Merge tag 'v3.5-rc7' into late/soc
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
48     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55 #endif
56
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #endif
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #endif
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #endif
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #endif
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE  50
71 #endif
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH  8
74 #endif
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS  0
77 #endif
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG        0
80 #endif
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG        0
83 #endif
84 #ifndef CONFIG_NANDSIM_MAX_PARTS
85 #define CONFIG_NANDSIM_MAX_PARTS  32
86 #endif
87
88 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
89 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
90 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
91 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
92 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
93 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
94 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
95 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
96 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
97 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
98 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
99 static uint log            = CONFIG_NANDSIM_LOG;
100 static uint dbg            = CONFIG_NANDSIM_DBG;
101 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
102 static unsigned int parts_num;
103 static char *badblocks = NULL;
104 static char *weakblocks = NULL;
105 static char *weakpages = NULL;
106 static unsigned int bitflips = 0;
107 static char *gravepages = NULL;
108 static unsigned int rptwear = 0;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113
114 module_param(first_id_byte,  uint, 0400);
115 module_param(second_id_byte, uint, 0400);
116 module_param(third_id_byte,  uint, 0400);
117 module_param(fourth_id_byte, uint, 0400);
118 module_param(access_delay,   uint, 0400);
119 module_param(programm_delay, uint, 0400);
120 module_param(erase_delay,    uint, 0400);
121 module_param(output_cycle,   uint, 0400);
122 module_param(input_cycle,    uint, 0400);
123 module_param(bus_width,      uint, 0400);
124 module_param(do_delays,      uint, 0400);
125 module_param(log,            uint, 0400);
126 module_param(dbg,            uint, 0400);
127 module_param_array(parts, ulong, &parts_num, 0400);
128 module_param(badblocks,      charp, 0400);
129 module_param(weakblocks,     charp, 0400);
130 module_param(weakpages,      charp, 0400);
131 module_param(bitflips,       uint, 0400);
132 module_param(gravepages,     charp, 0400);
133 module_param(rptwear,        uint, 0400);
134 module_param(overridesize,   uint, 0400);
135 module_param(cache_file,     charp, 0400);
136 module_param(bbt,            uint, 0400);
137 module_param(bch,            uint, 0400);
138
139 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log,            "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
152 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156                                  " separated by commas e.g. 113:2 means eb 113"
157                                  " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
159                                  " separated by commas e.g. 1401:2 means page 1401"
160                                  " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
163                                  " separated by commas e.g. 1401:2 means page 1401"
164                                  " can be read only twice before failing");
165 MODULE_PARM_DESC(rptwear,        "Number of erases between reporting wear, if not zero");
166 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
167                                  "The size is specified in erase blocks and as the exponent of a power of two"
168                                  " e.g. 5 means a size of 32 erase blocks");
169 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
170 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171 MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
172                                  "be correctable in 512-byte blocks");
173
174 /* The largest possible page size */
175 #define NS_LARGEST_PAGE_SIZE    4096
176
177 /* The prefix for simulator output */
178 #define NS_OUTPUT_PREFIX "[nandsim]"
179
180 /* Simulator's output macros (logging, debugging, warning, error) */
181 #define NS_LOG(args...) \
182         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183 #define NS_DBG(args...) \
184         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185 #define NS_WARN(args...) \
186         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187 #define NS_ERR(args...) \
188         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189 #define NS_INFO(args...) \
190         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191
192 /* Busy-wait delay macros (microseconds, milliseconds) */
193 #define NS_UDELAY(us) \
194         do { if (do_delays) udelay(us); } while(0)
195 #define NS_MDELAY(us) \
196         do { if (do_delays) mdelay(us); } while(0)
197
198 /* Is the nandsim structure initialized ? */
199 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200
201 /* Good operation completion status */
202 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203
204 /* Operation failed completion status */
205 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206
207 /* Calculate the page offset in flash RAM image by (row, column) address */
208 #define NS_RAW_OFFSET(ns) \
209         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210
211 /* Calculate the OOB offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213
214 /* After a command is input, the simulator goes to one of the following states */
215 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
216 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
217 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
218 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
219 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
220 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
221 #define STATE_CMD_STATUS       0x00000007 /* read status */
222 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
223 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
224 #define STATE_CMD_READID       0x0000000A /* read ID */
225 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
226 #define STATE_CMD_RESET        0x0000000C /* reset */
227 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
228 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
229 #define STATE_CMD_MASK         0x0000000F /* command states mask */
230
231 /* After an address is input, the simulator goes to one of these states */
232 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
233 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
234 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
235 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
236 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
237
238 /* During data input/output the simulator is in these states */
239 #define STATE_DATAIN           0x00000100 /* waiting for data input */
240 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
241
242 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
243 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
244 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
245 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
247
248 /* Previous operation is done, ready to accept new requests */
249 #define STATE_READY            0x00000000
250
251 /* This state is used to mark that the next state isn't known yet */
252 #define STATE_UNKNOWN          0x10000000
253
254 /* Simulator's actions bit masks */
255 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
256 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
257 #define ACTION_SECERASE  0x00300000 /* erase sector */
258 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
259 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
260 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
261 #define ACTION_MASK      0x00700000 /* action mask */
262
263 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
264 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
265
266 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
267 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
268 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
269 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
270 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
275
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288
289 /*
290  * A union to represent flash memory contents and flash buffer.
291  */
292 union ns_mem {
293         u_char *byte;    /* for byte access */
294         uint16_t *word;  /* for 16-bit word access */
295 };
296
297 /*
298  * The structure which describes all the internal simulator data.
299  */
300 struct nandsim {
301         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
302         unsigned int nbparts;
303
304         uint busw;              /* flash chip bus width (8 or 16) */
305         u_char ids[4];          /* chip's ID bytes */
306         uint32_t options;       /* chip's characteristic bits */
307         uint32_t state;         /* current chip state */
308         uint32_t nxstate;       /* next expected state */
309
310         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
311         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
312         uint16_t npstates;      /* number of previous states saved */
313         uint16_t stateidx;      /* current state index */
314
315         /* The simulated NAND flash pages array */
316         union ns_mem *pages;
317
318         /* Slab allocator for nand pages */
319         struct kmem_cache *nand_pages_slab;
320
321         /* Internal buffer of page + OOB size bytes */
322         union ns_mem buf;
323
324         /* NAND flash "geometry" */
325         struct {
326                 uint64_t totsz;     /* total flash size, bytes */
327                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
328                 uint pgsz;          /* NAND flash page size, bytes */
329                 uint oobsz;         /* page OOB area size, bytes */
330                 uint64_t totszoob;  /* total flash size including OOB, bytes */
331                 uint pgszoob;       /* page size including OOB , bytes*/
332                 uint secszoob;      /* sector size including OOB, bytes */
333                 uint pgnum;         /* total number of pages */
334                 uint pgsec;         /* number of pages per sector */
335                 uint secshift;      /* bits number in sector size */
336                 uint pgshift;       /* bits number in page size */
337                 uint oobshift;      /* bits number in OOB size */
338                 uint pgaddrbytes;   /* bytes per page address */
339                 uint secaddrbytes;  /* bytes per sector address */
340                 uint idbytes;       /* the number ID bytes that this chip outputs */
341         } geom;
342
343         /* NAND flash internal registers */
344         struct {
345                 unsigned command; /* the command register */
346                 u_char   status;  /* the status register */
347                 uint     row;     /* the page number */
348                 uint     column;  /* the offset within page */
349                 uint     count;   /* internal counter */
350                 uint     num;     /* number of bytes which must be processed */
351                 uint     off;     /* fixed page offset */
352         } regs;
353
354         /* NAND flash lines state */
355         struct {
356                 int ce;  /* chip Enable */
357                 int cle; /* command Latch Enable */
358                 int ale; /* address Latch Enable */
359                 int wp;  /* write Protect */
360         } lines;
361
362         /* Fields needed when using a cache file */
363         struct file *cfile; /* Open file */
364         unsigned char *pages_written; /* Which pages have been written */
365         void *file_buf;
366         struct page *held_pages[NS_MAX_HELD_PAGES];
367         int held_cnt;
368 };
369
370 /*
371  * Operations array. To perform any operation the simulator must pass
372  * through the correspondent states chain.
373  */
374 static struct nandsim_operations {
375         uint32_t reqopts;  /* options which are required to perform the operation */
376         uint32_t states[NS_OPER_STATES]; /* operation's states */
377 } ops[NS_OPER_NUM] = {
378         /* Read page + OOB from the beginning */
379         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
380                         STATE_DATAOUT, STATE_READY}},
381         /* Read page + OOB from the second half */
382         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
383                         STATE_DATAOUT, STATE_READY}},
384         /* Read OOB */
385         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
386                         STATE_DATAOUT, STATE_READY}},
387         /* Program page starting from the beginning */
388         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
389                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
390         /* Program page starting from the beginning */
391         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
392                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
393         /* Program page starting from the second half */
394         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
395                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396         /* Program OOB */
397         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
398                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399         /* Erase sector */
400         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
401         /* Read status */
402         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
403         /* Read multi-plane status */
404         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
405         /* Read ID */
406         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
407         /* Large page devices read page */
408         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
409                                STATE_DATAOUT, STATE_READY}},
410         /* Large page devices random page read */
411         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
412                                STATE_DATAOUT, STATE_READY}},
413 };
414
415 struct weak_block {
416         struct list_head list;
417         unsigned int erase_block_no;
418         unsigned int max_erases;
419         unsigned int erases_done;
420 };
421
422 static LIST_HEAD(weak_blocks);
423
424 struct weak_page {
425         struct list_head list;
426         unsigned int page_no;
427         unsigned int max_writes;
428         unsigned int writes_done;
429 };
430
431 static LIST_HEAD(weak_pages);
432
433 struct grave_page {
434         struct list_head list;
435         unsigned int page_no;
436         unsigned int max_reads;
437         unsigned int reads_done;
438 };
439
440 static LIST_HEAD(grave_pages);
441
442 static unsigned long *erase_block_wear = NULL;
443 static unsigned int wear_eb_count = 0;
444 static unsigned long total_wear = 0;
445 static unsigned int rptwear_cnt = 0;
446
447 /* MTD structure for NAND controller */
448 static struct mtd_info *nsmtd;
449
450 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
451
452 /*
453  * Allocate array of page pointers, create slab allocation for an array
454  * and initialize the array by NULL pointers.
455  *
456  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
457  */
458 static int alloc_device(struct nandsim *ns)
459 {
460         struct file *cfile;
461         int i, err;
462
463         if (cache_file) {
464                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
465                 if (IS_ERR(cfile))
466                         return PTR_ERR(cfile);
467                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
468                         NS_ERR("alloc_device: cache file not readable\n");
469                         err = -EINVAL;
470                         goto err_close;
471                 }
472                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
473                         NS_ERR("alloc_device: cache file not writeable\n");
474                         err = -EINVAL;
475                         goto err_close;
476                 }
477                 ns->pages_written = vzalloc(ns->geom.pgnum);
478                 if (!ns->pages_written) {
479                         NS_ERR("alloc_device: unable to allocate pages written array\n");
480                         err = -ENOMEM;
481                         goto err_close;
482                 }
483                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
484                 if (!ns->file_buf) {
485                         NS_ERR("alloc_device: unable to allocate file buf\n");
486                         err = -ENOMEM;
487                         goto err_free;
488                 }
489                 ns->cfile = cfile;
490                 return 0;
491         }
492
493         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
494         if (!ns->pages) {
495                 NS_ERR("alloc_device: unable to allocate page array\n");
496                 return -ENOMEM;
497         }
498         for (i = 0; i < ns->geom.pgnum; i++) {
499                 ns->pages[i].byte = NULL;
500         }
501         ns->nand_pages_slab = kmem_cache_create("nandsim",
502                                                 ns->geom.pgszoob, 0, 0, NULL);
503         if (!ns->nand_pages_slab) {
504                 NS_ERR("cache_create: unable to create kmem_cache\n");
505                 return -ENOMEM;
506         }
507
508         return 0;
509
510 err_free:
511         vfree(ns->pages_written);
512 err_close:
513         filp_close(cfile, NULL);
514         return err;
515 }
516
517 /*
518  * Free any allocated pages, and free the array of page pointers.
519  */
520 static void free_device(struct nandsim *ns)
521 {
522         int i;
523
524         if (ns->cfile) {
525                 kfree(ns->file_buf);
526                 vfree(ns->pages_written);
527                 filp_close(ns->cfile, NULL);
528                 return;
529         }
530
531         if (ns->pages) {
532                 for (i = 0; i < ns->geom.pgnum; i++) {
533                         if (ns->pages[i].byte)
534                                 kmem_cache_free(ns->nand_pages_slab,
535                                                 ns->pages[i].byte);
536                 }
537                 kmem_cache_destroy(ns->nand_pages_slab);
538                 vfree(ns->pages);
539         }
540 }
541
542 static char *get_partition_name(int i)
543 {
544         char buf[64];
545         sprintf(buf, "NAND simulator partition %d", i);
546         return kstrdup(buf, GFP_KERNEL);
547 }
548
549 /*
550  * Initialize the nandsim structure.
551  *
552  * RETURNS: 0 if success, -ERRNO if failure.
553  */
554 static int init_nandsim(struct mtd_info *mtd)
555 {
556         struct nand_chip *chip = mtd->priv;
557         struct nandsim   *ns   = chip->priv;
558         int i, ret = 0;
559         uint64_t remains;
560         uint64_t next_offset;
561
562         if (NS_IS_INITIALIZED(ns)) {
563                 NS_ERR("init_nandsim: nandsim is already initialized\n");
564                 return -EIO;
565         }
566
567         /* Force mtd to not do delays */
568         chip->chip_delay = 0;
569
570         /* Initialize the NAND flash parameters */
571         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
572         ns->geom.totsz    = mtd->size;
573         ns->geom.pgsz     = mtd->writesize;
574         ns->geom.oobsz    = mtd->oobsize;
575         ns->geom.secsz    = mtd->erasesize;
576         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
577         ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
578         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
579         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
580         ns->geom.pgshift  = chip->page_shift;
581         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
582         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
583         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
584         ns->options = 0;
585
586         if (ns->geom.pgsz == 256) {
587                 ns->options |= OPT_PAGE256;
588         }
589         else if (ns->geom.pgsz == 512) {
590                 ns->options |= OPT_PAGE512;
591                 if (ns->busw == 8)
592                         ns->options |= OPT_PAGE512_8BIT;
593         } else if (ns->geom.pgsz == 2048) {
594                 ns->options |= OPT_PAGE2048;
595         } else if (ns->geom.pgsz == 4096) {
596                 ns->options |= OPT_PAGE4096;
597         } else {
598                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
599                 return -EIO;
600         }
601
602         if (ns->options & OPT_SMALLPAGE) {
603                 if (ns->geom.totsz <= (32 << 20)) {
604                         ns->geom.pgaddrbytes  = 3;
605                         ns->geom.secaddrbytes = 2;
606                 } else {
607                         ns->geom.pgaddrbytes  = 4;
608                         ns->geom.secaddrbytes = 3;
609                 }
610         } else {
611                 if (ns->geom.totsz <= (128 << 20)) {
612                         ns->geom.pgaddrbytes  = 4;
613                         ns->geom.secaddrbytes = 2;
614                 } else {
615                         ns->geom.pgaddrbytes  = 5;
616                         ns->geom.secaddrbytes = 3;
617                 }
618         }
619
620         /* Fill the partition_info structure */
621         if (parts_num > ARRAY_SIZE(ns->partitions)) {
622                 NS_ERR("too many partitions.\n");
623                 ret = -EINVAL;
624                 goto error;
625         }
626         remains = ns->geom.totsz;
627         next_offset = 0;
628         for (i = 0; i < parts_num; ++i) {
629                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
630
631                 if (!part_sz || part_sz > remains) {
632                         NS_ERR("bad partition size.\n");
633                         ret = -EINVAL;
634                         goto error;
635                 }
636                 ns->partitions[i].name   = get_partition_name(i);
637                 ns->partitions[i].offset = next_offset;
638                 ns->partitions[i].size   = part_sz;
639                 next_offset += ns->partitions[i].size;
640                 remains -= ns->partitions[i].size;
641         }
642         ns->nbparts = parts_num;
643         if (remains) {
644                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
645                         NS_ERR("too many partitions.\n");
646                         ret = -EINVAL;
647                         goto error;
648                 }
649                 ns->partitions[i].name   = get_partition_name(i);
650                 ns->partitions[i].offset = next_offset;
651                 ns->partitions[i].size   = remains;
652                 ns->nbparts += 1;
653         }
654
655         /* Detect how many ID bytes the NAND chip outputs */
656         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
657                 if (second_id_byte != nand_flash_ids[i].id)
658                         continue;
659         }
660
661         if (ns->busw == 16)
662                 NS_WARN("16-bit flashes support wasn't tested\n");
663
664         printk("flash size: %llu MiB\n",
665                         (unsigned long long)ns->geom.totsz >> 20);
666         printk("page size: %u bytes\n",         ns->geom.pgsz);
667         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
668         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
669         printk("pages number: %u\n",            ns->geom.pgnum);
670         printk("pages per sector: %u\n",        ns->geom.pgsec);
671         printk("bus width: %u\n",               ns->busw);
672         printk("bits in sector size: %u\n",     ns->geom.secshift);
673         printk("bits in page size: %u\n",       ns->geom.pgshift);
674         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
675         printk("flash size with OOB: %llu KiB\n",
676                         (unsigned long long)ns->geom.totszoob >> 10);
677         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
678         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
679         printk("options: %#x\n",                ns->options);
680
681         if ((ret = alloc_device(ns)) != 0)
682                 goto error;
683
684         /* Allocate / initialize the internal buffer */
685         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
686         if (!ns->buf.byte) {
687                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
688                         ns->geom.pgszoob);
689                 ret = -ENOMEM;
690                 goto error;
691         }
692         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
693
694         return 0;
695
696 error:
697         free_device(ns);
698
699         return ret;
700 }
701
702 /*
703  * Free the nandsim structure.
704  */
705 static void free_nandsim(struct nandsim *ns)
706 {
707         kfree(ns->buf.byte);
708         free_device(ns);
709
710         return;
711 }
712
713 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
714 {
715         char *w;
716         int zero_ok;
717         unsigned int erase_block_no;
718         loff_t offset;
719
720         if (!badblocks)
721                 return 0;
722         w = badblocks;
723         do {
724                 zero_ok = (*w == '0' ? 1 : 0);
725                 erase_block_no = simple_strtoul(w, &w, 0);
726                 if (!zero_ok && !erase_block_no) {
727                         NS_ERR("invalid badblocks.\n");
728                         return -EINVAL;
729                 }
730                 offset = erase_block_no * ns->geom.secsz;
731                 if (mtd_block_markbad(mtd, offset)) {
732                         NS_ERR("invalid badblocks.\n");
733                         return -EINVAL;
734                 }
735                 if (*w == ',')
736                         w += 1;
737         } while (*w);
738         return 0;
739 }
740
741 static int parse_weakblocks(void)
742 {
743         char *w;
744         int zero_ok;
745         unsigned int erase_block_no;
746         unsigned int max_erases;
747         struct weak_block *wb;
748
749         if (!weakblocks)
750                 return 0;
751         w = weakblocks;
752         do {
753                 zero_ok = (*w == '0' ? 1 : 0);
754                 erase_block_no = simple_strtoul(w, &w, 0);
755                 if (!zero_ok && !erase_block_no) {
756                         NS_ERR("invalid weakblocks.\n");
757                         return -EINVAL;
758                 }
759                 max_erases = 3;
760                 if (*w == ':') {
761                         w += 1;
762                         max_erases = simple_strtoul(w, &w, 0);
763                 }
764                 if (*w == ',')
765                         w += 1;
766                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
767                 if (!wb) {
768                         NS_ERR("unable to allocate memory.\n");
769                         return -ENOMEM;
770                 }
771                 wb->erase_block_no = erase_block_no;
772                 wb->max_erases = max_erases;
773                 list_add(&wb->list, &weak_blocks);
774         } while (*w);
775         return 0;
776 }
777
778 static int erase_error(unsigned int erase_block_no)
779 {
780         struct weak_block *wb;
781
782         list_for_each_entry(wb, &weak_blocks, list)
783                 if (wb->erase_block_no == erase_block_no) {
784                         if (wb->erases_done >= wb->max_erases)
785                                 return 1;
786                         wb->erases_done += 1;
787                         return 0;
788                 }
789         return 0;
790 }
791
792 static int parse_weakpages(void)
793 {
794         char *w;
795         int zero_ok;
796         unsigned int page_no;
797         unsigned int max_writes;
798         struct weak_page *wp;
799
800         if (!weakpages)
801                 return 0;
802         w = weakpages;
803         do {
804                 zero_ok = (*w == '0' ? 1 : 0);
805                 page_no = simple_strtoul(w, &w, 0);
806                 if (!zero_ok && !page_no) {
807                         NS_ERR("invalid weakpagess.\n");
808                         return -EINVAL;
809                 }
810                 max_writes = 3;
811                 if (*w == ':') {
812                         w += 1;
813                         max_writes = simple_strtoul(w, &w, 0);
814                 }
815                 if (*w == ',')
816                         w += 1;
817                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
818                 if (!wp) {
819                         NS_ERR("unable to allocate memory.\n");
820                         return -ENOMEM;
821                 }
822                 wp->page_no = page_no;
823                 wp->max_writes = max_writes;
824                 list_add(&wp->list, &weak_pages);
825         } while (*w);
826         return 0;
827 }
828
829 static int write_error(unsigned int page_no)
830 {
831         struct weak_page *wp;
832
833         list_for_each_entry(wp, &weak_pages, list)
834                 if (wp->page_no == page_no) {
835                         if (wp->writes_done >= wp->max_writes)
836                                 return 1;
837                         wp->writes_done += 1;
838                         return 0;
839                 }
840         return 0;
841 }
842
843 static int parse_gravepages(void)
844 {
845         char *g;
846         int zero_ok;
847         unsigned int page_no;
848         unsigned int max_reads;
849         struct grave_page *gp;
850
851         if (!gravepages)
852                 return 0;
853         g = gravepages;
854         do {
855                 zero_ok = (*g == '0' ? 1 : 0);
856                 page_no = simple_strtoul(g, &g, 0);
857                 if (!zero_ok && !page_no) {
858                         NS_ERR("invalid gravepagess.\n");
859                         return -EINVAL;
860                 }
861                 max_reads = 3;
862                 if (*g == ':') {
863                         g += 1;
864                         max_reads = simple_strtoul(g, &g, 0);
865                 }
866                 if (*g == ',')
867                         g += 1;
868                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
869                 if (!gp) {
870                         NS_ERR("unable to allocate memory.\n");
871                         return -ENOMEM;
872                 }
873                 gp->page_no = page_no;
874                 gp->max_reads = max_reads;
875                 list_add(&gp->list, &grave_pages);
876         } while (*g);
877         return 0;
878 }
879
880 static int read_error(unsigned int page_no)
881 {
882         struct grave_page *gp;
883
884         list_for_each_entry(gp, &grave_pages, list)
885                 if (gp->page_no == page_no) {
886                         if (gp->reads_done >= gp->max_reads)
887                                 return 1;
888                         gp->reads_done += 1;
889                         return 0;
890                 }
891         return 0;
892 }
893
894 static void free_lists(void)
895 {
896         struct list_head *pos, *n;
897         list_for_each_safe(pos, n, &weak_blocks) {
898                 list_del(pos);
899                 kfree(list_entry(pos, struct weak_block, list));
900         }
901         list_for_each_safe(pos, n, &weak_pages) {
902                 list_del(pos);
903                 kfree(list_entry(pos, struct weak_page, list));
904         }
905         list_for_each_safe(pos, n, &grave_pages) {
906                 list_del(pos);
907                 kfree(list_entry(pos, struct grave_page, list));
908         }
909         kfree(erase_block_wear);
910 }
911
912 static int setup_wear_reporting(struct mtd_info *mtd)
913 {
914         size_t mem;
915
916         if (!rptwear)
917                 return 0;
918         wear_eb_count = div_u64(mtd->size, mtd->erasesize);
919         mem = wear_eb_count * sizeof(unsigned long);
920         if (mem / sizeof(unsigned long) != wear_eb_count) {
921                 NS_ERR("Too many erase blocks for wear reporting\n");
922                 return -ENOMEM;
923         }
924         erase_block_wear = kzalloc(mem, GFP_KERNEL);
925         if (!erase_block_wear) {
926                 NS_ERR("Too many erase blocks for wear reporting\n");
927                 return -ENOMEM;
928         }
929         return 0;
930 }
931
932 static void update_wear(unsigned int erase_block_no)
933 {
934         unsigned long wmin = -1, wmax = 0, avg;
935         unsigned long deciles[10], decile_max[10], tot = 0;
936         unsigned int i;
937
938         if (!erase_block_wear)
939                 return;
940         total_wear += 1;
941         if (total_wear == 0)
942                 NS_ERR("Erase counter total overflow\n");
943         erase_block_wear[erase_block_no] += 1;
944         if (erase_block_wear[erase_block_no] == 0)
945                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
946         rptwear_cnt += 1;
947         if (rptwear_cnt < rptwear)
948                 return;
949         rptwear_cnt = 0;
950         /* Calc wear stats */
951         for (i = 0; i < wear_eb_count; ++i) {
952                 unsigned long wear = erase_block_wear[i];
953                 if (wear < wmin)
954                         wmin = wear;
955                 if (wear > wmax)
956                         wmax = wear;
957                 tot += wear;
958         }
959         for (i = 0; i < 9; ++i) {
960                 deciles[i] = 0;
961                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
962         }
963         deciles[9] = 0;
964         decile_max[9] = wmax;
965         for (i = 0; i < wear_eb_count; ++i) {
966                 int d;
967                 unsigned long wear = erase_block_wear[i];
968                 for (d = 0; d < 10; ++d)
969                         if (wear <= decile_max[d]) {
970                                 deciles[d] += 1;
971                                 break;
972                         }
973         }
974         avg = tot / wear_eb_count;
975         /* Output wear report */
976         NS_INFO("*** Wear Report ***\n");
977         NS_INFO("Total numbers of erases:  %lu\n", tot);
978         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
979         NS_INFO("Average number of erases: %lu\n", avg);
980         NS_INFO("Maximum number of erases: %lu\n", wmax);
981         NS_INFO("Minimum number of erases: %lu\n", wmin);
982         for (i = 0; i < 10; ++i) {
983                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
984                 if (from > decile_max[i])
985                         continue;
986                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
987                         from,
988                         decile_max[i],
989                         deciles[i]);
990         }
991         NS_INFO("*** End of Wear Report ***\n");
992 }
993
994 /*
995  * Returns the string representation of 'state' state.
996  */
997 static char *get_state_name(uint32_t state)
998 {
999         switch (NS_STATE(state)) {
1000                 case STATE_CMD_READ0:
1001                         return "STATE_CMD_READ0";
1002                 case STATE_CMD_READ1:
1003                         return "STATE_CMD_READ1";
1004                 case STATE_CMD_PAGEPROG:
1005                         return "STATE_CMD_PAGEPROG";
1006                 case STATE_CMD_READOOB:
1007                         return "STATE_CMD_READOOB";
1008                 case STATE_CMD_READSTART:
1009                         return "STATE_CMD_READSTART";
1010                 case STATE_CMD_ERASE1:
1011                         return "STATE_CMD_ERASE1";
1012                 case STATE_CMD_STATUS:
1013                         return "STATE_CMD_STATUS";
1014                 case STATE_CMD_STATUS_M:
1015                         return "STATE_CMD_STATUS_M";
1016                 case STATE_CMD_SEQIN:
1017                         return "STATE_CMD_SEQIN";
1018                 case STATE_CMD_READID:
1019                         return "STATE_CMD_READID";
1020                 case STATE_CMD_ERASE2:
1021                         return "STATE_CMD_ERASE2";
1022                 case STATE_CMD_RESET:
1023                         return "STATE_CMD_RESET";
1024                 case STATE_CMD_RNDOUT:
1025                         return "STATE_CMD_RNDOUT";
1026                 case STATE_CMD_RNDOUTSTART:
1027                         return "STATE_CMD_RNDOUTSTART";
1028                 case STATE_ADDR_PAGE:
1029                         return "STATE_ADDR_PAGE";
1030                 case STATE_ADDR_SEC:
1031                         return "STATE_ADDR_SEC";
1032                 case STATE_ADDR_ZERO:
1033                         return "STATE_ADDR_ZERO";
1034                 case STATE_ADDR_COLUMN:
1035                         return "STATE_ADDR_COLUMN";
1036                 case STATE_DATAIN:
1037                         return "STATE_DATAIN";
1038                 case STATE_DATAOUT:
1039                         return "STATE_DATAOUT";
1040                 case STATE_DATAOUT_ID:
1041                         return "STATE_DATAOUT_ID";
1042                 case STATE_DATAOUT_STATUS:
1043                         return "STATE_DATAOUT_STATUS";
1044                 case STATE_DATAOUT_STATUS_M:
1045                         return "STATE_DATAOUT_STATUS_M";
1046                 case STATE_READY:
1047                         return "STATE_READY";
1048                 case STATE_UNKNOWN:
1049                         return "STATE_UNKNOWN";
1050         }
1051
1052         NS_ERR("get_state_name: unknown state, BUG\n");
1053         return NULL;
1054 }
1055
1056 /*
1057  * Check if command is valid.
1058  *
1059  * RETURNS: 1 if wrong command, 0 if right.
1060  */
1061 static int check_command(int cmd)
1062 {
1063         switch (cmd) {
1064
1065         case NAND_CMD_READ0:
1066         case NAND_CMD_READ1:
1067         case NAND_CMD_READSTART:
1068         case NAND_CMD_PAGEPROG:
1069         case NAND_CMD_READOOB:
1070         case NAND_CMD_ERASE1:
1071         case NAND_CMD_STATUS:
1072         case NAND_CMD_SEQIN:
1073         case NAND_CMD_READID:
1074         case NAND_CMD_ERASE2:
1075         case NAND_CMD_RESET:
1076         case NAND_CMD_RNDOUT:
1077         case NAND_CMD_RNDOUTSTART:
1078                 return 0;
1079
1080         case NAND_CMD_STATUS_MULTI:
1081         default:
1082                 return 1;
1083         }
1084 }
1085
1086 /*
1087  * Returns state after command is accepted by command number.
1088  */
1089 static uint32_t get_state_by_command(unsigned command)
1090 {
1091         switch (command) {
1092                 case NAND_CMD_READ0:
1093                         return STATE_CMD_READ0;
1094                 case NAND_CMD_READ1:
1095                         return STATE_CMD_READ1;
1096                 case NAND_CMD_PAGEPROG:
1097                         return STATE_CMD_PAGEPROG;
1098                 case NAND_CMD_READSTART:
1099                         return STATE_CMD_READSTART;
1100                 case NAND_CMD_READOOB:
1101                         return STATE_CMD_READOOB;
1102                 case NAND_CMD_ERASE1:
1103                         return STATE_CMD_ERASE1;
1104                 case NAND_CMD_STATUS:
1105                         return STATE_CMD_STATUS;
1106                 case NAND_CMD_STATUS_MULTI:
1107                         return STATE_CMD_STATUS_M;
1108                 case NAND_CMD_SEQIN:
1109                         return STATE_CMD_SEQIN;
1110                 case NAND_CMD_READID:
1111                         return STATE_CMD_READID;
1112                 case NAND_CMD_ERASE2:
1113                         return STATE_CMD_ERASE2;
1114                 case NAND_CMD_RESET:
1115                         return STATE_CMD_RESET;
1116                 case NAND_CMD_RNDOUT:
1117                         return STATE_CMD_RNDOUT;
1118                 case NAND_CMD_RNDOUTSTART:
1119                         return STATE_CMD_RNDOUTSTART;
1120         }
1121
1122         NS_ERR("get_state_by_command: unknown command, BUG\n");
1123         return 0;
1124 }
1125
1126 /*
1127  * Move an address byte to the correspondent internal register.
1128  */
1129 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1130 {
1131         uint byte = (uint)bt;
1132
1133         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1134                 ns->regs.column |= (byte << 8 * ns->regs.count);
1135         else {
1136                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1137                                                 ns->geom.pgaddrbytes +
1138                                                 ns->geom.secaddrbytes));
1139         }
1140
1141         return;
1142 }
1143
1144 /*
1145  * Switch to STATE_READY state.
1146  */
1147 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1148 {
1149         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1150
1151         ns->state       = STATE_READY;
1152         ns->nxstate     = STATE_UNKNOWN;
1153         ns->op          = NULL;
1154         ns->npstates    = 0;
1155         ns->stateidx    = 0;
1156         ns->regs.num    = 0;
1157         ns->regs.count  = 0;
1158         ns->regs.off    = 0;
1159         ns->regs.row    = 0;
1160         ns->regs.column = 0;
1161         ns->regs.status = status;
1162 }
1163
1164 /*
1165  * If the operation isn't known yet, try to find it in the global array
1166  * of supported operations.
1167  *
1168  * Operation can be unknown because of the following.
1169  *   1. New command was accepted and this is the first call to find the
1170  *      correspondent states chain. In this case ns->npstates = 0;
1171  *   2. There are several operations which begin with the same command(s)
1172  *      (for example program from the second half and read from the
1173  *      second half operations both begin with the READ1 command). In this
1174  *      case the ns->pstates[] array contains previous states.
1175  *
1176  * Thus, the function tries to find operation containing the following
1177  * states (if the 'flag' parameter is 0):
1178  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1179  *
1180  * If (one and only one) matching operation is found, it is accepted (
1181  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1182  * zeroed).
1183  *
1184  * If there are several matches, the current state is pushed to the
1185  * ns->pstates.
1186  *
1187  * The operation can be unknown only while commands are input to the chip.
1188  * As soon as address command is accepted, the operation must be known.
1189  * In such situation the function is called with 'flag' != 0, and the
1190  * operation is searched using the following pattern:
1191  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1192  *
1193  * It is supposed that this pattern must either match one operation or
1194  * none. There can't be ambiguity in that case.
1195  *
1196  * If no matches found, the function does the following:
1197  *   1. if there are saved states present, try to ignore them and search
1198  *      again only using the last command. If nothing was found, switch
1199  *      to the STATE_READY state.
1200  *   2. if there are no saved states, switch to the STATE_READY state.
1201  *
1202  * RETURNS: -2 - no matched operations found.
1203  *          -1 - several matches.
1204  *           0 - operation is found.
1205  */
1206 static int find_operation(struct nandsim *ns, uint32_t flag)
1207 {
1208         int opsfound = 0;
1209         int i, j, idx = 0;
1210
1211         for (i = 0; i < NS_OPER_NUM; i++) {
1212
1213                 int found = 1;
1214
1215                 if (!(ns->options & ops[i].reqopts))
1216                         /* Ignore operations we can't perform */
1217                         continue;
1218
1219                 if (flag) {
1220                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1221                                 continue;
1222                 } else {
1223                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1224                                 continue;
1225                 }
1226
1227                 for (j = 0; j < ns->npstates; j++)
1228                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1229                                 && (ns->options & ops[idx].reqopts)) {
1230                                 found = 0;
1231                                 break;
1232                         }
1233
1234                 if (found) {
1235                         idx = i;
1236                         opsfound += 1;
1237                 }
1238         }
1239
1240         if (opsfound == 1) {
1241                 /* Exact match */
1242                 ns->op = &ops[idx].states[0];
1243                 if (flag) {
1244                         /*
1245                          * In this case the find_operation function was
1246                          * called when address has just began input. But it isn't
1247                          * yet fully input and the current state must
1248                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1249                          * state must be the next state (ns->nxstate).
1250                          */
1251                         ns->stateidx = ns->npstates - 1;
1252                 } else {
1253                         ns->stateidx = ns->npstates;
1254                 }
1255                 ns->npstates = 0;
1256                 ns->state = ns->op[ns->stateidx];
1257                 ns->nxstate = ns->op[ns->stateidx + 1];
1258                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1259                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1260                 return 0;
1261         }
1262
1263         if (opsfound == 0) {
1264                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1265                 if (ns->npstates != 0) {
1266                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1267                                         get_state_name(ns->state));
1268                         ns->npstates = 0;
1269                         return find_operation(ns, 0);
1270
1271                 }
1272                 NS_DBG("find_operation: no operations found\n");
1273                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1274                 return -2;
1275         }
1276
1277         if (flag) {
1278                 /* This shouldn't happen */
1279                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1280                 return -2;
1281         }
1282
1283         NS_DBG("find_operation: there is still ambiguity\n");
1284
1285         ns->pstates[ns->npstates++] = ns->state;
1286
1287         return -1;
1288 }
1289
1290 static void put_pages(struct nandsim *ns)
1291 {
1292         int i;
1293
1294         for (i = 0; i < ns->held_cnt; i++)
1295                 page_cache_release(ns->held_pages[i]);
1296 }
1297
1298 /* Get page cache pages in advance to provide NOFS memory allocation */
1299 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1300 {
1301         pgoff_t index, start_index, end_index;
1302         struct page *page;
1303         struct address_space *mapping = file->f_mapping;
1304
1305         start_index = pos >> PAGE_CACHE_SHIFT;
1306         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1307         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1308                 return -EINVAL;
1309         ns->held_cnt = 0;
1310         for (index = start_index; index <= end_index; index++) {
1311                 page = find_get_page(mapping, index);
1312                 if (page == NULL) {
1313                         page = find_or_create_page(mapping, index, GFP_NOFS);
1314                         if (page == NULL) {
1315                                 write_inode_now(mapping->host, 1);
1316                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1317                         }
1318                         if (page == NULL) {
1319                                 put_pages(ns);
1320                                 return -ENOMEM;
1321                         }
1322                         unlock_page(page);
1323                 }
1324                 ns->held_pages[ns->held_cnt++] = page;
1325         }
1326         return 0;
1327 }
1328
1329 static int set_memalloc(void)
1330 {
1331         if (current->flags & PF_MEMALLOC)
1332                 return 0;
1333         current->flags |= PF_MEMALLOC;
1334         return 1;
1335 }
1336
1337 static void clear_memalloc(int memalloc)
1338 {
1339         if (memalloc)
1340                 current->flags &= ~PF_MEMALLOC;
1341 }
1342
1343 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1344 {
1345         mm_segment_t old_fs;
1346         ssize_t tx;
1347         int err, memalloc;
1348
1349         err = get_pages(ns, file, count, *pos);
1350         if (err)
1351                 return err;
1352         old_fs = get_fs();
1353         set_fs(get_ds());
1354         memalloc = set_memalloc();
1355         tx = vfs_read(file, (char __user *)buf, count, pos);
1356         clear_memalloc(memalloc);
1357         set_fs(old_fs);
1358         put_pages(ns);
1359         return tx;
1360 }
1361
1362 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1363 {
1364         mm_segment_t old_fs;
1365         ssize_t tx;
1366         int err, memalloc;
1367
1368         err = get_pages(ns, file, count, *pos);
1369         if (err)
1370                 return err;
1371         old_fs = get_fs();
1372         set_fs(get_ds());
1373         memalloc = set_memalloc();
1374         tx = vfs_write(file, (char __user *)buf, count, pos);
1375         clear_memalloc(memalloc);
1376         set_fs(old_fs);
1377         put_pages(ns);
1378         return tx;
1379 }
1380
1381 /*
1382  * Returns a pointer to the current page.
1383  */
1384 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1385 {
1386         return &(ns->pages[ns->regs.row]);
1387 }
1388
1389 /*
1390  * Retuns a pointer to the current byte, within the current page.
1391  */
1392 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1393 {
1394         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1395 }
1396
1397 int do_read_error(struct nandsim *ns, int num)
1398 {
1399         unsigned int page_no = ns->regs.row;
1400
1401         if (read_error(page_no)) {
1402                 int i;
1403                 memset(ns->buf.byte, 0xFF, num);
1404                 for (i = 0; i < num; ++i)
1405                         ns->buf.byte[i] = random32();
1406                 NS_WARN("simulating read error in page %u\n", page_no);
1407                 return 1;
1408         }
1409         return 0;
1410 }
1411
1412 void do_bit_flips(struct nandsim *ns, int num)
1413 {
1414         if (bitflips && random32() < (1 << 22)) {
1415                 int flips = 1;
1416                 if (bitflips > 1)
1417                         flips = (random32() % (int) bitflips) + 1;
1418                 while (flips--) {
1419                         int pos = random32() % (num * 8);
1420                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1421                         NS_WARN("read_page: flipping bit %d in page %d "
1422                                 "reading from %d ecc: corrected=%u failed=%u\n",
1423                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1424                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1425                 }
1426         }
1427 }
1428
1429 /*
1430  * Fill the NAND buffer with data read from the specified page.
1431  */
1432 static void read_page(struct nandsim *ns, int num)
1433 {
1434         union ns_mem *mypage;
1435
1436         if (ns->cfile) {
1437                 if (!ns->pages_written[ns->regs.row]) {
1438                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1439                         memset(ns->buf.byte, 0xFF, num);
1440                 } else {
1441                         loff_t pos;
1442                         ssize_t tx;
1443
1444                         NS_DBG("read_page: page %d written, reading from %d\n",
1445                                 ns->regs.row, ns->regs.column + ns->regs.off);
1446                         if (do_read_error(ns, num))
1447                                 return;
1448                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1449                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1450                         if (tx != num) {
1451                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1452                                 return;
1453                         }
1454                         do_bit_flips(ns, num);
1455                 }
1456                 return;
1457         }
1458
1459         mypage = NS_GET_PAGE(ns);
1460         if (mypage->byte == NULL) {
1461                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1462                 memset(ns->buf.byte, 0xFF, num);
1463         } else {
1464                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1465                         ns->regs.row, ns->regs.column + ns->regs.off);
1466                 if (do_read_error(ns, num))
1467                         return;
1468                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1469                 do_bit_flips(ns, num);
1470         }
1471 }
1472
1473 /*
1474  * Erase all pages in the specified sector.
1475  */
1476 static void erase_sector(struct nandsim *ns)
1477 {
1478         union ns_mem *mypage;
1479         int i;
1480
1481         if (ns->cfile) {
1482                 for (i = 0; i < ns->geom.pgsec; i++)
1483                         if (ns->pages_written[ns->regs.row + i]) {
1484                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1485                                 ns->pages_written[ns->regs.row + i] = 0;
1486                         }
1487                 return;
1488         }
1489
1490         mypage = NS_GET_PAGE(ns);
1491         for (i = 0; i < ns->geom.pgsec; i++) {
1492                 if (mypage->byte != NULL) {
1493                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1494                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1495                         mypage->byte = NULL;
1496                 }
1497                 mypage++;
1498         }
1499 }
1500
1501 /*
1502  * Program the specified page with the contents from the NAND buffer.
1503  */
1504 static int prog_page(struct nandsim *ns, int num)
1505 {
1506         int i;
1507         union ns_mem *mypage;
1508         u_char *pg_off;
1509
1510         if (ns->cfile) {
1511                 loff_t off, pos;
1512                 ssize_t tx;
1513                 int all;
1514
1515                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1516                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1517                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1518                 if (!ns->pages_written[ns->regs.row]) {
1519                         all = 1;
1520                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1521                 } else {
1522                         all = 0;
1523                         pos = off;
1524                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1525                         if (tx != num) {
1526                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1527                                 return -1;
1528                         }
1529                 }
1530                 for (i = 0; i < num; i++)
1531                         pg_off[i] &= ns->buf.byte[i];
1532                 if (all) {
1533                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1534                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1535                         if (tx != ns->geom.pgszoob) {
1536                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1537                                 return -1;
1538                         }
1539                         ns->pages_written[ns->regs.row] = 1;
1540                 } else {
1541                         pos = off;
1542                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1543                         if (tx != num) {
1544                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1545                                 return -1;
1546                         }
1547                 }
1548                 return 0;
1549         }
1550
1551         mypage = NS_GET_PAGE(ns);
1552         if (mypage->byte == NULL) {
1553                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1554                 /*
1555                  * We allocate memory with GFP_NOFS because a flash FS may
1556                  * utilize this. If it is holding an FS lock, then gets here,
1557                  * then kernel memory alloc runs writeback which goes to the FS
1558                  * again and deadlocks. This was seen in practice.
1559                  */
1560                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1561                 if (mypage->byte == NULL) {
1562                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1563                         return -1;
1564                 }
1565                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1566         }
1567
1568         pg_off = NS_PAGE_BYTE_OFF(ns);
1569         for (i = 0; i < num; i++)
1570                 pg_off[i] &= ns->buf.byte[i];
1571
1572         return 0;
1573 }
1574
1575 /*
1576  * If state has any action bit, perform this action.
1577  *
1578  * RETURNS: 0 if success, -1 if error.
1579  */
1580 static int do_state_action(struct nandsim *ns, uint32_t action)
1581 {
1582         int num;
1583         int busdiv = ns->busw == 8 ? 1 : 2;
1584         unsigned int erase_block_no, page_no;
1585
1586         action &= ACTION_MASK;
1587
1588         /* Check that page address input is correct */
1589         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1590                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1591                 return -1;
1592         }
1593
1594         switch (action) {
1595
1596         case ACTION_CPY:
1597                 /*
1598                  * Copy page data to the internal buffer.
1599                  */
1600
1601                 /* Column shouldn't be very large */
1602                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1603                         NS_ERR("do_state_action: column number is too large\n");
1604                         break;
1605                 }
1606                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1607                 read_page(ns, num);
1608
1609                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1610                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1611
1612                 if (ns->regs.off == 0)
1613                         NS_LOG("read page %d\n", ns->regs.row);
1614                 else if (ns->regs.off < ns->geom.pgsz)
1615                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1616                 else
1617                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1618
1619                 NS_UDELAY(access_delay);
1620                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1621
1622                 break;
1623
1624         case ACTION_SECERASE:
1625                 /*
1626                  * Erase sector.
1627                  */
1628
1629                 if (ns->lines.wp) {
1630                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1631                         return -1;
1632                 }
1633
1634                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1635                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1636                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1637                         return -1;
1638                 }
1639
1640                 ns->regs.row = (ns->regs.row <<
1641                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1642                 ns->regs.column = 0;
1643
1644                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1645
1646                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1647                                 ns->regs.row, NS_RAW_OFFSET(ns));
1648                 NS_LOG("erase sector %u\n", erase_block_no);
1649
1650                 erase_sector(ns);
1651
1652                 NS_MDELAY(erase_delay);
1653
1654                 if (erase_block_wear)
1655                         update_wear(erase_block_no);
1656
1657                 if (erase_error(erase_block_no)) {
1658                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1659                         return -1;
1660                 }
1661
1662                 break;
1663
1664         case ACTION_PRGPAGE:
1665                 /*
1666                  * Program page - move internal buffer data to the page.
1667                  */
1668
1669                 if (ns->lines.wp) {
1670                         NS_WARN("do_state_action: device is write-protected, programm\n");
1671                         return -1;
1672                 }
1673
1674                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1675                 if (num != ns->regs.count) {
1676                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1677                                         ns->regs.count, num);
1678                         return -1;
1679                 }
1680
1681                 if (prog_page(ns, num) == -1)
1682                         return -1;
1683
1684                 page_no = ns->regs.row;
1685
1686                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1687                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1688                 NS_LOG("programm page %d\n", ns->regs.row);
1689
1690                 NS_UDELAY(programm_delay);
1691                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1692
1693                 if (write_error(page_no)) {
1694                         NS_WARN("simulating write failure in page %u\n", page_no);
1695                         return -1;
1696                 }
1697
1698                 break;
1699
1700         case ACTION_ZEROOFF:
1701                 NS_DBG("do_state_action: set internal offset to 0\n");
1702                 ns->regs.off = 0;
1703                 break;
1704
1705         case ACTION_HALFOFF:
1706                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1707                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1708                                 "byte page size 8x chips\n");
1709                         return -1;
1710                 }
1711                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1712                 ns->regs.off = ns->geom.pgsz/2;
1713                 break;
1714
1715         case ACTION_OOBOFF:
1716                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1717                 ns->regs.off = ns->geom.pgsz;
1718                 break;
1719
1720         default:
1721                 NS_DBG("do_state_action: BUG! unknown action\n");
1722         }
1723
1724         return 0;
1725 }
1726
1727 /*
1728  * Switch simulator's state.
1729  */
1730 static void switch_state(struct nandsim *ns)
1731 {
1732         if (ns->op) {
1733                 /*
1734                  * The current operation have already been identified.
1735                  * Just follow the states chain.
1736                  */
1737
1738                 ns->stateidx += 1;
1739                 ns->state = ns->nxstate;
1740                 ns->nxstate = ns->op[ns->stateidx + 1];
1741
1742                 NS_DBG("switch_state: operation is known, switch to the next state, "
1743                         "state: %s, nxstate: %s\n",
1744                         get_state_name(ns->state), get_state_name(ns->nxstate));
1745
1746                 /* See, whether we need to do some action */
1747                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1748                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1749                         return;
1750                 }
1751
1752         } else {
1753                 /*
1754                  * We don't yet know which operation we perform.
1755                  * Try to identify it.
1756                  */
1757
1758                 /*
1759                  *  The only event causing the switch_state function to
1760                  *  be called with yet unknown operation is new command.
1761                  */
1762                 ns->state = get_state_by_command(ns->regs.command);
1763
1764                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1765
1766                 if (find_operation(ns, 0) != 0)
1767                         return;
1768
1769                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1770                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1771                         return;
1772                 }
1773         }
1774
1775         /* For 16x devices column means the page offset in words */
1776         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1777                 NS_DBG("switch_state: double the column number for 16x device\n");
1778                 ns->regs.column <<= 1;
1779         }
1780
1781         if (NS_STATE(ns->nxstate) == STATE_READY) {
1782                 /*
1783                  * The current state is the last. Return to STATE_READY
1784                  */
1785
1786                 u_char status = NS_STATUS_OK(ns);
1787
1788                 /* In case of data states, see if all bytes were input/output */
1789                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1790                         && ns->regs.count != ns->regs.num) {
1791                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1792                                         ns->regs.num - ns->regs.count);
1793                         status = NS_STATUS_FAILED(ns);
1794                 }
1795
1796                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1797
1798                 switch_to_ready_state(ns, status);
1799
1800                 return;
1801         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1802                 /*
1803                  * If the next state is data input/output, switch to it now
1804                  */
1805
1806                 ns->state      = ns->nxstate;
1807                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1808                 ns->regs.num   = ns->regs.count = 0;
1809
1810                 NS_DBG("switch_state: the next state is data I/O, switch, "
1811                         "state: %s, nxstate: %s\n",
1812                         get_state_name(ns->state), get_state_name(ns->nxstate));
1813
1814                 /*
1815                  * Set the internal register to the count of bytes which
1816                  * are expected to be input or output
1817                  */
1818                 switch (NS_STATE(ns->state)) {
1819                         case STATE_DATAIN:
1820                         case STATE_DATAOUT:
1821                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1822                                 break;
1823
1824                         case STATE_DATAOUT_ID:
1825                                 ns->regs.num = ns->geom.idbytes;
1826                                 break;
1827
1828                         case STATE_DATAOUT_STATUS:
1829                         case STATE_DATAOUT_STATUS_M:
1830                                 ns->regs.count = ns->regs.num = 0;
1831                                 break;
1832
1833                         default:
1834                                 NS_ERR("switch_state: BUG! unknown data state\n");
1835                 }
1836
1837         } else if (ns->nxstate & STATE_ADDR_MASK) {
1838                 /*
1839                  * If the next state is address input, set the internal
1840                  * register to the number of expected address bytes
1841                  */
1842
1843                 ns->regs.count = 0;
1844
1845                 switch (NS_STATE(ns->nxstate)) {
1846                         case STATE_ADDR_PAGE:
1847                                 ns->regs.num = ns->geom.pgaddrbytes;
1848
1849                                 break;
1850                         case STATE_ADDR_SEC:
1851                                 ns->regs.num = ns->geom.secaddrbytes;
1852                                 break;
1853
1854                         case STATE_ADDR_ZERO:
1855                                 ns->regs.num = 1;
1856                                 break;
1857
1858                         case STATE_ADDR_COLUMN:
1859                                 /* Column address is always 2 bytes */
1860                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1861                                 break;
1862
1863                         default:
1864                                 NS_ERR("switch_state: BUG! unknown address state\n");
1865                 }
1866         } else {
1867                 /*
1868                  * Just reset internal counters.
1869                  */
1870
1871                 ns->regs.num = 0;
1872                 ns->regs.count = 0;
1873         }
1874 }
1875
1876 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1877 {
1878         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1879         u_char outb = 0x00;
1880
1881         /* Sanity and correctness checks */
1882         if (!ns->lines.ce) {
1883                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1884                 return outb;
1885         }
1886         if (ns->lines.ale || ns->lines.cle) {
1887                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1888                 return outb;
1889         }
1890         if (!(ns->state & STATE_DATAOUT_MASK)) {
1891                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1892                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1893                 return outb;
1894         }
1895
1896         /* Status register may be read as many times as it is wanted */
1897         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1898                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1899                 return ns->regs.status;
1900         }
1901
1902         /* Check if there is any data in the internal buffer which may be read */
1903         if (ns->regs.count == ns->regs.num) {
1904                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1905                 return outb;
1906         }
1907
1908         switch (NS_STATE(ns->state)) {
1909                 case STATE_DATAOUT:
1910                         if (ns->busw == 8) {
1911                                 outb = ns->buf.byte[ns->regs.count];
1912                                 ns->regs.count += 1;
1913                         } else {
1914                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1915                                 ns->regs.count += 2;
1916                         }
1917                         break;
1918                 case STATE_DATAOUT_ID:
1919                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1920                         outb = ns->ids[ns->regs.count];
1921                         ns->regs.count += 1;
1922                         break;
1923                 default:
1924                         BUG();
1925         }
1926
1927         if (ns->regs.count == ns->regs.num) {
1928                 NS_DBG("read_byte: all bytes were read\n");
1929
1930                 if (NS_STATE(ns->nxstate) == STATE_READY)
1931                         switch_state(ns);
1932         }
1933
1934         return outb;
1935 }
1936
1937 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1938 {
1939         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1940
1941         /* Sanity and correctness checks */
1942         if (!ns->lines.ce) {
1943                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1944                 return;
1945         }
1946         if (ns->lines.ale && ns->lines.cle) {
1947                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1948                 return;
1949         }
1950
1951         if (ns->lines.cle == 1) {
1952                 /*
1953                  * The byte written is a command.
1954                  */
1955
1956                 if (byte == NAND_CMD_RESET) {
1957                         NS_LOG("reset chip\n");
1958                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1959                         return;
1960                 }
1961
1962                 /* Check that the command byte is correct */
1963                 if (check_command(byte)) {
1964                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1965                         return;
1966                 }
1967
1968                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1969                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1970                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1971                         int row = ns->regs.row;
1972
1973                         switch_state(ns);
1974                         if (byte == NAND_CMD_RNDOUT)
1975                                 ns->regs.row = row;
1976                 }
1977
1978                 /* Check if chip is expecting command */
1979                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1980                         /* Do not warn if only 2 id bytes are read */
1981                         if (!(ns->regs.command == NAND_CMD_READID &&
1982                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1983                                 /*
1984                                  * We are in situation when something else (not command)
1985                                  * was expected but command was input. In this case ignore
1986                                  * previous command(s)/state(s) and accept the last one.
1987                                  */
1988                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1989                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1990                         }
1991                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1992                 }
1993
1994                 NS_DBG("command byte corresponding to %s state accepted\n",
1995                         get_state_name(get_state_by_command(byte)));
1996                 ns->regs.command = byte;
1997                 switch_state(ns);
1998
1999         } else if (ns->lines.ale == 1) {
2000                 /*
2001                  * The byte written is an address.
2002                  */
2003
2004                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2005
2006                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2007
2008                         if (find_operation(ns, 1) < 0)
2009                                 return;
2010
2011                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2012                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2013                                 return;
2014                         }
2015
2016                         ns->regs.count = 0;
2017                         switch (NS_STATE(ns->nxstate)) {
2018                                 case STATE_ADDR_PAGE:
2019                                         ns->regs.num = ns->geom.pgaddrbytes;
2020                                         break;
2021                                 case STATE_ADDR_SEC:
2022                                         ns->regs.num = ns->geom.secaddrbytes;
2023                                         break;
2024                                 case STATE_ADDR_ZERO:
2025                                         ns->regs.num = 1;
2026                                         break;
2027                                 default:
2028                                         BUG();
2029                         }
2030                 }
2031
2032                 /* Check that chip is expecting address */
2033                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2034                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2035                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2036                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2037                         return;
2038                 }
2039
2040                 /* Check if this is expected byte */
2041                 if (ns->regs.count == ns->regs.num) {
2042                         NS_ERR("write_byte: no more address bytes expected\n");
2043                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2044                         return;
2045                 }
2046
2047                 accept_addr_byte(ns, byte);
2048
2049                 ns->regs.count += 1;
2050
2051                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2052                                 (uint)byte, ns->regs.count, ns->regs.num);
2053
2054                 if (ns->regs.count == ns->regs.num) {
2055                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2056                         switch_state(ns);
2057                 }
2058
2059         } else {
2060                 /*
2061                  * The byte written is an input data.
2062                  */
2063
2064                 /* Check that chip is expecting data input */
2065                 if (!(ns->state & STATE_DATAIN_MASK)) {
2066                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2067                                 "switch to %s\n", (uint)byte,
2068                                 get_state_name(ns->state), get_state_name(STATE_READY));
2069                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070                         return;
2071                 }
2072
2073                 /* Check if this is expected byte */
2074                 if (ns->regs.count == ns->regs.num) {
2075                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2076                                         ns->regs.num);
2077                         return;
2078                 }
2079
2080                 if (ns->busw == 8) {
2081                         ns->buf.byte[ns->regs.count] = byte;
2082                         ns->regs.count += 1;
2083                 } else {
2084                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2085                         ns->regs.count += 2;
2086                 }
2087         }
2088
2089         return;
2090 }
2091
2092 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2093 {
2094         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2095
2096         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2097         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2098         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2099
2100         if (cmd != NAND_CMD_NONE)
2101                 ns_nand_write_byte(mtd, cmd);
2102 }
2103
2104 static int ns_device_ready(struct mtd_info *mtd)
2105 {
2106         NS_DBG("device_ready\n");
2107         return 1;
2108 }
2109
2110 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2111 {
2112         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2113
2114         NS_DBG("read_word\n");
2115
2116         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2117 }
2118
2119 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2120 {
2121         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2122
2123         /* Check that chip is expecting data input */
2124         if (!(ns->state & STATE_DATAIN_MASK)) {
2125                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2126                         "switch to STATE_READY\n", get_state_name(ns->state));
2127                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2128                 return;
2129         }
2130
2131         /* Check if these are expected bytes */
2132         if (ns->regs.count + len > ns->regs.num) {
2133                 NS_ERR("write_buf: too many input bytes\n");
2134                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2135                 return;
2136         }
2137
2138         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2139         ns->regs.count += len;
2140
2141         if (ns->regs.count == ns->regs.num) {
2142                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2143         }
2144 }
2145
2146 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2147 {
2148         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2149
2150         /* Sanity and correctness checks */
2151         if (!ns->lines.ce) {
2152                 NS_ERR("read_buf: chip is disabled\n");
2153                 return;
2154         }
2155         if (ns->lines.ale || ns->lines.cle) {
2156                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2157                 return;
2158         }
2159         if (!(ns->state & STATE_DATAOUT_MASK)) {
2160                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2161                         get_state_name(ns->state));
2162                 return;
2163         }
2164
2165         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2166                 int i;
2167
2168                 for (i = 0; i < len; i++)
2169                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2170
2171                 return;
2172         }
2173
2174         /* Check if these are expected bytes */
2175         if (ns->regs.count + len > ns->regs.num) {
2176                 NS_ERR("read_buf: too many bytes to read\n");
2177                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2178                 return;
2179         }
2180
2181         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2182         ns->regs.count += len;
2183
2184         if (ns->regs.count == ns->regs.num) {
2185                 if (NS_STATE(ns->nxstate) == STATE_READY)
2186                         switch_state(ns);
2187         }
2188
2189         return;
2190 }
2191
2192 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2193 {
2194         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2195
2196         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2197                 NS_DBG("verify_buf: the buffer is OK\n");
2198                 return 0;
2199         } else {
2200                 NS_DBG("verify_buf: the buffer is wrong\n");
2201                 return -EFAULT;
2202         }
2203 }
2204
2205 /*
2206  * Module initialization function
2207  */
2208 static int __init ns_init_module(void)
2209 {
2210         struct nand_chip *chip;
2211         struct nandsim *nand;
2212         int retval = -ENOMEM, i;
2213
2214         if (bus_width != 8 && bus_width != 16) {
2215                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2216                 return -EINVAL;
2217         }
2218
2219         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2220         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2221                                 + sizeof(struct nandsim), GFP_KERNEL);
2222         if (!nsmtd) {
2223                 NS_ERR("unable to allocate core structures.\n");
2224                 return -ENOMEM;
2225         }
2226         chip        = (struct nand_chip *)(nsmtd + 1);
2227         nsmtd->priv = (void *)chip;
2228         nand        = (struct nandsim *)(chip + 1);
2229         chip->priv  = (void *)nand;
2230
2231         /*
2232          * Register simulator's callbacks.
2233          */
2234         chip->cmd_ctrl   = ns_hwcontrol;
2235         chip->read_byte  = ns_nand_read_byte;
2236         chip->dev_ready  = ns_device_ready;
2237         chip->write_buf  = ns_nand_write_buf;
2238         chip->read_buf   = ns_nand_read_buf;
2239         chip->verify_buf = ns_nand_verify_buf;
2240         chip->read_word  = ns_nand_read_word;
2241         chip->ecc.mode   = NAND_ECC_SOFT;
2242         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2243         /* and 'badblocks' parameters to work */
2244         chip->options   |= NAND_SKIP_BBTSCAN;
2245
2246         switch (bbt) {
2247         case 2:
2248                  chip->bbt_options |= NAND_BBT_NO_OOB;
2249         case 1:
2250                  chip->bbt_options |= NAND_BBT_USE_FLASH;
2251         case 0:
2252                 break;
2253         default:
2254                 NS_ERR("bbt has to be 0..2\n");
2255                 retval = -EINVAL;
2256                 goto error;
2257         }
2258         /*
2259          * Perform minimum nandsim structure initialization to handle
2260          * the initial ID read command correctly
2261          */
2262         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2263                 nand->geom.idbytes = 4;
2264         else
2265                 nand->geom.idbytes = 2;
2266         nand->regs.status = NS_STATUS_OK(nand);
2267         nand->nxstate = STATE_UNKNOWN;
2268         nand->options |= OPT_PAGE256; /* temporary value */
2269         nand->ids[0] = first_id_byte;
2270         nand->ids[1] = second_id_byte;
2271         nand->ids[2] = third_id_byte;
2272         nand->ids[3] = fourth_id_byte;
2273         if (bus_width == 16) {
2274                 nand->busw = 16;
2275                 chip->options |= NAND_BUSWIDTH_16;
2276         }
2277
2278         nsmtd->owner = THIS_MODULE;
2279
2280         if ((retval = parse_weakblocks()) != 0)
2281                 goto error;
2282
2283         if ((retval = parse_weakpages()) != 0)
2284                 goto error;
2285
2286         if ((retval = parse_gravepages()) != 0)
2287                 goto error;
2288
2289         retval = nand_scan_ident(nsmtd, 1, NULL);
2290         if (retval) {
2291                 NS_ERR("cannot scan NAND Simulator device\n");
2292                 if (retval > 0)
2293                         retval = -ENXIO;
2294                 goto error;
2295         }
2296
2297         if (bch) {
2298                 unsigned int eccsteps, eccbytes;
2299                 if (!mtd_nand_has_bch()) {
2300                         NS_ERR("BCH ECC support is disabled\n");
2301                         retval = -EINVAL;
2302                         goto error;
2303                 }
2304                 /* use 512-byte ecc blocks */
2305                 eccsteps = nsmtd->writesize/512;
2306                 eccbytes = (bch*13+7)/8;
2307                 /* do not bother supporting small page devices */
2308                 if ((nsmtd->oobsize < 64) || !eccsteps) {
2309                         NS_ERR("bch not available on small page devices\n");
2310                         retval = -EINVAL;
2311                         goto error;
2312                 }
2313                 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2314                         NS_ERR("invalid bch value %u\n", bch);
2315                         retval = -EINVAL;
2316                         goto error;
2317                 }
2318                 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2319                 chip->ecc.size = 512;
2320                 chip->ecc.bytes = eccbytes;
2321                 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2322         }
2323
2324         retval = nand_scan_tail(nsmtd);
2325         if (retval) {
2326                 NS_ERR("can't register NAND Simulator\n");
2327                 if (retval > 0)
2328                         retval = -ENXIO;
2329                 goto error;
2330         }
2331
2332         if (overridesize) {
2333                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2334                 if (new_size >> overridesize != nsmtd->erasesize) {
2335                         NS_ERR("overridesize is too big\n");
2336                         goto err_exit;
2337                 }
2338                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2339                 nsmtd->size = new_size;
2340                 chip->chipsize = new_size;
2341                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2342                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2343         }
2344
2345         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2346                 goto err_exit;
2347
2348         if ((retval = init_nandsim(nsmtd)) != 0)
2349                 goto err_exit;
2350
2351         if ((retval = nand_default_bbt(nsmtd)) != 0)
2352                 goto err_exit;
2353
2354         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2355                 goto err_exit;
2356
2357         /* Register NAND partitions */
2358         retval = mtd_device_register(nsmtd, &nand->partitions[0],
2359                                      nand->nbparts);
2360         if (retval != 0)
2361                 goto err_exit;
2362
2363         return 0;
2364
2365 err_exit:
2366         free_nandsim(nand);
2367         nand_release(nsmtd);
2368         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2369                 kfree(nand->partitions[i].name);
2370 error:
2371         kfree(nsmtd);
2372         free_lists();
2373
2374         return retval;
2375 }
2376
2377 module_init(ns_init_module);
2378
2379 /*
2380  * Module clean-up function
2381  */
2382 static void __exit ns_cleanup_module(void)
2383 {
2384         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2385         int i;
2386
2387         free_nandsim(ns);    /* Free nandsim private resources */
2388         nand_release(nsmtd); /* Unregister driver */
2389         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2390                 kfree(ns->partitions[i].name);
2391         kfree(nsmtd);        /* Free other structures */
2392         free_lists();
2393 }
2394
2395 module_exit(ns_cleanup_module);
2396
2397 MODULE_LICENSE ("GPL");
2398 MODULE_AUTHOR ("Artem B. Bityuckiy");
2399 MODULE_DESCRIPTION ("The NAND flash simulator");