Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW4_CFNAME "cxgb4/t4-config.txt"
139 #define FW5_CFNAME "cxgb4/t5-config.txt"
140
141 MODULE_DESCRIPTION(DRV_DESC);
142 MODULE_AUTHOR("Chelsio Communications");
143 MODULE_LICENSE("Dual BSD/GPL");
144 MODULE_VERSION(DRV_VERSION);
145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146 MODULE_FIRMWARE(FW4_FNAME);
147 MODULE_FIRMWARE(FW5_FNAME);
148
149 /*
150  * Normally we're willing to become the firmware's Master PF but will be happy
151  * if another PF has already become the Master and initialized the adapter.
152  * Setting "force_init" will cause this driver to forcibly establish itself as
153  * the Master PF and initialize the adapter.
154  */
155 static uint force_init;
156
157 module_param(force_init, uint, 0644);
158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159
160 /*
161  * Normally if the firmware we connect to has Configuration File support, we
162  * use that and only fall back to the old Driver-based initialization if the
163  * Configuration File fails for some reason.  If force_old_init is set, then
164  * we'll always use the old Driver-based initialization sequence.
165  */
166 static uint force_old_init;
167
168 module_param(force_old_init, uint, 0644);
169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170                  " parameter");
171
172 static int dflt_msg_enable = DFLT_MSG_ENABLE;
173
174 module_param(dflt_msg_enable, int, 0644);
175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176
177 /*
178  * The driver uses the best interrupt scheme available on a platform in the
179  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
180  * of these schemes the driver may consider as follows:
181  *
182  * msi = 2: choose from among all three options
183  * msi = 1: only consider MSI and INTx interrupts
184  * msi = 0: force INTx interrupts
185  */
186 static int msi = 2;
187
188 module_param(msi, int, 0644);
189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190
191 /*
192  * Queue interrupt hold-off timer values.  Queues default to the first of these
193  * upon creation.
194  */
195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196
197 module_param_array(intr_holdoff, uint, NULL, 0644);
198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199                  "0..4 in microseconds, deprecated parameter");
200
201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202
203 module_param_array(intr_cnt, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_cnt,
205                  "thresholds 1..3 for queue interrupt packet counters, "
206                  "deprecated parameter");
207
208 /*
209  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210  * offset by 2 bytes in order to have the IP headers line up on 4-byte
211  * boundaries.  This is a requirement for many architectures which will throw
212  * a machine check fault if an attempt is made to access one of the 4-byte IP
213  * header fields on a non-4-byte boundary.  And it's a major performance issue
214  * even on some architectures which allow it like some implementations of the
215  * x86 ISA.  However, some architectures don't mind this and for some very
216  * edge-case performance sensitive applications (like forwarding large volumes
217  * of small packets), setting this DMA offset to 0 will decrease the number of
218  * PCI-E Bus transfers enough to measurably affect performance.
219  */
220 static int rx_dma_offset = 2;
221
222 static bool vf_acls;
223
224 #ifdef CONFIG_PCI_IOV
225 module_param(vf_acls, bool, 0644);
226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227                  "deprecated parameter");
228
229 /* Configure the number of PCI-E Virtual Function which are to be instantiated
230  * on SR-IOV Capable Physical Functions.
231  */
232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233
234 module_param_array(num_vf, uint, NULL, 0644);
235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236 #endif
237
238 /* TX Queue select used to determine what algorithm to use for selecting TX
239  * queue. Select between the kernel provided function (select_queue=0) or user
240  * cxgb_select_queue function (select_queue=1)
241  *
242  * Default: select_queue=0
243  */
244 static int select_queue;
245 module_param(select_queue, int, 0644);
246 MODULE_PARM_DESC(select_queue,
247                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248
249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250
251 module_param(tp_vlan_pri_map, uint, 0644);
252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253                  "deprecated parameter");
254
255 static struct dentry *cxgb4_debugfs_root;
256
257 static LIST_HEAD(adapter_list);
258 static DEFINE_MUTEX(uld_mutex);
259 /* Adapter list to be accessed from atomic context */
260 static LIST_HEAD(adap_rcu_list);
261 static DEFINE_SPINLOCK(adap_rcu_lock);
262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263 static const char *uld_str[] = { "RDMA", "iSCSI" };
264
265 static void link_report(struct net_device *dev)
266 {
267         if (!netif_carrier_ok(dev))
268                 netdev_info(dev, "link down\n");
269         else {
270                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271
272                 const char *s = "10Mbps";
273                 const struct port_info *p = netdev_priv(dev);
274
275                 switch (p->link_cfg.speed) {
276                 case 10000:
277                         s = "10Gbps";
278                         break;
279                 case 1000:
280                         s = "1000Mbps";
281                         break;
282                 case 100:
283                         s = "100Mbps";
284                         break;
285                 case 40000:
286                         s = "40Gbps";
287                         break;
288                 }
289
290                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291                             fc[p->link_cfg.fc]);
292         }
293 }
294
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298 {
299         struct port_info *pi = netdev_priv(dev);
300         struct adapter *adap = pi->adapter;
301         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302         int i;
303
304         /* We use a simple mapping of Port TX Queue Index to DCB
305          * Priority when we're enabling DCB.
306          */
307         for (i = 0; i < pi->nqsets; i++, txq++) {
308                 u32 name, value;
309                 int err;
310
311                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312                         FW_PARAMS_PARAM_X_V(
313                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315                 value = enable ? i : 0xffffffff;
316
317                 /* Since we can be called while atomic (from "interrupt
318                  * level") we need to issue the Set Parameters Commannd
319                  * without sleeping (timeout < 0).
320                  */
321                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322                                             &name, &value);
323
324                 if (err)
325                         dev_err(adap->pdev_dev,
326                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327                                 enable ? "set" : "unset", pi->port_id, i, -err);
328                 else
329                         txq->dcb_prio = value;
330         }
331 }
332 #endif /* CONFIG_CHELSIO_T4_DCB */
333
334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335 {
336         struct net_device *dev = adapter->port[port_id];
337
338         /* Skip changes from disabled ports. */
339         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340                 if (link_stat)
341                         netif_carrier_on(dev);
342                 else {
343 #ifdef CONFIG_CHELSIO_T4_DCB
344                         cxgb4_dcb_state_init(dev);
345                         dcb_tx_queue_prio_enable(dev, false);
346 #endif /* CONFIG_CHELSIO_T4_DCB */
347                         netif_carrier_off(dev);
348                 }
349
350                 link_report(dev);
351         }
352 }
353
354 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355 {
356         static const char *mod_str[] = {
357                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358         };
359
360         const struct net_device *dev = adap->port[port_id];
361         const struct port_info *pi = netdev_priv(dev);
362
363         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364                 netdev_info(dev, "port module unplugged\n");
365         else if (pi->mod_type < ARRAY_SIZE(mod_str))
366                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367 }
368
369 /*
370  * Configure the exact and hash address filters to handle a port's multicast
371  * and secondary unicast MAC addresses.
372  */
373 static int set_addr_filters(const struct net_device *dev, bool sleep)
374 {
375         u64 mhash = 0;
376         u64 uhash = 0;
377         bool free = true;
378         u16 filt_idx[7];
379         const u8 *addr[7];
380         int ret, naddr = 0;
381         const struct netdev_hw_addr *ha;
382         int uc_cnt = netdev_uc_count(dev);
383         int mc_cnt = netdev_mc_count(dev);
384         const struct port_info *pi = netdev_priv(dev);
385         unsigned int mb = pi->adapter->fn;
386
387         /* first do the secondary unicast addresses */
388         netdev_for_each_uc_addr(ha, dev) {
389                 addr[naddr++] = ha->addr;
390                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392                                         naddr, addr, filt_idx, &uhash, sleep);
393                         if (ret < 0)
394                                 return ret;
395
396                         free = false;
397                         naddr = 0;
398                 }
399         }
400
401         /* next set up the multicast addresses */
402         netdev_for_each_mc_addr(ha, dev) {
403                 addr[naddr++] = ha->addr;
404                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406                                         naddr, addr, filt_idx, &mhash, sleep);
407                         if (ret < 0)
408                                 return ret;
409
410                         free = false;
411                         naddr = 0;
412                 }
413         }
414
415         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416                                 uhash | mhash, sleep);
417 }
418
419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420 module_param(dbfifo_int_thresh, int, 0644);
421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422
423 /*
424  * usecs to sleep while draining the dbfifo
425  */
426 static int dbfifo_drain_delay = 1000;
427 module_param(dbfifo_drain_delay, int, 0644);
428 MODULE_PARM_DESC(dbfifo_drain_delay,
429                  "usecs to sleep while draining the dbfifo");
430
431 /*
432  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433  * If @mtu is -1 it is left unchanged.
434  */
435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436 {
437         int ret;
438         struct port_info *pi = netdev_priv(dev);
439
440         ret = set_addr_filters(dev, sleep_ok);
441         if (ret == 0)
442                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
444                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445                                     sleep_ok);
446         return ret;
447 }
448
449 /**
450  *      link_start - enable a port
451  *      @dev: the port to enable
452  *
453  *      Performs the MAC and PHY actions needed to enable a port.
454  */
455 static int link_start(struct net_device *dev)
456 {
457         int ret;
458         struct port_info *pi = netdev_priv(dev);
459         unsigned int mb = pi->adapter->fn;
460
461         /*
462          * We do not set address filters and promiscuity here, the stack does
463          * that step explicitly.
464          */
465         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467         if (ret == 0) {
468                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
469                                     pi->xact_addr_filt, dev->dev_addr, true,
470                                     true);
471                 if (ret >= 0) {
472                         pi->xact_addr_filt = ret;
473                         ret = 0;
474                 }
475         }
476         if (ret == 0)
477                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478                                     &pi->link_cfg);
479         if (ret == 0) {
480                 local_bh_disable();
481                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482                                           true, CXGB4_DCB_ENABLED);
483                 local_bh_enable();
484         }
485
486         return ret;
487 }
488
489 int cxgb4_dcb_enabled(const struct net_device *dev)
490 {
491 #ifdef CONFIG_CHELSIO_T4_DCB
492         struct port_info *pi = netdev_priv(dev);
493
494         if (!pi->dcb.enabled)
495                 return 0;
496
497         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
499 #else
500         return 0;
501 #endif
502 }
503 EXPORT_SYMBOL(cxgb4_dcb_enabled);
504
505 #ifdef CONFIG_CHELSIO_T4_DCB
506 /* Handle a Data Center Bridging update message from the firmware. */
507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508 {
509         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510         struct net_device *dev = adap->port[port];
511         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512         int new_dcb_enabled;
513
514         cxgb4_dcb_handle_fw_update(adap, pcmd);
515         new_dcb_enabled = cxgb4_dcb_enabled(dev);
516
517         /* If the DCB has become enabled or disabled on the port then we're
518          * going to need to set up/tear down DCB Priority parameters for the
519          * TX Queues associated with the port.
520          */
521         if (new_dcb_enabled != old_dcb_enabled)
522                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523 }
524 #endif /* CONFIG_CHELSIO_T4_DCB */
525
526 /* Clear a filter and release any of its resources that we own.  This also
527  * clears the filter's "pending" status.
528  */
529 static void clear_filter(struct adapter *adap, struct filter_entry *f)
530 {
531         /* If the new or old filter have loopback rewriteing rules then we'll
532          * need to free any existing Layer Two Table (L2T) entries of the old
533          * filter rule.  The firmware will handle freeing up any Source MAC
534          * Table (SMT) entries used for rewriting Source MAC Addresses in
535          * loopback rules.
536          */
537         if (f->l2t)
538                 cxgb4_l2t_release(f->l2t);
539
540         /* The zeroing of the filter rule below clears the filter valid,
541          * pending, locked flags, l2t pointer, etc. so it's all we need for
542          * this operation.
543          */
544         memset(f, 0, sizeof(*f));
545 }
546
547 /* Handle a filter write/deletion reply.
548  */
549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550 {
551         unsigned int idx = GET_TID(rpl);
552         unsigned int nidx = idx - adap->tids.ftid_base;
553         unsigned int ret;
554         struct filter_entry *f;
555
556         if (idx >= adap->tids.ftid_base && nidx <
557            (adap->tids.nftids + adap->tids.nsftids)) {
558                 idx = nidx;
559                 ret = TCB_COOKIE_G(rpl->cookie);
560                 f = &adap->tids.ftid_tab[idx];
561
562                 if (ret == FW_FILTER_WR_FLT_DELETED) {
563                         /* Clear the filter when we get confirmation from the
564                          * hardware that the filter has been deleted.
565                          */
566                         clear_filter(adap, f);
567                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569                                 idx);
570                         clear_filter(adap, f);
571                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
572                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573                         f->pending = 0;  /* asynchronous setup completed */
574                         f->valid = 1;
575                 } else {
576                         /* Something went wrong.  Issue a warning about the
577                          * problem and clear everything out.
578                          */
579                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580                                 idx, ret);
581                         clear_filter(adap, f);
582                 }
583         }
584 }
585
586 /* Response queue handler for the FW event queue.
587  */
588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589                           const struct pkt_gl *gl)
590 {
591         u8 opcode = ((const struct rss_header *)rsp)->opcode;
592
593         rsp++;                                          /* skip RSS header */
594
595         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596          */
597         if (unlikely(opcode == CPL_FW4_MSG &&
598            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599                 rsp++;
600                 opcode = ((const struct rss_header *)rsp)->opcode;
601                 rsp++;
602                 if (opcode != CPL_SGE_EGR_UPDATE) {
603                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604                                 , opcode);
605                         goto out;
606                 }
607         }
608
609         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610                 const struct cpl_sge_egr_update *p = (void *)rsp;
611                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612                 struct sge_txq *txq;
613
614                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615                 txq->restarts++;
616                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617                         struct sge_eth_txq *eq;
618
619                         eq = container_of(txq, struct sge_eth_txq, q);
620                         netif_tx_wake_queue(eq->txq);
621                 } else {
622                         struct sge_ofld_txq *oq;
623
624                         oq = container_of(txq, struct sge_ofld_txq, q);
625                         tasklet_schedule(&oq->qresume_tsk);
626                 }
627         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628                 const struct cpl_fw6_msg *p = (void *)rsp;
629
630 #ifdef CONFIG_CHELSIO_T4_DCB
631                 const struct fw_port_cmd *pcmd = (const void *)p->data;
632                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633                 unsigned int action =
634                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635
636                 if (cmd == FW_PORT_CMD &&
637                     action == FW_PORT_ACTION_GET_PORT_INFO) {
638                         int port = FW_PORT_CMD_PORTID_G(
639                                         be32_to_cpu(pcmd->op_to_portid));
640                         struct net_device *dev = q->adap->port[port];
641                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
642                                             FW_PORT_CMD_DCBXDIS_F)
643                                            ? CXGB4_DCB_INPUT_FW_DISABLED
644                                            : CXGB4_DCB_INPUT_FW_ENABLED);
645
646                         cxgb4_dcb_state_fsm(dev, state_input);
647                 }
648
649                 if (cmd == FW_PORT_CMD &&
650                     action == FW_PORT_ACTION_L2_DCB_CFG)
651                         dcb_rpl(q->adap, pcmd);
652                 else
653 #endif
654                         if (p->type == 0)
655                                 t4_handle_fw_rpl(q->adap, p->data);
656         } else if (opcode == CPL_L2T_WRITE_RPL) {
657                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
658
659                 do_l2t_write_rpl(q->adap, p);
660         } else if (opcode == CPL_SET_TCB_RPL) {
661                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
662
663                 filter_rpl(q->adap, p);
664         } else
665                 dev_err(q->adap->pdev_dev,
666                         "unexpected CPL %#x on FW event queue\n", opcode);
667 out:
668         return 0;
669 }
670
671 /**
672  *      uldrx_handler - response queue handler for ULD queues
673  *      @q: the response queue that received the packet
674  *      @rsp: the response queue descriptor holding the offload message
675  *      @gl: the gather list of packet fragments
676  *
677  *      Deliver an ingress offload packet to a ULD.  All processing is done by
678  *      the ULD, we just maintain statistics.
679  */
680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681                          const struct pkt_gl *gl)
682 {
683         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684
685         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686          */
687         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689                 rsp += 2;
690
691         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692                 rxq->stats.nomem++;
693                 return -1;
694         }
695         if (gl == NULL)
696                 rxq->stats.imm++;
697         else if (gl == CXGB4_MSG_AN)
698                 rxq->stats.an++;
699         else
700                 rxq->stats.pkts++;
701         return 0;
702 }
703
704 static void disable_msi(struct adapter *adapter)
705 {
706         if (adapter->flags & USING_MSIX) {
707                 pci_disable_msix(adapter->pdev);
708                 adapter->flags &= ~USING_MSIX;
709         } else if (adapter->flags & USING_MSI) {
710                 pci_disable_msi(adapter->pdev);
711                 adapter->flags &= ~USING_MSI;
712         }
713 }
714
715 /*
716  * Interrupt handler for non-data events used with MSI-X.
717  */
718 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719 {
720         struct adapter *adap = cookie;
721         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722
723         if (v & PFSW_F) {
724                 adap->swintr = 1;
725                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726         }
727         t4_slow_intr_handler(adap);
728         return IRQ_HANDLED;
729 }
730
731 /*
732  * Name the MSI-X interrupts.
733  */
734 static void name_msix_vecs(struct adapter *adap)
735 {
736         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
737
738         /* non-data interrupts */
739         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
740
741         /* FW events */
742         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
743                  adap->port[0]->name);
744
745         /* Ethernet queues */
746         for_each_port(adap, j) {
747                 struct net_device *d = adap->port[j];
748                 const struct port_info *pi = netdev_priv(d);
749
750                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
751                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
752                                  d->name, i);
753         }
754
755         /* offload queues */
756         for_each_ofldrxq(&adap->sge, i)
757                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
758                          adap->port[0]->name, i);
759
760         for_each_rdmarxq(&adap->sge, i)
761                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
762                          adap->port[0]->name, i);
763
764         for_each_rdmaciq(&adap->sge, i)
765                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
766                          adap->port[0]->name, i);
767 }
768
769 static int request_msix_queue_irqs(struct adapter *adap)
770 {
771         struct sge *s = &adap->sge;
772         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
773         int msi_index = 2;
774
775         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
776                           adap->msix_info[1].desc, &s->fw_evtq);
777         if (err)
778                 return err;
779
780         for_each_ethrxq(s, ethqidx) {
781                 err = request_irq(adap->msix_info[msi_index].vec,
782                                   t4_sge_intr_msix, 0,
783                                   adap->msix_info[msi_index].desc,
784                                   &s->ethrxq[ethqidx].rspq);
785                 if (err)
786                         goto unwind;
787                 msi_index++;
788         }
789         for_each_ofldrxq(s, ofldqidx) {
790                 err = request_irq(adap->msix_info[msi_index].vec,
791                                   t4_sge_intr_msix, 0,
792                                   adap->msix_info[msi_index].desc,
793                                   &s->ofldrxq[ofldqidx].rspq);
794                 if (err)
795                         goto unwind;
796                 msi_index++;
797         }
798         for_each_rdmarxq(s, rdmaqidx) {
799                 err = request_irq(adap->msix_info[msi_index].vec,
800                                   t4_sge_intr_msix, 0,
801                                   adap->msix_info[msi_index].desc,
802                                   &s->rdmarxq[rdmaqidx].rspq);
803                 if (err)
804                         goto unwind;
805                 msi_index++;
806         }
807         for_each_rdmaciq(s, rdmaciqqidx) {
808                 err = request_irq(adap->msix_info[msi_index].vec,
809                                   t4_sge_intr_msix, 0,
810                                   adap->msix_info[msi_index].desc,
811                                   &s->rdmaciq[rdmaciqqidx].rspq);
812                 if (err)
813                         goto unwind;
814                 msi_index++;
815         }
816         return 0;
817
818 unwind:
819         while (--rdmaciqqidx >= 0)
820                 free_irq(adap->msix_info[--msi_index].vec,
821                          &s->rdmaciq[rdmaciqqidx].rspq);
822         while (--rdmaqidx >= 0)
823                 free_irq(adap->msix_info[--msi_index].vec,
824                          &s->rdmarxq[rdmaqidx].rspq);
825         while (--ofldqidx >= 0)
826                 free_irq(adap->msix_info[--msi_index].vec,
827                          &s->ofldrxq[ofldqidx].rspq);
828         while (--ethqidx >= 0)
829                 free_irq(adap->msix_info[--msi_index].vec,
830                          &s->ethrxq[ethqidx].rspq);
831         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
832         return err;
833 }
834
835 static void free_msix_queue_irqs(struct adapter *adap)
836 {
837         int i, msi_index = 2;
838         struct sge *s = &adap->sge;
839
840         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
841         for_each_ethrxq(s, i)
842                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
843         for_each_ofldrxq(s, i)
844                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
845         for_each_rdmarxq(s, i)
846                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
847         for_each_rdmaciq(s, i)
848                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
849 }
850
851 /**
852  *      cxgb4_write_rss - write the RSS table for a given port
853  *      @pi: the port
854  *      @queues: array of queue indices for RSS
855  *
856  *      Sets up the portion of the HW RSS table for the port's VI to distribute
857  *      packets to the Rx queues in @queues.
858  */
859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860 {
861         u16 *rss;
862         int i, err;
863         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
864
865         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
866         if (!rss)
867                 return -ENOMEM;
868
869         /* map the queue indices to queue ids */
870         for (i = 0; i < pi->rss_size; i++, queues++)
871                 rss[i] = q[*queues].rspq.abs_id;
872
873         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
874                                   pi->rss_size, rss, pi->rss_size);
875         kfree(rss);
876         return err;
877 }
878
879 /**
880  *      setup_rss - configure RSS
881  *      @adap: the adapter
882  *
883  *      Sets up RSS for each port.
884  */
885 static int setup_rss(struct adapter *adap)
886 {
887         int i, err;
888
889         for_each_port(adap, i) {
890                 const struct port_info *pi = adap2pinfo(adap, i);
891
892                 err = cxgb4_write_rss(pi, pi->rss);
893                 if (err)
894                         return err;
895         }
896         return 0;
897 }
898
899 /*
900  * Return the channel of the ingress queue with the given qid.
901  */
902 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
903 {
904         qid -= p->ingr_start;
905         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
906 }
907
908 /*
909  * Wait until all NAPI handlers are descheduled.
910  */
911 static void quiesce_rx(struct adapter *adap)
912 {
913         int i;
914
915         for (i = 0; i < adap->sge.ingr_sz; i++) {
916                 struct sge_rspq *q = adap->sge.ingr_map[i];
917
918                 if (q && q->handler) {
919                         napi_disable(&q->napi);
920                         local_bh_disable();
921                         while (!cxgb_poll_lock_napi(q))
922                                 mdelay(1);
923                         local_bh_enable();
924                 }
925
926         }
927 }
928
929 /* Disable interrupt and napi handler */
930 static void disable_interrupts(struct adapter *adap)
931 {
932         if (adap->flags & FULL_INIT_DONE) {
933                 t4_intr_disable(adap);
934                 if (adap->flags & USING_MSIX) {
935                         free_msix_queue_irqs(adap);
936                         free_irq(adap->msix_info[0].vec, adap);
937                 } else {
938                         free_irq(adap->pdev->irq, adap);
939                 }
940                 quiesce_rx(adap);
941         }
942 }
943
944 /*
945  * Enable NAPI scheduling and interrupt generation for all Rx queues.
946  */
947 static void enable_rx(struct adapter *adap)
948 {
949         int i;
950
951         for (i = 0; i < adap->sge.ingr_sz; i++) {
952                 struct sge_rspq *q = adap->sge.ingr_map[i];
953
954                 if (!q)
955                         continue;
956                 if (q->handler) {
957                         cxgb_busy_poll_init_lock(q);
958                         napi_enable(&q->napi);
959                 }
960                 /* 0-increment GTS to start the timer and enable interrupts */
961                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
962                              SEINTARM_V(q->intr_params) |
963                              INGRESSQID_V(q->cntxt_id));
964         }
965 }
966
967 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
968                            unsigned int nq, unsigned int per_chan, int msi_idx,
969                            u16 *ids)
970 {
971         int i, err;
972
973         for (i = 0; i < nq; i++, q++) {
974                 if (msi_idx > 0)
975                         msi_idx++;
976                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
977                                        adap->port[i / per_chan],
978                                        msi_idx, q->fl.size ? &q->fl : NULL,
979                                        uldrx_handler);
980                 if (err)
981                         return err;
982                 memset(&q->stats, 0, sizeof(q->stats));
983                 if (ids)
984                         ids[i] = q->rspq.abs_id;
985         }
986         return 0;
987 }
988
989 /**
990  *      setup_sge_queues - configure SGE Tx/Rx/response queues
991  *      @adap: the adapter
992  *
993  *      Determines how many sets of SGE queues to use and initializes them.
994  *      We support multiple queue sets per port if we have MSI-X, otherwise
995  *      just one queue set per port.
996  */
997 static int setup_sge_queues(struct adapter *adap)
998 {
999         int err, msi_idx, i, j;
1000         struct sge *s = &adap->sge;
1001
1002         bitmap_zero(s->starving_fl, s->egr_sz);
1003         bitmap_zero(s->txq_maperr, s->egr_sz);
1004
1005         if (adap->flags & USING_MSIX)
1006                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1007         else {
1008                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1009                                        NULL, NULL);
1010                 if (err)
1011                         return err;
1012                 msi_idx = -((int)s->intrq.abs_id + 1);
1013         }
1014
1015         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1016          * don't forget to update the following which need to be
1017          * synchronized to and changes here.
1018          *
1019          * 1. The calculations of MAX_INGQ in cxgb4.h.
1020          *
1021          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1022          *    to accommodate any new/deleted Ingress Queues
1023          *    which need MSI-X Vectors.
1024          *
1025          * 3. Update sge_qinfo_show() to include information on the
1026          *    new/deleted queues.
1027          */
1028         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029                                msi_idx, NULL, fwevtq_handler);
1030         if (err) {
1031 freeout:        t4_free_sge_resources(adap);
1032                 return err;
1033         }
1034
1035         for_each_port(adap, i) {
1036                 struct net_device *dev = adap->port[i];
1037                 struct port_info *pi = netdev_priv(dev);
1038                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1039                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1040
1041                 for (j = 0; j < pi->nqsets; j++, q++) {
1042                         if (msi_idx > 0)
1043                                 msi_idx++;
1044                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1045                                                msi_idx, &q->fl,
1046                                                t4_ethrx_handler);
1047                         if (err)
1048                                 goto freeout;
1049                         q->rspq.idx = j;
1050                         memset(&q->stats, 0, sizeof(q->stats));
1051                 }
1052                 for (j = 0; j < pi->nqsets; j++, t++) {
1053                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1054                                         netdev_get_tx_queue(dev, j),
1055                                         s->fw_evtq.cntxt_id);
1056                         if (err)
1057                                 goto freeout;
1058                 }
1059         }
1060
1061         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1062         for_each_ofldrxq(s, i) {
1063                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1064                                             adap->port[i / j],
1065                                             s->fw_evtq.cntxt_id);
1066                 if (err)
1067                         goto freeout;
1068         }
1069
1070 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1071         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1072         if (err) \
1073                 goto freeout; \
1074         if (msi_idx > 0) \
1075                 msi_idx += nq; \
1076 } while (0)
1077
1078         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1079         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1080         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1081         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1082
1083 #undef ALLOC_OFLD_RXQS
1084
1085         for_each_port(adap, i) {
1086                 /*
1087                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1088                  * have RDMA queues, and that's the right value.
1089                  */
1090                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1091                                             s->fw_evtq.cntxt_id,
1092                                             s->rdmarxq[i].rspq.cntxt_id);
1093                 if (err)
1094                         goto freeout;
1095         }
1096
1097         t4_write_reg(adap, is_t4(adap->params.chip) ?
1098                                 MPS_TRC_RSS_CONTROL_A :
1099                                 MPS_T5_TRC_RSS_CONTROL_A,
1100                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1101                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1102         return 0;
1103 }
1104
1105 /*
1106  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1107  * The allocated memory is cleared.
1108  */
1109 void *t4_alloc_mem(size_t size)
1110 {
1111         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1112
1113         if (!p)
1114                 p = vzalloc(size);
1115         return p;
1116 }
1117
1118 /*
1119  * Free memory allocated through alloc_mem().
1120  */
1121 void t4_free_mem(void *addr)
1122 {
1123         if (is_vmalloc_addr(addr))
1124                 vfree(addr);
1125         else
1126                 kfree(addr);
1127 }
1128
1129 /* Send a Work Request to write the filter at a specified index.  We construct
1130  * a Firmware Filter Work Request to have the work done and put the indicated
1131  * filter into "pending" mode which will prevent any further actions against
1132  * it till we get a reply from the firmware on the completion status of the
1133  * request.
1134  */
1135 static int set_filter_wr(struct adapter *adapter, int fidx)
1136 {
1137         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1138         struct sk_buff *skb;
1139         struct fw_filter_wr *fwr;
1140         unsigned int ftid;
1141
1142         /* If the new filter requires loopback Destination MAC and/or VLAN
1143          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1144          * the filter.
1145          */
1146         if (f->fs.newdmac || f->fs.newvlan) {
1147                 /* allocate L2T entry for new filter */
1148                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1149                 if (f->l2t == NULL)
1150                         return -EAGAIN;
1151                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1152                                         f->fs.eport, f->fs.dmac)) {
1153                         cxgb4_l2t_release(f->l2t);
1154                         f->l2t = NULL;
1155                         return -ENOMEM;
1156                 }
1157         }
1158
1159         ftid = adapter->tids.ftid_base + fidx;
1160
1161         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1162         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1163         memset(fwr, 0, sizeof(*fwr));
1164
1165         /* It would be nice to put most of the following in t4_hw.c but most
1166          * of the work is translating the cxgbtool ch_filter_specification
1167          * into the Work Request and the definition of that structure is
1168          * currently in cxgbtool.h which isn't appropriate to pull into the
1169          * common code.  We may eventually try to come up with a more neutral
1170          * filter specification structure but for now it's easiest to simply
1171          * put this fairly direct code in line ...
1172          */
1173         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1174         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1175         fwr->tid_to_iq =
1176                 htonl(FW_FILTER_WR_TID_V(ftid) |
1177                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1178                       FW_FILTER_WR_NOREPLY_V(0) |
1179                       FW_FILTER_WR_IQ_V(f->fs.iq));
1180         fwr->del_filter_to_l2tix =
1181                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1182                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1183                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1184                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1185                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1186                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1187                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1188                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1189                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1190                                              f->fs.newvlan == VLAN_REWRITE) |
1191                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1192                                             f->fs.newvlan == VLAN_REWRITE) |
1193                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1194                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1195                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1196                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1197         fwr->ethtype = htons(f->fs.val.ethtype);
1198         fwr->ethtypem = htons(f->fs.mask.ethtype);
1199         fwr->frag_to_ovlan_vldm =
1200                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1201                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1202                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1203                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1204                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1205                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1206         fwr->smac_sel = 0;
1207         fwr->rx_chan_rx_rpl_iq =
1208                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1209                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1210         fwr->maci_to_matchtypem =
1211                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1212                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1213                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1214                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1215                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1216                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1217                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1218                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1219         fwr->ptcl = f->fs.val.proto;
1220         fwr->ptclm = f->fs.mask.proto;
1221         fwr->ttyp = f->fs.val.tos;
1222         fwr->ttypm = f->fs.mask.tos;
1223         fwr->ivlan = htons(f->fs.val.ivlan);
1224         fwr->ivlanm = htons(f->fs.mask.ivlan);
1225         fwr->ovlan = htons(f->fs.val.ovlan);
1226         fwr->ovlanm = htons(f->fs.mask.ovlan);
1227         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1228         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1229         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1230         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1231         fwr->lp = htons(f->fs.val.lport);
1232         fwr->lpm = htons(f->fs.mask.lport);
1233         fwr->fp = htons(f->fs.val.fport);
1234         fwr->fpm = htons(f->fs.mask.fport);
1235         if (f->fs.newsmac)
1236                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1237
1238         /* Mark the filter as "pending" and ship off the Filter Work Request.
1239          * When we get the Work Request Reply we'll clear the pending status.
1240          */
1241         f->pending = 1;
1242         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1243         t4_ofld_send(adapter, skb);
1244         return 0;
1245 }
1246
1247 /* Delete the filter at a specified index.
1248  */
1249 static int del_filter_wr(struct adapter *adapter, int fidx)
1250 {
1251         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1252         struct sk_buff *skb;
1253         struct fw_filter_wr *fwr;
1254         unsigned int len, ftid;
1255
1256         len = sizeof(*fwr);
1257         ftid = adapter->tids.ftid_base + fidx;
1258
1259         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1260         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1261         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1262
1263         /* Mark the filter as "pending" and ship off the Filter Work Request.
1264          * When we get the Work Request Reply we'll clear the pending status.
1265          */
1266         f->pending = 1;
1267         t4_mgmt_tx(adapter, skb);
1268         return 0;
1269 }
1270
1271 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1272                              void *accel_priv, select_queue_fallback_t fallback)
1273 {
1274         int txq;
1275
1276 #ifdef CONFIG_CHELSIO_T4_DCB
1277         /* If a Data Center Bridging has been successfully negotiated on this
1278          * link then we'll use the skb's priority to map it to a TX Queue.
1279          * The skb's priority is determined via the VLAN Tag Priority Code
1280          * Point field.
1281          */
1282         if (cxgb4_dcb_enabled(dev)) {
1283                 u16 vlan_tci;
1284                 int err;
1285
1286                 err = vlan_get_tag(skb, &vlan_tci);
1287                 if (unlikely(err)) {
1288                         if (net_ratelimit())
1289                                 netdev_warn(dev,
1290                                             "TX Packet without VLAN Tag on DCB Link\n");
1291                         txq = 0;
1292                 } else {
1293                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1294 #ifdef CONFIG_CHELSIO_T4_FCOE
1295                         if (skb->protocol == htons(ETH_P_FCOE))
1296                                 txq = skb->priority & 0x7;
1297 #endif /* CONFIG_CHELSIO_T4_FCOE */
1298                 }
1299                 return txq;
1300         }
1301 #endif /* CONFIG_CHELSIO_T4_DCB */
1302
1303         if (select_queue) {
1304                 txq = (skb_rx_queue_recorded(skb)
1305                         ? skb_get_rx_queue(skb)
1306                         : smp_processor_id());
1307
1308                 while (unlikely(txq >= dev->real_num_tx_queues))
1309                         txq -= dev->real_num_tx_queues;
1310
1311                 return txq;
1312         }
1313
1314         return fallback(dev, skb) % dev->real_num_tx_queues;
1315 }
1316
1317 static inline int is_offload(const struct adapter *adap)
1318 {
1319         return adap->params.offload;
1320 }
1321
1322 static int closest_timer(const struct sge *s, int time)
1323 {
1324         int i, delta, match = 0, min_delta = INT_MAX;
1325
1326         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1327                 delta = time - s->timer_val[i];
1328                 if (delta < 0)
1329                         delta = -delta;
1330                 if (delta < min_delta) {
1331                         min_delta = delta;
1332                         match = i;
1333                 }
1334         }
1335         return match;
1336 }
1337
1338 static int closest_thres(const struct sge *s, int thres)
1339 {
1340         int i, delta, match = 0, min_delta = INT_MAX;
1341
1342         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1343                 delta = thres - s->counter_val[i];
1344                 if (delta < 0)
1345                         delta = -delta;
1346                 if (delta < min_delta) {
1347                         min_delta = delta;
1348                         match = i;
1349                 }
1350         }
1351         return match;
1352 }
1353
1354 /**
1355  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1356  *      @q: the Rx queue
1357  *      @us: the hold-off time in us, or 0 to disable timer
1358  *      @cnt: the hold-off packet count, or 0 to disable counter
1359  *
1360  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1361  *      one of the two needs to be enabled for the queue to generate interrupts.
1362  */
1363 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1364                                unsigned int us, unsigned int cnt)
1365 {
1366         struct adapter *adap = q->adap;
1367
1368         if ((us | cnt) == 0)
1369                 cnt = 1;
1370
1371         if (cnt) {
1372                 int err;
1373                 u32 v, new_idx;
1374
1375                 new_idx = closest_thres(&adap->sge, cnt);
1376                 if (q->desc && q->pktcnt_idx != new_idx) {
1377                         /* the queue has already been created, update it */
1378                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1379                             FW_PARAMS_PARAM_X_V(
1380                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1381                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1382                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1383                                             &new_idx);
1384                         if (err)
1385                                 return err;
1386                 }
1387                 q->pktcnt_idx = new_idx;
1388         }
1389
1390         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1391         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1392         return 0;
1393 }
1394
1395 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1396 {
1397         const struct port_info *pi = netdev_priv(dev);
1398         netdev_features_t changed = dev->features ^ features;
1399         int err;
1400
1401         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1402                 return 0;
1403
1404         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1405                             -1, -1, -1,
1406                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1407         if (unlikely(err))
1408                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1409         return err;
1410 }
1411
1412 static int setup_debugfs(struct adapter *adap)
1413 {
1414         if (IS_ERR_OR_NULL(adap->debugfs_root))
1415                 return -1;
1416
1417 #ifdef CONFIG_DEBUG_FS
1418         t4_setup_debugfs(adap);
1419 #endif
1420         return 0;
1421 }
1422
1423 /*
1424  * upper-layer driver support
1425  */
1426
1427 /*
1428  * Allocate an active-open TID and set it to the supplied value.
1429  */
1430 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1431 {
1432         int atid = -1;
1433
1434         spin_lock_bh(&t->atid_lock);
1435         if (t->afree) {
1436                 union aopen_entry *p = t->afree;
1437
1438                 atid = (p - t->atid_tab) + t->atid_base;
1439                 t->afree = p->next;
1440                 p->data = data;
1441                 t->atids_in_use++;
1442         }
1443         spin_unlock_bh(&t->atid_lock);
1444         return atid;
1445 }
1446 EXPORT_SYMBOL(cxgb4_alloc_atid);
1447
1448 /*
1449  * Release an active-open TID.
1450  */
1451 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1452 {
1453         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1454
1455         spin_lock_bh(&t->atid_lock);
1456         p->next = t->afree;
1457         t->afree = p;
1458         t->atids_in_use--;
1459         spin_unlock_bh(&t->atid_lock);
1460 }
1461 EXPORT_SYMBOL(cxgb4_free_atid);
1462
1463 /*
1464  * Allocate a server TID and set it to the supplied value.
1465  */
1466 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1467 {
1468         int stid;
1469
1470         spin_lock_bh(&t->stid_lock);
1471         if (family == PF_INET) {
1472                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1473                 if (stid < t->nstids)
1474                         __set_bit(stid, t->stid_bmap);
1475                 else
1476                         stid = -1;
1477         } else {
1478                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1479                 if (stid < 0)
1480                         stid = -1;
1481         }
1482         if (stid >= 0) {
1483                 t->stid_tab[stid].data = data;
1484                 stid += t->stid_base;
1485                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1486                  * This is equivalent to 4 TIDs. With CLIP enabled it
1487                  * needs 2 TIDs.
1488                  */
1489                 if (family == PF_INET)
1490                         t->stids_in_use++;
1491                 else
1492                         t->stids_in_use += 4;
1493         }
1494         spin_unlock_bh(&t->stid_lock);
1495         return stid;
1496 }
1497 EXPORT_SYMBOL(cxgb4_alloc_stid);
1498
1499 /* Allocate a server filter TID and set it to the supplied value.
1500  */
1501 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1502 {
1503         int stid;
1504
1505         spin_lock_bh(&t->stid_lock);
1506         if (family == PF_INET) {
1507                 stid = find_next_zero_bit(t->stid_bmap,
1508                                 t->nstids + t->nsftids, t->nstids);
1509                 if (stid < (t->nstids + t->nsftids))
1510                         __set_bit(stid, t->stid_bmap);
1511                 else
1512                         stid = -1;
1513         } else {
1514                 stid = -1;
1515         }
1516         if (stid >= 0) {
1517                 t->stid_tab[stid].data = data;
1518                 stid -= t->nstids;
1519                 stid += t->sftid_base;
1520                 t->stids_in_use++;
1521         }
1522         spin_unlock_bh(&t->stid_lock);
1523         return stid;
1524 }
1525 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1526
1527 /* Release a server TID.
1528  */
1529 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1530 {
1531         /* Is it a server filter TID? */
1532         if (t->nsftids && (stid >= t->sftid_base)) {
1533                 stid -= t->sftid_base;
1534                 stid += t->nstids;
1535         } else {
1536                 stid -= t->stid_base;
1537         }
1538
1539         spin_lock_bh(&t->stid_lock);
1540         if (family == PF_INET)
1541                 __clear_bit(stid, t->stid_bmap);
1542         else
1543                 bitmap_release_region(t->stid_bmap, stid, 2);
1544         t->stid_tab[stid].data = NULL;
1545         if (family == PF_INET)
1546                 t->stids_in_use--;
1547         else
1548                 t->stids_in_use -= 4;
1549         spin_unlock_bh(&t->stid_lock);
1550 }
1551 EXPORT_SYMBOL(cxgb4_free_stid);
1552
1553 /*
1554  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1555  */
1556 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1557                            unsigned int tid)
1558 {
1559         struct cpl_tid_release *req;
1560
1561         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1562         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1563         INIT_TP_WR(req, tid);
1564         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1565 }
1566
1567 /*
1568  * Queue a TID release request and if necessary schedule a work queue to
1569  * process it.
1570  */
1571 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1572                                     unsigned int tid)
1573 {
1574         void **p = &t->tid_tab[tid];
1575         struct adapter *adap = container_of(t, struct adapter, tids);
1576
1577         spin_lock_bh(&adap->tid_release_lock);
1578         *p = adap->tid_release_head;
1579         /* Low 2 bits encode the Tx channel number */
1580         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1581         if (!adap->tid_release_task_busy) {
1582                 adap->tid_release_task_busy = true;
1583                 queue_work(adap->workq, &adap->tid_release_task);
1584         }
1585         spin_unlock_bh(&adap->tid_release_lock);
1586 }
1587
1588 /*
1589  * Process the list of pending TID release requests.
1590  */
1591 static void process_tid_release_list(struct work_struct *work)
1592 {
1593         struct sk_buff *skb;
1594         struct adapter *adap;
1595
1596         adap = container_of(work, struct adapter, tid_release_task);
1597
1598         spin_lock_bh(&adap->tid_release_lock);
1599         while (adap->tid_release_head) {
1600                 void **p = adap->tid_release_head;
1601                 unsigned int chan = (uintptr_t)p & 3;
1602                 p = (void *)p - chan;
1603
1604                 adap->tid_release_head = *p;
1605                 *p = NULL;
1606                 spin_unlock_bh(&adap->tid_release_lock);
1607
1608                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1609                                          GFP_KERNEL)))
1610                         schedule_timeout_uninterruptible(1);
1611
1612                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1613                 t4_ofld_send(adap, skb);
1614                 spin_lock_bh(&adap->tid_release_lock);
1615         }
1616         adap->tid_release_task_busy = false;
1617         spin_unlock_bh(&adap->tid_release_lock);
1618 }
1619
1620 /*
1621  * Release a TID and inform HW.  If we are unable to allocate the release
1622  * message we defer to a work queue.
1623  */
1624 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1625 {
1626         void *old;
1627         struct sk_buff *skb;
1628         struct adapter *adap = container_of(t, struct adapter, tids);
1629
1630         old = t->tid_tab[tid];
1631         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1632         if (likely(skb)) {
1633                 t->tid_tab[tid] = NULL;
1634                 mk_tid_release(skb, chan, tid);
1635                 t4_ofld_send(adap, skb);
1636         } else
1637                 cxgb4_queue_tid_release(t, chan, tid);
1638         if (old)
1639                 atomic_dec(&t->tids_in_use);
1640 }
1641 EXPORT_SYMBOL(cxgb4_remove_tid);
1642
1643 /*
1644  * Allocate and initialize the TID tables.  Returns 0 on success.
1645  */
1646 static int tid_init(struct tid_info *t)
1647 {
1648         size_t size;
1649         unsigned int stid_bmap_size;
1650         unsigned int natids = t->natids;
1651         struct adapter *adap = container_of(t, struct adapter, tids);
1652
1653         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1654         size = t->ntids * sizeof(*t->tid_tab) +
1655                natids * sizeof(*t->atid_tab) +
1656                t->nstids * sizeof(*t->stid_tab) +
1657                t->nsftids * sizeof(*t->stid_tab) +
1658                stid_bmap_size * sizeof(long) +
1659                t->nftids * sizeof(*t->ftid_tab) +
1660                t->nsftids * sizeof(*t->ftid_tab);
1661
1662         t->tid_tab = t4_alloc_mem(size);
1663         if (!t->tid_tab)
1664                 return -ENOMEM;
1665
1666         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1667         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1668         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1669         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1670         spin_lock_init(&t->stid_lock);
1671         spin_lock_init(&t->atid_lock);
1672
1673         t->stids_in_use = 0;
1674         t->afree = NULL;
1675         t->atids_in_use = 0;
1676         atomic_set(&t->tids_in_use, 0);
1677
1678         /* Setup the free list for atid_tab and clear the stid bitmap. */
1679         if (natids) {
1680                 while (--natids)
1681                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1682                 t->afree = t->atid_tab;
1683         }
1684         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1685         /* Reserve stid 0 for T4/T5 adapters */
1686         if (!t->stid_base &&
1687             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1688                 __set_bit(0, t->stid_bmap);
1689
1690         return 0;
1691 }
1692
1693 /**
1694  *      cxgb4_create_server - create an IP server
1695  *      @dev: the device
1696  *      @stid: the server TID
1697  *      @sip: local IP address to bind server to
1698  *      @sport: the server's TCP port
1699  *      @queue: queue to direct messages from this server to
1700  *
1701  *      Create an IP server for the given port and address.
1702  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1703  */
1704 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1705                         __be32 sip, __be16 sport, __be16 vlan,
1706                         unsigned int queue)
1707 {
1708         unsigned int chan;
1709         struct sk_buff *skb;
1710         struct adapter *adap;
1711         struct cpl_pass_open_req *req;
1712         int ret;
1713
1714         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1715         if (!skb)
1716                 return -ENOMEM;
1717
1718         adap = netdev2adap(dev);
1719         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1720         INIT_TP_WR(req, 0);
1721         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1722         req->local_port = sport;
1723         req->peer_port = htons(0);
1724         req->local_ip = sip;
1725         req->peer_ip = htonl(0);
1726         chan = rxq_to_chan(&adap->sge, queue);
1727         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1728         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1729                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1730         ret = t4_mgmt_tx(adap, skb);
1731         return net_xmit_eval(ret);
1732 }
1733 EXPORT_SYMBOL(cxgb4_create_server);
1734
1735 /*      cxgb4_create_server6 - create an IPv6 server
1736  *      @dev: the device
1737  *      @stid: the server TID
1738  *      @sip: local IPv6 address to bind server to
1739  *      @sport: the server's TCP port
1740  *      @queue: queue to direct messages from this server to
1741  *
1742  *      Create an IPv6 server for the given port and address.
1743  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1744  */
1745 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1746                          const struct in6_addr *sip, __be16 sport,
1747                          unsigned int queue)
1748 {
1749         unsigned int chan;
1750         struct sk_buff *skb;
1751         struct adapter *adap;
1752         struct cpl_pass_open_req6 *req;
1753         int ret;
1754
1755         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1756         if (!skb)
1757                 return -ENOMEM;
1758
1759         adap = netdev2adap(dev);
1760         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1761         INIT_TP_WR(req, 0);
1762         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1763         req->local_port = sport;
1764         req->peer_port = htons(0);
1765         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1766         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1767         req->peer_ip_hi = cpu_to_be64(0);
1768         req->peer_ip_lo = cpu_to_be64(0);
1769         chan = rxq_to_chan(&adap->sge, queue);
1770         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1771         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1772                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1773         ret = t4_mgmt_tx(adap, skb);
1774         return net_xmit_eval(ret);
1775 }
1776 EXPORT_SYMBOL(cxgb4_create_server6);
1777
1778 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1779                         unsigned int queue, bool ipv6)
1780 {
1781         struct sk_buff *skb;
1782         struct adapter *adap;
1783         struct cpl_close_listsvr_req *req;
1784         int ret;
1785
1786         adap = netdev2adap(dev);
1787
1788         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1789         if (!skb)
1790                 return -ENOMEM;
1791
1792         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1793         INIT_TP_WR(req, 0);
1794         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1795         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1796                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1797         ret = t4_mgmt_tx(adap, skb);
1798         return net_xmit_eval(ret);
1799 }
1800 EXPORT_SYMBOL(cxgb4_remove_server);
1801
1802 /**
1803  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1804  *      @mtus: the HW MTU table
1805  *      @mtu: the target MTU
1806  *      @idx: index of selected entry in the MTU table
1807  *
1808  *      Returns the index and the value in the HW MTU table that is closest to
1809  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1810  *      table, in which case that smallest available value is selected.
1811  */
1812 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1813                             unsigned int *idx)
1814 {
1815         unsigned int i = 0;
1816
1817         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1818                 ++i;
1819         if (idx)
1820                 *idx = i;
1821         return mtus[i];
1822 }
1823 EXPORT_SYMBOL(cxgb4_best_mtu);
1824
1825 /**
1826  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1827  *     @mtus: the HW MTU table
1828  *     @header_size: Header Size
1829  *     @data_size_max: maximum Data Segment Size
1830  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1831  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1832  *
1833  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1834  *     MTU Table based solely on a Maximum MTU parameter, we break that
1835  *     parameter up into a Header Size and Maximum Data Segment Size, and
1836  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1837  *     the Hardware MTU Table which will result in a Data Segment Size with
1838  *     the requested alignment _and_ that MTU isn't "too far" from the
1839  *     closest MTU, then we'll return that rather than the closest MTU.
1840  */
1841 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1842                                     unsigned short header_size,
1843                                     unsigned short data_size_max,
1844                                     unsigned short data_size_align,
1845                                     unsigned int *mtu_idxp)
1846 {
1847         unsigned short max_mtu = header_size + data_size_max;
1848         unsigned short data_size_align_mask = data_size_align - 1;
1849         int mtu_idx, aligned_mtu_idx;
1850
1851         /* Scan the MTU Table till we find an MTU which is larger than our
1852          * Maximum MTU or we reach the end of the table.  Along the way,
1853          * record the last MTU found, if any, which will result in a Data
1854          * Segment Length matching the requested alignment.
1855          */
1856         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1857                 unsigned short data_size = mtus[mtu_idx] - header_size;
1858
1859                 /* If this MTU minus the Header Size would result in a
1860                  * Data Segment Size of the desired alignment, remember it.
1861                  */
1862                 if ((data_size & data_size_align_mask) == 0)
1863                         aligned_mtu_idx = mtu_idx;
1864
1865                 /* If we're not at the end of the Hardware MTU Table and the
1866                  * next element is larger than our Maximum MTU, drop out of
1867                  * the loop.
1868                  */
1869                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1870                         break;
1871         }
1872
1873         /* If we fell out of the loop because we ran to the end of the table,
1874          * then we just have to use the last [largest] entry.
1875          */
1876         if (mtu_idx == NMTUS)
1877                 mtu_idx--;
1878
1879         /* If we found an MTU which resulted in the requested Data Segment
1880          * Length alignment and that's "not far" from the largest MTU which is
1881          * less than or equal to the maximum MTU, then use that.
1882          */
1883         if (aligned_mtu_idx >= 0 &&
1884             mtu_idx - aligned_mtu_idx <= 1)
1885                 mtu_idx = aligned_mtu_idx;
1886
1887         /* If the caller has passed in an MTU Index pointer, pass the
1888          * MTU Index back.  Return the MTU value.
1889          */
1890         if (mtu_idxp)
1891                 *mtu_idxp = mtu_idx;
1892         return mtus[mtu_idx];
1893 }
1894 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1895
1896 /**
1897  *      cxgb4_port_chan - get the HW channel of a port
1898  *      @dev: the net device for the port
1899  *
1900  *      Return the HW Tx channel of the given port.
1901  */
1902 unsigned int cxgb4_port_chan(const struct net_device *dev)
1903 {
1904         return netdev2pinfo(dev)->tx_chan;
1905 }
1906 EXPORT_SYMBOL(cxgb4_port_chan);
1907
1908 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1909 {
1910         struct adapter *adap = netdev2adap(dev);
1911         u32 v1, v2, lp_count, hp_count;
1912
1913         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1914         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1915         if (is_t4(adap->params.chip)) {
1916                 lp_count = LP_COUNT_G(v1);
1917                 hp_count = HP_COUNT_G(v1);
1918         } else {
1919                 lp_count = LP_COUNT_T5_G(v1);
1920                 hp_count = HP_COUNT_T5_G(v2);
1921         }
1922         return lpfifo ? lp_count : hp_count;
1923 }
1924 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1925
1926 /**
1927  *      cxgb4_port_viid - get the VI id of a port
1928  *      @dev: the net device for the port
1929  *
1930  *      Return the VI id of the given port.
1931  */
1932 unsigned int cxgb4_port_viid(const struct net_device *dev)
1933 {
1934         return netdev2pinfo(dev)->viid;
1935 }
1936 EXPORT_SYMBOL(cxgb4_port_viid);
1937
1938 /**
1939  *      cxgb4_port_idx - get the index of a port
1940  *      @dev: the net device for the port
1941  *
1942  *      Return the index of the given port.
1943  */
1944 unsigned int cxgb4_port_idx(const struct net_device *dev)
1945 {
1946         return netdev2pinfo(dev)->port_id;
1947 }
1948 EXPORT_SYMBOL(cxgb4_port_idx);
1949
1950 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1951                          struct tp_tcp_stats *v6)
1952 {
1953         struct adapter *adap = pci_get_drvdata(pdev);
1954
1955         spin_lock(&adap->stats_lock);
1956         t4_tp_get_tcp_stats(adap, v4, v6);
1957         spin_unlock(&adap->stats_lock);
1958 }
1959 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1960
1961 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1962                       const unsigned int *pgsz_order)
1963 {
1964         struct adapter *adap = netdev2adap(dev);
1965
1966         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1967         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1968                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1969                      HPZ3_V(pgsz_order[3]));
1970 }
1971 EXPORT_SYMBOL(cxgb4_iscsi_init);
1972
1973 int cxgb4_flush_eq_cache(struct net_device *dev)
1974 {
1975         struct adapter *adap = netdev2adap(dev);
1976         int ret;
1977
1978         ret = t4_fwaddrspace_write(adap, adap->mbox,
1979                                    0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
1980         return ret;
1981 }
1982 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1983
1984 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1985 {
1986         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1987         __be64 indices;
1988         int ret;
1989
1990         spin_lock(&adap->win0_lock);
1991         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1992                            sizeof(indices), (__be32 *)&indices,
1993                            T4_MEMORY_READ);
1994         spin_unlock(&adap->win0_lock);
1995         if (!ret) {
1996                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1997                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1998         }
1999         return ret;
2000 }
2001
2002 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2003                         u16 size)
2004 {
2005         struct adapter *adap = netdev2adap(dev);
2006         u16 hw_pidx, hw_cidx;
2007         int ret;
2008
2009         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2010         if (ret)
2011                 goto out;
2012
2013         if (pidx != hw_pidx) {
2014                 u16 delta;
2015                 u32 val;
2016
2017                 if (pidx >= hw_pidx)
2018                         delta = pidx - hw_pidx;
2019                 else
2020                         delta = size - hw_pidx + pidx;
2021
2022                 if (is_t4(adap->params.chip))
2023                         val = PIDX_V(delta);
2024                 else
2025                         val = PIDX_T5_V(delta);
2026                 wmb();
2027                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2028                              QID_V(qid) | val);
2029         }
2030 out:
2031         return ret;
2032 }
2033 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2034
2035 void cxgb4_disable_db_coalescing(struct net_device *dev)
2036 {
2037         struct adapter *adap;
2038
2039         adap = netdev2adap(dev);
2040         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2041                          NOCOALESCE_F);
2042 }
2043 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2044
2045 void cxgb4_enable_db_coalescing(struct net_device *dev)
2046 {
2047         struct adapter *adap;
2048
2049         adap = netdev2adap(dev);
2050         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2051 }
2052 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2053
2054 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2055 {
2056         struct adapter *adap;
2057         u32 offset, memtype, memaddr;
2058         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2059         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2060         int ret;
2061
2062         adap = netdev2adap(dev);
2063
2064         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2065
2066         /* Figure out where the offset lands in the Memory Type/Address scheme.
2067          * This code assumes that the memory is laid out starting at offset 0
2068          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2069          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2070          * MC0, and some have both MC0 and MC1.
2071          */
2072         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2073         edc0_size = EDRAM0_SIZE_G(size) << 20;
2074         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2075         edc1_size = EDRAM1_SIZE_G(size) << 20;
2076         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2077         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2078
2079         edc0_end = edc0_size;
2080         edc1_end = edc0_end + edc1_size;
2081         mc0_end = edc1_end + mc0_size;
2082
2083         if (offset < edc0_end) {
2084                 memtype = MEM_EDC0;
2085                 memaddr = offset;
2086         } else if (offset < edc1_end) {
2087                 memtype = MEM_EDC1;
2088                 memaddr = offset - edc0_end;
2089         } else {
2090                 if (offset < mc0_end) {
2091                         memtype = MEM_MC0;
2092                         memaddr = offset - edc1_end;
2093                 } else if (is_t4(adap->params.chip)) {
2094                         /* T4 only has a single memory channel */
2095                         goto err;
2096                 } else {
2097                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2098                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2099                         mc1_end = mc0_end + mc1_size;
2100                         if (offset < mc1_end) {
2101                                 memtype = MEM_MC1;
2102                                 memaddr = offset - mc0_end;
2103                         } else {
2104                                 /* offset beyond the end of any memory */
2105                                 goto err;
2106                         }
2107                 }
2108         }
2109
2110         spin_lock(&adap->win0_lock);
2111         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2112         spin_unlock(&adap->win0_lock);
2113         return ret;
2114
2115 err:
2116         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2117                 stag, offset);
2118         return -EINVAL;
2119 }
2120 EXPORT_SYMBOL(cxgb4_read_tpte);
2121
2122 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2123 {
2124         u32 hi, lo;
2125         struct adapter *adap;
2126
2127         adap = netdev2adap(dev);
2128         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2129         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2130
2131         return ((u64)hi << 32) | (u64)lo;
2132 }
2133 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2134
2135 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2136                          unsigned int qid,
2137                          enum cxgb4_bar2_qtype qtype,
2138                          u64 *pbar2_qoffset,
2139                          unsigned int *pbar2_qid)
2140 {
2141         return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2142                                  qid,
2143                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2144                                   ? T4_BAR2_QTYPE_EGRESS
2145                                   : T4_BAR2_QTYPE_INGRESS),
2146                                  pbar2_qoffset,
2147                                  pbar2_qid);
2148 }
2149 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2150
2151 static struct pci_driver cxgb4_driver;
2152
2153 static void check_neigh_update(struct neighbour *neigh)
2154 {
2155         const struct device *parent;
2156         const struct net_device *netdev = neigh->dev;
2157
2158         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2159                 netdev = vlan_dev_real_dev(netdev);
2160         parent = netdev->dev.parent;
2161         if (parent && parent->driver == &cxgb4_driver.driver)
2162                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2163 }
2164
2165 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2166                        void *data)
2167 {
2168         switch (event) {
2169         case NETEVENT_NEIGH_UPDATE:
2170                 check_neigh_update(data);
2171                 break;
2172         case NETEVENT_REDIRECT:
2173         default:
2174                 break;
2175         }
2176         return 0;
2177 }
2178
2179 static bool netevent_registered;
2180 static struct notifier_block cxgb4_netevent_nb = {
2181         .notifier_call = netevent_cb
2182 };
2183
2184 static void drain_db_fifo(struct adapter *adap, int usecs)
2185 {
2186         u32 v1, v2, lp_count, hp_count;
2187
2188         do {
2189                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2190                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2191                 if (is_t4(adap->params.chip)) {
2192                         lp_count = LP_COUNT_G(v1);
2193                         hp_count = HP_COUNT_G(v1);
2194                 } else {
2195                         lp_count = LP_COUNT_T5_G(v1);
2196                         hp_count = HP_COUNT_T5_G(v2);
2197                 }
2198
2199                 if (lp_count == 0 && hp_count == 0)
2200                         break;
2201                 set_current_state(TASK_UNINTERRUPTIBLE);
2202                 schedule_timeout(usecs_to_jiffies(usecs));
2203         } while (1);
2204 }
2205
2206 static void disable_txq_db(struct sge_txq *q)
2207 {
2208         unsigned long flags;
2209
2210         spin_lock_irqsave(&q->db_lock, flags);
2211         q->db_disabled = 1;
2212         spin_unlock_irqrestore(&q->db_lock, flags);
2213 }
2214
2215 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2216 {
2217         spin_lock_irq(&q->db_lock);
2218         if (q->db_pidx_inc) {
2219                 /* Make sure that all writes to the TX descriptors
2220                  * are committed before we tell HW about them.
2221                  */
2222                 wmb();
2223                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2224                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2225                 q->db_pidx_inc = 0;
2226         }
2227         q->db_disabled = 0;
2228         spin_unlock_irq(&q->db_lock);
2229 }
2230
2231 static void disable_dbs(struct adapter *adap)
2232 {
2233         int i;
2234
2235         for_each_ethrxq(&adap->sge, i)
2236                 disable_txq_db(&adap->sge.ethtxq[i].q);
2237         for_each_ofldrxq(&adap->sge, i)
2238                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2239         for_each_port(adap, i)
2240                 disable_txq_db(&adap->sge.ctrlq[i].q);
2241 }
2242
2243 static void enable_dbs(struct adapter *adap)
2244 {
2245         int i;
2246
2247         for_each_ethrxq(&adap->sge, i)
2248                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2249         for_each_ofldrxq(&adap->sge, i)
2250                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2251         for_each_port(adap, i)
2252                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2253 }
2254
2255 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2256 {
2257         if (adap->uld_handle[CXGB4_ULD_RDMA])
2258                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2259                                 cmd);
2260 }
2261
2262 static void process_db_full(struct work_struct *work)
2263 {
2264         struct adapter *adap;
2265
2266         adap = container_of(work, struct adapter, db_full_task);
2267
2268         drain_db_fifo(adap, dbfifo_drain_delay);
2269         enable_dbs(adap);
2270         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2271         t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2272                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2273                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2274 }
2275
2276 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2277 {
2278         u16 hw_pidx, hw_cidx;
2279         int ret;
2280
2281         spin_lock_irq(&q->db_lock);
2282         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2283         if (ret)
2284                 goto out;
2285         if (q->db_pidx != hw_pidx) {
2286                 u16 delta;
2287                 u32 val;
2288
2289                 if (q->db_pidx >= hw_pidx)
2290                         delta = q->db_pidx - hw_pidx;
2291                 else
2292                         delta = q->size - hw_pidx + q->db_pidx;
2293
2294                 if (is_t4(adap->params.chip))
2295                         val = PIDX_V(delta);
2296                 else
2297                         val = PIDX_T5_V(delta);
2298                 wmb();
2299                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2300                              QID_V(q->cntxt_id) | val);
2301         }
2302 out:
2303         q->db_disabled = 0;
2304         q->db_pidx_inc = 0;
2305         spin_unlock_irq(&q->db_lock);
2306         if (ret)
2307                 CH_WARN(adap, "DB drop recovery failed.\n");
2308 }
2309 static void recover_all_queues(struct adapter *adap)
2310 {
2311         int i;
2312
2313         for_each_ethrxq(&adap->sge, i)
2314                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2315         for_each_ofldrxq(&adap->sge, i)
2316                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2317         for_each_port(adap, i)
2318                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2319 }
2320
2321 static void process_db_drop(struct work_struct *work)
2322 {
2323         struct adapter *adap;
2324
2325         adap = container_of(work, struct adapter, db_drop_task);
2326
2327         if (is_t4(adap->params.chip)) {
2328                 drain_db_fifo(adap, dbfifo_drain_delay);
2329                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2330                 drain_db_fifo(adap, dbfifo_drain_delay);
2331                 recover_all_queues(adap);
2332                 drain_db_fifo(adap, dbfifo_drain_delay);
2333                 enable_dbs(adap);
2334                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2335         } else {
2336                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2337                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2338                 u16 pidx_inc = dropped_db & 0x1fff;
2339                 u64 bar2_qoffset;
2340                 unsigned int bar2_qid;
2341                 int ret;
2342
2343                 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2344                                         &bar2_qoffset, &bar2_qid);
2345                 if (ret)
2346                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2347                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2348                 else
2349                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2350                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2351
2352                 /* Re-enable BAR2 WC */
2353                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2354         }
2355
2356         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2357 }
2358
2359 void t4_db_full(struct adapter *adap)
2360 {
2361         if (is_t4(adap->params.chip)) {
2362                 disable_dbs(adap);
2363                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2364                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2365                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2366                 queue_work(adap->workq, &adap->db_full_task);
2367         }
2368 }
2369
2370 void t4_db_dropped(struct adapter *adap)
2371 {
2372         if (is_t4(adap->params.chip)) {
2373                 disable_dbs(adap);
2374                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2375         }
2376         queue_work(adap->workq, &adap->db_drop_task);
2377 }
2378
2379 static void uld_attach(struct adapter *adap, unsigned int uld)
2380 {
2381         void *handle;
2382         struct cxgb4_lld_info lli;
2383         unsigned short i;
2384
2385         lli.pdev = adap->pdev;
2386         lli.pf = adap->fn;
2387         lli.l2t = adap->l2t;
2388         lli.tids = &adap->tids;
2389         lli.ports = adap->port;
2390         lli.vr = &adap->vres;
2391         lli.mtus = adap->params.mtus;
2392         if (uld == CXGB4_ULD_RDMA) {
2393                 lli.rxq_ids = adap->sge.rdma_rxq;
2394                 lli.ciq_ids = adap->sge.rdma_ciq;
2395                 lli.nrxq = adap->sge.rdmaqs;
2396                 lli.nciq = adap->sge.rdmaciqs;
2397         } else if (uld == CXGB4_ULD_ISCSI) {
2398                 lli.rxq_ids = adap->sge.ofld_rxq;
2399                 lli.nrxq = adap->sge.ofldqsets;
2400         }
2401         lli.ntxq = adap->sge.ofldqsets;
2402         lli.nchan = adap->params.nports;
2403         lli.nports = adap->params.nports;
2404         lli.wr_cred = adap->params.ofldq_wr_cred;
2405         lli.adapter_type = adap->params.chip;
2406         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2407         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2408         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2409         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2410         lli.filt_mode = adap->params.tp.vlan_pri_map;
2411         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2412         for (i = 0; i < NCHAN; i++)
2413                 lli.tx_modq[i] = i;
2414         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2415         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2416         lli.fw_vers = adap->params.fw_vers;
2417         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2418         lli.sge_ingpadboundary = adap->sge.fl_align;
2419         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2420         lli.sge_pktshift = adap->sge.pktshift;
2421         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2422         lli.max_ordird_qp = adap->params.max_ordird_qp;
2423         lli.max_ird_adapter = adap->params.max_ird_adapter;
2424         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2425
2426         handle = ulds[uld].add(&lli);
2427         if (IS_ERR(handle)) {
2428                 dev_warn(adap->pdev_dev,
2429                          "could not attach to the %s driver, error %ld\n",
2430                          uld_str[uld], PTR_ERR(handle));
2431                 return;
2432         }
2433
2434         adap->uld_handle[uld] = handle;
2435
2436         if (!netevent_registered) {
2437                 register_netevent_notifier(&cxgb4_netevent_nb);
2438                 netevent_registered = true;
2439         }
2440
2441         if (adap->flags & FULL_INIT_DONE)
2442                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2443 }
2444
2445 static void attach_ulds(struct adapter *adap)
2446 {
2447         unsigned int i;
2448
2449         spin_lock(&adap_rcu_lock);
2450         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2451         spin_unlock(&adap_rcu_lock);
2452
2453         mutex_lock(&uld_mutex);
2454         list_add_tail(&adap->list_node, &adapter_list);
2455         for (i = 0; i < CXGB4_ULD_MAX; i++)
2456                 if (ulds[i].add)
2457                         uld_attach(adap, i);
2458         mutex_unlock(&uld_mutex);
2459 }
2460
2461 static void detach_ulds(struct adapter *adap)
2462 {
2463         unsigned int i;
2464
2465         mutex_lock(&uld_mutex);
2466         list_del(&adap->list_node);
2467         for (i = 0; i < CXGB4_ULD_MAX; i++)
2468                 if (adap->uld_handle[i]) {
2469                         ulds[i].state_change(adap->uld_handle[i],
2470                                              CXGB4_STATE_DETACH);
2471                         adap->uld_handle[i] = NULL;
2472                 }
2473         if (netevent_registered && list_empty(&adapter_list)) {
2474                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2475                 netevent_registered = false;
2476         }
2477         mutex_unlock(&uld_mutex);
2478
2479         spin_lock(&adap_rcu_lock);
2480         list_del_rcu(&adap->rcu_node);
2481         spin_unlock(&adap_rcu_lock);
2482 }
2483
2484 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2485 {
2486         unsigned int i;
2487
2488         mutex_lock(&uld_mutex);
2489         for (i = 0; i < CXGB4_ULD_MAX; i++)
2490                 if (adap->uld_handle[i])
2491                         ulds[i].state_change(adap->uld_handle[i], new_state);
2492         mutex_unlock(&uld_mutex);
2493 }
2494
2495 /**
2496  *      cxgb4_register_uld - register an upper-layer driver
2497  *      @type: the ULD type
2498  *      @p: the ULD methods
2499  *
2500  *      Registers an upper-layer driver with this driver and notifies the ULD
2501  *      about any presently available devices that support its type.  Returns
2502  *      %-EBUSY if a ULD of the same type is already registered.
2503  */
2504 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2505 {
2506         int ret = 0;
2507         struct adapter *adap;
2508
2509         if (type >= CXGB4_ULD_MAX)
2510                 return -EINVAL;
2511         mutex_lock(&uld_mutex);
2512         if (ulds[type].add) {
2513                 ret = -EBUSY;
2514                 goto out;
2515         }
2516         ulds[type] = *p;
2517         list_for_each_entry(adap, &adapter_list, list_node)
2518                 uld_attach(adap, type);
2519 out:    mutex_unlock(&uld_mutex);
2520         return ret;
2521 }
2522 EXPORT_SYMBOL(cxgb4_register_uld);
2523
2524 /**
2525  *      cxgb4_unregister_uld - unregister an upper-layer driver
2526  *      @type: the ULD type
2527  *
2528  *      Unregisters an existing upper-layer driver.
2529  */
2530 int cxgb4_unregister_uld(enum cxgb4_uld type)
2531 {
2532         struct adapter *adap;
2533
2534         if (type >= CXGB4_ULD_MAX)
2535                 return -EINVAL;
2536         mutex_lock(&uld_mutex);
2537         list_for_each_entry(adap, &adapter_list, list_node)
2538                 adap->uld_handle[type] = NULL;
2539         ulds[type].add = NULL;
2540         mutex_unlock(&uld_mutex);
2541         return 0;
2542 }
2543 EXPORT_SYMBOL(cxgb4_unregister_uld);
2544
2545 #if IS_ENABLED(CONFIG_IPV6)
2546 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2547                                    unsigned long event, void *data)
2548 {
2549         struct inet6_ifaddr *ifa = data;
2550         struct net_device *event_dev = ifa->idev->dev;
2551         const struct device *parent = NULL;
2552 #if IS_ENABLED(CONFIG_BONDING)
2553         struct adapter *adap;
2554 #endif
2555         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2556                 event_dev = vlan_dev_real_dev(event_dev);
2557 #if IS_ENABLED(CONFIG_BONDING)
2558         if (event_dev->flags & IFF_MASTER) {
2559                 list_for_each_entry(adap, &adapter_list, list_node) {
2560                         switch (event) {
2561                         case NETDEV_UP:
2562                                 cxgb4_clip_get(adap->port[0],
2563                                                (const u32 *)ifa, 1);
2564                                 break;
2565                         case NETDEV_DOWN:
2566                                 cxgb4_clip_release(adap->port[0],
2567                                                    (const u32 *)ifa, 1);
2568                                 break;
2569                         default:
2570                                 break;
2571                         }
2572                 }
2573                 return NOTIFY_OK;
2574         }
2575 #endif
2576
2577         if (event_dev)
2578                 parent = event_dev->dev.parent;
2579
2580         if (parent && parent->driver == &cxgb4_driver.driver) {
2581                 switch (event) {
2582                 case NETDEV_UP:
2583                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2584                         break;
2585                 case NETDEV_DOWN:
2586                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2587                         break;
2588                 default:
2589                         break;
2590                 }
2591         }
2592         return NOTIFY_OK;
2593 }
2594
2595 static bool inet6addr_registered;
2596 static struct notifier_block cxgb4_inet6addr_notifier = {
2597         .notifier_call = cxgb4_inet6addr_handler
2598 };
2599
2600 static void update_clip(const struct adapter *adap)
2601 {
2602         int i;
2603         struct net_device *dev;
2604         int ret;
2605
2606         rcu_read_lock();
2607
2608         for (i = 0; i < MAX_NPORTS; i++) {
2609                 dev = adap->port[i];
2610                 ret = 0;
2611
2612                 if (dev)
2613                         ret = cxgb4_update_root_dev_clip(dev);
2614
2615                 if (ret < 0)
2616                         break;
2617         }
2618         rcu_read_unlock();
2619 }
2620 #endif /* IS_ENABLED(CONFIG_IPV6) */
2621
2622 /**
2623  *      cxgb_up - enable the adapter
2624  *      @adap: adapter being enabled
2625  *
2626  *      Called when the first port is enabled, this function performs the
2627  *      actions necessary to make an adapter operational, such as completing
2628  *      the initialization of HW modules, and enabling interrupts.
2629  *
2630  *      Must be called with the rtnl lock held.
2631  */
2632 static int cxgb_up(struct adapter *adap)
2633 {
2634         int err;
2635
2636         err = setup_sge_queues(adap);
2637         if (err)
2638                 goto out;
2639         err = setup_rss(adap);
2640         if (err)
2641                 goto freeq;
2642
2643         if (adap->flags & USING_MSIX) {
2644                 name_msix_vecs(adap);
2645                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2646                                   adap->msix_info[0].desc, adap);
2647                 if (err)
2648                         goto irq_err;
2649
2650                 err = request_msix_queue_irqs(adap);
2651                 if (err) {
2652                         free_irq(adap->msix_info[0].vec, adap);
2653                         goto irq_err;
2654                 }
2655         } else {
2656                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2657                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2658                                   adap->port[0]->name, adap);
2659                 if (err)
2660                         goto irq_err;
2661         }
2662         enable_rx(adap);
2663         t4_sge_start(adap);
2664         t4_intr_enable(adap);
2665         adap->flags |= FULL_INIT_DONE;
2666         notify_ulds(adap, CXGB4_STATE_UP);
2667 #if IS_ENABLED(CONFIG_IPV6)
2668         update_clip(adap);
2669 #endif
2670  out:
2671         return err;
2672  irq_err:
2673         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2674  freeq:
2675         t4_free_sge_resources(adap);
2676         goto out;
2677 }
2678
2679 static void cxgb_down(struct adapter *adapter)
2680 {
2681         cancel_work_sync(&adapter->tid_release_task);
2682         cancel_work_sync(&adapter->db_full_task);
2683         cancel_work_sync(&adapter->db_drop_task);
2684         adapter->tid_release_task_busy = false;
2685         adapter->tid_release_head = NULL;
2686
2687         t4_sge_stop(adapter);
2688         t4_free_sge_resources(adapter);
2689         adapter->flags &= ~FULL_INIT_DONE;
2690 }
2691
2692 /*
2693  * net_device operations
2694  */
2695 static int cxgb_open(struct net_device *dev)
2696 {
2697         int err;
2698         struct port_info *pi = netdev_priv(dev);
2699         struct adapter *adapter = pi->adapter;
2700
2701         netif_carrier_off(dev);
2702
2703         if (!(adapter->flags & FULL_INIT_DONE)) {
2704                 err = cxgb_up(adapter);
2705                 if (err < 0)
2706                         return err;
2707         }
2708
2709         err = link_start(dev);
2710         if (!err)
2711                 netif_tx_start_all_queues(dev);
2712         return err;
2713 }
2714
2715 static int cxgb_close(struct net_device *dev)
2716 {
2717         struct port_info *pi = netdev_priv(dev);
2718         struct adapter *adapter = pi->adapter;
2719
2720         netif_tx_stop_all_queues(dev);
2721         netif_carrier_off(dev);
2722         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2723 }
2724
2725 /* Return an error number if the indicated filter isn't writable ...
2726  */
2727 static int writable_filter(struct filter_entry *f)
2728 {
2729         if (f->locked)
2730                 return -EPERM;
2731         if (f->pending)
2732                 return -EBUSY;
2733
2734         return 0;
2735 }
2736
2737 /* Delete the filter at the specified index (if valid).  The checks for all
2738  * the common problems with doing this like the filter being locked, currently
2739  * pending in another operation, etc.
2740  */
2741 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2742 {
2743         struct filter_entry *f;
2744         int ret;
2745
2746         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2747                 return -EINVAL;
2748
2749         f = &adapter->tids.ftid_tab[fidx];
2750         ret = writable_filter(f);
2751         if (ret)
2752                 return ret;
2753         if (f->valid)
2754                 return del_filter_wr(adapter, fidx);
2755
2756         return 0;
2757 }
2758
2759 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2760                 __be32 sip, __be16 sport, __be16 vlan,
2761                 unsigned int queue, unsigned char port, unsigned char mask)
2762 {
2763         int ret;
2764         struct filter_entry *f;
2765         struct adapter *adap;
2766         int i;
2767         u8 *val;
2768
2769         adap = netdev2adap(dev);
2770
2771         /* Adjust stid to correct filter index */
2772         stid -= adap->tids.sftid_base;
2773         stid += adap->tids.nftids;
2774
2775         /* Check to make sure the filter requested is writable ...
2776          */
2777         f = &adap->tids.ftid_tab[stid];
2778         ret = writable_filter(f);
2779         if (ret)
2780                 return ret;
2781
2782         /* Clear out any old resources being used by the filter before
2783          * we start constructing the new filter.
2784          */
2785         if (f->valid)
2786                 clear_filter(adap, f);
2787
2788         /* Clear out filter specifications */
2789         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2790         f->fs.val.lport = cpu_to_be16(sport);
2791         f->fs.mask.lport  = ~0;
2792         val = (u8 *)&sip;
2793         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2794                 for (i = 0; i < 4; i++) {
2795                         f->fs.val.lip[i] = val[i];
2796                         f->fs.mask.lip[i] = ~0;
2797                 }
2798                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2799                         f->fs.val.iport = port;
2800                         f->fs.mask.iport = mask;
2801                 }
2802         }
2803
2804         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2805                 f->fs.val.proto = IPPROTO_TCP;
2806                 f->fs.mask.proto = ~0;
2807         }
2808
2809         f->fs.dirsteer = 1;
2810         f->fs.iq = queue;
2811         /* Mark filter as locked */
2812         f->locked = 1;
2813         f->fs.rpttid = 1;
2814
2815         ret = set_filter_wr(adap, stid);
2816         if (ret) {
2817                 clear_filter(adap, f);
2818                 return ret;
2819         }
2820
2821         return 0;
2822 }
2823 EXPORT_SYMBOL(cxgb4_create_server_filter);
2824
2825 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2826                 unsigned int queue, bool ipv6)
2827 {
2828         int ret;
2829         struct filter_entry *f;
2830         struct adapter *adap;
2831
2832         adap = netdev2adap(dev);
2833
2834         /* Adjust stid to correct filter index */
2835         stid -= adap->tids.sftid_base;
2836         stid += adap->tids.nftids;
2837
2838         f = &adap->tids.ftid_tab[stid];
2839         /* Unlock the filter */
2840         f->locked = 0;
2841
2842         ret = delete_filter(adap, stid);
2843         if (ret)
2844                 return ret;
2845
2846         return 0;
2847 }
2848 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2849
2850 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2851                                                 struct rtnl_link_stats64 *ns)
2852 {
2853         struct port_stats stats;
2854         struct port_info *p = netdev_priv(dev);
2855         struct adapter *adapter = p->adapter;
2856
2857         /* Block retrieving statistics during EEH error
2858          * recovery. Otherwise, the recovery might fail
2859          * and the PCI device will be removed permanently
2860          */
2861         spin_lock(&adapter->stats_lock);
2862         if (!netif_device_present(dev)) {
2863                 spin_unlock(&adapter->stats_lock);
2864                 return ns;
2865         }
2866         t4_get_port_stats(adapter, p->tx_chan, &stats);
2867         spin_unlock(&adapter->stats_lock);
2868
2869         ns->tx_bytes   = stats.tx_octets;
2870         ns->tx_packets = stats.tx_frames;
2871         ns->rx_bytes   = stats.rx_octets;
2872         ns->rx_packets = stats.rx_frames;
2873         ns->multicast  = stats.rx_mcast_frames;
2874
2875         /* detailed rx_errors */
2876         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2877                                stats.rx_runt;
2878         ns->rx_over_errors   = 0;
2879         ns->rx_crc_errors    = stats.rx_fcs_err;
2880         ns->rx_frame_errors  = stats.rx_symbol_err;
2881         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2882                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2883                                stats.rx_trunc0 + stats.rx_trunc1 +
2884                                stats.rx_trunc2 + stats.rx_trunc3;
2885         ns->rx_missed_errors = 0;
2886
2887         /* detailed tx_errors */
2888         ns->tx_aborted_errors   = 0;
2889         ns->tx_carrier_errors   = 0;
2890         ns->tx_fifo_errors      = 0;
2891         ns->tx_heartbeat_errors = 0;
2892         ns->tx_window_errors    = 0;
2893
2894         ns->tx_errors = stats.tx_error_frames;
2895         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2896                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2897         return ns;
2898 }
2899
2900 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2901 {
2902         unsigned int mbox;
2903         int ret = 0, prtad, devad;
2904         struct port_info *pi = netdev_priv(dev);
2905         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2906
2907         switch (cmd) {
2908         case SIOCGMIIPHY:
2909                 if (pi->mdio_addr < 0)
2910                         return -EOPNOTSUPP;
2911                 data->phy_id = pi->mdio_addr;
2912                 break;
2913         case SIOCGMIIREG:
2914         case SIOCSMIIREG:
2915                 if (mdio_phy_id_is_c45(data->phy_id)) {
2916                         prtad = mdio_phy_id_prtad(data->phy_id);
2917                         devad = mdio_phy_id_devad(data->phy_id);
2918                 } else if (data->phy_id < 32) {
2919                         prtad = data->phy_id;
2920                         devad = 0;
2921                         data->reg_num &= 0x1f;
2922                 } else
2923                         return -EINVAL;
2924
2925                 mbox = pi->adapter->fn;
2926                 if (cmd == SIOCGMIIREG)
2927                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2928                                          data->reg_num, &data->val_out);
2929                 else
2930                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2931                                          data->reg_num, data->val_in);
2932                 break;
2933         default:
2934                 return -EOPNOTSUPP;
2935         }
2936         return ret;
2937 }
2938
2939 static void cxgb_set_rxmode(struct net_device *dev)
2940 {
2941         /* unfortunately we can't return errors to the stack */
2942         set_rxmode(dev, -1, false);
2943 }
2944
2945 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2946 {
2947         int ret;
2948         struct port_info *pi = netdev_priv(dev);
2949
2950         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2951                 return -EINVAL;
2952         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2953                             -1, -1, -1, true);
2954         if (!ret)
2955                 dev->mtu = new_mtu;
2956         return ret;
2957 }
2958
2959 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2960 {
2961         int ret;
2962         struct sockaddr *addr = p;
2963         struct port_info *pi = netdev_priv(dev);
2964
2965         if (!is_valid_ether_addr(addr->sa_data))
2966                 return -EADDRNOTAVAIL;
2967
2968         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2969                             pi->xact_addr_filt, addr->sa_data, true, true);
2970         if (ret < 0)
2971                 return ret;
2972
2973         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2974         pi->xact_addr_filt = ret;
2975         return 0;
2976 }
2977
2978 #ifdef CONFIG_NET_POLL_CONTROLLER
2979 static void cxgb_netpoll(struct net_device *dev)
2980 {
2981         struct port_info *pi = netdev_priv(dev);
2982         struct adapter *adap = pi->adapter;
2983
2984         if (adap->flags & USING_MSIX) {
2985                 int i;
2986                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2987
2988                 for (i = pi->nqsets; i; i--, rx++)
2989                         t4_sge_intr_msix(0, &rx->rspq);
2990         } else
2991                 t4_intr_handler(adap)(0, adap);
2992 }
2993 #endif
2994
2995 static const struct net_device_ops cxgb4_netdev_ops = {
2996         .ndo_open             = cxgb_open,
2997         .ndo_stop             = cxgb_close,
2998         .ndo_start_xmit       = t4_eth_xmit,
2999         .ndo_select_queue     = cxgb_select_queue,
3000         .ndo_get_stats64      = cxgb_get_stats,
3001         .ndo_set_rx_mode      = cxgb_set_rxmode,
3002         .ndo_set_mac_address  = cxgb_set_mac_addr,
3003         .ndo_set_features     = cxgb_set_features,
3004         .ndo_validate_addr    = eth_validate_addr,
3005         .ndo_do_ioctl         = cxgb_ioctl,
3006         .ndo_change_mtu       = cxgb_change_mtu,
3007 #ifdef CONFIG_NET_POLL_CONTROLLER
3008         .ndo_poll_controller  = cxgb_netpoll,
3009 #endif
3010 #ifdef CONFIG_CHELSIO_T4_FCOE
3011         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3012         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3013 #endif /* CONFIG_CHELSIO_T4_FCOE */
3014 #ifdef CONFIG_NET_RX_BUSY_POLL
3015         .ndo_busy_poll        = cxgb_busy_poll,
3016 #endif
3017
3018 };
3019
3020 void t4_fatal_err(struct adapter *adap)
3021 {
3022         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3023         t4_intr_disable(adap);
3024         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3025 }
3026
3027 /* Return the specified PCI-E Configuration Space register from our Physical
3028  * Function.  We try first via a Firmware LDST Command since we prefer to let
3029  * the firmware own all of these registers, but if that fails we go for it
3030  * directly ourselves.
3031  */
3032 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3033 {
3034         struct fw_ldst_cmd ldst_cmd;
3035         u32 val;
3036         int ret;
3037
3038         /* Construct and send the Firmware LDST Command to retrieve the
3039          * specified PCI-E Configuration Space register.
3040          */
3041         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3042         ldst_cmd.op_to_addrspace =
3043                 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3044                       FW_CMD_REQUEST_F |
3045                       FW_CMD_READ_F |
3046                       FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3047         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3048         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3049         ldst_cmd.u.pcie.ctrl_to_fn =
3050                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3051         ldst_cmd.u.pcie.r = reg;
3052         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3053                          &ldst_cmd);
3054
3055         /* If the LDST Command suucceeded, exctract the returned register
3056          * value.  Otherwise read it directly ourself.
3057          */
3058         if (ret == 0)
3059                 val = ntohl(ldst_cmd.u.pcie.data[0]);
3060         else
3061                 t4_hw_pci_read_cfg4(adap, reg, &val);
3062
3063         return val;
3064 }
3065
3066 static void setup_memwin(struct adapter *adap)
3067 {
3068         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3069
3070         if (is_t4(adap->params.chip)) {
3071                 u32 bar0;
3072
3073                 /* Truncation intentional: we only read the bottom 32-bits of
3074                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
3075                  * mechanism to read BAR0 instead of using
3076                  * pci_resource_start() because we could be operating from
3077                  * within a Virtual Machine which is trapping our accesses to
3078                  * our Configuration Space and we need to set up the PCI-E
3079                  * Memory Window decoders with the actual addresses which will
3080                  * be coming across the PCI-E link.
3081                  */
3082                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3083                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3084                 adap->t4_bar0 = bar0;
3085
3086                 mem_win0_base = bar0 + MEMWIN0_BASE;
3087                 mem_win1_base = bar0 + MEMWIN1_BASE;
3088                 mem_win2_base = bar0 + MEMWIN2_BASE;
3089                 mem_win2_aperture = MEMWIN2_APERTURE;
3090         } else {
3091                 /* For T5, only relative offset inside the PCIe BAR is passed */
3092                 mem_win0_base = MEMWIN0_BASE;
3093                 mem_win1_base = MEMWIN1_BASE;
3094                 mem_win2_base = MEMWIN2_BASE_T5;
3095                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
3096         }
3097         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3098                      mem_win0_base | BIR_V(0) |
3099                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3100         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3101                      mem_win1_base | BIR_V(0) |
3102                      WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3103         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3104                      mem_win2_base | BIR_V(0) |
3105                      WINDOW_V(ilog2(mem_win2_aperture) - 10));
3106         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3107 }
3108
3109 static void setup_memwin_rdma(struct adapter *adap)
3110 {
3111         if (adap->vres.ocq.size) {
3112                 u32 start;
3113                 unsigned int sz_kb;
3114
3115                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3116                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3117                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3118                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3119                 t4_write_reg(adap,
3120                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3121                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3122                 t4_write_reg(adap,
3123                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3124                              adap->vres.ocq.start);
3125                 t4_read_reg(adap,
3126                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3127         }
3128 }
3129
3130 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3131 {
3132         u32 v;
3133         int ret;
3134
3135         /* get device capabilities */
3136         memset(c, 0, sizeof(*c));
3137         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3138                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3139         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3140         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3141         if (ret < 0)
3142                 return ret;
3143
3144         /* select capabilities we'll be using */
3145         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3146                 if (!vf_acls)
3147                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3148                 else
3149                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3150         } else if (vf_acls) {
3151                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3152                 return ret;
3153         }
3154         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3155                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3156         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3157         if (ret < 0)
3158                 return ret;
3159
3160         ret = t4_config_glbl_rss(adap, adap->fn,
3161                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3162                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3163                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3164         if (ret < 0)
3165                 return ret;
3166
3167         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3168                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3169                           FW_CMD_CAP_PF);
3170         if (ret < 0)
3171                 return ret;
3172
3173         t4_sge_init(adap);
3174
3175         /* tweak some settings */
3176         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3177         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3178         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3179         v = t4_read_reg(adap, TP_PIO_DATA_A);
3180         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3181
3182         /* first 4 Tx modulation queues point to consecutive Tx channels */
3183         adap->params.tp.tx_modq_map = 0xE4;
3184         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3185                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3186
3187         /* associate each Tx modulation queue with consecutive Tx channels */
3188         v = 0x84218421;
3189         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3190                           &v, 1, TP_TX_SCHED_HDR_A);
3191         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3192                           &v, 1, TP_TX_SCHED_FIFO_A);
3193         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3194                           &v, 1, TP_TX_SCHED_PCMD_A);
3195
3196 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3197         if (is_offload(adap)) {
3198                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3199                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3200                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3201                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3202                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3203                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3204                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3205                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3206                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3207                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3208         }
3209
3210         /* get basic stuff going */
3211         return t4_early_init(adap, adap->fn);
3212 }
3213
3214 /*
3215  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3216  */
3217 #define MAX_ATIDS 8192U
3218
3219 /*
3220  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3221  *
3222  * If the firmware we're dealing with has Configuration File support, then
3223  * we use that to perform all configuration
3224  */
3225
3226 /*
3227  * Tweak configuration based on module parameters, etc.  Most of these have
3228  * defaults assigned to them by Firmware Configuration Files (if we're using
3229  * them) but need to be explicitly set if we're using hard-coded
3230  * initialization.  But even in the case of using Firmware Configuration
3231  * Files, we'd like to expose the ability to change these via module
3232  * parameters so these are essentially common tweaks/settings for
3233  * Configuration Files and hard-coded initialization ...
3234  */
3235 static int adap_init0_tweaks(struct adapter *adapter)
3236 {
3237         /*
3238          * Fix up various Host-Dependent Parameters like Page Size, Cache
3239          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3240          * 64B Cache Line Size ...
3241          */
3242         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3243
3244         /*
3245          * Process module parameters which affect early initialization.
3246          */
3247         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3248                 dev_err(&adapter->pdev->dev,
3249                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3250                         rx_dma_offset);
3251                 rx_dma_offset = 2;
3252         }
3253         t4_set_reg_field(adapter, SGE_CONTROL_A,
3254                          PKTSHIFT_V(PKTSHIFT_M),
3255                          PKTSHIFT_V(rx_dma_offset));
3256
3257         /*
3258          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3259          * adds the pseudo header itself.
3260          */
3261         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3262                                CSUM_HAS_PSEUDO_HDR_F, 0);
3263
3264         return 0;
3265 }
3266
3267 /*
3268  * Attempt to initialize the adapter via a Firmware Configuration File.
3269  */
3270 static int adap_init0_config(struct adapter *adapter, int reset)
3271 {
3272         struct fw_caps_config_cmd caps_cmd;
3273         const struct firmware *cf;
3274         unsigned long mtype = 0, maddr = 0;
3275         u32 finiver, finicsum, cfcsum;
3276         int ret;
3277         int config_issued = 0;
3278         char *fw_config_file, fw_config_file_path[256];
3279         char *config_name = NULL;
3280
3281         /*
3282          * Reset device if necessary.
3283          */
3284         if (reset) {
3285                 ret = t4_fw_reset(adapter, adapter->mbox,
3286                                   PIORSTMODE_F | PIORST_F);
3287                 if (ret < 0)
3288                         goto bye;
3289         }
3290
3291         /*
3292          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3293          * then use that.  Otherwise, use the configuration file stored
3294          * in the adapter flash ...
3295          */
3296         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3297         case CHELSIO_T4:
3298                 fw_config_file = FW4_CFNAME;
3299                 break;
3300         case CHELSIO_T5:
3301                 fw_config_file = FW5_CFNAME;
3302                 break;
3303         default:
3304                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3305                        adapter->pdev->device);
3306                 ret = -EINVAL;
3307                 goto bye;
3308         }
3309
3310         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3311         if (ret < 0) {
3312                 config_name = "On FLASH";
3313                 mtype = FW_MEMTYPE_CF_FLASH;
3314                 maddr = t4_flash_cfg_addr(adapter);
3315         } else {
3316                 u32 params[7], val[7];
3317
3318                 sprintf(fw_config_file_path,
3319                         "/lib/firmware/%s", fw_config_file);
3320                 config_name = fw_config_file_path;
3321
3322                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3323                         ret = -ENOMEM;
3324                 else {
3325                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3326                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3327                         ret = t4_query_params(adapter, adapter->mbox,
3328                                               adapter->fn, 0, 1, params, val);
3329                         if (ret == 0) {
3330                                 /*
3331                                  * For t4_memory_rw() below addresses and
3332                                  * sizes have to be in terms of multiples of 4
3333                                  * bytes.  So, if the Configuration File isn't
3334                                  * a multiple of 4 bytes in length we'll have
3335                                  * to write that out separately since we can't
3336                                  * guarantee that the bytes following the
3337                                  * residual byte in the buffer returned by
3338                                  * request_firmware() are zeroed out ...
3339                                  */
3340                                 size_t resid = cf->size & 0x3;
3341                                 size_t size = cf->size & ~0x3;
3342                                 __be32 *data = (__be32 *)cf->data;
3343
3344                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3345                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3346
3347                                 spin_lock(&adapter->win0_lock);
3348                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3349                                                    size, data, T4_MEMORY_WRITE);
3350                                 if (ret == 0 && resid != 0) {
3351                                         union {
3352                                                 __be32 word;
3353                                                 char buf[4];
3354                                         } last;
3355                                         int i;
3356
3357                                         last.word = data[size >> 2];
3358                                         for (i = resid; i < 4; i++)
3359                                                 last.buf[i] = 0;
3360                                         ret = t4_memory_rw(adapter, 0, mtype,
3361                                                            maddr + size,
3362                                                            4, &last.word,
3363                                                            T4_MEMORY_WRITE);
3364                                 }
3365                                 spin_unlock(&adapter->win0_lock);
3366                         }
3367                 }
3368
3369                 release_firmware(cf);
3370                 if (ret)
3371                         goto bye;
3372         }
3373
3374         /*
3375          * Issue a Capability Configuration command to the firmware to get it
3376          * to parse the Configuration File.  We don't use t4_fw_config_file()
3377          * because we want the ability to modify various features after we've
3378          * processed the configuration file ...
3379          */
3380         memset(&caps_cmd, 0, sizeof(caps_cmd));
3381         caps_cmd.op_to_write =
3382                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3383                       FW_CMD_REQUEST_F |
3384                       FW_CMD_READ_F);
3385         caps_cmd.cfvalid_to_len16 =
3386                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3387                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3388                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3389                       FW_LEN16(caps_cmd));
3390         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3391                          &caps_cmd);
3392
3393         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3394          * Configuration File in FLASH), our last gasp effort is to use the
3395          * Firmware Configuration File which is embedded in the firmware.  A
3396          * very few early versions of the firmware didn't have one embedded
3397          * but we can ignore those.
3398          */
3399         if (ret == -ENOENT) {
3400                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3401                 caps_cmd.op_to_write =
3402                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3403                                         FW_CMD_REQUEST_F |
3404                                         FW_CMD_READ_F);
3405                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3406                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3407                                 sizeof(caps_cmd), &caps_cmd);
3408                 config_name = "Firmware Default";
3409         }
3410
3411         config_issued = 1;
3412         if (ret < 0)
3413                 goto bye;
3414
3415         finiver = ntohl(caps_cmd.finiver);
3416         finicsum = ntohl(caps_cmd.finicsum);
3417         cfcsum = ntohl(caps_cmd.cfcsum);
3418         if (finicsum != cfcsum)
3419                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3420                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3421                          finicsum, cfcsum);
3422
3423         /*
3424          * And now tell the firmware to use the configuration we just loaded.
3425          */
3426         caps_cmd.op_to_write =
3427                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3428                       FW_CMD_REQUEST_F |
3429                       FW_CMD_WRITE_F);
3430         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3431         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3432                          NULL);
3433         if (ret < 0)
3434                 goto bye;
3435
3436         /*
3437          * Tweak configuration based on system architecture, module
3438          * parameters, etc.
3439          */
3440         ret = adap_init0_tweaks(adapter);
3441         if (ret < 0)
3442                 goto bye;
3443
3444         /*
3445          * And finally tell the firmware to initialize itself using the
3446          * parameters from the Configuration File.
3447          */
3448         ret = t4_fw_initialize(adapter, adapter->mbox);
3449         if (ret < 0)
3450                 goto bye;
3451
3452         /* Emit Firmware Configuration File information and return
3453          * successfully.
3454          */
3455         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3456                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3457                  config_name, finiver, cfcsum);
3458         return 0;
3459
3460         /*
3461          * Something bad happened.  Return the error ...  (If the "error"
3462          * is that there's no Configuration File on the adapter we don't
3463          * want to issue a warning since this is fairly common.)
3464          */
3465 bye:
3466         if (config_issued && ret != -ENOENT)
3467                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3468                          config_name, -ret);
3469         return ret;
3470 }
3471
3472 static struct fw_info fw_info_array[] = {
3473         {
3474                 .chip = CHELSIO_T4,
3475                 .fs_name = FW4_CFNAME,
3476                 .fw_mod_name = FW4_FNAME,
3477                 .fw_hdr = {
3478                         .chip = FW_HDR_CHIP_T4,
3479                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3480                         .intfver_nic = FW_INTFVER(T4, NIC),
3481                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3482                         .intfver_ri = FW_INTFVER(T4, RI),
3483                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3484                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3485                 },
3486         }, {
3487                 .chip = CHELSIO_T5,
3488                 .fs_name = FW5_CFNAME,
3489                 .fw_mod_name = FW5_FNAME,
3490                 .fw_hdr = {
3491                         .chip = FW_HDR_CHIP_T5,
3492                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3493                         .intfver_nic = FW_INTFVER(T5, NIC),
3494                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3495                         .intfver_ri = FW_INTFVER(T5, RI),
3496                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3497                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3498                 },
3499         }
3500 };
3501
3502 static struct fw_info *find_fw_info(int chip)
3503 {
3504         int i;
3505
3506         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3507                 if (fw_info_array[i].chip == chip)
3508                         return &fw_info_array[i];
3509         }
3510         return NULL;
3511 }
3512
3513 /*
3514  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3515  */
3516 static int adap_init0(struct adapter *adap)
3517 {
3518         int ret;
3519         u32 v, port_vec;
3520         enum dev_state state;
3521         u32 params[7], val[7];
3522         struct fw_caps_config_cmd caps_cmd;
3523         int reset = 1;
3524
3525         /* Grab Firmware Device Log parameters as early as possible so we have
3526          * access to it for debugging, etc.
3527          */
3528         ret = t4_init_devlog_params(adap);
3529         if (ret < 0)
3530                 return ret;
3531
3532         /* Contact FW, advertising Master capability */
3533         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3534         if (ret < 0) {
3535                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3536                         ret);
3537                 return ret;
3538         }
3539         if (ret == adap->mbox)
3540                 adap->flags |= MASTER_PF;
3541
3542         /*
3543          * If we're the Master PF Driver and the device is uninitialized,
3544          * then let's consider upgrading the firmware ...  (We always want
3545          * to check the firmware version number in order to A. get it for
3546          * later reporting and B. to warn if the currently loaded firmware
3547          * is excessively mismatched relative to the driver.)
3548          */
3549         t4_get_fw_version(adap, &adap->params.fw_vers);
3550         t4_get_tp_version(adap, &adap->params.tp_vers);
3551         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3552                 struct fw_info *fw_info;
3553                 struct fw_hdr *card_fw;
3554                 const struct firmware *fw;
3555                 const u8 *fw_data = NULL;
3556                 unsigned int fw_size = 0;
3557
3558                 /* This is the firmware whose headers the driver was compiled
3559                  * against
3560                  */
3561                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3562                 if (fw_info == NULL) {
3563                         dev_err(adap->pdev_dev,
3564                                 "unable to get firmware info for chip %d.\n",
3565                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3566                         return -EINVAL;
3567                 }
3568
3569                 /* allocate memory to read the header of the firmware on the
3570                  * card
3571                  */
3572                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3573
3574                 /* Get FW from from /lib/firmware/ */
3575                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3576                                        adap->pdev_dev);
3577                 if (ret < 0) {
3578                         dev_err(adap->pdev_dev,
3579                                 "unable to load firmware image %s, error %d\n",
3580                                 fw_info->fw_mod_name, ret);
3581                 } else {
3582                         fw_data = fw->data;
3583                         fw_size = fw->size;
3584                 }
3585
3586                 /* upgrade FW logic */
3587                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3588                                  state, &reset);
3589
3590                 /* Cleaning up */
3591                 release_firmware(fw);
3592                 t4_free_mem(card_fw);
3593
3594                 if (ret < 0)
3595                         goto bye;
3596         }
3597
3598         /*
3599          * Grab VPD parameters.  This should be done after we establish a
3600          * connection to the firmware since some of the VPD parameters
3601          * (notably the Core Clock frequency) are retrieved via requests to
3602          * the firmware.  On the other hand, we need these fairly early on
3603          * so we do this right after getting ahold of the firmware.
3604          */
3605         ret = get_vpd_params(adap, &adap->params.vpd);
3606         if (ret < 0)
3607                 goto bye;
3608
3609         /*
3610          * Find out what ports are available to us.  Note that we need to do
3611          * this before calling adap_init0_no_config() since it needs nports
3612          * and portvec ...
3613          */
3614         v =
3615             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3616             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3617         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3618         if (ret < 0)
3619                 goto bye;
3620
3621         adap->params.nports = hweight32(port_vec);
3622         adap->params.portvec = port_vec;
3623
3624         /* If the firmware is initialized already, emit a simply note to that
3625          * effect. Otherwise, it's time to try initializing the adapter.
3626          */
3627         if (state == DEV_STATE_INIT) {
3628                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3629                          "Adapter already initialized\n",
3630                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3631         } else {
3632                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3633                          "Initializing adapter\n");
3634
3635                 /* Find out whether we're dealing with a version of the
3636                  * firmware which has configuration file support.
3637                  */
3638                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3639                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3640                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3641                                       params, val);
3642
3643                 /* If the firmware doesn't support Configuration Files,
3644                  * return an error.
3645                  */
3646                 if (ret < 0) {
3647                         dev_err(adap->pdev_dev, "firmware doesn't support "
3648                                 "Firmware Configuration Files\n");
3649                         goto bye;
3650                 }
3651
3652                 /* The firmware provides us with a memory buffer where we can
3653                  * load a Configuration File from the host if we want to
3654                  * override the Configuration File in flash.
3655                  */
3656                 ret = adap_init0_config(adap, reset);
3657                 if (ret == -ENOENT) {
3658                         dev_err(adap->pdev_dev, "no Configuration File "
3659                                 "present on adapter.\n");
3660                         goto bye;
3661                 }
3662                 if (ret < 0) {
3663                         dev_err(adap->pdev_dev, "could not initialize "
3664                                 "adapter, error %d\n", -ret);
3665                         goto bye;
3666                 }
3667         }
3668
3669         /* Give the SGE code a chance to pull in anything that it needs ...
3670          * Note that this must be called after we retrieve our VPD parameters
3671          * in order to know how to convert core ticks to seconds, etc.
3672          */
3673         ret = t4_sge_init(adap);
3674         if (ret < 0)
3675                 goto bye;
3676
3677         if (is_bypass_device(adap->pdev->device))
3678                 adap->params.bypass = 1;
3679
3680         /*
3681          * Grab some of our basic fundamental operating parameters.
3682          */
3683 #define FW_PARAM_DEV(param) \
3684         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3685         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3686
3687 #define FW_PARAM_PFVF(param) \
3688         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3689         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3690         FW_PARAMS_PARAM_Y_V(0) | \
3691         FW_PARAMS_PARAM_Z_V(0)
3692
3693         params[0] = FW_PARAM_PFVF(EQ_START);
3694         params[1] = FW_PARAM_PFVF(L2T_START);
3695         params[2] = FW_PARAM_PFVF(L2T_END);
3696         params[3] = FW_PARAM_PFVF(FILTER_START);
3697         params[4] = FW_PARAM_PFVF(FILTER_END);
3698         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3699         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3700         if (ret < 0)
3701                 goto bye;
3702         adap->sge.egr_start = val[0];
3703         adap->l2t_start = val[1];
3704         adap->l2t_end = val[2];
3705         adap->tids.ftid_base = val[3];
3706         adap->tids.nftids = val[4] - val[3] + 1;
3707         adap->sge.ingr_start = val[5];
3708
3709         /* qids (ingress/egress) returned from firmware can be anywhere
3710          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3711          * Hence driver needs to allocate memory for this range to
3712          * store the queue info. Get the highest IQFLINT/EQ index returned
3713          * in FW_EQ_*_CMD.alloc command.
3714          */
3715         params[0] = FW_PARAM_PFVF(EQ_END);
3716         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3717         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3718         if (ret < 0)
3719                 goto bye;
3720         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3721         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3722
3723         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3724                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3725         if (!adap->sge.egr_map) {
3726                 ret = -ENOMEM;
3727                 goto bye;
3728         }
3729
3730         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3731                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3732         if (!adap->sge.ingr_map) {
3733                 ret = -ENOMEM;
3734                 goto bye;
3735         }
3736
3737         /* Allocate the memory for the vaious egress queue bitmaps
3738          * ie starving_fl and txq_maperr.
3739          */
3740         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3741                                         sizeof(long), GFP_KERNEL);
3742         if (!adap->sge.starving_fl) {
3743                 ret = -ENOMEM;
3744                 goto bye;
3745         }
3746
3747         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3748                                        sizeof(long), GFP_KERNEL);
3749         if (!adap->sge.txq_maperr) {
3750                 ret = -ENOMEM;
3751                 goto bye;
3752         }
3753
3754         params[0] = FW_PARAM_PFVF(CLIP_START);
3755         params[1] = FW_PARAM_PFVF(CLIP_END);
3756         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3757         if (ret < 0)
3758                 goto bye;
3759         adap->clipt_start = val[0];
3760         adap->clipt_end = val[1];
3761
3762         /* query params related to active filter region */
3763         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3764         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3765         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3766         /* If Active filter size is set we enable establishing
3767          * offload connection through firmware work request
3768          */
3769         if ((val[0] != val[1]) && (ret >= 0)) {
3770                 adap->flags |= FW_OFLD_CONN;
3771                 adap->tids.aftid_base = val[0];
3772                 adap->tids.aftid_end = val[1];
3773         }
3774
3775         /* If we're running on newer firmware, let it know that we're
3776          * prepared to deal with encapsulated CPL messages.  Older
3777          * firmware won't understand this and we'll just get
3778          * unencapsulated messages ...
3779          */
3780         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3781         val[0] = 1;
3782         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3783
3784         /*
3785          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3786          * capability.  Earlier versions of the firmware didn't have the
3787          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3788          * permission to use ULPTX MEMWRITE DSGL.
3789          */
3790         if (is_t4(adap->params.chip)) {
3791                 adap->params.ulptx_memwrite_dsgl = false;
3792         } else {
3793                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3794                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3795                                       1, params, val);
3796                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3797         }
3798
3799         /*
3800          * Get device capabilities so we can determine what resources we need
3801          * to manage.
3802          */
3803         memset(&caps_cmd, 0, sizeof(caps_cmd));
3804         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3805                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3806         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3807         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3808                          &caps_cmd);
3809         if (ret < 0)
3810                 goto bye;
3811
3812         if (caps_cmd.ofldcaps) {
3813                 /* query offload-related parameters */
3814                 params[0] = FW_PARAM_DEV(NTID);
3815                 params[1] = FW_PARAM_PFVF(SERVER_START);
3816                 params[2] = FW_PARAM_PFVF(SERVER_END);
3817                 params[3] = FW_PARAM_PFVF(TDDP_START);
3818                 params[4] = FW_PARAM_PFVF(TDDP_END);
3819                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3820                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3821                                       params, val);
3822                 if (ret < 0)
3823                         goto bye;
3824                 adap->tids.ntids = val[0];
3825                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3826                 adap->tids.stid_base = val[1];
3827                 adap->tids.nstids = val[2] - val[1] + 1;
3828                 /*
3829                  * Setup server filter region. Divide the available filter
3830                  * region into two parts. Regular filters get 1/3rd and server
3831                  * filters get 2/3rd part. This is only enabled if workarond
3832                  * path is enabled.
3833                  * 1. For regular filters.
3834                  * 2. Server filter: This are special filters which are used
3835                  * to redirect SYN packets to offload queue.
3836                  */
3837                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3838                         adap->tids.sftid_base = adap->tids.ftid_base +
3839                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3840                         adap->tids.nsftids = adap->tids.nftids -
3841                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3842                         adap->tids.nftids = adap->tids.sftid_base -
3843                                                 adap->tids.ftid_base;
3844                 }
3845                 adap->vres.ddp.start = val[3];
3846                 adap->vres.ddp.size = val[4] - val[3] + 1;
3847                 adap->params.ofldq_wr_cred = val[5];
3848
3849                 adap->params.offload = 1;
3850         }
3851         if (caps_cmd.rdmacaps) {
3852                 params[0] = FW_PARAM_PFVF(STAG_START);
3853                 params[1] = FW_PARAM_PFVF(STAG_END);
3854                 params[2] = FW_PARAM_PFVF(RQ_START);
3855                 params[3] = FW_PARAM_PFVF(RQ_END);
3856                 params[4] = FW_PARAM_PFVF(PBL_START);
3857                 params[5] = FW_PARAM_PFVF(PBL_END);
3858                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3859                                       params, val);
3860                 if (ret < 0)
3861                         goto bye;
3862                 adap->vres.stag.start = val[0];
3863                 adap->vres.stag.size = val[1] - val[0] + 1;
3864                 adap->vres.rq.start = val[2];
3865                 adap->vres.rq.size = val[3] - val[2] + 1;
3866                 adap->vres.pbl.start = val[4];
3867                 adap->vres.pbl.size = val[5] - val[4] + 1;
3868
3869                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3870                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3871                 params[2] = FW_PARAM_PFVF(CQ_START);
3872                 params[3] = FW_PARAM_PFVF(CQ_END);
3873                 params[4] = FW_PARAM_PFVF(OCQ_START);
3874                 params[5] = FW_PARAM_PFVF(OCQ_END);
3875                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3876                                       val);
3877                 if (ret < 0)
3878                         goto bye;
3879                 adap->vres.qp.start = val[0];
3880                 adap->vres.qp.size = val[1] - val[0] + 1;
3881                 adap->vres.cq.start = val[2];
3882                 adap->vres.cq.size = val[3] - val[2] + 1;
3883                 adap->vres.ocq.start = val[4];
3884                 adap->vres.ocq.size = val[5] - val[4] + 1;
3885
3886                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3887                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3888                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3889                                       val);
3890                 if (ret < 0) {
3891                         adap->params.max_ordird_qp = 8;
3892                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3893                         ret = 0;
3894                 } else {
3895                         adap->params.max_ordird_qp = val[0];
3896                         adap->params.max_ird_adapter = val[1];
3897                 }
3898                 dev_info(adap->pdev_dev,
3899                          "max_ordird_qp %d max_ird_adapter %d\n",
3900                          adap->params.max_ordird_qp,
3901                          adap->params.max_ird_adapter);
3902         }
3903         if (caps_cmd.iscsicaps) {
3904                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3905                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3906                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3907                                       params, val);
3908                 if (ret < 0)
3909                         goto bye;
3910                 adap->vres.iscsi.start = val[0];
3911                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3912         }
3913 #undef FW_PARAM_PFVF
3914 #undef FW_PARAM_DEV
3915
3916         /* The MTU/MSS Table is initialized by now, so load their values.  If
3917          * we're initializing the adapter, then we'll make any modifications
3918          * we want to the MTU/MSS Table and also initialize the congestion
3919          * parameters.
3920          */
3921         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3922         if (state != DEV_STATE_INIT) {
3923                 int i;
3924
3925                 /* The default MTU Table contains values 1492 and 1500.
3926                  * However, for TCP, it's better to have two values which are
3927                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3928                  * This allows us to have a TCP Data Payload which is a
3929                  * multiple of 8 regardless of what combination of TCP Options
3930                  * are in use (always a multiple of 4 bytes) which is
3931                  * important for performance reasons.  For instance, if no
3932                  * options are in use, then we have a 20-byte IP header and a
3933                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
3934                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3935                  * which is not a multiple of 8.  So using an MSS of 1488 in
3936                  * this case results in a TCP Data Payload of 1448 bytes which
3937                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3938                  * Stamps have been negotiated, then an MTU of 1500 bytes
3939                  * results in a TCP Data Payload of 1448 bytes which, as
3940                  * above, is a multiple of 8 bytes ...
3941                  */
3942                 for (i = 0; i < NMTUS; i++)
3943                         if (adap->params.mtus[i] == 1492) {
3944                                 adap->params.mtus[i] = 1488;
3945                                 break;
3946                         }
3947
3948                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3949                              adap->params.b_wnd);
3950         }
3951         t4_init_sge_params(adap);
3952         t4_init_tp_params(adap);
3953         adap->flags |= FW_OK;
3954         return 0;
3955
3956         /*
3957          * Something bad happened.  If a command timed out or failed with EIO
3958          * FW does not operate within its spec or something catastrophic
3959          * happened to HW/FW, stop issuing commands.
3960          */
3961 bye:
3962         kfree(adap->sge.egr_map);
3963         kfree(adap->sge.ingr_map);
3964         kfree(adap->sge.starving_fl);
3965         kfree(adap->sge.txq_maperr);
3966         if (ret != -ETIMEDOUT && ret != -EIO)
3967                 t4_fw_bye(adap, adap->mbox);
3968         return ret;
3969 }
3970
3971 /* EEH callbacks */
3972
3973 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3974                                          pci_channel_state_t state)
3975 {
3976         int i;
3977         struct adapter *adap = pci_get_drvdata(pdev);
3978
3979         if (!adap)
3980                 goto out;
3981
3982         rtnl_lock();
3983         adap->flags &= ~FW_OK;
3984         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3985         spin_lock(&adap->stats_lock);
3986         for_each_port(adap, i) {
3987                 struct net_device *dev = adap->port[i];
3988
3989                 netif_device_detach(dev);
3990                 netif_carrier_off(dev);
3991         }
3992         spin_unlock(&adap->stats_lock);
3993         disable_interrupts(adap);
3994         if (adap->flags & FULL_INIT_DONE)
3995                 cxgb_down(adap);
3996         rtnl_unlock();
3997         if ((adap->flags & DEV_ENABLED)) {
3998                 pci_disable_device(pdev);
3999                 adap->flags &= ~DEV_ENABLED;
4000         }
4001 out:    return state == pci_channel_io_perm_failure ?
4002                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4003 }
4004
4005 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4006 {
4007         int i, ret;
4008         struct fw_caps_config_cmd c;
4009         struct adapter *adap = pci_get_drvdata(pdev);
4010
4011         if (!adap) {
4012                 pci_restore_state(pdev);
4013                 pci_save_state(pdev);
4014                 return PCI_ERS_RESULT_RECOVERED;
4015         }
4016
4017         if (!(adap->flags & DEV_ENABLED)) {
4018                 if (pci_enable_device(pdev)) {
4019                         dev_err(&pdev->dev, "Cannot reenable PCI "
4020                                             "device after reset\n");
4021                         return PCI_ERS_RESULT_DISCONNECT;
4022                 }
4023                 adap->flags |= DEV_ENABLED;
4024         }
4025
4026         pci_set_master(pdev);
4027         pci_restore_state(pdev);
4028         pci_save_state(pdev);
4029         pci_cleanup_aer_uncorrect_error_status(pdev);
4030
4031         if (t4_wait_dev_ready(adap->regs) < 0)
4032                 return PCI_ERS_RESULT_DISCONNECT;
4033         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4034                 return PCI_ERS_RESULT_DISCONNECT;
4035         adap->flags |= FW_OK;
4036         if (adap_init1(adap, &c))
4037                 return PCI_ERS_RESULT_DISCONNECT;
4038
4039         for_each_port(adap, i) {
4040                 struct port_info *p = adap2pinfo(adap, i);
4041
4042                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4043                                   NULL, NULL);
4044                 if (ret < 0)
4045                         return PCI_ERS_RESULT_DISCONNECT;
4046                 p->viid = ret;
4047                 p->xact_addr_filt = -1;
4048         }
4049
4050         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4051                      adap->params.b_wnd);
4052         setup_memwin(adap);
4053         if (cxgb_up(adap))
4054                 return PCI_ERS_RESULT_DISCONNECT;
4055         return PCI_ERS_RESULT_RECOVERED;
4056 }
4057
4058 static void eeh_resume(struct pci_dev *pdev)
4059 {
4060         int i;
4061         struct adapter *adap = pci_get_drvdata(pdev);
4062
4063         if (!adap)
4064                 return;
4065
4066         rtnl_lock();
4067         for_each_port(adap, i) {
4068                 struct net_device *dev = adap->port[i];
4069
4070                 if (netif_running(dev)) {
4071                         link_start(dev);
4072                         cxgb_set_rxmode(dev);
4073                 }
4074                 netif_device_attach(dev);
4075         }
4076         rtnl_unlock();
4077 }
4078
4079 static const struct pci_error_handlers cxgb4_eeh = {
4080         .error_detected = eeh_err_detected,
4081         .slot_reset     = eeh_slot_reset,
4082         .resume         = eeh_resume,
4083 };
4084
4085 static inline bool is_x_10g_port(const struct link_config *lc)
4086 {
4087         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4088                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4089 }
4090
4091 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4092                              unsigned int us, unsigned int cnt,
4093                              unsigned int size, unsigned int iqe_size)
4094 {
4095         q->adap = adap;
4096         cxgb4_set_rspq_intr_params(q, us, cnt);
4097         q->iqe_len = iqe_size;
4098         q->size = size;
4099 }
4100
4101 /*
4102  * Perform default configuration of DMA queues depending on the number and type
4103  * of ports we found and the number of available CPUs.  Most settings can be
4104  * modified by the admin prior to actual use.
4105  */
4106 static void cfg_queues(struct adapter *adap)
4107 {
4108         struct sge *s = &adap->sge;
4109         int i, n10g = 0, qidx = 0;
4110 #ifndef CONFIG_CHELSIO_T4_DCB
4111         int q10g = 0;
4112 #endif
4113         int ciq_size;
4114
4115         for_each_port(adap, i)
4116                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4117 #ifdef CONFIG_CHELSIO_T4_DCB
4118         /* For Data Center Bridging support we need to be able to support up
4119          * to 8 Traffic Priorities; each of which will be assigned to its
4120          * own TX Queue in order to prevent Head-Of-Line Blocking.
4121          */
4122         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4123                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4124                         MAX_ETH_QSETS, adap->params.nports * 8);
4125                 BUG_ON(1);
4126         }
4127
4128         for_each_port(adap, i) {
4129                 struct port_info *pi = adap2pinfo(adap, i);
4130
4131                 pi->first_qset = qidx;
4132                 pi->nqsets = 8;
4133                 qidx += pi->nqsets;
4134         }
4135 #else /* !CONFIG_CHELSIO_T4_DCB */
4136         /*
4137          * We default to 1 queue per non-10G port and up to # of cores queues
4138          * per 10G port.
4139          */
4140         if (n10g)
4141                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4142         if (q10g > netif_get_num_default_rss_queues())
4143                 q10g = netif_get_num_default_rss_queues();
4144
4145         for_each_port(adap, i) {
4146                 struct port_info *pi = adap2pinfo(adap, i);
4147
4148                 pi->first_qset = qidx;
4149                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4150                 qidx += pi->nqsets;
4151         }
4152 #endif /* !CONFIG_CHELSIO_T4_DCB */
4153
4154         s->ethqsets = qidx;
4155         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4156
4157         if (is_offload(adap)) {
4158                 /*
4159                  * For offload we use 1 queue/channel if all ports are up to 1G,
4160                  * otherwise we divide all available queues amongst the channels
4161                  * capped by the number of available cores.
4162                  */
4163                 if (n10g) {
4164                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4165                                   num_online_cpus());
4166                         s->ofldqsets = roundup(i, adap->params.nports);
4167                 } else
4168                         s->ofldqsets = adap->params.nports;
4169                 /* For RDMA one Rx queue per channel suffices */
4170                 s->rdmaqs = adap->params.nports;
4171                 /* Try and allow at least 1 CIQ per cpu rounding down
4172                  * to the number of ports, with a minimum of 1 per port.
4173                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4174                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4175                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4176                  */
4177                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4178                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4179                                 adap->params.nports;
4180                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4181         }
4182
4183         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4184                 struct sge_eth_rxq *r = &s->ethrxq[i];
4185
4186                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4187                 r->fl.size = 72;
4188         }
4189
4190         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4191                 s->ethtxq[i].q.size = 1024;
4192
4193         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4194                 s->ctrlq[i].q.size = 512;
4195
4196         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4197                 s->ofldtxq[i].q.size = 1024;
4198
4199         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4200                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4201
4202                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4203                 r->rspq.uld = CXGB4_ULD_ISCSI;
4204                 r->fl.size = 72;
4205         }
4206
4207         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4208                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4209
4210                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4211                 r->rspq.uld = CXGB4_ULD_RDMA;
4212                 r->fl.size = 72;
4213         }
4214
4215         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4216         if (ciq_size > SGE_MAX_IQ_SIZE) {
4217                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4218                 ciq_size = SGE_MAX_IQ_SIZE;
4219         }
4220
4221         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4222                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4223
4224                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4225                 r->rspq.uld = CXGB4_ULD_RDMA;
4226         }
4227
4228         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4229         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4230 }
4231
4232 /*
4233  * Reduce the number of Ethernet queues across all ports to at most n.
4234  * n provides at least one queue per port.
4235  */
4236 static void reduce_ethqs(struct adapter *adap, int n)
4237 {
4238         int i;
4239         struct port_info *pi;
4240
4241         while (n < adap->sge.ethqsets)
4242                 for_each_port(adap, i) {
4243                         pi = adap2pinfo(adap, i);
4244                         if (pi->nqsets > 1) {
4245                                 pi->nqsets--;
4246                                 adap->sge.ethqsets--;
4247                                 if (adap->sge.ethqsets <= n)
4248                                         break;
4249                         }
4250                 }
4251
4252         n = 0;
4253         for_each_port(adap, i) {
4254                 pi = adap2pinfo(adap, i);
4255                 pi->first_qset = n;
4256                 n += pi->nqsets;
4257         }
4258 }
4259
4260 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4261 #define EXTRA_VECS 2
4262
4263 static int enable_msix(struct adapter *adap)
4264 {
4265         int ofld_need = 0;
4266         int i, want, need, allocated;
4267         struct sge *s = &adap->sge;
4268         unsigned int nchan = adap->params.nports;
4269         struct msix_entry *entries;
4270
4271         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4272                           GFP_KERNEL);
4273         if (!entries)
4274                 return -ENOMEM;
4275
4276         for (i = 0; i < MAX_INGQ + 1; ++i)
4277                 entries[i].entry = i;
4278
4279         want = s->max_ethqsets + EXTRA_VECS;
4280         if (is_offload(adap)) {
4281                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4282                 /* need nchan for each possible ULD */
4283                 ofld_need = 3 * nchan;
4284         }
4285 #ifdef CONFIG_CHELSIO_T4_DCB
4286         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4287          * each port.
4288          */
4289         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4290 #else
4291         need = adap->params.nports + EXTRA_VECS + ofld_need;
4292 #endif
4293         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4294         if (allocated < 0) {
4295                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4296                          " not using MSI-X\n");
4297                 kfree(entries);
4298                 return allocated;
4299         }
4300
4301         /* Distribute available vectors to the various queue groups.
4302          * Every group gets its minimum requirement and NIC gets top
4303          * priority for leftovers.
4304          */
4305         i = allocated - EXTRA_VECS - ofld_need;
4306         if (i < s->max_ethqsets) {
4307                 s->max_ethqsets = i;
4308                 if (i < s->ethqsets)
4309                         reduce_ethqs(adap, i);
4310         }
4311         if (is_offload(adap)) {
4312                 if (allocated < want) {
4313                         s->rdmaqs = nchan;
4314                         s->rdmaciqs = nchan;
4315                 }
4316
4317                 /* leftovers go to OFLD */
4318                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4319                     s->rdmaqs - s->rdmaciqs;
4320                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4321         }
4322         for (i = 0; i < allocated; ++i)
4323                 adap->msix_info[i].vec = entries[i].vector;
4324
4325         kfree(entries);
4326         return 0;
4327 }
4328
4329 #undef EXTRA_VECS
4330
4331 static int init_rss(struct adapter *adap)
4332 {
4333         unsigned int i, j;
4334
4335         for_each_port(adap, i) {
4336                 struct port_info *pi = adap2pinfo(adap, i);
4337
4338                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4339                 if (!pi->rss)
4340                         return -ENOMEM;
4341                 for (j = 0; j < pi->rss_size; j++)
4342                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4343         }
4344         return 0;
4345 }
4346
4347 static void print_port_info(const struct net_device *dev)
4348 {
4349         char buf[80];
4350         char *bufp = buf;
4351         const char *spd = "";
4352         const struct port_info *pi = netdev_priv(dev);
4353         const struct adapter *adap = pi->adapter;
4354
4355         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4356                 spd = " 2.5 GT/s";
4357         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4358                 spd = " 5 GT/s";
4359         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4360                 spd = " 8 GT/s";
4361
4362         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4363                 bufp += sprintf(bufp, "100/");
4364         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4365                 bufp += sprintf(bufp, "1000/");
4366         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4367                 bufp += sprintf(bufp, "10G/");
4368         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4369                 bufp += sprintf(bufp, "40G/");
4370         if (bufp != buf)
4371                 --bufp;
4372         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4373
4374         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4375                     adap->params.vpd.id,
4376                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4377                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4378                     (adap->flags & USING_MSIX) ? " MSI-X" :
4379                     (adap->flags & USING_MSI) ? " MSI" : "");
4380         netdev_info(dev, "S/N: %s, P/N: %s\n",
4381                     adap->params.vpd.sn, adap->params.vpd.pn);
4382 }
4383
4384 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4385 {
4386         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4387 }
4388
4389 /*
4390  * Free the following resources:
4391  * - memory used for tables
4392  * - MSI/MSI-X
4393  * - net devices
4394  * - resources FW is holding for us
4395  */
4396 static void free_some_resources(struct adapter *adapter)
4397 {
4398         unsigned int i;
4399
4400         t4_free_mem(adapter->l2t);
4401         t4_free_mem(adapter->tids.tid_tab);
4402         kfree(adapter->sge.egr_map);
4403         kfree(adapter->sge.ingr_map);
4404         kfree(adapter->sge.starving_fl);
4405         kfree(adapter->sge.txq_maperr);
4406         disable_msi(adapter);
4407
4408         for_each_port(adapter, i)
4409                 if (adapter->port[i]) {
4410                         kfree(adap2pinfo(adapter, i)->rss);
4411                         free_netdev(adapter->port[i]);
4412                 }
4413         if (adapter->flags & FW_OK)
4414                 t4_fw_bye(adapter, adapter->fn);
4415 }
4416
4417 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4418 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4419                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4420 #define SEGMENT_SIZE 128
4421
4422 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4423 {
4424         int func, i, err, s_qpp, qpp, num_seg;
4425         struct port_info *pi;
4426         bool highdma = false;
4427         struct adapter *adapter = NULL;
4428         void __iomem *regs;
4429
4430         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4431
4432         err = pci_request_regions(pdev, KBUILD_MODNAME);
4433         if (err) {
4434                 /* Just info, some other driver may have claimed the device. */
4435                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4436                 return err;
4437         }
4438
4439         err = pci_enable_device(pdev);
4440         if (err) {
4441                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4442                 goto out_release_regions;
4443         }
4444
4445         regs = pci_ioremap_bar(pdev, 0);
4446         if (!regs) {
4447                 dev_err(&pdev->dev, "cannot map device registers\n");
4448                 err = -ENOMEM;
4449                 goto out_disable_device;
4450         }
4451
4452         err = t4_wait_dev_ready(regs);
4453         if (err < 0)
4454                 goto out_unmap_bar0;
4455
4456         /* We control everything through one PF */
4457         func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4458         if (func != ent->driver_data) {
4459                 iounmap(regs);
4460                 pci_disable_device(pdev);
4461                 pci_save_state(pdev);        /* to restore SR-IOV later */
4462                 goto sriov;
4463         }
4464
4465         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4466                 highdma = true;
4467                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4468                 if (err) {
4469                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4470                                 "coherent allocations\n");
4471                         goto out_unmap_bar0;
4472                 }
4473         } else {
4474                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4475                 if (err) {
4476                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4477                         goto out_unmap_bar0;
4478                 }
4479         }
4480
4481         pci_enable_pcie_error_reporting(pdev);
4482         enable_pcie_relaxed_ordering(pdev);
4483         pci_set_master(pdev);
4484         pci_save_state(pdev);
4485
4486         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4487         if (!adapter) {
4488                 err = -ENOMEM;
4489                 goto out_unmap_bar0;
4490         }
4491
4492         adapter->workq = create_singlethread_workqueue("cxgb4");
4493         if (!adapter->workq) {
4494                 err = -ENOMEM;
4495                 goto out_free_adapter;
4496         }
4497
4498         /* PCI device has been enabled */
4499         adapter->flags |= DEV_ENABLED;
4500
4501         adapter->regs = regs;
4502         adapter->pdev = pdev;
4503         adapter->pdev_dev = &pdev->dev;
4504         adapter->mbox = func;
4505         adapter->fn = func;
4506         adapter->msg_enable = dflt_msg_enable;
4507         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4508
4509         spin_lock_init(&adapter->stats_lock);
4510         spin_lock_init(&adapter->tid_release_lock);
4511         spin_lock_init(&adapter->win0_lock);
4512
4513         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4514         INIT_WORK(&adapter->db_full_task, process_db_full);
4515         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4516
4517         err = t4_prep_adapter(adapter);
4518         if (err)
4519                 goto out_free_adapter;
4520
4521
4522         if (!is_t4(adapter->params.chip)) {
4523                 s_qpp = (QUEUESPERPAGEPF0_S +
4524                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4525                         adapter->fn);
4526                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4527                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4528                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4529
4530                 /* Each segment size is 128B. Write coalescing is enabled only
4531                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4532                  * queue is less no of segments that can be accommodated in
4533                  * a page size.
4534                  */
4535                 if (qpp > num_seg) {
4536                         dev_err(&pdev->dev,
4537                                 "Incorrect number of egress queues per page\n");
4538                         err = -EINVAL;
4539                         goto out_free_adapter;
4540                 }
4541                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4542                 pci_resource_len(pdev, 2));
4543                 if (!adapter->bar2) {
4544                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4545                         err = -ENOMEM;
4546                         goto out_free_adapter;
4547                 }
4548         }
4549
4550         setup_memwin(adapter);
4551         err = adap_init0(adapter);
4552         setup_memwin_rdma(adapter);
4553         if (err)
4554                 goto out_unmap_bar;
4555
4556         for_each_port(adapter, i) {
4557                 struct net_device *netdev;
4558
4559                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4560                                            MAX_ETH_QSETS);
4561                 if (!netdev) {
4562                         err = -ENOMEM;
4563                         goto out_free_dev;
4564                 }
4565
4566                 SET_NETDEV_DEV(netdev, &pdev->dev);
4567
4568                 adapter->port[i] = netdev;
4569                 pi = netdev_priv(netdev);
4570                 pi->adapter = adapter;
4571                 pi->xact_addr_filt = -1;
4572                 pi->port_id = i;
4573                 netdev->irq = pdev->irq;
4574
4575                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4576                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4577                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4578                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4579                 if (highdma)
4580                         netdev->hw_features |= NETIF_F_HIGHDMA;
4581                 netdev->features |= netdev->hw_features;
4582                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4583
4584                 netdev->priv_flags |= IFF_UNICAST_FLT;
4585
4586                 netdev->netdev_ops = &cxgb4_netdev_ops;
4587 #ifdef CONFIG_CHELSIO_T4_DCB
4588                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4589                 cxgb4_dcb_state_init(netdev);
4590 #endif
4591                 cxgb4_set_ethtool_ops(netdev);
4592         }
4593
4594         pci_set_drvdata(pdev, adapter);
4595
4596         if (adapter->flags & FW_OK) {
4597                 err = t4_port_init(adapter, func, func, 0);
4598                 if (err)
4599                         goto out_free_dev;
4600         }
4601
4602         /*
4603          * Configure queues and allocate tables now, they can be needed as
4604          * soon as the first register_netdev completes.
4605          */
4606         cfg_queues(adapter);
4607
4608         adapter->l2t = t4_init_l2t();
4609         if (!adapter->l2t) {
4610                 /* We tolerate a lack of L2T, giving up some functionality */
4611                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4612                 adapter->params.offload = 0;
4613         }
4614
4615 #if IS_ENABLED(CONFIG_IPV6)
4616         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4617                                           adapter->clipt_end);
4618         if (!adapter->clipt) {
4619                 /* We tolerate a lack of clip_table, giving up
4620                  * some functionality
4621                  */
4622                 dev_warn(&pdev->dev,
4623                          "could not allocate Clip table, continuing\n");
4624                 adapter->params.offload = 0;
4625         }
4626 #endif
4627         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4628                 dev_warn(&pdev->dev, "could not allocate TID table, "
4629                          "continuing\n");
4630                 adapter->params.offload = 0;
4631         }
4632
4633         /* See what interrupts we'll be using */
4634         if (msi > 1 && enable_msix(adapter) == 0)
4635                 adapter->flags |= USING_MSIX;
4636         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4637                 adapter->flags |= USING_MSI;
4638
4639         err = init_rss(adapter);
4640         if (err)
4641                 goto out_free_dev;
4642
4643         /*
4644          * The card is now ready to go.  If any errors occur during device
4645          * registration we do not fail the whole card but rather proceed only
4646          * with the ports we manage to register successfully.  However we must
4647          * register at least one net device.
4648          */
4649         for_each_port(adapter, i) {
4650                 pi = adap2pinfo(adapter, i);
4651                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4652                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4653
4654                 err = register_netdev(adapter->port[i]);
4655                 if (err)
4656                         break;
4657                 adapter->chan_map[pi->tx_chan] = i;
4658                 print_port_info(adapter->port[i]);
4659         }
4660         if (i == 0) {
4661                 dev_err(&pdev->dev, "could not register any net devices\n");
4662                 goto out_free_dev;
4663         }
4664         if (err) {
4665                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4666                 err = 0;
4667         }
4668
4669         if (cxgb4_debugfs_root) {
4670                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4671                                                            cxgb4_debugfs_root);
4672                 setup_debugfs(adapter);
4673         }
4674
4675         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4676         pdev->needs_freset = 1;
4677
4678         if (is_offload(adapter))
4679                 attach_ulds(adapter);
4680
4681 sriov:
4682 #ifdef CONFIG_PCI_IOV
4683         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4684                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4685                         dev_info(&pdev->dev,
4686                                  "instantiated %u virtual functions\n",
4687                                  num_vf[func]);
4688 #endif
4689         return 0;
4690
4691  out_free_dev:
4692         free_some_resources(adapter);
4693  out_unmap_bar:
4694         if (!is_t4(adapter->params.chip))
4695                 iounmap(adapter->bar2);
4696  out_free_adapter:
4697         if (adapter->workq)
4698                 destroy_workqueue(adapter->workq);
4699
4700         kfree(adapter);
4701  out_unmap_bar0:
4702         iounmap(regs);
4703  out_disable_device:
4704         pci_disable_pcie_error_reporting(pdev);
4705         pci_disable_device(pdev);
4706  out_release_regions:
4707         pci_release_regions(pdev);
4708         return err;
4709 }
4710
4711 static void remove_one(struct pci_dev *pdev)
4712 {
4713         struct adapter *adapter = pci_get_drvdata(pdev);
4714
4715 #ifdef CONFIG_PCI_IOV
4716         pci_disable_sriov(pdev);
4717
4718 #endif
4719
4720         if (adapter) {
4721                 int i;
4722
4723                 /* Tear down per-adapter Work Queue first since it can contain
4724                  * references to our adapter data structure.
4725                  */
4726                 destroy_workqueue(adapter->workq);
4727
4728                 if (is_offload(adapter))
4729                         detach_ulds(adapter);
4730
4731                 disable_interrupts(adapter);
4732
4733                 for_each_port(adapter, i)
4734                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4735                                 unregister_netdev(adapter->port[i]);
4736
4737                 debugfs_remove_recursive(adapter->debugfs_root);
4738
4739                 /* If we allocated filters, free up state associated with any
4740                  * valid filters ...
4741                  */
4742                 if (adapter->tids.ftid_tab) {
4743                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4744                         for (i = 0; i < (adapter->tids.nftids +
4745                                         adapter->tids.nsftids); i++, f++)
4746                                 if (f->valid)
4747                                         clear_filter(adapter, f);
4748                 }
4749
4750                 if (adapter->flags & FULL_INIT_DONE)
4751                         cxgb_down(adapter);
4752
4753                 free_some_resources(adapter);
4754 #if IS_ENABLED(CONFIG_IPV6)
4755                 t4_cleanup_clip_tbl(adapter);
4756 #endif
4757                 iounmap(adapter->regs);
4758                 if (!is_t4(adapter->params.chip))
4759                         iounmap(adapter->bar2);
4760                 pci_disable_pcie_error_reporting(pdev);
4761                 if ((adapter->flags & DEV_ENABLED)) {
4762                         pci_disable_device(pdev);
4763                         adapter->flags &= ~DEV_ENABLED;
4764                 }
4765                 pci_release_regions(pdev);
4766                 synchronize_rcu();
4767                 kfree(adapter);
4768         } else
4769                 pci_release_regions(pdev);
4770 }
4771
4772 static struct pci_driver cxgb4_driver = {
4773         .name     = KBUILD_MODNAME,
4774         .id_table = cxgb4_pci_tbl,
4775         .probe    = init_one,
4776         .remove   = remove_one,
4777         .shutdown = remove_one,
4778         .err_handler = &cxgb4_eeh,
4779 };
4780
4781 static int __init cxgb4_init_module(void)
4782 {
4783         int ret;
4784
4785         /* Debugfs support is optional, just warn if this fails */
4786         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4787         if (!cxgb4_debugfs_root)
4788                 pr_warn("could not create debugfs entry, continuing\n");
4789
4790         ret = pci_register_driver(&cxgb4_driver);
4791         if (ret < 0)
4792                 debugfs_remove(cxgb4_debugfs_root);
4793
4794 #if IS_ENABLED(CONFIG_IPV6)
4795         if (!inet6addr_registered) {
4796                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4797                 inet6addr_registered = true;
4798         }
4799 #endif
4800
4801         return ret;
4802 }
4803
4804 static void __exit cxgb4_cleanup_module(void)
4805 {
4806 #if IS_ENABLED(CONFIG_IPV6)
4807         if (inet6addr_registered) {
4808                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4809                 inet6addr_registered = false;
4810         }
4811 #endif
4812         pci_unregister_driver(&cxgb4_driver);
4813         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4814 }
4815
4816 module_init(cxgb4_init_module);
4817 module_exit(cxgb4_cleanup_module);