Revert "Merge remote-tracking branch 'linux-2.6.32.y/master' into develop"
[firefly-linux-kernel-4.4.55.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <asm/uaccess.h>
48
49 #include "common.h"
50 #include "cxgb3_ioctl.h"
51 #include "regs.h"
52 #include "cxgb3_offload.h"
53 #include "version.h"
54
55 #include "cxgb3_ctl_defs.h"
56 #include "t3_cpl.h"
57 #include "firmware_exports.h"
58
59 enum {
60         MAX_TXQ_ENTRIES = 16384,
61         MAX_CTRL_TXQ_ENTRIES = 1024,
62         MAX_RSPQ_ENTRIES = 16384,
63         MAX_RX_BUFFERS = 16384,
64         MAX_RX_JUMBO_BUFFERS = 16384,
65         MIN_TXQ_ENTRIES = 4,
66         MIN_CTRL_TXQ_ENTRIES = 4,
67         MIN_RSPQ_ENTRIES = 32,
68         MIN_FL_ENTRIES = 32
69 };
70
71 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
72
73 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
74                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
75                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
76
77 #define EEPROM_MAGIC 0x38E2F10C
78
79 #define CH_DEVICE(devid, idx) \
80         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
81
82 static const struct pci_device_id cxgb3_pci_tbl[] = {
83         CH_DEVICE(0x20, 0),     /* PE9000 */
84         CH_DEVICE(0x21, 1),     /* T302E */
85         CH_DEVICE(0x22, 2),     /* T310E */
86         CH_DEVICE(0x23, 3),     /* T320X */
87         CH_DEVICE(0x24, 1),     /* T302X */
88         CH_DEVICE(0x25, 3),     /* T320E */
89         CH_DEVICE(0x26, 2),     /* T310X */
90         CH_DEVICE(0x30, 2),     /* T3B10 */
91         CH_DEVICE(0x31, 3),     /* T3B20 */
92         CH_DEVICE(0x32, 1),     /* T3B02 */
93         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
94         CH_DEVICE(0x36, 3),     /* S320E-CR */
95         CH_DEVICE(0x37, 7),     /* N320E-G2 */
96         {0,}
97 };
98
99 MODULE_DESCRIPTION(DRV_DESC);
100 MODULE_AUTHOR("Chelsio Communications");
101 MODULE_LICENSE("Dual BSD/GPL");
102 MODULE_VERSION(DRV_VERSION);
103 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
104
105 static int dflt_msg_enable = DFLT_MSG_ENABLE;
106
107 module_param(dflt_msg_enable, int, 0644);
108 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
109
110 /*
111  * The driver uses the best interrupt scheme available on a platform in the
112  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
113  * of these schemes the driver may consider as follows:
114  *
115  * msi = 2: choose from among all three options
116  * msi = 1: only consider MSI and pin interrupts
117  * msi = 0: force pin interrupts
118  */
119 static int msi = 2;
120
121 module_param(msi, int, 0644);
122 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
123
124 /*
125  * The driver enables offload as a default.
126  * To disable it, use ofld_disable = 1.
127  */
128
129 static int ofld_disable = 0;
130
131 module_param(ofld_disable, int, 0644);
132 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
133
134 /*
135  * We have work elements that we need to cancel when an interface is taken
136  * down.  Normally the work elements would be executed by keventd but that
137  * can deadlock because of linkwatch.  If our close method takes the rtnl
138  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
139  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
140  * for our work to complete.  Get our own work queue to solve this.
141  */
142 static struct workqueue_struct *cxgb3_wq;
143
144 /**
145  *      link_report - show link status and link speed/duplex
146  *      @p: the port whose settings are to be reported
147  *
148  *      Shows the link status, speed, and duplex of a port.
149  */
150 static void link_report(struct net_device *dev)
151 {
152         if (!netif_carrier_ok(dev))
153                 printk(KERN_INFO "%s: link down\n", dev->name);
154         else {
155                 const char *s = "10Mbps";
156                 const struct port_info *p = netdev_priv(dev);
157
158                 switch (p->link_config.speed) {
159                 case SPEED_10000:
160                         s = "10Gbps";
161                         break;
162                 case SPEED_1000:
163                         s = "1000Mbps";
164                         break;
165                 case SPEED_100:
166                         s = "100Mbps";
167                         break;
168                 }
169
170                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
171                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
172         }
173 }
174
175 static void enable_tx_fifo_drain(struct adapter *adapter,
176                                  struct port_info *pi)
177 {
178         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
179                          F_ENDROPPKT);
180         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
181         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
182         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
183 }
184
185 static void disable_tx_fifo_drain(struct adapter *adapter,
186                                   struct port_info *pi)
187 {
188         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
189                          F_ENDROPPKT, 0);
190 }
191
192 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
193 {
194         struct net_device *dev = adap->port[port_id];
195         struct port_info *pi = netdev_priv(dev);
196
197         if (state == netif_carrier_ok(dev))
198                 return;
199
200         if (state) {
201                 struct cmac *mac = &pi->mac;
202
203                 netif_carrier_on(dev);
204
205                 disable_tx_fifo_drain(adap, pi);
206
207                 /* Clear local faults */
208                 t3_xgm_intr_disable(adap, pi->port_id);
209                 t3_read_reg(adap, A_XGM_INT_STATUS +
210                                     pi->mac.offset);
211                 t3_write_reg(adap,
212                              A_XGM_INT_CAUSE + pi->mac.offset,
213                              F_XGM_INT);
214
215                 t3_set_reg_field(adap,
216                                  A_XGM_INT_ENABLE +
217                                  pi->mac.offset,
218                                  F_XGM_INT, F_XGM_INT);
219                 t3_xgm_intr_enable(adap, pi->port_id);
220
221                 t3_mac_enable(mac, MAC_DIRECTION_TX);
222         } else {
223                 netif_carrier_off(dev);
224
225                 /* Flush TX FIFO */
226                 enable_tx_fifo_drain(adap, pi);
227         }
228         link_report(dev);
229 }
230
231 /**
232  *      t3_os_link_changed - handle link status changes
233  *      @adapter: the adapter associated with the link change
234  *      @port_id: the port index whose limk status has changed
235  *      @link_stat: the new status of the link
236  *      @speed: the new speed setting
237  *      @duplex: the new duplex setting
238  *      @pause: the new flow-control setting
239  *
240  *      This is the OS-dependent handler for link status changes.  The OS
241  *      neutral handler takes care of most of the processing for these events,
242  *      then calls this handler for any OS-specific processing.
243  */
244 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
245                         int speed, int duplex, int pause)
246 {
247         struct net_device *dev = adapter->port[port_id];
248         struct port_info *pi = netdev_priv(dev);
249         struct cmac *mac = &pi->mac;
250
251         /* Skip changes from disabled ports. */
252         if (!netif_running(dev))
253                 return;
254
255         if (link_stat != netif_carrier_ok(dev)) {
256                 if (link_stat) {
257                         disable_tx_fifo_drain(adapter, pi);
258
259                         t3_mac_enable(mac, MAC_DIRECTION_RX);
260
261                         /* Clear local faults */
262                         t3_xgm_intr_disable(adapter, pi->port_id);
263                         t3_read_reg(adapter, A_XGM_INT_STATUS +
264                                     pi->mac.offset);
265                         t3_write_reg(adapter,
266                                      A_XGM_INT_CAUSE + pi->mac.offset,
267                                      F_XGM_INT);
268
269                         t3_set_reg_field(adapter,
270                                          A_XGM_INT_ENABLE + pi->mac.offset,
271                                          F_XGM_INT, F_XGM_INT);
272                         t3_xgm_intr_enable(adapter, pi->port_id);
273
274                         netif_carrier_on(dev);
275                 } else {
276                         netif_carrier_off(dev);
277
278                         t3_xgm_intr_disable(adapter, pi->port_id);
279                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
280                         t3_set_reg_field(adapter,
281                                          A_XGM_INT_ENABLE + pi->mac.offset,
282                                          F_XGM_INT, 0);
283
284                         if (is_10G(adapter))
285                                 pi->phy.ops->power_down(&pi->phy, 1);
286
287                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
288                         t3_mac_disable(mac, MAC_DIRECTION_RX);
289                         t3_link_start(&pi->phy, mac, &pi->link_config);
290
291                         /* Flush TX FIFO */
292                         enable_tx_fifo_drain(adapter, pi);
293                 }
294
295                 link_report(dev);
296         }
297 }
298
299 /**
300  *      t3_os_phymod_changed - handle PHY module changes
301  *      @phy: the PHY reporting the module change
302  *      @mod_type: new module type
303  *
304  *      This is the OS-dependent handler for PHY module changes.  It is
305  *      invoked when a PHY module is removed or inserted for any OS-specific
306  *      processing.
307  */
308 void t3_os_phymod_changed(struct adapter *adap, int port_id)
309 {
310         static const char *mod_str[] = {
311                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
312         };
313
314         const struct net_device *dev = adap->port[port_id];
315         const struct port_info *pi = netdev_priv(dev);
316
317         if (pi->phy.modtype == phy_modtype_none)
318                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
319         else
320                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
321                        mod_str[pi->phy.modtype]);
322 }
323
324 static void cxgb_set_rxmode(struct net_device *dev)
325 {
326         struct t3_rx_mode rm;
327         struct port_info *pi = netdev_priv(dev);
328
329         init_rx_mode(&rm, dev, dev->mc_list);
330         t3_mac_set_rx_mode(&pi->mac, &rm);
331 }
332
333 /**
334  *      link_start - enable a port
335  *      @dev: the device to enable
336  *
337  *      Performs the MAC and PHY actions needed to enable a port.
338  */
339 static void link_start(struct net_device *dev)
340 {
341         struct t3_rx_mode rm;
342         struct port_info *pi = netdev_priv(dev);
343         struct cmac *mac = &pi->mac;
344
345         init_rx_mode(&rm, dev, dev->mc_list);
346         t3_mac_reset(mac);
347         t3_mac_set_mtu(mac, dev->mtu);
348         t3_mac_set_address(mac, 0, dev->dev_addr);
349         t3_mac_set_rx_mode(mac, &rm);
350         t3_link_start(&pi->phy, mac, &pi->link_config);
351         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
352 }
353
354 static inline void cxgb_disable_msi(struct adapter *adapter)
355 {
356         if (adapter->flags & USING_MSIX) {
357                 pci_disable_msix(adapter->pdev);
358                 adapter->flags &= ~USING_MSIX;
359         } else if (adapter->flags & USING_MSI) {
360                 pci_disable_msi(adapter->pdev);
361                 adapter->flags &= ~USING_MSI;
362         }
363 }
364
365 /*
366  * Interrupt handler for asynchronous events used with MSI-X.
367  */
368 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
369 {
370         t3_slow_intr_handler(cookie);
371         return IRQ_HANDLED;
372 }
373
374 /*
375  * Name the MSI-X interrupts.
376  */
377 static void name_msix_vecs(struct adapter *adap)
378 {
379         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
380
381         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
382         adap->msix_info[0].desc[n] = 0;
383
384         for_each_port(adap, j) {
385                 struct net_device *d = adap->port[j];
386                 const struct port_info *pi = netdev_priv(d);
387
388                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
389                         snprintf(adap->msix_info[msi_idx].desc, n,
390                                  "%s-%d", d->name, pi->first_qset + i);
391                         adap->msix_info[msi_idx].desc[n] = 0;
392                 }
393         }
394 }
395
396 static int request_msix_data_irqs(struct adapter *adap)
397 {
398         int i, j, err, qidx = 0;
399
400         for_each_port(adap, i) {
401                 int nqsets = adap2pinfo(adap, i)->nqsets;
402
403                 for (j = 0; j < nqsets; ++j) {
404                         err = request_irq(adap->msix_info[qidx + 1].vec,
405                                           t3_intr_handler(adap,
406                                                           adap->sge.qs[qidx].
407                                                           rspq.polling), 0,
408                                           adap->msix_info[qidx + 1].desc,
409                                           &adap->sge.qs[qidx]);
410                         if (err) {
411                                 while (--qidx >= 0)
412                                         free_irq(adap->msix_info[qidx + 1].vec,
413                                                  &adap->sge.qs[qidx]);
414                                 return err;
415                         }
416                         qidx++;
417                 }
418         }
419         return 0;
420 }
421
422 static void free_irq_resources(struct adapter *adapter)
423 {
424         if (adapter->flags & USING_MSIX) {
425                 int i, n = 0;
426
427                 free_irq(adapter->msix_info[0].vec, adapter);
428                 for_each_port(adapter, i)
429                         n += adap2pinfo(adapter, i)->nqsets;
430
431                 for (i = 0; i < n; ++i)
432                         free_irq(adapter->msix_info[i + 1].vec,
433                                  &adapter->sge.qs[i]);
434         } else
435                 free_irq(adapter->pdev->irq, adapter);
436 }
437
438 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
439                               unsigned long n)
440 {
441         int attempts = 5;
442
443         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
444                 if (!--attempts)
445                         return -ETIMEDOUT;
446                 msleep(10);
447         }
448         return 0;
449 }
450
451 static int init_tp_parity(struct adapter *adap)
452 {
453         int i;
454         struct sk_buff *skb;
455         struct cpl_set_tcb_field *greq;
456         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
457
458         t3_tp_set_offload_mode(adap, 1);
459
460         for (i = 0; i < 16; i++) {
461                 struct cpl_smt_write_req *req;
462
463                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
464                 if (!skb)
465                         skb = adap->nofail_skb;
466                 if (!skb)
467                         goto alloc_skb_fail;
468
469                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
470                 memset(req, 0, sizeof(*req));
471                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
472                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
473                 req->mtu_idx = NMTUS - 1;
474                 req->iff = i;
475                 t3_mgmt_tx(adap, skb);
476                 if (skb == adap->nofail_skb) {
477                         await_mgmt_replies(adap, cnt, i + 1);
478                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
479                         if (!adap->nofail_skb)
480                                 goto alloc_skb_fail;
481                 }
482         }
483
484         for (i = 0; i < 2048; i++) {
485                 struct cpl_l2t_write_req *req;
486
487                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
488                 if (!skb)
489                         skb = adap->nofail_skb;
490                 if (!skb)
491                         goto alloc_skb_fail;
492
493                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
494                 memset(req, 0, sizeof(*req));
495                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
496                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
497                 req->params = htonl(V_L2T_W_IDX(i));
498                 t3_mgmt_tx(adap, skb);
499                 if (skb == adap->nofail_skb) {
500                         await_mgmt_replies(adap, cnt, 16 + i + 1);
501                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
502                         if (!adap->nofail_skb)
503                                 goto alloc_skb_fail;
504                 }
505         }
506
507         for (i = 0; i < 2048; i++) {
508                 struct cpl_rte_write_req *req;
509
510                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
511                 if (!skb)
512                         skb = adap->nofail_skb;
513                 if (!skb)
514                         goto alloc_skb_fail;
515
516                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
517                 memset(req, 0, sizeof(*req));
518                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
519                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
520                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
521                 t3_mgmt_tx(adap, skb);
522                 if (skb == adap->nofail_skb) {
523                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
524                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
525                         if (!adap->nofail_skb)
526                                 goto alloc_skb_fail;
527                 }
528         }
529
530         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
531         if (!skb)
532                 skb = adap->nofail_skb;
533         if (!skb)
534                 goto alloc_skb_fail;
535
536         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
537         memset(greq, 0, sizeof(*greq));
538         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540         greq->mask = cpu_to_be64(1);
541         t3_mgmt_tx(adap, skb);
542
543         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544         if (skb == adap->nofail_skb) {
545                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
547         }
548
549         t3_tp_set_offload_mode(adap, 0);
550         return i;
551
552 alloc_skb_fail:
553         t3_tp_set_offload_mode(adap, 0);
554         return -ENOMEM;
555 }
556
557 /**
558  *      setup_rss - configure RSS
559  *      @adap: the adapter
560  *
561  *      Sets up RSS to distribute packets to multiple receive queues.  We
562  *      configure the RSS CPU lookup table to distribute to the number of HW
563  *      receive queues, and the response queue lookup table to narrow that
564  *      down to the response queues actually configured for each port.
565  *      We always configure the RSS mapping for two ports since the mapping
566  *      table has plenty of entries.
567  */
568 static void setup_rss(struct adapter *adap)
569 {
570         int i;
571         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573         u8 cpus[SGE_QSETS + 1];
574         u16 rspq_map[RSS_TABLE_SIZE];
575
576         for (i = 0; i < SGE_QSETS; ++i)
577                 cpus[i] = i;
578         cpus[SGE_QSETS] = 0xff; /* terminator */
579
580         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581                 rspq_map[i] = i % nq0;
582                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
583         }
584
585         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
586                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
587                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
588 }
589
590 static void init_napi(struct adapter *adap)
591 {
592         int i;
593
594         for (i = 0; i < SGE_QSETS; i++) {
595                 struct sge_qset *qs = &adap->sge.qs[i];
596
597                 if (qs->adap)
598                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
599                                        64);
600         }
601
602         /*
603          * netif_napi_add() can be called only once per napi_struct because it
604          * adds each new napi_struct to a list.  Be careful not to call it a
605          * second time, e.g., during EEH recovery, by making a note of it.
606          */
607         adap->flags |= NAPI_INIT;
608 }
609
610 /*
611  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
612  * both netdevices representing interfaces and the dummy ones for the extra
613  * queues.
614  */
615 static void quiesce_rx(struct adapter *adap)
616 {
617         int i;
618
619         for (i = 0; i < SGE_QSETS; i++)
620                 if (adap->sge.qs[i].adap)
621                         napi_disable(&adap->sge.qs[i].napi);
622 }
623
624 static void enable_all_napi(struct adapter *adap)
625 {
626         int i;
627         for (i = 0; i < SGE_QSETS; i++)
628                 if (adap->sge.qs[i].adap)
629                         napi_enable(&adap->sge.qs[i].napi);
630 }
631
632 /**
633  *      set_qset_lro - Turn a queue set's LRO capability on and off
634  *      @dev: the device the qset is attached to
635  *      @qset_idx: the queue set index
636  *      @val: the LRO switch
637  *
638  *      Sets LRO on or off for a particular queue set.
639  *      the device's features flag is updated to reflect the LRO
640  *      capability when all queues belonging to the device are
641  *      in the same state.
642  */
643 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
644 {
645         struct port_info *pi = netdev_priv(dev);
646         struct adapter *adapter = pi->adapter;
647
648         adapter->params.sge.qset[qset_idx].lro = !!val;
649         adapter->sge.qs[qset_idx].lro_enabled = !!val;
650 }
651
652 /**
653  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
654  *      @adap: the adapter
655  *
656  *      Determines how many sets of SGE queues to use and initializes them.
657  *      We support multiple queue sets per port if we have MSI-X, otherwise
658  *      just one queue set per port.
659  */
660 static int setup_sge_qsets(struct adapter *adap)
661 {
662         int i, j, err, irq_idx = 0, qset_idx = 0;
663         unsigned int ntxq = SGE_TXQ_PER_SET;
664
665         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
666                 irq_idx = -1;
667
668         for_each_port(adap, i) {
669                 struct net_device *dev = adap->port[i];
670                 struct port_info *pi = netdev_priv(dev);
671
672                 pi->qs = &adap->sge.qs[pi->first_qset];
673                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
674                         set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
675                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
676                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
677                                                              irq_idx,
678                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
679                                 netdev_get_tx_queue(dev, j));
680                         if (err) {
681                                 t3_free_sge_resources(adap);
682                                 return err;
683                         }
684                 }
685         }
686
687         return 0;
688 }
689
690 static ssize_t attr_show(struct device *d, char *buf,
691                          ssize_t(*format) (struct net_device *, char *))
692 {
693         ssize_t len;
694
695         /* Synchronize with ioctls that may shut down the device */
696         rtnl_lock();
697         len = (*format) (to_net_dev(d), buf);
698         rtnl_unlock();
699         return len;
700 }
701
702 static ssize_t attr_store(struct device *d,
703                           const char *buf, size_t len,
704                           ssize_t(*set) (struct net_device *, unsigned int),
705                           unsigned int min_val, unsigned int max_val)
706 {
707         char *endp;
708         ssize_t ret;
709         unsigned int val;
710
711         if (!capable(CAP_NET_ADMIN))
712                 return -EPERM;
713
714         val = simple_strtoul(buf, &endp, 0);
715         if (endp == buf || val < min_val || val > max_val)
716                 return -EINVAL;
717
718         rtnl_lock();
719         ret = (*set) (to_net_dev(d), val);
720         if (!ret)
721                 ret = len;
722         rtnl_unlock();
723         return ret;
724 }
725
726 #define CXGB3_SHOW(name, val_expr) \
727 static ssize_t format_##name(struct net_device *dev, char *buf) \
728 { \
729         struct port_info *pi = netdev_priv(dev); \
730         struct adapter *adap = pi->adapter; \
731         return sprintf(buf, "%u\n", val_expr); \
732 } \
733 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
734                            char *buf) \
735 { \
736         return attr_show(d, buf, format_##name); \
737 }
738
739 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
740 {
741         struct port_info *pi = netdev_priv(dev);
742         struct adapter *adap = pi->adapter;
743         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
744
745         if (adap->flags & FULL_INIT_DONE)
746                 return -EBUSY;
747         if (val && adap->params.rev == 0)
748                 return -EINVAL;
749         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
750             min_tids)
751                 return -EINVAL;
752         adap->params.mc5.nfilters = val;
753         return 0;
754 }
755
756 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
757                               const char *buf, size_t len)
758 {
759         return attr_store(d, buf, len, set_nfilters, 0, ~0);
760 }
761
762 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
763 {
764         struct port_info *pi = netdev_priv(dev);
765         struct adapter *adap = pi->adapter;
766
767         if (adap->flags & FULL_INIT_DONE)
768                 return -EBUSY;
769         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
770             MC5_MIN_TIDS)
771                 return -EINVAL;
772         adap->params.mc5.nservers = val;
773         return 0;
774 }
775
776 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
777                               const char *buf, size_t len)
778 {
779         return attr_store(d, buf, len, set_nservers, 0, ~0);
780 }
781
782 #define CXGB3_ATTR_R(name, val_expr) \
783 CXGB3_SHOW(name, val_expr) \
784 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
785
786 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
787 CXGB3_SHOW(name, val_expr) \
788 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
789
790 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
791 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
792 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
793
794 static struct attribute *cxgb3_attrs[] = {
795         &dev_attr_cam_size.attr,
796         &dev_attr_nfilters.attr,
797         &dev_attr_nservers.attr,
798         NULL
799 };
800
801 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
802
803 static ssize_t tm_attr_show(struct device *d,
804                             char *buf, int sched)
805 {
806         struct port_info *pi = netdev_priv(to_net_dev(d));
807         struct adapter *adap = pi->adapter;
808         unsigned int v, addr, bpt, cpt;
809         ssize_t len;
810
811         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
812         rtnl_lock();
813         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
814         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
815         if (sched & 1)
816                 v >>= 16;
817         bpt = (v >> 8) & 0xff;
818         cpt = v & 0xff;
819         if (!cpt)
820                 len = sprintf(buf, "disabled\n");
821         else {
822                 v = (adap->params.vpd.cclk * 1000) / cpt;
823                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
824         }
825         rtnl_unlock();
826         return len;
827 }
828
829 static ssize_t tm_attr_store(struct device *d,
830                              const char *buf, size_t len, int sched)
831 {
832         struct port_info *pi = netdev_priv(to_net_dev(d));
833         struct adapter *adap = pi->adapter;
834         unsigned int val;
835         char *endp;
836         ssize_t ret;
837
838         if (!capable(CAP_NET_ADMIN))
839                 return -EPERM;
840
841         val = simple_strtoul(buf, &endp, 0);
842         if (endp == buf || val > 10000000)
843                 return -EINVAL;
844
845         rtnl_lock();
846         ret = t3_config_sched(adap, val, sched);
847         if (!ret)
848                 ret = len;
849         rtnl_unlock();
850         return ret;
851 }
852
853 #define TM_ATTR(name, sched) \
854 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
855                            char *buf) \
856 { \
857         return tm_attr_show(d, buf, sched); \
858 } \
859 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
860                             const char *buf, size_t len) \
861 { \
862         return tm_attr_store(d, buf, len, sched); \
863 } \
864 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
865
866 TM_ATTR(sched0, 0);
867 TM_ATTR(sched1, 1);
868 TM_ATTR(sched2, 2);
869 TM_ATTR(sched3, 3);
870 TM_ATTR(sched4, 4);
871 TM_ATTR(sched5, 5);
872 TM_ATTR(sched6, 6);
873 TM_ATTR(sched7, 7);
874
875 static struct attribute *offload_attrs[] = {
876         &dev_attr_sched0.attr,
877         &dev_attr_sched1.attr,
878         &dev_attr_sched2.attr,
879         &dev_attr_sched3.attr,
880         &dev_attr_sched4.attr,
881         &dev_attr_sched5.attr,
882         &dev_attr_sched6.attr,
883         &dev_attr_sched7.attr,
884         NULL
885 };
886
887 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
888
889 /*
890  * Sends an sk_buff to an offload queue driver
891  * after dealing with any active network taps.
892  */
893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
894 {
895         int ret;
896
897         local_bh_disable();
898         ret = t3_offload_tx(tdev, skb);
899         local_bh_enable();
900         return ret;
901 }
902
903 static int write_smt_entry(struct adapter *adapter, int idx)
904 {
905         struct cpl_smt_write_req *req;
906         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907
908         if (!skb)
909                 return -ENOMEM;
910
911         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
912         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
915         req->iff = idx;
916         memset(req->src_mac1, 0, sizeof(req->src_mac1));
917         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918         skb->priority = 1;
919         offload_tx(&adapter->tdev, skb);
920         return 0;
921 }
922
923 static int init_smt(struct adapter *adapter)
924 {
925         int i;
926
927         for_each_port(adapter, i)
928             write_smt_entry(adapter, i);
929         return 0;
930 }
931
932 static void init_port_mtus(struct adapter *adapter)
933 {
934         unsigned int mtus = adapter->port[0]->mtu;
935
936         if (adapter->port[1])
937                 mtus |= adapter->port[1]->mtu << 16;
938         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940
941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942                               int hi, int port)
943 {
944         struct sk_buff *skb;
945         struct mngt_pktsched_wr *req;
946         int ret;
947
948         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949         if (!skb)
950                 skb = adap->nofail_skb;
951         if (!skb)
952                 return -ENOMEM;
953
954         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
955         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957         req->sched = sched;
958         req->idx = qidx;
959         req->min = lo;
960         req->max = hi;
961         req->binding = port;
962         ret = t3_mgmt_tx(adap, skb);
963         if (skb == adap->nofail_skb) {
964                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965                                              GFP_KERNEL);
966                 if (!adap->nofail_skb)
967                         ret = -ENOMEM;
968         }
969
970         return ret;
971 }
972
973 static int bind_qsets(struct adapter *adap)
974 {
975         int i, j, err = 0;
976
977         for_each_port(adap, i) {
978                 const struct port_info *pi = adap2pinfo(adap, i);
979
980                 for (j = 0; j < pi->nqsets; ++j) {
981                         int ret = send_pktsched_cmd(adap, 1,
982                                                     pi->first_qset + j, -1,
983                                                     -1, i);
984                         if (ret)
985                                 err = ret;
986                 }
987         }
988
989         return err;
990 }
991
992 #define FW_FNAME "cxgb3/t3fw-%d.%d.%d.bin"
993 #define TPSRAM_NAME "cxgb3/t3%c_psram-%d.%d.%d.bin"
994 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
995 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
996 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
997
998 static inline const char *get_edc_fw_name(int edc_idx)
999 {
1000         const char *fw_name = NULL;
1001
1002         switch (edc_idx) {
1003         case EDC_OPT_AEL2005:
1004                 fw_name = AEL2005_OPT_EDC_NAME;
1005                 break;
1006         case EDC_TWX_AEL2005:
1007                 fw_name = AEL2005_TWX_EDC_NAME;
1008                 break;
1009         case EDC_TWX_AEL2020:
1010                 fw_name = AEL2020_TWX_EDC_NAME;
1011                 break;
1012         }
1013         return fw_name;
1014 }
1015
1016 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1017 {
1018         struct adapter *adapter = phy->adapter;
1019         const struct firmware *fw;
1020         char buf[64];
1021         u32 csum;
1022         const __be32 *p;
1023         u16 *cache = phy->phy_cache;
1024         int i, ret;
1025
1026         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1027
1028         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1029         if (ret < 0) {
1030                 dev_err(&adapter->pdev->dev,
1031                         "could not upgrade firmware: unable to load %s\n",
1032                         buf);
1033                 return ret;
1034         }
1035
1036         /* check size, take checksum in account */
1037         if (fw->size > size + 4) {
1038                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1039                        (unsigned int)fw->size, size + 4);
1040                 ret = -EINVAL;
1041         }
1042
1043         /* compute checksum */
1044         p = (const __be32 *)fw->data;
1045         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1046                 csum += ntohl(p[i]);
1047
1048         if (csum != 0xffffffff) {
1049                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1050                        csum);
1051                 ret = -EINVAL;
1052         }
1053
1054         for (i = 0; i < size / 4 ; i++) {
1055                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1056                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1057         }
1058
1059         release_firmware(fw);
1060
1061         return ret;
1062 }
1063
1064 static int upgrade_fw(struct adapter *adap)
1065 {
1066         int ret;
1067         char buf[64];
1068         const struct firmware *fw;
1069         struct device *dev = &adap->pdev->dev;
1070
1071         snprintf(buf, sizeof(buf), FW_FNAME, FW_VERSION_MAJOR,
1072                  FW_VERSION_MINOR, FW_VERSION_MICRO);
1073         ret = request_firmware(&fw, buf, dev);
1074         if (ret < 0) {
1075                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1076                         buf);
1077                 return ret;
1078         }
1079         ret = t3_load_fw(adap, fw->data, fw->size);
1080         release_firmware(fw);
1081
1082         if (ret == 0)
1083                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1084                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1085         else
1086                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1087                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1088
1089         return ret;
1090 }
1091
1092 static inline char t3rev2char(struct adapter *adapter)
1093 {
1094         char rev = 0;
1095
1096         switch(adapter->params.rev) {
1097         case T3_REV_B:
1098         case T3_REV_B2:
1099                 rev = 'b';
1100                 break;
1101         case T3_REV_C:
1102                 rev = 'c';
1103                 break;
1104         }
1105         return rev;
1106 }
1107
1108 static int update_tpsram(struct adapter *adap)
1109 {
1110         const struct firmware *tpsram;
1111         char buf[64];
1112         struct device *dev = &adap->pdev->dev;
1113         int ret;
1114         char rev;
1115
1116         rev = t3rev2char(adap);
1117         if (!rev)
1118                 return 0;
1119
1120         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev,
1121                  TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1122
1123         ret = request_firmware(&tpsram, buf, dev);
1124         if (ret < 0) {
1125                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126                         buf);
1127                 return ret;
1128         }
1129
1130         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131         if (ret)
1132                 goto release_tpsram;
1133
1134         ret = t3_set_proto_sram(adap, tpsram->data);
1135         if (ret == 0)
1136                 dev_info(dev,
1137                          "successful update of protocol engine "
1138                          "to %d.%d.%d\n",
1139                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140         else
1141                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143         if (ret)
1144                 dev_err(dev, "loading protocol SRAM failed\n");
1145
1146 release_tpsram:
1147         release_firmware(tpsram);
1148
1149         return ret;
1150 }
1151
1152 /**
1153  *      cxgb_up - enable the adapter
1154  *      @adapter: adapter being enabled
1155  *
1156  *      Called when the first port is enabled, this function performs the
1157  *      actions necessary to make an adapter operational, such as completing
1158  *      the initialization of HW modules, and enabling interrupts.
1159  *
1160  *      Must be called with the rtnl lock held.
1161  */
1162 static int cxgb_up(struct adapter *adap)
1163 {
1164         int err;
1165
1166         if (!(adap->flags & FULL_INIT_DONE)) {
1167                 err = t3_check_fw_version(adap);
1168                 if (err == -EINVAL) {
1169                         err = upgrade_fw(adap);
1170                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1173                 }
1174
1175                 err = t3_check_tpsram_version(adap);
1176                 if (err == -EINVAL) {
1177                         err = update_tpsram(adap);
1178                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1181                 }
1182
1183                 /*
1184                  * Clear interrupts now to catch errors if t3_init_hw fails.
1185                  * We clear them again later as initialization may trigger
1186                  * conditions that can interrupt.
1187                  */
1188                 t3_intr_clear(adap);
1189
1190                 err = t3_init_hw(adap, 0);
1191                 if (err)
1192                         goto out;
1193
1194                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1196
1197                 err = setup_sge_qsets(adap);
1198                 if (err)
1199                         goto out;
1200
1201                 setup_rss(adap);
1202                 if (!(adap->flags & NAPI_INIT))
1203                         init_napi(adap);
1204
1205                 t3_start_sge_timers(adap);
1206                 adap->flags |= FULL_INIT_DONE;
1207         }
1208
1209         t3_intr_clear(adap);
1210
1211         if (adap->flags & USING_MSIX) {
1212                 name_msix_vecs(adap);
1213                 err = request_irq(adap->msix_info[0].vec,
1214                                   t3_async_intr_handler, 0,
1215                                   adap->msix_info[0].desc, adap);
1216                 if (err)
1217                         goto irq_err;
1218
1219                 err = request_msix_data_irqs(adap);
1220                 if (err) {
1221                         free_irq(adap->msix_info[0].vec, adap);
1222                         goto irq_err;
1223                 }
1224         } else if ((err = request_irq(adap->pdev->irq,
1225                                       t3_intr_handler(adap,
1226                                                       adap->sge.qs[0].rspq.
1227                                                       polling),
1228                                       (adap->flags & USING_MSI) ?
1229                                        0 : IRQF_SHARED,
1230                                       adap->name, adap)))
1231                 goto irq_err;
1232
1233         enable_all_napi(adap);
1234         t3_sge_start(adap);
1235         t3_intr_enable(adap);
1236
1237         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238             is_offload(adap) && init_tp_parity(adap) == 0)
1239                 adap->flags |= TP_PARITY_INIT;
1240
1241         if (adap->flags & TP_PARITY_INIT) {
1242                 t3_write_reg(adap, A_TP_INT_CAUSE,
1243                              F_CMCACHEPERR | F_ARPLUTPERR);
1244                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1245         }
1246
1247         if (!(adap->flags & QUEUES_BOUND)) {
1248                 err = bind_qsets(adap);
1249                 if (err) {
1250                         CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1251                         t3_intr_disable(adap);
1252                         free_irq_resources(adap);
1253                         goto out;
1254                 }
1255                 adap->flags |= QUEUES_BOUND;
1256         }
1257
1258 out:
1259         return err;
1260 irq_err:
1261         CH_ERR(adap, "request_irq failed, err %d\n", err);
1262         goto out;
1263 }
1264
1265 /*
1266  * Release resources when all the ports and offloading have been stopped.
1267  */
1268 static void cxgb_down(struct adapter *adapter)
1269 {
1270         t3_sge_stop(adapter);
1271         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1272         t3_intr_disable(adapter);
1273         spin_unlock_irq(&adapter->work_lock);
1274
1275         free_irq_resources(adapter);
1276         quiesce_rx(adapter);
1277         t3_sge_stop(adapter);
1278         flush_workqueue(cxgb3_wq);      /* wait for external IRQ handler */
1279 }
1280
1281 static void schedule_chk_task(struct adapter *adap)
1282 {
1283         unsigned int timeo;
1284
1285         timeo = adap->params.linkpoll_period ?
1286             (HZ * adap->params.linkpoll_period) / 10 :
1287             adap->params.stats_update_period * HZ;
1288         if (timeo)
1289                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1290 }
1291
1292 static int offload_open(struct net_device *dev)
1293 {
1294         struct port_info *pi = netdev_priv(dev);
1295         struct adapter *adapter = pi->adapter;
1296         struct t3cdev *tdev = dev2t3cdev(dev);
1297         int adap_up = adapter->open_device_map & PORT_MASK;
1298         int err;
1299
1300         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1301                 return 0;
1302
1303         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1304                 goto out;
1305
1306         t3_tp_set_offload_mode(adapter, 1);
1307         tdev->lldev = adapter->port[0];
1308         err = cxgb3_offload_activate(adapter);
1309         if (err)
1310                 goto out;
1311
1312         init_port_mtus(adapter);
1313         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1314                      adapter->params.b_wnd,
1315                      adapter->params.rev == 0 ?
1316                      adapter->port[0]->mtu : 0xffff);
1317         init_smt(adapter);
1318
1319         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1320                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1321
1322         /* Call back all registered clients */
1323         cxgb3_add_clients(tdev);
1324
1325 out:
1326         /* restore them in case the offload module has changed them */
1327         if (err) {
1328                 t3_tp_set_offload_mode(adapter, 0);
1329                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1330                 cxgb3_set_dummy_ops(tdev);
1331         }
1332         return err;
1333 }
1334
1335 static int offload_close(struct t3cdev *tdev)
1336 {
1337         struct adapter *adapter = tdev2adap(tdev);
1338
1339         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1340                 return 0;
1341
1342         /* Call back all registered clients */
1343         cxgb3_remove_clients(tdev);
1344
1345         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1346
1347         /* Flush work scheduled while releasing TIDs */
1348         flush_scheduled_work();
1349
1350         tdev->lldev = NULL;
1351         cxgb3_set_dummy_ops(tdev);
1352         t3_tp_set_offload_mode(adapter, 0);
1353         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1354
1355         if (!adapter->open_device_map)
1356                 cxgb_down(adapter);
1357
1358         cxgb3_offload_deactivate(adapter);
1359         return 0;
1360 }
1361
1362 static int cxgb_open(struct net_device *dev)
1363 {
1364         struct port_info *pi = netdev_priv(dev);
1365         struct adapter *adapter = pi->adapter;
1366         int other_ports = adapter->open_device_map & PORT_MASK;
1367         int err;
1368
1369         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1370                 return err;
1371
1372         set_bit(pi->port_id, &adapter->open_device_map);
1373         if (is_offload(adapter) && !ofld_disable) {
1374                 err = offload_open(dev);
1375                 if (err)
1376                         printk(KERN_WARNING
1377                                "Could not initialize offload capabilities\n");
1378         }
1379
1380         dev->real_num_tx_queues = pi->nqsets;
1381         link_start(dev);
1382         t3_port_intr_enable(adapter, pi->port_id);
1383         netif_tx_start_all_queues(dev);
1384         if (!other_ports)
1385                 schedule_chk_task(adapter);
1386
1387         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1388         return 0;
1389 }
1390
1391 static int cxgb_close(struct net_device *dev)
1392 {
1393         struct port_info *pi = netdev_priv(dev);
1394         struct adapter *adapter = pi->adapter;
1395
1396         
1397         if (!adapter->open_device_map)
1398                 return 0;
1399
1400         /* Stop link fault interrupts */
1401         t3_xgm_intr_disable(adapter, pi->port_id);
1402         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1403
1404         t3_port_intr_disable(adapter, pi->port_id);
1405         netif_tx_stop_all_queues(dev);
1406         pi->phy.ops->power_down(&pi->phy, 1);
1407         netif_carrier_off(dev);
1408         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1409
1410         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1411         clear_bit(pi->port_id, &adapter->open_device_map);
1412         spin_unlock_irq(&adapter->work_lock);
1413
1414         if (!(adapter->open_device_map & PORT_MASK))
1415                 cancel_delayed_work_sync(&adapter->adap_check_task);
1416
1417         if (!adapter->open_device_map)
1418                 cxgb_down(adapter);
1419
1420         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1421         return 0;
1422 }
1423
1424 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1425 {
1426         struct port_info *pi = netdev_priv(dev);
1427         struct adapter *adapter = pi->adapter;
1428         struct net_device_stats *ns = &pi->netstats;
1429         const struct mac_stats *pstats;
1430
1431         spin_lock(&adapter->stats_lock);
1432         pstats = t3_mac_update_stats(&pi->mac);
1433         spin_unlock(&adapter->stats_lock);
1434
1435         ns->tx_bytes = pstats->tx_octets;
1436         ns->tx_packets = pstats->tx_frames;
1437         ns->rx_bytes = pstats->rx_octets;
1438         ns->rx_packets = pstats->rx_frames;
1439         ns->multicast = pstats->rx_mcast_frames;
1440
1441         ns->tx_errors = pstats->tx_underrun;
1442         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1443             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1444             pstats->rx_fifo_ovfl;
1445
1446         /* detailed rx_errors */
1447         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1448         ns->rx_over_errors = 0;
1449         ns->rx_crc_errors = pstats->rx_fcs_errs;
1450         ns->rx_frame_errors = pstats->rx_symbol_errs;
1451         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1452         ns->rx_missed_errors = pstats->rx_cong_drops;
1453
1454         /* detailed tx_errors */
1455         ns->tx_aborted_errors = 0;
1456         ns->tx_carrier_errors = 0;
1457         ns->tx_fifo_errors = pstats->tx_underrun;
1458         ns->tx_heartbeat_errors = 0;
1459         ns->tx_window_errors = 0;
1460         return ns;
1461 }
1462
1463 static u32 get_msglevel(struct net_device *dev)
1464 {
1465         struct port_info *pi = netdev_priv(dev);
1466         struct adapter *adapter = pi->adapter;
1467
1468         return adapter->msg_enable;
1469 }
1470
1471 static void set_msglevel(struct net_device *dev, u32 val)
1472 {
1473         struct port_info *pi = netdev_priv(dev);
1474         struct adapter *adapter = pi->adapter;
1475
1476         adapter->msg_enable = val;
1477 }
1478
1479 static char stats_strings[][ETH_GSTRING_LEN] = {
1480         "TxOctetsOK         ",
1481         "TxFramesOK         ",
1482         "TxMulticastFramesOK",
1483         "TxBroadcastFramesOK",
1484         "TxPauseFrames      ",
1485         "TxUnderrun         ",
1486         "TxExtUnderrun      ",
1487
1488         "TxFrames64         ",
1489         "TxFrames65To127    ",
1490         "TxFrames128To255   ",
1491         "TxFrames256To511   ",
1492         "TxFrames512To1023  ",
1493         "TxFrames1024To1518 ",
1494         "TxFrames1519ToMax  ",
1495
1496         "RxOctetsOK         ",
1497         "RxFramesOK         ",
1498         "RxMulticastFramesOK",
1499         "RxBroadcastFramesOK",
1500         "RxPauseFrames      ",
1501         "RxFCSErrors        ",
1502         "RxSymbolErrors     ",
1503         "RxShortErrors      ",
1504         "RxJabberErrors     ",
1505         "RxLengthErrors     ",
1506         "RxFIFOoverflow     ",
1507
1508         "RxFrames64         ",
1509         "RxFrames65To127    ",
1510         "RxFrames128To255   ",
1511         "RxFrames256To511   ",
1512         "RxFrames512To1023  ",
1513         "RxFrames1024To1518 ",
1514         "RxFrames1519ToMax  ",
1515
1516         "PhyFIFOErrors      ",
1517         "TSO                ",
1518         "VLANextractions    ",
1519         "VLANinsertions     ",
1520         "TxCsumOffload      ",
1521         "RxCsumGood         ",
1522         "LroAggregated      ",
1523         "LroFlushed         ",
1524         "LroNoDesc          ",
1525         "RxDrops            ",
1526
1527         "CheckTXEnToggled   ",
1528         "CheckResets        ",
1529
1530         "LinkFaults         ",
1531 };
1532
1533 static int get_sset_count(struct net_device *dev, int sset)
1534 {
1535         switch (sset) {
1536         case ETH_SS_STATS:
1537                 return ARRAY_SIZE(stats_strings);
1538         default:
1539                 return -EOPNOTSUPP;
1540         }
1541 }
1542
1543 #define T3_REGMAP_SIZE (3 * 1024)
1544
1545 static int get_regs_len(struct net_device *dev)
1546 {
1547         return T3_REGMAP_SIZE;
1548 }
1549
1550 static int get_eeprom_len(struct net_device *dev)
1551 {
1552         return EEPROMSIZE;
1553 }
1554
1555 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1556 {
1557         struct port_info *pi = netdev_priv(dev);
1558         struct adapter *adapter = pi->adapter;
1559         u32 fw_vers = 0;
1560         u32 tp_vers = 0;
1561
1562         spin_lock(&adapter->stats_lock);
1563         t3_get_fw_version(adapter, &fw_vers);
1564         t3_get_tp_version(adapter, &tp_vers);
1565         spin_unlock(&adapter->stats_lock);
1566
1567         strcpy(info->driver, DRV_NAME);
1568         strcpy(info->version, DRV_VERSION);
1569         strcpy(info->bus_info, pci_name(adapter->pdev));
1570         if (!fw_vers)
1571                 strcpy(info->fw_version, "N/A");
1572         else {
1573                 snprintf(info->fw_version, sizeof(info->fw_version),
1574                          "%s %u.%u.%u TP %u.%u.%u",
1575                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1576                          G_FW_VERSION_MAJOR(fw_vers),
1577                          G_FW_VERSION_MINOR(fw_vers),
1578                          G_FW_VERSION_MICRO(fw_vers),
1579                          G_TP_VERSION_MAJOR(tp_vers),
1580                          G_TP_VERSION_MINOR(tp_vers),
1581                          G_TP_VERSION_MICRO(tp_vers));
1582         }
1583 }
1584
1585 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1586 {
1587         if (stringset == ETH_SS_STATS)
1588                 memcpy(data, stats_strings, sizeof(stats_strings));
1589 }
1590
1591 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1592                                             struct port_info *p, int idx)
1593 {
1594         int i;
1595         unsigned long tot = 0;
1596
1597         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1598                 tot += adapter->sge.qs[i].port_stats[idx];
1599         return tot;
1600 }
1601
1602 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1603                       u64 *data)
1604 {
1605         struct port_info *pi = netdev_priv(dev);
1606         struct adapter *adapter = pi->adapter;
1607         const struct mac_stats *s;
1608
1609         spin_lock(&adapter->stats_lock);
1610         s = t3_mac_update_stats(&pi->mac);
1611         spin_unlock(&adapter->stats_lock);
1612
1613         *data++ = s->tx_octets;
1614         *data++ = s->tx_frames;
1615         *data++ = s->tx_mcast_frames;
1616         *data++ = s->tx_bcast_frames;
1617         *data++ = s->tx_pause;
1618         *data++ = s->tx_underrun;
1619         *data++ = s->tx_fifo_urun;
1620
1621         *data++ = s->tx_frames_64;
1622         *data++ = s->tx_frames_65_127;
1623         *data++ = s->tx_frames_128_255;
1624         *data++ = s->tx_frames_256_511;
1625         *data++ = s->tx_frames_512_1023;
1626         *data++ = s->tx_frames_1024_1518;
1627         *data++ = s->tx_frames_1519_max;
1628
1629         *data++ = s->rx_octets;
1630         *data++ = s->rx_frames;
1631         *data++ = s->rx_mcast_frames;
1632         *data++ = s->rx_bcast_frames;
1633         *data++ = s->rx_pause;
1634         *data++ = s->rx_fcs_errs;
1635         *data++ = s->rx_symbol_errs;
1636         *data++ = s->rx_short;
1637         *data++ = s->rx_jabber;
1638         *data++ = s->rx_too_long;
1639         *data++ = s->rx_fifo_ovfl;
1640
1641         *data++ = s->rx_frames_64;
1642         *data++ = s->rx_frames_65_127;
1643         *data++ = s->rx_frames_128_255;
1644         *data++ = s->rx_frames_256_511;
1645         *data++ = s->rx_frames_512_1023;
1646         *data++ = s->rx_frames_1024_1518;
1647         *data++ = s->rx_frames_1519_max;
1648
1649         *data++ = pi->phy.fifo_errors;
1650
1651         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1652         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1653         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1654         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1655         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1656         *data++ = 0;
1657         *data++ = 0;
1658         *data++ = 0;
1659         *data++ = s->rx_cong_drops;
1660
1661         *data++ = s->num_toggled;
1662         *data++ = s->num_resets;
1663
1664         *data++ = s->link_faults;
1665 }
1666
1667 static inline void reg_block_dump(struct adapter *ap, void *buf,
1668                                   unsigned int start, unsigned int end)
1669 {
1670         u32 *p = buf + start;
1671
1672         for (; start <= end; start += sizeof(u32))
1673                 *p++ = t3_read_reg(ap, start);
1674 }
1675
1676 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1677                      void *buf)
1678 {
1679         struct port_info *pi = netdev_priv(dev);
1680         struct adapter *ap = pi->adapter;
1681
1682         /*
1683          * Version scheme:
1684          * bits 0..9: chip version
1685          * bits 10..15: chip revision
1686          * bit 31: set for PCIe cards
1687          */
1688         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1689
1690         /*
1691          * We skip the MAC statistics registers because they are clear-on-read.
1692          * Also reading multi-register stats would need to synchronize with the
1693          * periodic mac stats accumulation.  Hard to justify the complexity.
1694          */
1695         memset(buf, 0, T3_REGMAP_SIZE);
1696         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1697         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1698         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1699         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1700         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1701         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1702                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1703         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1704                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1705 }
1706
1707 static int restart_autoneg(struct net_device *dev)
1708 {
1709         struct port_info *p = netdev_priv(dev);
1710
1711         if (!netif_running(dev))
1712                 return -EAGAIN;
1713         if (p->link_config.autoneg != AUTONEG_ENABLE)
1714                 return -EINVAL;
1715         p->phy.ops->autoneg_restart(&p->phy);
1716         return 0;
1717 }
1718
1719 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1720 {
1721         struct port_info *pi = netdev_priv(dev);
1722         struct adapter *adapter = pi->adapter;
1723         int i;
1724
1725         if (data == 0)
1726                 data = 2;
1727
1728         for (i = 0; i < data * 2; i++) {
1729                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1730                                  (i & 1) ? F_GPIO0_OUT_VAL : 0);
1731                 if (msleep_interruptible(500))
1732                         break;
1733         }
1734         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1735                          F_GPIO0_OUT_VAL);
1736         return 0;
1737 }
1738
1739 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1740 {
1741         struct port_info *p = netdev_priv(dev);
1742
1743         cmd->supported = p->link_config.supported;
1744         cmd->advertising = p->link_config.advertising;
1745
1746         if (netif_carrier_ok(dev)) {
1747                 cmd->speed = p->link_config.speed;
1748                 cmd->duplex = p->link_config.duplex;
1749         } else {
1750                 cmd->speed = -1;
1751                 cmd->duplex = -1;
1752         }
1753
1754         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1755         cmd->phy_address = p->phy.mdio.prtad;
1756         cmd->transceiver = XCVR_EXTERNAL;
1757         cmd->autoneg = p->link_config.autoneg;
1758         cmd->maxtxpkt = 0;
1759         cmd->maxrxpkt = 0;
1760         return 0;
1761 }
1762
1763 static int speed_duplex_to_caps(int speed, int duplex)
1764 {
1765         int cap = 0;
1766
1767         switch (speed) {
1768         case SPEED_10:
1769                 if (duplex == DUPLEX_FULL)
1770                         cap = SUPPORTED_10baseT_Full;
1771                 else
1772                         cap = SUPPORTED_10baseT_Half;
1773                 break;
1774         case SPEED_100:
1775                 if (duplex == DUPLEX_FULL)
1776                         cap = SUPPORTED_100baseT_Full;
1777                 else
1778                         cap = SUPPORTED_100baseT_Half;
1779                 break;
1780         case SPEED_1000:
1781                 if (duplex == DUPLEX_FULL)
1782                         cap = SUPPORTED_1000baseT_Full;
1783                 else
1784                         cap = SUPPORTED_1000baseT_Half;
1785                 break;
1786         case SPEED_10000:
1787                 if (duplex == DUPLEX_FULL)
1788                         cap = SUPPORTED_10000baseT_Full;
1789         }
1790         return cap;
1791 }
1792
1793 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1794                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1795                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1796                       ADVERTISED_10000baseT_Full)
1797
1798 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1799 {
1800         struct port_info *p = netdev_priv(dev);
1801         struct link_config *lc = &p->link_config;
1802
1803         if (!(lc->supported & SUPPORTED_Autoneg)) {
1804                 /*
1805                  * PHY offers a single speed/duplex.  See if that's what's
1806                  * being requested.
1807                  */
1808                 if (cmd->autoneg == AUTONEG_DISABLE) {
1809                         int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1810                         if (lc->supported & cap)
1811                                 return 0;
1812                 }
1813                 return -EINVAL;
1814         }
1815
1816         if (cmd->autoneg == AUTONEG_DISABLE) {
1817                 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1818
1819                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1820                         return -EINVAL;
1821                 lc->requested_speed = cmd->speed;
1822                 lc->requested_duplex = cmd->duplex;
1823                 lc->advertising = 0;
1824         } else {
1825                 cmd->advertising &= ADVERTISED_MASK;
1826                 cmd->advertising &= lc->supported;
1827                 if (!cmd->advertising)
1828                         return -EINVAL;
1829                 lc->requested_speed = SPEED_INVALID;
1830                 lc->requested_duplex = DUPLEX_INVALID;
1831                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1832         }
1833         lc->autoneg = cmd->autoneg;
1834         if (netif_running(dev))
1835                 t3_link_start(&p->phy, &p->mac, lc);
1836         return 0;
1837 }
1838
1839 static void get_pauseparam(struct net_device *dev,
1840                            struct ethtool_pauseparam *epause)
1841 {
1842         struct port_info *p = netdev_priv(dev);
1843
1844         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1845         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1846         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1847 }
1848
1849 static int set_pauseparam(struct net_device *dev,
1850                           struct ethtool_pauseparam *epause)
1851 {
1852         struct port_info *p = netdev_priv(dev);
1853         struct link_config *lc = &p->link_config;
1854
1855         if (epause->autoneg == AUTONEG_DISABLE)
1856                 lc->requested_fc = 0;
1857         else if (lc->supported & SUPPORTED_Autoneg)
1858                 lc->requested_fc = PAUSE_AUTONEG;
1859         else
1860                 return -EINVAL;
1861
1862         if (epause->rx_pause)
1863                 lc->requested_fc |= PAUSE_RX;
1864         if (epause->tx_pause)
1865                 lc->requested_fc |= PAUSE_TX;
1866         if (lc->autoneg == AUTONEG_ENABLE) {
1867                 if (netif_running(dev))
1868                         t3_link_start(&p->phy, &p->mac, lc);
1869         } else {
1870                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1871                 if (netif_running(dev))
1872                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1873         }
1874         return 0;
1875 }
1876
1877 static u32 get_rx_csum(struct net_device *dev)
1878 {
1879         struct port_info *p = netdev_priv(dev);
1880
1881         return p->rx_offload & T3_RX_CSUM;
1882 }
1883
1884 static int set_rx_csum(struct net_device *dev, u32 data)
1885 {
1886         struct port_info *p = netdev_priv(dev);
1887
1888         if (data) {
1889                 p->rx_offload |= T3_RX_CSUM;
1890         } else {
1891                 int i;
1892
1893                 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1894                 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1895                         set_qset_lro(dev, i, 0);
1896         }
1897         return 0;
1898 }
1899
1900 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1901 {
1902         struct port_info *pi = netdev_priv(dev);
1903         struct adapter *adapter = pi->adapter;
1904         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1905
1906         e->rx_max_pending = MAX_RX_BUFFERS;
1907         e->rx_mini_max_pending = 0;
1908         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1909         e->tx_max_pending = MAX_TXQ_ENTRIES;
1910
1911         e->rx_pending = q->fl_size;
1912         e->rx_mini_pending = q->rspq_size;
1913         e->rx_jumbo_pending = q->jumbo_size;
1914         e->tx_pending = q->txq_size[0];
1915 }
1916
1917 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1918 {
1919         struct port_info *pi = netdev_priv(dev);
1920         struct adapter *adapter = pi->adapter;
1921         struct qset_params *q;
1922         int i;
1923
1924         if (e->rx_pending > MAX_RX_BUFFERS ||
1925             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1926             e->tx_pending > MAX_TXQ_ENTRIES ||
1927             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1928             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1929             e->rx_pending < MIN_FL_ENTRIES ||
1930             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1931             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1932                 return -EINVAL;
1933
1934         if (adapter->flags & FULL_INIT_DONE)
1935                 return -EBUSY;
1936
1937         q = &adapter->params.sge.qset[pi->first_qset];
1938         for (i = 0; i < pi->nqsets; ++i, ++q) {
1939                 q->rspq_size = e->rx_mini_pending;
1940                 q->fl_size = e->rx_pending;
1941                 q->jumbo_size = e->rx_jumbo_pending;
1942                 q->txq_size[0] = e->tx_pending;
1943                 q->txq_size[1] = e->tx_pending;
1944                 q->txq_size[2] = e->tx_pending;
1945         }
1946         return 0;
1947 }
1948
1949 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1950 {
1951         struct port_info *pi = netdev_priv(dev);
1952         struct adapter *adapter = pi->adapter;
1953         struct qset_params *qsp = &adapter->params.sge.qset[0];
1954         struct sge_qset *qs = &adapter->sge.qs[0];
1955
1956         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1957                 return -EINVAL;
1958
1959         qsp->coalesce_usecs = c->rx_coalesce_usecs;
1960         t3_update_qset_coalesce(qs, qsp);
1961         return 0;
1962 }
1963
1964 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1965 {
1966         struct port_info *pi = netdev_priv(dev);
1967         struct adapter *adapter = pi->adapter;
1968         struct qset_params *q = adapter->params.sge.qset;
1969
1970         c->rx_coalesce_usecs = q->coalesce_usecs;
1971         return 0;
1972 }
1973
1974 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1975                       u8 * data)
1976 {
1977         struct port_info *pi = netdev_priv(dev);
1978         struct adapter *adapter = pi->adapter;
1979         int i, err = 0;
1980
1981         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1982         if (!buf)
1983                 return -ENOMEM;
1984
1985         e->magic = EEPROM_MAGIC;
1986         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1987                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1988
1989         if (!err)
1990                 memcpy(data, buf + e->offset, e->len);
1991         kfree(buf);
1992         return err;
1993 }
1994
1995 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1996                       u8 * data)
1997 {
1998         struct port_info *pi = netdev_priv(dev);
1999         struct adapter *adapter = pi->adapter;
2000         u32 aligned_offset, aligned_len;
2001         __le32 *p;
2002         u8 *buf;
2003         int err;
2004
2005         if (eeprom->magic != EEPROM_MAGIC)
2006                 return -EINVAL;
2007
2008         aligned_offset = eeprom->offset & ~3;
2009         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2010
2011         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2012                 buf = kmalloc(aligned_len, GFP_KERNEL);
2013                 if (!buf)
2014                         return -ENOMEM;
2015                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2016                 if (!err && aligned_len > 4)
2017                         err = t3_seeprom_read(adapter,
2018                                               aligned_offset + aligned_len - 4,
2019                                               (__le32 *) & buf[aligned_len - 4]);
2020                 if (err)
2021                         goto out;
2022                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2023         } else
2024                 buf = data;
2025
2026         err = t3_seeprom_wp(adapter, 0);
2027         if (err)
2028                 goto out;
2029
2030         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2031                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2032                 aligned_offset += 4;
2033         }
2034
2035         if (!err)
2036                 err = t3_seeprom_wp(adapter, 1);
2037 out:
2038         if (buf != data)
2039                 kfree(buf);
2040         return err;
2041 }
2042
2043 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2044 {
2045         wol->supported = 0;
2046         wol->wolopts = 0;
2047         memset(&wol->sopass, 0, sizeof(wol->sopass));
2048 }
2049
2050 static const struct ethtool_ops cxgb_ethtool_ops = {
2051         .get_settings = get_settings,
2052         .set_settings = set_settings,
2053         .get_drvinfo = get_drvinfo,
2054         .get_msglevel = get_msglevel,
2055         .set_msglevel = set_msglevel,
2056         .get_ringparam = get_sge_param,
2057         .set_ringparam = set_sge_param,
2058         .get_coalesce = get_coalesce,
2059         .set_coalesce = set_coalesce,
2060         .get_eeprom_len = get_eeprom_len,
2061         .get_eeprom = get_eeprom,
2062         .set_eeprom = set_eeprom,
2063         .get_pauseparam = get_pauseparam,
2064         .set_pauseparam = set_pauseparam,
2065         .get_rx_csum = get_rx_csum,
2066         .set_rx_csum = set_rx_csum,
2067         .set_tx_csum = ethtool_op_set_tx_csum,
2068         .set_sg = ethtool_op_set_sg,
2069         .get_link = ethtool_op_get_link,
2070         .get_strings = get_strings,
2071         .phys_id = cxgb3_phys_id,
2072         .nway_reset = restart_autoneg,
2073         .get_sset_count = get_sset_count,
2074         .get_ethtool_stats = get_stats,
2075         .get_regs_len = get_regs_len,
2076         .get_regs = get_regs,
2077         .get_wol = get_wol,
2078         .set_tso = ethtool_op_set_tso,
2079 };
2080
2081 static int in_range(int val, int lo, int hi)
2082 {
2083         return val < 0 || (val <= hi && val >= lo);
2084 }
2085
2086 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2087 {
2088         struct port_info *pi = netdev_priv(dev);
2089         struct adapter *adapter = pi->adapter;
2090         u32 cmd;
2091         int ret;
2092
2093         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2094                 return -EFAULT;
2095
2096         switch (cmd) {
2097         case CHELSIO_SET_QSET_PARAMS:{
2098                 int i;
2099                 struct qset_params *q;
2100                 struct ch_qset_params t;
2101                 int q1 = pi->first_qset;
2102                 int nqsets = pi->nqsets;
2103
2104                 if (!capable(CAP_NET_ADMIN))
2105                         return -EPERM;
2106                 if (copy_from_user(&t, useraddr, sizeof(t)))
2107                         return -EFAULT;
2108                 if (t.qset_idx >= SGE_QSETS)
2109                         return -EINVAL;
2110                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2111                         !in_range(t.cong_thres, 0, 255) ||
2112                         !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2113                                 MAX_TXQ_ENTRIES) ||
2114                         !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2115                                 MAX_TXQ_ENTRIES) ||
2116                         !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2117                                 MAX_CTRL_TXQ_ENTRIES) ||
2118                         !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2119                                 MAX_RX_BUFFERS)
2120                         || !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2121                                         MAX_RX_JUMBO_BUFFERS)
2122                         || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2123                                         MAX_RSPQ_ENTRIES))
2124                         return -EINVAL;
2125
2126                 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2127                         for_each_port(adapter, i) {
2128                                 pi = adap2pinfo(adapter, i);
2129                                 if (t.qset_idx >= pi->first_qset &&
2130                                     t.qset_idx < pi->first_qset + pi->nqsets &&
2131                                     !(pi->rx_offload & T3_RX_CSUM))
2132                                         return -EINVAL;
2133                         }
2134
2135                 if ((adapter->flags & FULL_INIT_DONE) &&
2136                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2137                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2138                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2139                         t.polling >= 0 || t.cong_thres >= 0))
2140                         return -EBUSY;
2141
2142                 /* Allow setting of any available qset when offload enabled */
2143                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2144                         q1 = 0;
2145                         for_each_port(adapter, i) {
2146                                 pi = adap2pinfo(adapter, i);
2147                                 nqsets += pi->first_qset + pi->nqsets;
2148                         }
2149                 }
2150
2151                 if (t.qset_idx < q1)
2152                         return -EINVAL;
2153                 if (t.qset_idx > q1 + nqsets - 1)
2154                         return -EINVAL;
2155
2156                 q = &adapter->params.sge.qset[t.qset_idx];
2157
2158                 if (t.rspq_size >= 0)
2159                         q->rspq_size = t.rspq_size;
2160                 if (t.fl_size[0] >= 0)
2161                         q->fl_size = t.fl_size[0];
2162                 if (t.fl_size[1] >= 0)
2163                         q->jumbo_size = t.fl_size[1];
2164                 if (t.txq_size[0] >= 0)
2165                         q->txq_size[0] = t.txq_size[0];
2166                 if (t.txq_size[1] >= 0)
2167                         q->txq_size[1] = t.txq_size[1];
2168                 if (t.txq_size[2] >= 0)
2169                         q->txq_size[2] = t.txq_size[2];
2170                 if (t.cong_thres >= 0)
2171                         q->cong_thres = t.cong_thres;
2172                 if (t.intr_lat >= 0) {
2173                         struct sge_qset *qs =
2174                                 &adapter->sge.qs[t.qset_idx];
2175
2176                         q->coalesce_usecs = t.intr_lat;
2177                         t3_update_qset_coalesce(qs, q);
2178                 }
2179                 if (t.polling >= 0) {
2180                         if (adapter->flags & USING_MSIX)
2181                                 q->polling = t.polling;
2182                         else {
2183                                 /* No polling with INTx for T3A */
2184                                 if (adapter->params.rev == 0 &&
2185                                         !(adapter->flags & USING_MSI))
2186                                         t.polling = 0;
2187
2188                                 for (i = 0; i < SGE_QSETS; i++) {
2189                                         q = &adapter->params.sge.
2190                                                 qset[i];
2191                                         q->polling = t.polling;
2192                                 }
2193                         }
2194                 }
2195                 if (t.lro >= 0)
2196                         set_qset_lro(dev, t.qset_idx, t.lro);
2197
2198                 break;
2199         }
2200         case CHELSIO_GET_QSET_PARAMS:{
2201                 struct qset_params *q;
2202                 struct ch_qset_params t;
2203                 int q1 = pi->first_qset;
2204                 int nqsets = pi->nqsets;
2205                 int i;
2206
2207                 if (copy_from_user(&t, useraddr, sizeof(t)))
2208                         return -EFAULT;
2209
2210                 /* Display qsets for all ports when offload enabled */
2211                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2212                         q1 = 0;
2213                         for_each_port(adapter, i) {
2214                                 pi = adap2pinfo(adapter, i);
2215                                 nqsets = pi->first_qset + pi->nqsets;
2216                         }
2217                 }
2218
2219                 if (t.qset_idx >= nqsets)
2220                         return -EINVAL;
2221
2222                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2223                 t.rspq_size = q->rspq_size;
2224                 t.txq_size[0] = q->txq_size[0];
2225                 t.txq_size[1] = q->txq_size[1];
2226                 t.txq_size[2] = q->txq_size[2];
2227                 t.fl_size[0] = q->fl_size;
2228                 t.fl_size[1] = q->jumbo_size;
2229                 t.polling = q->polling;
2230                 t.lro = q->lro;
2231                 t.intr_lat = q->coalesce_usecs;
2232                 t.cong_thres = q->cong_thres;
2233                 t.qnum = q1;
2234
2235                 if (adapter->flags & USING_MSIX)
2236                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2237                 else
2238                         t.vector = adapter->pdev->irq;
2239
2240                 if (copy_to_user(useraddr, &t, sizeof(t)))
2241                         return -EFAULT;
2242                 break;
2243         }
2244         case CHELSIO_SET_QSET_NUM:{
2245                 struct ch_reg edata;
2246                 unsigned int i, first_qset = 0, other_qsets = 0;
2247
2248                 if (!capable(CAP_NET_ADMIN))
2249                         return -EPERM;
2250                 if (adapter->flags & FULL_INIT_DONE)
2251                         return -EBUSY;
2252                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2253                         return -EFAULT;
2254                 if (edata.val < 1 ||
2255                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2256                         return -EINVAL;
2257
2258                 for_each_port(adapter, i)
2259                         if (adapter->port[i] && adapter->port[i] != dev)
2260                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2261
2262                 if (edata.val + other_qsets > SGE_QSETS)
2263                         return -EINVAL;
2264
2265                 pi->nqsets = edata.val;
2266
2267                 for_each_port(adapter, i)
2268                         if (adapter->port[i]) {
2269                                 pi = adap2pinfo(adapter, i);
2270                                 pi->first_qset = first_qset;
2271                                 first_qset += pi->nqsets;
2272                         }
2273                 break;
2274         }
2275         case CHELSIO_GET_QSET_NUM:{
2276                 struct ch_reg edata;
2277
2278                 memset(&edata, 0, sizeof(struct ch_reg));
2279
2280                 edata.cmd = CHELSIO_GET_QSET_NUM;
2281                 edata.val = pi->nqsets;
2282                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2283                         return -EFAULT;
2284                 break;
2285         }
2286         case CHELSIO_LOAD_FW:{
2287                 u8 *fw_data;
2288                 struct ch_mem_range t;
2289
2290                 if (!capable(CAP_SYS_RAWIO))
2291                         return -EPERM;
2292                 if (copy_from_user(&t, useraddr, sizeof(t)))
2293                         return -EFAULT;
2294                 /* Check t.len sanity ? */
2295                 fw_data = kmalloc(t.len, GFP_KERNEL);
2296                 if (!fw_data)
2297                         return -ENOMEM;
2298
2299                 if (copy_from_user
2300                         (fw_data, useraddr + sizeof(t), t.len)) {
2301                         kfree(fw_data);
2302                         return -EFAULT;
2303                 }
2304
2305                 ret = t3_load_fw(adapter, fw_data, t.len);
2306                 kfree(fw_data);
2307                 if (ret)
2308                         return ret;
2309                 break;
2310         }
2311         case CHELSIO_SETMTUTAB:{
2312                 struct ch_mtus m;
2313                 int i;
2314
2315                 if (!is_offload(adapter))
2316                         return -EOPNOTSUPP;
2317                 if (!capable(CAP_NET_ADMIN))
2318                         return -EPERM;
2319                 if (offload_running(adapter))
2320                         return -EBUSY;
2321                 if (copy_from_user(&m, useraddr, sizeof(m)))
2322                         return -EFAULT;
2323                 if (m.nmtus != NMTUS)
2324                         return -EINVAL;
2325                 if (m.mtus[0] < 81)     /* accommodate SACK */
2326                         return -EINVAL;
2327
2328                 /* MTUs must be in ascending order */
2329                 for (i = 1; i < NMTUS; ++i)
2330                         if (m.mtus[i] < m.mtus[i - 1])
2331                                 return -EINVAL;
2332
2333                 memcpy(adapter->params.mtus, m.mtus,
2334                         sizeof(adapter->params.mtus));
2335                 break;
2336         }
2337         case CHELSIO_GET_PM:{
2338                 struct tp_params *p = &adapter->params.tp;
2339                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2340
2341                 if (!is_offload(adapter))
2342                         return -EOPNOTSUPP;
2343                 m.tx_pg_sz = p->tx_pg_size;
2344                 m.tx_num_pg = p->tx_num_pgs;
2345                 m.rx_pg_sz = p->rx_pg_size;
2346                 m.rx_num_pg = p->rx_num_pgs;
2347                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2348                 if (copy_to_user(useraddr, &m, sizeof(m)))
2349                         return -EFAULT;
2350                 break;
2351         }
2352         case CHELSIO_SET_PM:{
2353                 struct ch_pm m;
2354                 struct tp_params *p = &adapter->params.tp;
2355
2356                 if (!is_offload(adapter))
2357                         return -EOPNOTSUPP;
2358                 if (!capable(CAP_NET_ADMIN))
2359                         return -EPERM;
2360                 if (adapter->flags & FULL_INIT_DONE)
2361                         return -EBUSY;
2362                 if (copy_from_user(&m, useraddr, sizeof(m)))
2363                         return -EFAULT;
2364                 if (!is_power_of_2(m.rx_pg_sz) ||
2365                         !is_power_of_2(m.tx_pg_sz))
2366                         return -EINVAL; /* not power of 2 */
2367                 if (!(m.rx_pg_sz & 0x14000))
2368                         return -EINVAL; /* not 16KB or 64KB */
2369                 if (!(m.tx_pg_sz & 0x1554000))
2370                         return -EINVAL;
2371                 if (m.tx_num_pg == -1)
2372                         m.tx_num_pg = p->tx_num_pgs;
2373                 if (m.rx_num_pg == -1)
2374                         m.rx_num_pg = p->rx_num_pgs;
2375                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2376                         return -EINVAL;
2377                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2378                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2379                         return -EINVAL;
2380                 p->rx_pg_size = m.rx_pg_sz;
2381                 p->tx_pg_size = m.tx_pg_sz;
2382                 p->rx_num_pgs = m.rx_num_pg;
2383                 p->tx_num_pgs = m.tx_num_pg;
2384                 break;
2385         }
2386         case CHELSIO_GET_MEM:{
2387                 struct ch_mem_range t;
2388                 struct mc7 *mem;
2389                 u64 buf[32];
2390
2391                 if (!is_offload(adapter))
2392                         return -EOPNOTSUPP;
2393                 if (!(adapter->flags & FULL_INIT_DONE))
2394                         return -EIO;    /* need the memory controllers */
2395                 if (copy_from_user(&t, useraddr, sizeof(t)))
2396                         return -EFAULT;
2397                 if ((t.addr & 7) || (t.len & 7))
2398                         return -EINVAL;
2399                 if (t.mem_id == MEM_CM)
2400                         mem = &adapter->cm;
2401                 else if (t.mem_id == MEM_PMRX)
2402                         mem = &adapter->pmrx;
2403                 else if (t.mem_id == MEM_PMTX)
2404                         mem = &adapter->pmtx;
2405                 else
2406                         return -EINVAL;
2407
2408                 /*
2409                  * Version scheme:
2410                  * bits 0..9: chip version
2411                  * bits 10..15: chip revision
2412                  */
2413                 t.version = 3 | (adapter->params.rev << 10);
2414                 if (copy_to_user(useraddr, &t, sizeof(t)))
2415                         return -EFAULT;
2416
2417                 /*
2418                  * Read 256 bytes at a time as len can be large and we don't
2419                  * want to use huge intermediate buffers.
2420                  */
2421                 useraddr += sizeof(t);  /* advance to start of buffer */
2422                 while (t.len) {
2423                         unsigned int chunk =
2424                                 min_t(unsigned int, t.len, sizeof(buf));
2425
2426                         ret =
2427                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2428                                                 buf);
2429                         if (ret)
2430                                 return ret;
2431                         if (copy_to_user(useraddr, buf, chunk))
2432                                 return -EFAULT;
2433                         useraddr += chunk;
2434                         t.addr += chunk;
2435                         t.len -= chunk;
2436                 }
2437                 break;
2438         }
2439         case CHELSIO_SET_TRACE_FILTER:{
2440                 struct ch_trace t;
2441                 const struct trace_params *tp;
2442
2443                 if (!capable(CAP_NET_ADMIN))
2444                         return -EPERM;
2445                 if (!offload_running(adapter))
2446                         return -EAGAIN;
2447                 if (copy_from_user(&t, useraddr, sizeof(t)))
2448                         return -EFAULT;
2449
2450                 tp = (const struct trace_params *)&t.sip;
2451                 if (t.config_tx)
2452                         t3_config_trace_filter(adapter, tp, 0,
2453                                                 t.invert_match,
2454                                                 t.trace_tx);
2455                 if (t.config_rx)
2456                         t3_config_trace_filter(adapter, tp, 1,
2457                                                 t.invert_match,
2458                                                 t.trace_rx);
2459                 break;
2460         }
2461         default:
2462                 return -EOPNOTSUPP;
2463         }
2464         return 0;
2465 }
2466
2467 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2468 {
2469         struct mii_ioctl_data *data = if_mii(req);
2470         struct port_info *pi = netdev_priv(dev);
2471         struct adapter *adapter = pi->adapter;
2472
2473         switch (cmd) {
2474         case SIOCGMIIREG:
2475         case SIOCSMIIREG:
2476                 /* Convert phy_id from older PRTAD/DEVAD format */
2477                 if (is_10G(adapter) &&
2478                     !mdio_phy_id_is_c45(data->phy_id) &&
2479                     (data->phy_id & 0x1f00) &&
2480                     !(data->phy_id & 0xe0e0))
2481                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2482                                                        data->phy_id & 0x1f);
2483                 /* FALLTHRU */
2484         case SIOCGMIIPHY:
2485                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2486         case SIOCCHIOCTL:
2487                 return cxgb_extension_ioctl(dev, req->ifr_data);
2488         default:
2489                 return -EOPNOTSUPP;
2490         }
2491 }
2492
2493 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2494 {
2495         struct port_info *pi = netdev_priv(dev);
2496         struct adapter *adapter = pi->adapter;
2497         int ret;
2498
2499         if (new_mtu < 81)       /* accommodate SACK */
2500                 return -EINVAL;
2501         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2502                 return ret;
2503         dev->mtu = new_mtu;
2504         init_port_mtus(adapter);
2505         if (adapter->params.rev == 0 && offload_running(adapter))
2506                 t3_load_mtus(adapter, adapter->params.mtus,
2507                              adapter->params.a_wnd, adapter->params.b_wnd,
2508                              adapter->port[0]->mtu);
2509         return 0;
2510 }
2511
2512 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2513 {
2514         struct port_info *pi = netdev_priv(dev);
2515         struct adapter *adapter = pi->adapter;
2516         struct sockaddr *addr = p;
2517
2518         if (!is_valid_ether_addr(addr->sa_data))
2519                 return -EINVAL;
2520
2521         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2522         t3_mac_set_address(&pi->mac, 0, dev->dev_addr);
2523         if (offload_running(adapter))
2524                 write_smt_entry(adapter, pi->port_id);
2525         return 0;
2526 }
2527
2528 /**
2529  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2530  * @adap: the adapter
2531  * @p: the port
2532  *
2533  * Ensures that current Rx processing on any of the queues associated with
2534  * the given port completes before returning.  We do this by acquiring and
2535  * releasing the locks of the response queues associated with the port.
2536  */
2537 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2538 {
2539         int i;
2540
2541         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2542                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2543
2544                 spin_lock_irq(&q->lock);
2545                 spin_unlock_irq(&q->lock);
2546         }
2547 }
2548
2549 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2550 {
2551         struct port_info *pi = netdev_priv(dev);
2552         struct adapter *adapter = pi->adapter;
2553
2554         pi->vlan_grp = grp;
2555         if (adapter->params.rev > 0)
2556                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2557         else {
2558                 /* single control for all ports */
2559                 unsigned int i, have_vlans = 0;
2560                 for_each_port(adapter, i)
2561                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2562
2563                 t3_set_vlan_accel(adapter, 1, have_vlans);
2564         }
2565         t3_synchronize_rx(adapter, pi);
2566 }
2567
2568 #ifdef CONFIG_NET_POLL_CONTROLLER
2569 static void cxgb_netpoll(struct net_device *dev)
2570 {
2571         struct port_info *pi = netdev_priv(dev);
2572         struct adapter *adapter = pi->adapter;
2573         int qidx;
2574
2575         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2576                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2577                 void *source;
2578
2579                 if (adapter->flags & USING_MSIX)
2580                         source = qs;
2581                 else
2582                         source = adapter;
2583
2584                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2585         }
2586 }
2587 #endif
2588
2589 /*
2590  * Periodic accumulation of MAC statistics.
2591  */
2592 static void mac_stats_update(struct adapter *adapter)
2593 {
2594         int i;
2595
2596         for_each_port(adapter, i) {
2597                 struct net_device *dev = adapter->port[i];
2598                 struct port_info *p = netdev_priv(dev);
2599
2600                 if (netif_running(dev)) {
2601                         spin_lock(&adapter->stats_lock);
2602                         t3_mac_update_stats(&p->mac);
2603                         spin_unlock(&adapter->stats_lock);
2604                 }
2605         }
2606 }
2607
2608 static void check_link_status(struct adapter *adapter)
2609 {
2610         int i;
2611
2612         for_each_port(adapter, i) {
2613                 struct net_device *dev = adapter->port[i];
2614                 struct port_info *p = netdev_priv(dev);
2615                 int link_fault;
2616
2617                 spin_lock_irq(&adapter->work_lock);
2618                 link_fault = p->link_fault;
2619                 spin_unlock_irq(&adapter->work_lock);
2620
2621                 if (link_fault) {
2622                         t3_link_fault(adapter, i);
2623                         continue;
2624                 }
2625
2626                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2627                         t3_xgm_intr_disable(adapter, i);
2628                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2629
2630                         t3_link_changed(adapter, i);
2631                         t3_xgm_intr_enable(adapter, i);
2632                 }
2633         }
2634 }
2635
2636 static void check_t3b2_mac(struct adapter *adapter)
2637 {
2638         int i;
2639
2640         if (!rtnl_trylock())    /* synchronize with ifdown */
2641                 return;
2642
2643         for_each_port(adapter, i) {
2644                 struct net_device *dev = adapter->port[i];
2645                 struct port_info *p = netdev_priv(dev);
2646                 int status;
2647
2648                 if (!netif_running(dev))
2649                         continue;
2650
2651                 status = 0;
2652                 if (netif_running(dev) && netif_carrier_ok(dev))
2653                         status = t3b2_mac_watchdog_task(&p->mac);
2654                 if (status == 1)
2655                         p->mac.stats.num_toggled++;
2656                 else if (status == 2) {
2657                         struct cmac *mac = &p->mac;
2658
2659                         t3_mac_set_mtu(mac, dev->mtu);
2660                         t3_mac_set_address(mac, 0, dev->dev_addr);
2661                         cxgb_set_rxmode(dev);
2662                         t3_link_start(&p->phy, mac, &p->link_config);
2663                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2664                         t3_port_intr_enable(adapter, p->port_id);
2665                         p->mac.stats.num_resets++;
2666                 }
2667         }
2668         rtnl_unlock();
2669 }
2670
2671
2672 static void t3_adap_check_task(struct work_struct *work)
2673 {
2674         struct adapter *adapter = container_of(work, struct adapter,
2675                                                adap_check_task.work);
2676         const struct adapter_params *p = &adapter->params;
2677         int port;
2678         unsigned int v, status, reset;
2679
2680         adapter->check_task_cnt++;
2681
2682         check_link_status(adapter);
2683
2684         /* Accumulate MAC stats if needed */
2685         if (!p->linkpoll_period ||
2686             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2687             p->stats_update_period) {
2688                 mac_stats_update(adapter);
2689                 adapter->check_task_cnt = 0;
2690         }
2691
2692         if (p->rev == T3_REV_B2)
2693                 check_t3b2_mac(adapter);
2694
2695         /*
2696          * Scan the XGMAC's to check for various conditions which we want to
2697          * monitor in a periodic polling manner rather than via an interrupt
2698          * condition.  This is used for conditions which would otherwise flood
2699          * the system with interrupts and we only really need to know that the
2700          * conditions are "happening" ...  For each condition we count the
2701          * detection of the condition and reset it for the next polling loop.
2702          */
2703         for_each_port(adapter, port) {
2704                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2705                 u32 cause;
2706
2707                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2708                 reset = 0;
2709                 if (cause & F_RXFIFO_OVERFLOW) {
2710                         mac->stats.rx_fifo_ovfl++;
2711                         reset |= F_RXFIFO_OVERFLOW;
2712                 }
2713
2714                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2715         }
2716
2717         /*
2718          * We do the same as above for FL_EMPTY interrupts.
2719          */
2720         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2721         reset = 0;
2722
2723         if (status & F_FLEMPTY) {
2724                 struct sge_qset *qs = &adapter->sge.qs[0];
2725                 int i = 0;
2726
2727                 reset |= F_FLEMPTY;
2728
2729                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2730                     0xffff;
2731
2732                 while (v) {
2733                         qs->fl[i].empty += (v & 1);
2734                         if (i)
2735                                 qs++;
2736                         i ^= 1;
2737                         v >>= 1;
2738                 }
2739         }
2740
2741         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2742
2743         /* Schedule the next check update if any port is active. */
2744         spin_lock_irq(&adapter->work_lock);
2745         if (adapter->open_device_map & PORT_MASK)
2746                 schedule_chk_task(adapter);
2747         spin_unlock_irq(&adapter->work_lock);
2748 }
2749
2750 /*
2751  * Processes external (PHY) interrupts in process context.
2752  */
2753 static void ext_intr_task(struct work_struct *work)
2754 {
2755         struct adapter *adapter = container_of(work, struct adapter,
2756                                                ext_intr_handler_task);
2757         int i;
2758
2759         /* Disable link fault interrupts */
2760         for_each_port(adapter, i) {
2761                 struct net_device *dev = adapter->port[i];
2762                 struct port_info *p = netdev_priv(dev);
2763
2764                 t3_xgm_intr_disable(adapter, i);
2765                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2766         }
2767
2768         /* Re-enable link fault interrupts */
2769         t3_phy_intr_handler(adapter);
2770
2771         for_each_port(adapter, i)
2772                 t3_xgm_intr_enable(adapter, i);
2773
2774         /* Now reenable external interrupts */
2775         spin_lock_irq(&adapter->work_lock);
2776         if (adapter->slow_intr_mask) {
2777                 adapter->slow_intr_mask |= F_T3DBG;
2778                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2779                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2780                              adapter->slow_intr_mask);
2781         }
2782         spin_unlock_irq(&adapter->work_lock);
2783 }
2784
2785 /*
2786  * Interrupt-context handler for external (PHY) interrupts.
2787  */
2788 void t3_os_ext_intr_handler(struct adapter *adapter)
2789 {
2790         /*
2791          * Schedule a task to handle external interrupts as they may be slow
2792          * and we use a mutex to protect MDIO registers.  We disable PHY
2793          * interrupts in the meantime and let the task reenable them when
2794          * it's done.
2795          */
2796         spin_lock(&adapter->work_lock);
2797         if (adapter->slow_intr_mask) {
2798                 adapter->slow_intr_mask &= ~F_T3DBG;
2799                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2800                              adapter->slow_intr_mask);
2801                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2802         }
2803         spin_unlock(&adapter->work_lock);
2804 }
2805
2806 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2807 {
2808         struct net_device *netdev = adapter->port[port_id];
2809         struct port_info *pi = netdev_priv(netdev);
2810
2811         spin_lock(&adapter->work_lock);
2812         pi->link_fault = 1;
2813         spin_unlock(&adapter->work_lock);
2814 }
2815
2816 static int t3_adapter_error(struct adapter *adapter, int reset)
2817 {
2818         int i, ret = 0;
2819
2820         if (is_offload(adapter) &&
2821             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2822                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2823                 offload_close(&adapter->tdev);
2824         }
2825
2826         /* Stop all ports */
2827         for_each_port(adapter, i) {
2828                 struct net_device *netdev = adapter->port[i];
2829
2830                 if (netif_running(netdev))
2831                         cxgb_close(netdev);
2832         }
2833
2834         /* Stop SGE timers */
2835         t3_stop_sge_timers(adapter);
2836
2837         adapter->flags &= ~FULL_INIT_DONE;
2838
2839         if (reset)
2840                 ret = t3_reset_adapter(adapter);
2841
2842         pci_disable_device(adapter->pdev);
2843
2844         return ret;
2845 }
2846
2847 static int t3_reenable_adapter(struct adapter *adapter)
2848 {
2849         if (pci_enable_device(adapter->pdev)) {
2850                 dev_err(&adapter->pdev->dev,
2851                         "Cannot re-enable PCI device after reset.\n");
2852                 goto err;
2853         }
2854         pci_set_master(adapter->pdev);
2855         pci_restore_state(adapter->pdev);
2856
2857         /* Free sge resources */
2858         t3_free_sge_resources(adapter);
2859
2860         if (t3_replay_prep_adapter(adapter))
2861                 goto err;
2862
2863         return 0;
2864 err:
2865         return -1;
2866 }
2867
2868 static void t3_resume_ports(struct adapter *adapter)
2869 {
2870         int i;
2871
2872         /* Restart the ports */
2873         for_each_port(adapter, i) {
2874                 struct net_device *netdev = adapter->port[i];
2875
2876                 if (netif_running(netdev)) {
2877                         if (cxgb_open(netdev)) {
2878                                 dev_err(&adapter->pdev->dev,
2879                                         "can't bring device back up"
2880                                         " after reset\n");
2881                                 continue;
2882                         }
2883                 }
2884         }
2885
2886         if (is_offload(adapter) && !ofld_disable)
2887                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2888 }
2889
2890 /*
2891  * processes a fatal error.
2892  * Bring the ports down, reset the chip, bring the ports back up.
2893  */
2894 static void fatal_error_task(struct work_struct *work)
2895 {
2896         struct adapter *adapter = container_of(work, struct adapter,
2897                                                fatal_error_handler_task);
2898         int err = 0;
2899
2900         rtnl_lock();
2901         err = t3_adapter_error(adapter, 1);
2902         if (!err)
2903                 err = t3_reenable_adapter(adapter);
2904         if (!err)
2905                 t3_resume_ports(adapter);
2906
2907         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2908         rtnl_unlock();
2909 }
2910
2911 void t3_fatal_err(struct adapter *adapter)
2912 {
2913         unsigned int fw_status[4];
2914
2915         if (adapter->flags & FULL_INIT_DONE) {
2916                 t3_sge_stop(adapter);
2917                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2918                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2919                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2920                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2921
2922                 spin_lock(&adapter->work_lock);
2923                 t3_intr_disable(adapter);
2924                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2925                 spin_unlock(&adapter->work_lock);
2926         }
2927         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2928         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2929                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2930                          fw_status[0], fw_status[1],
2931                          fw_status[2], fw_status[3]);
2932 }
2933
2934 /**
2935  * t3_io_error_detected - called when PCI error is detected
2936  * @pdev: Pointer to PCI device
2937  * @state: The current pci connection state
2938  *
2939  * This function is called after a PCI bus error affecting
2940  * this device has been detected.
2941  */
2942 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2943                                              pci_channel_state_t state)
2944 {
2945         struct adapter *adapter = pci_get_drvdata(pdev);
2946         int ret;
2947
2948         if (state == pci_channel_io_perm_failure)
2949                 return PCI_ERS_RESULT_DISCONNECT;
2950
2951         ret = t3_adapter_error(adapter, 0);
2952
2953         /* Request a slot reset. */
2954         return PCI_ERS_RESULT_NEED_RESET;
2955 }
2956
2957 /**
2958  * t3_io_slot_reset - called after the pci bus has been reset.
2959  * @pdev: Pointer to PCI device
2960  *
2961  * Restart the card from scratch, as if from a cold-boot.
2962  */
2963 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2964 {
2965         struct adapter *adapter = pci_get_drvdata(pdev);
2966
2967         if (!t3_reenable_adapter(adapter))
2968                 return PCI_ERS_RESULT_RECOVERED;
2969
2970         return PCI_ERS_RESULT_DISCONNECT;
2971 }
2972
2973 /**
2974  * t3_io_resume - called when traffic can start flowing again.
2975  * @pdev: Pointer to PCI device
2976  *
2977  * This callback is called when the error recovery driver tells us that
2978  * its OK to resume normal operation.
2979  */
2980 static void t3_io_resume(struct pci_dev *pdev)
2981 {
2982         struct adapter *adapter = pci_get_drvdata(pdev);
2983
2984         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
2985                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
2986
2987         t3_resume_ports(adapter);
2988 }
2989
2990 static struct pci_error_handlers t3_err_handler = {
2991         .error_detected = t3_io_error_detected,
2992         .slot_reset = t3_io_slot_reset,
2993         .resume = t3_io_resume,
2994 };
2995
2996 /*
2997  * Set the number of qsets based on the number of CPUs and the number of ports,
2998  * not to exceed the number of available qsets, assuming there are enough qsets
2999  * per port in HW.
3000  */
3001 static void set_nqsets(struct adapter *adap)
3002 {
3003         int i, j = 0;
3004         int num_cpus = num_online_cpus();
3005         int hwports = adap->params.nports;
3006         int nqsets = adap->msix_nvectors - 1;
3007
3008         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3009                 if (hwports == 2 &&
3010                     (hwports * nqsets > SGE_QSETS ||
3011                      num_cpus >= nqsets / hwports))
3012                         nqsets /= hwports;
3013                 if (nqsets > num_cpus)
3014                         nqsets = num_cpus;
3015                 if (nqsets < 1 || hwports == 4)
3016                         nqsets = 1;
3017         } else
3018                 nqsets = 1;
3019
3020         for_each_port(adap, i) {
3021                 struct port_info *pi = adap2pinfo(adap, i);
3022
3023                 pi->first_qset = j;
3024                 pi->nqsets = nqsets;
3025                 j = pi->first_qset + nqsets;
3026
3027                 dev_info(&adap->pdev->dev,
3028                          "Port %d using %d queue sets.\n", i, nqsets);
3029         }
3030 }
3031
3032 static int __devinit cxgb_enable_msix(struct adapter *adap)
3033 {
3034         struct msix_entry entries[SGE_QSETS + 1];
3035         int vectors;
3036         int i, err;
3037
3038         vectors = ARRAY_SIZE(entries);
3039         for (i = 0; i < vectors; ++i)
3040                 entries[i].entry = i;
3041
3042         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3043                 vectors = err;
3044
3045         if (err < 0)
3046                 pci_disable_msix(adap->pdev);
3047
3048         if (!err && vectors < (adap->params.nports + 1)) {
3049                 pci_disable_msix(adap->pdev);
3050                 err = -1;
3051         }
3052
3053         if (!err) {
3054                 for (i = 0; i < vectors; ++i)
3055                         adap->msix_info[i].vec = entries[i].vector;
3056                 adap->msix_nvectors = vectors;
3057         }
3058
3059         return err;
3060 }
3061
3062 static void __devinit print_port_info(struct adapter *adap,
3063                                       const struct adapter_info *ai)
3064 {
3065         static const char *pci_variant[] = {
3066                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3067         };
3068
3069         int i;
3070         char buf[80];
3071
3072         if (is_pcie(adap))
3073                 snprintf(buf, sizeof(buf), "%s x%d",
3074                          pci_variant[adap->params.pci.variant],
3075                          adap->params.pci.width);
3076         else
3077                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3078                          pci_variant[adap->params.pci.variant],
3079                          adap->params.pci.speed, adap->params.pci.width);
3080
3081         for_each_port(adap, i) {
3082                 struct net_device *dev = adap->port[i];
3083                 const struct port_info *pi = netdev_priv(dev);
3084
3085                 if (!test_bit(i, &adap->registered_device_map))
3086                         continue;
3087                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3088                        dev->name, ai->desc, pi->phy.desc,
3089                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3090                        (adap->flags & USING_MSIX) ? " MSI-X" :
3091                        (adap->flags & USING_MSI) ? " MSI" : "");
3092                 if (adap->name == dev->name && adap->params.vpd.mclk)
3093                         printk(KERN_INFO
3094                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3095                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3096                                t3_mc7_size(&adap->pmtx) >> 20,
3097                                t3_mc7_size(&adap->pmrx) >> 20,
3098                                adap->params.vpd.sn);
3099         }
3100 }
3101
3102 static const struct net_device_ops cxgb_netdev_ops = {
3103         .ndo_open               = cxgb_open,
3104         .ndo_stop               = cxgb_close,
3105         .ndo_start_xmit         = t3_eth_xmit,
3106         .ndo_get_stats          = cxgb_get_stats,
3107         .ndo_validate_addr      = eth_validate_addr,
3108         .ndo_set_multicast_list = cxgb_set_rxmode,
3109         .ndo_do_ioctl           = cxgb_ioctl,
3110         .ndo_change_mtu         = cxgb_change_mtu,
3111         .ndo_set_mac_address    = cxgb_set_mac_addr,
3112         .ndo_vlan_rx_register   = vlan_rx_register,
3113 #ifdef CONFIG_NET_POLL_CONTROLLER
3114         .ndo_poll_controller    = cxgb_netpoll,
3115 #endif
3116 };
3117
3118 static int __devinit init_one(struct pci_dev *pdev,
3119                               const struct pci_device_id *ent)
3120 {
3121         static int version_printed;
3122
3123         int i, err, pci_using_dac = 0;
3124         resource_size_t mmio_start, mmio_len;
3125         const struct adapter_info *ai;
3126         struct adapter *adapter = NULL;
3127         struct port_info *pi;
3128
3129         if (!version_printed) {
3130                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3131                 ++version_printed;
3132         }
3133
3134         if (!cxgb3_wq) {
3135                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3136                 if (!cxgb3_wq) {
3137                         printk(KERN_ERR DRV_NAME
3138                                ": cannot initialize work queue\n");
3139                         return -ENOMEM;
3140                 }
3141         }
3142
3143         err = pci_request_regions(pdev, DRV_NAME);
3144         if (err) {
3145                 /* Just info, some other driver may have claimed the device. */
3146                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3147                 return err;
3148         }
3149
3150         err = pci_enable_device(pdev);
3151         if (err) {
3152                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3153                 goto out_release_regions;
3154         }
3155
3156         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3157                 pci_using_dac = 1;
3158                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3159                 if (err) {
3160                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3161                                "coherent allocations\n");
3162                         goto out_disable_device;
3163                 }
3164         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3165                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3166                 goto out_disable_device;
3167         }
3168
3169         pci_set_master(pdev);
3170         pci_save_state(pdev);
3171
3172         mmio_start = pci_resource_start(pdev, 0);
3173         mmio_len = pci_resource_len(pdev, 0);
3174         ai = t3_get_adapter_info(ent->driver_data);
3175
3176         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3177         if (!adapter) {
3178                 err = -ENOMEM;
3179                 goto out_disable_device;
3180         }
3181
3182         adapter->nofail_skb =
3183                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3184         if (!adapter->nofail_skb) {
3185                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3186                 err = -ENOMEM;
3187                 goto out_free_adapter;
3188         }
3189
3190         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3191         if (!adapter->regs) {
3192                 dev_err(&pdev->dev, "cannot map device registers\n");
3193                 err = -ENOMEM;
3194                 goto out_free_adapter;
3195         }
3196
3197         adapter->pdev = pdev;
3198         adapter->name = pci_name(pdev);
3199         adapter->msg_enable = dflt_msg_enable;
3200         adapter->mmio_len = mmio_len;
3201
3202         mutex_init(&adapter->mdio_lock);
3203         spin_lock_init(&adapter->work_lock);
3204         spin_lock_init(&adapter->stats_lock);
3205
3206         INIT_LIST_HEAD(&adapter->adapter_list);
3207         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3208         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3209         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3210
3211         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3212                 struct net_device *netdev;
3213
3214                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3215                 if (!netdev) {
3216                         err = -ENOMEM;
3217                         goto out_free_dev;
3218                 }
3219
3220                 SET_NETDEV_DEV(netdev, &pdev->dev);
3221
3222                 adapter->port[i] = netdev;
3223                 pi = netdev_priv(netdev);
3224                 pi->adapter = adapter;
3225                 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3226                 pi->port_id = i;
3227                 netif_carrier_off(netdev);
3228                 netif_tx_stop_all_queues(netdev);
3229                 netdev->irq = pdev->irq;
3230                 netdev->mem_start = mmio_start;
3231                 netdev->mem_end = mmio_start + mmio_len - 1;
3232                 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3233                 netdev->features |= NETIF_F_GRO;
3234                 if (pci_using_dac)
3235                         netdev->features |= NETIF_F_HIGHDMA;
3236
3237                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3238                 netdev->netdev_ops = &cxgb_netdev_ops;
3239                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3240         }
3241
3242         pci_set_drvdata(pdev, adapter);
3243         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3244                 err = -ENODEV;
3245                 goto out_free_dev;
3246         }
3247
3248         /*
3249          * The card is now ready to go.  If any errors occur during device
3250          * registration we do not fail the whole card but rather proceed only
3251          * with the ports we manage to register successfully.  However we must
3252          * register at least one net device.
3253          */
3254         for_each_port(adapter, i) {
3255                 err = register_netdev(adapter->port[i]);
3256                 if (err)
3257                         dev_warn(&pdev->dev,
3258                                  "cannot register net device %s, skipping\n",
3259                                  adapter->port[i]->name);
3260                 else {
3261                         /*
3262                          * Change the name we use for messages to the name of
3263                          * the first successfully registered interface.
3264                          */
3265                         if (!adapter->registered_device_map)
3266                                 adapter->name = adapter->port[i]->name;
3267
3268                         __set_bit(i, &adapter->registered_device_map);
3269                 }
3270         }
3271         if (!adapter->registered_device_map) {
3272                 dev_err(&pdev->dev, "could not register any net devices\n");
3273                 goto out_free_dev;
3274         }
3275
3276         /* Driver's ready. Reflect it on LEDs */
3277         t3_led_ready(adapter);
3278
3279         if (is_offload(adapter)) {
3280                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3281                 cxgb3_adapter_ofld(adapter);
3282         }
3283
3284         /* See what interrupts we'll be using */
3285         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3286                 adapter->flags |= USING_MSIX;
3287         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3288                 adapter->flags |= USING_MSI;
3289
3290         set_nqsets(adapter);
3291
3292         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3293                                  &cxgb3_attr_group);
3294
3295         print_port_info(adapter, ai);
3296         return 0;
3297
3298 out_free_dev:
3299         iounmap(adapter->regs);
3300         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3301                 if (adapter->port[i])
3302                         free_netdev(adapter->port[i]);
3303
3304 out_free_adapter:
3305         kfree(adapter);
3306
3307 out_disable_device:
3308         pci_disable_device(pdev);
3309 out_release_regions:
3310         pci_release_regions(pdev);
3311         pci_set_drvdata(pdev, NULL);
3312         return err;
3313 }
3314
3315 static void __devexit remove_one(struct pci_dev *pdev)
3316 {
3317         struct adapter *adapter = pci_get_drvdata(pdev);
3318
3319         if (adapter) {
3320                 int i;
3321
3322                 t3_sge_stop(adapter);
3323                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3324                                    &cxgb3_attr_group);
3325
3326                 if (is_offload(adapter)) {
3327                         cxgb3_adapter_unofld(adapter);
3328                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3329                                      &adapter->open_device_map))
3330                                 offload_close(&adapter->tdev);
3331                 }
3332
3333                 for_each_port(adapter, i)
3334                     if (test_bit(i, &adapter->registered_device_map))
3335                         unregister_netdev(adapter->port[i]);
3336
3337                 t3_stop_sge_timers(adapter);
3338                 t3_free_sge_resources(adapter);
3339                 cxgb_disable_msi(adapter);
3340
3341                 for_each_port(adapter, i)
3342                         if (adapter->port[i])
3343                                 free_netdev(adapter->port[i]);
3344
3345                 iounmap(adapter->regs);
3346                 if (adapter->nofail_skb)
3347                         kfree_skb(adapter->nofail_skb);
3348                 kfree(adapter);
3349                 pci_release_regions(pdev);
3350                 pci_disable_device(pdev);
3351                 pci_set_drvdata(pdev, NULL);
3352         }
3353 }
3354
3355 static struct pci_driver driver = {
3356         .name = DRV_NAME,
3357         .id_table = cxgb3_pci_tbl,
3358         .probe = init_one,
3359         .remove = __devexit_p(remove_one),
3360         .err_handler = &t3_err_handler,
3361 };
3362
3363 static int __init cxgb3_init_module(void)
3364 {
3365         int ret;
3366
3367         cxgb3_offload_init();
3368
3369         ret = pci_register_driver(&driver);
3370         return ret;
3371 }
3372
3373 static void __exit cxgb3_cleanup_module(void)
3374 {
3375         pci_unregister_driver(&driver);
3376         if (cxgb3_wq)
3377                 destroy_workqueue(cxgb3_wq);
3378 }
3379
3380 module_init(cxgb3_init_module);
3381 module_exit(cxgb3_cleanup_module);