROM_DEVICE);
4033                 buffer_info->dma = 0;
4034
4035                 length = le16_to_cpu(rx_desc->length);
4036
4037                 /* errors is only valid for DD + EOP descriptors */
4038                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4039                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4040                         u8 *mapped;
4041                         u8 last_byte;
4042
4043                         mapped = page_address(buffer_info->page);
4044                         last_byte = *(mapped + length - 1);
4045                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4046                                        last_byte)) {
4047                                 spin_lock_irqsave(&adapter->stats_lock,
4048                                                   irq_flags);
4049                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4050                                                        length, mapped);
4051                                 spin_unlock_irqrestore(&adapter->stats_lock,
4052                                                        irq_flags);
4053                                 length--;
4054                         } else {
4055                                 if (netdev->features & NETIF_F_RXALL)
4056                                         goto process_skb;
4057                                 /* recycle both page and skb */
4058                                 buffer_info->skb = skb;
4059                                 /* an error means any chain goes out the window
4060                                  * too
4061                                  */
4062                                 if (rx_ring->rx_skb_top)
4063                                         dev_kfree_skb(rx_ring->rx_skb_top);
4064                                 rx_ring->rx_skb_top = NULL;
4065                                 goto next_desc;
4066                         }
4067                 }
4068
4069 #define rxtop rx_ring->rx_skb_top
4070 process_skb:
4071                 if (!(status & E1000_RXD_STAT_EOP)) {
4072                         /* this descriptor is only the beginning (or middle) */
4073                         if (!rxtop) {
4074                                 /* this is the beginning of a chain */
4075                                 rxtop = skb;
4076                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4077                                                    0, length);
4078                         } else {
4079                                 /* this is the middle of a chain */
4080                                 skb_fill_page_desc(rxtop,
4081                                     skb_shinfo(rxtop)->nr_frags,
4082                                     buffer_info->page, 0, length);
4083                                 /* re-use the skb, only consumed the page */
4084                                 buffer_info->skb = skb;
4085                         }
4086                         e1000_consume_page(buffer_info, rxtop, length);
4087                         goto next_desc;
4088                 } else {
4089                         if (rxtop) {
4090                                 /* end of the chain */
4091                                 skb_fill_page_desc(rxtop,
4092                                     skb_shinfo(rxtop)->nr_frags,
4093                                     buffer_info->page, 0, length);
4094                                 /* re-use the current skb, we only consumed the
4095                                  * page
4096                                  */
4097                                 buffer_info->skb = skb;
4098                                 skb = rxtop;
4099                                 rxtop = NULL;
4100                                 e1000_consume_page(buffer_info, skb, length);
4101                         } else {
4102                                 /* no chain, got EOP, this buf is the packet
4103                                  * copybreak to save the put_page/alloc_page
4104                                  */
4105                                 if (length <= copybreak &&
4106                                     skb_tailroom(skb) >= length) {
4107                                         u8 *vaddr;
4108                                         vaddr = kmap_atomic(buffer_info->page);
4109                                         memcpy(skb_tail_pointer(skb), vaddr,
4110                                                length);
4111                                         kunmap_atomic(vaddr);
4112                                         /* re-use the page, so don't erase
4113                                          * buffer_info->page
4114                                          */
4115                                         skb_put(skb, length);
4116                                 } else {
4117                                         skb_fill_page_desc(skb, 0,
4118                                                            buffer_info->page, 0,
4119                                                            length);
4120                                         e1000_consume_page(buffer_info, skb,
4121                                                            length);
4122                                 }
4123                         }
4124                 }
4125
4126                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4127                 e1000_rx_checksum(adapter,
4128                                   (u32)(status) |
4129                                   ((u32)(rx_desc->errors) << 24),
4130                                   le16_to_cpu(rx_desc->csum), skb);
4131
4132                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4133                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4134                         pskb_trim(skb, skb->len - 4);
4135                 total_rx_packets++;
4136
4137                 /* eth type trans needs skb->data to point to something */
4138                 if (!pskb_may_pull(skb, ETH_HLEN)) {
4139                         e_err(drv, "pskb_may_pull failed.\n");
4140                         dev_kfree_skb(skb);
4141                         goto next_desc;
4142                 }
4143
4144                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4145
4146 next_desc:
4147                 rx_desc->status = 0;
4148
4149                 /* return some buffers to hardware, one at a time is too slow */
4150                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4151                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4152                         cleaned_count = 0;
4153                 }
4154
4155                 /* use prefetched values */
4156                 rx_desc = next_rxd;
4157                 buffer_info = next_buffer;
4158         }
4159         rx_ring->next_to_clean = i;
4160
4161         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4162         if (cleaned_count)
4163                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4164
4165         adapter->total_rx_packets += total_rx_packets;
4166         adapter->total_rx_bytes += total_rx_bytes;
4167         netdev->stats.rx_bytes += total_rx_bytes;
4168         netdev->stats.rx_packets += total_rx_packets;
4169         return cleaned;
4170 }
4171
4172 /* this should improve performance for small packets with large amounts
4173  * of reassembly being done in the stack
4174  */
4175 static void e1000_check_copybreak(struct net_device *netdev,
4176                                  struct e1000_buffer *buffer_info,
4177                                  u32 length, struct sk_buff **skb)
4178 {
4179         struct sk_buff *new_skb;
4180
4181         if (length > copybreak)
4182                 return;
4183
4184         new_skb = netdev_alloc_skb_ip_align(netdev, length);
4185         if (!new_skb)
4186                 return;
4187
4188         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4189                                        (*skb)->data - NET_IP_ALIGN,
4190                                        length + NET_IP_ALIGN);
4191         /* save the skb in buffer_info as good */
4192         buffer_info->skb = *skb;
4193         *skb = new_skb;
4194 }
4195
4196 /**
4197  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4198  * @adapter: board private structure
4199  * @rx_ring: ring to clean
4200  * @work_done: amount of napi work completed this call
4201  * @work_to_do: max amount of work allowed for this call to do
4202  */
4203 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4204                                struct e1000_rx_ring *rx_ring,
4205                                int *work_done, int work_to_do)
4206 {
4207         struct e1000_hw *hw = &adapter->hw;
4208         struct net_device *netdev = adapter->netdev;
4209         struct pci_dev *pdev = adapter->pdev;
4210         struct e1000_rx_desc *rx_desc, *next_rxd;
4211         struct e1000_buffer *buffer_info, *next_buffer;
4212         unsigned long flags;
4213         u32 length;
4214         unsigned int i;
4215         int cleaned_count = 0;
4216         bool cleaned = false;
4217         unsigned int total_rx_bytes=0, total_rx_packets=0;
4218
4219         i = rx_ring->next_to_clean;
4220         rx_desc = E1000_RX_DESC(*rx_ring, i);
4221         buffer_info = &rx_ring->buffer_info[i];
4222
4223         while (rx_desc->status & E1000_RXD_STAT_DD) {
4224                 struct sk_buff *skb;
4225                 u8 status;
4226
4227                 if (*work_done >= work_to_do)
4228                         break;
4229                 (*work_done)++;
4230                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4231
4232                 status = rx_desc->status;
4233                 skb = buffer_info->skb;
4234                 buffer_info->skb = NULL;
4235
4236                 prefetch(skb->data - NET_IP_ALIGN);
4237
4238                 if (++i == rx_ring->count) i = 0;
4239                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4240                 prefetch(next_rxd);
4241
4242                 next_buffer = &rx_ring->buffer_info[i];
4243
4244                 cleaned = true;
4245                 cleaned_count++;
4246                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4247                                  buffer_info->length, DMA_FROM_DEVICE);
4248                 buffer_info->dma = 0;
4249
4250                 length = le16_to_cpu(rx_desc->length);
4251                 /* !EOP means multiple descriptors were used to store a single
4252                  * packet, if thats the case we need to toss it.  In fact, we
4253                  * to toss every packet with the EOP bit clear and the next
4254                  * frame that _does_ have the EOP bit set, as it is by
4255                  * definition only a frame fragment
4256                  */
4257                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4258                         adapter->discarding = true;
4259
4260                 if (adapter->discarding) {
4261                         /* All receives must fit into a single buffer */
4262                         e_dbg("Receive packet consumed multiple buffers\n");
4263                         /* recycle */
4264                         buffer_info->skb = skb;
4265                         if (status & E1000_RXD_STAT_EOP)
4266                                 adapter->discarding = false;
4267                         goto next_desc;
4268                 }
4269
4270                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4271                         u8 last_byte = *(skb->data + length - 1);
4272                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4273                                        last_byte)) {
4274                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4275                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4276                                                        length, skb->data);
4277                                 spin_unlock_irqrestore(&adapter->stats_lock,
4278                                                        flags);
4279                                 length--;
4280                         } else {
4281                                 if (netdev->features & NETIF_F_RXALL)
4282                                         goto process_skb;
4283                                 /* recycle */
4284                                 buffer_info->skb = skb;
4285                                 goto next_desc;
4286                         }
4287                 }
4288
4289 process_skb:
4290                 total_rx_bytes += (length - 4); /* don't count FCS */
4291                 total_rx_packets++;
4292
4293                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4294                         /* adjust length to remove Ethernet CRC, this must be
4295                          * done after the TBI_ACCEPT workaround above
4296                          */
4297                         length -= 4;
4298
4299                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4300
4301                 skb_put(skb, length);
4302
4303                 /* Receive Checksum Offload */
4304                 e1000_rx_checksum(adapter,
4305                                   (u32)(status) |
4306                                   ((u32)(rx_desc->errors) << 24),
4307                                   le16_to_cpu(rx_desc->csum), skb);
4308
4309                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4310
4311 next_desc:
4312                 rx_desc->status = 0;
4313
4314                 /* return some buffers to hardware, one at a time is too slow */
4315                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4316                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4317                         cleaned_count = 0;
4318                 }
4319
4320                 /* use prefetched values */
4321                 rx_desc = next_rxd;
4322                 buffer_info = next_buffer;
4323         }
4324         rx_ring->next_to_clean = i;
4325
4326         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4327         if (cleaned_count)
4328                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4329
4330         adapter->total_rx_packets += total_rx_packets;
4331         adapter->total_rx_bytes += total_rx_bytes;
4332         netdev->stats.rx_bytes += total_rx_bytes;
4333         netdev->stats.rx_packets += total_rx_packets;
4334         return cleaned;
4335 }
4336
4337 /**
4338  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4339  * @adapter: address of board private structure
4340  * @rx_ring: pointer to receive ring structure
4341  * @cleaned_count: number of buffers to allocate this pass
4342  **/
4343 static void
4344 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4345                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4346 {
4347         struct net_device *netdev = adapter->netdev;
4348         struct pci_dev *pdev = adapter->pdev;
4349         struct e1000_rx_desc *rx_desc;
4350         struct e1000_buffer *buffer_info;
4351         struct sk_buff *skb;
4352         unsigned int i;
4353         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4354
4355         i = rx_ring->next_to_use;
4356         buffer_info = &rx_ring->buffer_info[i];
4357
4358         while (cleaned_count--) {
4359                 skb = buffer_info->skb;
4360                 if (skb) {
4361                         skb_trim(skb, 0);
4362                         goto check_page;
4363                 }
4364
4365                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4366                 if (unlikely(!skb)) {
4367                         /* Better luck next round */
4368                         adapter->alloc_rx_buff_failed++;
4369                         break;
4370                 }
4371
4372                 buffer_info->skb = skb;
4373                 buffer_info->length = adapter->rx_buffer_len;
4374 check_page:
4375                 /* allocate a new page if necessary */
4376                 if (!buffer_info->page) {
4377                         buffer_info->page = alloc_page(GFP_ATOMIC);
4378                         if (unlikely(!buffer_info->page)) {
4379                                 adapter->alloc_rx_buff_failed++;
4380                                 break;
4381                         }
4382                 }
4383
4384                 if (!buffer_info->dma) {
4385                         buffer_info->dma = dma_map_page(&pdev->dev,
4386                                                         buffer_info->page, 0,
4387                                                         buffer_info->length,
4388                                                         DMA_FROM_DEVICE);
4389                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4390                                 put_page(buffer_info->page);
4391                                 dev_kfree_skb(skb);
4392                                 buffer_info->page = NULL;
4393                                 buffer_info->skb = NULL;
4394                                 buffer_info->dma = 0;
4395                                 adapter->alloc_rx_buff_failed++;
4396                                 break; /* while !buffer_info->skb */
4397                         }
4398                 }
4399
4400                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4401                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4402
4403                 if (unlikely(++i == rx_ring->count))
4404                         i = 0;
4405                 buffer_info = &rx_ring->buffer_info[i];
4406         }
4407
4408         if (likely(rx_ring->next_to_use != i)) {
4409                 rx_ring->next_to_use = i;
4410                 if (unlikely(i-- == 0))
4411                         i = (rx_ring->count - 1);
4412
4413                 /* Force memory writes to complete before letting h/w
4414                  * know there are new descriptors to fetch.  (Only
4415                  * applicable for weak-ordered memory model archs,
4416                  * such as IA-64).
4417                  */
4418                 wmb();
4419                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4420         }
4421 }
4422
4423 /**
4424  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4425  * @adapter: address of board private structure
4426  **/
4427 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4428                                    struct e1000_rx_ring *rx_ring,
4429                                    int cleaned_count)
4430 {
4431         struct e1000_hw *hw = &adapter->hw;
4432         struct net_device *netdev = adapter->netdev;
4433         struct pci_dev *pdev = adapter->pdev;
4434         struct e1000_rx_desc *rx_desc;
4435         struct e1000_buffer *buffer_info;
4436         struct sk_buff *skb;
4437         unsigned int i;
4438         unsigned int bufsz = adapter->rx_buffer_len;
4439
4440         i = rx_ring->next_to_use;
4441         buffer_info = &rx_ring->buffer_info[i];
4442
4443         while (cleaned_count--) {
4444                 skb = buffer_info->skb;
4445                 if (skb) {
4446                         skb_trim(skb, 0);
4447                         goto map_skb;
4448                 }
4449
4450                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4451                 if (unlikely(!skb)) {
4452                         /* Better luck next round */
4453                         adapter->alloc_rx_buff_failed++;
4454                         break;
4455                 }
4456
4457                 /* Fix for errata 23, can't cross 64kB boundary */
4458                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4459                         struct sk_buff *oldskb = skb;
4460                         e_err(rx_err, "skb align check failed: %u bytes at "
4461                               "%p\n", bufsz, skb->data);
4462                         /* Try again, without freeing the previous */
4463                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4464                         /* Failed allocation, critical failure */
4465                         if (!skb) {
4466                                 dev_kfree_skb(oldskb);
4467                                 adapter->alloc_rx_buff_failed++;
4468                                 break;
4469                         }
4470
4471                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4472                                 /* give up */
4473                                 dev_kfree_skb(skb);
4474                                 dev_kfree_skb(oldskb);
4475                                 adapter->alloc_rx_buff_failed++;
4476                                 break; /* while !buffer_info->skb */
4477                         }
4478
4479                         /* Use new allocation */
4480                         dev_kfree_skb(oldskb);
4481                 }
4482                 buffer_info->skb = skb;
4483                 buffer_info->length = adapter->rx_buffer_len;
4484 map_skb:
4485                 buffer_info->dma = dma_map_single(&pdev->dev,
4486                                                   skb->data,
4487                                                   buffer_info->length,
4488                                                   DMA_FROM_DEVICE);
4489                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4490                         dev_kfree_skb(skb);
4491                         buffer_info->skb = NULL;
4492                         buffer_info->dma = 0;
4493                         adapter->alloc_rx_buff_failed++;
4494                         break; /* while !buffer_info->skb */
4495                 }
4496
4497                 /* XXX if it was allocated cleanly it will never map to a
4498                  * boundary crossing
4499                  */
4500
4501                 /* Fix for errata 23, can't cross 64kB boundary */
4502                 if (!e1000_check_64k_bound(adapter,
4503                                         (void *)(unsigned long)buffer_info->dma,
4504                                         adapter->rx_buffer_len)) {
4505                         e_err(rx_err, "dma align check failed: %u bytes at "
4506                               "%p\n", adapter->rx_buffer_len,
4507                               (void *)(unsigned long)buffer_info->dma);
4508                         dev_kfree_skb(skb);
4509                         buffer_info->skb = NULL;
4510
4511                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4512                                          adapter->rx_buffer_len,
4513                                          DMA_FROM_DEVICE);
4514                         buffer_info->dma = 0;
4515
4516                         adapter->alloc_rx_buff_failed++;
4517                         break; /* while !buffer_info->skb */
4518                 }
4519                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4520                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4521
4522                 if (unlikely(++i == rx_ring->count))
4523                         i = 0;
4524                 buffer_info = &rx_ring->buffer_info[i];
4525         }
4526
4527         if (likely(rx_ring->next_to_use != i)) {
4528                 rx_ring->next_to_use = i;
4529                 if (unlikely(i-- == 0))
4530                         i = (rx_ring->count - 1);
4531
4532                 /* Force memory writes to complete before letting h/w
4533                  * know there are new descriptors to fetch.  (Only
4534                  * applicable for weak-ordered memory model archs,
4535                  * such as IA-64).
4536                  */
4537                 wmb();
4538                 writel(i, hw->hw_addr + rx_ring->rdt);
4539         }
4540 }
4541
4542 /**
4543  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4544  * @adapter:
4545  **/
4546 static void e1000_smartspeed(struct e1000_adapter *adapter)
4547 {
4548         struct e1000_hw *hw = &adapter->hw;
4549         u16 phy_status;
4550         u16 phy_ctrl;
4551
4552         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4553            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4554                 return;
4555
4556         if (adapter->smartspeed == 0) {
4557                 /* If Master/Slave config fault is asserted twice,
4558                  * we assume back-to-back
4559                  */
4560                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4561                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4562                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4563                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4564                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4565                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4566                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4567                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4568                                             phy_ctrl);
4569                         adapter->smartspeed++;
4570                         if (!e1000_phy_setup_autoneg(hw) &&
4571                            !e1000_read_phy_reg(hw, PHY_CTRL,
4572                                                &phy_ctrl)) {
4573                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4574                                              MII_CR_RESTART_AUTO_NEG);
4575                                 e1000_write_phy_reg(hw, PHY_CTRL,
4576                                                     phy_ctrl);
4577                         }
4578                 }
4579                 return;
4580         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4581                 /* If still no link, perhaps using 2/3 pair cable */
4582                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4583                 phy_ctrl |= CR_1000T_MS_ENABLE;
4584                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4585                 if (!e1000_phy_setup_autoneg(hw) &&
4586                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4587                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4588                                      MII_CR_RESTART_AUTO_NEG);
4589                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4590                 }
4591         }
4592         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4593         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4594                 adapter->smartspeed = 0;
4595 }
4596
4597 /**
4598  * e1000_ioctl -
4599  * @netdev:
4600  * @ifreq:
4601  * @cmd:
4602  **/
4603 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4604 {
4605         switch (cmd) {
4606         case SIOCGMIIPHY:
4607         case SIOCGMIIREG:
4608         case SIOCSMIIREG:
4609                 return e1000_mii_ioctl(netdev, ifr, cmd);
4610         default:
4611                 return -EOPNOTSUPP;
4612         }
4613 }
4614
4615 /**
4616  * e1000_mii_ioctl -
4617  * @netdev:
4618  * @ifreq:
4619  * @cmd:
4620  **/
4621 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4622                            int cmd)
4623 {
4624         struct e1000_adapter *adapter = netdev_priv(netdev);
4625         struct e1000_hw *hw = &adapter->hw;
4626         struct mii_ioctl_data *data = if_mii(ifr);
4627         int retval;
4628         u16 mii_reg;
4629         unsigned long flags;
4630
4631         if (hw->media_type != e1000_media_type_copper)
4632                 return -EOPNOTSUPP;
4633
4634         switch (cmd) {
4635         case SIOCGMIIPHY:
4636                 data->phy_id = hw->phy_addr;
4637                 break;
4638         case SIOCGMIIREG:
4639                 spin_lock_irqsave(&adapter->stats_lock, flags);
4640                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4641                                    &data->val_out)) {
4642                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4643                         return -EIO;
4644                 }
4645                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4646                 break;
4647         case SIOCSMIIREG:
4648                 if (data->reg_num & ~(0x1F))
4649                         return -EFAULT;
4650                 mii_reg = data->val_in;
4651                 spin_lock_irqsave(&adapter->stats_lock, flags);
4652                 if (e1000_write_phy_reg(hw, data->reg_num,
4653                                         mii_reg)) {
4654                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4655                         return -EIO;
4656                 }
4657                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4658                 if (hw->media_type == e1000_media_type_copper) {
4659                         switch (data->reg_num) {
4660                         case PHY_CTRL:
4661                                 if (mii_reg & MII_CR_POWER_DOWN)
4662                                         break;
4663                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4664                                         hw->autoneg = 1;
4665                                         hw->autoneg_advertised = 0x2F;
4666                                 } else {
4667                                         u32 speed;
4668                                         if (mii_reg & 0x40)
4669                                                 speed = SPEED_1000;
4670                                         else if (mii_reg & 0x2000)
4671                                                 speed = SPEED_100;
4672                                         else
4673                                                 speed = SPEED_10;
4674                                         retval = e1000_set_spd_dplx(
4675                                                 adapter, speed,
4676                                                 ((mii_reg & 0x100)
4677                                                  ? DUPLEX_FULL :
4678                                                  DUPLEX_HALF));
4679                                         if (retval)
4680                                                 return retval;
4681                                 }
4682                                 if (netif_running(adapter->netdev))
4683                                         e1000_reinit_locked(adapter);
4684                                 else
4685                                         e1000_reset(adapter);
4686                                 break;
4687                         case M88E1000_PHY_SPEC_CTRL:
4688                         case M88E1000_EXT_PHY_SPEC_CTRL:
4689                                 if (e1000_phy_reset(hw))
4690                                         return -EIO;
4691                                 break;
4692                         }
4693                 } else {
4694                         switch (data->reg_num) {
4695                         case PHY_CTRL:
4696                                 if (mii_reg & MII_CR_POWER_DOWN)
4697                                         break;
4698                                 if (netif_running(adapter->netdev))
4699                                         e1000_reinit_locked(adapter);
4700                                 else
4701                                         e1000_reset(adapter);
4702                                 break;
4703                         }
4704                 }
4705                 break;
4706         default:
4707                 return -EOPNOTSUPP;
4708         }
4709         return E1000_SUCCESS;
4710 }
4711
4712 void e1000_pci_set_mwi(struct e1000_hw *hw)
4713 {
4714         struct e1000_adapter *adapter = hw->back;
4715         int ret_val = pci_set_mwi(adapter->pdev);
4716
4717         if (ret_val)
4718                 e_err(probe, "Error in setting MWI\n");
4719 }
4720
4721 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4722 {
4723         struct e1000_adapter *adapter = hw->back;
4724
4725         pci_clear_mwi(adapter->pdev);
4726 }
4727
4728 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4729 {
4730         struct e1000_adapter *adapter = hw->back;
4731         return pcix_get_mmrbc(adapter->pdev);
4732 }
4733
4734 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4735 {
4736         struct e1000_adapter *adapter = hw->back;
4737         pcix_set_mmrbc(adapter->pdev, mmrbc);
4738 }
4739
4740 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4741 {
4742         outl(value, port);
4743 }
4744
4745 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4746 {
4747         u16 vid;
4748
4749         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4750                 return true;
4751         return false;
4752 }
4753
4754 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4755                               netdev_features_t features)
4756 {
4757         struct e1000_hw *hw = &adapter->hw;
4758         u32 ctrl;
4759
4760         ctrl = er32(CTRL);
4761         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4762                 /* enable VLAN tag insert/strip */
4763                 ctrl |= E1000_CTRL_VME;
4764         } else {
4765                 /* disable VLAN tag insert/strip */
4766                 ctrl &= ~E1000_CTRL_VME;
4767         }
4768         ew32(CTRL, ctrl);
4769 }
4770 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4771                                      bool filter_on)
4772 {
4773         struct e1000_hw *hw = &adapter->hw;
4774         u32 rctl;
4775
4776         if (!test_bit(__E1000_DOWN, &adapter->flags))
4777                 e1000_irq_disable(adapter);
4778
4779         __e1000_vlan_mode(adapter, adapter->netdev->features);
4780         if (filter_on) {
4781                 /* enable VLAN receive filtering */
4782                 rctl = er32(RCTL);
4783                 rctl &= ~E1000_RCTL_CFIEN;
4784                 if (!(adapter->netdev->flags & IFF_PROMISC))
4785                         rctl |= E1000_RCTL_VFE;
4786                 ew32(RCTL, rctl);
4787                 e1000_update_mng_vlan(adapter);
4788         } else {
4789                 /* disable VLAN receive filtering */
4790                 rctl = er32(RCTL);
4791                 rctl &= ~E1000_RCTL_VFE;
4792                 ew32(RCTL, rctl);
4793         }
4794
4795         if (!test_bit(__E1000_DOWN, &adapter->flags))
4796                 e1000_irq_enable(adapter);
4797 }
4798
4799 static void e1000_vlan_mode(struct net_device *netdev,
4800                             netdev_features_t features)
4801 {
4802         struct e1000_adapter *adapter = netdev_priv(netdev);
4803
4804         if (!test_bit(__E1000_DOWN, &adapter->flags))
4805                 e1000_irq_disable(adapter);
4806
4807         __e1000_vlan_mode(adapter, features);
4808
4809         if (!test_bit(__E1000_DOWN, &adapter->flags))
4810                 e1000_irq_enable(adapter);
4811 }
4812
4813 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4814                                  __be16 proto, u16 vid)
4815 {
4816         struct e1000_adapter *adapter = netdev_priv(netdev);
4817         struct e1000_hw *hw = &adapter->hw;
4818         u32 vfta, index;
4819
4820         if ((hw->mng_cookie.status &
4821              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4822             (vid == adapter->mng_vlan_id))
4823                 return 0;
4824
4825         if (!e1000_vlan_used(adapter))
4826                 e1000_vlan_filter_on_off(adapter, true);
4827
4828         /* add VID to filter table */
4829         index = (vid >> 5) & 0x7F;
4830         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4831         vfta |= (1 << (vid & 0x1F));
4832         e1000_write_vfta(hw, index, vfta);
4833
4834         set_bit(vid, adapter->active_vlans);
4835
4836         return 0;
4837 }
4838
4839 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4840                                   __be16 proto, u16 vid)
4841 {
4842         struct e1000_adapter *adapter = netdev_priv(netdev);
4843         struct e1000_hw *hw = &adapter->hw;
4844         u32 vfta, index;
4845
4846         if (!test_bit(__E1000_DOWN, &adapter->flags))
4847                 e1000_irq_disable(adapter);
4848         if (!test_bit(__E1000_DOWN, &adapter->flags))
4849                 e1000_irq_enable(adapter);
4850
4851         /* remove VID from filter table */
4852         index = (vid >> 5) & 0x7F;
4853         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4854         vfta &= ~(1 << (vid & 0x1F));
4855         e1000_write_vfta(hw, index, vfta);
4856
4857         clear_bit(vid, adapter->active_vlans);
4858
4859         if (!e1000_vlan_used(adapter))
4860                 e1000_vlan_filter_on_off(adapter, false);
4861
4862         return 0;
4863 }
4864
4865 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4866 {
4867         u16 vid;
4868
4869         if (!e1000_vlan_used(adapter))
4870                 return;
4871
4872         e1000_vlan_filter_on_off(adapter, true);
4873         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4874                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4875 }
4876
4877 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4878 {
4879         struct e1000_hw *hw = &adapter->hw;
4880
4881         hw->autoneg = 0;
4882
4883         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4884          * for the switch() below to work
4885          */
4886         if ((spd & 1) || (dplx & ~1))
4887                 goto err_inval;
4888
4889         /* Fiber NICs only allow 1000 gbps Full duplex */
4890         if ((hw->media_type == e1000_media_type_fiber) &&
4891             spd != SPEED_1000 &&
4892             dplx != DUPLEX_FULL)
4893                 goto err_inval;
4894
4895         switch (spd + dplx) {
4896         case SPEED_10 + DUPLEX_HALF:
4897                 hw->forced_speed_duplex = e1000_10_half;
4898                 break;
4899         case SPEED_10 + DUPLEX_FULL:
4900                 hw->forced_speed_duplex = e1000_10_full;
4901                 break;
4902         case SPEED_100 + DUPLEX_HALF:
4903                 hw->forced_speed_duplex = e1000_100_half;
4904                 break;
4905         case SPEED_100 + DUPLEX_FULL:
4906                 hw->forced_speed_duplex = e1000_100_full;
4907                 break;
4908         case SPEED_1000 + DUPLEX_FULL:
4909                 hw->autoneg = 1;
4910                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4911                 break;
4912         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4913         default:
4914                 goto err_inval;
4915         }
4916
4917         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4918         hw->mdix = AUTO_ALL_MODES;
4919
4920         return 0;
4921
4922 err_inval:
4923         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4924         return -EINVAL;
4925 }
4926
4927 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4928 {
4929         struct net_device *netdev = pci_get_drvdata(pdev);
4930         struct e1000_adapter *adapter = netdev_priv(netdev);
4931         struct e1000_hw *hw = &adapter->hw;
4932         u32 ctrl, ctrl_ext, rctl, status;
4933         u32 wufc = adapter->wol;
4934 #ifdef CONFIG_PM
4935         int retval = 0;
4936 #endif
4937
4938         netif_device_detach(netdev);
4939
4940         if (netif_running(netdev)) {
4941                 int count = E1000_CHECK_RESET_COUNT;
4942
4943                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4944                         usleep_range(10000, 20000);
4945
4946                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4947                 e1000_down(adapter);
4948         }
4949
4950 #ifdef CONFIG_PM
4951         retval = pci_save_state(pdev);
4952         if (retval)
4953                 return retval;
4954 #endif
4955
4956         status = er32(STATUS);
4957         if (status & E1000_STATUS_LU)
4958                 wufc &= ~E1000_WUFC_LNKC;
4959
4960         if (wufc) {
4961                 e1000_setup_rctl(adapter);
4962                 e1000_set_rx_mode(netdev);
4963
4964                 rctl = er32(RCTL);
4965
4966                 /* turn on all-multi mode if wake on multicast is enabled */
4967                 if (wufc & E1000_WUFC_MC)
4968                         rctl |= E1000_RCTL_MPE;
4969
4970                 /* enable receives in the hardware */
4971                 ew32(RCTL, rctl | E1000_RCTL_EN);
4972
4973                 if (hw->mac_type >= e1000_82540) {
4974                         ctrl = er32(CTRL);
4975                         /* advertise wake from D3Cold */
4976                         #define E1000_CTRL_ADVD3WUC 0x00100000
4977                         /* phy power management enable */
4978                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4979                         ctrl |= E1000_CTRL_ADVD3WUC |
4980                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4981                         ew32(CTRL, ctrl);
4982                 }
4983
4984                 if (hw->media_type == e1000_media_type_fiber ||
4985                     hw->media_type == e1000_media_type_internal_serdes) {
4986                         /* keep the laser running in D3 */
4987                         ctrl_ext = er32(CTRL_EXT);
4988                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4989                         ew32(CTRL_EXT, ctrl_ext);
4990                 }
4991
4992                 ew32(WUC, E1000_WUC_PME_EN);
4993                 ew32(WUFC, wufc);
4994         } else {
4995                 ew32(WUC, 0);
4996                 ew32(WUFC, 0);
4997         }
4998
4999         e1000_release_manageability(adapter);
5000
5001         *enable_wake = !!wufc;
5002
5003         /* make sure adapter isn't asleep if manageability is enabled */
5004         if (adapter->en_mng_pt)
5005                 *enable_wake = true;
5006
5007         if (netif_running(netdev))
5008                 e1000_free_irq(adapter);
5009
5010         pci_disable_device(pdev);
5011
5012         return 0;
5013 }
5014
5015 #ifdef CONFIG_PM
5016 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5017 {
5018         int retval;
5019         bool wake;
5020
5021         retval = __e1000_shutdown(pdev, &wake);
5022         if (retval)
5023                 return retval;
5024
5025         if (wake) {
5026                 pci_prepare_to_sleep(pdev);
5027         } else {
5028                 pci_wake_from_d3(pdev, false);
5029                 pci_set_power_state(pdev, PCI_D3hot);
5030         }
5031
5032         return 0;
5033 }
5034
5035 static int e1000_resume(struct pci_dev *pdev)
5036 {
5037         struct net_device *netdev = pci_get_drvdata(pdev);
5038         struct e1000_adapter *adapter = netdev_priv(netdev);
5039         struct e1000_hw *hw = &adapter->hw;
5040         u32 err;
5041
5042         pci_set_power_state(pdev, PCI_D0);
5043         pci_restore_state(pdev);
5044         pci_save_state(pdev);
5045
5046         if (adapter->need_ioport)
5047                 err = pci_enable_device(pdev);
5048         else
5049                 err = pci_enable_device_mem(pdev);
5050         if (err) {
5051                 pr_err("Cannot enable PCI device from suspend\n");
5052                 return err;
5053         }
5054         pci_set_master(pdev);
5055
5056         pci_enable_wake(pdev, PCI_D3hot, 0);
5057         pci_enable_wake(pdev, PCI_D3cold, 0);
5058
5059         if (netif_running(netdev)) {
5060                 err = e1000_request_irq(adapter);
5061                 if (err)
5062                         return err;
5063         }
5064
5065         e1000_power_up_phy(adapter);
5066         e1000_reset(adapter);
5067         ew32(WUS, ~0);
5068
5069         e1000_init_manageability(adapter);
5070
5071         if (netif_running(netdev))
5072                 e1000_up(adapter);
5073
5074         netif_device_attach(netdev);
5075
5076         return 0;
5077 }
5078 #endif
5079
5080 static void e1000_shutdown(struct pci_dev *pdev)
5081 {
5082         bool wake;
5083
5084         __e1000_shutdown(pdev, &wake);
5085
5086         if (system_state == SYSTEM_POWER_OFF) {
5087                 pci_wake_from_d3(pdev, wake);
5088                 pci_set_power_state(pdev, PCI_D3hot);
5089         }
5090 }
5091
5092 #ifdef CONFIG_NET_POLL_CONTROLLER
5093 /* Polling 'interrupt' - used by things like netconsole to send skbs
5094  * without having to re-enable interrupts. It's not called while
5095  * the interrupt routine is executing.
5096  */
5097 static void e1000_netpoll(struct net_device *netdev)
5098 {
5099         struct e1000_adapter *adapter = netdev_priv(netdev);
5100
5101         disable_irq(adapter->pdev->irq);
5102         e1000_intr(adapter->pdev->irq, netdev);
5103         enable_irq(adapter->pdev->irq);
5104 }
5105 #endif
5106
5107 /**
5108  * e1000_io_error_detected - called when PCI error is detected
5109  * @pdev: Pointer to PCI device
5110  * @state: The current pci connection state
5111  *
5112  * This function is called after a PCI bus error affecting
5113  * this device has been detected.
5114  */
5115 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5116                                                 pci_channel_state_t state)
5117 {
5118         struct net_device *netdev = pci_get_drvdata(pdev);
5119         struct e1000_adapter *adapter = netdev_priv(netdev);
5120
5121         netif_device_detach(netdev);
5122
5123         if (state == pci_channel_io_perm_failure)
5124                 return PCI_ERS_RESULT_DISCONNECT;
5125
5126         if (netif_running(netdev))
5127                 e1000_down(adapter);
5128         pci_disable_device(pdev);
5129
5130         /* Request a slot slot reset. */
5131         return PCI_ERS_RESULT_NEED_RESET;
5132 }
5133
5134 /**
5135  * e1000_io_slot_reset - called after the pci bus has been reset.
5136  * @pdev: Pointer to PCI device
5137  *
5138  * Restart the card from scratch, as if from a cold-boot. Implementation
5139  * resembles the first-half of the e1000_resume routine.
5140  */
5141 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5142 {
5143         struct net_device *netdev = pci_get_drvdata(pdev);
5144         struct e1000_adapter *adapter = netdev_priv(netdev);
5145         struct e1000_hw *hw = &adapter->hw;
5146         int err;
5147
5148         if (adapter->need_ioport)
5149                 err = pci_enable_device(pdev);
5150         else
5151                 err = pci_enable_device_mem(pdev);
5152         if (err) {
5153                 pr_err("Cannot re-enable PCI device after reset.\n");
5154                 return PCI_ERS_RESULT_DISCONNECT;
5155         }
5156         pci_set_master(pdev);
5157
5158         pci_enable_wake(pdev, PCI_D3hot, 0);
5159         pci_enable_wake(pdev, PCI_D3cold, 0);
5160
5161         e1000_reset(adapter);
5162         ew32(WUS, ~0);
5163
5164         return PCI_ERS_RESULT_RECOVERED;
5165 }
5166
5167 /**
5168  * e1000_io_resume - called when traffic can start flowing again.
5169  * @pdev: Pointer to PCI device
5170  *
5171  * This callback is called when the error recovery driver tells us that
5172  * its OK to resume normal operation. Implementation resembles the
5173  * second-half of the e1000_resume routine.
5174  */
5175 static void e1000_io_resume(struct pci_dev *pdev)
5176 {
5177         struct net_device *netdev = pci_get_drvdata(pdev);
5178         struct e1000_adapter *adapter = netdev_priv(netdev);
5179
5180         e1000_init_manageability(adapter);
5181
5182         if (netif_running(netdev)) {
5183                 if (e1000_up(adapter)) {
5184                         pr_info("can't bring device back up after reset\n");
5185                         return;
5186                 }
5187         }
5188
5189         netif_device_attach(netdev);
5190 }
5191
5192 /* e1000_main.c */