Revert "Merge remote-tracking branch 'linux-2.6.32.y/master' into develop"
[firefly-linux-kernel-4.4.55.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
61
62 #include "e1000.h"
63
64 #define ICH_FLASH_GFPREG                0x0000
65 #define ICH_FLASH_HSFSTS                0x0004
66 #define ICH_FLASH_HSFCTL                0x0006
67 #define ICH_FLASH_FADDR                 0x0008
68 #define ICH_FLASH_FDATA0                0x0010
69 #define ICH_FLASH_PR0                   0x0074
70
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
76
77 #define ICH_CYCLE_READ                  0
78 #define ICH_CYCLE_WRITE                 2
79 #define ICH_CYCLE_ERASE                 3
80
81 #define FLASH_GFPREG_BASE_MASK          0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT         12
83
84 #define ICH_FLASH_SEG_SIZE_256          256
85 #define ICH_FLASH_SEG_SIZE_4K           4096
86 #define ICH_FLASH_SEG_SIZE_8K           8192
87 #define ICH_FLASH_SEG_SIZE_64K          65536
88
89
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92 #define E1000_ICH_MNG_IAMT_MODE         0x2
93
94 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
95                                  (ID_LED_DEF1_OFF2 <<  8) | \
96                                  (ID_LED_DEF1_ON2  <<  4) | \
97                                  (ID_LED_DEF1_DEF2))
98
99 #define E1000_ICH_NVM_SIG_WORD          0x13
100 #define E1000_ICH_NVM_SIG_MASK          0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
102 #define E1000_ICH_NVM_SIG_VALUE         0x80
103
104 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
105
106 #define E1000_FEXTNVM_SW_CONFIG         1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
110
111 #define E1000_ICH_RAR_ENTRIES           7
112
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115                            ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
118
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
122
123 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
124
125 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
126
127 /* SMBus Address Phy Register */
128 #define HV_SMB_ADDR            PHY_REG(768, 26)
129 #define HV_SMB_ADDR_PEC_EN     0x0200
130 #define HV_SMB_ADDR_VALID      0x0080
131
132 /* Strapping Option Register - RO */
133 #define E1000_STRAP                     0x0000C
134 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
135 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
136
137 /* OEM Bits Phy Register */
138 #define HV_OEM_BITS            PHY_REG(768, 25)
139 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
140 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
141 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
142
143 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
144 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
145
146 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
147 /* Offset 04h HSFSTS */
148 union ich8_hws_flash_status {
149         struct ich8_hsfsts {
150                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
151                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
152                 u16 dael       :1; /* bit 2 Direct Access error Log */
153                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
154                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
155                 u16 reserved1  :2; /* bit 13:6 Reserved */
156                 u16 reserved2  :6; /* bit 13:6 Reserved */
157                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
158                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
159         } hsf_status;
160         u16 regval;
161 };
162
163 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
164 /* Offset 06h FLCTL */
165 union ich8_hws_flash_ctrl {
166         struct ich8_hsflctl {
167                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
168                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
169                 u16 reserved   :5;   /* 7:3 Reserved  */
170                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
171                 u16 flockdn    :6;   /* 15:10 Reserved */
172         } hsf_ctrl;
173         u16 regval;
174 };
175
176 /* ICH Flash Region Access Permissions */
177 union ich8_hws_flash_regacc {
178         struct ich8_flracc {
179                 u32 grra      :8; /* 0:7 GbE region Read Access */
180                 u32 grwa      :8; /* 8:15 GbE region Write Access */
181                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
182                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
183         } hsf_flregacc;
184         u16 regval;
185 };
186
187 /* ICH Flash Protected Region */
188 union ich8_flash_protected_range {
189         struct ich8_pr {
190                 u32 base:13;     /* 0:12 Protected Range Base */
191                 u32 reserved1:2; /* 13:14 Reserved */
192                 u32 rpe:1;       /* 15 Read Protection Enable */
193                 u32 limit:13;    /* 16:28 Protected Range Limit */
194                 u32 reserved2:2; /* 29:30 Reserved */
195                 u32 wpe:1;       /* 31 Write Protection Enable */
196         } range;
197         u32 regval;
198 };
199
200 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
201 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
202 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
203 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206                                                 u32 offset, u8 byte);
207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208                                          u8 *data);
209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210                                          u16 *data);
211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212                                          u8 size, u16 *data);
213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
225 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
226 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
227 static s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
228
229 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
230 {
231         return readw(hw->flash_address + reg);
232 }
233
234 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
235 {
236         return readl(hw->flash_address + reg);
237 }
238
239 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
240 {
241         writew(val, hw->flash_address + reg);
242 }
243
244 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
245 {
246         writel(val, hw->flash_address + reg);
247 }
248
249 #define er16flash(reg)          __er16flash(hw, (reg))
250 #define er32flash(reg)          __er32flash(hw, (reg))
251 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
252 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
253
254 /**
255  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
256  *  @hw: pointer to the HW structure
257  *
258  *  Initialize family-specific PHY parameters and function pointers.
259  **/
260 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
261 {
262         struct e1000_phy_info *phy = &hw->phy;
263         s32 ret_val = 0;
264
265         phy->addr                     = 1;
266         phy->reset_delay_us           = 100;
267
268         phy->ops.check_polarity       = e1000_check_polarity_ife_ich8lan;
269         phy->ops.read_phy_reg         = e1000_read_phy_reg_hv;
270         phy->ops.read_phy_reg_locked  = e1000_read_phy_reg_hv_locked;
271         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
272         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
273         phy->ops.write_phy_reg        = e1000_write_phy_reg_hv;
274         phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
275         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
276
277         phy->id = e1000_phy_unknown;
278         e1000e_get_phy_id(hw);
279         phy->type = e1000e_get_phy_type_from_id(phy->id);
280
281         if (phy->type == e1000_phy_82577) {
282                 phy->ops.check_polarity = e1000_check_polarity_82577;
283                 phy->ops.force_speed_duplex =
284                         e1000_phy_force_speed_duplex_82577;
285                 phy->ops.get_cable_length   = e1000_get_cable_length_82577;
286                 phy->ops.get_phy_info = e1000_get_phy_info_82577;
287                 phy->ops.commit_phy = e1000e_phy_sw_reset;
288         }
289
290         return ret_val;
291 }
292
293 /**
294  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
295  *  @hw: pointer to the HW structure
296  *
297  *  Initialize family-specific PHY parameters and function pointers.
298  **/
299 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
300 {
301         struct e1000_phy_info *phy = &hw->phy;
302         s32 ret_val;
303         u16 i = 0;
304
305         phy->addr                       = 1;
306         phy->reset_delay_us             = 100;
307
308         /*
309          * We may need to do this twice - once for IGP and if that fails,
310          * we'll set BM func pointers and try again
311          */
312         ret_val = e1000e_determine_phy_address(hw);
313         if (ret_val) {
314                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
315                 hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
316                 ret_val = e1000e_determine_phy_address(hw);
317                 if (ret_val)
318                         return ret_val;
319         }
320
321         phy->id = 0;
322         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
323                (i++ < 100)) {
324                 msleep(1);
325                 ret_val = e1000e_get_phy_id(hw);
326                 if (ret_val)
327                         return ret_val;
328         }
329
330         /* Verify phy id */
331         switch (phy->id) {
332         case IGP03E1000_E_PHY_ID:
333                 phy->type = e1000_phy_igp_3;
334                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
335                 phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
336                 phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
337                 break;
338         case IFE_E_PHY_ID:
339         case IFE_PLUS_E_PHY_ID:
340         case IFE_C_E_PHY_ID:
341                 phy->type = e1000_phy_ife;
342                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
343                 break;
344         case BME1000_E_PHY_ID:
345                 phy->type = e1000_phy_bm;
346                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
347                 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
348                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
349                 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
350                 break;
351         default:
352                 return -E1000_ERR_PHY;
353                 break;
354         }
355
356         phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
357
358         return 0;
359 }
360
361 /**
362  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
363  *  @hw: pointer to the HW structure
364  *
365  *  Initialize family-specific NVM parameters and function
366  *  pointers.
367  **/
368 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
369 {
370         struct e1000_nvm_info *nvm = &hw->nvm;
371         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
372         u32 gfpreg, sector_base_addr, sector_end_addr;
373         u16 i;
374
375         /* Can't read flash registers if the register set isn't mapped. */
376         if (!hw->flash_address) {
377                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
378                 return -E1000_ERR_CONFIG;
379         }
380
381         nvm->type = e1000_nvm_flash_sw;
382
383         gfpreg = er32flash(ICH_FLASH_GFPREG);
384
385         /*
386          * sector_X_addr is a "sector"-aligned address (4096 bytes)
387          * Add 1 to sector_end_addr since this sector is included in
388          * the overall size.
389          */
390         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
391         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
392
393         /* flash_base_addr is byte-aligned */
394         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
395
396         /*
397          * find total size of the NVM, then cut in half since the total
398          * size represents two separate NVM banks.
399          */
400         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
401                                 << FLASH_SECTOR_ADDR_SHIFT;
402         nvm->flash_bank_size /= 2;
403         /* Adjust to word count */
404         nvm->flash_bank_size /= sizeof(u16);
405
406         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
407
408         /* Clear shadow ram */
409         for (i = 0; i < nvm->word_size; i++) {
410                 dev_spec->shadow_ram[i].modified = 0;
411                 dev_spec->shadow_ram[i].value    = 0xFFFF;
412         }
413
414         return 0;
415 }
416
417 /**
418  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
419  *  @hw: pointer to the HW structure
420  *
421  *  Initialize family-specific MAC parameters and function
422  *  pointers.
423  **/
424 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
425 {
426         struct e1000_hw *hw = &adapter->hw;
427         struct e1000_mac_info *mac = &hw->mac;
428
429         /* Set media type function pointer */
430         hw->phy.media_type = e1000_media_type_copper;
431
432         /* Set mta register count */
433         mac->mta_reg_count = 32;
434         /* Set rar entry count */
435         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
436         if (mac->type == e1000_ich8lan)
437                 mac->rar_entry_count--;
438         /* Set if manageability features are enabled. */
439         mac->arc_subsystem_valid = 1;
440
441         /* LED operations */
442         switch (mac->type) {
443         case e1000_ich8lan:
444         case e1000_ich9lan:
445         case e1000_ich10lan:
446                 /* ID LED init */
447                 mac->ops.id_led_init = e1000e_id_led_init;
448                 /* setup LED */
449                 mac->ops.setup_led = e1000e_setup_led_generic;
450                 /* cleanup LED */
451                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
452                 /* turn on/off LED */
453                 mac->ops.led_on = e1000_led_on_ich8lan;
454                 mac->ops.led_off = e1000_led_off_ich8lan;
455                 break;
456         case e1000_pchlan:
457                 /* ID LED init */
458                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
459                 /* setup LED */
460                 mac->ops.setup_led = e1000_setup_led_pchlan;
461                 /* cleanup LED */
462                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
463                 /* turn on/off LED */
464                 mac->ops.led_on = e1000_led_on_pchlan;
465                 mac->ops.led_off = e1000_led_off_pchlan;
466                 break;
467         default:
468                 break;
469         }
470
471         /* Enable PCS Lock-loss workaround for ICH8 */
472         if (mac->type == e1000_ich8lan)
473                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
474
475         return 0;
476 }
477
478 /**
479  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
480  *  @hw: pointer to the HW structure
481  *
482  *  Checks to see of the link status of the hardware has changed.  If a
483  *  change in link status has been detected, then we read the PHY registers
484  *  to get the current speed/duplex if link exists.
485  **/
486 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
487 {
488         struct e1000_mac_info *mac = &hw->mac;
489         s32 ret_val;
490         bool link;
491
492         /*
493          * We only want to go out to the PHY registers to see if Auto-Neg
494          * has completed and/or if our link status has changed.  The
495          * get_link_status flag is set upon receiving a Link Status
496          * Change or Rx Sequence Error interrupt.
497          */
498         if (!mac->get_link_status) {
499                 ret_val = 0;
500                 goto out;
501         }
502
503         /*
504          * First we want to see if the MII Status Register reports
505          * link.  If so, then we want to get the current speed/duplex
506          * of the PHY.
507          */
508         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
509         if (ret_val)
510                 goto out;
511
512         if (hw->mac.type == e1000_pchlan) {
513                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
514                 if (ret_val)
515                         goto out;
516         }
517
518         if (!link)
519                 goto out; /* No link detected */
520
521         mac->get_link_status = false;
522
523         if (hw->phy.type == e1000_phy_82578) {
524                 ret_val = e1000_link_stall_workaround_hv(hw);
525                 if (ret_val)
526                         goto out;
527         }
528
529         /*
530          * Check if there was DownShift, must be checked
531          * immediately after link-up
532          */
533         e1000e_check_downshift(hw);
534
535         /*
536          * If we are forcing speed/duplex, then we simply return since
537          * we have already determined whether we have link or not.
538          */
539         if (!mac->autoneg) {
540                 ret_val = -E1000_ERR_CONFIG;
541                 goto out;
542         }
543
544         /*
545          * Auto-Neg is enabled.  Auto Speed Detection takes care
546          * of MAC speed/duplex configuration.  So we only need to
547          * configure Collision Distance in the MAC.
548          */
549         e1000e_config_collision_dist(hw);
550
551         /*
552          * Configure Flow Control now that Auto-Neg has completed.
553          * First, we need to restore the desired flow control
554          * settings because we may have had to re-autoneg with a
555          * different link partner.
556          */
557         ret_val = e1000e_config_fc_after_link_up(hw);
558         if (ret_val)
559                 hw_dbg(hw, "Error configuring flow control\n");
560
561 out:
562         return ret_val;
563 }
564
565 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
566 {
567         struct e1000_hw *hw = &adapter->hw;
568         s32 rc;
569
570         rc = e1000_init_mac_params_ich8lan(adapter);
571         if (rc)
572                 return rc;
573
574         rc = e1000_init_nvm_params_ich8lan(hw);
575         if (rc)
576                 return rc;
577
578         if (hw->mac.type == e1000_pchlan)
579                 rc = e1000_init_phy_params_pchlan(hw);
580         else
581                 rc = e1000_init_phy_params_ich8lan(hw);
582         if (rc)
583                 return rc;
584
585         if (adapter->hw.phy.type == e1000_phy_ife) {
586                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
587                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
588         }
589
590         if ((adapter->hw.mac.type == e1000_ich8lan) &&
591             (adapter->hw.phy.type == e1000_phy_igp_3))
592                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
593
594         return 0;
595 }
596
597 static DEFINE_MUTEX(nvm_mutex);
598
599 /**
600  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
601  *  @hw: pointer to the HW structure
602  *
603  *  Acquires the mutex for performing NVM operations.
604  **/
605 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
606 {
607         mutex_lock(&nvm_mutex);
608
609         return 0;
610 }
611
612 /**
613  *  e1000_release_nvm_ich8lan - Release NVM mutex
614  *  @hw: pointer to the HW structure
615  *
616  *  Releases the mutex used while performing NVM operations.
617  **/
618 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
619 {
620         mutex_unlock(&nvm_mutex);
621
622         return;
623 }
624
625 static DEFINE_MUTEX(swflag_mutex);
626
627 /**
628  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
629  *  @hw: pointer to the HW structure
630  *
631  *  Acquires the software control flag for performing PHY and select
632  *  MAC CSR accesses.
633  **/
634 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
635 {
636         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
637         s32 ret_val = 0;
638
639         might_sleep();
640
641         mutex_lock(&swflag_mutex);
642
643         while (timeout) {
644                 extcnf_ctrl = er32(EXTCNF_CTRL);
645                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
646                         break;
647
648                 mdelay(1);
649                 timeout--;
650         }
651
652         if (!timeout) {
653                 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
654                 ret_val = -E1000_ERR_CONFIG;
655                 goto out;
656         }
657
658         timeout = SW_FLAG_TIMEOUT;
659
660         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
661         ew32(EXTCNF_CTRL, extcnf_ctrl);
662
663         while (timeout) {
664                 extcnf_ctrl = er32(EXTCNF_CTRL);
665                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
666                         break;
667
668                 mdelay(1);
669                 timeout--;
670         }
671
672         if (!timeout) {
673                 hw_dbg(hw, "Failed to acquire the semaphore.\n");
674                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
675                 ew32(EXTCNF_CTRL, extcnf_ctrl);
676                 ret_val = -E1000_ERR_CONFIG;
677                 goto out;
678         }
679
680 out:
681         if (ret_val)
682                 mutex_unlock(&swflag_mutex);
683
684         return ret_val;
685 }
686
687 /**
688  *  e1000_release_swflag_ich8lan - Release software control flag
689  *  @hw: pointer to the HW structure
690  *
691  *  Releases the software control flag for performing PHY and select
692  *  MAC CSR accesses.
693  **/
694 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
695 {
696         u32 extcnf_ctrl;
697
698         extcnf_ctrl = er32(EXTCNF_CTRL);
699         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
700         ew32(EXTCNF_CTRL, extcnf_ctrl);
701
702         mutex_unlock(&swflag_mutex);
703
704         return;
705 }
706
707 /**
708  *  e1000_check_mng_mode_ich8lan - Checks management mode
709  *  @hw: pointer to the HW structure
710  *
711  *  This checks if the adapter has manageability enabled.
712  *  This is a function pointer entry point only called by read/write
713  *  routines for the PHY and NVM parts.
714  **/
715 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
716 {
717         u32 fwsm = er32(FWSM);
718
719         return (fwsm & E1000_FWSM_MODE_MASK) ==
720                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
721 }
722
723 /**
724  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
725  *  @hw: pointer to the HW structure
726  *
727  *  Checks if firmware is blocking the reset of the PHY.
728  *  This is a function pointer entry point only called by
729  *  reset routines.
730  **/
731 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
732 {
733         u32 fwsm;
734
735         fwsm = er32(FWSM);
736
737         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
738 }
739
740 /**
741  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
742  *  @hw: pointer to the HW structure
743  *
744  *  Forces the speed and duplex settings of the PHY.
745  *  This is a function pointer entry point only called by
746  *  PHY setup routines.
747  **/
748 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
749 {
750         struct e1000_phy_info *phy = &hw->phy;
751         s32 ret_val;
752         u16 data;
753         bool link;
754
755         if (phy->type != e1000_phy_ife) {
756                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
757                 return ret_val;
758         }
759
760         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
761         if (ret_val)
762                 return ret_val;
763
764         e1000e_phy_force_speed_duplex_setup(hw, &data);
765
766         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
767         if (ret_val)
768                 return ret_val;
769
770         /* Disable MDI-X support for 10/100 */
771         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
772         if (ret_val)
773                 return ret_val;
774
775         data &= ~IFE_PMC_AUTO_MDIX;
776         data &= ~IFE_PMC_FORCE_MDIX;
777
778         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
779         if (ret_val)
780                 return ret_val;
781
782         hw_dbg(hw, "IFE PMC: %X\n", data);
783
784         udelay(1);
785
786         if (phy->autoneg_wait_to_complete) {
787                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
788
789                 ret_val = e1000e_phy_has_link_generic(hw,
790                                                      PHY_FORCE_LIMIT,
791                                                      100000,
792                                                      &link);
793                 if (ret_val)
794                         return ret_val;
795
796                 if (!link)
797                         hw_dbg(hw, "Link taking longer than expected.\n");
798
799                 /* Try once more */
800                 ret_val = e1000e_phy_has_link_generic(hw,
801                                                      PHY_FORCE_LIMIT,
802                                                      100000,
803                                                      &link);
804                 if (ret_val)
805                         return ret_val;
806         }
807
808         return 0;
809 }
810
811 /**
812  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
813  *  @hw:   pointer to the HW structure
814  *
815  *  SW should configure the LCD from the NVM extended configuration region
816  *  as a workaround for certain parts.
817  **/
818 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
819 {
820         struct e1000_phy_info *phy = &hw->phy;
821         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
822         s32 ret_val;
823         u16 word_addr, reg_data, reg_addr, phy_page = 0;
824
825         ret_val = hw->phy.ops.acquire_phy(hw);
826         if (ret_val)
827                 return ret_val;
828
829         /*
830          * Initialize the PHY from the NVM on ICH platforms.  This
831          * is needed due to an issue where the NVM configuration is
832          * not properly autoloaded after power transitions.
833          * Therefore, after each PHY reset, we will load the
834          * configuration data out of the NVM manually.
835          */
836         if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
837                 (hw->mac.type == e1000_pchlan)) {
838                 struct e1000_adapter *adapter = hw->adapter;
839
840                 /* Check if SW needs to configure the PHY */
841                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
842                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
843                     (hw->mac.type == e1000_pchlan))
844                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
845                 else
846                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
847
848                 data = er32(FEXTNVM);
849                 if (!(data & sw_cfg_mask))
850                         goto out;
851
852                 /* Wait for basic configuration completes before proceeding */
853                 e1000_lan_init_done_ich8lan(hw);
854
855                 /*
856                  * Make sure HW does not configure LCD from PHY
857                  * extended configuration before SW configuration
858                  */
859                 data = er32(EXTCNF_CTRL);
860                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
861                         goto out;
862
863                 cnf_size = er32(EXTCNF_SIZE);
864                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
865                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
866                 if (!cnf_size)
867                         goto out;
868
869                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
870                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
871
872                 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
873                     (hw->mac.type == e1000_pchlan)) {
874                         /*
875                          * HW configures the SMBus address and LEDs when the
876                          * OEM and LCD Write Enable bits are set in the NVM.
877                          * When both NVM bits are cleared, SW will configure
878                          * them instead.
879                          */
880                         data = er32(STRAP);
881                         data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
882                         reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
883                         reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
884                         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
885                                                                 reg_data);
886                         if (ret_val)
887                                 goto out;
888
889                         data = er32(LEDCTL);
890                         ret_val = e1000_write_phy_reg_hv_locked(hw,
891                                                                 HV_LED_CONFIG,
892                                                                 (u16)data);
893                         if (ret_val)
894                                 goto out;
895                 }
896                 /* Configure LCD from extended configuration region. */
897
898                 /* cnf_base_addr is in DWORD */
899                 word_addr = (u16)(cnf_base_addr << 1);
900
901                 for (i = 0; i < cnf_size; i++) {
902                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
903                                                    &reg_data);
904                         if (ret_val)
905                                 goto out;
906
907                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
908                                                    1, &reg_addr);
909                         if (ret_val)
910                                 goto out;
911
912                         /* Save off the PHY page for future writes. */
913                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
914                                 phy_page = reg_data;
915                                 continue;
916                         }
917
918                         reg_addr &= PHY_REG_MASK;
919                         reg_addr |= phy_page;
920
921                         ret_val = phy->ops.write_phy_reg_locked(hw,
922                                                             (u32)reg_addr,
923                                                             reg_data);
924                         if (ret_val)
925                                 goto out;
926                 }
927         }
928
929 out:
930         hw->phy.ops.release_phy(hw);
931         return ret_val;
932 }
933
934 /**
935  *  e1000_k1_gig_workaround_hv - K1 Si workaround
936  *  @hw:   pointer to the HW structure
937  *  @link: link up bool flag
938  *
939  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
940  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
941  *  If link is down, the function will restore the default K1 setting located
942  *  in the NVM.
943  **/
944 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
945 {
946         s32 ret_val = 0;
947         u16 status_reg = 0;
948         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
949
950         if (hw->mac.type != e1000_pchlan)
951                 goto out;
952
953         /* Wrap the whole flow with the sw flag */
954         ret_val = hw->phy.ops.acquire_phy(hw);
955         if (ret_val)
956                 goto out;
957
958         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
959         if (link) {
960                 if (hw->phy.type == e1000_phy_82578) {
961                         ret_val = hw->phy.ops.read_phy_reg_locked(hw,
962                                                                   BM_CS_STATUS,
963                                                                   &status_reg);
964                         if (ret_val)
965                                 goto release;
966
967                         status_reg &= BM_CS_STATUS_LINK_UP |
968                                       BM_CS_STATUS_RESOLVED |
969                                       BM_CS_STATUS_SPEED_MASK;
970
971                         if (status_reg == (BM_CS_STATUS_LINK_UP |
972                                            BM_CS_STATUS_RESOLVED |
973                                            BM_CS_STATUS_SPEED_1000))
974                                 k1_enable = false;
975                 }
976
977                 if (hw->phy.type == e1000_phy_82577) {
978                         ret_val = hw->phy.ops.read_phy_reg_locked(hw,
979                                                                   HV_M_STATUS,
980                                                                   &status_reg);
981                         if (ret_val)
982                                 goto release;
983
984                         status_reg &= HV_M_STATUS_LINK_UP |
985                                       HV_M_STATUS_AUTONEG_COMPLETE |
986                                       HV_M_STATUS_SPEED_MASK;
987
988                         if (status_reg == (HV_M_STATUS_LINK_UP |
989                                            HV_M_STATUS_AUTONEG_COMPLETE |
990                                            HV_M_STATUS_SPEED_1000))
991                                 k1_enable = false;
992                 }
993
994                 /* Link stall fix for link up */
995                 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
996                                                            0x0100);
997                 if (ret_val)
998                         goto release;
999
1000         } else {
1001                 /* Link stall fix for link down */
1002                 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
1003                                                            0x4100);
1004                 if (ret_val)
1005                         goto release;
1006         }
1007
1008         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1009
1010 release:
1011         hw->phy.ops.release_phy(hw);
1012 out:
1013         return ret_val;
1014 }
1015
1016 /**
1017  *  e1000_configure_k1_ich8lan - Configure K1 power state
1018  *  @hw: pointer to the HW structure
1019  *  @enable: K1 state to configure
1020  *
1021  *  Configure the K1 power state based on the provided parameter.
1022  *  Assumes semaphore already acquired.
1023  *
1024  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1025  **/
1026 static s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1027 {
1028         s32 ret_val = 0;
1029         u32 ctrl_reg = 0;
1030         u32 ctrl_ext = 0;
1031         u32 reg = 0;
1032         u16 kmrn_reg = 0;
1033
1034         ret_val = e1000e_read_kmrn_reg_locked(hw,
1035                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1036                                              &kmrn_reg);
1037         if (ret_val)
1038                 goto out;
1039
1040         if (k1_enable)
1041                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1042         else
1043                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1044
1045         ret_val = e1000e_write_kmrn_reg_locked(hw,
1046                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1047                                               kmrn_reg);
1048         if (ret_val)
1049                 goto out;
1050
1051         udelay(20);
1052         ctrl_ext = er32(CTRL_EXT);
1053         ctrl_reg = er32(CTRL);
1054
1055         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1056         reg |= E1000_CTRL_FRCSPD;
1057         ew32(CTRL, reg);
1058
1059         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1060         udelay(20);
1061         ew32(CTRL, ctrl_reg);
1062         ew32(CTRL_EXT, ctrl_ext);
1063         udelay(20);
1064
1065 out:
1066         return ret_val;
1067 }
1068
1069 /**
1070  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1071  *  @hw:       pointer to the HW structure
1072  *  @d0_state: boolean if entering d0 or d3 device state
1073  *
1074  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1075  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1076  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1077  **/
1078 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1079 {
1080         s32 ret_val = 0;
1081         u32 mac_reg;
1082         u16 oem_reg;
1083
1084         if (hw->mac.type != e1000_pchlan)
1085                 return ret_val;
1086
1087         ret_val = hw->phy.ops.acquire_phy(hw);
1088         if (ret_val)
1089                 return ret_val;
1090
1091         mac_reg = er32(EXTCNF_CTRL);
1092         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1093                 goto out;
1094
1095         mac_reg = er32(FEXTNVM);
1096         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1097                 goto out;
1098
1099         mac_reg = er32(PHY_CTRL);
1100
1101         ret_val = hw->phy.ops.read_phy_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1102         if (ret_val)
1103                 goto out;
1104
1105         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1106
1107         if (d0_state) {
1108                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1109                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1110
1111                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1112                         oem_reg |= HV_OEM_BITS_LPLU;
1113         } else {
1114                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1115                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1116
1117                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1118                         oem_reg |= HV_OEM_BITS_LPLU;
1119         }
1120         /* Restart auto-neg to activate the bits */
1121         if (!e1000_check_reset_block(hw))
1122                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1123         ret_val = hw->phy.ops.write_phy_reg_locked(hw, HV_OEM_BITS, oem_reg);
1124
1125 out:
1126         hw->phy.ops.release_phy(hw);
1127
1128         return ret_val;
1129 }
1130
1131
1132 /**
1133  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1134  *  done after every PHY reset.
1135  **/
1136 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1137 {
1138         s32 ret_val = 0;
1139
1140         if (hw->mac.type != e1000_pchlan)
1141                 return ret_val;
1142
1143         if (((hw->phy.type == e1000_phy_82577) &&
1144              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1145             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1146                 /* Disable generation of early preamble */
1147                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1148                 if (ret_val)
1149                         return ret_val;
1150
1151                 /* Preamble tuning for SSC */
1152                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1153                 if (ret_val)
1154                         return ret_val;
1155         }
1156
1157         if (hw->phy.type == e1000_phy_82578) {
1158                 /*
1159                  * Return registers to default by doing a soft reset then
1160                  * writing 0x3140 to the control register.
1161                  */
1162                 if (hw->phy.revision < 2) {
1163                         e1000e_phy_sw_reset(hw);
1164                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1165                 }
1166         }
1167
1168         /* Select page 0 */
1169         ret_val = hw->phy.ops.acquire_phy(hw);
1170         if (ret_val)
1171                 return ret_val;
1172
1173         hw->phy.addr = 1;
1174         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1175         if (ret_val)
1176                 goto out;
1177         hw->phy.ops.release_phy(hw);
1178
1179         /*
1180          * Configure the K1 Si workaround during phy reset assuming there is
1181          * link so that it disables K1 if link is in 1Gbps.
1182          */
1183         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1184
1185 out:
1186         return ret_val;
1187 }
1188
1189 /**
1190  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1191  *  @hw: pointer to the HW structure
1192  *
1193  *  Check the appropriate indication the MAC has finished configuring the
1194  *  PHY after a software reset.
1195  **/
1196 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1197 {
1198         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1199
1200         /* Wait for basic configuration completes before proceeding */
1201         do {
1202                 data = er32(STATUS);
1203                 data &= E1000_STATUS_LAN_INIT_DONE;
1204                 udelay(100);
1205         } while ((!data) && --loop);
1206
1207         /*
1208          * If basic configuration is incomplete before the above loop
1209          * count reaches 0, loading the configuration from NVM will
1210          * leave the PHY in a bad state possibly resulting in no link.
1211          */
1212         if (loop == 0)
1213                 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
1214
1215         /* Clear the Init Done bit for the next init event */
1216         data = er32(STATUS);
1217         data &= ~E1000_STATUS_LAN_INIT_DONE;
1218         ew32(STATUS, data);
1219 }
1220
1221 /**
1222  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1223  *  @hw: pointer to the HW structure
1224  *
1225  *  Resets the PHY
1226  *  This is a function pointer entry point called by drivers
1227  *  or other shared routines.
1228  **/
1229 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1230 {
1231         s32 ret_val = 0;
1232         u16 reg;
1233
1234         ret_val = e1000e_phy_hw_reset_generic(hw);
1235         if (ret_val)
1236                 return ret_val;
1237
1238         /* Allow time for h/w to get to a quiescent state after reset */
1239         mdelay(10);
1240
1241         if (hw->mac.type == e1000_pchlan) {
1242                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1243                 if (ret_val)
1244                         return ret_val;
1245         }
1246
1247         /* Dummy read to clear the phy wakeup bit after lcd reset */
1248         if (hw->mac.type == e1000_pchlan)
1249                 e1e_rphy(hw, BM_WUC, &reg);
1250
1251         /* Configure the LCD with the extended configuration region in NVM */
1252         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1253         if (ret_val)
1254                 goto out;
1255
1256         /* Configure the LCD with the OEM bits in NVM */
1257         if (hw->mac.type == e1000_pchlan)
1258                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1259
1260 out:
1261         return 0;
1262 }
1263
1264 /**
1265  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1266  *  @hw: pointer to the HW structure
1267  *
1268  *  Populates "phy" structure with various feature states.
1269  *  This function is only called by other family-specific
1270  *  routines.
1271  **/
1272 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1273 {
1274         struct e1000_phy_info *phy = &hw->phy;
1275         s32 ret_val;
1276         u16 data;
1277         bool link;
1278
1279         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1280         if (ret_val)
1281                 return ret_val;
1282
1283         if (!link) {
1284                 hw_dbg(hw, "Phy info is only valid if link is up\n");
1285                 return -E1000_ERR_CONFIG;
1286         }
1287
1288         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1289         if (ret_val)
1290                 return ret_val;
1291         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1292
1293         if (phy->polarity_correction) {
1294                 ret_val = phy->ops.check_polarity(hw);
1295                 if (ret_val)
1296                         return ret_val;
1297         } else {
1298                 /* Polarity is forced */
1299                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1300                                       ? e1000_rev_polarity_reversed
1301                                       : e1000_rev_polarity_normal;
1302         }
1303
1304         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1305         if (ret_val)
1306                 return ret_val;
1307
1308         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1309
1310         /* The following parameters are undefined for 10/100 operation. */
1311         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1312         phy->local_rx = e1000_1000t_rx_status_undefined;
1313         phy->remote_rx = e1000_1000t_rx_status_undefined;
1314
1315         return 0;
1316 }
1317
1318 /**
1319  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1320  *  @hw: pointer to the HW structure
1321  *
1322  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
1323  *  This is a function pointer entry point called by drivers
1324  *  or other shared routines.
1325  **/
1326 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1327 {
1328         switch (hw->phy.type) {
1329         case e1000_phy_ife:
1330                 return e1000_get_phy_info_ife_ich8lan(hw);
1331                 break;
1332         case e1000_phy_igp_3:
1333         case e1000_phy_bm:
1334         case e1000_phy_82578:
1335         case e1000_phy_82577:
1336                 return e1000e_get_phy_info_igp(hw);
1337                 break;
1338         default:
1339                 break;
1340         }
1341
1342         return -E1000_ERR_PHY_TYPE;
1343 }
1344
1345 /**
1346  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1347  *  @hw: pointer to the HW structure
1348  *
1349  *  Polarity is determined on the polarity reversal feature being enabled.
1350  *  This function is only called by other family-specific
1351  *  routines.
1352  **/
1353 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1354 {
1355         struct e1000_phy_info *phy = &hw->phy;
1356         s32 ret_val;
1357         u16 phy_data, offset, mask;
1358
1359         /*
1360          * Polarity is determined based on the reversal feature being enabled.
1361          */
1362         if (phy->polarity_correction) {
1363                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
1364                 mask    = IFE_PESC_POLARITY_REVERSED;
1365         } else {
1366                 offset  = IFE_PHY_SPECIAL_CONTROL;
1367                 mask    = IFE_PSC_FORCE_POLARITY;
1368         }
1369
1370         ret_val = e1e_rphy(hw, offset, &phy_data);
1371
1372         if (!ret_val)
1373                 phy->cable_polarity = (phy_data & mask)
1374                                       ? e1000_rev_polarity_reversed
1375                                       : e1000_rev_polarity_normal;
1376
1377         return ret_val;
1378 }
1379
1380 /**
1381  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1382  *  @hw: pointer to the HW structure
1383  *  @active: true to enable LPLU, false to disable
1384  *
1385  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1386  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1387  *  the phy speed. This function will manually set the LPLU bit and restart
1388  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1389  *  since it configures the same bit.
1390  **/
1391 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1392 {
1393         s32 ret_val = 0;
1394         u16 oem_reg;
1395
1396         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1397         if (ret_val)
1398                 goto out;
1399
1400         if (active)
1401                 oem_reg |= HV_OEM_BITS_LPLU;
1402         else
1403                 oem_reg &= ~HV_OEM_BITS_LPLU;
1404
1405         oem_reg |= HV_OEM_BITS_RESTART_AN;
1406         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1407
1408 out:
1409         return ret_val;
1410 }
1411
1412 /**
1413  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1414  *  @hw: pointer to the HW structure
1415  *  @active: TRUE to enable LPLU, FALSE to disable
1416  *
1417  *  Sets the LPLU D0 state according to the active flag.  When
1418  *  activating LPLU this function also disables smart speed
1419  *  and vice versa.  LPLU will not be activated unless the
1420  *  device autonegotiation advertisement meets standards of
1421  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1422  *  This is a function pointer entry point only called by
1423  *  PHY setup routines.
1424  **/
1425 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1426 {
1427         struct e1000_phy_info *phy = &hw->phy;
1428         u32 phy_ctrl;
1429         s32 ret_val = 0;
1430         u16 data;
1431
1432         if (phy->type == e1000_phy_ife)
1433                 return ret_val;
1434
1435         phy_ctrl = er32(PHY_CTRL);
1436
1437         if (active) {
1438                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1439                 ew32(PHY_CTRL, phy_ctrl);
1440
1441                 if (phy->type != e1000_phy_igp_3)
1442                         return 0;
1443
1444                 /*
1445                  * Call gig speed drop workaround on LPLU before accessing
1446                  * any PHY registers
1447                  */
1448                 if (hw->mac.type == e1000_ich8lan)
1449                         e1000e_gig_downshift_workaround_ich8lan(hw);
1450
1451                 /* When LPLU is enabled, we should disable SmartSpeed */
1452                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1453                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1454                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1455                 if (ret_val)
1456                         return ret_val;
1457         } else {
1458                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1459                 ew32(PHY_CTRL, phy_ctrl);
1460
1461                 if (phy->type != e1000_phy_igp_3)
1462                         return 0;
1463
1464                 /*
1465                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1466                  * during Dx states where the power conservation is most
1467                  * important.  During driver activity we should enable
1468                  * SmartSpeed, so performance is maintained.
1469                  */
1470                 if (phy->smart_speed == e1000_smart_speed_on) {
1471                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1472                                            &data);
1473                         if (ret_val)
1474                                 return ret_val;
1475
1476                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1477                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1478                                            data);
1479                         if (ret_val)
1480                                 return ret_val;
1481                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1482                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1483                                            &data);
1484                         if (ret_val)
1485                                 return ret_val;
1486
1487                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1488                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1489                                            data);
1490                         if (ret_val)
1491                                 return ret_val;
1492                 }
1493         }
1494
1495         return 0;
1496 }
1497
1498 /**
1499  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1500  *  @hw: pointer to the HW structure
1501  *  @active: TRUE to enable LPLU, FALSE to disable
1502  *
1503  *  Sets the LPLU D3 state according to the active flag.  When
1504  *  activating LPLU this function also disables smart speed
1505  *  and vice versa.  LPLU will not be activated unless the
1506  *  device autonegotiation advertisement meets standards of
1507  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1508  *  This is a function pointer entry point only called by
1509  *  PHY setup routines.
1510  **/
1511 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1512 {
1513         struct e1000_phy_info *phy = &hw->phy;
1514         u32 phy_ctrl;
1515         s32 ret_val;
1516         u16 data;
1517
1518         phy_ctrl = er32(PHY_CTRL);
1519
1520         if (!active) {
1521                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1522                 ew32(PHY_CTRL, phy_ctrl);
1523
1524                 if (phy->type != e1000_phy_igp_3)
1525                         return 0;
1526
1527                 /*
1528                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1529                  * during Dx states where the power conservation is most
1530                  * important.  During driver activity we should enable
1531                  * SmartSpeed, so performance is maintained.
1532                  */
1533                 if (phy->smart_speed == e1000_smart_speed_on) {
1534                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1535                                            &data);
1536                         if (ret_val)
1537                                 return ret_val;
1538
1539                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1540                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1541                                            data);
1542                         if (ret_val)
1543                                 return ret_val;
1544                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1545                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1546                                            &data);
1547                         if (ret_val)
1548                                 return ret_val;
1549
1550                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1551                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1552                                            data);
1553                         if (ret_val)
1554                                 return ret_val;
1555                 }
1556         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1557                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1558                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1559                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1560                 ew32(PHY_CTRL, phy_ctrl);
1561
1562                 if (phy->type != e1000_phy_igp_3)
1563                         return 0;
1564
1565                 /*
1566                  * Call gig speed drop workaround on LPLU before accessing
1567                  * any PHY registers
1568                  */
1569                 if (hw->mac.type == e1000_ich8lan)
1570                         e1000e_gig_downshift_workaround_ich8lan(hw);
1571
1572                 /* When LPLU is enabled, we should disable SmartSpeed */
1573                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1574                 if (ret_val)
1575                         return ret_val;
1576
1577                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1578                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1579         }
1580
1581         return 0;
1582 }
1583
1584 /**
1585  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1586  *  @hw: pointer to the HW structure
1587  *  @bank:  pointer to the variable that returns the active bank
1588  *
1589  *  Reads signature byte from the NVM using the flash access registers.
1590  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1591  **/
1592 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1593 {
1594         u32 eecd;
1595         struct e1000_nvm_info *nvm = &hw->nvm;
1596         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1597         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1598         u8 sig_byte = 0;
1599         s32 ret_val = 0;
1600
1601         switch (hw->mac.type) {
1602         case e1000_ich8lan:
1603         case e1000_ich9lan:
1604                 eecd = er32(EECD);
1605                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1606                     E1000_EECD_SEC1VAL_VALID_MASK) {
1607                         if (eecd & E1000_EECD_SEC1VAL)
1608                                 *bank = 1;
1609                         else
1610                                 *bank = 0;
1611
1612                         return 0;
1613                 }
1614                 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1615                        "reading flash signature\n");
1616                 /* fall-thru */
1617         default:
1618                 /* set bank to 0 in case flash read fails */
1619                 *bank = 0;
1620
1621                 /* Check bank 0 */
1622                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1623                                                         &sig_byte);
1624                 if (ret_val)
1625                         return ret_val;
1626                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1627                     E1000_ICH_NVM_SIG_VALUE) {
1628                         *bank = 0;
1629                         return 0;
1630                 }
1631
1632                 /* Check bank 1 */
1633                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1634                                                         bank1_offset,
1635                                                         &sig_byte);
1636                 if (ret_val)
1637                         return ret_val;
1638                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1639                     E1000_ICH_NVM_SIG_VALUE) {
1640                         *bank = 1;
1641                         return 0;
1642                 }
1643
1644                 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1645                 return -E1000_ERR_NVM;
1646         }
1647
1648         return 0;
1649 }
1650
1651 /**
1652  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1653  *  @hw: pointer to the HW structure
1654  *  @offset: The offset (in bytes) of the word(s) to read.
1655  *  @words: Size of data to read in words
1656  *  @data: Pointer to the word(s) to read at offset.
1657  *
1658  *  Reads a word(s) from the NVM using the flash access registers.
1659  **/
1660 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1661                                   u16 *data)
1662 {
1663         struct e1000_nvm_info *nvm = &hw->nvm;
1664         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1665         u32 act_offset;
1666         s32 ret_val = 0;
1667         u32 bank = 0;
1668         u16 i, word;
1669
1670         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1671             (words == 0)) {
1672                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1673                 ret_val = -E1000_ERR_NVM;
1674                 goto out;
1675         }
1676
1677         nvm->ops.acquire_nvm(hw);
1678
1679         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1680         if (ret_val) {
1681                 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1682                 bank = 0;
1683         }
1684
1685         act_offset = (bank) ? nvm->flash_bank_size : 0;
1686         act_offset += offset;
1687
1688         ret_val = 0;
1689         for (i = 0; i < words; i++) {
1690                 if ((dev_spec->shadow_ram) &&
1691                     (dev_spec->shadow_ram[offset+i].modified)) {
1692                         data[i] = dev_spec->shadow_ram[offset+i].value;
1693                 } else {
1694                         ret_val = e1000_read_flash_word_ich8lan(hw,
1695                                                                 act_offset + i,
1696                                                                 &word);
1697                         if (ret_val)
1698                                 break;
1699                         data[i] = word;
1700                 }
1701         }
1702
1703         nvm->ops.release_nvm(hw);
1704
1705 out:
1706         if (ret_val)
1707                 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1708
1709         return ret_val;
1710 }
1711
1712 /**
1713  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1714  *  @hw: pointer to the HW structure
1715  *
1716  *  This function does initial flash setup so that a new read/write/erase cycle
1717  *  can be started.
1718  **/
1719 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1720 {
1721         union ich8_hws_flash_status hsfsts;
1722         s32 ret_val = -E1000_ERR_NVM;
1723         s32 i = 0;
1724
1725         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1726
1727         /* Check if the flash descriptor is valid */
1728         if (hsfsts.hsf_status.fldesvalid == 0) {
1729                 hw_dbg(hw, "Flash descriptor invalid.  "
1730                          "SW Sequencing must be used.");
1731                 return -E1000_ERR_NVM;
1732         }
1733
1734         /* Clear FCERR and DAEL in hw status by writing 1 */
1735         hsfsts.hsf_status.flcerr = 1;
1736         hsfsts.hsf_status.dael = 1;
1737
1738         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1739
1740         /*
1741          * Either we should have a hardware SPI cycle in progress
1742          * bit to check against, in order to start a new cycle or
1743          * FDONE bit should be changed in the hardware so that it
1744          * is 1 after hardware reset, which can then be used as an
1745          * indication whether a cycle is in progress or has been
1746          * completed.
1747          */
1748
1749         if (hsfsts.hsf_status.flcinprog == 0) {
1750                 /*
1751                  * There is no cycle running at present,
1752                  * so we can start a cycle
1753                  * Begin by setting Flash Cycle Done.
1754                  */
1755                 hsfsts.hsf_status.flcdone = 1;
1756                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1757                 ret_val = 0;
1758         } else {
1759                 /*
1760                  * otherwise poll for sometime so the current
1761                  * cycle has a chance to end before giving up.
1762                  */
1763                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1764                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1765                         if (hsfsts.hsf_status.flcinprog == 0) {
1766                                 ret_val = 0;
1767                                 break;
1768                         }
1769                         udelay(1);
1770                 }
1771                 if (ret_val == 0) {
1772                         /*
1773                          * Successful in waiting for previous cycle to timeout,
1774                          * now set the Flash Cycle Done.
1775                          */
1776                         hsfsts.hsf_status.flcdone = 1;
1777                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1778                 } else {
1779                         hw_dbg(hw, "Flash controller busy, cannot get access");
1780                 }
1781         }
1782
1783         return ret_val;
1784 }
1785
1786 /**
1787  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1788  *  @hw: pointer to the HW structure
1789  *  @timeout: maximum time to wait for completion
1790  *
1791  *  This function starts a flash cycle and waits for its completion.
1792  **/
1793 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1794 {
1795         union ich8_hws_flash_ctrl hsflctl;
1796         union ich8_hws_flash_status hsfsts;
1797         s32 ret_val = -E1000_ERR_NVM;
1798         u32 i = 0;
1799
1800         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1801         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1802         hsflctl.hsf_ctrl.flcgo = 1;
1803         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1804
1805         /* wait till FDONE bit is set to 1 */
1806         do {
1807                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1808                 if (hsfsts.hsf_status.flcdone == 1)
1809                         break;
1810                 udelay(1);
1811         } while (i++ < timeout);
1812
1813         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1814                 return 0;
1815
1816         return ret_val;
1817 }
1818
1819 /**
1820  *  e1000_read_flash_word_ich8lan - Read word from flash
1821  *  @hw: pointer to the HW structure
1822  *  @offset: offset to data location
1823  *  @data: pointer to the location for storing the data
1824  *
1825  *  Reads the flash word at offset into data.  Offset is converted
1826  *  to bytes before read.
1827  **/
1828 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1829                                          u16 *data)
1830 {
1831         /* Must convert offset into bytes. */
1832         offset <<= 1;
1833
1834         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1835 }
1836
1837 /**
1838  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1839  *  @hw: pointer to the HW structure
1840  *  @offset: The offset of the byte to read.
1841  *  @data: Pointer to a byte to store the value read.
1842  *
1843  *  Reads a single byte from the NVM using the flash access registers.
1844  **/
1845 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1846                                          u8 *data)
1847 {
1848         s32 ret_val;
1849         u16 word = 0;
1850
1851         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1852         if (ret_val)
1853                 return ret_val;
1854
1855         *data = (u8)word;
1856
1857         return 0;
1858 }
1859
1860 /**
1861  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1862  *  @hw: pointer to the HW structure
1863  *  @offset: The offset (in bytes) of the byte or word to read.
1864  *  @size: Size of data to read, 1=byte 2=word
1865  *  @data: Pointer to the word to store the value read.
1866  *
1867  *  Reads a byte or word from the NVM using the flash access registers.
1868  **/
1869 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1870                                          u8 size, u16 *data)
1871 {
1872         union ich8_hws_flash_status hsfsts;
1873         union ich8_hws_flash_ctrl hsflctl;
1874         u32 flash_linear_addr;
1875         u32 flash_data = 0;
1876         s32 ret_val = -E1000_ERR_NVM;
1877         u8 count = 0;
1878
1879         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1880                 return -E1000_ERR_NVM;
1881
1882         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1883                             hw->nvm.flash_base_addr;
1884
1885         do {
1886                 udelay(1);
1887                 /* Steps */
1888                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1889                 if (ret_val != 0)
1890                         break;
1891
1892                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1893                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1894                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1895                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1896                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1897
1898                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1899
1900                 ret_val = e1000_flash_cycle_ich8lan(hw,
1901                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1902
1903                 /*
1904                  * Check if FCERR is set to 1, if set to 1, clear it
1905                  * and try the whole sequence a few more times, else
1906                  * read in (shift in) the Flash Data0, the order is
1907                  * least significant byte first msb to lsb
1908                  */
1909                 if (ret_val == 0) {
1910                         flash_data = er32flash(ICH_FLASH_FDATA0);
1911                         if (size == 1) {
1912                                 *data = (u8)(flash_data & 0x000000FF);
1913                         } else if (size == 2) {
1914                                 *data = (u16)(flash_data & 0x0000FFFF);
1915                         }
1916                         break;
1917                 } else {
1918                         /*
1919                          * If we've gotten here, then things are probably
1920                          * completely hosed, but if the error condition is
1921                          * detected, it won't hurt to give it another try...
1922                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1923                          */
1924                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1925                         if (hsfsts.hsf_status.flcerr == 1) {
1926                                 /* Repeat for some time before giving up. */
1927                                 continue;
1928                         } else if (hsfsts.hsf_status.flcdone == 0) {
1929                                 hw_dbg(hw, "Timeout error - flash cycle "
1930                                          "did not complete.");
1931                                 break;
1932                         }
1933                 }
1934         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1935
1936         return ret_val;
1937 }
1938
1939 /**
1940  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1941  *  @hw: pointer to the HW structure
1942  *  @offset: The offset (in bytes) of the word(s) to write.
1943  *  @words: Size of data to write in words
1944  *  @data: Pointer to the word(s) to write at offset.
1945  *
1946  *  Writes a byte or word to the NVM using the flash access registers.
1947  **/
1948 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1949                                    u16 *data)
1950 {
1951         struct e1000_nvm_info *nvm = &hw->nvm;
1952         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1953         u16 i;
1954
1955         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1956             (words == 0)) {
1957                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1958                 return -E1000_ERR_NVM;
1959         }
1960
1961         nvm->ops.acquire_nvm(hw);
1962
1963         for (i = 0; i < words; i++) {
1964                 dev_spec->shadow_ram[offset+i].modified = 1;
1965                 dev_spec->shadow_ram[offset+i].value = data[i];
1966         }
1967
1968         nvm->ops.release_nvm(hw);
1969
1970         return 0;
1971 }
1972
1973 /**
1974  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1975  *  @hw: pointer to the HW structure
1976  *
1977  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1978  *  which writes the checksum to the shadow ram.  The changes in the shadow
1979  *  ram are then committed to the EEPROM by processing each bank at a time
1980  *  checking for the modified bit and writing only the pending changes.
1981  *  After a successful commit, the shadow ram is cleared and is ready for
1982  *  future writes.
1983  **/
1984 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1985 {
1986         struct e1000_nvm_info *nvm = &hw->nvm;
1987         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1988         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1989         s32 ret_val;
1990         u16 data;
1991
1992         ret_val = e1000e_update_nvm_checksum_generic(hw);
1993         if (ret_val)
1994                 goto out;
1995
1996         if (nvm->type != e1000_nvm_flash_sw)
1997                 goto out;
1998
1999         nvm->ops.acquire_nvm(hw);
2000
2001         /*
2002          * We're writing to the opposite bank so if we're on bank 1,
2003          * write to bank 0 etc.  We also need to erase the segment that
2004          * is going to be written
2005          */
2006         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2007         if (ret_val) {
2008                 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
2009                 bank = 0;
2010         }
2011
2012         if (bank == 0) {
2013                 new_bank_offset = nvm->flash_bank_size;
2014                 old_bank_offset = 0;
2015                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2016                 if (ret_val) {
2017                         nvm->ops.release_nvm(hw);
2018                         goto out;
2019                 }
2020         } else {
2021                 old_bank_offset = nvm->flash_bank_size;
2022                 new_bank_offset = 0;
2023                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2024                 if (ret_val) {
2025                         nvm->ops.release_nvm(hw);
2026                         goto out;
2027                 }
2028         }
2029
2030         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2031                 /*
2032                  * Determine whether to write the value stored
2033                  * in the other NVM bank or a modified value stored
2034                  * in the shadow RAM
2035                  */
2036                 if (dev_spec->shadow_ram[i].modified) {
2037                         data = dev_spec->shadow_ram[i].value;
2038                 } else {
2039                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2040                                                                 old_bank_offset,
2041                                                                 &data);
2042                         if (ret_val)
2043                                 break;
2044                 }
2045
2046                 /*
2047                  * If the word is 0x13, then make sure the signature bits
2048                  * (15:14) are 11b until the commit has completed.
2049                  * This will allow us to write 10b which indicates the
2050                  * signature is valid.  We want to do this after the write
2051                  * has completed so that we don't mark the segment valid
2052                  * while the write is still in progress
2053                  */
2054                 if (i == E1000_ICH_NVM_SIG_WORD)
2055                         data |= E1000_ICH_NVM_SIG_MASK;
2056
2057                 /* Convert offset to bytes. */
2058                 act_offset = (i + new_bank_offset) << 1;
2059
2060                 udelay(100);
2061                 /* Write the bytes to the new bank. */
2062                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2063                                                                act_offset,
2064                                                                (u8)data);
2065                 if (ret_val)
2066                         break;
2067
2068                 udelay(100);
2069                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2070                                                           act_offset + 1,
2071                                                           (u8)(data >> 8));
2072                 if (ret_val)
2073                         break;
2074         }
2075
2076         /*
2077          * Don't bother writing the segment valid bits if sector
2078          * programming failed.
2079          */
2080         if (ret_val) {
2081                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2082                 hw_dbg(hw, "Flash commit failed.\n");
2083                 nvm->ops.release_nvm(hw);
2084                 goto out;
2085         }
2086
2087         /*
2088          * Finally validate the new segment by setting bit 15:14
2089          * to 10b in word 0x13 , this can be done without an
2090          * erase as well since these bits are 11 to start with
2091          * and we need to change bit 14 to 0b
2092          */
2093         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2094         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2095         if (ret_val) {
2096                 nvm->ops.release_nvm(hw);
2097                 goto out;
2098         }
2099         data &= 0xBFFF;
2100         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2101                                                        act_offset * 2 + 1,
2102                                                        (u8)(data >> 8));
2103         if (ret_val) {
2104                 nvm->ops.release_nvm(hw);
2105                 goto out;
2106         }
2107
2108         /*
2109          * And invalidate the previously valid segment by setting
2110          * its signature word (0x13) high_byte to 0b. This can be
2111          * done without an erase because flash erase sets all bits
2112          * to 1's. We can write 1's to 0's without an erase
2113          */
2114         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2115         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2116         if (ret_val) {
2117                 nvm->ops.release_nvm(hw);
2118                 goto out;
2119         }
2120
2121         /* Great!  Everything worked, we can now clear the cached entries. */
2122         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2123                 dev_spec->shadow_ram[i].modified = 0;
2124                 dev_spec->shadow_ram[i].value = 0xFFFF;
2125         }
2126
2127         nvm->ops.release_nvm(hw);
2128
2129         /*
2130          * Reload the EEPROM, or else modifications will not appear
2131          * until after the next adapter reset.
2132          */
2133         e1000e_reload_nvm(hw);
2134         msleep(10);
2135
2136 out:
2137         if (ret_val)
2138                 hw_dbg(hw, "NVM update error: %d\n", ret_val);
2139
2140         return ret_val;
2141 }
2142
2143 /**
2144  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2145  *  @hw: pointer to the HW structure
2146  *
2147  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2148  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2149  *  calculated, in which case we need to calculate the checksum and set bit 6.
2150  **/
2151 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2152 {
2153         s32 ret_val;
2154         u16 data;
2155
2156         /*
2157          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2158          * needs to be fixed.  This bit is an indication that the NVM
2159          * was prepared by OEM software and did not calculate the
2160          * checksum...a likely scenario.
2161          */
2162         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2163         if (ret_val)
2164                 return ret_val;
2165
2166         if ((data & 0x40) == 0) {
2167                 data |= 0x40;
2168                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2169                 if (ret_val)
2170                         return ret_val;
2171                 ret_val = e1000e_update_nvm_checksum(hw);
2172                 if (ret_val)
2173                         return ret_val;
2174         }
2175
2176         return e1000e_validate_nvm_checksum_generic(hw);
2177 }
2178
2179 /**
2180  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2181  *  @hw: pointer to the HW structure
2182  *
2183  *  To prevent malicious write/erase of the NVM, set it to be read-only
2184  *  so that the hardware ignores all write/erase cycles of the NVM via
2185  *  the flash control registers.  The shadow-ram copy of the NVM will
2186  *  still be updated, however any updates to this copy will not stick
2187  *  across driver reloads.
2188  **/
2189 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2190 {
2191         struct e1000_nvm_info *nvm = &hw->nvm;
2192         union ich8_flash_protected_range pr0;
2193         union ich8_hws_flash_status hsfsts;
2194         u32 gfpreg;
2195
2196         nvm->ops.acquire_nvm(hw);
2197
2198         gfpreg = er32flash(ICH_FLASH_GFPREG);
2199
2200         /* Write-protect GbE Sector of NVM */
2201         pr0.regval = er32flash(ICH_FLASH_PR0);
2202         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2203         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2204         pr0.range.wpe = true;
2205         ew32flash(ICH_FLASH_PR0, pr0.regval);
2206
2207         /*
2208          * Lock down a subset of GbE Flash Control Registers, e.g.
2209          * PR0 to prevent the write-protection from being lifted.
2210          * Once FLOCKDN is set, the registers protected by it cannot
2211          * be written until FLOCKDN is cleared by a hardware reset.
2212          */
2213         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2214         hsfsts.hsf_status.flockdn = true;
2215         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2216
2217         nvm->ops.release_nvm(hw);
2218 }
2219
2220 /**
2221  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2222  *  @hw: pointer to the HW structure
2223  *  @offset: The offset (in bytes) of the byte/word to read.
2224  *  @size: Size of data to read, 1=byte 2=word
2225  *  @data: The byte(s) to write to the NVM.
2226  *
2227  *  Writes one/two bytes to the NVM using the flash access registers.
2228  **/
2229 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2230                                           u8 size, u16 data)
2231 {
2232         union ich8_hws_flash_status hsfsts;
2233         union ich8_hws_flash_ctrl hsflctl;
2234         u32 flash_linear_addr;
2235         u32 flash_data = 0;
2236         s32 ret_val;
2237         u8 count = 0;
2238
2239         if (size < 1 || size > 2 || data > size * 0xff ||
2240             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2241                 return -E1000_ERR_NVM;
2242
2243         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2244                             hw->nvm.flash_base_addr;
2245
2246         do {
2247                 udelay(1);
2248                 /* Steps */
2249                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2250                 if (ret_val)
2251                         break;
2252
2253                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2254                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2255                 hsflctl.hsf_ctrl.fldbcount = size -1;
2256                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2257                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2258
2259                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2260
2261                 if (size == 1)
2262                         flash_data = (u32)data & 0x00FF;
2263                 else
2264                         flash_data = (u32)data;
2265
2266                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2267
2268                 /*
2269                  * check if FCERR is set to 1 , if set to 1, clear it
2270                  * and try the whole sequence a few more times else done
2271                  */
2272                 ret_val = e1000_flash_cycle_ich8lan(hw,
2273                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2274                 if (!ret_val)
2275                         break;
2276
2277                 /*
2278                  * If we're here, then things are most likely
2279                  * completely hosed, but if the error condition
2280                  * is detected, it won't hurt to give it another
2281                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2282                  */
2283                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2284                 if (hsfsts.hsf_status.flcerr == 1)
2285                         /* Repeat for some time before giving up. */
2286                         continue;
2287                 if (hsfsts.hsf_status.flcdone == 0) {
2288                         hw_dbg(hw, "Timeout error - flash cycle "
2289                                  "did not complete.");
2290                         break;
2291                 }
2292         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2293
2294         return ret_val;
2295 }
2296
2297 /**
2298  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2299  *  @hw: pointer to the HW structure
2300  *  @offset: The index of the byte to read.
2301  *  @data: The byte to write to the NVM.
2302  *
2303  *  Writes a single byte to the NVM using the flash access registers.
2304  **/
2305 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2306                                           u8 data)
2307 {
2308         u16 word = (u16)data;
2309
2310         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2311 }
2312
2313 /**
2314  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2315  *  @hw: pointer to the HW structure
2316  *  @offset: The offset of the byte to write.
2317  *  @byte: The byte to write to the NVM.
2318  *
2319  *  Writes a single byte to the NVM using the flash access registers.
2320  *  Goes through a retry algorithm before giving up.
2321  **/
2322 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2323                                                 u32 offset, u8 byte)
2324 {
2325         s32 ret_val;
2326         u16 program_retries;
2327
2328         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2329         if (!ret_val)
2330                 return ret_val;
2331
2332         for (program_retries = 0; program_retries < 100; program_retries++) {
2333                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2334                 udelay(100);
2335                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2336                 if (!ret_val)
2337                         break;
2338         }
2339         if (program_retries == 100)
2340                 return -E1000_ERR_NVM;
2341
2342         return 0;
2343 }
2344
2345 /**
2346  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2347  *  @hw: pointer to the HW structure
2348  *  @bank: 0 for first bank, 1 for second bank, etc.
2349  *
2350  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2351  *  bank N is 4096 * N + flash_reg_addr.
2352  **/
2353 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2354 {
2355         struct e1000_nvm_info *nvm = &hw->nvm;
2356         union ich8_hws_flash_status hsfsts;
2357         union ich8_hws_flash_ctrl hsflctl;
2358         u32 flash_linear_addr;
2359         /* bank size is in 16bit words - adjust to bytes */
2360         u32 flash_bank_size = nvm->flash_bank_size * 2;
2361         s32 ret_val;
2362         s32 count = 0;
2363         s32 iteration;
2364         s32 sector_size;
2365         s32 j;
2366
2367         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2368
2369         /*
2370          * Determine HW Sector size: Read BERASE bits of hw flash status
2371          * register
2372          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2373          *     consecutive sectors.  The start index for the nth Hw sector
2374          *     can be calculated as = bank * 4096 + n * 256
2375          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2376          *     The start index for the nth Hw sector can be calculated
2377          *     as = bank * 4096
2378          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2379          *     (ich9 only, otherwise error condition)
2380          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2381          */
2382         switch (hsfsts.hsf_status.berasesz) {
2383         case 0:
2384                 /* Hw sector size 256 */
2385                 sector_size = ICH_FLASH_SEG_SIZE_256;
2386                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2387                 break;
2388         case 1:
2389                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2390                 iteration = 1;
2391                 break;
2392         case 2:
2393                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2394                 iteration = 1;
2395                 break;
2396         case 3:
2397                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2398                 iteration = 1;
2399                 break;
2400         default:
2401                 return -E1000_ERR_NVM;
2402         }
2403
2404         /* Start with the base address, then add the sector offset. */
2405         flash_linear_addr = hw->nvm.flash_base_addr;
2406         flash_linear_addr += (bank) ? flash_bank_size : 0;
2407
2408         for (j = 0; j < iteration ; j++) {
2409                 do {
2410                         /* Steps */
2411                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2412                         if (ret_val)
2413                                 return ret_val;
2414
2415                         /*
2416                          * Write a value 11 (block Erase) in Flash
2417                          * Cycle field in hw flash control
2418                          */
2419                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2420                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2421                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2422
2423                         /*
2424                          * Write the last 24 bits of an index within the
2425                          * block into Flash Linear address field in Flash
2426                          * Address.
2427                          */
2428                         flash_linear_addr += (j * sector_size);
2429                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2430
2431                         ret_val = e1000_flash_cycle_ich8lan(hw,
2432                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2433                         if (ret_val == 0)
2434                                 break;
2435
2436                         /*
2437                          * Check if FCERR is set to 1.  If 1,
2438                          * clear it and try the whole sequence
2439                          * a few more times else Done
2440                          */
2441                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2442                         if (hsfsts.hsf_status.flcerr == 1)
2443                                 /* repeat for some time before giving up */
2444                                 continue;
2445                         else if (hsfsts.hsf_status.flcdone == 0)
2446                                 return ret_val;
2447                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2448         }
2449
2450         return 0;
2451 }
2452
2453 /**
2454  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2455  *  @hw: pointer to the HW structure
2456  *  @data: Pointer to the LED settings
2457  *
2458  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2459  *  settings is all 0's or F's, set the LED default to a valid LED default
2460  *  setting.
2461  **/
2462 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2463 {
2464         s32 ret_val;
2465
2466         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2467         if (ret_val) {
2468                 hw_dbg(hw, "NVM Read Error\n");
2469                 return ret_val;
2470         }
2471
2472         if (*data == ID_LED_RESERVED_0000 ||
2473             *data == ID_LED_RESERVED_FFFF)
2474                 *data = ID_LED_DEFAULT_ICH8LAN;
2475
2476         return 0;
2477 }
2478
2479 /**
2480  *  e1000_id_led_init_pchlan - store LED configurations
2481  *  @hw: pointer to the HW structure
2482  *
2483  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2484  *  the PHY LED configuration register.
2485  *
2486  *  PCH also does not have an "always on" or "always off" mode which
2487  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2488  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2489  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2490  *  link based on logic in e1000_led_[on|off]_pchlan().
2491  **/
2492 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2493 {
2494         struct e1000_mac_info *mac = &hw->mac;
2495         s32 ret_val;
2496         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2497         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2498         u16 data, i, temp, shift;
2499
2500         /* Get default ID LED modes */
2501         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2502         if (ret_val)
2503                 goto out;
2504
2505         mac->ledctl_default = er32(LEDCTL);
2506         mac->ledctl_mode1 = mac->ledctl_default;
2507         mac->ledctl_mode2 = mac->ledctl_default;
2508
2509         for (i = 0; i < 4; i++) {
2510                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2511                 shift = (i * 5);
2512                 switch (temp) {
2513                 case ID_LED_ON1_DEF2:
2514                 case ID_LED_ON1_ON2:
2515                 case ID_LED_ON1_OFF2:
2516                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2517                         mac->ledctl_mode1 |= (ledctl_on << shift);
2518                         break;
2519                 case ID_LED_OFF1_DEF2:
2520                 case ID_LED_OFF1_ON2:
2521                 case ID_LED_OFF1_OFF2:
2522                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2523                         mac->ledctl_mode1 |= (ledctl_off << shift);
2524                         break;
2525                 default:
2526                         /* Do nothing */
2527                         break;
2528                 }
2529                 switch (temp) {
2530                 case ID_LED_DEF1_ON2:
2531                 case ID_LED_ON1_ON2:
2532                 case ID_LED_OFF1_ON2:
2533                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2534                         mac->ledctl_mode2 |= (ledctl_on << shift);
2535                         break;
2536                 case ID_LED_DEF1_OFF2:
2537                 case ID_LED_ON1_OFF2:
2538                 case ID_LED_OFF1_OFF2:
2539                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2540                         mac->ledctl_mode2 |= (ledctl_off << shift);
2541                         break;
2542                 default:
2543                         /* Do nothing */
2544                         break;
2545                 }
2546         }
2547
2548 out:
2549         return ret_val;
2550 }
2551
2552 /**
2553  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2554  *  @hw: pointer to the HW structure
2555  *
2556  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2557  *  register, so the the bus width is hard coded.
2558  **/
2559 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2560 {
2561         struct e1000_bus_info *bus = &hw->bus;
2562         s32 ret_val;
2563
2564         ret_val = e1000e_get_bus_info_pcie(hw);
2565
2566         /*
2567          * ICH devices are "PCI Express"-ish.  They have
2568          * a configuration space, but do not contain
2569          * PCI Express Capability registers, so bus width
2570          * must be hardcoded.
2571          */
2572         if (bus->width == e1000_bus_width_unknown)
2573                 bus->width = e1000_bus_width_pcie_x1;
2574
2575         return ret_val;
2576 }
2577
2578 /**
2579  *  e1000_reset_hw_ich8lan - Reset the hardware
2580  *  @hw: pointer to the HW structure
2581  *
2582  *  Does a full reset of the hardware which includes a reset of the PHY and
2583  *  MAC.
2584  **/
2585 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2586 {
2587         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2588         u16 reg;
2589         u32 ctrl, icr, kab;
2590         s32 ret_val;
2591
2592         /*
2593          * Prevent the PCI-E bus from sticking if there is no TLP connection
2594          * on the last TLP read/write transaction when MAC is reset.
2595          */
2596         ret_val = e1000e_disable_pcie_master(hw);
2597         if (ret_val) {
2598                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2599         }
2600
2601         hw_dbg(hw, "Masking off all interrupts\n");
2602         ew32(IMC, 0xffffffff);
2603
2604         /*
2605          * Disable the Transmit and Receive units.  Then delay to allow
2606          * any pending transactions to complete before we hit the MAC
2607          * with the global reset.
2608          */
2609         ew32(RCTL, 0);
2610         ew32(TCTL, E1000_TCTL_PSP);
2611         e1e_flush();
2612
2613         msleep(10);
2614
2615         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2616         if (hw->mac.type == e1000_ich8lan) {
2617                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2618                 ew32(PBA, E1000_PBA_8K);
2619                 /* Set Packet Buffer Size to 16k. */
2620                 ew32(PBS, E1000_PBS_16K);
2621         }
2622
2623         if (hw->mac.type == e1000_pchlan) {
2624                 /* Save the NVM K1 bit setting*/
2625                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2626                 if (ret_val)
2627                         return ret_val;
2628
2629                 if (reg & E1000_NVM_K1_ENABLE)
2630                         dev_spec->nvm_k1_enabled = true;
2631                 else
2632                         dev_spec->nvm_k1_enabled = false;
2633         }
2634
2635         ctrl = er32(CTRL);
2636
2637         if (!e1000_check_reset_block(hw)) {
2638                 /* Clear PHY Reset Asserted bit */
2639                 if (hw->mac.type >= e1000_pchlan) {
2640                         u32 status = er32(STATUS);
2641                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2642                 }
2643
2644                 /*
2645                  * PHY HW reset requires MAC CORE reset at the same
2646                  * time to make sure the interface between MAC and the
2647                  * external PHY is reset.
2648                  */
2649                 ctrl |= E1000_CTRL_PHY_RST;
2650         }
2651         ret_val = e1000_acquire_swflag_ich8lan(hw);
2652         /* Whether or not the swflag was acquired, we need to reset the part */
2653         hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2654         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2655         msleep(20);
2656
2657         if (!ret_val)
2658                 e1000_release_swflag_ich8lan(hw);
2659
2660         if (ctrl & E1000_CTRL_PHY_RST)
2661                 ret_val = hw->phy.ops.get_cfg_done(hw);
2662
2663         if (hw->mac.type >= e1000_ich10lan) {
2664                 e1000_lan_init_done_ich8lan(hw);
2665         } else {
2666                 ret_val = e1000e_get_auto_rd_done(hw);
2667                 if (ret_val) {
2668                         /*
2669                          * When auto config read does not complete, do not
2670                          * return with an error. This can happen in situations
2671                          * where there is no eeprom and prevents getting link.
2672                          */
2673                         hw_dbg(hw, "Auto Read Done did not complete\n");
2674                 }
2675         }
2676         /* Dummy read to clear the phy wakeup bit after lcd reset */
2677         if (hw->mac.type == e1000_pchlan)
2678                 e1e_rphy(hw, BM_WUC, &reg);
2679
2680         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2681         if (ret_val)
2682                 goto out;
2683
2684         if (hw->mac.type == e1000_pchlan) {
2685                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2686                 if (ret_val)
2687                         goto out;
2688         }
2689         /*
2690          * For PCH, this write will make sure that any noise
2691          * will be detected as a CRC error and be dropped rather than show up
2692          * as a bad packet to the DMA engine.
2693          */
2694         if (hw->mac.type == e1000_pchlan)
2695                 ew32(CRC_OFFSET, 0x65656565);
2696
2697         ew32(IMC, 0xffffffff);
2698         icr = er32(ICR);
2699
2700         kab = er32(KABGTXD);
2701         kab |= E1000_KABGTXD_BGSQLBIAS;
2702         ew32(KABGTXD, kab);
2703
2704         if (hw->mac.type == e1000_pchlan)
2705                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2706
2707 out:
2708         return ret_val;
2709 }
2710
2711 /**
2712  *  e1000_init_hw_ich8lan - Initialize the hardware
2713  *  @hw: pointer to the HW structure
2714  *
2715  *  Prepares the hardware for transmit and receive by doing the following:
2716  *   - initialize hardware bits
2717  *   - initialize LED identification
2718  *   - setup receive address registers
2719  *   - setup flow control
2720  *   - setup transmit descriptors
2721  *   - clear statistics
2722  **/
2723 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2724 {
2725         struct e1000_mac_info *mac = &hw->mac;
2726         u32 ctrl_ext, txdctl, snoop;
2727         s32 ret_val;
2728         u16 i;
2729
2730         e1000_initialize_hw_bits_ich8lan(hw);
2731
2732         /* Initialize identification LED */
2733         ret_val = mac->ops.id_led_init(hw);
2734         if (ret_val) {
2735                 hw_dbg(hw, "Error initializing identification LED\n");
2736                 return ret_val;
2737         }
2738
2739         /* Setup the receive address. */
2740         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2741
2742         /* Zero out the Multicast HASH table */
2743         hw_dbg(hw, "Zeroing the MTA\n");
2744         for (i = 0; i < mac->mta_reg_count; i++)
2745                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2746
2747         /*
2748          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2749          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2750          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2751          */
2752         if (hw->phy.type == e1000_phy_82578) {
2753                 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2754                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2755                 if (ret_val)
2756                         return ret_val;
2757         }
2758
2759         /* Setup link and flow control */
2760         ret_val = e1000_setup_link_ich8lan(hw);
2761
2762         /* Set the transmit descriptor write-back policy for both queues */
2763         txdctl = er32(TXDCTL(0));
2764         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2765                  E1000_TXDCTL_FULL_TX_DESC_WB;
2766         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2767                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2768         ew32(TXDCTL(0), txdctl);
2769         txdctl = er32(TXDCTL(1));
2770         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2771                  E1000_TXDCTL_FULL_TX_DESC_WB;
2772         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2773                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2774         ew32(TXDCTL(1), txdctl);
2775
2776         /*
2777          * ICH8 has opposite polarity of no_snoop bits.
2778          * By default, we should use snoop behavior.
2779          */
2780         if (mac->type == e1000_ich8lan)
2781                 snoop = PCIE_ICH8_SNOOP_ALL;
2782         else
2783                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2784         e1000e_set_pcie_no_snoop(hw, snoop);
2785
2786         ctrl_ext = er32(CTRL_EXT);
2787         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2788         ew32(CTRL_EXT, ctrl_ext);
2789
2790         /*
2791          * Clear all of the statistics registers (clear on read).  It is
2792          * important that we do this after we have tried to establish link
2793          * because the symbol error count will increment wildly if there
2794          * is no link.
2795          */
2796         e1000_clear_hw_cntrs_ich8lan(hw);
2797
2798         return 0;
2799 }
2800 /**
2801  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2802  *  @hw: pointer to the HW structure
2803  *
2804  *  Sets/Clears required hardware bits necessary for correctly setting up the
2805  *  hardware for transmit and receive.
2806  **/
2807 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2808 {
2809         u32 reg;
2810
2811         /* Extended Device Control */
2812         reg = er32(CTRL_EXT);
2813         reg |= (1 << 22);
2814         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2815         if (hw->mac.type >= e1000_pchlan)
2816                 reg |= E1000_CTRL_EXT_PHYPDEN;
2817         ew32(CTRL_EXT, reg);
2818
2819         /* Transmit Descriptor Control 0 */
2820         reg = er32(TXDCTL(0));
2821         reg |= (1 << 22);
2822         ew32(TXDCTL(0), reg);
2823
2824         /* Transmit Descriptor Control 1 */
2825         reg = er32(TXDCTL(1));
2826         reg |= (1 << 22);
2827         ew32(TXDCTL(1), reg);
2828
2829         /* Transmit Arbitration Control 0 */
2830         reg = er32(TARC(0));
2831         if (hw->mac.type == e1000_ich8lan)
2832                 reg |= (1 << 28) | (1 << 29);
2833         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2834         ew32(TARC(0), reg);
2835
2836         /* Transmit Arbitration Control 1 */
2837         reg = er32(TARC(1));
2838         if (er32(TCTL) & E1000_TCTL_MULR)
2839                 reg &= ~(1 << 28);
2840         else
2841                 reg |= (1 << 28);
2842         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2843         ew32(TARC(1), reg);
2844
2845         /* Device Status */
2846         if (hw->mac.type == e1000_ich8lan) {
2847                 reg = er32(STATUS);
2848                 reg &= ~(1 << 31);
2849                 ew32(STATUS, reg);
2850         }
2851 }
2852
2853 /**
2854  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2855  *  @hw: pointer to the HW structure
2856  *
2857  *  Determines which flow control settings to use, then configures flow
2858  *  control.  Calls the appropriate media-specific link configuration
2859  *  function.  Assuming the adapter has a valid link partner, a valid link
2860  *  should be established.  Assumes the hardware has previously been reset
2861  *  and the transmitter and receiver are not enabled.
2862  **/
2863 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2864 {
2865         s32 ret_val;
2866
2867         if (e1000_check_reset_block(hw))
2868                 return 0;
2869
2870         /*
2871          * ICH parts do not have a word in the NVM to determine
2872          * the default flow control setting, so we explicitly
2873          * set it to full.
2874          */
2875         if (hw->fc.requested_mode == e1000_fc_default) {
2876                 /* Workaround h/w hang when Tx flow control enabled */
2877                 if (hw->mac.type == e1000_pchlan)
2878                         hw->fc.requested_mode = e1000_fc_rx_pause;
2879                 else
2880                         hw->fc.requested_mode = e1000_fc_full;
2881         }
2882
2883         /*
2884          * Save off the requested flow control mode for use later.  Depending
2885          * on the link partner's capabilities, we may or may not use this mode.
2886          */
2887         hw->fc.current_mode = hw->fc.requested_mode;
2888
2889         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2890                 hw->fc.current_mode);
2891
2892         /* Continue to configure the copper link. */
2893         ret_val = e1000_setup_copper_link_ich8lan(hw);
2894         if (ret_val)
2895                 return ret_val;
2896
2897         ew32(FCTTV, hw->fc.pause_time);
2898         if ((hw->phy.type == e1000_phy_82578) ||
2899             (hw->phy.type == e1000_phy_82577)) {
2900                 ret_val = hw->phy.ops.write_phy_reg(hw,
2901                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2902                                              hw->fc.pause_time);
2903                 if (ret_val)
2904                         return ret_val;
2905         }
2906
2907         return e1000e_set_fc_watermarks(hw);
2908 }
2909
2910 /**
2911  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2912  *  @hw: pointer to the HW structure
2913  *
2914  *  Configures the kumeran interface to the PHY to wait the appropriate time
2915  *  when polling the PHY, then call the generic setup_copper_link to finish
2916  *  configuring the copper link.
2917  **/
2918 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2919 {
2920         u32 ctrl;
2921         s32 ret_val;
2922         u16 reg_data;
2923
2924         ctrl = er32(CTRL);
2925         ctrl |= E1000_CTRL_SLU;
2926         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2927         ew32(CTRL, ctrl);
2928
2929         /*
2930          * Set the mac to wait the maximum time between each iteration
2931          * and increase the max iterations when polling the phy;
2932          * this fixes erroneous timeouts at 10Mbps.
2933          */
2934         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2935         if (ret_val)
2936                 return ret_val;
2937         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2938         if (ret_val)
2939                 return ret_val;
2940         reg_data |= 0x3F;
2941         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2942         if (ret_val)
2943                 return ret_val;
2944
2945         switch (hw->phy.type) {
2946         case e1000_phy_igp_3:
2947                 ret_val = e1000e_copper_link_setup_igp(hw);
2948                 if (ret_val)
2949                         return ret_val;
2950                 break;
2951         case e1000_phy_bm:
2952         case e1000_phy_82578:
2953                 ret_val = e1000e_copper_link_setup_m88(hw);
2954                 if (ret_val)
2955                         return ret_val;
2956                 break;
2957         case e1000_phy_82577:
2958                 ret_val = e1000_copper_link_setup_82577(hw);
2959                 if (ret_val)
2960                         return ret_val;
2961                 break;
2962         case e1000_phy_ife:
2963                 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2964                                                &reg_data);
2965                 if (ret_val)
2966                         return ret_val;
2967
2968                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2969
2970                 switch (hw->phy.mdix) {
2971                 case 1:
2972                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2973                         break;
2974                 case 2:
2975                         reg_data |= IFE_PMC_FORCE_MDIX;
2976                         break;
2977                 case 0:
2978                 default:
2979                         reg_data |= IFE_PMC_AUTO_MDIX;
2980                         break;
2981                 }
2982                 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2983                                                 reg_data);
2984                 if (ret_val)
2985                         return ret_val;
2986                 break;
2987         default:
2988                 break;
2989         }
2990         return e1000e_setup_copper_link(hw);
2991 }
2992
2993 /**
2994  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2995  *  @hw: pointer to the HW structure
2996  *  @speed: pointer to store current link speed
2997  *  @duplex: pointer to store the current link duplex
2998  *
2999  *  Calls the generic get_speed_and_duplex to retrieve the current link
3000  *  information and then calls the Kumeran lock loss workaround for links at
3001  *  gigabit speeds.
3002  **/
3003 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3004                                           u16 *duplex)
3005 {
3006         s32 ret_val;
3007
3008         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3009         if (ret_val)
3010                 return ret_val;
3011
3012         if ((hw->mac.type == e1000_ich8lan) &&
3013             (hw->phy.type == e1000_phy_igp_3) &&
3014             (*speed == SPEED_1000)) {
3015                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3016         }
3017
3018         return ret_val;
3019 }
3020
3021 /**
3022  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3023  *  @hw: pointer to the HW structure
3024  *
3025  *  Work-around for 82566 Kumeran PCS lock loss:
3026  *  On link status change (i.e. PCI reset, speed change) and link is up and
3027  *  speed is gigabit-
3028  *    0) if workaround is optionally disabled do nothing
3029  *    1) wait 1ms for Kumeran link to come up
3030  *    2) check Kumeran Diagnostic register PCS lock loss bit
3031  *    3) if not set the link is locked (all is good), otherwise...
3032  *    4) reset the PHY
3033  *    5) repeat up to 10 times
3034  *  Note: this is only called for IGP3 copper when speed is 1gb.
3035  **/
3036 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3037 {
3038         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3039         u32 phy_ctrl;
3040         s32 ret_val;
3041         u16 i, data;
3042         bool link;
3043
3044         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3045                 return 0;
3046
3047         /*
3048          * Make sure link is up before proceeding.  If not just return.
3049          * Attempting this while link is negotiating fouled up link
3050          * stability
3051          */
3052         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3053         if (!link)
3054                 return 0;
3055
3056         for (i = 0; i < 10; i++) {
3057                 /* read once to clear */
3058                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3059                 if (ret_val)
3060                         return ret_val;
3061                 /* and again to get new status */
3062                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3063                 if (ret_val)
3064                         return ret_val;
3065
3066                 /* check for PCS lock */
3067                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3068                         return 0;
3069
3070                 /* Issue PHY reset */
3071                 e1000_phy_hw_reset(hw);
3072                 mdelay(5);
3073         }
3074         /* Disable GigE link negotiation */
3075         phy_ctrl = er32(PHY_CTRL);
3076         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3077                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3078         ew32(PHY_CTRL, phy_ctrl);
3079
3080         /*
3081          * Call gig speed drop workaround on Gig disable before accessing
3082          * any PHY registers
3083          */
3084         e1000e_gig_downshift_workaround_ich8lan(hw);
3085
3086         /* unable to acquire PCS lock */
3087         return -E1000_ERR_PHY;
3088 }
3089
3090 /**
3091  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3092  *  @hw: pointer to the HW structure
3093  *  @state: boolean value used to set the current Kumeran workaround state
3094  *
3095  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
3096  *  /disabled - FALSE).
3097  **/
3098 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3099                                                  bool state)
3100 {
3101         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3102
3103         if (hw->mac.type != e1000_ich8lan) {
3104                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
3105                 return;
3106         }
3107
3108         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3109 }
3110
3111 /**
3112  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3113  *  @hw: pointer to the HW structure
3114  *
3115  *  Workaround for 82566 power-down on D3 entry:
3116  *    1) disable gigabit link
3117  *    2) write VR power-down enable
3118  *    3) read it back
3119  *  Continue if successful, else issue LCD reset and repeat
3120  **/
3121 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3122 {
3123         u32 reg;
3124         u16 data;
3125         u8  retry = 0;
3126
3127         if (hw->phy.type != e1000_phy_igp_3)
3128                 return;
3129
3130         /* Try the workaround twice (if needed) */
3131         do {
3132                 /* Disable link */
3133                 reg = er32(PHY_CTRL);
3134                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3135                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3136                 ew32(PHY_CTRL, reg);
3137
3138                 /*
3139                  * Call gig speed drop workaround on Gig disable before
3140                  * accessing any PHY registers
3141                  */
3142                 if (hw->mac.type == e1000_ich8lan)
3143                         e1000e_gig_downshift_workaround_ich8lan(hw);
3144
3145                 /* Write VR power-down enable */
3146                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3147                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3148                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3149
3150                 /* Read it back and test */
3151                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3152                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3153                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3154                         break;
3155
3156                 /* Issue PHY reset and repeat at most one more time */
3157                 reg = er32(CTRL);
3158                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3159                 retry++;
3160         } while (retry);
3161 }
3162
3163 /**
3164  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3165  *  @hw: pointer to the HW structure
3166  *
3167  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3168  *  LPLU, Gig disable, MDIC PHY reset):
3169  *    1) Set Kumeran Near-end loopback
3170  *    2) Clear Kumeran Near-end loopback
3171  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3172  **/
3173 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3174 {
3175         s32 ret_val;
3176         u16 reg_data;
3177
3178         if ((hw->mac.type != e1000_ich8lan) ||
3179             (hw->phy.type != e1000_phy_igp_3))
3180                 return;
3181
3182         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3183                                       &reg_data);
3184         if (ret_val)
3185                 return;
3186         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3187         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3188                                        reg_data);
3189         if (ret_val)
3190                 return;
3191         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3192         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3193                                        reg_data);
3194 }
3195
3196 /**
3197  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3198  *  @hw: pointer to the HW structure
3199  *
3200  *  During S0 to Sx transition, it is possible the link remains at gig
3201  *  instead of negotiating to a lower speed.  Before going to Sx, set
3202  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3203  *  to a lower speed.
3204  *
3205  *  Should only be called for applicable parts.
3206  **/
3207 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3208 {
3209         u32 phy_ctrl;
3210
3211         switch (hw->mac.type) {
3212         case e1000_ich8lan:
3213         case e1000_ich9lan:
3214         case e1000_ich10lan:
3215         case e1000_pchlan:
3216                 phy_ctrl = er32(PHY_CTRL);
3217                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3218                             E1000_PHY_CTRL_GBE_DISABLE;
3219                 ew32(PHY_CTRL, phy_ctrl);
3220
3221                 if (hw->mac.type == e1000_pchlan)
3222                         e1000_phy_hw_reset_ich8lan(hw);
3223         default:
3224                 break;
3225         }
3226
3227         return;
3228 }
3229
3230 /**
3231  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3232  *  @hw: pointer to the HW structure
3233  *
3234  *  Return the LED back to the default configuration.
3235  **/
3236 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3237 {
3238         if (hw->phy.type == e1000_phy_ife)
3239                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3240
3241         ew32(LEDCTL, hw->mac.ledctl_default);
3242         return 0;
3243 }
3244
3245 /**
3246  *  e1000_led_on_ich8lan - Turn LEDs on
3247  *  @hw: pointer to the HW structure
3248  *
3249  *  Turn on the LEDs.
3250  **/
3251 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3252 {
3253         if (hw->phy.type == e1000_phy_ife)
3254                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3255                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3256
3257         ew32(LEDCTL, hw->mac.ledctl_mode2);
3258         return 0;
3259 }
3260
3261 /**
3262  *  e1000_led_off_ich8lan - Turn LEDs off
3263  *  @hw: pointer to the HW structure
3264  *
3265  *  Turn off the LEDs.
3266  **/
3267 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3268 {
3269         if (hw->phy.type == e1000_phy_ife)
3270                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3271                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3272
3273         ew32(LEDCTL, hw->mac.ledctl_mode1);
3274         return 0;
3275 }
3276
3277 /**
3278  *  e1000_setup_led_pchlan - Configures SW controllable LED
3279  *  @hw: pointer to the HW structure
3280  *
3281  *  This prepares the SW controllable LED for use.
3282  **/
3283 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3284 {
3285         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3286                                         (u16)hw->mac.ledctl_mode1);
3287 }
3288
3289 /**
3290  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3291  *  @hw: pointer to the HW structure
3292  *
3293  *  Return the LED back to the default configuration.
3294  **/
3295 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3296 {
3297         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3298                                         (u16)hw->mac.ledctl_default);
3299 }
3300
3301 /**
3302  *  e1000_led_on_pchlan - Turn LEDs on
3303  *  @hw: pointer to the HW structure
3304  *
3305  *  Turn on the LEDs.
3306  **/
3307 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3308 {
3309         u16 data = (u16)hw->mac.ledctl_mode2;
3310         u32 i, led;
3311
3312         /*
3313          * If no link, then turn LED on by setting the invert bit
3314          * for each LED that's mode is "link_up" in ledctl_mode2.
3315          */
3316         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3317                 for (i = 0; i < 3; i++) {
3318                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3319                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3320                             E1000_LEDCTL_MODE_LINK_UP)
3321                                 continue;
3322                         if (led & E1000_PHY_LED0_IVRT)
3323                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3324                         else
3325                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3326                 }
3327         }
3328
3329         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3330 }
3331
3332 /**
3333  *  e1000_led_off_pchlan - Turn LEDs off
3334  *  @hw: pointer to the HW structure
3335  *
3336  *  Turn off the LEDs.
3337  **/
3338 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3339 {
3340         u16 data = (u16)hw->mac.ledctl_mode1;
3341         u32 i, led;
3342
3343         /*
3344          * If no link, then turn LED off by clearing the invert bit
3345          * for each LED that's mode is "link_up" in ledctl_mode1.
3346          */
3347         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3348                 for (i = 0; i < 3; i++) {
3349                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3350                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3351                             E1000_LEDCTL_MODE_LINK_UP)
3352                                 continue;
3353                         if (led & E1000_PHY_LED0_IVRT)
3354                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3355                         else
3356                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3357                 }
3358         }
3359
3360         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3361 }
3362
3363 /**
3364  *  e1000_get_cfg_done_ich8lan - Read config done bit
3365  *  @hw: pointer to the HW structure
3366  *
3367  *  Read the management control register for the config done bit for
3368  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3369  *  to read the config done bit, so an error is *ONLY* logged and returns
3370  *  0.  If we were to return with error, EEPROM-less silicon
3371  *  would not be able to be reset or change link.
3372  **/
3373 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3374 {
3375         u32 bank = 0;
3376
3377         if (hw->mac.type >= e1000_pchlan) {
3378                 u32 status = er32(STATUS);
3379
3380                 if (status & E1000_STATUS_PHYRA)
3381                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3382                 else
3383                         hw_dbg(hw,
3384                                "PHY Reset Asserted not set - needs delay\n");
3385         }
3386
3387         e1000e_get_cfg_done(hw);
3388
3389         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3390         if ((hw->mac.type != e1000_ich10lan) &&
3391             (hw->mac.type != e1000_pchlan)) {
3392                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3393                     (hw->phy.type == e1000_phy_igp_3)) {
3394                         e1000e_phy_init_script_igp3(hw);
3395                 }
3396         } else {
3397                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3398                         /* Maybe we should do a basic PHY config */
3399                         hw_dbg(hw, "EEPROM not present\n");
3400                         return -E1000_ERR_CONFIG;
3401                 }
3402         }
3403
3404         return 0;
3405 }
3406
3407 /**
3408  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3409  *  @hw: pointer to the HW structure
3410  *
3411  *  Clears hardware counters specific to the silicon family and calls
3412  *  clear_hw_cntrs_generic to clear all general purpose counters.
3413  **/
3414 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3415 {
3416         u32 temp;
3417         u16 phy_data;
3418
3419         e1000e_clear_hw_cntrs_base(hw);
3420
3421         temp = er32(ALGNERRC);
3422         temp = er32(RXERRC);
3423         temp = er32(TNCRS);
3424         temp = er32(CEXTERR);
3425         temp = er32(TSCTC);
3426         temp = er32(TSCTFC);
3427
3428         temp = er32(MGTPRC);
3429         temp = er32(MGTPDC);
3430         temp = er32(MGTPTC);
3431
3432         temp = er32(IAC);
3433         temp = er32(ICRXOC);
3434
3435         /* Clear PHY statistics registers */
3436         if ((hw->phy.type == e1000_phy_82578) ||
3437             (hw->phy.type == e1000_phy_82577)) {
3438                 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3439                 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3440                 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3441                 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3442                 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3443                 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3444                 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3445                 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3446                 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3447                 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3448                 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3449                 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3450                 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3451                 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3452         }
3453 }
3454
3455 static struct e1000_mac_operations ich8_mac_ops = {
3456         .id_led_init            = e1000e_id_led_init,
3457         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3458         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3459         /* cleanup_led dependent on mac type */
3460         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3461         .get_bus_info           = e1000_get_bus_info_ich8lan,
3462         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3463         /* led_on dependent on mac type */
3464         /* led_off dependent on mac type */
3465         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3466         .reset_hw               = e1000_reset_hw_ich8lan,
3467         .init_hw                = e1000_init_hw_ich8lan,
3468         .setup_link             = e1000_setup_link_ich8lan,
3469         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3470         /* id_led_init dependent on mac type */
3471 };
3472
3473 static struct e1000_phy_operations ich8_phy_ops = {
3474         .acquire_phy            = e1000_acquire_swflag_ich8lan,
3475         .check_reset_block      = e1000_check_reset_block_ich8lan,
3476         .commit_phy             = NULL,
3477         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
3478         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3479         .get_cable_length       = e1000e_get_cable_length_igp_2,
3480         .get_phy_info           = e1000_get_phy_info_ich8lan,
3481         .read_phy_reg           = e1000e_read_phy_reg_igp,
3482         .release_phy            = e1000_release_swflag_ich8lan,
3483         .reset_phy              = e1000_phy_hw_reset_ich8lan,
3484         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3485         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3486         .write_phy_reg          = e1000e_write_phy_reg_igp,
3487 };
3488
3489 static struct e1000_nvm_operations ich8_nvm_ops = {
3490         .acquire_nvm            = e1000_acquire_nvm_ich8lan,
3491         .read_nvm               = e1000_read_nvm_ich8lan,
3492         .release_nvm            = e1000_release_nvm_ich8lan,
3493         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
3494         .valid_led_default      = e1000_valid_led_default_ich8lan,
3495         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
3496         .write_nvm              = e1000_write_nvm_ich8lan,
3497 };
3498
3499 struct e1000_info e1000_ich8_info = {
3500         .mac                    = e1000_ich8lan,
3501         .flags                  = FLAG_HAS_WOL
3502                                   | FLAG_IS_ICH
3503                                   | FLAG_RX_CSUM_ENABLED
3504                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3505                                   | FLAG_HAS_AMT
3506                                   | FLAG_HAS_FLASH
3507                                   | FLAG_APME_IN_WUC,
3508         .pba                    = 8,
3509         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3510         .get_variants           = e1000_get_variants_ich8lan,
3511         .mac_ops                = &ich8_mac_ops,
3512         .phy_ops                = &ich8_phy_ops,
3513         .nvm_ops                = &ich8_nvm_ops,
3514 };
3515
3516 struct e1000_info e1000_ich9_info = {
3517         .mac                    = e1000_ich9lan,
3518         .flags                  = FLAG_HAS_JUMBO_FRAMES
3519                                   | FLAG_IS_ICH
3520                                   | FLAG_HAS_WOL
3521                                   | FLAG_RX_CSUM_ENABLED
3522                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3523                                   | FLAG_HAS_AMT
3524                                   | FLAG_HAS_ERT
3525                                   | FLAG_HAS_FLASH
3526                                   | FLAG_APME_IN_WUC,
3527         .pba                    = 10,
3528         .max_hw_frame_size      = DEFAULT_JUMBO,
3529         .get_variants           = e1000_get_variants_ich8lan,
3530         .mac_ops                = &ich8_mac_ops,
3531         .phy_ops                = &ich8_phy_ops,
3532         .nvm_ops                = &ich8_nvm_ops,
3533 };
3534
3535 struct e1000_info e1000_ich10_info = {
3536         .mac                    = e1000_ich10lan,
3537         .flags                  = FLAG_HAS_JUMBO_FRAMES
3538                                   | FLAG_IS_ICH
3539                                   | FLAG_HAS_WOL
3540                                   | FLAG_RX_CSUM_ENABLED
3541                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3542                                   | FLAG_HAS_AMT
3543                                   | FLAG_HAS_ERT
3544                                   | FLAG_HAS_FLASH
3545                                   | FLAG_APME_IN_WUC,
3546         .pba                    = 10,
3547         .max_hw_frame_size      = DEFAULT_JUMBO,
3548         .get_variants           = e1000_get_variants_ich8lan,
3549         .mac_ops                = &ich8_mac_ops,
3550         .phy_ops                = &ich8_phy_ops,
3551         .nvm_ops                = &ich8_nvm_ops,
3552 };
3553
3554 struct e1000_info e1000_pch_info = {
3555         .mac                    = e1000_pchlan,
3556         .flags                  = FLAG_IS_ICH
3557                                   | FLAG_HAS_WOL
3558                                   | FLAG_RX_CSUM_ENABLED
3559                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3560                                   | FLAG_HAS_AMT
3561                                   | FLAG_HAS_FLASH
3562                                   | FLAG_HAS_JUMBO_FRAMES
3563                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3564                                   | FLAG_APME_IN_WUC,
3565         .pba                    = 26,
3566         .max_hw_frame_size      = 4096,
3567         .get_variants           = e1000_get_variants_ich8lan,
3568         .mac_ops                = &ich8_mac_ops,
3569         .phy_ops                = &ich8_phy_ops,
3570         .nvm_ops                = &ich8_nvm_ops,
3571 };