4920a4eae529e7b3698c6571569ce881828bca8d
[firefly-linux-kernel-4.4.55.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
48
49 #include "e1000.h"
50
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 static const struct e1000_info *e1000_info_tbl[] = {
56         [board_82571]           = &e1000_82571_info,
57         [board_82572]           = &e1000_82572_info,
58         [board_82573]           = &e1000_82573_info,
59         [board_82574]           = &e1000_82574_info,
60         [board_82583]           = &e1000_82583_info,
61         [board_80003es2lan]     = &e1000_es2_info,
62         [board_ich8lan]         = &e1000_ich8_info,
63         [board_ich9lan]         = &e1000_ich9_info,
64         [board_ich10lan]        = &e1000_ich10_info,
65         [board_pchlan]          = &e1000_pch_info,
66 };
67
68 #ifdef DEBUG
69 /**
70  * e1000_get_hw_dev_name - return device name string
71  * used by hardware layer to print debugging information
72  **/
73 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
74 {
75         return hw->adapter->netdev->name;
76 }
77 #endif
78
79 /**
80  * e1000_desc_unused - calculate if we have unused descriptors
81  **/
82 static int e1000_desc_unused(struct e1000_ring *ring)
83 {
84         if (ring->next_to_clean > ring->next_to_use)
85                 return ring->next_to_clean - ring->next_to_use - 1;
86
87         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
88 }
89
90 /**
91  * e1000_receive_skb - helper function to handle Rx indications
92  * @adapter: board private structure
93  * @status: descriptor status field as written by hardware
94  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
95  * @skb: pointer to sk_buff to be indicated to stack
96  **/
97 static void e1000_receive_skb(struct e1000_adapter *adapter,
98                               struct net_device *netdev,
99                               struct sk_buff *skb,
100                               u8 status, __le16 vlan)
101 {
102         skb->protocol = eth_type_trans(skb, netdev);
103
104         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
105                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
106                                  le16_to_cpu(vlan), skb);
107         else
108                 napi_gro_receive(&adapter->napi, skb);
109 }
110
111 /**
112  * e1000_rx_checksum - Receive Checksum Offload for 82543
113  * @adapter:     board private structure
114  * @status_err:  receive descriptor status and error fields
115  * @csum:       receive descriptor csum field
116  * @sk_buff:     socket buffer with received data
117  **/
118 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
119                               u32 csum, struct sk_buff *skb)
120 {
121         u16 status = (u16)status_err;
122         u8 errors = (u8)(status_err >> 24);
123         skb->ip_summed = CHECKSUM_NONE;
124
125         /* Ignore Checksum bit is set */
126         if (status & E1000_RXD_STAT_IXSM)
127                 return;
128         /* TCP/UDP checksum error bit is set */
129         if (errors & E1000_RXD_ERR_TCPE) {
130                 /* let the stack verify checksum errors */
131                 adapter->hw_csum_err++;
132                 return;
133         }
134
135         /* TCP/UDP Checksum has not been calculated */
136         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
137                 return;
138
139         /* It must be a TCP or UDP packet with a valid checksum */
140         if (status & E1000_RXD_STAT_TCPCS) {
141                 /* TCP checksum is good */
142                 skb->ip_summed = CHECKSUM_UNNECESSARY;
143         } else {
144                 /*
145                  * IP fragment with UDP payload
146                  * Hardware complements the payload checksum, so we undo it
147                  * and then put the value in host order for further stack use.
148                  */
149                 __sum16 sum = (__force __sum16)htons(csum);
150                 skb->csum = csum_unfold(~sum);
151                 skb->ip_summed = CHECKSUM_COMPLETE;
152         }
153         adapter->hw_csum_good++;
154 }
155
156 /**
157  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
158  * @adapter: address of board private structure
159  **/
160 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
161                                    int cleaned_count)
162 {
163         struct net_device *netdev = adapter->netdev;
164         struct pci_dev *pdev = adapter->pdev;
165         struct e1000_ring *rx_ring = adapter->rx_ring;
166         struct e1000_rx_desc *rx_desc;
167         struct e1000_buffer *buffer_info;
168         struct sk_buff *skb;
169         unsigned int i;
170         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
171
172         i = rx_ring->next_to_use;
173         buffer_info = &rx_ring->buffer_info[i];
174
175         while (cleaned_count--) {
176                 skb = buffer_info->skb;
177                 if (skb) {
178                         skb_trim(skb, 0);
179                         goto map_skb;
180                 }
181
182                 skb = netdev_alloc_skb(netdev, bufsz);
183                 if (!skb) {
184                         /* Better luck next round */
185                         adapter->alloc_rx_buff_failed++;
186                         break;
187                 }
188
189                 /*
190                  * Make buffer alignment 2 beyond a 16 byte boundary
191                  * this will result in a 16 byte aligned IP header after
192                  * the 14 byte MAC header is removed
193                  */
194                 skb_reserve(skb, NET_IP_ALIGN);
195
196                 buffer_info->skb = skb;
197 map_skb:
198                 buffer_info->dma = pci_map_single(pdev, skb->data,
199                                                   adapter->rx_buffer_len,
200                                                   PCI_DMA_FROMDEVICE);
201                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
202                         dev_err(&pdev->dev, "RX DMA map failed\n");
203                         adapter->rx_dma_failed++;
204                         break;
205                 }
206
207                 rx_desc = E1000_RX_DESC(*rx_ring, i);
208                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
209
210                 i++;
211                 if (i == rx_ring->count)
212                         i = 0;
213                 buffer_info = &rx_ring->buffer_info[i];
214         }
215
216         if (rx_ring->next_to_use != i) {
217                 rx_ring->next_to_use = i;
218                 if (i-- == 0)
219                         i = (rx_ring->count - 1);
220
221                 /*
222                  * Force memory writes to complete before letting h/w
223                  * know there are new descriptors to fetch.  (Only
224                  * applicable for weak-ordered memory model archs,
225                  * such as IA-64).
226                  */
227                 wmb();
228                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
229         }
230 }
231
232 /**
233  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
234  * @adapter: address of board private structure
235  **/
236 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
237                                       int cleaned_count)
238 {
239         struct net_device *netdev = adapter->netdev;
240         struct pci_dev *pdev = adapter->pdev;
241         union e1000_rx_desc_packet_split *rx_desc;
242         struct e1000_ring *rx_ring = adapter->rx_ring;
243         struct e1000_buffer *buffer_info;
244         struct e1000_ps_page *ps_page;
245         struct sk_buff *skb;
246         unsigned int i, j;
247
248         i = rx_ring->next_to_use;
249         buffer_info = &rx_ring->buffer_info[i];
250
251         while (cleaned_count--) {
252                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
253
254                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
255                         ps_page = &buffer_info->ps_pages[j];
256                         if (j >= adapter->rx_ps_pages) {
257                                 /* all unused desc entries get hw null ptr */
258                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
259                                 continue;
260                         }
261                         if (!ps_page->page) {
262                                 ps_page->page = alloc_page(GFP_ATOMIC);
263                                 if (!ps_page->page) {
264                                         adapter->alloc_rx_buff_failed++;
265                                         goto no_buffers;
266                                 }
267                                 ps_page->dma = pci_map_page(pdev,
268                                                    ps_page->page,
269                                                    0, PAGE_SIZE,
270                                                    PCI_DMA_FROMDEVICE);
271                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
272                                         dev_err(&adapter->pdev->dev,
273                                           "RX DMA page map failed\n");
274                                         adapter->rx_dma_failed++;
275                                         goto no_buffers;
276                                 }
277                         }
278                         /*
279                          * Refresh the desc even if buffer_addrs
280                          * didn't change because each write-back
281                          * erases this info.
282                          */
283                         rx_desc->read.buffer_addr[j+1] =
284                              cpu_to_le64(ps_page->dma);
285                 }
286
287                 skb = netdev_alloc_skb(netdev,
288                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
289
290                 if (!skb) {
291                         adapter->alloc_rx_buff_failed++;
292                         break;
293                 }
294
295                 /*
296                  * Make buffer alignment 2 beyond a 16 byte boundary
297                  * this will result in a 16 byte aligned IP header after
298                  * the 14 byte MAC header is removed
299                  */
300                 skb_reserve(skb, NET_IP_ALIGN);
301
302                 buffer_info->skb = skb;
303                 buffer_info->dma = pci_map_single(pdev, skb->data,
304                                                   adapter->rx_ps_bsize0,
305                                                   PCI_DMA_FROMDEVICE);
306                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
307                         dev_err(&pdev->dev, "RX DMA map failed\n");
308                         adapter->rx_dma_failed++;
309                         /* cleanup skb */
310                         dev_kfree_skb_any(skb);
311                         buffer_info->skb = NULL;
312                         break;
313                 }
314
315                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
316
317                 i++;
318                 if (i == rx_ring->count)
319                         i = 0;
320                 buffer_info = &rx_ring->buffer_info[i];
321         }
322
323 no_buffers:
324         if (rx_ring->next_to_use != i) {
325                 rx_ring->next_to_use = i;
326
327                 if (!(i--))
328                         i = (rx_ring->count - 1);
329
330                 /*
331                  * Force memory writes to complete before letting h/w
332                  * know there are new descriptors to fetch.  (Only
333                  * applicable for weak-ordered memory model archs,
334                  * such as IA-64).
335                  */
336                 wmb();
337                 /*
338                  * Hardware increments by 16 bytes, but packet split
339                  * descriptors are 32 bytes...so we increment tail
340                  * twice as much.
341                  */
342                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
343         }
344 }
345
346 /**
347  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
348  * @adapter: address of board private structure
349  * @cleaned_count: number of buffers to allocate this pass
350  **/
351
352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353                                          int cleaned_count)
354 {
355         struct net_device *netdev = adapter->netdev;
356         struct pci_dev *pdev = adapter->pdev;
357         struct e1000_rx_desc *rx_desc;
358         struct e1000_ring *rx_ring = adapter->rx_ring;
359         struct e1000_buffer *buffer_info;
360         struct sk_buff *skb;
361         unsigned int i;
362         unsigned int bufsz = 256 -
363                              16 /* for skb_reserve */ -
364                              NET_IP_ALIGN;
365
366         i = rx_ring->next_to_use;
367         buffer_info = &rx_ring->buffer_info[i];
368
369         while (cleaned_count--) {
370                 skb = buffer_info->skb;
371                 if (skb) {
372                         skb_trim(skb, 0);
373                         goto check_page;
374                 }
375
376                 skb = netdev_alloc_skb(netdev, bufsz);
377                 if (unlikely(!skb)) {
378                         /* Better luck next round */
379                         adapter->alloc_rx_buff_failed++;
380                         break;
381                 }
382
383                 /* Make buffer alignment 2 beyond a 16 byte boundary
384                  * this will result in a 16 byte aligned IP header after
385                  * the 14 byte MAC header is removed
386                  */
387                 skb_reserve(skb, NET_IP_ALIGN);
388
389                 buffer_info->skb = skb;
390 check_page:
391                 /* allocate a new page if necessary */
392                 if (!buffer_info->page) {
393                         buffer_info->page = alloc_page(GFP_ATOMIC);
394                         if (unlikely(!buffer_info->page)) {
395                                 adapter->alloc_rx_buff_failed++;
396                                 break;
397                         }
398                 }
399
400                 if (!buffer_info->dma)
401                         buffer_info->dma = pci_map_page(pdev,
402                                                         buffer_info->page, 0,
403                                                         PAGE_SIZE,
404                                                         PCI_DMA_FROMDEVICE);
405
406                 rx_desc = E1000_RX_DESC(*rx_ring, i);
407                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
408
409                 if (unlikely(++i == rx_ring->count))
410                         i = 0;
411                 buffer_info = &rx_ring->buffer_info[i];
412         }
413
414         if (likely(rx_ring->next_to_use != i)) {
415                 rx_ring->next_to_use = i;
416                 if (unlikely(i-- == 0))
417                         i = (rx_ring->count - 1);
418
419                 /* Force memory writes to complete before letting h/w
420                  * know there are new descriptors to fetch.  (Only
421                  * applicable for weak-ordered memory model archs,
422                  * such as IA-64). */
423                 wmb();
424                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
425         }
426 }
427
428 /**
429  * e1000_clean_rx_irq - Send received data up the network stack; legacy
430  * @adapter: board private structure
431  *
432  * the return value indicates whether actual cleaning was done, there
433  * is no guarantee that everything was cleaned
434  **/
435 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
436                                int *work_done, int work_to_do)
437 {
438         struct net_device *netdev = adapter->netdev;
439         struct pci_dev *pdev = adapter->pdev;
440         struct e1000_ring *rx_ring = adapter->rx_ring;
441         struct e1000_rx_desc *rx_desc, *next_rxd;
442         struct e1000_buffer *buffer_info, *next_buffer;
443         u32 length;
444         unsigned int i;
445         int cleaned_count = 0;
446         bool cleaned = 0;
447         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
448
449         i = rx_ring->next_to_clean;
450         rx_desc = E1000_RX_DESC(*rx_ring, i);
451         buffer_info = &rx_ring->buffer_info[i];
452
453         while (rx_desc->status & E1000_RXD_STAT_DD) {
454                 struct sk_buff *skb;
455                 u8 status;
456
457                 if (*work_done >= work_to_do)
458                         break;
459                 (*work_done)++;
460
461                 status = rx_desc->status;
462                 skb = buffer_info->skb;
463                 buffer_info->skb = NULL;
464
465                 prefetch(skb->data - NET_IP_ALIGN);
466
467                 i++;
468                 if (i == rx_ring->count)
469                         i = 0;
470                 next_rxd = E1000_RX_DESC(*rx_ring, i);
471                 prefetch(next_rxd);
472
473                 next_buffer = &rx_ring->buffer_info[i];
474
475                 cleaned = 1;
476                 cleaned_count++;
477                 pci_unmap_single(pdev,
478                                  buffer_info->dma,
479                                  adapter->rx_buffer_len,
480                                  PCI_DMA_FROMDEVICE);
481                 buffer_info->dma = 0;
482
483                 length = le16_to_cpu(rx_desc->length);
484
485                 /*
486                  * !EOP means multiple descriptors were used to store a single
487                  * packet, if that's the case we need to toss it.  In fact, we
488                  * need to toss every packet with the EOP bit clear and the
489                  * next frame that _does_ have the EOP bit set, as it is by
490                  * definition only a frame fragment
491                  */
492                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
493                         adapter->flags2 |= FLAG2_IS_DISCARDING;
494
495                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
496                         /* All receives must fit into a single buffer */
497                         e_dbg("%s: Receive packet consumed multiple buffers\n",
498                               netdev->name);
499                         /* recycle */
500                         buffer_info->skb = skb;
501                         if (status & E1000_RXD_STAT_EOP)
502                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
503                         goto next_desc;
504                 }
505
506                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
507                         /* recycle */
508                         buffer_info->skb = skb;
509                         goto next_desc;
510                 }
511
512                 /* adjust length to remove Ethernet CRC */
513                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
514                         length -= 4;
515
516                 total_rx_bytes += length;
517                 total_rx_packets++;
518
519                 /*
520                  * code added for copybreak, this should improve
521                  * performance for small packets with large amounts
522                  * of reassembly being done in the stack
523                  */
524                 if (length < copybreak) {
525                         struct sk_buff *new_skb =
526                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
527                         if (new_skb) {
528                                 skb_reserve(new_skb, NET_IP_ALIGN);
529                                 skb_copy_to_linear_data_offset(new_skb,
530                                                                -NET_IP_ALIGN,
531                                                                (skb->data -
532                                                                 NET_IP_ALIGN),
533                                                                (length +
534                                                                 NET_IP_ALIGN));
535                                 /* save the skb in buffer_info as good */
536                                 buffer_info->skb = skb;
537                                 skb = new_skb;
538                         }
539                         /* else just continue with the old one */
540                 }
541                 /* end copybreak code */
542                 skb_put(skb, length);
543
544                 /* Receive Checksum Offload */
545                 e1000_rx_checksum(adapter,
546                                   (u32)(status) |
547                                   ((u32)(rx_desc->errors) << 24),
548                                   le16_to_cpu(rx_desc->csum), skb);
549
550                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
551
552 next_desc:
553                 rx_desc->status = 0;
554
555                 /* return some buffers to hardware, one at a time is too slow */
556                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
557                         adapter->alloc_rx_buf(adapter, cleaned_count);
558                         cleaned_count = 0;
559                 }
560
561                 /* use prefetched values */
562                 rx_desc = next_rxd;
563                 buffer_info = next_buffer;
564         }
565         rx_ring->next_to_clean = i;
566
567         cleaned_count = e1000_desc_unused(rx_ring);
568         if (cleaned_count)
569                 adapter->alloc_rx_buf(adapter, cleaned_count);
570
571         adapter->total_rx_bytes += total_rx_bytes;
572         adapter->total_rx_packets += total_rx_packets;
573         adapter->net_stats.rx_bytes += total_rx_bytes;
574         adapter->net_stats.rx_packets += total_rx_packets;
575         return cleaned;
576 }
577
578 static void e1000_put_txbuf(struct e1000_adapter *adapter,
579                              struct e1000_buffer *buffer_info)
580 {
581         buffer_info->dma = 0;
582         if (buffer_info->skb) {
583                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
584                               DMA_TO_DEVICE);
585                 dev_kfree_skb_any(buffer_info->skb);
586                 buffer_info->skb = NULL;
587         }
588         buffer_info->time_stamp = 0;
589 }
590
591 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
592 {
593         struct e1000_ring *tx_ring = adapter->tx_ring;
594         unsigned int i = tx_ring->next_to_clean;
595         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
596         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
597
598         /* detected Tx unit hang */
599         e_err("Detected Tx Unit Hang:\n"
600               "  TDH                  <%x>\n"
601               "  TDT                  <%x>\n"
602               "  next_to_use          <%x>\n"
603               "  next_to_clean        <%x>\n"
604               "buffer_info[next_to_clean]:\n"
605               "  time_stamp           <%lx>\n"
606               "  next_to_watch        <%x>\n"
607               "  jiffies              <%lx>\n"
608               "  next_to_watch.status <%x>\n",
609               readl(adapter->hw.hw_addr + tx_ring->head),
610               readl(adapter->hw.hw_addr + tx_ring->tail),
611               tx_ring->next_to_use,
612               tx_ring->next_to_clean,
613               tx_ring->buffer_info[eop].time_stamp,
614               eop,
615               jiffies,
616               eop_desc->upper.fields.status);
617 }
618
619 /**
620  * e1000_clean_tx_irq - Reclaim resources after transmit completes
621  * @adapter: board private structure
622  *
623  * the return value indicates whether actual cleaning was done, there
624  * is no guarantee that everything was cleaned
625  **/
626 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
627 {
628         struct net_device *netdev = adapter->netdev;
629         struct e1000_hw *hw = &adapter->hw;
630         struct e1000_ring *tx_ring = adapter->tx_ring;
631         struct e1000_tx_desc *tx_desc, *eop_desc;
632         struct e1000_buffer *buffer_info;
633         unsigned int i, eop;
634         unsigned int count = 0;
635         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
636
637         i = tx_ring->next_to_clean;
638         eop = tx_ring->buffer_info[i].next_to_watch;
639         eop_desc = E1000_TX_DESC(*tx_ring, eop);
640
641         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
642                (count < tx_ring->count)) {
643                 bool cleaned = false;
644                 for (; !cleaned; count++) {
645                         tx_desc = E1000_TX_DESC(*tx_ring, i);
646                         buffer_info = &tx_ring->buffer_info[i];
647                         cleaned = (i == eop);
648
649                         if (cleaned) {
650                                 struct sk_buff *skb = buffer_info->skb;
651                                 unsigned int segs, bytecount;
652                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
653                                 /* multiply data chunks by size of headers */
654                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
655                                             skb->len;
656                                 total_tx_packets += segs;
657                                 total_tx_bytes += bytecount;
658                         }
659
660                         e1000_put_txbuf(adapter, buffer_info);
661                         tx_desc->upper.data = 0;
662
663                         i++;
664                         if (i == tx_ring->count)
665                                 i = 0;
666                 }
667
668                 if (i == tx_ring->next_to_use)
669                         break;
670                 eop = tx_ring->buffer_info[i].next_to_watch;
671                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
672         }
673
674         tx_ring->next_to_clean = i;
675
676 #define TX_WAKE_THRESHOLD 32
677         if (count && netif_carrier_ok(netdev) &&
678             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
679                 /* Make sure that anybody stopping the queue after this
680                  * sees the new next_to_clean.
681                  */
682                 smp_mb();
683
684                 if (netif_queue_stopped(netdev) &&
685                     !(test_bit(__E1000_DOWN, &adapter->state))) {
686                         netif_wake_queue(netdev);
687                         ++adapter->restart_queue;
688                 }
689         }
690
691         if (adapter->detect_tx_hung) {
692                 /* Detect a transmit hang in hardware, this serializes the
693                  * check with the clearing of time_stamp and movement of i */
694                 adapter->detect_tx_hung = 0;
695                 if (tx_ring->buffer_info[i].time_stamp &&
696                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
697                                + (adapter->tx_timeout_factor * HZ))
698                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
699                         e1000_print_tx_hang(adapter);
700                         netif_stop_queue(netdev);
701                 }
702         }
703         adapter->total_tx_bytes += total_tx_bytes;
704         adapter->total_tx_packets += total_tx_packets;
705         adapter->net_stats.tx_bytes += total_tx_bytes;
706         adapter->net_stats.tx_packets += total_tx_packets;
707         return (count < tx_ring->count);
708 }
709
710 /**
711  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
712  * @adapter: board private structure
713  *
714  * the return value indicates whether actual cleaning was done, there
715  * is no guarantee that everything was cleaned
716  **/
717 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
718                                   int *work_done, int work_to_do)
719 {
720         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
721         struct net_device *netdev = adapter->netdev;
722         struct pci_dev *pdev = adapter->pdev;
723         struct e1000_ring *rx_ring = adapter->rx_ring;
724         struct e1000_buffer *buffer_info, *next_buffer;
725         struct e1000_ps_page *ps_page;
726         struct sk_buff *skb;
727         unsigned int i, j;
728         u32 length, staterr;
729         int cleaned_count = 0;
730         bool cleaned = 0;
731         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
732
733         i = rx_ring->next_to_clean;
734         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
735         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
736         buffer_info = &rx_ring->buffer_info[i];
737
738         while (staterr & E1000_RXD_STAT_DD) {
739                 if (*work_done >= work_to_do)
740                         break;
741                 (*work_done)++;
742                 skb = buffer_info->skb;
743
744                 /* in the packet split case this is header only */
745                 prefetch(skb->data - NET_IP_ALIGN);
746
747                 i++;
748                 if (i == rx_ring->count)
749                         i = 0;
750                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
751                 prefetch(next_rxd);
752
753                 next_buffer = &rx_ring->buffer_info[i];
754
755                 cleaned = 1;
756                 cleaned_count++;
757                 pci_unmap_single(pdev, buffer_info->dma,
758                                  adapter->rx_ps_bsize0,
759                                  PCI_DMA_FROMDEVICE);
760                 buffer_info->dma = 0;
761
762                 /* see !EOP comment in other rx routine */
763                 if (!(staterr & E1000_RXD_STAT_EOP))
764                         adapter->flags2 |= FLAG2_IS_DISCARDING;
765
766                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
767                         e_dbg("%s: Packet Split buffers didn't pick up the "
768                               "full packet\n", netdev->name);
769                         dev_kfree_skb_irq(skb);
770                         if (staterr & E1000_RXD_STAT_EOP)
771                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
772                         goto next_desc;
773                 }
774
775                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
776                         dev_kfree_skb_irq(skb);
777                         goto next_desc;
778                 }
779
780                 length = le16_to_cpu(rx_desc->wb.middle.length0);
781
782                 if (!length) {
783                         e_dbg("%s: Last part of the packet spanning multiple "
784                               "descriptors\n", netdev->name);
785                         dev_kfree_skb_irq(skb);
786                         goto next_desc;
787                 }
788
789                 /* Good Receive */
790                 skb_put(skb, length);
791
792                 {
793                 /*
794                  * this looks ugly, but it seems compiler issues make it
795                  * more efficient than reusing j
796                  */
797                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
798
799                 /*
800                  * page alloc/put takes too long and effects small packet
801                  * throughput, so unsplit small packets and save the alloc/put
802                  * only valid in softirq (napi) context to call kmap_*
803                  */
804                 if (l1 && (l1 <= copybreak) &&
805                     ((length + l1) <= adapter->rx_ps_bsize0)) {
806                         u8 *vaddr;
807
808                         ps_page = &buffer_info->ps_pages[0];
809
810                         /*
811                          * there is no documentation about how to call
812                          * kmap_atomic, so we can't hold the mapping
813                          * very long
814                          */
815                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
816                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
817                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
818                         memcpy(skb_tail_pointer(skb), vaddr, l1);
819                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
820                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
821                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
822
823                         /* remove the CRC */
824                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
825                                 l1 -= 4;
826
827                         skb_put(skb, l1);
828                         goto copydone;
829                 } /* if */
830                 }
831
832                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
833                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
834                         if (!length)
835                                 break;
836
837                         ps_page = &buffer_info->ps_pages[j];
838                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
839                                        PCI_DMA_FROMDEVICE);
840                         ps_page->dma = 0;
841                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
842                         ps_page->page = NULL;
843                         skb->len += length;
844                         skb->data_len += length;
845                         skb->truesize += length;
846                 }
847
848                 /* strip the ethernet crc, problem is we're using pages now so
849                  * this whole operation can get a little cpu intensive
850                  */
851                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
852                         pskb_trim(skb, skb->len - 4);
853
854 copydone:
855                 total_rx_bytes += skb->len;
856                 total_rx_packets++;
857
858                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
859                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
860
861                 if (rx_desc->wb.upper.header_status &
862                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
863                         adapter->rx_hdr_split++;
864
865                 e1000_receive_skb(adapter, netdev, skb,
866                                   staterr, rx_desc->wb.middle.vlan);
867
868 next_desc:
869                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
870                 buffer_info->skb = NULL;
871
872                 /* return some buffers to hardware, one at a time is too slow */
873                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
874                         adapter->alloc_rx_buf(adapter, cleaned_count);
875                         cleaned_count = 0;
876                 }
877
878                 /* use prefetched values */
879                 rx_desc = next_rxd;
880                 buffer_info = next_buffer;
881
882                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
883         }
884         rx_ring->next_to_clean = i;
885
886         cleaned_count = e1000_desc_unused(rx_ring);
887         if (cleaned_count)
888                 adapter->alloc_rx_buf(adapter, cleaned_count);
889
890         adapter->total_rx_bytes += total_rx_bytes;
891         adapter->total_rx_packets += total_rx_packets;
892         adapter->net_stats.rx_bytes += total_rx_bytes;
893         adapter->net_stats.rx_packets += total_rx_packets;
894         return cleaned;
895 }
896
897 /**
898  * e1000_consume_page - helper function
899  **/
900 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
901                                u16 length)
902 {
903         bi->page = NULL;
904         skb->len += length;
905         skb->data_len += length;
906         skb->truesize += length;
907 }
908
909 /**
910  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
911  * @adapter: board private structure
912  *
913  * the return value indicates whether actual cleaning was done, there
914  * is no guarantee that everything was cleaned
915  **/
916
917 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
918                                      int *work_done, int work_to_do)
919 {
920         struct net_device *netdev = adapter->netdev;
921         struct pci_dev *pdev = adapter->pdev;
922         struct e1000_ring *rx_ring = adapter->rx_ring;
923         struct e1000_rx_desc *rx_desc, *next_rxd;
924         struct e1000_buffer *buffer_info, *next_buffer;
925         u32 length;
926         unsigned int i;
927         int cleaned_count = 0;
928         bool cleaned = false;
929         unsigned int total_rx_bytes=0, total_rx_packets=0;
930
931         i = rx_ring->next_to_clean;
932         rx_desc = E1000_RX_DESC(*rx_ring, i);
933         buffer_info = &rx_ring->buffer_info[i];
934
935         while (rx_desc->status & E1000_RXD_STAT_DD) {
936                 struct sk_buff *skb;
937                 u8 status;
938
939                 if (*work_done >= work_to_do)
940                         break;
941                 (*work_done)++;
942
943                 status = rx_desc->status;
944                 skb = buffer_info->skb;
945                 buffer_info->skb = NULL;
946
947                 ++i;
948                 if (i == rx_ring->count)
949                         i = 0;
950                 next_rxd = E1000_RX_DESC(*rx_ring, i);
951                 prefetch(next_rxd);
952
953                 next_buffer = &rx_ring->buffer_info[i];
954
955                 cleaned = true;
956                 cleaned_count++;
957                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
958                                PCI_DMA_FROMDEVICE);
959                 buffer_info->dma = 0;
960
961                 length = le16_to_cpu(rx_desc->length);
962
963                 /* errors is only valid for DD + EOP descriptors */
964                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
965                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
966                                 /* recycle both page and skb */
967                                 buffer_info->skb = skb;
968                                 /* an error means any chain goes out the window
969                                  * too */
970                                 if (rx_ring->rx_skb_top)
971                                         dev_kfree_skb(rx_ring->rx_skb_top);
972                                 rx_ring->rx_skb_top = NULL;
973                                 goto next_desc;
974                 }
975
976 #define rxtop rx_ring->rx_skb_top
977                 if (!(status & E1000_RXD_STAT_EOP)) {
978                         /* this descriptor is only the beginning (or middle) */
979                         if (!rxtop) {
980                                 /* this is the beginning of a chain */
981                                 rxtop = skb;
982                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
983                                                    0, length);
984                         } else {
985                                 /* this is the middle of a chain */
986                                 skb_fill_page_desc(rxtop,
987                                     skb_shinfo(rxtop)->nr_frags,
988                                     buffer_info->page, 0, length);
989                                 /* re-use the skb, only consumed the page */
990                                 buffer_info->skb = skb;
991                         }
992                         e1000_consume_page(buffer_info, rxtop, length);
993                         goto next_desc;
994                 } else {
995                         if (rxtop) {
996                                 /* end of the chain */
997                                 skb_fill_page_desc(rxtop,
998                                     skb_shinfo(rxtop)->nr_frags,
999                                     buffer_info->page, 0, length);
1000                                 /* re-use the current skb, we only consumed the
1001                                  * page */
1002                                 buffer_info->skb = skb;
1003                                 skb = rxtop;
1004                                 rxtop = NULL;
1005                                 e1000_consume_page(buffer_info, skb, length);
1006                         } else {
1007                                 /* no chain, got EOP, this buf is the packet
1008                                  * copybreak to save the put_page/alloc_page */
1009                                 if (length <= copybreak &&
1010                                     skb_tailroom(skb) >= length) {
1011                                         u8 *vaddr;
1012                                         vaddr = kmap_atomic(buffer_info->page,
1013                                                            KM_SKB_DATA_SOFTIRQ);
1014                                         memcpy(skb_tail_pointer(skb), vaddr,
1015                                                length);
1016                                         kunmap_atomic(vaddr,
1017                                                       KM_SKB_DATA_SOFTIRQ);
1018                                         /* re-use the page, so don't erase
1019                                          * buffer_info->page */
1020                                         skb_put(skb, length);
1021                                 } else {
1022                                         skb_fill_page_desc(skb, 0,
1023                                                            buffer_info->page, 0,
1024                                                            length);
1025                                         e1000_consume_page(buffer_info, skb,
1026                                                            length);
1027                                 }
1028                         }
1029                 }
1030
1031                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1032                 e1000_rx_checksum(adapter,
1033                                   (u32)(status) |
1034                                   ((u32)(rx_desc->errors) << 24),
1035                                   le16_to_cpu(rx_desc->csum), skb);
1036
1037                 /* probably a little skewed due to removing CRC */
1038                 total_rx_bytes += skb->len;
1039                 total_rx_packets++;
1040
1041                 /* eth type trans needs skb->data to point to something */
1042                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1043                         e_err("pskb_may_pull failed.\n");
1044                         dev_kfree_skb(skb);
1045                         goto next_desc;
1046                 }
1047
1048                 e1000_receive_skb(adapter, netdev, skb, status,
1049                                   rx_desc->special);
1050
1051 next_desc:
1052                 rx_desc->status = 0;
1053
1054                 /* return some buffers to hardware, one at a time is too slow */
1055                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1056                         adapter->alloc_rx_buf(adapter, cleaned_count);
1057                         cleaned_count = 0;
1058                 }
1059
1060                 /* use prefetched values */
1061                 rx_desc = next_rxd;
1062                 buffer_info = next_buffer;
1063         }
1064         rx_ring->next_to_clean = i;
1065
1066         cleaned_count = e1000_desc_unused(rx_ring);
1067         if (cleaned_count)
1068                 adapter->alloc_rx_buf(adapter, cleaned_count);
1069
1070         adapter->total_rx_bytes += total_rx_bytes;
1071         adapter->total_rx_packets += total_rx_packets;
1072         adapter->net_stats.rx_bytes += total_rx_bytes;
1073         adapter->net_stats.rx_packets += total_rx_packets;
1074         return cleaned;
1075 }
1076
1077 /**
1078  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1079  * @adapter: board private structure
1080  **/
1081 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1082 {
1083         struct e1000_ring *rx_ring = adapter->rx_ring;
1084         struct e1000_buffer *buffer_info;
1085         struct e1000_ps_page *ps_page;
1086         struct pci_dev *pdev = adapter->pdev;
1087         unsigned int i, j;
1088
1089         /* Free all the Rx ring sk_buffs */
1090         for (i = 0; i < rx_ring->count; i++) {
1091                 buffer_info = &rx_ring->buffer_info[i];
1092                 if (buffer_info->dma) {
1093                         if (adapter->clean_rx == e1000_clean_rx_irq)
1094                                 pci_unmap_single(pdev, buffer_info->dma,
1095                                                  adapter->rx_buffer_len,
1096                                                  PCI_DMA_FROMDEVICE);
1097                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1098                                 pci_unmap_page(pdev, buffer_info->dma,
1099                                                PAGE_SIZE,
1100                                                PCI_DMA_FROMDEVICE);
1101                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1102                                 pci_unmap_single(pdev, buffer_info->dma,
1103                                                  adapter->rx_ps_bsize0,
1104                                                  PCI_DMA_FROMDEVICE);
1105                         buffer_info->dma = 0;
1106                 }
1107
1108                 if (buffer_info->page) {
1109                         put_page(buffer_info->page);
1110                         buffer_info->page = NULL;
1111                 }
1112
1113                 if (buffer_info->skb) {
1114                         dev_kfree_skb(buffer_info->skb);
1115                         buffer_info->skb = NULL;
1116                 }
1117
1118                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1119                         ps_page = &buffer_info->ps_pages[j];
1120                         if (!ps_page->page)
1121                                 break;
1122                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1123                                        PCI_DMA_FROMDEVICE);
1124                         ps_page->dma = 0;
1125                         put_page(ps_page->page);
1126                         ps_page->page = NULL;
1127                 }
1128         }
1129
1130         /* there also may be some cached data from a chained receive */
1131         if (rx_ring->rx_skb_top) {
1132                 dev_kfree_skb(rx_ring->rx_skb_top);
1133                 rx_ring->rx_skb_top = NULL;
1134         }
1135
1136         /* Zero out the descriptor ring */
1137         memset(rx_ring->desc, 0, rx_ring->size);
1138
1139         rx_ring->next_to_clean = 0;
1140         rx_ring->next_to_use = 0;
1141         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1142
1143         writel(0, adapter->hw.hw_addr + rx_ring->head);
1144         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1145 }
1146
1147 static void e1000e_downshift_workaround(struct work_struct *work)
1148 {
1149         struct e1000_adapter *adapter = container_of(work,
1150                                         struct e1000_adapter, downshift_task);
1151
1152         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1153 }
1154
1155 /**
1156  * e1000_intr_msi - Interrupt Handler
1157  * @irq: interrupt number
1158  * @data: pointer to a network interface device structure
1159  **/
1160 static irqreturn_t e1000_intr_msi(int irq, void *data)
1161 {
1162         struct net_device *netdev = data;
1163         struct e1000_adapter *adapter = netdev_priv(netdev);
1164         struct e1000_hw *hw = &adapter->hw;
1165         u32 icr = er32(ICR);
1166
1167         /*
1168          * read ICR disables interrupts using IAM
1169          */
1170
1171         if (icr & E1000_ICR_LSC) {
1172                 hw->mac.get_link_status = 1;
1173                 /*
1174                  * ICH8 workaround-- Call gig speed drop workaround on cable
1175                  * disconnect (LSC) before accessing any PHY registers
1176                  */
1177                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1178                     (!(er32(STATUS) & E1000_STATUS_LU)))
1179                         schedule_work(&adapter->downshift_task);
1180
1181                 /*
1182                  * 80003ES2LAN workaround-- For packet buffer work-around on
1183                  * link down event; disable receives here in the ISR and reset
1184                  * adapter in watchdog
1185                  */
1186                 if (netif_carrier_ok(netdev) &&
1187                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1188                         /* disable receives */
1189                         u32 rctl = er32(RCTL);
1190                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1191                         adapter->flags |= FLAG_RX_RESTART_NOW;
1192                 }
1193                 /* guard against interrupt when we're going down */
1194                 if (!test_bit(__E1000_DOWN, &adapter->state))
1195                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1196         }
1197
1198         if (napi_schedule_prep(&adapter->napi)) {
1199                 adapter->total_tx_bytes = 0;
1200                 adapter->total_tx_packets = 0;
1201                 adapter->total_rx_bytes = 0;
1202                 adapter->total_rx_packets = 0;
1203                 __napi_schedule(&adapter->napi);
1204         }
1205
1206         return IRQ_HANDLED;
1207 }
1208
1209 /**
1210  * e1000_intr - Interrupt Handler
1211  * @irq: interrupt number
1212  * @data: pointer to a network interface device structure
1213  **/
1214 static irqreturn_t e1000_intr(int irq, void *data)
1215 {
1216         struct net_device *netdev = data;
1217         struct e1000_adapter *adapter = netdev_priv(netdev);
1218         struct e1000_hw *hw = &adapter->hw;
1219         u32 rctl, icr = er32(ICR);
1220
1221         if (!icr)
1222                 return IRQ_NONE;  /* Not our interrupt */
1223
1224         /*
1225          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1226          * not set, then the adapter didn't send an interrupt
1227          */
1228         if (!(icr & E1000_ICR_INT_ASSERTED))
1229                 return IRQ_NONE;
1230
1231         /*
1232          * Interrupt Auto-Mask...upon reading ICR,
1233          * interrupts are masked.  No need for the
1234          * IMC write
1235          */
1236
1237         if (icr & E1000_ICR_LSC) {
1238                 hw->mac.get_link_status = 1;
1239                 /*
1240                  * ICH8 workaround-- Call gig speed drop workaround on cable
1241                  * disconnect (LSC) before accessing any PHY registers
1242                  */
1243                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1244                     (!(er32(STATUS) & E1000_STATUS_LU)))
1245                         schedule_work(&adapter->downshift_task);
1246
1247                 /*
1248                  * 80003ES2LAN workaround--
1249                  * For packet buffer work-around on link down event;
1250                  * disable receives here in the ISR and
1251                  * reset adapter in watchdog
1252                  */
1253                 if (netif_carrier_ok(netdev) &&
1254                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1255                         /* disable receives */
1256                         rctl = er32(RCTL);
1257                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258                         adapter->flags |= FLAG_RX_RESTART_NOW;
1259                 }
1260                 /* guard against interrupt when we're going down */
1261                 if (!test_bit(__E1000_DOWN, &adapter->state))
1262                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1263         }
1264
1265         if (napi_schedule_prep(&adapter->napi)) {
1266                 adapter->total_tx_bytes = 0;
1267                 adapter->total_tx_packets = 0;
1268                 adapter->total_rx_bytes = 0;
1269                 adapter->total_rx_packets = 0;
1270                 __napi_schedule(&adapter->napi);
1271         }
1272
1273         return IRQ_HANDLED;
1274 }
1275
1276 static irqreturn_t e1000_msix_other(int irq, void *data)
1277 {
1278         struct net_device *netdev = data;
1279         struct e1000_adapter *adapter = netdev_priv(netdev);
1280         struct e1000_hw *hw = &adapter->hw;
1281         u32 icr = er32(ICR);
1282
1283         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1284                 if (!test_bit(__E1000_DOWN, &adapter->state))
1285                         ew32(IMS, E1000_IMS_OTHER);
1286                 return IRQ_NONE;
1287         }
1288
1289         if (icr & adapter->eiac_mask)
1290                 ew32(ICS, (icr & adapter->eiac_mask));
1291
1292         if (icr & E1000_ICR_OTHER) {
1293                 if (!(icr & E1000_ICR_LSC))
1294                         goto no_link_interrupt;
1295                 hw->mac.get_link_status = 1;
1296                 /* guard against interrupt when we're going down */
1297                 if (!test_bit(__E1000_DOWN, &adapter->state))
1298                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1299         }
1300
1301 no_link_interrupt:
1302         if (!test_bit(__E1000_DOWN, &adapter->state))
1303                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1304
1305         return IRQ_HANDLED;
1306 }
1307
1308
1309 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1310 {
1311         struct net_device *netdev = data;
1312         struct e1000_adapter *adapter = netdev_priv(netdev);
1313         struct e1000_hw *hw = &adapter->hw;
1314         struct e1000_ring *tx_ring = adapter->tx_ring;
1315
1316
1317         adapter->total_tx_bytes = 0;
1318         adapter->total_tx_packets = 0;
1319
1320         if (!e1000_clean_tx_irq(adapter))
1321                 /* Ring was not completely cleaned, so fire another interrupt */
1322                 ew32(ICS, tx_ring->ims_val);
1323
1324         return IRQ_HANDLED;
1325 }
1326
1327 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1328 {
1329         struct net_device *netdev = data;
1330         struct e1000_adapter *adapter = netdev_priv(netdev);
1331
1332         /* Write the ITR value calculated at the end of the
1333          * previous interrupt.
1334          */
1335         if (adapter->rx_ring->set_itr) {
1336                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1337                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1338                 adapter->rx_ring->set_itr = 0;
1339         }
1340
1341         if (napi_schedule_prep(&adapter->napi)) {
1342                 adapter->total_rx_bytes = 0;
1343                 adapter->total_rx_packets = 0;
1344                 __napi_schedule(&adapter->napi);
1345         }
1346         return IRQ_HANDLED;
1347 }
1348
1349 /**
1350  * e1000_configure_msix - Configure MSI-X hardware
1351  *
1352  * e1000_configure_msix sets up the hardware to properly
1353  * generate MSI-X interrupts.
1354  **/
1355 static void e1000_configure_msix(struct e1000_adapter *adapter)
1356 {
1357         struct e1000_hw *hw = &adapter->hw;
1358         struct e1000_ring *rx_ring = adapter->rx_ring;
1359         struct e1000_ring *tx_ring = adapter->tx_ring;
1360         int vector = 0;
1361         u32 ctrl_ext, ivar = 0;
1362
1363         adapter->eiac_mask = 0;
1364
1365         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1366         if (hw->mac.type == e1000_82574) {
1367                 u32 rfctl = er32(RFCTL);
1368                 rfctl |= E1000_RFCTL_ACK_DIS;
1369                 ew32(RFCTL, rfctl);
1370         }
1371
1372 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1373         /* Configure Rx vector */
1374         rx_ring->ims_val = E1000_IMS_RXQ0;
1375         adapter->eiac_mask |= rx_ring->ims_val;
1376         if (rx_ring->itr_val)
1377                 writel(1000000000 / (rx_ring->itr_val * 256),
1378                        hw->hw_addr + rx_ring->itr_register);
1379         else
1380                 writel(1, hw->hw_addr + rx_ring->itr_register);
1381         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1382
1383         /* Configure Tx vector */
1384         tx_ring->ims_val = E1000_IMS_TXQ0;
1385         vector++;
1386         if (tx_ring->itr_val)
1387                 writel(1000000000 / (tx_ring->itr_val * 256),
1388                        hw->hw_addr + tx_ring->itr_register);
1389         else
1390                 writel(1, hw->hw_addr + tx_ring->itr_register);
1391         adapter->eiac_mask |= tx_ring->ims_val;
1392         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1393
1394         /* set vector for Other Causes, e.g. link changes */
1395         vector++;
1396         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1397         if (rx_ring->itr_val)
1398                 writel(1000000000 / (rx_ring->itr_val * 256),
1399                        hw->hw_addr + E1000_EITR_82574(vector));
1400         else
1401                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1402
1403         /* Cause Tx interrupts on every write back */
1404         ivar |= (1 << 31);
1405
1406         ew32(IVAR, ivar);
1407
1408         /* enable MSI-X PBA support */
1409         ctrl_ext = er32(CTRL_EXT);
1410         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1411
1412         /* Auto-Mask Other interrupts upon ICR read */
1413 #define E1000_EIAC_MASK_82574   0x01F00000
1414         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1415         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1416         ew32(CTRL_EXT, ctrl_ext);
1417         e1e_flush();
1418 }
1419
1420 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1421 {
1422         if (adapter->msix_entries) {
1423                 pci_disable_msix(adapter->pdev);
1424                 kfree(adapter->msix_entries);
1425                 adapter->msix_entries = NULL;
1426         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1427                 pci_disable_msi(adapter->pdev);
1428                 adapter->flags &= ~FLAG_MSI_ENABLED;
1429         }
1430
1431         return;
1432 }
1433
1434 /**
1435  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1436  *
1437  * Attempt to configure interrupts using the best available
1438  * capabilities of the hardware and kernel.
1439  **/
1440 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1441 {
1442         int err;
1443         int numvecs, i;
1444
1445
1446         switch (adapter->int_mode) {
1447         case E1000E_INT_MODE_MSIX:
1448                 if (adapter->flags & FLAG_HAS_MSIX) {
1449                         numvecs = 3; /* RxQ0, TxQ0 and other */
1450                         adapter->msix_entries = kcalloc(numvecs,
1451                                                       sizeof(struct msix_entry),
1452                                                       GFP_KERNEL);
1453                         if (adapter->msix_entries) {
1454                                 for (i = 0; i < numvecs; i++)
1455                                         adapter->msix_entries[i].entry = i;
1456
1457                                 err = pci_enable_msix(adapter->pdev,
1458                                                       adapter->msix_entries,
1459                                                       numvecs);
1460                                 if (err == 0)
1461                                         return;
1462                         }
1463                         /* MSI-X failed, so fall through and try MSI */
1464                         e_err("Failed to initialize MSI-X interrupts.  "
1465                               "Falling back to MSI interrupts.\n");
1466                         e1000e_reset_interrupt_capability(adapter);
1467                 }
1468                 adapter->int_mode = E1000E_INT_MODE_MSI;
1469                 /* Fall through */
1470         case E1000E_INT_MODE_MSI:
1471                 if (!pci_enable_msi(adapter->pdev)) {
1472                         adapter->flags |= FLAG_MSI_ENABLED;
1473                 } else {
1474                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1475                         e_err("Failed to initialize MSI interrupts.  Falling "
1476                               "back to legacy interrupts.\n");
1477                 }
1478                 /* Fall through */
1479         case E1000E_INT_MODE_LEGACY:
1480                 /* Don't do anything; this is the system default */
1481                 break;
1482         }
1483
1484         return;
1485 }
1486
1487 /**
1488  * e1000_request_msix - Initialize MSI-X interrupts
1489  *
1490  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1491  * kernel.
1492  **/
1493 static int e1000_request_msix(struct e1000_adapter *adapter)
1494 {
1495         struct net_device *netdev = adapter->netdev;
1496         int err = 0, vector = 0;
1497
1498         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1499                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1500         else
1501                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1502         err = request_irq(adapter->msix_entries[vector].vector,
1503                           &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1504                           netdev);
1505         if (err)
1506                 goto out;
1507         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1508         adapter->rx_ring->itr_val = adapter->itr;
1509         vector++;
1510
1511         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1512                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1513         else
1514                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1515         err = request_irq(adapter->msix_entries[vector].vector,
1516                           &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1517                           netdev);
1518         if (err)
1519                 goto out;
1520         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1521         adapter->tx_ring->itr_val = adapter->itr;
1522         vector++;
1523
1524         err = request_irq(adapter->msix_entries[vector].vector,
1525                           &e1000_msix_other, 0, netdev->name, netdev);
1526         if (err)
1527                 goto out;
1528
1529         e1000_configure_msix(adapter);
1530         return 0;
1531 out:
1532         return err;
1533 }
1534
1535 /**
1536  * e1000_request_irq - initialize interrupts
1537  *
1538  * Attempts to configure interrupts using the best available
1539  * capabilities of the hardware and kernel.
1540  **/
1541 static int e1000_request_irq(struct e1000_adapter *adapter)
1542 {
1543         struct net_device *netdev = adapter->netdev;
1544         int err;
1545
1546         if (adapter->msix_entries) {
1547                 err = e1000_request_msix(adapter);
1548                 if (!err)
1549                         return err;
1550                 /* fall back to MSI */
1551                 e1000e_reset_interrupt_capability(adapter);
1552                 adapter->int_mode = E1000E_INT_MODE_MSI;
1553                 e1000e_set_interrupt_capability(adapter);
1554         }
1555         if (adapter->flags & FLAG_MSI_ENABLED) {
1556                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1557                                   netdev->name, netdev);
1558                 if (!err)
1559                         return err;
1560
1561                 /* fall back to legacy interrupt */
1562                 e1000e_reset_interrupt_capability(adapter);
1563                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1564         }
1565
1566         err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1567                           netdev->name, netdev);
1568         if (err)
1569                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1570
1571         return err;
1572 }
1573
1574 static void e1000_free_irq(struct e1000_adapter *adapter)
1575 {
1576         struct net_device *netdev = adapter->netdev;
1577
1578         if (adapter->msix_entries) {
1579                 int vector = 0;
1580
1581                 free_irq(adapter->msix_entries[vector].vector, netdev);
1582                 vector++;
1583
1584                 free_irq(adapter->msix_entries[vector].vector, netdev);
1585                 vector++;
1586
1587                 /* Other Causes interrupt vector */
1588                 free_irq(adapter->msix_entries[vector].vector, netdev);
1589                 return;
1590         }
1591
1592         free_irq(adapter->pdev->irq, netdev);
1593 }
1594
1595 /**
1596  * e1000_irq_disable - Mask off interrupt generation on the NIC
1597  **/
1598 static void e1000_irq_disable(struct e1000_adapter *adapter)
1599 {
1600         struct e1000_hw *hw = &adapter->hw;
1601
1602         ew32(IMC, ~0);
1603         if (adapter->msix_entries)
1604                 ew32(EIAC_82574, 0);
1605         e1e_flush();
1606         synchronize_irq(adapter->pdev->irq);
1607 }
1608
1609 /**
1610  * e1000_irq_enable - Enable default interrupt generation settings
1611  **/
1612 static void e1000_irq_enable(struct e1000_adapter *adapter)
1613 {
1614         struct e1000_hw *hw = &adapter->hw;
1615
1616         if (adapter->msix_entries) {
1617                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1618                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1619         } else {
1620                 ew32(IMS, IMS_ENABLE_MASK);
1621         }
1622         e1e_flush();
1623 }
1624
1625 /**
1626  * e1000_get_hw_control - get control of the h/w from f/w
1627  * @adapter: address of board private structure
1628  *
1629  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1630  * For ASF and Pass Through versions of f/w this means that
1631  * the driver is loaded. For AMT version (only with 82573)
1632  * of the f/w this means that the network i/f is open.
1633  **/
1634 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1635 {
1636         struct e1000_hw *hw = &adapter->hw;
1637         u32 ctrl_ext;
1638         u32 swsm;
1639
1640         /* Let firmware know the driver has taken over */
1641         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1642                 swsm = er32(SWSM);
1643                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1644         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1645                 ctrl_ext = er32(CTRL_EXT);
1646                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1647         }
1648 }
1649
1650 /**
1651  * e1000_release_hw_control - release control of the h/w to f/w
1652  * @adapter: address of board private structure
1653  *
1654  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1655  * For ASF and Pass Through versions of f/w this means that the
1656  * driver is no longer loaded. For AMT version (only with 82573) i
1657  * of the f/w this means that the network i/f is closed.
1658  *
1659  **/
1660 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1661 {
1662         struct e1000_hw *hw = &adapter->hw;
1663         u32 ctrl_ext;
1664         u32 swsm;
1665
1666         /* Let firmware taken over control of h/w */
1667         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1668                 swsm = er32(SWSM);
1669                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1670         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1671                 ctrl_ext = er32(CTRL_EXT);
1672                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1673         }
1674 }
1675
1676 /**
1677  * @e1000_alloc_ring - allocate memory for a ring structure
1678  **/
1679 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1680                                 struct e1000_ring *ring)
1681 {
1682         struct pci_dev *pdev = adapter->pdev;
1683
1684         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1685                                         GFP_KERNEL);
1686         if (!ring->desc)
1687                 return -ENOMEM;
1688
1689         return 0;
1690 }
1691
1692 /**
1693  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1694  * @adapter: board private structure
1695  *
1696  * Return 0 on success, negative on failure
1697  **/
1698 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1699 {
1700         struct e1000_ring *tx_ring = adapter->tx_ring;
1701         int err = -ENOMEM, size;
1702
1703         size = sizeof(struct e1000_buffer) * tx_ring->count;
1704         tx_ring->buffer_info = vmalloc(size);
1705         if (!tx_ring->buffer_info)
1706                 goto err;
1707         memset(tx_ring->buffer_info, 0, size);
1708
1709         /* round up to nearest 4K */
1710         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1711         tx_ring->size = ALIGN(tx_ring->size, 4096);
1712
1713         err = e1000_alloc_ring_dma(adapter, tx_ring);
1714         if (err)
1715                 goto err;
1716
1717         tx_ring->next_to_use = 0;
1718         tx_ring->next_to_clean = 0;
1719
1720         return 0;
1721 err:
1722         vfree(tx_ring->buffer_info);
1723         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1724         return err;
1725 }
1726
1727 /**
1728  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1729  * @adapter: board private structure
1730  *
1731  * Returns 0 on success, negative on failure
1732  **/
1733 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1734 {
1735         struct e1000_ring *rx_ring = adapter->rx_ring;
1736         struct e1000_buffer *buffer_info;
1737         int i, size, desc_len, err = -ENOMEM;
1738
1739         size = sizeof(struct e1000_buffer) * rx_ring->count;
1740         rx_ring->buffer_info = vmalloc(size);
1741         if (!rx_ring->buffer_info)
1742                 goto err;
1743         memset(rx_ring->buffer_info, 0, size);
1744
1745         for (i = 0; i < rx_ring->count; i++) {
1746                 buffer_info = &rx_ring->buffer_info[i];
1747                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1748                                                 sizeof(struct e1000_ps_page),
1749                                                 GFP_KERNEL);
1750                 if (!buffer_info->ps_pages)
1751                         goto err_pages;
1752         }
1753
1754         desc_len = sizeof(union e1000_rx_desc_packet_split);
1755
1756         /* Round up to nearest 4K */
1757         rx_ring->size = rx_ring->count * desc_len;
1758         rx_ring->size = ALIGN(rx_ring->size, 4096);
1759
1760         err = e1000_alloc_ring_dma(adapter, rx_ring);
1761         if (err)
1762                 goto err_pages;
1763
1764         rx_ring->next_to_clean = 0;
1765         rx_ring->next_to_use = 0;
1766         rx_ring->rx_skb_top = NULL;
1767
1768         return 0;
1769
1770 err_pages:
1771         for (i = 0; i < rx_ring->count; i++) {
1772                 buffer_info = &rx_ring->buffer_info[i];
1773                 kfree(buffer_info->ps_pages);
1774         }
1775 err:
1776         vfree(rx_ring->buffer_info);
1777         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1778         return err;
1779 }
1780
1781 /**
1782  * e1000_clean_tx_ring - Free Tx Buffers
1783  * @adapter: board private structure
1784  **/
1785 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1786 {
1787         struct e1000_ring *tx_ring = adapter->tx_ring;
1788         struct e1000_buffer *buffer_info;
1789         unsigned long size;
1790         unsigned int i;
1791
1792         for (i = 0; i < tx_ring->count; i++) {
1793                 buffer_info = &tx_ring->buffer_info[i];
1794                 e1000_put_txbuf(adapter, buffer_info);
1795         }
1796
1797         size = sizeof(struct e1000_buffer) * tx_ring->count;
1798         memset(tx_ring->buffer_info, 0, size);
1799
1800         memset(tx_ring->desc, 0, tx_ring->size);
1801
1802         tx_ring->next_to_use = 0;
1803         tx_ring->next_to_clean = 0;
1804
1805         writel(0, adapter->hw.hw_addr + tx_ring->head);
1806         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1807 }
1808
1809 /**
1810  * e1000e_free_tx_resources - Free Tx Resources per Queue
1811  * @adapter: board private structure
1812  *
1813  * Free all transmit software resources
1814  **/
1815 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1816 {
1817         struct pci_dev *pdev = adapter->pdev;
1818         struct e1000_ring *tx_ring = adapter->tx_ring;
1819
1820         e1000_clean_tx_ring(adapter);
1821
1822         vfree(tx_ring->buffer_info);
1823         tx_ring->buffer_info = NULL;
1824
1825         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1826                           tx_ring->dma);
1827         tx_ring->desc = NULL;
1828 }
1829
1830 /**
1831  * e1000e_free_rx_resources - Free Rx Resources
1832  * @adapter: board private structure
1833  *
1834  * Free all receive software resources
1835  **/
1836
1837 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1838 {
1839         struct pci_dev *pdev = adapter->pdev;
1840         struct e1000_ring *rx_ring = adapter->rx_ring;
1841         int i;
1842
1843         e1000_clean_rx_ring(adapter);
1844
1845         for (i = 0; i < rx_ring->count; i++) {
1846                 kfree(rx_ring->buffer_info[i].ps_pages);
1847         }
1848
1849         vfree(rx_ring->buffer_info);
1850         rx_ring->buffer_info = NULL;
1851
1852         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1853                           rx_ring->dma);
1854         rx_ring->desc = NULL;
1855 }
1856
1857 /**
1858  * e1000_update_itr - update the dynamic ITR value based on statistics
1859  * @adapter: pointer to adapter
1860  * @itr_setting: current adapter->itr
1861  * @packets: the number of packets during this measurement interval
1862  * @bytes: the number of bytes during this measurement interval
1863  *
1864  *      Stores a new ITR value based on packets and byte
1865  *      counts during the last interrupt.  The advantage of per interrupt
1866  *      computation is faster updates and more accurate ITR for the current
1867  *      traffic pattern.  Constants in this function were computed
1868  *      based on theoretical maximum wire speed and thresholds were set based
1869  *      on testing data as well as attempting to minimize response time
1870  *      while increasing bulk throughput.  This functionality is controlled
1871  *      by the InterruptThrottleRate module parameter.
1872  **/
1873 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1874                                      u16 itr_setting, int packets,
1875                                      int bytes)
1876 {
1877         unsigned int retval = itr_setting;
1878
1879         if (packets == 0)
1880                 goto update_itr_done;
1881
1882         switch (itr_setting) {
1883         case lowest_latency:
1884                 /* handle TSO and jumbo frames */
1885                 if (bytes/packets > 8000)
1886                         retval = bulk_latency;
1887                 else if ((packets < 5) && (bytes > 512)) {
1888                         retval = low_latency;
1889                 }
1890                 break;
1891         case low_latency:  /* 50 usec aka 20000 ints/s */
1892                 if (bytes > 10000) {
1893                         /* this if handles the TSO accounting */
1894                         if (bytes/packets > 8000) {
1895                                 retval = bulk_latency;
1896                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1897                                 retval = bulk_latency;
1898                         } else if ((packets > 35)) {
1899                                 retval = lowest_latency;
1900                         }
1901                 } else if (bytes/packets > 2000) {
1902                         retval = bulk_latency;
1903                 } else if (packets <= 2 && bytes < 512) {
1904                         retval = lowest_latency;
1905                 }
1906                 break;
1907         case bulk_latency: /* 250 usec aka 4000 ints/s */
1908                 if (bytes > 25000) {
1909                         if (packets > 35) {
1910                                 retval = low_latency;
1911                         }
1912                 } else if (bytes < 6000) {
1913                         retval = low_latency;
1914                 }
1915                 break;
1916         }
1917
1918 update_itr_done:
1919         return retval;
1920 }
1921
1922 static void e1000_set_itr(struct e1000_adapter *adapter)
1923 {
1924         struct e1000_hw *hw = &adapter->hw;
1925         u16 current_itr;
1926         u32 new_itr = adapter->itr;
1927
1928         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1929         if (adapter->link_speed != SPEED_1000) {
1930                 current_itr = 0;
1931                 new_itr = 4000;
1932                 goto set_itr_now;
1933         }
1934
1935         adapter->tx_itr = e1000_update_itr(adapter,
1936                                     adapter->tx_itr,
1937                                     adapter->total_tx_packets,
1938                                     adapter->total_tx_bytes);
1939         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1940         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1941                 adapter->tx_itr = low_latency;
1942
1943         adapter->rx_itr = e1000_update_itr(adapter,
1944                                     adapter->rx_itr,
1945                                     adapter->total_rx_packets,
1946                                     adapter->total_rx_bytes);
1947         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1948         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1949                 adapter->rx_itr = low_latency;
1950
1951         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1952
1953         switch (current_itr) {
1954         /* counts and packets in update_itr are dependent on these numbers */
1955         case lowest_latency:
1956                 new_itr = 70000;
1957                 break;
1958         case low_latency:
1959                 new_itr = 20000; /* aka hwitr = ~200 */
1960                 break;
1961         case bulk_latency:
1962                 new_itr = 4000;
1963                 break;
1964         default:
1965                 break;
1966         }
1967
1968 set_itr_now:
1969         if (new_itr != adapter->itr) {
1970                 /*
1971                  * this attempts to bias the interrupt rate towards Bulk
1972                  * by adding intermediate steps when interrupt rate is
1973                  * increasing
1974                  */
1975                 new_itr = new_itr > adapter->itr ?
1976                              min(adapter->itr + (new_itr >> 2), new_itr) :
1977                              new_itr;
1978                 adapter->itr = new_itr;
1979                 adapter->rx_ring->itr_val = new_itr;
1980                 if (adapter->msix_entries)
1981                         adapter->rx_ring->set_itr = 1;
1982                 else
1983                         ew32(ITR, 1000000000 / (new_itr * 256));
1984         }
1985 }
1986
1987 /**
1988  * e1000_alloc_queues - Allocate memory for all rings
1989  * @adapter: board private structure to initialize
1990  **/
1991 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1992 {
1993         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1994         if (!adapter->tx_ring)
1995                 goto err;
1996
1997         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1998         if (!adapter->rx_ring)
1999                 goto err;
2000
2001         return 0;
2002 err:
2003         e_err("Unable to allocate memory for queues\n");
2004         kfree(adapter->rx_ring);
2005         kfree(adapter->tx_ring);
2006         return -ENOMEM;
2007 }
2008
2009 /**
2010  * e1000_clean - NAPI Rx polling callback
2011  * @napi: struct associated with this polling callback
2012  * @budget: amount of packets driver is allowed to process this poll
2013  **/
2014 static int e1000_clean(struct napi_struct *napi, int budget)
2015 {
2016         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2017         struct e1000_hw *hw = &adapter->hw;
2018         struct net_device *poll_dev = adapter->netdev;
2019         int tx_cleaned = 1, work_done = 0;
2020
2021         adapter = netdev_priv(poll_dev);
2022
2023         if (adapter->msix_entries &&
2024             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2025                 goto clean_rx;
2026
2027         tx_cleaned = e1000_clean_tx_irq(adapter);
2028
2029 clean_rx:
2030         adapter->clean_rx(adapter, &work_done, budget);
2031
2032         if (!tx_cleaned)
2033                 work_done = budget;
2034
2035         /* If budget not fully consumed, exit the polling mode */
2036         if (work_done < budget) {
2037                 if (adapter->itr_setting & 3)
2038                         e1000_set_itr(adapter);
2039                 napi_complete(napi);
2040                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2041                         if (adapter->msix_entries)
2042                                 ew32(IMS, adapter->rx_ring->ims_val);
2043                         else
2044                                 e1000_irq_enable(adapter);
2045                 }
2046         }
2047
2048         return work_done;
2049 }
2050
2051 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2052 {
2053         struct e1000_adapter *adapter = netdev_priv(netdev);
2054         struct e1000_hw *hw = &adapter->hw;
2055         u32 vfta, index;
2056
2057         /* don't update vlan cookie if already programmed */
2058         if ((adapter->hw.mng_cookie.status &
2059              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2060             (vid == adapter->mng_vlan_id))
2061                 return;
2062         /* add VID to filter table */
2063         index = (vid >> 5) & 0x7F;
2064         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2065         vfta |= (1 << (vid & 0x1F));
2066         e1000e_write_vfta(hw, index, vfta);
2067 }
2068
2069 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2070 {
2071         struct e1000_adapter *adapter = netdev_priv(netdev);
2072         struct e1000_hw *hw = &adapter->hw;
2073         u32 vfta, index;
2074
2075         if (!test_bit(__E1000_DOWN, &adapter->state))
2076                 e1000_irq_disable(adapter);
2077         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2078
2079         if (!test_bit(__E1000_DOWN, &adapter->state))
2080                 e1000_irq_enable(adapter);
2081
2082         if ((adapter->hw.mng_cookie.status &
2083              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2084             (vid == adapter->mng_vlan_id)) {
2085                 /* release control to f/w */
2086                 e1000_release_hw_control(adapter);
2087                 return;
2088         }
2089
2090         /* remove VID from filter table */
2091         index = (vid >> 5) & 0x7F;
2092         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2093         vfta &= ~(1 << (vid & 0x1F));
2094         e1000e_write_vfta(hw, index, vfta);
2095 }
2096
2097 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2098 {
2099         struct net_device *netdev = adapter->netdev;
2100         u16 vid = adapter->hw.mng_cookie.vlan_id;
2101         u16 old_vid = adapter->mng_vlan_id;
2102
2103         if (!adapter->vlgrp)
2104                 return;
2105
2106         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2107                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2108                 if (adapter->hw.mng_cookie.status &
2109                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2110                         e1000_vlan_rx_add_vid(netdev, vid);
2111                         adapter->mng_vlan_id = vid;
2112                 }
2113
2114                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2115                                 (vid != old_vid) &&
2116                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2117                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2118         } else {
2119                 adapter->mng_vlan_id = vid;
2120         }
2121 }
2122
2123
2124 static void e1000_vlan_rx_register(struct net_device *netdev,
2125                                    struct vlan_group *grp)
2126 {
2127         struct e1000_adapter *adapter = netdev_priv(netdev);
2128         struct e1000_hw *hw = &adapter->hw;
2129         u32 ctrl, rctl;
2130
2131         if (!test_bit(__E1000_DOWN, &adapter->state))
2132                 e1000_irq_disable(adapter);
2133         adapter->vlgrp = grp;
2134
2135         if (grp) {
2136                 /* enable VLAN tag insert/strip */
2137                 ctrl = er32(CTRL);
2138                 ctrl |= E1000_CTRL_VME;
2139                 ew32(CTRL, ctrl);
2140
2141                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2142                         /* enable VLAN receive filtering */
2143                         rctl = er32(RCTL);
2144                         rctl &= ~E1000_RCTL_CFIEN;
2145                         ew32(RCTL, rctl);
2146                         e1000_update_mng_vlan(adapter);
2147                 }
2148         } else {
2149                 /* disable VLAN tag insert/strip */
2150                 ctrl = er32(CTRL);
2151                 ctrl &= ~E1000_CTRL_VME;
2152                 ew32(CTRL, ctrl);
2153
2154                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2155                         if (adapter->mng_vlan_id !=
2156                             (u16)E1000_MNG_VLAN_NONE) {
2157                                 e1000_vlan_rx_kill_vid(netdev,
2158                                                        adapter->mng_vlan_id);
2159                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2160                         }
2161                 }
2162         }
2163
2164         if (!test_bit(__E1000_DOWN, &adapter->state))
2165                 e1000_irq_enable(adapter);
2166 }
2167
2168 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2169 {
2170         u16 vid;
2171
2172         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2173
2174         if (!adapter->vlgrp)
2175                 return;
2176
2177         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2178                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2179                         continue;
2180                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2181         }
2182 }
2183
2184 static void e1000_init_manageability(struct e1000_adapter *adapter)
2185 {
2186         struct e1000_hw *hw = &adapter->hw;
2187         u32 manc, manc2h;
2188
2189         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2190                 return;
2191
2192         manc = er32(MANC);
2193
2194         /*
2195          * enable receiving management packets to the host. this will probably
2196          * generate destination unreachable messages from the host OS, but
2197          * the packets will be handled on SMBUS
2198          */
2199         manc |= E1000_MANC_EN_MNG2HOST;
2200         manc2h = er32(MANC2H);
2201 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2202 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2203         manc2h |= E1000_MNG2HOST_PORT_623;
2204         manc2h |= E1000_MNG2HOST_PORT_664;
2205         ew32(MANC2H, manc2h);
2206         ew32(MANC, manc);
2207 }
2208
2209 /**
2210  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2211  * @adapter: board private structure
2212  *
2213  * Configure the Tx unit of the MAC after a reset.
2214  **/
2215 static void e1000_configure_tx(struct e1000_adapter *adapter)
2216 {
2217         struct e1000_hw *hw = &adapter->hw;
2218         struct e1000_ring *tx_ring = adapter->tx_ring;
2219         u64 tdba;
2220         u32 tdlen, tctl, tipg, tarc;
2221         u32 ipgr1, ipgr2;
2222
2223         /* Setup the HW Tx Head and Tail descriptor pointers */
2224         tdba = tx_ring->dma;
2225         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2226         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2227         ew32(TDBAH, (tdba >> 32));
2228         ew32(TDLEN, tdlen);
2229         ew32(TDH, 0);
2230         ew32(TDT, 0);
2231         tx_ring->head = E1000_TDH;
2232         tx_ring->tail = E1000_TDT;
2233
2234         /* Set the default values for the Tx Inter Packet Gap timer */
2235         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2236         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2237         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2238
2239         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2240                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2241
2242         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2243         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2244         ew32(TIPG, tipg);
2245
2246         /* Set the Tx Interrupt Delay register */
2247         ew32(TIDV, adapter->tx_int_delay);
2248         /* Tx irq moderation */
2249         ew32(TADV, adapter->tx_abs_int_delay);
2250
2251         /* Program the Transmit Control Register */
2252         tctl = er32(TCTL);
2253         tctl &= ~E1000_TCTL_CT;
2254         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2255                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2256
2257         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2258                 tarc = er32(TARC(0));
2259                 /*
2260                  * set the speed mode bit, we'll clear it if we're not at
2261                  * gigabit link later
2262                  */
2263 #define SPEED_MODE_BIT (1 << 21)
2264                 tarc |= SPEED_MODE_BIT;
2265                 ew32(TARC(0), tarc);
2266         }
2267
2268         /* errata: program both queues to unweighted RR */
2269         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2270                 tarc = er32(TARC(0));
2271                 tarc |= 1;
2272                 ew32(TARC(0), tarc);
2273                 tarc = er32(TARC(1));
2274                 tarc |= 1;
2275                 ew32(TARC(1), tarc);
2276         }
2277
2278         /* Setup Transmit Descriptor Settings for eop descriptor */
2279         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2280
2281         /* only set IDE if we are delaying interrupts using the timers */
2282         if (adapter->tx_int_delay)
2283                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2284
2285         /* enable Report Status bit */
2286         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2287
2288         ew32(TCTL, tctl);
2289
2290         e1000e_config_collision_dist(hw);
2291
2292         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2293 }
2294
2295 /**
2296  * e1000_setup_rctl - configure the receive control registers
2297  * @adapter: Board private structure
2298  **/
2299 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2300                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2301 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2302 {
2303         struct e1000_hw *hw = &adapter->hw;
2304         u32 rctl, rfctl;
2305         u32 psrctl = 0;
2306         u32 pages = 0;
2307
2308         /* Program MC offset vector base */
2309         rctl = er32(RCTL);
2310         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2311         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2312                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2313                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2314
2315         /* Do not Store bad packets */
2316         rctl &= ~E1000_RCTL_SBP;
2317
2318         /* Enable Long Packet receive */
2319         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2320                 rctl &= ~E1000_RCTL_LPE;
2321         else
2322                 rctl |= E1000_RCTL_LPE;
2323
2324         /* Some systems expect that the CRC is included in SMBUS traffic. The
2325          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2326          * host memory when this is enabled
2327          */
2328         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2329                 rctl |= E1000_RCTL_SECRC;
2330
2331         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2332         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2333                 u16 phy_data;
2334
2335                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2336                 phy_data &= 0xfff8;
2337                 phy_data |= (1 << 2);
2338                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2339
2340                 e1e_rphy(hw, 22, &phy_data);
2341                 phy_data &= 0x0fff;
2342                 phy_data |= (1 << 14);
2343                 e1e_wphy(hw, 0x10, 0x2823);
2344                 e1e_wphy(hw, 0x11, 0x0003);
2345                 e1e_wphy(hw, 22, phy_data);
2346         }
2347
2348         /* Setup buffer sizes */
2349         rctl &= ~E1000_RCTL_SZ_4096;
2350         rctl |= E1000_RCTL_BSEX;
2351         switch (adapter->rx_buffer_len) {
2352         case 2048:
2353         default:
2354                 rctl |= E1000_RCTL_SZ_2048;
2355                 rctl &= ~E1000_RCTL_BSEX;
2356                 break;
2357         case 4096:
2358                 rctl |= E1000_RCTL_SZ_4096;
2359                 break;
2360         case 8192:
2361                 rctl |= E1000_RCTL_SZ_8192;
2362                 break;
2363         case 16384:
2364                 rctl |= E1000_RCTL_SZ_16384;
2365                 break;
2366         }
2367
2368         /*
2369          * 82571 and greater support packet-split where the protocol
2370          * header is placed in skb->data and the packet data is
2371          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2372          * In the case of a non-split, skb->data is linearly filled,
2373          * followed by the page buffers.  Therefore, skb->data is
2374          * sized to hold the largest protocol header.
2375          *
2376          * allocations using alloc_page take too long for regular MTU
2377          * so only enable packet split for jumbo frames
2378          *
2379          * Using pages when the page size is greater than 16k wastes
2380          * a lot of memory, since we allocate 3 pages at all times
2381          * per packet.
2382          */
2383         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2384         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2385             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2386                 adapter->rx_ps_pages = pages;
2387         else
2388                 adapter->rx_ps_pages = 0;
2389
2390         if (adapter->rx_ps_pages) {
2391                 /* Configure extra packet-split registers */
2392                 rfctl = er32(RFCTL);
2393                 rfctl |= E1000_RFCTL_EXTEN;
2394                 /*
2395                  * disable packet split support for IPv6 extension headers,
2396                  * because some malformed IPv6 headers can hang the Rx
2397                  */
2398                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2399                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2400
2401                 ew32(RFCTL, rfctl);
2402
2403                 /* Enable Packet split descriptors */
2404                 rctl |= E1000_RCTL_DTYP_PS;
2405
2406                 psrctl |= adapter->rx_ps_bsize0 >>
2407                         E1000_PSRCTL_BSIZE0_SHIFT;
2408
2409                 switch (adapter->rx_ps_pages) {
2410                 case 3:
2411                         psrctl |= PAGE_SIZE <<
2412                                 E1000_PSRCTL_BSIZE3_SHIFT;
2413                 case 2:
2414                         psrctl |= PAGE_SIZE <<
2415                                 E1000_PSRCTL_BSIZE2_SHIFT;
2416                 case 1:
2417                         psrctl |= PAGE_SIZE >>
2418                                 E1000_PSRCTL_BSIZE1_SHIFT;
2419                         break;
2420                 }
2421
2422                 ew32(PSRCTL, psrctl);
2423         }
2424
2425         ew32(RCTL, rctl);
2426         /* just started the receive unit, no need to restart */
2427         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2428 }
2429
2430 /**
2431  * e1000_configure_rx - Configure Receive Unit after Reset
2432  * @adapter: board private structure
2433  *
2434  * Configure the Rx unit of the MAC after a reset.
2435  **/
2436 static void e1000_configure_rx(struct e1000_adapter *adapter)
2437 {
2438         struct e1000_hw *hw = &adapter->hw;
2439         struct e1000_ring *rx_ring = adapter->rx_ring;
2440         u64 rdba;
2441         u32 rdlen, rctl, rxcsum, ctrl_ext;
2442
2443         if (adapter->rx_ps_pages) {
2444                 /* this is a 32 byte descriptor */
2445                 rdlen = rx_ring->count *
2446                         sizeof(union e1000_rx_desc_packet_split);
2447                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2448                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2449         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2450                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2451                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2452                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2453         } else {
2454                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2455                 adapter->clean_rx = e1000_clean_rx_irq;
2456                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2457         }
2458
2459         /* disable receives while setting up the descriptors */
2460         rctl = er32(RCTL);
2461         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2462         e1e_flush();
2463         msleep(10);
2464
2465         /* set the Receive Delay Timer Register */
2466         ew32(RDTR, adapter->rx_int_delay);
2467
2468         /* irq moderation */
2469         ew32(RADV, adapter->rx_abs_int_delay);
2470         if (adapter->itr_setting != 0)
2471                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2472
2473         ctrl_ext = er32(CTRL_EXT);
2474         /* Reset delay timers after every interrupt */
2475         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2476         /* Auto-Mask interrupts upon ICR access */
2477         ctrl_ext |= E1000_CTRL_EXT_IAME;
2478         ew32(IAM, 0xffffffff);
2479         ew32(CTRL_EXT, ctrl_ext);
2480         e1e_flush();
2481
2482         /*
2483          * Setup the HW Rx Head and Tail Descriptor Pointers and
2484          * the Base and Length of the Rx Descriptor Ring
2485          */
2486         rdba = rx_ring->dma;
2487         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2488         ew32(RDBAH, (rdba >> 32));
2489         ew32(RDLEN, rdlen);
2490         ew32(RDH, 0);
2491         ew32(RDT, 0);
2492         rx_ring->head = E1000_RDH;
2493         rx_ring->tail = E1000_RDT;
2494
2495         /* Enable Receive Checksum Offload for TCP and UDP */
2496         rxcsum = er32(RXCSUM);
2497         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2498                 rxcsum |= E1000_RXCSUM_TUOFL;
2499
2500                 /*
2501                  * IPv4 payload checksum for UDP fragments must be
2502                  * used in conjunction with packet-split.
2503                  */
2504                 if (adapter->rx_ps_pages)
2505                         rxcsum |= E1000_RXCSUM_IPPCSE;
2506         } else {
2507                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2508                 /* no need to clear IPPCSE as it defaults to 0 */
2509         }
2510         ew32(RXCSUM, rxcsum);
2511
2512         /*
2513          * Enable early receives on supported devices, only takes effect when
2514          * packet size is equal or larger than the specified value (in 8 byte
2515          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2516          */
2517         if ((adapter->flags & FLAG_HAS_ERT) &&
2518             (adapter->netdev->mtu > ETH_DATA_LEN)) {
2519                 u32 rxdctl = er32(RXDCTL(0));
2520                 ew32(RXDCTL(0), rxdctl | 0x3);
2521                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2522                 /*
2523                  * With jumbo frames and early-receive enabled, excessive
2524                  * C4->C2 latencies result in dropped transactions.
2525                  */
2526                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2527                                           e1000e_driver_name, 55);
2528         } else {
2529                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2530                                           e1000e_driver_name,
2531                                           PM_QOS_DEFAULT_VALUE);
2532         }
2533
2534         /* Enable Receives */
2535         ew32(RCTL, rctl);
2536 }
2537
2538 /**
2539  *  e1000_update_mc_addr_list - Update Multicast addresses
2540  *  @hw: pointer to the HW structure
2541  *  @mc_addr_list: array of multicast addresses to program
2542  *  @mc_addr_count: number of multicast addresses to program
2543  *  @rar_used_count: the first RAR register free to program
2544  *  @rar_count: total number of supported Receive Address Registers
2545  *
2546  *  Updates the Receive Address Registers and Multicast Table Array.
2547  *  The caller must have a packed mc_addr_list of multicast addresses.
2548  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2549  *  unless there are workarounds that change this.  Currently no func pointer
2550  *  exists and all implementations are handled in the generic version of this
2551  *  function.
2552  **/
2553 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2554                                       u32 mc_addr_count, u32 rar_used_count,
2555                                       u32 rar_count)
2556 {
2557         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2558                                         rar_used_count, rar_count);
2559 }
2560
2561 /**
2562  * e1000_set_multi - Multicast and Promiscuous mode set
2563  * @netdev: network interface device structure
2564  *
2565  * The set_multi entry point is called whenever the multicast address
2566  * list or the network interface flags are updated.  This routine is
2567  * responsible for configuring the hardware for proper multicast,
2568  * promiscuous mode, and all-multi behavior.
2569  **/
2570 static void e1000_set_multi(struct net_device *netdev)
2571 {
2572         struct e1000_adapter *adapter = netdev_priv(netdev);
2573         struct e1000_hw *hw = &adapter->hw;
2574         struct e1000_mac_info *mac = &hw->mac;
2575         struct dev_mc_list *mc_ptr;
2576         u8  *mta_list;
2577         u32 rctl;
2578         int i;
2579
2580         /* Check for Promiscuous and All Multicast modes */
2581
2582         rctl = er32(RCTL);
2583
2584         if (netdev->flags & IFF_PROMISC) {
2585                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2586                 rctl &= ~E1000_RCTL_VFE;
2587         } else {
2588                 if (netdev->flags & IFF_ALLMULTI) {
2589                         rctl |= E1000_RCTL_MPE;
2590                         rctl &= ~E1000_RCTL_UPE;
2591                 } else {
2592                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2593                 }
2594                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2595                         rctl |= E1000_RCTL_VFE;
2596         }
2597
2598         ew32(RCTL, rctl);
2599
2600         if (netdev->mc_count) {
2601                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2602                 if (!mta_list)
2603                         return;
2604
2605                 /* prepare a packed array of only addresses. */
2606                 mc_ptr = netdev->mc_list;
2607
2608                 for (i = 0; i < netdev->mc_count; i++) {
2609                         if (!mc_ptr)
2610                                 break;
2611                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2612                                ETH_ALEN);
2613                         mc_ptr = mc_ptr->next;
2614                 }
2615
2616                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2617                                           mac->rar_entry_count);
2618                 kfree(mta_list);
2619         } else {
2620                 /*
2621                  * if we're called from probe, we might not have
2622                  * anything to do here, so clear out the list
2623                  */
2624                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2625         }
2626 }
2627
2628 /**
2629  * e1000_configure - configure the hardware for Rx and Tx
2630  * @adapter: private board structure
2631  **/
2632 static void e1000_configure(struct e1000_adapter *adapter)
2633 {
2634         e1000_set_multi(adapter->netdev);
2635
2636         e1000_restore_vlan(adapter);
2637         e1000_init_manageability(adapter);
2638
2639         e1000_configure_tx(adapter);
2640         e1000_setup_rctl(adapter);
2641         e1000_configure_rx(adapter);
2642         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2643 }
2644
2645 /**
2646  * e1000e_power_up_phy - restore link in case the phy was powered down
2647  * @adapter: address of board private structure
2648  *
2649  * The phy may be powered down to save power and turn off link when the
2650  * driver is unloaded and wake on lan is not enabled (among others)
2651  * *** this routine MUST be followed by a call to e1000e_reset ***
2652  **/
2653 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2654 {
2655         u16 mii_reg = 0;
2656
2657         /* Just clear the power down bit to wake the phy back up */
2658         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2659                 /*
2660                  * According to the manual, the phy will retain its
2661                  * settings across a power-down/up cycle
2662                  */
2663                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2664                 mii_reg &= ~MII_CR_POWER_DOWN;
2665                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2666         }
2667
2668         adapter->hw.mac.ops.setup_link(&adapter->hw);
2669 }
2670
2671 /**
2672  * e1000_power_down_phy - Power down the PHY
2673  *
2674  * Power down the PHY so no link is implied when interface is down
2675  * The PHY cannot be powered down is management or WoL is active
2676  */
2677 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2678 {
2679         struct e1000_hw *hw = &adapter->hw;
2680         u16 mii_reg;
2681
2682         /* WoL is enabled */
2683         if (adapter->wol)
2684                 return;
2685
2686         /* non-copper PHY? */
2687         if (adapter->hw.phy.media_type != e1000_media_type_copper)
2688                 return;
2689
2690         /* reset is blocked because of a SoL/IDER session */
2691         if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2692                 return;
2693
2694         /* manageability (AMT) is enabled */
2695         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2696                 return;
2697
2698         /* power down the PHY */
2699         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2700         mii_reg |= MII_CR_POWER_DOWN;
2701         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2702         mdelay(1);
2703 }
2704
2705 /**
2706  * e1000e_reset - bring the hardware into a known good state
2707  *
2708  * This function boots the hardware and enables some settings that
2709  * require a configuration cycle of the hardware - those cannot be
2710  * set/changed during runtime. After reset the device needs to be
2711  * properly configured for Rx, Tx etc.
2712  */
2713 void e1000e_reset(struct e1000_adapter *adapter)
2714 {
2715         struct e1000_mac_info *mac = &adapter->hw.mac;
2716         struct e1000_fc_info *fc = &adapter->hw.fc;
2717         struct e1000_hw *hw = &adapter->hw;
2718         u32 tx_space, min_tx_space, min_rx_space;
2719         u32 pba = adapter->pba;
2720         u16 hwm;
2721
2722         /* reset Packet Buffer Allocation to default */
2723         ew32(PBA, pba);
2724
2725         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2726                 /*
2727                  * To maintain wire speed transmits, the Tx FIFO should be
2728                  * large enough to accommodate two full transmit packets,
2729                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2730                  * the Rx FIFO should be large enough to accommodate at least
2731                  * one full receive packet and is similarly rounded up and
2732                  * expressed in KB.
2733                  */
2734                 pba = er32(PBA);
2735                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2736                 tx_space = pba >> 16;
2737                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2738                 pba &= 0xffff;
2739                 /*
2740                  * the Tx fifo also stores 16 bytes of information about the tx
2741                  * but don't include ethernet FCS because hardware appends it
2742                  */
2743                 min_tx_space = (adapter->max_frame_size +
2744                                 sizeof(struct e1000_tx_desc) -
2745                                 ETH_FCS_LEN) * 2;
2746                 min_tx_space = ALIGN(min_tx_space, 1024);
2747                 min_tx_space >>= 10;
2748                 /* software strips receive CRC, so leave room for it */
2749                 min_rx_space = adapter->max_frame_size;
2750                 min_rx_space = ALIGN(min_rx_space, 1024);
2751                 min_rx_space >>= 10;
2752
2753                 /*
2754                  * If current Tx allocation is less than the min Tx FIFO size,
2755                  * and the min Tx FIFO size is less than the current Rx FIFO
2756                  * allocation, take space away from current Rx allocation
2757                  */
2758                 if ((tx_space < min_tx_space) &&
2759                     ((min_tx_space - tx_space) < pba)) {
2760                         pba -= min_tx_space - tx_space;
2761
2762                         /*
2763                          * if short on Rx space, Rx wins and must trump tx
2764                          * adjustment or use Early Receive if available
2765                          */
2766                         if ((pba < min_rx_space) &&
2767                             (!(adapter->flags & FLAG_HAS_ERT)))
2768                                 /* ERT enabled in e1000_configure_rx */
2769                                 pba = min_rx_space;
2770                 }
2771
2772                 ew32(PBA, pba);
2773         }
2774
2775
2776         /*
2777          * flow control settings
2778          *
2779          * The high water mark must be low enough to fit one full frame
2780          * (or the size used for early receive) above it in the Rx FIFO.
2781          * Set it to the lower of:
2782          * - 90% of the Rx FIFO size, and
2783          * - the full Rx FIFO size minus the early receive size (for parts
2784          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2785          * - the full Rx FIFO size minus one full frame
2786          */
2787         if (hw->mac.type == e1000_pchlan) {
2788                 /*
2789                  * Workaround PCH LOM adapter hangs with certain network
2790                  * loads.  If hangs persist, try disabling Tx flow control.
2791                  */
2792                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2793                         fc->high_water = 0x3500;
2794                         fc->low_water  = 0x1500;
2795                 } else {
2796                         fc->high_water = 0x5000;
2797                         fc->low_water  = 0x3000;
2798                 }
2799         } else {
2800                 if ((adapter->flags & FLAG_HAS_ERT) &&
2801                     (adapter->netdev->mtu > ETH_DATA_LEN))
2802                         hwm = min(((pba << 10) * 9 / 10),
2803                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
2804                 else
2805                         hwm = min(((pba << 10) * 9 / 10),
2806                                   ((pba << 10) - adapter->max_frame_size));
2807
2808                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2809                 fc->low_water = fc->high_water - 8;
2810         }
2811
2812         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2813                 fc->pause_time = 0xFFFF;
2814         else
2815                 fc->pause_time = E1000_FC_PAUSE_TIME;
2816         fc->send_xon = 1;
2817         fc->current_mode = fc->requested_mode;
2818
2819         /* Allow time for pending master requests to run */
2820         mac->ops.reset_hw(hw);
2821
2822         /*
2823          * For parts with AMT enabled, let the firmware know
2824          * that the network interface is in control
2825          */
2826         if (adapter->flags & FLAG_HAS_AMT)
2827                 e1000_get_hw_control(adapter);
2828
2829         ew32(WUC, 0);
2830         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2831                 e1e_wphy(&adapter->hw, BM_WUC, 0);
2832
2833         if (mac->ops.init_hw(hw))
2834                 e_err("Hardware Error\n");
2835
2836         /* additional part of the flow-control workaround above */
2837         if (hw->mac.type == e1000_pchlan)
2838                 ew32(FCRTV_PCH, 0x1000);
2839
2840         e1000_update_mng_vlan(adapter);
2841
2842         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2843         ew32(VET, ETH_P_8021Q);
2844
2845         e1000e_reset_adaptive(hw);
2846         e1000_get_phy_info(hw);
2847
2848         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2849             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2850                 u16 phy_data = 0;
2851                 /*
2852                  * speed up time to link by disabling smart power down, ignore
2853                  * the return value of this function because there is nothing
2854                  * different we would do if it failed
2855                  */
2856                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2857                 phy_data &= ~IGP02E1000_PM_SPD;
2858                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2859         }
2860 }
2861
2862 int e1000e_up(struct e1000_adapter *adapter)
2863 {
2864         struct e1000_hw *hw = &adapter->hw;
2865
2866         /* hardware has been reset, we need to reload some things */
2867         e1000_configure(adapter);
2868
2869         clear_bit(__E1000_DOWN, &adapter->state);
2870
2871         napi_enable(&adapter->napi);
2872         if (adapter->msix_entries)
2873                 e1000_configure_msix(adapter);
2874         e1000_irq_enable(adapter);
2875
2876         netif_wake_queue(adapter->netdev);
2877
2878         /* fire a link change interrupt to start the watchdog */
2879         ew32(ICS, E1000_ICS_LSC);
2880         return 0;
2881 }
2882
2883 void e1000e_down(struct e1000_adapter *adapter)
2884 {
2885         struct net_device *netdev = adapter->netdev;
2886         struct e1000_hw *hw = &adapter->hw;
2887         u32 tctl, rctl;
2888
2889         /*
2890          * signal that we're down so the interrupt handler does not
2891          * reschedule our watchdog timer
2892          */
2893         set_bit(__E1000_DOWN, &adapter->state);
2894
2895         /* disable receives in the hardware */
2896         rctl = er32(RCTL);
2897         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2898         /* flush and sleep below */
2899
2900         netif_stop_queue(netdev);
2901
2902         /* disable transmits in the hardware */
2903         tctl = er32(TCTL);
2904         tctl &= ~E1000_TCTL_EN;
2905         ew32(TCTL, tctl);
2906         /* flush both disables and wait for them to finish */
2907         e1e_flush();
2908         msleep(10);
2909
2910         napi_disable(&adapter->napi);
2911         e1000_irq_disable(adapter);
2912
2913         del_timer_sync(&adapter->watchdog_timer);
2914         del_timer_sync(&adapter->phy_info_timer);
2915
2916         netdev->tx_queue_len = adapter->tx_queue_len;
2917         netif_carrier_off(netdev);
2918         adapter->link_speed = 0;
2919         adapter->link_duplex = 0;
2920
2921         if (!pci_channel_offline(adapter->pdev))
2922                 e1000e_reset(adapter);
2923         e1000_clean_tx_ring(adapter);
2924         e1000_clean_rx_ring(adapter);
2925
2926         /*
2927          * TODO: for power management, we could drop the link and
2928          * pci_disable_device here.
2929          */
2930 }
2931
2932 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2933 {
2934         might_sleep();
2935         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2936                 msleep(1);
2937         e1000e_down(adapter);
2938         e1000e_up(adapter);
2939         clear_bit(__E1000_RESETTING, &adapter->state);
2940 }
2941
2942 /**
2943  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2944  * @adapter: board private structure to initialize
2945  *
2946  * e1000_sw_init initializes the Adapter private data structure.
2947  * Fields are initialized based on PCI device information and
2948  * OS network device settings (MTU size).
2949  **/
2950 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2951 {
2952         struct net_device *netdev = adapter->netdev;
2953
2954         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2955         adapter->rx_ps_bsize0 = 128;
2956         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2957         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2958
2959         e1000e_set_interrupt_capability(adapter);
2960
2961         if (e1000_alloc_queues(adapter))
2962                 return -ENOMEM;
2963
2964         /* Explicitly disable IRQ since the NIC can be in any state. */
2965         e1000_irq_disable(adapter);
2966
2967         set_bit(__E1000_DOWN, &adapter->state);
2968         return 0;
2969 }
2970
2971 /**
2972  * e1000_intr_msi_test - Interrupt Handler
2973  * @irq: interrupt number
2974  * @data: pointer to a network interface device structure
2975  **/
2976 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2977 {
2978         struct net_device *netdev = data;
2979         struct e1000_adapter *adapter = netdev_priv(netdev);
2980         struct e1000_hw *hw = &adapter->hw;
2981         u32 icr = er32(ICR);
2982
2983         e_dbg("%s: icr is %08X\n", netdev->name, icr);
2984         if (icr & E1000_ICR_RXSEQ) {
2985                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2986                 wmb();
2987         }
2988
2989         return IRQ_HANDLED;
2990 }
2991
2992 /**
2993  * e1000_test_msi_interrupt - Returns 0 for successful test
2994  * @adapter: board private struct
2995  *
2996  * code flow taken from tg3.c
2997  **/
2998 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2999 {
3000         struct net_device *netdev = adapter->netdev;
3001         struct e1000_hw *hw = &adapter->hw;
3002         int err;
3003
3004         /* poll_enable hasn't been called yet, so don't need disable */
3005         /* clear any pending events */
3006         er32(ICR);
3007
3008         /* free the real vector and request a test handler */
3009         e1000_free_irq(adapter);
3010         e1000e_reset_interrupt_capability(adapter);
3011
3012         /* Assume that the test fails, if it succeeds then the test
3013          * MSI irq handler will unset this flag */
3014         adapter->flags |= FLAG_MSI_TEST_FAILED;
3015
3016         err = pci_enable_msi(adapter->pdev);
3017         if (err)
3018                 goto msi_test_failed;
3019
3020         err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
3021                           netdev->name, netdev);
3022         if (err) {
3023                 pci_disable_msi(adapter->pdev);
3024                 goto msi_test_failed;
3025         }
3026
3027         wmb();
3028
3029         e1000_irq_enable(adapter);
3030
3031         /* fire an unusual interrupt on the test handler */
3032         ew32(ICS, E1000_ICS_RXSEQ);
3033         e1e_flush();
3034         msleep(50);
3035
3036         e1000_irq_disable(adapter);
3037
3038         rmb();
3039
3040         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3041                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3042                 err = -EIO;
3043                 e_info("MSI interrupt test failed!\n");
3044         }
3045
3046         free_irq(adapter->pdev->irq, netdev);
3047         pci_disable_msi(adapter->pdev);
3048
3049         if (err == -EIO)
3050                 goto msi_test_failed;
3051
3052         /* okay so the test worked, restore settings */
3053         e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3054 msi_test_failed:
3055         e1000e_set_interrupt_capability(adapter);
3056         e1000_request_irq(adapter);
3057         return err;
3058 }
3059
3060 /**
3061  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3062  * @adapter: board private struct
3063  *
3064  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3065  **/
3066 static int e1000_test_msi(struct e1000_adapter *adapter)
3067 {
3068         int err;
3069         u16 pci_cmd;
3070
3071         if (!(adapter->flags & FLAG_MSI_ENABLED))
3072                 return 0;
3073
3074         /* disable SERR in case the MSI write causes a master abort */
3075         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3076         if (pci_cmd & PCI_COMMAND_SERR)
3077                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3078                                       pci_cmd & ~PCI_COMMAND_SERR);
3079
3080         err = e1000_test_msi_interrupt(adapter);
3081
3082         /* re-enable SERR */
3083         if (pci_cmd & PCI_COMMAND_SERR) {
3084                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3085                 pci_cmd |= PCI_COMMAND_SERR;
3086                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3087         }
3088
3089         /* success ! */
3090         if (!err)
3091                 return 0;
3092
3093         /* EIO means MSI test failed */
3094         if (err != -EIO)
3095                 return err;
3096
3097         /* back to INTx mode */
3098         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3099
3100         e1000_free_irq(adapter);
3101
3102         err = e1000_request_irq(adapter);
3103
3104         return err;
3105 }
3106
3107 /**
3108  * e1000_open - Called when a network interface is made active
3109  * @netdev: network interface device structure
3110  *
3111  * Returns 0 on success, negative value on failure
3112  *
3113  * The open entry point is called when a network interface is made
3114  * active by the system (IFF_UP).  At this point all resources needed
3115  * for transmit and receive operations are allocated, the interrupt
3116  * handler is registered with the OS, the watchdog timer is started,
3117  * and the stack is notified that the interface is ready.
3118  **/
3119 static int e1000_open(struct net_device *netdev)
3120 {
3121         struct e1000_adapter *adapter = netdev_priv(netdev);
3122         struct e1000_hw *hw = &adapter->hw;
3123         int err;
3124
3125         /* disallow open during test */
3126         if (test_bit(__E1000_TESTING, &adapter->state))
3127                 return -EBUSY;
3128
3129         netif_carrier_off(netdev);
3130
3131         /* allocate transmit descriptors */
3132         err = e1000e_setup_tx_resources(adapter);
3133         if (err)
3134                 goto err_setup_tx;
3135
3136         /* allocate receive descriptors */
3137         err = e1000e_setup_rx_resources(adapter);
3138         if (err)
3139                 goto err_setup_rx;
3140
3141         e1000e_power_up_phy(adapter);
3142
3143         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3144         if ((adapter->hw.mng_cookie.status &
3145              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3146                 e1000_update_mng_vlan(adapter);
3147
3148         /*
3149          * If AMT is enabled, let the firmware know that the network
3150          * interface is now open
3151          */
3152         if (adapter->flags & FLAG_HAS_AMT)
3153                 e1000_get_hw_control(adapter);
3154
3155         /*
3156          * before we allocate an interrupt, we must be ready to handle it.
3157          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3158          * as soon as we call pci_request_irq, so we have to setup our
3159          * clean_rx handler before we do so.
3160          */
3161         e1000_configure(adapter);
3162
3163         err = e1000_request_irq(adapter);
3164         if (err)
3165                 goto err_req_irq;
3166
3167         /*
3168          * Work around PCIe errata with MSI interrupts causing some chipsets to
3169          * ignore e1000e MSI messages, which means we need to test our MSI
3170          * interrupt now
3171          */
3172         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3173                 err = e1000_test_msi(adapter);
3174                 if (err) {
3175                         e_err("Interrupt allocation failed\n");
3176                         goto err_req_irq;
3177                 }
3178         }
3179
3180         /* From here on the code is the same as e1000e_up() */
3181         clear_bit(__E1000_DOWN, &adapter->state);
3182
3183         napi_enable(&adapter->napi);
3184
3185         e1000_irq_enable(adapter);
3186
3187         netif_start_queue(netdev);
3188
3189         /* fire a link status change interrupt to start the watchdog */
3190         ew32(ICS, E1000_ICS_LSC);
3191
3192         return 0;
3193
3194 err_req_irq:
3195         e1000_release_hw_control(adapter);
3196         e1000_power_down_phy(adapter);
3197         e1000e_free_rx_resources(adapter);
3198 err_setup_rx:
3199         e1000e_free_tx_resources(adapter);
3200 err_setup_tx:
3201         e1000e_reset(adapter);
3202
3203         return err;
3204 }
3205
3206 /**
3207  * e1000_close - Disables a network interface
3208  * @netdev: network interface device structure
3209  *
3210  * Returns 0, this is not allowed to fail
3211  *
3212  * The close entry point is called when an interface is de-activated
3213  * by the OS.  The hardware is still under the drivers control, but
3214  * needs to be disabled.  A global MAC reset is issued to stop the
3215  * hardware, and all transmit and receive resources are freed.
3216  **/
3217 static int e1000_close(struct net_device *netdev)
3218 {
3219         struct e1000_adapter *adapter = netdev_priv(netdev);
3220
3221         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3222         e1000e_down(adapter);
3223         e1000_power_down_phy(adapter);
3224         e1000_free_irq(adapter);
3225
3226         e1000e_free_tx_resources(adapter);
3227         e1000e_free_rx_resources(adapter);
3228
3229         /*
3230          * kill manageability vlan ID if supported, but not if a vlan with
3231          * the same ID is registered on the host OS (let 8021q kill it)
3232          */
3233         if ((adapter->hw.mng_cookie.status &
3234                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3235              !(adapter->vlgrp &&
3236                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3237                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3238
3239         /*
3240          * If AMT is enabled, let the firmware know that the network
3241          * interface is now closed
3242          */
3243         if (adapter->flags & FLAG_HAS_AMT)
3244                 e1000_release_hw_control(adapter);
3245
3246         return 0;
3247 }
3248 /**
3249  * e1000_set_mac - Change the Ethernet Address of the NIC
3250  * @netdev: network interface device structure
3251  * @p: pointer to an address structure
3252  *
3253  * Returns 0 on success, negative on failure
3254  **/
3255 static int e1000_set_mac(struct net_device *netdev, void *p)
3256 {
3257         struct e1000_adapter *adapter = netdev_priv(netdev);
3258         struct sockaddr *addr = p;
3259
3260         if (!is_valid_ether_addr(addr->sa_data))
3261                 return -EADDRNOTAVAIL;
3262
3263         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3264         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3265
3266         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3267
3268         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3269                 /* activate the work around */
3270                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3271
3272                 /*
3273                  * Hold a copy of the LAA in RAR[14] This is done so that
3274                  * between the time RAR[0] gets clobbered  and the time it
3275                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3276                  * of the RARs and no incoming packets directed to this port
3277                  * are dropped. Eventually the LAA will be in RAR[0] and
3278                  * RAR[14]
3279                  */
3280                 e1000e_rar_set(&adapter->hw,
3281                               adapter->hw.mac.addr,
3282                               adapter->hw.mac.rar_entry_count - 1);
3283         }
3284
3285         return 0;
3286 }
3287
3288 /**
3289  * e1000e_update_phy_task - work thread to update phy
3290  * @work: pointer to our work struct
3291  *
3292  * this worker thread exists because we must acquire a
3293  * semaphore to read the phy, which we could msleep while
3294  * waiting for it, and we can't msleep in a timer.
3295  **/
3296 static void e1000e_update_phy_task(struct work_struct *work)
3297 {
3298         struct e1000_adapter *adapter = container_of(work,
3299                                         struct e1000_adapter, update_phy_task);
3300         e1000_get_phy_info(&adapter->hw);
3301 }
3302
3303 /*
3304  * Need to wait a few seconds after link up to get diagnostic information from
3305  * the phy
3306  */
3307 static void e1000_update_phy_info(unsigned long data)
3308 {
3309         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3310         schedule_work(&adapter->update_phy_task);
3311 }
3312
3313 /**
3314  * e1000e_update_stats - Update the board statistics counters
3315  * @adapter: board private structure
3316  **/
3317 void e1000e_update_stats(struct e1000_adapter *adapter)
3318 {
3319         struct e1000_hw *hw = &adapter->hw;
3320         struct pci_dev *pdev = adapter->pdev;
3321         u16 phy_data;
3322
3323         /*
3324          * Prevent stats update while adapter is being reset, or if the pci
3325          * connection is down.
3326          */
3327         if (adapter->link_speed == 0)
3328                 return;
3329         if (pci_channel_offline(pdev))
3330                 return;
3331
3332         adapter->stats.crcerrs += er32(CRCERRS);
3333         adapter->stats.gprc += er32(GPRC);
3334         adapter->stats.gorc += er32(GORCL);
3335         er32(GORCH); /* Clear gorc */
3336         adapter->stats.bprc += er32(BPRC);
3337         adapter->stats.mprc += er32(MPRC);
3338         adapter->stats.roc += er32(ROC);
3339
3340         adapter->stats.mpc += er32(MPC);
3341         if ((hw->phy.type == e1000_phy_82578) ||
3342             (hw->phy.type == e1000_phy_82577)) {
3343                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3344                 e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3345                 adapter->stats.scc += phy_data;
3346
3347                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3348                 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3349                 adapter->stats.ecol += phy_data;
3350
3351                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3352                 e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3353                 adapter->stats.mcc += phy_data;
3354
3355                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3356                 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3357                 adapter->stats.latecol += phy_data;
3358
3359                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3360                 e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3361                 adapter->stats.dc += phy_data;
3362         } else {
3363                 adapter->stats.scc += er32(SCC);
3364                 adapter->stats.ecol += er32(ECOL);
3365                 adapter->stats.mcc += er32(MCC);
3366                 adapter->stats.latecol += er32(LATECOL);
3367                 adapter->stats.dc += er32(DC);
3368         }
3369         adapter->stats.xonrxc += er32(XONRXC);
3370         adapter->stats.xontxc += er32(XONTXC);
3371         adapter->stats.xoffrxc += er32(XOFFRXC);
3372         adapter->stats.xofftxc += er32(XOFFTXC);
3373         adapter->stats.gptc += er32(GPTC);
3374         adapter->stats.gotc += er32(GOTCL);
3375         er32(GOTCH); /* Clear gotc */
3376         adapter->stats.rnbc += er32(RNBC);
3377         adapter->stats.ruc += er32(RUC);
3378
3379         adapter->stats.mptc += er32(MPTC);
3380         adapter->stats.bptc += er32(BPTC);
3381
3382         /* used for adaptive IFS */
3383
3384         hw->mac.tx_packet_delta = er32(TPT);
3385         adapter->stats.tpt += hw->mac.tx_packet_delta;
3386         if ((hw->phy.type == e1000_phy_82578) ||
3387             (hw->phy.type == e1000_phy_82577)) {
3388                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3389                 e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3390                 hw->mac.collision_delta = phy_data;
3391         } else {
3392                 hw->mac.collision_delta = er32(COLC);
3393         }
3394         adapter->stats.colc += hw->mac.collision_delta;
3395
3396         adapter->stats.algnerrc += er32(ALGNERRC);
3397         adapter->stats.rxerrc += er32(RXERRC);
3398         if ((hw->phy.type == e1000_phy_82578) ||
3399             (hw->phy.type == e1000_phy_82577)) {
3400                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3401                 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3402                 adapter->stats.tncrs += phy_data;
3403         } else {
3404                 if ((hw->mac.type != e1000_82574) &&
3405                     (hw->mac.type != e1000_82583))
3406                         adapter->stats.tncrs += er32(TNCRS);
3407         }
3408         adapter->stats.cexterr += er32(CEXTERR);
3409         adapter->stats.tsctc += er32(TSCTC);
3410         adapter->stats.tsctfc += er32(TSCTFC);
3411
3412         /* Fill out the OS statistics structure */
3413         adapter->net_stats.multicast = adapter->stats.mprc;
3414         adapter->net_stats.collisions = adapter->stats.colc;
3415
3416         /* Rx Errors */
3417
3418         /*
3419          * RLEC on some newer hardware can be incorrect so build
3420          * our own version based on RUC and ROC
3421          */
3422         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3423                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3424                 adapter->stats.ruc + adapter->stats.roc +
3425                 adapter->stats.cexterr;
3426         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3427                                               adapter->stats.roc;
3428         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3429         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3430         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3431
3432         /* Tx Errors */
3433         adapter->net_stats.tx_errors = adapter->stats.ecol +
3434                                        adapter->stats.latecol;
3435         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3436         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3437         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3438
3439         /* Tx Dropped needs to be maintained elsewhere */
3440
3441         /* Management Stats */
3442         adapter->stats.mgptc += er32(MGTPTC);
3443         adapter->stats.mgprc += er32(MGTPRC);
3444         adapter->stats.mgpdc += er32(MGTPDC);
3445 }
3446
3447 /**
3448  * e1000_phy_read_status - Update the PHY register status snapshot
3449  * @adapter: board private structure
3450  **/
3451 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3452 {
3453         struct e1000_hw *hw = &adapter->hw;
3454         struct e1000_phy_regs *phy = &adapter->phy_regs;
3455         int ret_val;
3456
3457         if ((er32(STATUS) & E1000_STATUS_LU) &&
3458             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3459                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3460                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3461                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3462                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3463                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3464                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3465                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3466                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3467                 if (ret_val)
3468                         e_warn("Error reading PHY register\n");
3469         } else {
3470                 /*
3471                  * Do not read PHY registers if link is not up
3472                  * Set values to typical power-on defaults
3473                  */
3474                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3475                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3476                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3477                              BMSR_ERCAP);
3478                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3479                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3480                 phy->lpa = 0;
3481                 phy->expansion = EXPANSION_ENABLENPAGE;
3482                 phy->ctrl1000 = ADVERTISE_1000FULL;
3483                 phy->stat1000 = 0;
3484                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3485         }
3486 }
3487
3488 static void e1000_print_link_info(struct e1000_adapter *adapter)
3489 {
3490         struct e1000_hw *hw = &adapter->hw;
3491         u32 ctrl = er32(CTRL);
3492
3493         /* Link status message must follow this format for user tools */
3494         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3495                "Flow Control: %s\n",
3496                adapter->netdev->name,
3497                adapter->link_speed,
3498                (adapter->link_duplex == FULL_DUPLEX) ?
3499                                 "Full Duplex" : "Half Duplex",
3500                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3501                                 "RX/TX" :
3502                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3503                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3504 }
3505
3506 bool e1000_has_link(struct e1000_adapter *adapter)
3507 {
3508         struct e1000_hw *hw = &adapter->hw;
3509         bool link_active = 0;
3510         s32 ret_val = 0;
3511
3512         /*
3513          * get_link_status is set on LSC (link status) interrupt or
3514          * Rx sequence error interrupt.  get_link_status will stay
3515          * false until the check_for_link establishes link
3516          * for copper adapters ONLY
3517          */
3518         switch (hw->phy.media_type) {
3519         case e1000_media_type_copper:
3520                 if (hw->mac.get_link_status) {
3521                         ret_val = hw->mac.ops.check_for_link(hw);
3522                         link_active = !hw->mac.get_link_status;
3523                 } else {
3524                         link_active = 1;
3525                 }
3526                 break;
3527         case e1000_media_type_fiber:
3528                 ret_val = hw->mac.ops.check_for_link(hw);
3529                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3530                 break;
3531         case e1000_media_type_internal_serdes:
3532                 ret_val = hw->mac.ops.check_for_link(hw);
3533                 link_active = adapter->hw.mac.serdes_has_link;
3534                 break;
3535         default:
3536         case e1000_media_type_unknown:
3537                 break;
3538         }
3539
3540         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3541             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3542                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3543                 e_info("Gigabit has been disabled, downgrading speed\n");
3544         }
3545
3546         return link_active;
3547 }
3548
3549 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3550 {
3551         /* make sure the receive unit is started */
3552         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3553             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3554                 struct e1000_hw *hw = &adapter->hw;
3555                 u32 rctl = er32(RCTL);
3556                 ew32(RCTL, rctl | E1000_RCTL_EN);
3557                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3558         }
3559 }
3560
3561 /**
3562  * e1000_watchdog - Timer Call-back
3563  * @data: pointer to adapter cast into an unsigned long
3564  **/
3565 static void e1000_watchdog(unsigned long data)
3566 {
3567         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3568
3569         /* Do the rest outside of interrupt context */
3570         schedule_work(&adapter->watchdog_task);
3571
3572         /* TODO: make this use queue_delayed_work() */
3573 }
3574
3575 static void e1000_watchdog_task(struct work_struct *work)
3576 {
3577         struct e1000_adapter *adapter = container_of(work,
3578                                         struct e1000_adapter, watchdog_task);
3579         struct net_device *netdev = adapter->netdev;
3580         struct e1000_mac_info *mac = &adapter->hw.mac;
3581         struct e1000_phy_info *phy = &adapter->hw.phy;
3582         struct e1000_ring *tx_ring = adapter->tx_ring;
3583         struct e1000_hw *hw = &adapter->hw;
3584         u32 link, tctl;
3585         int tx_pending = 0;
3586
3587         link = e1000_has_link(adapter);
3588         if ((netif_carrier_ok(netdev)) && link) {
3589                 e1000e_enable_receives(adapter);
3590                 goto link_up;
3591         }
3592
3593         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3594             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3595                 e1000_update_mng_vlan(adapter);
3596
3597         if (link) {
3598                 if (!netif_carrier_ok(netdev)) {
3599                         bool txb2b = 1;
3600                         /* update snapshot of PHY registers on LSC */
3601                         e1000_phy_read_status(adapter);
3602                         mac->ops.get_link_up_info(&adapter->hw,
3603                                                    &adapter->link_speed,
3604                                                    &adapter->link_duplex);
3605                         e1000_print_link_info(adapter);
3606                         /*
3607                          * On supported PHYs, check for duplex mismatch only
3608                          * if link has autonegotiated at 10/100 half
3609                          */
3610                         if ((hw->phy.type == e1000_phy_igp_3 ||
3611                              hw->phy.type == e1000_phy_bm) &&
3612                             (hw->mac.autoneg == true) &&
3613                             (adapter->link_speed == SPEED_10 ||
3614                              adapter->link_speed == SPEED_100) &&
3615                             (adapter->link_duplex == HALF_DUPLEX)) {
3616                                 u16 autoneg_exp;
3617
3618                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3619
3620                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3621                                         e_info("Autonegotiated half duplex but"
3622                                                " link partner cannot autoneg. "
3623                                                " Try forcing full duplex if "
3624                                                "link gets many collisions.\n");
3625                         }
3626
3627                         /*
3628                          * tweak tx_queue_len according to speed/duplex
3629                          * and adjust the timeout factor
3630                          */
3631                         netdev->tx_queue_len = adapter->tx_queue_len;
3632                         adapter->tx_timeout_factor = 1;
3633                         switch (adapter->link_speed) {
3634                         case SPEED_10:
3635                                 txb2b = 0;
3636                                 netdev->tx_queue_len = 10;
3637                                 adapter->tx_timeout_factor = 16;
3638                                 break;
3639                         case SPEED_100:
3640                                 txb2b = 0;
3641                                 netdev->tx_queue_len = 100;
3642                                 adapter->tx_timeout_factor = 10;
3643                                 break;
3644                         }
3645
3646                         /*
3647                          * workaround: re-program speed mode bit after
3648                          * link-up event
3649                          */
3650                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3651                             !txb2b) {
3652                                 u32 tarc0;
3653                                 tarc0 = er32(TARC(0));
3654                                 tarc0 &= ~SPEED_MODE_BIT;
3655                                 ew32(TARC(0), tarc0);
3656                         }
3657
3658                         /*
3659                          * disable TSO for pcie and 10/100 speeds, to avoid
3660                          * some hardware issues
3661                          */
3662                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3663                                 switch (adapter->link_speed) {
3664                                 case SPEED_10:
3665                                 case SPEED_100:
3666                                         e_info("10/100 speed: disabling TSO\n");
3667                                         netdev->features &= ~NETIF_F_TSO;
3668                                         netdev->features &= ~NETIF_F_TSO6;
3669                                         break;
3670                                 case SPEED_1000:
3671                                         netdev->features |= NETIF_F_TSO;
3672                                         netdev->features |= NETIF_F_TSO6;
3673                                         break;
3674                                 default:
3675                                         /* oops */
3676                                         break;
3677                                 }
3678                         }
3679
3680                         /*
3681                          * enable transmits in the hardware, need to do this
3682                          * after setting TARC(0)
3683                          */
3684                         tctl = er32(TCTL);
3685                         tctl |= E1000_TCTL_EN;
3686                         ew32(TCTL, tctl);
3687
3688                         /*
3689                          * Perform any post-link-up configuration before
3690                          * reporting link up.
3691                          */
3692                         if (phy->ops.cfg_on_link_up)
3693                                 phy->ops.cfg_on_link_up(hw);
3694
3695                         netif_carrier_on(netdev);
3696
3697                         if (!test_bit(__E1000_DOWN, &adapter->state))
3698                                 mod_timer(&adapter->phy_info_timer,
3699                                           round_jiffies(jiffies + 2 * HZ));
3700                 }
3701         } else {
3702                 if (netif_carrier_ok(netdev)) {
3703                         adapter->link_speed = 0;
3704                         adapter->link_duplex = 0;
3705                         /* Link status message must follow this format */
3706                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3707                                adapter->netdev->name);
3708                         netif_carrier_off(netdev);
3709                         if (!test_bit(__E1000_DOWN, &adapter->state))
3710                                 mod_timer(&adapter->phy_info_timer,
3711                                           round_jiffies(jiffies + 2 * HZ));
3712
3713                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3714                                 schedule_work(&adapter->reset_task);
3715                 }
3716         }
3717
3718 link_up:
3719         e1000e_update_stats(adapter);
3720
3721         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3722         adapter->tpt_old = adapter->stats.tpt;
3723         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3724         adapter->colc_old = adapter->stats.colc;
3725
3726         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3727         adapter->gorc_old = adapter->stats.gorc;
3728         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3729         adapter->gotc_old = adapter->stats.gotc;
3730
3731         e1000e_update_adaptive(&adapter->hw);
3732
3733         if (!netif_carrier_ok(netdev)) {
3734                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3735                                tx_ring->count);
3736                 if (tx_pending) {
3737                         /*
3738                          * We've lost link, so the controller stops DMA,
3739                          * but we've got queued Tx work that's never going
3740                          * to get done, so reset controller to flush Tx.
3741                          * (Do the reset outside of interrupt context).
3742                          */
3743                         adapter->tx_timeout_count++;
3744                         schedule_work(&adapter->reset_task);
3745                         /* return immediately since reset is imminent */
3746                         return;
3747                 }
3748         }
3749
3750         /* Cause software interrupt to ensure Rx ring is cleaned */
3751         if (adapter->msix_entries)
3752                 ew32(ICS, adapter->rx_ring->ims_val);
3753         else
3754                 ew32(ICS, E1000_ICS_RXDMT0);
3755
3756         /* Force detection of hung controller every watchdog period */
3757         adapter->detect_tx_hung = 1;
3758
3759         /*
3760          * With 82571 controllers, LAA may be overwritten due to controller
3761          * reset from the other port. Set the appropriate LAA in RAR[0]
3762          */
3763         if (e1000e_get_laa_state_82571(hw))
3764                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3765
3766         /* Reset the timer */
3767         if (!test_bit(__E1000_DOWN, &adapter->state))
3768                 mod_timer(&adapter->watchdog_timer,
3769                           round_jiffies(jiffies + 2 * HZ));
3770 }
3771
3772 #define E1000_TX_FLAGS_CSUM             0x00000001
3773 #define E1000_TX_FLAGS_VLAN             0x00000002
3774 #define E1000_TX_FLAGS_TSO              0x00000004
3775 #define E1000_TX_FLAGS_IPV4             0x00000008
3776 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3777 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3778
3779 static int e1000_tso(struct e1000_adapter *adapter,
3780                      struct sk_buff *skb)
3781 {
3782         struct e1000_ring *tx_ring = adapter->tx_ring;
3783         struct e1000_context_desc *context_desc;
3784         struct e1000_buffer *buffer_info;
3785         unsigned int i;
3786         u32 cmd_length = 0;
3787         u16 ipcse = 0, tucse, mss;
3788         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3789         int err;
3790
3791         if (skb_is_gso(skb)) {
3792                 if (skb_header_cloned(skb)) {
3793                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3794                         if (err)
3795                                 return err;
3796                 }
3797
3798                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3799                 mss = skb_shinfo(skb)->gso_size;
3800                 if (skb->protocol == htons(ETH_P_IP)) {
3801                         struct iphdr *iph = ip_hdr(skb);
3802                         iph->tot_len = 0;
3803                         iph->check = 0;
3804                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3805                                                                  iph->daddr, 0,
3806                                                                  IPPROTO_TCP,
3807                                                                  0);
3808                         cmd_length = E1000_TXD_CMD_IP;
3809                         ipcse = skb_transport_offset(skb) - 1;
3810                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3811                         ipv6_hdr(skb)->payload_len = 0;
3812                         tcp_hdr(skb)->check =
3813                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3814                                                  &ipv6_hdr(skb)->daddr,
3815                                                  0, IPPROTO_TCP, 0);
3816                         ipcse = 0;
3817                 }
3818                 ipcss = skb_network_offset(skb);
3819                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3820                 tucss = skb_transport_offset(skb);
3821                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3822                 tucse = 0;
3823
3824                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3825                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3826
3827                 i = tx_ring->next_to_use;
3828                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3829                 buffer_info = &tx_ring->buffer_info[i];
3830
3831                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3832                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3833                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3834                 context_desc->upper_setup.tcp_fields.tucss = tucss;
3835                 context_desc->upper_setup.tcp_fields.tucso = tucso;
3836                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3837                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3838                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3839                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3840
3841                 buffer_info->time_stamp = jiffies;
3842                 buffer_info->next_to_watch = i;
3843
3844                 i++;
3845                 if (i == tx_ring->count)
3846                         i = 0;
3847                 tx_ring->next_to_use = i;
3848
3849                 return 1;
3850         }
3851
3852         return 0;
3853 }
3854
3855 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3856 {
3857         struct e1000_ring *tx_ring = adapter->tx_ring;
3858         struct e1000_context_desc *context_desc;
3859         struct e1000_buffer *buffer_info;
3860         unsigned int i;
3861         u8 css;
3862         u32 cmd_len = E1000_TXD_CMD_DEXT;
3863         __be16 protocol;
3864
3865         if (skb->ip_summed != CHECKSUM_PARTIAL)
3866                 return 0;
3867
3868         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3869                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3870         else
3871                 protocol = skb->protocol;
3872
3873         switch (protocol) {
3874         case cpu_to_be16(ETH_P_IP):
3875                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3876                         cmd_len |= E1000_TXD_CMD_TCP;
3877                 break;
3878         case cpu_to_be16(ETH_P_IPV6):
3879                 /* XXX not handling all IPV6 headers */
3880                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3881                         cmd_len |= E1000_TXD_CMD_TCP;
3882                 break;
3883         default:
3884                 if (unlikely(net_ratelimit()))
3885                         e_warn("checksum_partial proto=%x!\n",
3886                                be16_to_cpu(protocol));
3887                 break;
3888         }
3889
3890         css = skb_transport_offset(skb);
3891
3892         i = tx_ring->next_to_use;
3893         buffer_info = &tx_ring->buffer_info[i];
3894         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3895
3896         context_desc->lower_setup.ip_config = 0;
3897         context_desc->upper_setup.tcp_fields.tucss = css;
3898         context_desc->upper_setup.tcp_fields.tucso =
3899                                 css + skb->csum_offset;
3900         context_desc->upper_setup.tcp_fields.tucse = 0;
3901         context_desc->tcp_seg_setup.data = 0;
3902         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3903
3904         buffer_info->time_stamp = jiffies;
3905         buffer_info->next_to_watch = i;
3906
3907         i++;
3908         if (i == tx_ring->count)
3909                 i = 0;
3910         tx_ring->next_to_use = i;
3911
3912         return 1;
3913 }
3914
3915 #define E1000_MAX_PER_TXD       8192
3916 #define E1000_MAX_TXD_PWR       12
3917
3918 static int e1000_tx_map(struct e1000_adapter *adapter,
3919                         struct sk_buff *skb, unsigned int first,
3920                         unsigned int max_per_txd, unsigned int nr_frags,
3921                         unsigned int mss)
3922 {
3923         struct e1000_ring *tx_ring = adapter->tx_ring;
3924         struct e1000_buffer *buffer_info;
3925         unsigned int len = skb_headlen(skb);
3926         unsigned int offset, size, count = 0, i;
3927         unsigned int f;
3928         dma_addr_t *map;
3929
3930         i = tx_ring->next_to_use;
3931
3932         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3933                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3934                 adapter->tx_dma_failed++;
3935                 return 0;
3936         }
3937
3938         map = skb_shinfo(skb)->dma_maps;
3939         offset = 0;
3940
3941         while (len) {
3942                 buffer_info = &tx_ring->buffer_info[i];
3943                 size = min(len, max_per_txd);
3944
3945                 buffer_info->length = size;
3946                 buffer_info->time_stamp = jiffies;
3947                 buffer_info->next_to_watch = i;
3948                 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
3949                 count++;
3950
3951                 len -= size;
3952                 offset += size;
3953
3954                 if (len) {
3955                         i++;
3956                         if (i == tx_ring->count)
3957                                 i = 0;
3958                 }
3959         }
3960
3961         for (f = 0; f < nr_frags; f++) {
3962                 struct skb_frag_struct *frag;
3963
3964                 frag = &skb_shinfo(skb)->frags[f];
3965                 len = frag->size;
3966                 offset = 0;
3967
3968                 while (len) {
3969                         i++;
3970                         if (i == tx_ring->count)
3971                                 i = 0;
3972
3973                         buffer_info = &tx_ring->buffer_info[i];
3974                         size = min(len, max_per_txd);
3975
3976                         buffer_info->length = size;
3977                         buffer_info->time_stamp = jiffies;
3978                         buffer_info->next_to_watch = i;
3979                         buffer_info->dma = map[f] + offset;
3980
3981                         len -= size;
3982                         offset += size;
3983                         count++;
3984                 }
3985         }
3986
3987         tx_ring->buffer_info[i].skb = skb;
3988         tx_ring->buffer_info[first].next_to_watch = i;
3989
3990         return count;
3991 }
3992
3993 static void e1000_tx_queue(struct e1000_adapter *adapter,
3994                            int tx_flags, int count)
3995 {
3996         struct e1000_ring *tx_ring = adapter->tx_ring;
3997         struct e1000_tx_desc *tx_desc = NULL;
3998         struct e1000_buffer *buffer_info;
3999         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4000         unsigned int i;
4001
4002         if (tx_flags & E1000_TX_FLAGS_TSO) {
4003                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4004                              E1000_TXD_CMD_TSE;
4005                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4006
4007                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4008                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4009         }
4010
4011         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4012                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4013                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4014         }
4015
4016         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4017                 txd_lower |= E1000_TXD_CMD_VLE;
4018                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4019         }
4020
4021         i = tx_ring->next_to_use;
4022
4023         while (count--) {
4024                 buffer_info = &tx_ring->buffer_info[i];
4025                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4026                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4027                 tx_desc->lower.data =
4028                         cpu_to_le32(txd_lower | buffer_info->length);
4029                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4030
4031                 i++;
4032                 if (i == tx_ring->count)
4033                         i = 0;
4034         }
4035
4036         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4037
4038         /*
4039          * Force memory writes to complete before letting h/w
4040          * know there are new descriptors to fetch.  (Only
4041          * applicable for weak-ordered memory model archs,
4042          * such as IA-64).
4043          */
4044         wmb();
4045
4046         tx_ring->next_to_use = i;
4047         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4048         /*
4049          * we need this if more than one processor can write to our tail
4050          * at a time, it synchronizes IO on IA64/Altix systems
4051          */
4052         mmiowb();
4053 }
4054
4055 #define MINIMUM_DHCP_PACKET_SIZE 282
4056 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4057                                     struct sk_buff *skb)
4058 {
4059         struct e1000_hw *hw =  &adapter->hw;
4060         u16 length, offset;
4061
4062         if (vlan_tx_tag_present(skb)) {
4063                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
4064                     && (adapter->hw.mng_cookie.status &
4065                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4066                         return 0;
4067         }
4068
4069         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4070                 return 0;
4071
4072         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4073                 return 0;
4074
4075         {
4076                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4077                 struct udphdr *udp;
4078
4079                 if (ip->protocol != IPPROTO_UDP)
4080                         return 0;
4081
4082                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4083                 if (ntohs(udp->dest) != 67)
4084                         return 0;
4085
4086                 offset = (u8 *)udp + 8 - skb->data;
4087                 length = skb->len - offset;
4088                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4089         }
4090
4091         return 0;
4092 }
4093
4094 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4095 {
4096         struct e1000_adapter *adapter = netdev_priv(netdev);
4097
4098         netif_stop_queue(netdev);
4099         /*
4100          * Herbert's original patch had:
4101          *  smp_mb__after_netif_stop_queue();
4102          * but since that doesn't exist yet, just open code it.
4103          */
4104         smp_mb();
4105
4106         /*
4107          * We need to check again in a case another CPU has just
4108          * made room available.
4109          */
4110         if (e1000_desc_unused(adapter->tx_ring) < size)
4111                 return -EBUSY;
4112
4113         /* A reprieve! */
4114         netif_start_queue(netdev);
4115         ++adapter->restart_queue;
4116         return 0;
4117 }
4118
4119 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4120 {
4121         struct e1000_adapter *adapter = netdev_priv(netdev);
4122
4123         if (e1000_desc_unused(adapter->tx_ring) >= size)
4124                 return 0;
4125         return __e1000_maybe_stop_tx(netdev, size);
4126 }
4127
4128 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4129 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4130                                     struct net_device *netdev)
4131 {
4132         struct e1000_adapter *adapter = netdev_priv(netdev);
4133         struct e1000_ring *tx_ring = adapter->tx_ring;
4134         unsigned int first;
4135         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4136         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4137         unsigned int tx_flags = 0;
4138         unsigned int len = skb->len - skb->data_len;
4139         unsigned int nr_frags;
4140         unsigned int mss;
4141         int count = 0;
4142         int tso;
4143         unsigned int f;
4144
4145         if (test_bit(__E1000_DOWN, &adapter->state)) {
4146                 dev_kfree_skb_any(skb);
4147                 return NETDEV_TX_OK;
4148         }
4149
4150         if (skb->len <= 0) {
4151                 dev_kfree_skb_any(skb);
4152                 return NETDEV_TX_OK;
4153         }
4154
4155         mss = skb_shinfo(skb)->gso_size;
4156         /*
4157          * The controller does a simple calculation to
4158          * make sure there is enough room in the FIFO before
4159          * initiating the DMA for each buffer.  The calc is:
4160          * 4 = ceil(buffer len/mss).  To make sure we don't
4161          * overrun the FIFO, adjust the max buffer len if mss
4162          * drops.
4163          */
4164         if (mss) {
4165                 u8 hdr_len;
4166                 max_per_txd = min(mss << 2, max_per_txd);
4167                 max_txd_pwr = fls(max_per_txd) - 1;
4168
4169                 /*
4170                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4171                  * points to just header, pull a few bytes of payload from
4172                  * frags into skb->data
4173                  */
4174                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4175                 /*
4176                  * we do this workaround for ES2LAN, but it is un-necessary,
4177                  * avoiding it could save a lot of cycles
4178                  */
4179                 if (skb->data_len && (hdr_len == len)) {
4180                         unsigned int pull_size;
4181
4182                         pull_size = min((unsigned int)4, skb->data_len);
4183                         if (!__pskb_pull_tail(skb, pull_size)) {
4184                                 e_err("__pskb_pull_tail failed.\n");
4185                                 dev_kfree_skb_any(skb);
4186                                 return NETDEV_TX_OK;
4187                         }
4188                         len = skb->len - skb->data_len;
4189                 }
4190         }
4191
4192         /* reserve a descriptor for the offload context */
4193         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4194                 count++;
4195         count++;
4196
4197         count += TXD_USE_COUNT(len, max_txd_pwr);
4198
4199         nr_frags = skb_shinfo(skb)->nr_frags;
4200         for (f = 0; f < nr_frags; f++)
4201                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4202                                        max_txd_pwr);
4203
4204         if (adapter->hw.mac.tx_pkt_filtering)
4205                 e1000_transfer_dhcp_info(adapter, skb);
4206
4207         /*
4208          * need: count + 2 desc gap to keep tail from touching
4209          * head, otherwise try next time
4210          */
4211         if (e1000_maybe_stop_tx(netdev, count + 2))
4212                 return NETDEV_TX_BUSY;
4213
4214         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4215                 tx_flags |= E1000_TX_FLAGS_VLAN;
4216                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4217         }
4218
4219         first = tx_ring->next_to_use;
4220
4221         tso = e1000_tso(adapter, skb);
4222         if (tso < 0) {
4223                 dev_kfree_skb_any(skb);
4224                 return NETDEV_TX_OK;
4225         }
4226
4227         if (tso)
4228                 tx_flags |= E1000_TX_FLAGS_TSO;
4229         else if (e1000_tx_csum(adapter, skb))
4230                 tx_flags |= E1000_TX_FLAGS_CSUM;
4231
4232         /*
4233          * Old method was to assume IPv4 packet by default if TSO was enabled.
4234          * 82571 hardware supports TSO capabilities for IPv6 as well...
4235          * no longer assume, we must.
4236          */
4237         if (skb->protocol == htons(ETH_P_IP))
4238                 tx_flags |= E1000_TX_FLAGS_IPV4;
4239
4240         /* if count is 0 then mapping error has occured */
4241         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4242         if (count) {
4243                 e1000_tx_queue(adapter, tx_flags, count);
4244                 /* Make sure there is space in the ring for the next send. */
4245                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4246
4247         } else {
4248                 dev_kfree_skb_any(skb);
4249                 tx_ring->buffer_info[first].time_stamp = 0;
4250                 tx_ring->next_to_use = first;
4251         }
4252
4253         return NETDEV_TX_OK;
4254 }
4255
4256 /**
4257  * e1000_tx_timeout - Respond to a Tx Hang
4258  * @netdev: network interface device structure
4259  **/
4260 static void e1000_tx_timeout(struct net_device *netdev)
4261 {
4262         struct e1000_adapter *adapter = netdev_priv(netdev);
4263
4264         /* Do the reset outside of interrupt context */
4265         adapter->tx_timeout_count++;
4266         schedule_work(&adapter->reset_task);
4267 }
4268
4269 static void e1000_reset_task(struct work_struct *work)
4270 {
4271         struct e1000_adapter *adapter;
4272         adapter = container_of(work, struct e1000_adapter, reset_task);
4273
4274         e1000e_reinit_locked(adapter);
4275 }
4276
4277 /**
4278  * e1000_get_stats - Get System Network Statistics
4279  * @netdev: network interface device structure
4280  *
4281  * Returns the address of the device statistics structure.
4282  * The statistics are actually updated from the timer callback.
4283  **/
4284 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4285 {
4286         struct e1000_adapter *adapter = netdev_priv(netdev);
4287
4288         /* only return the current stats */
4289         return &adapter->net_stats;
4290 }
4291
4292 /**
4293  * e1000_change_mtu - Change the Maximum Transfer Unit
4294  * @netdev: network interface device structure
4295  * @new_mtu: new value for maximum frame size
4296  *
4297  * Returns 0 on success, negative on failure
4298  **/
4299 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4300 {
4301         struct e1000_adapter *adapter = netdev_priv(netdev);
4302         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4303
4304         /* Jumbo frame support */
4305         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4306             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4307                 e_err("Jumbo Frames not supported.\n");
4308                 return -EINVAL;
4309         }
4310
4311         /* Supported frame sizes */
4312         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4313             (max_frame > adapter->max_hw_frame_size)) {
4314                 e_err("Unsupported MTU setting\n");
4315                 return -EINVAL;
4316         }
4317
4318         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4319                 msleep(1);
4320         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4321         adapter->max_frame_size = max_frame;
4322         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4323         netdev->mtu = new_mtu;
4324         if (netif_running(netdev))
4325                 e1000e_down(adapter);
4326
4327         /*
4328          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4329          * means we reserve 2 more, this pushes us to allocate from the next
4330          * larger slab size.
4331          * i.e. RXBUFFER_2048 --> size-4096 slab
4332          * However with the new *_jumbo_rx* routines, jumbo receives will use
4333          * fragmented skbs
4334          */
4335
4336         if (max_frame <= 2048)
4337                 adapter->rx_buffer_len = 2048;
4338         else
4339                 adapter->rx_buffer_len = 4096;
4340
4341         /* adjust allocation if LPE protects us, and we aren't using SBP */
4342         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4343              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4344                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4345                                          + ETH_FCS_LEN;
4346
4347         if (netif_running(netdev))
4348                 e1000e_up(adapter);
4349         else
4350                 e1000e_reset(adapter);
4351
4352         clear_bit(__E1000_RESETTING, &adapter->state);
4353
4354         return 0;
4355 }
4356
4357 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4358                            int cmd)
4359 {
4360         struct e1000_adapter *adapter = netdev_priv(netdev);
4361         struct mii_ioctl_data *data = if_mii(ifr);
4362
4363         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4364                 return -EOPNOTSUPP;
4365
4366         switch (cmd) {
4367         case SIOCGMIIPHY:
4368                 data->phy_id = adapter->hw.phy.addr;
4369                 break;
4370         case SIOCGMIIREG:
4371                 switch (data->reg_num & 0x1F) {
4372                 case MII_BMCR:
4373                         data->val_out = adapter->phy_regs.bmcr;
4374                         break;
4375                 case MII_BMSR:
4376                         data->val_out = adapter->phy_regs.bmsr;
4377                         break;
4378                 case MII_PHYSID1:
4379                         data->val_out = (adapter->hw.phy.id >> 16);
4380                         break;
4381                 case MII_PHYSID2:
4382                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4383                         break;
4384                 case MII_ADVERTISE:
4385                         data->val_out = adapter->phy_regs.advertise;
4386                         break;
4387                 case MII_LPA:
4388                         data->val_out = adapter->phy_regs.lpa;
4389                         break;
4390                 case MII_EXPANSION:
4391                         data->val_out = adapter->phy_regs.expansion;
4392                         break;
4393                 case MII_CTRL1000:
4394                         data->val_out = adapter->phy_regs.ctrl1000;
4395                         break;
4396                 case MII_STAT1000:
4397                         data->val_out = adapter->phy_regs.stat1000;
4398                         break;
4399                 case MII_ESTATUS:
4400                         data->val_out = adapter->phy_regs.estatus;
4401                         break;
4402                 default:
4403                         return -EIO;
4404                 }
4405                 break;
4406         case SIOCSMIIREG:
4407         default:
4408                 return -EOPNOTSUPP;
4409         }
4410         return 0;
4411 }
4412
4413 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4414 {
4415         switch (cmd) {
4416         case SIOCGMIIPHY:
4417         case SIOCGMIIREG:
4418         case SIOCSMIIREG:
4419                 return e1000_mii_ioctl(netdev, ifr, cmd);
4420         default:
4421                 return -EOPNOTSUPP;
4422         }
4423 }
4424
4425 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4426 {
4427         struct e1000_hw *hw = &adapter->hw;
4428         u32 i, mac_reg;
4429         u16 phy_reg;
4430         int retval = 0;
4431
4432         /* copy MAC RARs to PHY RARs */
4433         for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4434                 mac_reg = er32(RAL(i));
4435                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4436                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4437                 mac_reg = er32(RAH(i));
4438                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4439                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4440         }
4441
4442         /* copy MAC MTA to PHY MTA */
4443         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4444                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4445                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4446                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4447         }
4448
4449         /* configure PHY Rx Control register */
4450         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4451         mac_reg = er32(RCTL);
4452         if (mac_reg & E1000_RCTL_UPE)
4453                 phy_reg |= BM_RCTL_UPE;
4454         if (mac_reg & E1000_RCTL_MPE)
4455                 phy_reg |= BM_RCTL_MPE;
4456         phy_reg &= ~(BM_RCTL_MO_MASK);
4457         if (mac_reg & E1000_RCTL_MO_3)
4458                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4459                                 << BM_RCTL_MO_SHIFT);
4460         if (mac_reg & E1000_RCTL_BAM)
4461                 phy_reg |= BM_RCTL_BAM;
4462         if (mac_reg & E1000_RCTL_PMCF)
4463                 phy_reg |= BM_RCTL_PMCF;
4464         mac_reg = er32(CTRL);
4465         if (mac_reg & E1000_CTRL_RFCE)
4466                 phy_reg |= BM_RCTL_RFCE;
4467         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4468
4469         /* enable PHY wakeup in MAC register */
4470         ew32(WUFC, wufc);
4471         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4472
4473         /* configure and enable PHY wakeup in PHY registers */
4474         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4475         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4476
4477         /* activate PHY wakeup */
4478         retval = hw->phy.ops.acquire_phy(hw);
4479         if (retval) {
4480                 e_err("Could not acquire PHY\n");
4481                 return retval;
4482         }
4483         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4484                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4485         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4486         if (retval) {
4487                 e_err("Could not read PHY page 769\n");
4488                 goto out;
4489         }
4490         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4491         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4492         if (retval)
4493                 e_err("Could not set PHY Host Wakeup bit\n");
4494 out:
4495         hw->phy.ops.release_phy(hw);
4496
4497         return retval;
4498 }
4499
4500 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4501 {
4502         struct net_device *netdev = pci_get_drvdata(pdev);
4503         struct e1000_adapter *adapter = netdev_priv(netdev);
4504         struct e1000_hw *hw = &adapter->hw;
4505         u32 ctrl, ctrl_ext, rctl, status;
4506         u32 wufc = adapter->wol;
4507         int retval = 0;
4508
4509         netif_device_detach(netdev);
4510
4511         if (netif_running(netdev)) {
4512                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4513                 e1000e_down(adapter);
4514                 e1000_free_irq(adapter);
4515         }
4516         e1000e_reset_interrupt_capability(adapter);
4517
4518         retval = pci_save_state(pdev);
4519         if (retval)
4520                 return retval;
4521
4522         status = er32(STATUS);
4523         if (status & E1000_STATUS_LU)
4524                 wufc &= ~E1000_WUFC_LNKC;
4525
4526         if (wufc) {
4527                 e1000_setup_rctl(adapter);
4528                 e1000_set_multi(netdev);
4529
4530                 /* turn on all-multi mode if wake on multicast is enabled */
4531                 if (wufc & E1000_WUFC_MC) {
4532                         rctl = er32(RCTL);
4533                         rctl |= E1000_RCTL_MPE;
4534                         ew32(RCTL, rctl);
4535                 }
4536
4537                 ctrl = er32(CTRL);
4538                 /* advertise wake from D3Cold */
4539                 #define E1000_CTRL_ADVD3WUC 0x00100000
4540                 /* phy power management enable */
4541                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4542                 ctrl |= E1000_CTRL_ADVD3WUC;
4543                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4544                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4545                 ew32(CTRL, ctrl);
4546
4547                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4548                     adapter->hw.phy.media_type ==
4549                     e1000_media_type_internal_serdes) {
4550                         /* keep the laser running in D3 */
4551                         ctrl_ext = er32(CTRL_EXT);
4552                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4553                         ew32(CTRL_EXT, ctrl_ext);
4554                 }
4555
4556                 if (adapter->flags & FLAG_IS_ICH)
4557                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4558
4559                 /* Allow time for pending master requests to run */
4560                 e1000e_disable_pcie_master(&adapter->hw);
4561
4562                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4563                         /* enable wakeup by the PHY */
4564                         retval = e1000_init_phy_wakeup(adapter, wufc);
4565                         if (retval)
4566                                 return retval;
4567                 } else {
4568                         /* enable wakeup by the MAC */
4569                         ew32(WUFC, wufc);
4570                         ew32(WUC, E1000_WUC_PME_EN);
4571                 }
4572         } else {
4573                 ew32(WUC, 0);
4574                 ew32(WUFC, 0);
4575         }
4576
4577         *enable_wake = !!wufc;
4578
4579         /* make sure adapter isn't asleep if manageability is enabled */
4580         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4581             (hw->mac.ops.check_mng_mode(hw)))
4582                 *enable_wake = true;
4583
4584         if (adapter->hw.phy.type == e1000_phy_igp_3)
4585                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4586
4587         /*
4588          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4589          * would have already happened in close and is redundant.
4590          */
4591         e1000_release_hw_control(adapter);
4592
4593         pci_disable_device(pdev);
4594
4595         return 0;
4596 }
4597
4598 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4599 {
4600         if (sleep && wake) {
4601                 pci_prepare_to_sleep(pdev);
4602                 return;
4603         }
4604
4605         pci_wake_from_d3(pdev, wake);
4606         pci_set_power_state(pdev, PCI_D3hot);
4607 }
4608
4609 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4610                                     bool wake)
4611 {
4612         struct net_device *netdev = pci_get_drvdata(pdev);
4613         struct e1000_adapter *adapter = netdev_priv(netdev);
4614
4615         /*
4616          * The pci-e switch on some quad port adapters will report a
4617          * correctable error when the MAC transitions from D0 to D3.  To
4618          * prevent this we need to mask off the correctable errors on the
4619          * downstream port of the pci-e switch.
4620          */
4621         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4622                 struct pci_dev *us_dev = pdev->bus->self;
4623                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4624                 u16 devctl;
4625
4626                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4627                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4628                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4629
4630                 e1000_power_off(pdev, sleep, wake);
4631
4632                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4633         } else {
4634                 e1000_power_off(pdev, sleep, wake);
4635         }
4636 }
4637
4638 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4639 {
4640         int pos;
4641         u16 val;
4642
4643         /*
4644          * 82573 workaround - disable L1 ASPM on mobile chipsets
4645          *
4646          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4647          * resulting in lost data or garbage information on the pci-e link
4648          * level. This could result in (false) bad EEPROM checksum errors,
4649          * long ping times (up to 2s) or even a system freeze/hang.
4650          *
4651          * Unfortunately this feature saves about 1W power consumption when
4652          * active.
4653          */
4654         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4655         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4656         if (val & 0x2) {
4657                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4658                 val &= ~0x2;
4659                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4660         }
4661 }
4662
4663 #ifdef CONFIG_PM
4664 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4665 {
4666         int retval;
4667         bool wake;
4668
4669         retval = __e1000_shutdown(pdev, &wake);
4670         if (!retval)
4671                 e1000_complete_shutdown(pdev, true, wake);
4672
4673         return retval;
4674 }
4675
4676 static int e1000_resume(struct pci_dev *pdev)
4677 {
4678         struct net_device *netdev = pci_get_drvdata(pdev);
4679         struct e1000_adapter *adapter = netdev_priv(netdev);
4680         struct e1000_hw *hw = &adapter->hw;
4681         u32 err;
4682
4683         pci_set_power_state(pdev, PCI_D0);
4684         pci_restore_state(pdev);
4685         e1000e_disable_l1aspm(pdev);
4686
4687         err = pci_enable_device_mem(pdev);
4688         if (err) {
4689                 dev_err(&pdev->dev,
4690                         "Cannot enable PCI device from suspend\n");
4691                 return err;
4692         }
4693
4694         pci_set_master(pdev);
4695
4696         pci_enable_wake(pdev, PCI_D3hot, 0);
4697         pci_enable_wake(pdev, PCI_D3cold, 0);
4698
4699         e1000e_set_interrupt_capability(adapter);
4700         if (netif_running(netdev)) {
4701                 err = e1000_request_irq(adapter);
4702                 if (err)
4703                         return err;
4704         }
4705
4706         e1000e_power_up_phy(adapter);
4707
4708         /* report the system wakeup cause from S3/S4 */
4709         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4710                 u16 phy_data;
4711
4712                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4713                 if (phy_data) {
4714                         e_info("PHY Wakeup cause - %s\n",
4715                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4716                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4717                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4718                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4719                                 phy_data & E1000_WUS_LNKC ? "Link Status "
4720                                 " Change" : "other");
4721                 }
4722                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4723         } else {
4724                 u32 wus = er32(WUS);
4725                 if (wus) {
4726                         e_info("MAC Wakeup cause - %s\n",
4727                                 wus & E1000_WUS_EX ? "Unicast Packet" :
4728                                 wus & E1000_WUS_MC ? "Multicast Packet" :
4729                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
4730                                 wus & E1000_WUS_MAG ? "Magic Packet" :
4731                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
4732                                 "other");
4733                 }
4734                 ew32(WUS, ~0);
4735         }
4736
4737         e1000e_reset(adapter);
4738
4739         e1000_init_manageability(adapter);
4740
4741         if (netif_running(netdev))
4742                 e1000e_up(adapter);
4743
4744         netif_device_attach(netdev);
4745
4746         /*
4747          * If the controller has AMT, do not set DRV_LOAD until the interface
4748          * is up.  For all other cases, let the f/w know that the h/w is now
4749          * under the control of the driver.
4750          */
4751         if (!(adapter->flags & FLAG_HAS_AMT))
4752                 e1000_get_hw_control(adapter);
4753
4754         return 0;
4755 }
4756 #endif
4757
4758 static void e1000_shutdown(struct pci_dev *pdev)
4759 {
4760         bool wake = false;
4761
4762         __e1000_shutdown(pdev, &wake);
4763
4764         if (system_state == SYSTEM_POWER_OFF)
4765                 e1000_complete_shutdown(pdev, false, wake);
4766 }
4767
4768 #ifdef CONFIG_NET_POLL_CONTROLLER
4769 /*
4770  * Polling 'interrupt' - used by things like netconsole to send skbs
4771  * without having to re-enable interrupts. It's not called while
4772  * the interrupt routine is executing.
4773  */
4774 static void e1000_netpoll(struct net_device *netdev)
4775 {
4776         struct e1000_adapter *adapter = netdev_priv(netdev);
4777
4778         disable_irq(adapter->pdev->irq);
4779         e1000_intr(adapter->pdev->irq, netdev);
4780
4781         enable_irq(adapter->pdev->irq);
4782 }
4783 #endif
4784
4785 /**
4786  * e1000_io_error_detected - called when PCI error is detected
4787  * @pdev: Pointer to PCI device
4788  * @state: The current pci connection state
4789  *
4790  * This function is called after a PCI bus error affecting
4791  * this device has been detected.
4792  */
4793 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4794                                                 pci_channel_state_t state)
4795 {
4796         struct net_device *netdev = pci_get_drvdata(pdev);
4797         struct e1000_adapter *adapter = netdev_priv(netdev);
4798
4799         netif_device_detach(netdev);
4800
4801         if (state == pci_channel_io_perm_failure)
4802                 return PCI_ERS_RESULT_DISCONNECT;
4803
4804         if (netif_running(netdev))
4805                 e1000e_down(adapter);
4806         pci_disable_device(pdev);
4807
4808         /* Request a slot slot reset. */
4809         return PCI_ERS_RESULT_NEED_RESET;
4810 }
4811
4812 /**
4813  * e1000_io_slot_reset - called after the pci bus has been reset.
4814  * @pdev: Pointer to PCI device
4815  *
4816  * Restart the card from scratch, as if from a cold-boot. Implementation
4817  * resembles the first-half of the e1000_resume routine.
4818  */
4819 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4820 {
4821         struct net_device *netdev = pci_get_drvdata(pdev);
4822         struct e1000_adapter *adapter = netdev_priv(netdev);
4823         struct e1000_hw *hw = &adapter->hw;
4824         int err;
4825         pci_ers_result_t result;
4826
4827         e1000e_disable_l1aspm(pdev);
4828         err = pci_enable_device_mem(pdev);
4829         if (err) {
4830                 dev_err(&pdev->dev,
4831                         "Cannot re-enable PCI device after reset.\n");
4832                 result = PCI_ERS_RESULT_DISCONNECT;
4833         } else {
4834                 pci_set_master(pdev);
4835                 pci_restore_state(pdev);
4836
4837                 pci_enable_wake(pdev, PCI_D3hot, 0);
4838                 pci_enable_wake(pdev, PCI_D3cold, 0);
4839
4840                 e1000e_reset(adapter);
4841                 ew32(WUS, ~0);
4842                 result = PCI_ERS_RESULT_RECOVERED;
4843         }
4844
4845         pci_cleanup_aer_uncorrect_error_status(pdev);
4846
4847         return result;
4848 }
4849
4850 /**
4851  * e1000_io_resume - called when traffic can start flowing again.
4852  * @pdev: Pointer to PCI device
4853  *
4854  * This callback is called when the error recovery driver tells us that
4855  * its OK to resume normal operation. Implementation resembles the
4856  * second-half of the e1000_resume routine.
4857  */
4858 static void e1000_io_resume(struct pci_dev *pdev)
4859 {
4860         struct net_device *netdev = pci_get_drvdata(pdev);
4861         struct e1000_adapter *adapter = netdev_priv(netdev);
4862
4863         e1000_init_manageability(adapter);
4864
4865         if (netif_running(netdev)) {
4866                 if (e1000e_up(adapter)) {
4867                         dev_err(&pdev->dev,
4868                                 "can't bring device back up after reset\n");
4869                         return;
4870                 }
4871         }
4872
4873         netif_device_attach(netdev);
4874
4875         /*
4876          * If the controller has AMT, do not set DRV_LOAD until the interface
4877          * is up.  For all other cases, let the f/w know that the h/w is now
4878          * under the control of the driver.
4879          */
4880         if (!(adapter->flags & FLAG_HAS_AMT))
4881                 e1000_get_hw_control(adapter);
4882
4883 }
4884
4885 static void e1000_print_device_info(struct e1000_adapter *adapter)
4886 {
4887         struct e1000_hw *hw = &adapter->hw;
4888         struct net_device *netdev = adapter->netdev;
4889         u32 pba_num;
4890
4891         /* print bus type/speed/width info */
4892         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4893                /* bus width */
4894                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4895                 "Width x1"),
4896                /* MAC address */
4897                netdev->dev_addr);
4898         e_info("Intel(R) PRO/%s Network Connection\n",
4899                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4900         e1000e_read_pba_num(hw, &pba_num);
4901         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4902                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4903 }
4904
4905 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4906 {
4907         struct e1000_hw *hw = &adapter->hw;
4908         int ret_val;
4909         u16 buf = 0;
4910
4911         if (hw->mac.type != e1000_82573)
4912                 return;
4913
4914         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4915         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4916                 /* Deep Smart Power Down (DSPD) */
4917                 dev_warn(&adapter->pdev->dev,
4918                          "Warning: detected DSPD enabled in EEPROM\n");
4919         }
4920
4921         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4922         if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4923                 /* ASPM enable */
4924                 dev_warn(&adapter->pdev->dev,
4925                          "Warning: detected ASPM enabled in EEPROM\n");
4926         }
4927 }
4928
4929 static const struct net_device_ops e1000e_netdev_ops = {
4930         .ndo_open               = e1000_open,
4931         .ndo_stop               = e1000_close,
4932         .ndo_start_xmit         = e1000_xmit_frame,
4933         .ndo_get_stats          = e1000_get_stats,
4934         .ndo_set_multicast_list = e1000_set_multi,
4935         .ndo_set_mac_address    = e1000_set_mac,
4936         .ndo_change_mtu         = e1000_change_mtu,
4937         .ndo_do_ioctl           = e1000_ioctl,
4938         .ndo_tx_timeout         = e1000_tx_timeout,
4939         .ndo_validate_addr      = eth_validate_addr,
4940
4941         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4942         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4943         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4944 #ifdef CONFIG_NET_POLL_CONTROLLER
4945         .ndo_poll_controller    = e1000_netpoll,
4946 #endif
4947 };
4948
4949 /**
4950  * e1000_probe - Device Initialization Routine
4951  * @pdev: PCI device information struct
4952  * @ent: entry in e1000_pci_tbl
4953  *
4954  * Returns 0 on success, negative on failure
4955  *
4956  * e1000_probe initializes an adapter identified by a pci_dev structure.
4957  * The OS initialization, configuring of the adapter private structure,
4958  * and a hardware reset occur.
4959  **/
4960 static int __devinit e1000_probe(struct pci_dev *pdev,
4961                                  const struct pci_device_id *ent)
4962 {
4963         struct net_device *netdev;
4964         struct e1000_adapter *adapter;
4965         struct e1000_hw *hw;
4966         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4967         resource_size_t mmio_start, mmio_len;
4968         resource_size_t flash_start, flash_len;
4969
4970         static int cards_found;
4971         int i, err, pci_using_dac;
4972         u16 eeprom_data = 0;
4973         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4974
4975         e1000e_disable_l1aspm(pdev);
4976
4977         err = pci_enable_device_mem(pdev);
4978         if (err)
4979                 return err;
4980
4981         pci_using_dac = 0;
4982         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4983         if (!err) {
4984                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4985                 if (!err)
4986                         pci_using_dac = 1;
4987         } else {
4988                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4989                 if (err) {
4990                         err = pci_set_consistent_dma_mask(pdev,
4991                                                           DMA_BIT_MASK(32));
4992                         if (err) {
4993                                 dev_err(&pdev->dev, "No usable DMA "
4994                                         "configuration, aborting\n");
4995                                 goto err_dma;
4996                         }
4997                 }
4998         }
4999
5000         err = pci_request_selected_regions_exclusive(pdev,
5001                                           pci_select_bars(pdev, IORESOURCE_MEM),
5002                                           e1000e_driver_name);
5003         if (err)
5004                 goto err_pci_reg;
5005
5006         /* AER (Advanced Error Reporting) hooks */
5007         pci_enable_pcie_error_reporting(pdev);
5008
5009         pci_set_master(pdev);
5010         /* PCI config space info */
5011         err = pci_save_state(pdev);
5012         if (err)
5013                 goto err_alloc_etherdev;
5014
5015         err = -ENOMEM;
5016         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5017         if (!netdev)
5018                 goto err_alloc_etherdev;
5019
5020         SET_NETDEV_DEV(netdev, &pdev->dev);
5021
5022         pci_set_drvdata(pdev, netdev);
5023         adapter = netdev_priv(netdev);
5024         hw = &adapter->hw;
5025         adapter->netdev = netdev;
5026         adapter->pdev = pdev;
5027         adapter->ei = ei;
5028         adapter->pba = ei->pba;
5029         adapter->flags = ei->flags;
5030         adapter->flags2 = ei->flags2;
5031         adapter->hw.adapter = adapter;
5032         adapter->hw.mac.type = ei->mac;
5033         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5034         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5035
5036         mmio_start = pci_resource_start(pdev, 0);
5037         mmio_len = pci_resource_len(pdev, 0);
5038
5039         err = -EIO;
5040         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5041         if (!adapter->hw.hw_addr)
5042                 goto err_ioremap;
5043
5044         if ((adapter->flags & FLAG_HAS_FLASH) &&
5045             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5046                 flash_start = pci_resource_start(pdev, 1);
5047                 flash_len = pci_resource_len(pdev, 1);
5048                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5049                 if (!adapter->hw.flash_address)
5050                         goto err_flashmap;
5051         }
5052
5053         /* construct the net_device struct */
5054         netdev->netdev_ops              = &e1000e_netdev_ops;
5055         e1000e_set_ethtool_ops(netdev);
5056         netdev->watchdog_timeo          = 5 * HZ;
5057         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5058         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5059
5060         netdev->mem_start = mmio_start;
5061         netdev->mem_end = mmio_start + mmio_len;
5062
5063         adapter->bd_number = cards_found++;
5064
5065         e1000e_check_options(adapter);
5066
5067         /* setup adapter struct */
5068         err = e1000_sw_init(adapter);
5069         if (err)
5070                 goto err_sw_init;
5071
5072         err = -EIO;
5073
5074         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5075         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5076         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5077
5078         err = ei->get_variants(adapter);
5079         if (err)
5080                 goto err_hw_init;
5081
5082         if ((adapter->flags & FLAG_IS_ICH) &&
5083             (adapter->flags & FLAG_READ_ONLY_NVM))
5084                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5085
5086         hw->mac.ops.get_bus_info(&adapter->hw);
5087
5088         adapter->hw.phy.autoneg_wait_to_complete = 0;
5089
5090         /* Copper options */
5091         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5092                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5093                 adapter->hw.phy.disable_polarity_correction = 0;
5094                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5095         }
5096
5097         if (e1000_check_reset_block(&adapter->hw))
5098                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5099
5100         netdev->features = NETIF_F_SG |
5101                            NETIF_F_HW_CSUM |
5102                            NETIF_F_HW_VLAN_TX |
5103                            NETIF_F_HW_VLAN_RX;
5104
5105         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5106                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5107
5108         netdev->features |= NETIF_F_TSO;
5109         netdev->features |= NETIF_F_TSO6;
5110
5111         netdev->vlan_features |= NETIF_F_TSO;
5112         netdev->vlan_features |= NETIF_F_TSO6;
5113         netdev->vlan_features |= NETIF_F_HW_CSUM;
5114         netdev->vlan_features |= NETIF_F_SG;
5115
5116         if (pci_using_dac)
5117                 netdev->features |= NETIF_F_HIGHDMA;
5118
5119         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5120                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5121
5122         /*
5123          * before reading the NVM, reset the controller to
5124          * put the device in a known good starting state
5125          */
5126         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5127
5128         /*
5129          * systems with ASPM and others may see the checksum fail on the first
5130          * attempt. Let's give it a few tries
5131          */
5132         for (i = 0;; i++) {
5133                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5134                         break;
5135                 if (i == 2) {
5136                         e_err("The NVM Checksum Is Not Valid\n");
5137                         err = -EIO;
5138                         goto err_eeprom;
5139                 }
5140         }
5141
5142         e1000_eeprom_checks(adapter);
5143
5144         /* copy the MAC address out of the NVM */
5145         if (e1000e_read_mac_addr(&adapter->hw))
5146                 e_err("NVM Read Error while reading MAC address\n");
5147
5148         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5149         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5150
5151         if (!is_valid_ether_addr(netdev->perm_addr)) {
5152                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5153                 err = -EIO;
5154                 goto err_eeprom;
5155         }
5156
5157         init_timer(&adapter->watchdog_timer);
5158         adapter->watchdog_timer.function = &e1000_watchdog;
5159         adapter->watchdog_timer.data = (unsigned long) adapter;
5160
5161         init_timer(&adapter->phy_info_timer);
5162         adapter->phy_info_timer.function = &e1000_update_phy_info;
5163         adapter->phy_info_timer.data = (unsigned long) adapter;
5164
5165         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5166         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5167         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5168         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5169
5170         /* Initialize link parameters. User can change them with ethtool */
5171         adapter->hw.mac.autoneg = 1;
5172         adapter->fc_autoneg = 1;
5173         adapter->hw.fc.requested_mode = e1000_fc_default;
5174         adapter->hw.fc.current_mode = e1000_fc_default;
5175         adapter->hw.phy.autoneg_advertised = 0x2f;
5176
5177         /* ring size defaults */
5178         adapter->rx_ring->count = 256;
5179         adapter->tx_ring->count = 256;
5180
5181         /*
5182          * Initial Wake on LAN setting - If APM wake is enabled in
5183          * the EEPROM, enable the ACPI Magic Packet filter
5184          */
5185         if (adapter->flags & FLAG_APME_IN_WUC) {
5186                 /* APME bit in EEPROM is mapped to WUC.APME */
5187                 eeprom_data = er32(WUC);
5188                 eeprom_apme_mask = E1000_WUC_APME;
5189                 if ((hw->mac.type > e1000_ich10lan) &&
5190                     (eeprom_data & E1000_WUC_PHY_WAKE))
5191                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5192         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5193                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5194                     (adapter->hw.bus.func == 1))
5195                         e1000_read_nvm(&adapter->hw,
5196                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5197                 else
5198                         e1000_read_nvm(&adapter->hw,
5199                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5200         }
5201
5202         /* fetch WoL from EEPROM */
5203         if (eeprom_data & eeprom_apme_mask)
5204                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5205
5206         /*
5207          * now that we have the eeprom settings, apply the special cases
5208          * where the eeprom may be wrong or the board simply won't support
5209          * wake on lan on a particular port
5210          */
5211         if (!(adapter->flags & FLAG_HAS_WOL))
5212                 adapter->eeprom_wol = 0;
5213
5214         /* initialize the wol settings based on the eeprom settings */
5215         adapter->wol = adapter->eeprom_wol;
5216         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5217
5218         /* save off EEPROM version number */
5219         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5220
5221         /* reset the hardware with the new settings */
5222         e1000e_reset(adapter);
5223
5224         /*
5225          * If the controller has AMT, do not set DRV_LOAD until the interface
5226          * is up.  For all other cases, let the f/w know that the h/w is now
5227          * under the control of the driver.
5228          */
5229         if (!(adapter->flags & FLAG_HAS_AMT))
5230                 e1000_get_hw_control(adapter);
5231
5232         strcpy(netdev->name, "eth%d");
5233         err = register_netdev(netdev);
5234         if (err)
5235                 goto err_register;
5236
5237         /* carrier off reporting is important to ethtool even BEFORE open */
5238         netif_carrier_off(netdev);
5239
5240         e1000_print_device_info(adapter);
5241
5242         return 0;
5243
5244 err_register:
5245         if (!(adapter->flags & FLAG_HAS_AMT))
5246                 e1000_release_hw_control(adapter);
5247 err_eeprom:
5248         if (!e1000_check_reset_block(&adapter->hw))
5249                 e1000_phy_hw_reset(&adapter->hw);
5250 err_hw_init:
5251
5252         kfree(adapter->tx_ring);
5253         kfree(adapter->rx_ring);
5254 err_sw_init:
5255         if (adapter->hw.flash_address)
5256                 iounmap(adapter->hw.flash_address);
5257         e1000e_reset_interrupt_capability(adapter);
5258 err_flashmap:
5259         iounmap(adapter->hw.hw_addr);
5260 err_ioremap:
5261         free_netdev(netdev);
5262 err_alloc_etherdev:
5263         pci_release_selected_regions(pdev,
5264                                      pci_select_bars(pdev, IORESOURCE_MEM));
5265 err_pci_reg:
5266 err_dma:
5267         pci_disable_device(pdev);
5268         return err;
5269 }
5270
5271 /**
5272  * e1000_remove - Device Removal Routine
5273  * @pdev: PCI device information struct
5274  *
5275  * e1000_remove is called by the PCI subsystem to alert the driver
5276  * that it should release a PCI device.  The could be caused by a
5277  * Hot-Plug event, or because the driver is going to be removed from
5278  * memory.
5279  **/
5280 static void __devexit e1000_remove(struct pci_dev *pdev)
5281 {
5282         struct net_device *netdev = pci_get_drvdata(pdev);
5283         struct e1000_adapter *adapter = netdev_priv(netdev);
5284
5285         /*
5286          * flush_scheduled work may reschedule our watchdog task, so
5287          * explicitly disable watchdog tasks from being rescheduled
5288          */
5289         set_bit(__E1000_DOWN, &adapter->state);
5290         del_timer_sync(&adapter->watchdog_timer);
5291         del_timer_sync(&adapter->phy_info_timer);
5292
5293         flush_scheduled_work();
5294
5295         /*
5296          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5297          * would have already happened in close and is redundant.
5298          */
5299         e1000_release_hw_control(adapter);
5300
5301         unregister_netdev(netdev);
5302
5303         if (!e1000_check_reset_block(&adapter->hw))
5304                 e1000_phy_hw_reset(&adapter->hw);
5305
5306         e1000e_reset_interrupt_capability(adapter);
5307         kfree(adapter->tx_ring);
5308         kfree(adapter->rx_ring);
5309
5310         iounmap(adapter->hw.hw_addr);
5311         if (adapter->hw.flash_address)
5312                 iounmap(adapter->hw.flash_address);
5313         pci_release_selected_regions(pdev,
5314                                      pci_select_bars(pdev, IORESOURCE_MEM));
5315
5316         free_netdev(netdev);
5317
5318         /* AER disable */
5319         pci_disable_pcie_error_reporting(pdev);
5320
5321         pci_disable_device(pdev);
5322 }
5323
5324 /* PCI Error Recovery (ERS) */
5325 static struct pci_error_handlers e1000_err_handler = {
5326         .error_detected = e1000_io_error_detected,
5327         .slot_reset = e1000_io_slot_reset,
5328         .resume = e1000_io_resume,
5329 };
5330
5331 static struct pci_device_id e1000_pci_tbl[] = {
5332         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5333         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5334         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5335         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5336         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5337         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5338         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5339         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5340         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5341
5342         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5343         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5344         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5345         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5346
5347         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5348         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5349         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5350
5351         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5352         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5353         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5354
5355         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5356           board_80003es2lan },
5357         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5358           board_80003es2lan },
5359         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5360           board_80003es2lan },
5361         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5362           board_80003es2lan },
5363
5364         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5365         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5366         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5367         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5368         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5369         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5370         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5371         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5372
5373         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5374         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5375         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5376         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5377         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5378         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5379         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5380         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5381         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5382
5383         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5384         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5385         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5386
5387         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5388         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5389
5390         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5391         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5392         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5393         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5394
5395         { }     /* terminate list */
5396 };
5397 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5398
5399 /* PCI Device API Driver */
5400 static struct pci_driver e1000_driver = {
5401         .name     = e1000e_driver_name,
5402         .id_table = e1000_pci_tbl,
5403         .probe    = e1000_probe,
5404         .remove   = __devexit_p(e1000_remove),
5405 #ifdef CONFIG_PM
5406         /* Power Management Hooks */
5407         .suspend  = e1000_suspend,
5408         .resume   = e1000_resume,
5409 #endif
5410         .shutdown = e1000_shutdown,
5411         .err_handler = &e1000_err_handler
5412 };
5413
5414 /**
5415  * e1000_init_module - Driver Registration Routine
5416  *
5417  * e1000_init_module is the first routine called when the driver is
5418  * loaded. All it does is register with the PCI subsystem.
5419  **/
5420 static int __init e1000_init_module(void)
5421 {
5422         int ret;
5423         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5424                e1000e_driver_name, e1000e_driver_version);
5425         printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5426                e1000e_driver_name);
5427         ret = pci_register_driver(&e1000_driver);
5428         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5429                                PM_QOS_DEFAULT_VALUE);
5430                                 
5431         return ret;
5432 }
5433 module_init(e1000_init_module);
5434
5435 /**
5436  * e1000_exit_module - Driver Exit Cleanup Routine
5437  *
5438  * e1000_exit_module is called just before the driver is removed
5439  * from memory.
5440  **/
5441 static void __exit e1000_exit_module(void)
5442 {
5443         pci_unregister_driver(&e1000_driver);
5444         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5445 }
5446 module_exit(e1000_exit_module);
5447
5448
5449 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5450 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5451 MODULE_LICENSE("GPL");
5452 MODULE_VERSION(DRV_VERSION);
5453
5454 /* e1000_main.c */