Merge remote-tracking branch 'remotes/tegra/android-tegra-2.6.36-honeycomb-mr1' into...
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56         .eccbytes = 3,
57         .eccpos = {0, 1, 2},
58         .oobfree = {
59                 {.offset = 3,
60                  .length = 2},
61                 {.offset = 6,
62                  .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66         .eccbytes = 6,
67         .eccpos = {0, 1, 2, 3, 6, 7},
68         .oobfree = {
69                 {.offset = 8,
70                  . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74         .eccbytes = 24,
75         .eccpos = {
76                    40, 41, 42, 43, 44, 45, 46, 47,
77                    48, 49, 50, 51, 52, 53, 54, 55,
78                    56, 57, 58, 59, 60, 61, 62, 63},
79         .oobfree = {
80                 {.offset = 2,
81                  .length = 38}}
82 };
83
84 static struct nand_ecclayout nand_oob_128 = {
85         .eccbytes = 48,
86         .eccpos = {
87                    80, 81, 82, 83, 84, 85, 86, 87,
88                    88, 89, 90, 91, 92, 93, 94, 95,
89                    96, 97, 98, 99, 100, 101, 102, 103,
90                    104, 105, 106, 107, 108, 109, 110, 111,
91                    112, 113, 114, 115, 116, 117, 118, 119,
92                    120, 121, 122, 123, 124, 125, 126, 127},
93         .oobfree = {
94                 {.offset = 2,
95                  .length = 78}}
96 };
97
98 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
99                            int new_state);
100
101 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102                              struct mtd_oob_ops *ops);
103
104 /*
105  * For devices which display every fart in the system on a separate LED. Is
106  * compiled away when LED support is disabled.
107  */
108 DEFINE_LED_TRIGGER(nand_led_trigger);
109
110 static int check_offs_len(struct mtd_info *mtd,
111                                         loff_t ofs, uint64_t len)
112 {
113         struct nand_chip *chip = mtd->priv;
114         int ret = 0;
115
116         /* Start address must align on block boundary */
117         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119                 ret = -EINVAL;
120         }
121
122         /* Length must align on block boundary */
123         if (len & ((1 << chip->phys_erase_shift) - 1)) {
124                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125                                         __func__);
126                 ret = -EINVAL;
127         }
128
129         /* Do not allow past end of device */
130         if (ofs + len > mtd->size) {
131                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132                                         __func__);
133                 ret = -EINVAL;
134         }
135
136         return ret;
137 }
138
139 /**
140  * nand_release_device - [GENERIC] release chip
141  * @mtd:        MTD device structure
142  *
143  * Deselect, release chip lock and wake up anyone waiting on the device
144  */
145 static void nand_release_device(struct mtd_info *mtd)
146 {
147         struct nand_chip *chip = mtd->priv;
148
149         /* De-select the NAND device */
150         chip->select_chip(mtd, -1);
151
152         /* Release the controller and the chip */
153         spin_lock(&chip->controller->lock);
154         chip->controller->active = NULL;
155         chip->state = FL_READY;
156         wake_up(&chip->controller->wq);
157         spin_unlock(&chip->controller->lock);
158 }
159
160 /**
161  * nand_read_byte - [DEFAULT] read one byte from the chip
162  * @mtd:        MTD device structure
163  *
164  * Default read function for 8bit buswith
165  */
166 static uint8_t nand_read_byte(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         return readb(chip->IO_ADDR_R);
170 }
171
172 /**
173  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174  * @mtd:        MTD device structure
175  *
176  * Default read function for 16bit buswith with
177  * endianess conversion
178  */
179 static uint8_t nand_read_byte16(struct mtd_info *mtd)
180 {
181         struct nand_chip *chip = mtd->priv;
182         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
183 }
184
185 /**
186  * nand_read_word - [DEFAULT] read one word from the chip
187  * @mtd:        MTD device structure
188  *
189  * Default read function for 16bit buswith without
190  * endianess conversion
191  */
192 static u16 nand_read_word(struct mtd_info *mtd)
193 {
194         struct nand_chip *chip = mtd->priv;
195         return readw(chip->IO_ADDR_R);
196 }
197
198 /**
199  * nand_select_chip - [DEFAULT] control CE line
200  * @mtd:        MTD device structure
201  * @chipnr:     chipnumber to select, -1 for deselect
202  *
203  * Default select function for 1 chip devices.
204  */
205 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
206 {
207         struct nand_chip *chip = mtd->priv;
208
209         switch (chipnr) {
210         case -1:
211                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
212                 break;
213         case 0:
214                 break;
215
216         default:
217                 BUG();
218         }
219 }
220
221 /**
222  * nand_write_buf - [DEFAULT] write buffer to chip
223  * @mtd:        MTD device structure
224  * @buf:        data buffer
225  * @len:        number of bytes to write
226  *
227  * Default write function for 8bit buswith
228  */
229 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
230 {
231         int i;
232         struct nand_chip *chip = mtd->priv;
233
234         for (i = 0; i < len; i++)
235                 writeb(buf[i], chip->IO_ADDR_W);
236 }
237
238 /**
239  * nand_read_buf - [DEFAULT] read chip data into buffer
240  * @mtd:        MTD device structure
241  * @buf:        buffer to store date
242  * @len:        number of bytes to read
243  *
244  * Default read function for 8bit buswith
245  */
246 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
247 {
248         int i;
249         struct nand_chip *chip = mtd->priv;
250
251         for (i = 0; i < len; i++)
252                 buf[i] = readb(chip->IO_ADDR_R);
253 }
254
255 /**
256  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
257  * @mtd:        MTD device structure
258  * @buf:        buffer containing the data to compare
259  * @len:        number of bytes to compare
260  *
261  * Default verify function for 8bit buswith
262  */
263 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
264 {
265         int i;
266         struct nand_chip *chip = mtd->priv;
267
268         for (i = 0; i < len; i++)
269                 if (buf[i] != readb(chip->IO_ADDR_R))
270                         return -EFAULT;
271         return 0;
272 }
273
274 /**
275  * nand_write_buf16 - [DEFAULT] write buffer to chip
276  * @mtd:        MTD device structure
277  * @buf:        data buffer
278  * @len:        number of bytes to write
279  *
280  * Default write function for 16bit buswith
281  */
282 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
283 {
284         int i;
285         struct nand_chip *chip = mtd->priv;
286         u16 *p = (u16 *) buf;
287         len >>= 1;
288
289         for (i = 0; i < len; i++)
290                 writew(p[i], chip->IO_ADDR_W);
291
292 }
293
294 /**
295  * nand_read_buf16 - [DEFAULT] read chip data into buffer
296  * @mtd:        MTD device structure
297  * @buf:        buffer to store date
298  * @len:        number of bytes to read
299  *
300  * Default read function for 16bit buswith
301  */
302 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
303 {
304         int i;
305         struct nand_chip *chip = mtd->priv;
306         u16 *p = (u16 *) buf;
307         len >>= 1;
308
309         for (i = 0; i < len; i++)
310                 p[i] = readw(chip->IO_ADDR_R);
311 }
312
313 /**
314  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
315  * @mtd:        MTD device structure
316  * @buf:        buffer containing the data to compare
317  * @len:        number of bytes to compare
318  *
319  * Default verify function for 16bit buswith
320  */
321 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
322 {
323         int i;
324         struct nand_chip *chip = mtd->priv;
325         u16 *p = (u16 *) buf;
326         len >>= 1;
327
328         for (i = 0; i < len; i++)
329                 if (p[i] != readw(chip->IO_ADDR_R))
330                         return -EFAULT;
331
332         return 0;
333 }
334
335 /**
336  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337  * @mtd:        MTD device structure
338  * @ofs:        offset from device start
339  * @getchip:    0, if the chip is already selected
340  *
341  * Check, if the block is bad.
342  */
343 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
344 {
345         int page, chipnr, res = 0;
346         struct nand_chip *chip = mtd->priv;
347         u16 bad;
348
349         if (chip->options & NAND_BBT_SCANLASTPAGE)
350                 ofs += mtd->erasesize - mtd->writesize;
351
352         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
353
354         if (getchip) {
355                 chipnr = (int)(ofs >> chip->chip_shift);
356
357                 nand_get_device(chip, mtd, FL_READING);
358
359                 /* Select the NAND device */
360                 chip->select_chip(mtd, chipnr);
361         }
362
363         if (chip->options & NAND_BUSWIDTH_16) {
364                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
365                               page);
366                 bad = cpu_to_le16(chip->read_word(mtd));
367                 if (chip->badblockpos & 0x1)
368                         bad >>= 8;
369                 else
370                         bad &= 0xFF;
371         } else {
372                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
373                 bad = chip->read_byte(mtd);
374         }
375
376         if (likely(chip->badblockbits == 8))
377                 res = bad != 0xFF;
378         else
379                 res = hweight8(bad) < chip->badblockbits;
380
381         if (getchip)
382                 nand_release_device(mtd);
383
384         return res;
385 }
386
387 /**
388  * nand_default_block_markbad - [DEFAULT] mark a block bad
389  * @mtd:        MTD device structure
390  * @ofs:        offset from device start
391  *
392  * This is the default implementation, which can be overridden by
393  * a hardware specific driver.
394 */
395 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
396 {
397         struct nand_chip *chip = mtd->priv;
398         uint8_t buf[2] = { 0, 0 };
399         int block, ret, i = 0;
400
401         if (chip->options & NAND_BBT_SCANLASTPAGE)
402                 ofs += mtd->erasesize - mtd->writesize;
403
404         /* Get block number */
405         block = (int)(ofs >> chip->bbt_erase_shift);
406         if (chip->bbt)
407                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
408
409         /* Do we have a flash based bad block table ? */
410         if (chip->options & NAND_USE_FLASH_BBT)
411                 ret = nand_update_bbt(mtd, ofs);
412         else {
413                 nand_get_device(chip, mtd, FL_WRITING);
414
415                 /* Write to first two pages and to byte 1 and 6 if necessary.
416                  * If we write to more than one location, the first error
417                  * encountered quits the procedure. We write two bytes per
418                  * location, so we dont have to mess with 16 bit access.
419                  */
420                 do {
421                         chip->ops.len = chip->ops.ooblen = 2;
422                         chip->ops.datbuf = NULL;
423                         chip->ops.oobbuf = buf;
424                         chip->ops.ooboffs = chip->badblockpos & ~0x01;
425
426                         ret = nand_do_write_oob(mtd, ofs, &chip->ops);
427
428                         if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429                                 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430                                         & ~0x01;
431                                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
432                         }
433                         i++;
434                         ofs += mtd->writesize;
435                 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436                                 i < 2);
437
438                 nand_release_device(mtd);
439         }
440         if (!ret)
441                 mtd->ecc_stats.badblocks++;
442
443         return ret;
444 }
445
446 /**
447  * nand_check_wp - [GENERIC] check if the chip is write protected
448  * @mtd:        MTD device structure
449  * Check, if the device is write protected
450  *
451  * The function expects, that the device is already selected
452  */
453 static int nand_check_wp(struct mtd_info *mtd)
454 {
455         struct nand_chip *chip = mtd->priv;
456
457         /* broken xD cards report WP despite being writable */
458         if (chip->options & NAND_BROKEN_XD)
459                 return 0;
460
461         /* Check the WP bit */
462         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
464 }
465
466 /**
467  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468  * @mtd:        MTD device structure
469  * @ofs:        offset from device start
470  * @getchip:    0, if the chip is already selected
471  * @allowbbt:   1, if its allowed to access the bbt area
472  *
473  * Check, if the block is bad. Either by reading the bad block table or
474  * calling of the scan function.
475  */
476 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477                                int allowbbt)
478 {
479         struct nand_chip *chip = mtd->priv;
480
481         if (!chip->bbt)
482                 return chip->block_bad(mtd, ofs, getchip);
483
484         /* Return info from the table */
485         return nand_isbad_bbt(mtd, ofs, allowbbt);
486 }
487
488 /**
489  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490  * @mtd:        MTD device structure
491  * @timeo:      Timeout
492  *
493  * Helper function for nand_wait_ready used when needing to wait in interrupt
494  * context.
495  */
496 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
497 {
498         struct nand_chip *chip = mtd->priv;
499         int i;
500
501         /* Wait for the device to get ready */
502         for (i = 0; i < timeo; i++) {
503                 if (chip->dev_ready(mtd))
504                         break;
505                 touch_softlockup_watchdog();
506                 mdelay(1);
507         }
508 }
509
510 /*
511  * Wait for the ready pin, after a command
512  * The timeout is catched later.
513  */
514 void nand_wait_ready(struct mtd_info *mtd)
515 {
516         struct nand_chip *chip = mtd->priv;
517         unsigned long timeo = jiffies + 2;
518
519         /* 400ms timeout */
520         if (in_interrupt() || oops_in_progress)
521                 return panic_nand_wait_ready(mtd, 400);
522
523         led_trigger_event(nand_led_trigger, LED_FULL);
524         /* wait until command is processed or timeout occures */
525         do {
526                 if (chip->dev_ready(mtd))
527                         break;
528                 touch_softlockup_watchdog();
529         } while (time_before(jiffies, timeo));
530         led_trigger_event(nand_led_trigger, LED_OFF);
531 }
532 EXPORT_SYMBOL_GPL(nand_wait_ready);
533
534 /**
535  * nand_command - [DEFAULT] Send command to NAND device
536  * @mtd:        MTD device structure
537  * @command:    the command to be sent
538  * @column:     the column address for this command, -1 if none
539  * @page_addr:  the page address for this command, -1 if none
540  *
541  * Send command to NAND device. This function is used for small page
542  * devices (256/512 Bytes per page)
543  */
544 static void nand_command(struct mtd_info *mtd, unsigned int command,
545                          int column, int page_addr)
546 {
547         register struct nand_chip *chip = mtd->priv;
548         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
549
550         /*
551          * Write out the command to the device.
552          */
553         if (command == NAND_CMD_SEQIN) {
554                 int readcmd;
555
556                 if (column >= mtd->writesize) {
557                         /* OOB area */
558                         column -= mtd->writesize;
559                         readcmd = NAND_CMD_READOOB;
560                 } else if (column < 256) {
561                         /* First 256 bytes --> READ0 */
562                         readcmd = NAND_CMD_READ0;
563                 } else {
564                         column -= 256;
565                         readcmd = NAND_CMD_READ1;
566                 }
567                 chip->cmd_ctrl(mtd, readcmd, ctrl);
568                 ctrl &= ~NAND_CTRL_CHANGE;
569         }
570         chip->cmd_ctrl(mtd, command, ctrl);
571
572         /*
573          * Address cycle, when necessary
574          */
575         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576         /* Serially input address */
577         if (column != -1) {
578                 /* Adjust columns for 16 bit buswidth */
579                 if (chip->options & NAND_BUSWIDTH_16)
580                         column >>= 1;
581                 chip->cmd_ctrl(mtd, column, ctrl);
582                 ctrl &= ~NAND_CTRL_CHANGE;
583         }
584         if (page_addr != -1) {
585                 chip->cmd_ctrl(mtd, page_addr, ctrl);
586                 ctrl &= ~NAND_CTRL_CHANGE;
587                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
588                 /* One more address cycle for devices > 32MiB */
589                 if (chip->chipsize > (32 << 20))
590                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
591         }
592         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
593
594         /*
595          * program and erase have their own busy handlers
596          * status and sequential in needs no delay
597          */
598         switch (command) {
599
600         case NAND_CMD_PAGEPROG:
601         case NAND_CMD_ERASE1:
602         case NAND_CMD_ERASE2:
603         case NAND_CMD_SEQIN:
604         case NAND_CMD_STATUS:
605                 return;
606
607         case NAND_CMD_RESET:
608                 if (chip->dev_ready)
609                         break;
610                 udelay(chip->chip_delay);
611                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
612                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
613                 chip->cmd_ctrl(mtd,
614                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
615                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
616                 return;
617
618                 /* This applies to read commands */
619         default:
620                 /*
621                  * If we don't have access to the busy pin, we apply the given
622                  * command delay
623                  */
624                 if (!chip->dev_ready) {
625                         udelay(chip->chip_delay);
626                         return;
627                 }
628         }
629         /* Apply this short delay always to ensure that we do wait tWB in
630          * any case on any machine. */
631         ndelay(100);
632
633         nand_wait_ready(mtd);
634 }
635
636 /**
637  * nand_command_lp - [DEFAULT] Send command to NAND large page device
638  * @mtd:        MTD device structure
639  * @command:    the command to be sent
640  * @column:     the column address for this command, -1 if none
641  * @page_addr:  the page address for this command, -1 if none
642  *
643  * Send command to NAND device. This is the version for the new large page
644  * devices We dont have the separate regions as we have in the small page
645  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
646  */
647 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
648                             int column, int page_addr)
649 {
650         register struct nand_chip *chip = mtd->priv;
651
652         /* Emulate NAND_CMD_READOOB */
653         if (command == NAND_CMD_READOOB) {
654                 column += mtd->writesize;
655                 command = NAND_CMD_READ0;
656         }
657
658         /* Command latch cycle */
659         chip->cmd_ctrl(mtd, command & 0xff,
660                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
661
662         if (column != -1 || page_addr != -1) {
663                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
664
665                 /* Serially input address */
666                 if (column != -1) {
667                         /* Adjust columns for 16 bit buswidth */
668                         if (chip->options & NAND_BUSWIDTH_16)
669                                 column >>= 1;
670                         chip->cmd_ctrl(mtd, column, ctrl);
671                         ctrl &= ~NAND_CTRL_CHANGE;
672                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
673                 }
674                 if (page_addr != -1) {
675                         chip->cmd_ctrl(mtd, page_addr, ctrl);
676                         chip->cmd_ctrl(mtd, page_addr >> 8,
677                                        NAND_NCE | NAND_ALE);
678                         /* One more address cycle for devices > 128MiB */
679                         if (chip->chipsize > (128 << 20))
680                                 chip->cmd_ctrl(mtd, page_addr >> 16,
681                                                NAND_NCE | NAND_ALE);
682                 }
683         }
684         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
685
686         /*
687          * program and erase have their own busy handlers
688          * status, sequential in, and deplete1 need no delay
689          */
690         switch (command) {
691
692         case NAND_CMD_CACHEDPROG:
693         case NAND_CMD_PAGEPROG:
694         case NAND_CMD_ERASE1:
695         case NAND_CMD_ERASE2:
696         case NAND_CMD_SEQIN:
697         case NAND_CMD_RNDIN:
698         case NAND_CMD_STATUS:
699         case NAND_CMD_DEPLETE1:
700                 return;
701
702                 /*
703                  * read error status commands require only a short delay
704                  */
705         case NAND_CMD_STATUS_ERROR:
706         case NAND_CMD_STATUS_ERROR0:
707         case NAND_CMD_STATUS_ERROR1:
708         case NAND_CMD_STATUS_ERROR2:
709         case NAND_CMD_STATUS_ERROR3:
710                 udelay(chip->chip_delay);
711                 return;
712
713         case NAND_CMD_RESET:
714                 if (chip->dev_ready)
715                         break;
716                 udelay(chip->chip_delay);
717                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
718                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
719                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
720                                NAND_NCE | NAND_CTRL_CHANGE);
721                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
722                 return;
723
724         case NAND_CMD_RNDOUT:
725                 /* No ready / busy check necessary */
726                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729                                NAND_NCE | NAND_CTRL_CHANGE);
730                 return;
731
732         case NAND_CMD_READ0:
733                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736                                NAND_NCE | NAND_CTRL_CHANGE);
737
738                 /* This applies to read commands */
739         default:
740                 /*
741                  * If we don't have access to the busy pin, we apply the given
742                  * command delay
743                  */
744                 if (!chip->dev_ready) {
745                         udelay(chip->chip_delay);
746                         return;
747                 }
748         }
749
750         /* Apply this short delay always to ensure that we do wait tWB in
751          * any case on any machine. */
752         ndelay(100);
753
754         nand_wait_ready(mtd);
755 }
756
757 /**
758  * panic_nand_get_device - [GENERIC] Get chip for selected access
759  * @chip:       the nand chip descriptor
760  * @mtd:        MTD device structure
761  * @new_state:  the state which is requested
762  *
763  * Used when in panic, no locks are taken.
764  */
765 static void panic_nand_get_device(struct nand_chip *chip,
766                       struct mtd_info *mtd, int new_state)
767 {
768         /* Hardware controller shared among independend devices */
769         chip->controller->active = chip;
770         chip->state = new_state;
771 }
772
773 /**
774  * nand_get_device - [GENERIC] Get chip for selected access
775  * @chip:       the nand chip descriptor
776  * @mtd:        MTD device structure
777  * @new_state:  the state which is requested
778  *
779  * Get the device and lock it for exclusive access
780  */
781 static int
782 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
783 {
784         spinlock_t *lock = &chip->controller->lock;
785         wait_queue_head_t *wq = &chip->controller->wq;
786         DECLARE_WAITQUEUE(wait, current);
787  retry:
788         spin_lock(lock);
789
790         /* Hardware controller shared among independent devices */
791         if (!chip->controller->active)
792                 chip->controller->active = chip;
793
794         if (chip->controller->active == chip && chip->state == FL_READY) {
795                 chip->state = new_state;
796                 spin_unlock(lock);
797                 return 0;
798         }
799         if (new_state == FL_PM_SUSPENDED) {
800                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
801                         chip->state = FL_PM_SUSPENDED;
802                         spin_unlock(lock);
803                         return 0;
804                 }
805         }
806         set_current_state(TASK_UNINTERRUPTIBLE);
807         add_wait_queue(wq, &wait);
808         spin_unlock(lock);
809         schedule();
810         remove_wait_queue(wq, &wait);
811         goto retry;
812 }
813
814 /**
815  * panic_nand_wait - [GENERIC]  wait until the command is done
816  * @mtd:        MTD device structure
817  * @chip:       NAND chip structure
818  * @timeo:      Timeout
819  *
820  * Wait for command done. This is a helper function for nand_wait used when
821  * we are in interrupt context. May happen when in panic and trying to write
822  * an oops trough mtdoops.
823  */
824 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
825                             unsigned long timeo)
826 {
827         int i;
828         for (i = 0; i < timeo; i++) {
829                 if (chip->dev_ready) {
830                         if (chip->dev_ready(mtd))
831                                 break;
832                 } else {
833                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
834                                 break;
835                 }
836                 mdelay(1);
837         }
838 }
839
840 /**
841  * nand_wait - [DEFAULT]  wait until the command is done
842  * @mtd:        MTD device structure
843  * @chip:       NAND chip structure
844  *
845  * Wait for command done. This applies to erase and program only
846  * Erase can take up to 400ms and program up to 20ms according to
847  * general NAND and SmartMedia specs
848  */
849 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
850 {
851
852         unsigned long timeo = jiffies;
853         int status, state = chip->state;
854
855         if (state == FL_ERASING)
856                 timeo += (HZ * 400) / 1000;
857         else
858                 timeo += (HZ * 20) / 1000;
859
860         led_trigger_event(nand_led_trigger, LED_FULL);
861
862         /* Apply this short delay always to ensure that we do wait tWB in
863          * any case on any machine. */
864         ndelay(100);
865
866         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
867                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
868         else
869                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
870
871         if (in_interrupt() || oops_in_progress)
872                 panic_nand_wait(mtd, chip, timeo);
873         else {
874                 while (time_before(jiffies, timeo)) {
875                         if (chip->dev_ready) {
876                                 if (chip->dev_ready(mtd))
877                                         break;
878                         } else {
879                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
880                                         break;
881                         }
882                         cond_resched();
883                 }
884         }
885         led_trigger_event(nand_led_trigger, LED_OFF);
886
887         status = (int)chip->read_byte(mtd);
888         return status;
889 }
890
891 /**
892  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
893  *
894  * @mtd: mtd info
895  * @ofs: offset to start unlock from
896  * @len: length to unlock
897  * @invert:   when = 0, unlock the range of blocks within the lower and
898  *                      upper boundary address
899  *            when = 1, unlock the range of blocks outside the boundaries
900  *                      of the lower and upper boundary address
901  *
902  * return - unlock status
903  */
904 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
905                                         uint64_t len, int invert)
906 {
907         int ret = 0;
908         int status, page;
909         struct nand_chip *chip = mtd->priv;
910
911         /* Submit address of first page to unlock */
912         page = ofs >> chip->page_shift;
913         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
914
915         /* Submit address of last page to unlock */
916         page = (ofs + len) >> chip->page_shift;
917         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
918                                 (page | invert) & chip->pagemask);
919
920         /* Call wait ready function */
921         status = chip->waitfunc(mtd, chip);
922         udelay(1000);
923         /* See if device thinks it succeeded */
924         if (status & 0x01) {
925                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
926                                         __func__, status);
927                 ret = -EIO;
928         }
929
930         return ret;
931 }
932
933 /**
934  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
935  *
936  * @mtd: mtd info
937  * @ofs: offset to start unlock from
938  * @len: length to unlock
939  *
940  * return - unlock status
941  */
942 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
943 {
944         int ret = 0;
945         int chipnr;
946         struct nand_chip *chip = mtd->priv;
947
948         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
949                         __func__, (unsigned long long)ofs, len);
950
951         if (check_offs_len(mtd, ofs, len))
952                 ret = -EINVAL;
953
954         /* Align to last block address if size addresses end of the device */
955         if (ofs + len == mtd->size)
956                 len -= mtd->erasesize;
957
958         nand_get_device(chip, mtd, FL_UNLOCKING);
959
960         /* Shift to get chip number */
961         chipnr = ofs >> chip->chip_shift;
962
963         chip->select_chip(mtd, chipnr);
964
965         /* Check, if it is write protected */
966         if (nand_check_wp(mtd)) {
967                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
968                                         __func__);
969                 ret = -EIO;
970                 goto out;
971         }
972
973         ret = __nand_unlock(mtd, ofs, len, 0);
974
975 out:
976         /* de-select the NAND device */
977         chip->select_chip(mtd, -1);
978
979         nand_release_device(mtd);
980
981         return ret;
982 }
983
984 /**
985  * nand_lock - [REPLACEABLE] locks all blocks present in the device
986  *
987  * @mtd: mtd info
988  * @ofs: offset to start unlock from
989  * @len: length to unlock
990  *
991  * return - lock status
992  *
993  * This feature is not supported in many NAND parts. 'Micron' NAND parts
994  * do have this feature, but it allows only to lock all blocks, not for
995  * specified range for block.
996  *
997  * Implementing 'lock' feature by making use of 'unlock', for now.
998  */
999 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1000 {
1001         int ret = 0;
1002         int chipnr, status, page;
1003         struct nand_chip *chip = mtd->priv;
1004
1005         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1006                         __func__, (unsigned long long)ofs, len);
1007
1008         if (check_offs_len(mtd, ofs, len))
1009                 ret = -EINVAL;
1010
1011         nand_get_device(chip, mtd, FL_LOCKING);
1012
1013         /* Shift to get chip number */
1014         chipnr = ofs >> chip->chip_shift;
1015
1016         chip->select_chip(mtd, chipnr);
1017
1018         /* Check, if it is write protected */
1019         if (nand_check_wp(mtd)) {
1020                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1021                                         __func__);
1022                 status = MTD_ERASE_FAILED;
1023                 ret = -EIO;
1024                 goto out;
1025         }
1026
1027         /* Submit address of first page to lock */
1028         page = ofs >> chip->page_shift;
1029         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1030
1031         /* Call wait ready function */
1032         status = chip->waitfunc(mtd, chip);
1033         udelay(1000);
1034         /* See if device thinks it succeeded */
1035         if (status & 0x01) {
1036                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1037                                         __func__, status);
1038                 ret = -EIO;
1039                 goto out;
1040         }
1041
1042         ret = __nand_unlock(mtd, ofs, len, 0x1);
1043
1044 out:
1045         /* de-select the NAND device */
1046         chip->select_chip(mtd, -1);
1047
1048         nand_release_device(mtd);
1049
1050         return ret;
1051 }
1052
1053 /**
1054  * nand_read_page_raw - [Intern] read raw page data without ecc
1055  * @mtd:        mtd info structure
1056  * @chip:       nand chip info structure
1057  * @buf:        buffer to store read data
1058  * @page:       page number to read
1059  *
1060  * Not for syndrome calculating ecc controllers, which use a special oob layout
1061  */
1062 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1063                               uint8_t *buf, int page)
1064 {
1065         chip->read_buf(mtd, buf, mtd->writesize);
1066         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1067         return 0;
1068 }
1069
1070 /**
1071  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1072  * @mtd:        mtd info structure
1073  * @chip:       nand chip info structure
1074  * @buf:        buffer to store read data
1075  * @page:       page number to read
1076  *
1077  * We need a special oob layout and handling even when OOB isn't used.
1078  */
1079 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1080                               uint8_t *buf, int page)
1081 {
1082         int eccsize = chip->ecc.size;
1083         int eccbytes = chip->ecc.bytes;
1084         uint8_t *oob = chip->oob_poi;
1085         int steps, size;
1086
1087         for (steps = chip->ecc.steps; steps > 0; steps--) {
1088                 chip->read_buf(mtd, buf, eccsize);
1089                 buf += eccsize;
1090
1091                 if (chip->ecc.prepad) {
1092                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1093                         oob += chip->ecc.prepad;
1094                 }
1095
1096                 chip->read_buf(mtd, oob, eccbytes);
1097                 oob += eccbytes;
1098
1099                 if (chip->ecc.postpad) {
1100                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1101                         oob += chip->ecc.postpad;
1102                 }
1103         }
1104
1105         size = mtd->oobsize - (oob - chip->oob_poi);
1106         if (size)
1107                 chip->read_buf(mtd, oob, size);
1108
1109         return 0;
1110 }
1111
1112 /**
1113  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1114  * @mtd:        mtd info structure
1115  * @chip:       nand chip info structure
1116  * @buf:        buffer to store read data
1117  * @page:       page number to read
1118  */
1119 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1120                                 uint8_t *buf, int page)
1121 {
1122         int i, eccsize = chip->ecc.size;
1123         int eccbytes = chip->ecc.bytes;
1124         int eccsteps = chip->ecc.steps;
1125         uint8_t *p = buf;
1126         uint8_t *ecc_calc = chip->buffers->ecccalc;
1127         uint8_t *ecc_code = chip->buffers->ecccode;
1128         uint32_t *eccpos = chip->ecc.layout->eccpos;
1129
1130         chip->ecc.read_page_raw(mtd, chip, buf, page);
1131
1132         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1133                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1134
1135         for (i = 0; i < chip->ecc.total; i++)
1136                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1137
1138         eccsteps = chip->ecc.steps;
1139         p = buf;
1140
1141         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1142                 int stat;
1143
1144                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1145                 if (stat < 0)
1146                         mtd->ecc_stats.failed++;
1147                 else
1148                         mtd->ecc_stats.corrected += stat;
1149         }
1150         return 0;
1151 }
1152
1153 /**
1154  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1155  * @mtd:        mtd info structure
1156  * @chip:       nand chip info structure
1157  * @data_offs:  offset of requested data within the page
1158  * @readlen:    data length
1159  * @bufpoi:     buffer to store read data
1160  */
1161 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1162 {
1163         int start_step, end_step, num_steps;
1164         uint32_t *eccpos = chip->ecc.layout->eccpos;
1165         uint8_t *p;
1166         int data_col_addr, i, gaps = 0;
1167         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1168         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1169
1170         /* Column address wihin the page aligned to ECC size (256bytes). */
1171         start_step = data_offs / chip->ecc.size;
1172         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1173         num_steps = end_step - start_step + 1;
1174
1175         /* Data size aligned to ECC ecc.size*/
1176         datafrag_len = num_steps * chip->ecc.size;
1177         eccfrag_len = num_steps * chip->ecc.bytes;
1178
1179         data_col_addr = start_step * chip->ecc.size;
1180         /* If we read not a page aligned data */
1181         if (data_col_addr != 0)
1182                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1183
1184         p = bufpoi + data_col_addr;
1185         chip->read_buf(mtd, p, datafrag_len);
1186
1187         /* Calculate  ECC */
1188         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1189                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1190
1191         /* The performance is faster if to position offsets
1192            according to ecc.pos. Let make sure here that
1193            there are no gaps in ecc positions */
1194         for (i = 0; i < eccfrag_len - 1; i++) {
1195                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1196                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1197                         gaps = 1;
1198                         break;
1199                 }
1200         }
1201         if (gaps) {
1202                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1203                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1204         } else {
1205                 /* send the command to read the particular ecc bytes */
1206                 /* take care about buswidth alignment in read_buf */
1207                 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1208                 aligned_len = eccfrag_len;
1209                 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1210                         aligned_len++;
1211                 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1212                         aligned_len++;
1213
1214                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1215                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1216         }
1217
1218         for (i = 0; i < eccfrag_len; i++)
1219                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1220
1221         p = bufpoi + data_col_addr;
1222         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1223                 int stat;
1224
1225                 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1226                 if (stat == -1)
1227                         mtd->ecc_stats.failed++;
1228                 else
1229                         mtd->ecc_stats.corrected += stat;
1230         }
1231         return 0;
1232 }
1233
1234 /**
1235  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1236  * @mtd:        mtd info structure
1237  * @chip:       nand chip info structure
1238  * @buf:        buffer to store read data
1239  * @page:       page number to read
1240  *
1241  * Not for syndrome calculating ecc controllers which need a special oob layout
1242  */
1243 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1244                                 uint8_t *buf, int page)
1245 {
1246         int i, eccsize = chip->ecc.size;
1247         int eccbytes = chip->ecc.bytes;
1248         int eccsteps = chip->ecc.steps;
1249         uint8_t *p = buf;
1250         uint8_t *ecc_calc = chip->buffers->ecccalc;
1251         uint8_t *ecc_code = chip->buffers->ecccode;
1252         uint32_t *eccpos = chip->ecc.layout->eccpos;
1253
1254         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1256                 chip->read_buf(mtd, p, eccsize);
1257                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1258         }
1259         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1260
1261         for (i = 0; i < chip->ecc.total; i++)
1262                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1263
1264         eccsteps = chip->ecc.steps;
1265         p = buf;
1266
1267         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1268                 int stat;
1269
1270                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1271                 if (stat < 0)
1272                         mtd->ecc_stats.failed++;
1273                 else
1274                         mtd->ecc_stats.corrected += stat;
1275         }
1276         return 0;
1277 }
1278
1279 /**
1280  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1281  * @mtd:        mtd info structure
1282  * @chip:       nand chip info structure
1283  * @buf:        buffer to store read data
1284  * @page:       page number to read
1285  *
1286  * Hardware ECC for large page chips, require OOB to be read first.
1287  * For this ECC mode, the write_page method is re-used from ECC_HW.
1288  * These methods read/write ECC from the OOB area, unlike the
1289  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1290  * "infix ECC" scheme and reads/writes ECC from the data area, by
1291  * overwriting the NAND manufacturer bad block markings.
1292  */
1293 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1294         struct nand_chip *chip, uint8_t *buf, int page)
1295 {
1296         int i, eccsize = chip->ecc.size;
1297         int eccbytes = chip->ecc.bytes;
1298         int eccsteps = chip->ecc.steps;
1299         uint8_t *p = buf;
1300         uint8_t *ecc_code = chip->buffers->ecccode;
1301         uint32_t *eccpos = chip->ecc.layout->eccpos;
1302         uint8_t *ecc_calc = chip->buffers->ecccalc;
1303
1304         /* Read the OOB area first */
1305         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1306         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1307         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1308
1309         for (i = 0; i < chip->ecc.total; i++)
1310                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1311
1312         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1313                 int stat;
1314
1315                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1316                 chip->read_buf(mtd, p, eccsize);
1317                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1318
1319                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1320                 if (stat < 0)
1321                         mtd->ecc_stats.failed++;
1322                 else
1323                         mtd->ecc_stats.corrected += stat;
1324         }
1325         return 0;
1326 }
1327
1328 /**
1329  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1330  * @mtd:        mtd info structure
1331  * @chip:       nand chip info structure
1332  * @buf:        buffer to store read data
1333  * @page:       page number to read
1334  *
1335  * The hw generator calculates the error syndrome automatically. Therefor
1336  * we need a special oob layout and handling.
1337  */
1338 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1339                                    uint8_t *buf, int page)
1340 {
1341         int i, eccsize = chip->ecc.size;
1342         int eccbytes = chip->ecc.bytes;
1343         int eccsteps = chip->ecc.steps;
1344         uint8_t *p = buf;
1345         uint8_t *oob = chip->oob_poi;
1346
1347         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1348                 int stat;
1349
1350                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1351                 chip->read_buf(mtd, p, eccsize);
1352
1353                 if (chip->ecc.prepad) {
1354                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1355                         oob += chip->ecc.prepad;
1356                 }
1357
1358                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1359                 chip->read_buf(mtd, oob, eccbytes);
1360                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1361
1362                 if (stat < 0)
1363                         mtd->ecc_stats.failed++;
1364                 else
1365                         mtd->ecc_stats.corrected += stat;
1366
1367                 oob += eccbytes;
1368
1369                 if (chip->ecc.postpad) {
1370                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1371                         oob += chip->ecc.postpad;
1372                 }
1373         }
1374
1375         /* Calculate remaining oob bytes */
1376         i = mtd->oobsize - (oob - chip->oob_poi);
1377         if (i)
1378                 chip->read_buf(mtd, oob, i);
1379
1380         return 0;
1381 }
1382
1383 /**
1384  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1385  * @chip:       nand chip structure
1386  * @oob:        oob destination address
1387  * @ops:        oob ops structure
1388  * @len:        size of oob to transfer
1389  */
1390 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1391                                   struct mtd_oob_ops *ops, size_t len)
1392 {
1393         switch(ops->mode) {
1394
1395         case MTD_OOB_PLACE:
1396         case MTD_OOB_RAW:
1397                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1398                 return oob + len;
1399
1400         case MTD_OOB_AUTO: {
1401                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1402                 uint32_t boffs = 0, roffs = ops->ooboffs;
1403                 size_t bytes = 0;
1404
1405                 for(; free->length && len; free++, len -= bytes) {
1406                         /* Read request not from offset 0 ? */
1407                         if (unlikely(roffs)) {
1408                                 if (roffs >= free->length) {
1409                                         roffs -= free->length;
1410                                         continue;
1411                                 }
1412                                 boffs = free->offset + roffs;
1413                                 bytes = min_t(size_t, len,
1414                                               (free->length - roffs));
1415                                 roffs = 0;
1416                         } else {
1417                                 bytes = min_t(size_t, len, free->length);
1418                                 boffs = free->offset;
1419                         }
1420                         memcpy(oob, chip->oob_poi + boffs, bytes);
1421                         oob += bytes;
1422                 }
1423                 return oob;
1424         }
1425         default:
1426                 BUG();
1427         }
1428         return NULL;
1429 }
1430
1431 /**
1432  * nand_do_read_ops - [Internal] Read data with ECC
1433  *
1434  * @mtd:        MTD device structure
1435  * @from:       offset to read from
1436  * @ops:        oob ops structure
1437  *
1438  * Internal function. Called with chip held.
1439  */
1440 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441                             struct mtd_oob_ops *ops)
1442 {
1443         int chipnr, page, realpage, col, bytes, aligned;
1444         struct nand_chip *chip = mtd->priv;
1445         struct mtd_ecc_stats stats;
1446         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1447         int sndcmd = 1;
1448         int ret = 0;
1449         uint32_t readlen = ops->len;
1450         uint32_t oobreadlen = ops->ooblen;
1451         uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1452                 mtd->oobavail : mtd->oobsize;
1453
1454         uint8_t *bufpoi, *oob, *buf;
1455
1456         stats = mtd->ecc_stats;
1457
1458         chipnr = (int)(from >> chip->chip_shift);
1459         chip->select_chip(mtd, chipnr);
1460
1461         realpage = (int)(from >> chip->page_shift);
1462         page = realpage & chip->pagemask;
1463
1464         col = (int)(from & (mtd->writesize - 1));
1465
1466         buf = ops->datbuf;
1467         oob = ops->oobbuf;
1468
1469         while(1) {
1470                 bytes = min(mtd->writesize - col, readlen);
1471                 aligned = (bytes == mtd->writesize);
1472
1473                 /* Is the current page in the buffer ? */
1474                 if (realpage != chip->pagebuf || oob) {
1475                         bufpoi = aligned ? buf : chip->buffers->databuf;
1476
1477                         if (likely(sndcmd)) {
1478                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1479                                 sndcmd = 0;
1480                         }
1481
1482                         /* Now read the page into the buffer */
1483                         if (unlikely(ops->mode == MTD_OOB_RAW))
1484                                 ret = chip->ecc.read_page_raw(mtd, chip,
1485                                                               bufpoi, page);
1486                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1487                                 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1488                         else
1489                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1490                                                           page);
1491 #ifdef CONFIG_MTD_NAND_RK29
1492             extern int rk29_nand_refresh(struct mtd_info *mtd, int srcAddr);
1493                     if(ret == -1)
1494                         ret=rk29_nand_refresh(mtd, page<<chip->page_shift);
1495 #endif              
1496                         if (ret < 0)
1497                         {
1498                                 break;
1499                         }
1500
1501                         /* Transfer not aligned data */
1502                         if (!aligned) {
1503                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1504                                         chip->pagebuf = realpage;
1505                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1506                         }
1507
1508                         buf += bytes;
1509
1510                         if (unlikely(oob)) {
1511
1512                                 int toread = min(oobreadlen, max_oobsize);
1513
1514                                 if (toread) {
1515                                         oob = nand_transfer_oob(chip,
1516                                                 oob, ops, toread);
1517                                         oobreadlen -= toread;
1518                                 }
1519                         }
1520
1521                         if (!(chip->options & NAND_NO_READRDY)) {
1522                                 /*
1523                                  * Apply delay or wait for ready/busy pin. Do
1524                                  * this before the AUTOINCR check, so no
1525                                  * problems arise if a chip which does auto
1526                                  * increment is marked as NOAUTOINCR by the
1527                                  * board driver.
1528                                  */
1529                                 if (!chip->dev_ready)
1530                                         udelay(chip->chip_delay);
1531                                 else
1532                                         nand_wait_ready(mtd);
1533                         }
1534                 } else {
1535                         memcpy(buf, chip->buffers->databuf + col, bytes);
1536                         buf += bytes;
1537                 }
1538
1539                 readlen -= bytes;
1540
1541                 if (!readlen)
1542                         break;
1543
1544                 /* For subsequent reads align to page boundary. */
1545                 col = 0;
1546                 /* Increment page address */
1547                 realpage++;
1548
1549                 page = realpage & chip->pagemask;
1550                 /* Check, if we cross a chip boundary */
1551                 if (!page) {
1552                         chipnr++;
1553                         chip->select_chip(mtd, -1);
1554                         chip->select_chip(mtd, chipnr);
1555                 }
1556
1557                 /* Check, if the chip supports auto page increment
1558                  * or if we have hit a block boundary.
1559                  */
1560                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1561                         sndcmd = 1;
1562         }
1563
1564         ops->retlen = ops->len - (size_t) readlen;
1565         if (oob)
1566                 ops->oobretlen = ops->ooblen - oobreadlen;
1567
1568         if (ret)
1569                 return ret;
1570
1571         if (mtd->ecc_stats.failed - stats.failed)
1572                 return -EBADMSG;
1573
1574         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1575 }
1576
1577 /**
1578  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1579  * @mtd:        MTD device structure
1580  * @from:       offset to read from
1581  * @len:        number of bytes to read
1582  * @retlen:     pointer to variable to store the number of read bytes
1583  * @buf:        the databuffer to put data
1584  *
1585  * Get hold of the chip and call nand_do_read
1586  */
1587 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1588                      size_t *retlen, uint8_t *buf)
1589 {
1590         struct nand_chip *chip = mtd->priv;
1591         int ret;
1592
1593         /* Do not allow reads past end of device */
1594         if ((from + len) > mtd->size)
1595                 return -EINVAL;
1596         if (!len)
1597                 return 0;
1598
1599         nand_get_device(chip, mtd, FL_READING);
1600
1601         chip->ops.len = len;
1602         chip->ops.datbuf = buf;
1603         chip->ops.oobbuf = NULL;
1604
1605         ret = nand_do_read_ops(mtd, from, &chip->ops);
1606
1607         *retlen = chip->ops.retlen;
1608
1609         nand_release_device(mtd);
1610
1611         return ret;
1612 }
1613
1614 /**
1615  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1616  * @mtd:        mtd info structure
1617  * @chip:       nand chip info structure
1618  * @page:       page number to read
1619  * @sndcmd:     flag whether to issue read command or not
1620  */
1621 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1622                              int page, int sndcmd)
1623 {
1624         if (sndcmd) {
1625                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1626                 sndcmd = 0;
1627         }
1628         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1629         return sndcmd;
1630 }
1631
1632 /**
1633  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1634  *                          with syndromes
1635  * @mtd:        mtd info structure
1636  * @chip:       nand chip info structure
1637  * @page:       page number to read
1638  * @sndcmd:     flag whether to issue read command or not
1639  */
1640 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1641                                   int page, int sndcmd)
1642 {
1643         uint8_t *buf = chip->oob_poi;
1644         int length = mtd->oobsize;
1645         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1646         int eccsize = chip->ecc.size;
1647         uint8_t *bufpoi = buf;
1648         int i, toread, sndrnd = 0, pos;
1649
1650         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1651         for (i = 0; i < chip->ecc.steps; i++) {
1652                 if (sndrnd) {
1653                         pos = eccsize + i * (eccsize + chunk);
1654                         if (mtd->writesize > 512)
1655                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1656                         else
1657                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1658                 } else
1659                         sndrnd = 1;
1660                 toread = min_t(int, length, chunk);
1661                 chip->read_buf(mtd, bufpoi, toread);
1662                 bufpoi += toread;
1663                 length -= toread;
1664         }
1665         if (length > 0)
1666                 chip->read_buf(mtd, bufpoi, length);
1667
1668         return 1;
1669 }
1670
1671 /**
1672  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1673  * @mtd:        mtd info structure
1674  * @chip:       nand chip info structure
1675  * @page:       page number to write
1676  */
1677 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1678                               int page)
1679 {
1680         int status = 0;
1681         const uint8_t *buf = chip->oob_poi;
1682         int length = mtd->oobsize;
1683
1684         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1685         chip->write_buf(mtd, buf, length);
1686         /* Send command to program the OOB data */
1687         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1688
1689         status = chip->waitfunc(mtd, chip);
1690
1691         return status & NAND_STATUS_FAIL ? -EIO : 0;
1692 }
1693
1694 /**
1695  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1696  *                           with syndrome - only for large page flash !
1697  * @mtd:        mtd info structure
1698  * @chip:       nand chip info structure
1699  * @page:       page number to write
1700  */
1701 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1702                                    struct nand_chip *chip, int page)
1703 {
1704         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1705         int eccsize = chip->ecc.size, length = mtd->oobsize;
1706         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1707         const uint8_t *bufpoi = chip->oob_poi;
1708
1709         /*
1710          * data-ecc-data-ecc ... ecc-oob
1711          * or
1712          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1713          */
1714         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1715                 pos = steps * (eccsize + chunk);
1716                 steps = 0;
1717         } else
1718                 pos = eccsize;
1719
1720         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1721         for (i = 0; i < steps; i++) {
1722                 if (sndcmd) {
1723                         if (mtd->writesize <= 512) {
1724                                 uint32_t fill = 0xFFFFFFFF;
1725
1726                                 len = eccsize;
1727                                 while (len > 0) {
1728                                         int num = min_t(int, len, 4);
1729                                         chip->write_buf(mtd, (uint8_t *)&fill,
1730                                                         num);
1731                                         len -= num;
1732                                 }
1733                         } else {
1734                                 pos = eccsize + i * (eccsize + chunk);
1735                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1736                         }
1737                 } else
1738                         sndcmd = 1;
1739                 len = min_t(int, length, chunk);
1740                 chip->write_buf(mtd, bufpoi, len);
1741                 bufpoi += len;
1742                 length -= len;
1743         }
1744         if (length > 0)
1745                 chip->write_buf(mtd, bufpoi, length);
1746
1747         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1748         status = chip->waitfunc(mtd, chip);
1749
1750         return status & NAND_STATUS_FAIL ? -EIO : 0;
1751 }
1752
1753 /**
1754  * nand_do_read_oob - [Intern] NAND read out-of-band
1755  * @mtd:        MTD device structure
1756  * @from:       offset to read from
1757  * @ops:        oob operations description structure
1758  *
1759  * NAND read out-of-band data from the spare area
1760  */
1761 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1762                             struct mtd_oob_ops *ops)
1763 {
1764         int page, realpage, chipnr, sndcmd = 1;
1765         struct nand_chip *chip = mtd->priv;
1766         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1767         int readlen = ops->ooblen;
1768         int len;
1769         uint8_t *buf = ops->oobbuf;
1770
1771         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1772                         __func__, (unsigned long long)from, readlen);
1773
1774         if (ops->mode == MTD_OOB_AUTO)
1775                 len = chip->ecc.layout->oobavail;
1776         else
1777                 len = mtd->oobsize;
1778
1779         if (unlikely(ops->ooboffs >= len)) {
1780                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1781                                         "outside oob\n", __func__);
1782                 return -EINVAL;
1783         }
1784
1785         /* Do not allow reads past end of device */
1786         if (unlikely(from >= mtd->size ||
1787                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1788                                         (from >> chip->page_shift)) * len)) {
1789                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1790                                         "of device\n", __func__);
1791                 return -EINVAL;
1792         }
1793
1794         chipnr = (int)(from >> chip->chip_shift);
1795         chip->select_chip(mtd, chipnr);
1796
1797         /* Shift to get page */
1798         realpage = (int)(from >> chip->page_shift);
1799         page = realpage & chip->pagemask;
1800
1801         while(1) {
1802                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1803
1804                 len = min(len, readlen);
1805                 buf = nand_transfer_oob(chip, buf, ops, len);
1806
1807                 if (!(chip->options & NAND_NO_READRDY)) {
1808                         /*
1809                          * Apply delay or wait for ready/busy pin. Do this
1810                          * before the AUTOINCR check, so no problems arise if a
1811                          * chip which does auto increment is marked as
1812                          * NOAUTOINCR by the board driver.
1813                          */
1814                         if (!chip->dev_ready)
1815                                 udelay(chip->chip_delay);
1816                         else
1817                                 nand_wait_ready(mtd);
1818                 }
1819
1820                 readlen -= len;
1821                 if (!readlen)
1822                         break;
1823
1824                 /* Increment page address */
1825                 realpage++;
1826
1827                 page = realpage & chip->pagemask;
1828                 /* Check, if we cross a chip boundary */
1829                 if (!page) {
1830                         chipnr++;
1831                         chip->select_chip(mtd, -1);
1832                         chip->select_chip(mtd, chipnr);
1833                 }
1834
1835                 /* Check, if the chip supports auto page increment
1836                  * or if we have hit a block boundary.
1837                  */
1838                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1839                         sndcmd = 1;
1840         }
1841
1842         ops->oobretlen = ops->ooblen;
1843         return 0;
1844 }
1845
1846 /**
1847  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1848  * @mtd:        MTD device structure
1849  * @from:       offset to read from
1850  * @ops:        oob operation description structure
1851  *
1852  * NAND read data and/or out-of-band data
1853  */
1854 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1855                          struct mtd_oob_ops *ops)
1856 {
1857         struct nand_chip *chip = mtd->priv;
1858         int ret = -ENOTSUPP;
1859
1860         ops->retlen = 0;
1861
1862         /* Do not allow reads past end of device */
1863         if (ops->datbuf && (from + ops->len) > mtd->size) {
1864                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1865                                 "beyond end of device\n", __func__);
1866                 return -EINVAL;
1867         }
1868
1869         nand_get_device(chip, mtd, FL_READING);
1870
1871         switch(ops->mode) {
1872         case MTD_OOB_PLACE:
1873         case MTD_OOB_AUTO:
1874         case MTD_OOB_RAW:
1875                 break;
1876
1877         default:
1878                 goto out;
1879         }
1880
1881         if (!ops->datbuf)
1882                 ret = nand_do_read_oob(mtd, from, ops);
1883         else
1884                 ret = nand_do_read_ops(mtd, from, ops);
1885
1886  out:
1887         nand_release_device(mtd);
1888         return ret;
1889 }
1890
1891
1892 /**
1893  * nand_write_page_raw - [Intern] raw page write function
1894  * @mtd:        mtd info structure
1895  * @chip:       nand chip info structure
1896  * @buf:        data buffer
1897  *
1898  * Not for syndrome calculating ecc controllers, which use a special oob layout
1899  */
1900 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1901                                 const uint8_t *buf)
1902 {
1903         chip->write_buf(mtd, buf, mtd->writesize);
1904         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1905 }
1906
1907 /**
1908  * nand_write_page_raw_syndrome - [Intern] raw page write function
1909  * @mtd:        mtd info structure
1910  * @chip:       nand chip info structure
1911  * @buf:        data buffer
1912  *
1913  * We need a special oob layout and handling even when ECC isn't checked.
1914  */
1915 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1916                                 const uint8_t *buf)
1917 {
1918         int eccsize = chip->ecc.size;
1919         int eccbytes = chip->ecc.bytes;
1920         uint8_t *oob = chip->oob_poi;
1921         int steps, size;
1922
1923         for (steps = chip->ecc.steps; steps > 0; steps--) {
1924                 chip->write_buf(mtd, buf, eccsize);
1925                 buf += eccsize;
1926
1927                 if (chip->ecc.prepad) {
1928                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1929                         oob += chip->ecc.prepad;
1930                 }
1931
1932                 chip->read_buf(mtd, oob, eccbytes);
1933                 oob += eccbytes;
1934
1935                 if (chip->ecc.postpad) {
1936                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1937                         oob += chip->ecc.postpad;
1938                 }
1939         }
1940
1941         size = mtd->oobsize - (oob - chip->oob_poi);
1942         if (size)
1943                 chip->write_buf(mtd, oob, size);
1944 }
1945 /**
1946  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1947  * @mtd:        mtd info structure
1948  * @chip:       nand chip info structure
1949  * @buf:        data buffer
1950  */
1951 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1952                                   const uint8_t *buf)
1953 {
1954         int i, eccsize = chip->ecc.size;
1955         int eccbytes = chip->ecc.bytes;
1956         int eccsteps = chip->ecc.steps;
1957         uint8_t *ecc_calc = chip->buffers->ecccalc;
1958         const uint8_t *p = buf;
1959         uint32_t *eccpos = chip->ecc.layout->eccpos;
1960
1961         /* Software ecc calculation */
1962         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1963                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1964
1965         for (i = 0; i < chip->ecc.total; i++)
1966                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1967
1968         chip->ecc.write_page_raw(mtd, chip, buf);
1969 }
1970
1971 /**
1972  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1973  * @mtd:        mtd info structure
1974  * @chip:       nand chip info structure
1975  * @buf:        data buffer
1976  */
1977 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1978                                   const uint8_t *buf)
1979 {
1980         int i, eccsize = chip->ecc.size;
1981         int eccbytes = chip->ecc.bytes;
1982         int eccsteps = chip->ecc.steps;
1983         uint8_t *ecc_calc = chip->buffers->ecccalc;
1984         const uint8_t *p = buf;
1985         uint32_t *eccpos = chip->ecc.layout->eccpos;
1986
1987         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1988                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1989                 chip->write_buf(mtd, p, eccsize);
1990                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1991         }
1992
1993         for (i = 0; i < chip->ecc.total; i++)
1994                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1995
1996         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1997 }
1998
1999 /**
2000  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2001  * @mtd:        mtd info structure
2002  * @chip:       nand chip info structure
2003  * @buf:        data buffer
2004  *
2005  * The hw generator calculates the error syndrome automatically. Therefor
2006  * we need a special oob layout and handling.
2007  */
2008 static void nand_write_page_syndrome(struct mtd_info *mtd,
2009                                     struct nand_chip *chip, const uint8_t *buf)
2010 {
2011         int i, eccsize = chip->ecc.size;
2012         int eccbytes = chip->ecc.bytes;
2013         int eccsteps = chip->ecc.steps;
2014         const uint8_t *p = buf;
2015         uint8_t *oob = chip->oob_poi;
2016
2017         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2018
2019                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2020                 chip->write_buf(mtd, p, eccsize);
2021
2022                 if (chip->ecc.prepad) {
2023                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2024                         oob += chip->ecc.prepad;
2025                 }
2026
2027                 chip->ecc.calculate(mtd, p, oob);
2028                 chip->write_buf(mtd, oob, eccbytes);
2029                 oob += eccbytes;
2030
2031                 if (chip->ecc.postpad) {
2032                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2033                         oob += chip->ecc.postpad;
2034                 }
2035         }
2036
2037         /* Calculate remaining oob bytes */
2038         i = mtd->oobsize - (oob - chip->oob_poi);
2039         if (i)
2040                 chip->write_buf(mtd, oob, i);
2041 }
2042
2043 /**
2044  * nand_write_page - [REPLACEABLE] write one page
2045  * @mtd:        MTD device structure
2046  * @chip:       NAND chip descriptor
2047  * @buf:        the data to write
2048  * @page:       page number to write
2049  * @cached:     cached programming
2050  * @raw:        use _raw version of write_page
2051  */
2052 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2053                            const uint8_t *buf, int page, int cached, int raw)
2054 {
2055         int status;
2056
2057         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2058
2059         if (unlikely(raw))
2060                 chip->ecc.write_page_raw(mtd, chip, buf);
2061         else
2062                 chip->ecc.write_page(mtd, chip, buf);
2063
2064         /*
2065          * Cached progamming disabled for now, Not sure if its worth the
2066          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2067          */
2068         cached = 0;
2069
2070         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2071
2072                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2073                 status = chip->waitfunc(mtd, chip);
2074                 /*
2075                  * See if operation failed and additional status checks are
2076                  * available
2077                  */
2078                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2079                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2080                                                page);
2081
2082                 if (status & NAND_STATUS_FAIL)
2083                         return -EIO;
2084         } else {
2085                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2086                 status = chip->waitfunc(mtd, chip);
2087         }
2088
2089 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2090         /* Send command to read back the data */
2091         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2092
2093         if (chip->verify_buf(mtd, buf, mtd->writesize))
2094                 return -EIO;
2095 #endif
2096         return 0;
2097 }
2098
2099 /**
2100  * nand_fill_oob - [Internal] Transfer client buffer to oob
2101  * @chip:       nand chip structure
2102  * @oob:        oob data buffer
2103  * @len:        oob data write length
2104  * @ops:        oob ops structure
2105  */
2106 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2107                                                 struct mtd_oob_ops *ops)
2108 {
2109         switch(ops->mode) {
2110
2111         case MTD_OOB_PLACE:
2112         case MTD_OOB_RAW:
2113                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2114                 return oob + len;
2115
2116         case MTD_OOB_AUTO: {
2117                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2118                 uint32_t boffs = 0, woffs = ops->ooboffs;
2119                 size_t bytes = 0;
2120
2121                 for(; free->length && len; free++, len -= bytes) {
2122                         /* Write request not from offset 0 ? */
2123                         if (unlikely(woffs)) {
2124                                 if (woffs >= free->length) {
2125                                         woffs -= free->length;
2126                                         continue;
2127                                 }
2128                                 boffs = free->offset + woffs;
2129                                 bytes = min_t(size_t, len,
2130                                               (free->length - woffs));
2131                                 woffs = 0;
2132                         } else {
2133                                 bytes = min_t(size_t, len, free->length);
2134                                 boffs = free->offset;
2135                         }
2136                         memcpy(chip->oob_poi + boffs, oob, bytes);
2137                         oob += bytes;
2138                 }
2139                 return oob;
2140         }
2141         default:
2142                 BUG();
2143         }
2144         return NULL;
2145 }
2146
2147 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
2148
2149 /**
2150  * nand_do_write_ops - [Internal] NAND write with ECC
2151  * @mtd:        MTD device structure
2152  * @to:         offset to write to
2153  * @ops:        oob operations description structure
2154  *
2155  * NAND write with ECC
2156  */
2157 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2158                              struct mtd_oob_ops *ops)
2159 {
2160         int chipnr, realpage, page, blockmask, column;
2161         struct nand_chip *chip = mtd->priv;
2162         uint32_t writelen = ops->len;
2163
2164         uint32_t oobwritelen = ops->ooblen;
2165         uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2166                                 mtd->oobavail : mtd->oobsize;
2167
2168         uint8_t *oob = ops->oobbuf;
2169         uint8_t *buf = ops->datbuf;
2170         int ret, subpage;
2171
2172         ops->retlen = 0;
2173         if (!writelen)
2174                 return 0;
2175
2176         /* reject writes, which are not page aligned */
2177         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2178                 printk(KERN_NOTICE "%s: Attempt to write not "
2179                                 "page aligned data\n", __func__);
2180                 return -EINVAL;
2181         }
2182
2183         column = to & (mtd->writesize - 1);
2184         subpage = column || (writelen & (mtd->writesize - 1));
2185
2186         if (subpage && oob)
2187                 return -EINVAL;
2188
2189         chipnr = (int)(to >> chip->chip_shift);
2190         chip->select_chip(mtd, chipnr);
2191
2192         /* Check, if it is write protected */
2193         if (nand_check_wp(mtd))
2194                 return -EIO;
2195
2196         realpage = (int)(to >> chip->page_shift);
2197         page = realpage & chip->pagemask;
2198         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2199
2200         /* Invalidate the page cache, when we write to the cached page */
2201         if (to <= (chip->pagebuf << chip->page_shift) &&
2202             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2203                 chip->pagebuf = -1;
2204
2205         /* If we're not given explicit OOB data, let it be 0xFF */
2206         if (likely(!oob))
2207                 memset(chip->oob_poi, 0xff, mtd->oobsize);
2208
2209         /* Don't allow multipage oob writes with offset */
2210         if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2211                 return -EINVAL;
2212
2213         while(1) {
2214                 int bytes = mtd->writesize;
2215                 int cached = writelen > bytes && page != blockmask;
2216                 uint8_t *wbuf = buf;
2217
2218                 /* Partial page write ? */
2219                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2220                         cached = 0;
2221                         bytes = min_t(int, bytes - column, (int) writelen);
2222                         chip->pagebuf = -1;
2223                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2224                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2225                         wbuf = chip->buffers->databuf;
2226                 }
2227
2228                 if (unlikely(oob)) {
2229                         size_t len = min(oobwritelen, oobmaxlen);
2230                         oob = nand_fill_oob(chip, oob, len, ops);
2231                         oobwritelen -= len;
2232                 }
2233
2234                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2235                                        (ops->mode == MTD_OOB_RAW));
2236                 if (ret)
2237                         break;
2238
2239                 writelen -= bytes;
2240                 if (!writelen)
2241                         break;
2242
2243                 column = 0;
2244                 buf += bytes;
2245                 realpage++;
2246
2247                 page = realpage & chip->pagemask;
2248                 /* Check, if we cross a chip boundary */
2249                 if (!page) {
2250                         chipnr++;
2251                         chip->select_chip(mtd, -1);
2252                         chip->select_chip(mtd, chipnr);
2253                 }
2254         }
2255
2256         ops->retlen = ops->len - writelen;
2257         if (unlikely(oob))
2258                 ops->oobretlen = ops->ooblen;
2259         return ret;
2260 }
2261
2262 /**
2263  * panic_nand_write - [MTD Interface] NAND write with ECC
2264  * @mtd:        MTD device structure
2265  * @to:         offset to write to
2266  * @len:        number of bytes to write
2267  * @retlen:     pointer to variable to store the number of written bytes
2268  * @buf:        the data to write
2269  *
2270  * NAND write with ECC. Used when performing writes in interrupt context, this
2271  * may for example be called by mtdoops when writing an oops while in panic.
2272  */
2273 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2274                             size_t *retlen, const uint8_t *buf)
2275 {
2276         struct nand_chip *chip = mtd->priv;
2277         int ret;
2278
2279         /* Do not allow reads past end of device */
2280         if ((to + len) > mtd->size)
2281                 return -EINVAL;
2282         if (!len)
2283                 return 0;
2284
2285         /* Wait for the device to get ready.  */
2286         panic_nand_wait(mtd, chip, 400);
2287
2288         /* Grab the device.  */
2289         panic_nand_get_device(chip, mtd, FL_WRITING);
2290
2291         chip->ops.len = len;
2292         chip->ops.datbuf = (uint8_t *)buf;
2293         chip->ops.oobbuf = NULL;
2294
2295         ret = nand_do_write_ops(mtd, to, &chip->ops);
2296
2297         *retlen = chip->ops.retlen;
2298         return ret;
2299 }
2300
2301 /**
2302  * nand_write - [MTD Interface] NAND write with ECC
2303  * @mtd:        MTD device structure
2304  * @to:         offset to write to
2305  * @len:        number of bytes to write
2306  * @retlen:     pointer to variable to store the number of written bytes
2307  * @buf:        the data to write
2308  *
2309  * NAND write with ECC
2310  */
2311 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2312                           size_t *retlen, const uint8_t *buf)
2313 {
2314         struct nand_chip *chip = mtd->priv;
2315         int ret;
2316
2317         /* Do not allow reads past end of device */
2318         if ((to + len) > mtd->size)
2319                 return -EINVAL;
2320         if (!len)
2321                 return 0;
2322
2323         nand_get_device(chip, mtd, FL_WRITING);
2324
2325         chip->ops.len = len;
2326         chip->ops.datbuf = (uint8_t *)buf;
2327         chip->ops.oobbuf = NULL;
2328
2329         ret = nand_do_write_ops(mtd, to, &chip->ops);
2330
2331         *retlen = chip->ops.retlen;
2332
2333         nand_release_device(mtd);
2334
2335         return ret;
2336 }
2337
2338 /**
2339  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2340  * @mtd:        MTD device structure
2341  * @to:         offset to write to
2342  * @ops:        oob operation description structure
2343  *
2344  * NAND write out-of-band
2345  */
2346 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2347                              struct mtd_oob_ops *ops)
2348 {
2349         int chipnr, page, status, len;
2350         struct nand_chip *chip = mtd->priv;
2351
2352         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2353                          __func__, (unsigned int)to, (int)ops->ooblen);
2354
2355         if (ops->mode == MTD_OOB_AUTO)
2356                 len = chip->ecc.layout->oobavail;
2357         else
2358                 len = mtd->oobsize;
2359
2360         /* Do not allow write past end of page */
2361         if ((ops->ooboffs + ops->ooblen) > len) {
2362                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2363                                 "past end of page\n", __func__);
2364                 return -EINVAL;
2365         }
2366
2367         if (unlikely(ops->ooboffs >= len)) {
2368                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2369                                 "write outside oob\n", __func__);
2370                 return -EINVAL;
2371         }
2372
2373         /* Do not allow reads past end of device */
2374         if (unlikely(to >= mtd->size ||
2375                      ops->ooboffs + ops->ooblen >
2376                         ((mtd->size >> chip->page_shift) -
2377                          (to >> chip->page_shift)) * len)) {
2378                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2379                                 "end of device\n", __func__);
2380                 return -EINVAL;
2381         }
2382
2383         chipnr = (int)(to >> chip->chip_shift);
2384         chip->select_chip(mtd, chipnr);
2385
2386         /* Shift to get page */
2387         page = (int)(to >> chip->page_shift);
2388
2389         /*
2390          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2391          * of my DiskOnChip 2000 test units) will clear the whole data page too
2392          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2393          * it in the doc2000 driver in August 1999.  dwmw2.
2394          */
2395         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2396
2397         /* Check, if it is write protected */
2398         if (nand_check_wp(mtd))
2399                 return -EROFS;
2400
2401         /* Invalidate the page cache, if we write to the cached page */
2402         if (page == chip->pagebuf)
2403                 chip->pagebuf = -1;
2404
2405         memset(chip->oob_poi, 0xff, mtd->oobsize);
2406         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2407         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2408         memset(chip->oob_poi, 0xff, mtd->oobsize);
2409
2410         if (status)
2411                 return status;
2412
2413         ops->oobretlen = ops->ooblen;
2414
2415         return 0;
2416 }
2417
2418 /**
2419  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2420  * @mtd:        MTD device structure
2421  * @to:         offset to write to
2422  * @ops:        oob operation description structure
2423  */
2424 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2425                           struct mtd_oob_ops *ops)
2426 {
2427         struct nand_chip *chip = mtd->priv;
2428         int ret = -ENOTSUPP;
2429
2430         ops->retlen = 0;
2431
2432         /* Do not allow writes past end of device */
2433         if (ops->datbuf && (to + ops->len) > mtd->size) {
2434                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2435                                 "end of device\n", __func__);
2436                 return -EINVAL;
2437         }
2438
2439         nand_get_device(chip, mtd, FL_WRITING);
2440
2441         switch(ops->mode) {
2442         case MTD_OOB_PLACE:
2443         case MTD_OOB_AUTO:
2444         case MTD_OOB_RAW:
2445                 break;
2446
2447         default:
2448                 goto out;
2449         }
2450
2451         if (!ops->datbuf)
2452                 ret = nand_do_write_oob(mtd, to, ops);
2453         else
2454                 ret = nand_do_write_ops(mtd, to, ops);
2455
2456  out:
2457         nand_release_device(mtd);
2458         return ret;
2459 }
2460
2461 /**
2462  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2463  * @mtd:        MTD device structure
2464  * @page:       the page address of the block which will be erased
2465  *
2466  * Standard erase command for NAND chips
2467  */
2468 static void single_erase_cmd(struct mtd_info *mtd, int page)
2469 {
2470         struct nand_chip *chip = mtd->priv;
2471         /* Send commands to erase a block */
2472         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2473         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2474 }
2475
2476 /**
2477  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2478  * @mtd:        MTD device structure
2479  * @page:       the page address of the block which will be erased
2480  *
2481  * AND multi block erase command function
2482  * Erase 4 consecutive blocks
2483  */
2484 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2485 {
2486         struct nand_chip *chip = mtd->priv;
2487         /* Send commands to erase a block */
2488         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2489         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2490         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2491         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2492         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2493 }
2494
2495 /**
2496  * nand_erase - [MTD Interface] erase block(s)
2497  * @mtd:        MTD device structure
2498  * @instr:      erase instruction
2499  *
2500  * Erase one ore more blocks
2501  */
2502 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2503 {
2504         return nand_erase_nand(mtd, instr, 0);
2505 }
2506
2507 #define BBT_PAGE_MASK   0xffffff3f
2508 /**
2509  * nand_erase_nand - [Internal] erase block(s)
2510  * @mtd:        MTD device structure
2511  * @instr:      erase instruction
2512  * @allowbbt:   allow erasing the bbt area
2513  *
2514  * Erase one ore more blocks
2515  */
2516 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2517                     int allowbbt)
2518 {
2519         int page, status, pages_per_block, ret, chipnr;
2520         struct nand_chip *chip = mtd->priv;
2521         loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2522         unsigned int bbt_masked_page = 0xffffffff;
2523         loff_t len;
2524
2525         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2526                                 __func__, (unsigned long long)instr->addr,
2527                                 (unsigned long long)instr->len);
2528
2529         if (check_offs_len(mtd, instr->addr, instr->len))
2530                 return -EINVAL;
2531
2532         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2533
2534         /* Grab the lock and see if the device is available */
2535         nand_get_device(chip, mtd, FL_ERASING);
2536
2537         /* Shift to get first page */
2538         page = (int)(instr->addr >> chip->page_shift);
2539         chipnr = (int)(instr->addr >> chip->chip_shift);
2540
2541         /* Calculate pages in each block */
2542         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2543
2544         /* Select the NAND device */
2545         chip->select_chip(mtd, chipnr);
2546
2547         /* Check, if it is write protected */
2548         if (nand_check_wp(mtd)) {
2549                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2550                                         __func__);
2551                 instr->state = MTD_ERASE_FAILED;
2552                 goto erase_exit;
2553         }
2554
2555         /*
2556          * If BBT requires refresh, set the BBT page mask to see if the BBT
2557          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2558          * can not be matched. This is also done when the bbt is actually
2559          * erased to avoid recusrsive updates
2560          */
2561         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2562                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2563
2564         /* Loop through the pages */
2565         len = instr->len;
2566
2567         instr->state = MTD_ERASING;
2568
2569         while (len) {
2570                 /*
2571                  * heck if we have a bad block, we do not erase bad blocks !
2572                  */
2573                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2574                                         chip->page_shift, 0, allowbbt)) {
2575                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2576                                         "at page 0x%08x\n", __func__, page);
2577                         instr->state = MTD_ERASE_FAILED;
2578                         goto erase_exit;
2579                 }
2580
2581                 /*
2582                  * Invalidate the page cache, if we erase the block which
2583                  * contains the current cached page
2584                  */
2585                 if (page <= chip->pagebuf && chip->pagebuf <
2586                     (page + pages_per_block))
2587                         chip->pagebuf = -1;
2588
2589                 chip->erase_cmd(mtd, page & chip->pagemask);
2590
2591                 status = chip->waitfunc(mtd, chip);
2592
2593                 /*
2594                  * See if operation failed and additional status checks are
2595                  * available
2596                  */
2597                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2598                         status = chip->errstat(mtd, chip, FL_ERASING,
2599                                                status, page);
2600
2601                 /* See if block erase succeeded */
2602                 if (status & NAND_STATUS_FAIL) {
2603                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2604                                         "page 0x%08x\n", __func__, page);
2605                         instr->state = MTD_ERASE_FAILED;
2606                         instr->fail_addr =
2607                                 ((loff_t)page << chip->page_shift);
2608                         goto erase_exit;
2609                 }
2610
2611                 /*
2612                  * If BBT requires refresh, set the BBT rewrite flag to the
2613                  * page being erased
2614                  */
2615                 if (bbt_masked_page != 0xffffffff &&
2616                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2617                             rewrite_bbt[chipnr] =
2618                                         ((loff_t)page << chip->page_shift);
2619
2620                 /* Increment page address and decrement length */
2621                 len -= (1 << chip->phys_erase_shift);
2622                 page += pages_per_block;
2623
2624                 /* Check, if we cross a chip boundary */
2625                 if (len && !(page & chip->pagemask)) {
2626                         chipnr++;
2627                         chip->select_chip(mtd, -1);
2628                         chip->select_chip(mtd, chipnr);
2629
2630                         /*
2631                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2632                          * page mask to see if this BBT should be rewritten
2633                          */
2634                         if (bbt_masked_page != 0xffffffff &&
2635                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2636                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2637                                         BBT_PAGE_MASK;
2638                 }
2639         }
2640         instr->state = MTD_ERASE_DONE;
2641
2642  erase_exit:
2643
2644         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2645
2646         /* Deselect and wake up anyone waiting on the device */
2647         nand_release_device(mtd);
2648
2649         /* Do call back function */
2650         if (!ret)
2651                 mtd_erase_callback(instr);
2652
2653         /*
2654          * If BBT requires refresh and erase was successful, rewrite any
2655          * selected bad block tables
2656          */
2657         if (bbt_masked_page == 0xffffffff || ret)
2658                 return ret;
2659
2660         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2661                 if (!rewrite_bbt[chipnr])
2662                         continue;
2663                 /* update the BBT for chip */
2664                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2665                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2666                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2667                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2668         }
2669
2670         /* Return more or less happy */
2671         return ret;
2672 }
2673
2674 /**
2675  * nand_sync - [MTD Interface] sync
2676  * @mtd:        MTD device structure
2677  *
2678  * Sync is actually a wait for chip ready function
2679  */
2680 static void nand_sync(struct mtd_info *mtd)
2681 {
2682         struct nand_chip *chip = mtd->priv;
2683
2684         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2685
2686         /* Grab the lock and see if the device is available */
2687         nand_get_device(chip, mtd, FL_SYNCING);
2688         /* Release it and go back */
2689         nand_release_device(mtd);
2690 }
2691
2692 /**
2693  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2694  * @mtd:        MTD device structure
2695  * @offs:       offset relative to mtd start
2696  */
2697 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2698 {
2699         /* Check for invalid offset */
2700         if (offs > mtd->size)
2701                 return -EINVAL;
2702
2703         return nand_block_checkbad(mtd, offs, 1, 0);
2704 }
2705
2706 /**
2707  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2708  * @mtd:        MTD device structure
2709  * @ofs:        offset relative to mtd start
2710  */
2711 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2712 {
2713         struct nand_chip *chip = mtd->priv;
2714         int ret;
2715
2716         if ((ret = nand_block_isbad(mtd, ofs))) {
2717                 /* If it was bad already, return success and do nothing. */
2718                 if (ret > 0)
2719                         return 0;
2720                 return ret;
2721         }
2722
2723         return chip->block_markbad(mtd, ofs);
2724 }
2725
2726 /**
2727  * nand_suspend - [MTD Interface] Suspend the NAND flash
2728  * @mtd:        MTD device structure
2729  */
2730 static int nand_suspend(struct mtd_info *mtd)
2731 {
2732         struct nand_chip *chip = mtd->priv;
2733
2734         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2735 }
2736
2737 /**
2738  * nand_resume - [MTD Interface] Resume the NAND flash
2739  * @mtd:        MTD device structure
2740  */
2741 static void nand_resume(struct mtd_info *mtd)
2742 {
2743         struct nand_chip *chip = mtd->priv;
2744
2745         if (chip->state == FL_PM_SUSPENDED)
2746                 nand_release_device(mtd);
2747         else
2748                 printk(KERN_ERR "%s called for a chip which is not "
2749                        "in suspended state\n", __func__);
2750 }
2751
2752 /*
2753  * Set default functions
2754  */
2755 static void nand_set_defaults(struct nand_chip *chip, int busw)
2756 {
2757         /* check for proper chip_delay setup, set 20us if not */
2758         if (!chip->chip_delay)
2759                 chip->chip_delay = 20;
2760
2761         /* check, if a user supplied command function given */
2762         if (chip->cmdfunc == NULL)
2763                 chip->cmdfunc = nand_command;
2764
2765         /* check, if a user supplied wait function given */
2766         if (chip->waitfunc == NULL)
2767                 chip->waitfunc = nand_wait;
2768
2769         if (!chip->select_chip)
2770                 chip->select_chip = nand_select_chip;
2771         if (!chip->read_byte)
2772                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2773         if (!chip->read_word)
2774                 chip->read_word = nand_read_word;
2775         if (!chip->block_bad)
2776                 chip->block_bad = nand_block_bad;
2777         if (!chip->block_markbad)
2778                 chip->block_markbad = nand_default_block_markbad;
2779         if (!chip->write_buf)
2780                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2781         if (!chip->read_buf)
2782                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2783         if (!chip->verify_buf)
2784                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2785         if (!chip->scan_bbt)
2786                 chip->scan_bbt = nand_default_bbt;
2787
2788         if (!chip->controller) {
2789                 chip->controller = &chip->hwcontrol;
2790                 spin_lock_init(&chip->controller->lock);
2791                 init_waitqueue_head(&chip->controller->wq);
2792         }
2793
2794 }
2795
2796 /*
2797  * Get the flash and manufacturer id and lookup if the type is supported
2798  */
2799 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2800                                                   struct nand_chip *chip,
2801                                                   int busw, int *maf_id,
2802                                                   struct nand_flash_dev *type)
2803 {
2804         int i, dev_id, maf_idx;
2805         u8 id_data[8];
2806
2807         /* Select the device */
2808         chip->select_chip(mtd, 0);
2809
2810         /*
2811          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2812          * after power-up
2813          */
2814         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2815
2816         /* Send the command for reading device ID */
2817         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2818
2819         /* Read manufacturer and device IDs */
2820         *maf_id = chip->read_byte(mtd);
2821         dev_id = chip->read_byte(mtd);
2822
2823         /* Try again to make sure, as some systems the bus-hold or other
2824          * interface concerns can cause random data which looks like a
2825          * possibly credible NAND flash to appear. If the two results do
2826          * not match, ignore the device completely.
2827          */
2828
2829         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2830
2831         /* Read entire ID string */
2832
2833         for (i = 0; i < 8; i++)
2834                 id_data[i] = chip->read_byte(mtd);
2835
2836         if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2837                 printk(KERN_INFO "%s: second ID read did not match "
2838                        "%02x,%02x against %02x,%02x\n", __func__,
2839                        *maf_id, dev_id, id_data[0], id_data[1]);
2840                 return ERR_PTR(-ENODEV);
2841         }
2842
2843         if (!type)
2844                 type = nand_flash_ids;
2845
2846         for (; type->name != NULL; type++)
2847                 if (dev_id == type->id)
2848                         break;
2849
2850         if (!type->name)
2851                 return ERR_PTR(-ENODEV);
2852
2853         if (!mtd->name)
2854                 mtd->name = type->name;
2855
2856         chip->chipsize = (uint64_t)type->chipsize << 20;
2857
2858         /* Newer devices have all the information in additional id bytes */
2859         if (!type->pagesize) {
2860                 int extid;
2861                 /* The 3rd id byte holds MLC / multichip data */
2862                 chip->cellinfo = id_data[2];
2863                 /* The 4th id byte is the important one */
2864                 extid = id_data[3];
2865
2866                 /*
2867                  * Field definitions are in the following datasheets:
2868                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2869                  * New style   (6 byte ID): Samsung K9GAG08U0D (p.40)
2870                  *
2871                  * Check for wraparound + Samsung ID + nonzero 6th byte
2872                  * to decide what to do.
2873                  */
2874                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2875                                 id_data[0] == NAND_MFR_SAMSUNG &&
2876                                 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2877                                 id_data[5] != 0x00) {
2878                         /* Calc pagesize */
2879                         mtd->writesize = 2048 << (extid & 0x03);
2880                         extid >>= 2;
2881                         /* Calc oobsize */
2882                         mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2883                         extid >>= 2;
2884                         /* Calc blocksize */
2885                         mtd->erasesize = (128 * 1024) <<
2886                                 (((extid >> 1) & 0x04) | (extid & 0x03));
2887                         busw = 0;
2888                 } else {
2889                         /* Calc pagesize */
2890                         mtd->writesize = 1024 << (extid & 0x03);
2891                         extid >>= 2;
2892                         /* Calc oobsize */
2893                         mtd->oobsize = (8 << (extid & 0x01)) *
2894                                 (mtd->writesize >> 9);
2895                         extid >>= 2;
2896                         /* Calc blocksize. Blocksize is multiples of 64KiB */
2897                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
2898                         extid >>= 2;
2899                         /* Get buswidth information */
2900                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2901                 }
2902         } else {
2903                 /*
2904                  * Old devices have chip data hardcoded in the device id table
2905                  */
2906                 mtd->erasesize = type->erasesize;
2907                 mtd->writesize = type->pagesize;
2908                 mtd->oobsize = mtd->writesize / 32;
2909                 busw = type->options & NAND_BUSWIDTH_16;
2910         }
2911
2912         /* Try to identify manufacturer */
2913         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2914                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2915                         break;
2916         }
2917
2918         chip->options |= busw;
2919         
2920         /*
2921          * Check, if buswidth is correct. Hardware drivers should set
2922          * chip correct !
2923          */
2924         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2925                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2926                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2927                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2928                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2929                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2930                        busw ? 16 : 8);
2931                 return ERR_PTR(-EINVAL);
2932         }
2933
2934         /* Calculate the address shift from the page size */
2935         chip->page_shift = ffs(mtd->writesize) - 1;
2936         /* Convert chipsize to number of pages per chip -1. */
2937         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2938
2939         chip->bbt_erase_shift = chip->phys_erase_shift =
2940                 ffs(mtd->erasesize) - 1;
2941         if (chip->chipsize & 0xffffffff)
2942                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2943         else
2944                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2945
2946         /* Set the bad block position */
2947         if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
2948                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
2949         else
2950                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
2951
2952         /* Get chip options, preserve non chip based options */
2953         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2954         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2955
2956         /*
2957          * Set chip as a default. Board drivers can override it, if necessary
2958          */
2959         chip->options |= NAND_NO_AUTOINCR;
2960
2961         /* Check if chip is a not a samsung device. Do not clear the
2962          * options for chips which are not having an extended id.
2963          */
2964         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2965                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2966
2967         /*
2968          * Bad block marker is stored in the last page of each block
2969          * on Samsung and Hynix MLC devices; stored in first two pages
2970          * of each block on Micron devices with 2KiB pages and on
2971          * SLC Samsung, Hynix, and AMD/Spansion. All others scan only
2972          * the first page.
2973          */
2974         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2975                         (*maf_id == NAND_MFR_SAMSUNG ||
2976                          *maf_id == NAND_MFR_HYNIX))
2977                 chip->options |= NAND_BBT_SCANLASTPAGE;
2978         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2979                                 (*maf_id == NAND_MFR_SAMSUNG ||
2980                                  *maf_id == NAND_MFR_HYNIX ||
2981                                  *maf_id == NAND_MFR_AMD)) ||
2982                         (mtd->writesize == 2048 &&
2983                          *maf_id == NAND_MFR_MICRON))
2984                 chip->options |= NAND_BBT_SCAN2NDPAGE;
2985
2986         /*
2987          * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
2988          */
2989         if (!(busw & NAND_BUSWIDTH_16) &&
2990                         *maf_id == NAND_MFR_STMICRO &&
2991                         mtd->writesize == 2048) {
2992                 chip->options |= NAND_BBT_SCANBYTE1AND6;
2993                 chip->badblockpos = 0;
2994         }
2995
2996         /* Check for AND chips with 4 page planes */
2997         if (chip->options & NAND_4PAGE_ARRAY)
2998                 chip->erase_cmd = multi_erase_cmd;
2999         else
3000                 chip->erase_cmd = single_erase_cmd;
3001
3002         /* Do not replace user supplied command function ! */
3003         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3004                 chip->cmdfunc = nand_command_lp;
3005
3006         printk(KERN_INFO "NAND device: Manufacturer ID:"
3007                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
3008                nand_manuf_ids[maf_idx].name, type->name);
3009
3010         return type;
3011 }
3012
3013 /**
3014  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3015  * @mtd:             MTD device structure
3016  * @maxchips:        Number of chips to scan for
3017  * @table:           Alternative NAND ID table
3018  *
3019  * This is the first phase of the normal nand_scan() function. It
3020  * reads the flash ID and sets up MTD fields accordingly.
3021  *
3022  * The mtd->owner field must be set to the module of the caller.
3023  */
3024 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3025                     struct nand_flash_dev *table)
3026 {
3027         int i, busw, nand_maf_id;
3028         struct nand_chip *chip = mtd->priv;
3029         struct nand_flash_dev *type;
3030
3031         /* Get buswidth to select the correct functions */
3032         busw = chip->options & NAND_BUSWIDTH_16;
3033         /* Set the default functions */
3034         nand_set_defaults(chip, busw);
3035
3036         /* Read the flash type */
3037         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
3038
3039         if (IS_ERR(type)) {
3040                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3041                         printk(KERN_WARNING "No NAND device found.\n");
3042                 chip->select_chip(mtd, -1);
3043                 return PTR_ERR(type);
3044         }
3045
3046         /* Check for a chip array */
3047         for (i = 1; i < maxchips; i++) {
3048                 chip->select_chip(mtd, i);
3049                 /* See comment in nand_get_flash_type for reset */
3050                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3051                 /* Send the command for reading device ID */
3052                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3053                 /* Read manufacturer and device IDs */
3054                 if (nand_maf_id != chip->read_byte(mtd) ||
3055                     type->id != chip->read_byte(mtd))
3056                         break;
3057         }
3058         if (i > 1)
3059                 printk(KERN_INFO "%d NAND chips detected\n", i);
3060
3061         /* Store the number of chips and calc total size for mtd */
3062         chip->numchips = i;
3063         mtd->size = i * chip->chipsize;
3064
3065         return 0;
3066 }
3067
3068 static void nand_panic_wait(struct mtd_info *mtd)
3069 {
3070         struct nand_chip *chip = mtd->priv;
3071         int i;
3072
3073         if (chip->state != FL_READY)
3074                 for (i = 0; i < 40; i++) {
3075                         if (chip->dev_ready(mtd))
3076                                 break;
3077                         mdelay(10);
3078                 }
3079         chip->state = FL_READY;
3080 }
3081
3082 static int nand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
3083                             size_t *retlen, const u_char *buf)
3084 {
3085         struct nand_chip *chip = mtd->priv;
3086         int ret;
3087
3088         /* Do not allow reads past end of device */
3089         if ((to + len) > mtd->size)
3090                 return -EINVAL;
3091         if (!len)
3092                 return 0;
3093
3094         nand_panic_wait(mtd);
3095
3096         chip->ops.len = len;
3097         chip->ops.datbuf = (uint8_t *)buf;
3098         chip->ops.oobbuf = NULL;
3099
3100         ret = nand_do_write_ops(mtd, to, &chip->ops);
3101
3102         *retlen = chip->ops.retlen;
3103         return ret;
3104 }
3105
3106
3107 /**
3108  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3109  * @mtd:            MTD device structure
3110  *
3111  * This is the second phase of the normal nand_scan() function. It
3112  * fills out all the uninitialized function pointers with the defaults
3113  * and scans for a bad block table if appropriate.
3114  */
3115 int nand_scan_tail(struct mtd_info *mtd)
3116 {
3117         int i;
3118         struct nand_chip *chip = mtd->priv;
3119
3120         if (!(chip->options & NAND_OWN_BUFFERS))
3121                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3122         if (!chip->buffers)
3123                 return -ENOMEM;
3124
3125         /* Set the internal oob buffer location, just after the page data */
3126         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3127
3128         /*
3129          * If no default placement scheme is given, select an appropriate one
3130          */
3131         if (!chip->ecc.layout) {
3132                 switch (mtd->oobsize) {
3133                 case 8:
3134                         chip->ecc.layout = &nand_oob_8;
3135                         break;
3136                 case 16:
3137                         chip->ecc.layout = &nand_oob_16;
3138                         break;
3139                 case 64:
3140                         chip->ecc.layout = &nand_oob_64;
3141                         break;
3142                 case 128:
3143                         chip->ecc.layout = &nand_oob_128;
3144                         break;
3145                 default:
3146                         printk(KERN_WARNING "No oob scheme defined for "
3147                                "oobsize %d\n", mtd->oobsize);
3148                         BUG();
3149                 }
3150         }
3151
3152         if (!chip->write_page)
3153                 chip->write_page = nand_write_page;
3154
3155         /*
3156          * check ECC mode, default to software if 3byte/512byte hardware ECC is
3157          * selected and we have 256 byte pagesize fallback to software ECC
3158          */
3159
3160         switch (chip->ecc.mode) {
3161         case NAND_ECC_HW_OOB_FIRST:
3162                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3163                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3164                      !chip->ecc.hwctl) {
3165                         printk(KERN_WARNING "No ECC functions supplied; "
3166                                "Hardware ECC not possible\n");
3167                         BUG();
3168                 }
3169                 if (!chip->ecc.read_page)
3170                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3171
3172         case NAND_ECC_HW:
3173                 /* Use standard hwecc read page function ? */
3174                 if (!chip->ecc.read_page)
3175                         chip->ecc.read_page = nand_read_page_hwecc;
3176                 if (!chip->ecc.write_page)
3177                         chip->ecc.write_page = nand_write_page_hwecc;
3178                 if (!chip->ecc.read_page_raw)
3179                         chip->ecc.read_page_raw = nand_read_page_raw;
3180                 if (!chip->ecc.write_page_raw)
3181                         chip->ecc.write_page_raw = nand_write_page_raw;
3182                 if (!chip->ecc.read_oob)
3183                         chip->ecc.read_oob = nand_read_oob_std;
3184                 if (!chip->ecc.write_oob)
3185                         chip->ecc.write_oob = nand_write_oob_std;
3186
3187         case NAND_ECC_HW_SYNDROME:
3188                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3189                      !chip->ecc.hwctl) &&
3190                     (!chip->ecc.read_page ||
3191                      chip->ecc.read_page == nand_read_page_hwecc ||
3192                      !chip->ecc.write_page ||
3193                      chip->ecc.write_page == nand_write_page_hwecc)) {
3194                         printk(KERN_WARNING "No ECC functions supplied; "
3195                                "Hardware ECC not possible\n");
3196                         BUG();
3197                 }
3198                 /* Use standard syndrome read/write page function ? */
3199                 if (!chip->ecc.read_page)
3200                         chip->ecc.read_page = nand_read_page_syndrome;
3201                 if (!chip->ecc.write_page)
3202                         chip->ecc.write_page = nand_write_page_syndrome;
3203                 if (!chip->ecc.read_page_raw)
3204                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3205                 if (!chip->ecc.write_page_raw)
3206                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3207                 if (!chip->ecc.read_oob)
3208                         chip->ecc.read_oob = nand_read_oob_syndrome;
3209                 if (!chip->ecc.write_oob)
3210                         chip->ecc.write_oob = nand_write_oob_syndrome;
3211
3212                 if (mtd->writesize >= chip->ecc.size)
3213                         break;
3214                 printk(KERN_WARNING "%d byte HW ECC not possible on "
3215                        "%d byte page size, fallback to SW ECC\n",
3216                        chip->ecc.size, mtd->writesize);
3217                 chip->ecc.mode = NAND_ECC_SOFT;
3218
3219         case NAND_ECC_SOFT:
3220                 chip->ecc.calculate = nand_calculate_ecc;
3221                 chip->ecc.correct = nand_correct_data;
3222                 chip->ecc.read_page = nand_read_page_swecc;
3223                 chip->ecc.read_subpage = nand_read_subpage;
3224                 chip->ecc.write_page = nand_write_page_swecc;
3225                 chip->ecc.read_page_raw = nand_read_page_raw;
3226                 chip->ecc.write_page_raw = nand_write_page_raw;
3227                 chip->ecc.read_oob = nand_read_oob_std;
3228                 chip->ecc.write_oob = nand_write_oob_std;
3229                 if (!chip->ecc.size)
3230                         chip->ecc.size = 256;
3231                 chip->ecc.bytes = 3;
3232                 break;
3233
3234         case NAND_ECC_NONE:
3235                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3236                        "This is not recommended !!\n");
3237                 chip->ecc.read_page = nand_read_page_raw;
3238                 chip->ecc.write_page = nand_write_page_raw;
3239                 chip->ecc.read_oob = nand_read_oob_std;
3240                 chip->ecc.read_page_raw = nand_read_page_raw;
3241                 chip->ecc.write_page_raw = nand_write_page_raw;
3242                 chip->ecc.write_oob = nand_write_oob_std;
3243                 chip->ecc.size = mtd->writesize;
3244                 chip->ecc.bytes = 0;
3245                 break;
3246
3247         default:
3248                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3249                        chip->ecc.mode);
3250                 BUG();
3251         }
3252
3253         /*
3254          * The number of bytes available for a client to place data into
3255          * the out of band area
3256          */
3257         chip->ecc.layout->oobavail = 0;
3258         for (i = 0; chip->ecc.layout->oobfree[i].length
3259                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3260                 chip->ecc.layout->oobavail +=
3261                         chip->ecc.layout->oobfree[i].length;
3262         mtd->oobavail = chip->ecc.layout->oobavail;
3263
3264         /*
3265          * Set the number of read / write steps for one page depending on ECC
3266          * mode
3267          */
3268         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3269         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3270                 printk(KERN_WARNING "Invalid ecc parameters\n");
3271                 BUG();
3272         }
3273         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3274
3275         /*
3276          * Allow subpage writes up to ecc.steps. Not possible for MLC
3277          * FLASH.
3278          */
3279         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3280             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3281                 switch(chip->ecc.steps) {
3282                 case 2:
3283                         mtd->subpage_sft = 1;
3284                         break;
3285                 case 4:
3286                 case 8:
3287                 case 16:
3288                         mtd->subpage_sft = 2;
3289                         break;
3290                 }
3291         }
3292         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3293
3294         /* Initialize state */
3295         chip->state = FL_READY;
3296
3297         /* De-select the device */
3298         chip->select_chip(mtd, -1);
3299
3300         /* Invalidate the pagebuffer reference */
3301         chip->pagebuf = -1;
3302
3303         /* Fill in remaining MTD driver data */
3304         mtd->type = MTD_NANDFLASH;
3305         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3306                                                 MTD_CAP_NANDFLASH;
3307         mtd->erase = nand_erase;
3308         mtd->point = NULL;
3309         mtd->unpoint = NULL;
3310         mtd->read = nand_read;
3311         mtd->write = nand_write;
3312         mtd->panic_write = panic_nand_write;
3313         mtd->read_oob = nand_read_oob;
3314         mtd->write_oob = nand_write_oob;
3315         mtd->panic_write = nand_panic_write;
3316         mtd->sync = nand_sync;
3317         mtd->lock = NULL;
3318         mtd->unlock = NULL;
3319         mtd->suspend = nand_suspend;
3320         mtd->resume = nand_resume;
3321         mtd->block_isbad = nand_block_isbad;
3322         mtd->block_markbad = nand_block_markbad;
3323
3324         /* propagate ecc.layout to mtd_info */
3325         mtd->ecclayout = chip->ecc.layout;
3326
3327         /* Check, if we should skip the bad block table scan */
3328         if (chip->options & NAND_SKIP_BBTSCAN)
3329                 return 0;
3330
3331         /* Build bad block table */
3332         return chip->scan_bbt(mtd);
3333 }
3334
3335 /* is_module_text_address() isn't exported, and it's mostly a pointless
3336    test if this is a module _anyway_ -- they'd have to try _really_ hard
3337    to call us from in-kernel code if the core NAND support is modular. */
3338 #ifdef MODULE
3339 #define caller_is_module() (1)
3340 #else
3341 #define caller_is_module() \
3342         is_module_text_address((unsigned long)__builtin_return_address(0))
3343 #endif
3344
3345 /**
3346  * nand_scan - [NAND Interface] Scan for the NAND device
3347  * @mtd:        MTD device structure
3348  * @maxchips:   Number of chips to scan for
3349  *
3350  * This fills out all the uninitialized function pointers
3351  * with the defaults.
3352  * The flash ID is read and the mtd/chip structures are
3353  * filled with the appropriate values.
3354  * The mtd->owner field must be set to the module of the caller
3355  *
3356  */
3357 int nand_scan(struct mtd_info *mtd, int maxchips)
3358 {
3359         int ret;
3360
3361         /* Many callers got this wrong, so check for it for a while... */
3362         if (!mtd->owner && caller_is_module()) {
3363                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3364                                 __func__);
3365                 BUG();
3366         }
3367
3368         ret = nand_scan_ident(mtd, maxchips, NULL);
3369         if (!ret)
3370                 ret = nand_scan_tail(mtd);
3371         return ret;
3372 }
3373
3374 /**
3375  * nand_release - [NAND Interface] Free resources held by the NAND device
3376  * @mtd:        MTD device structure
3377 */
3378 void nand_release(struct mtd_info *mtd)
3379 {
3380         struct nand_chip *chip = mtd->priv;
3381
3382 #ifdef CONFIG_MTD_PARTITIONS
3383         /* Deregister partitions */
3384         del_mtd_partitions(mtd);
3385 #endif
3386         /* Deregister the device */
3387         del_mtd_device(mtd);
3388
3389         /* Free bad block table memory */
3390         kfree(chip->bbt);
3391         if (!(chip->options & NAND_OWN_BUFFERS))
3392                 kfree(chip->buffers);
3393
3394         /* Free bad block descriptor memory */
3395         if (chip->badblock_pattern && chip->badblock_pattern->options
3396                         & NAND_BBT_DYNAMICSTRUCT)
3397                 kfree(chip->badblock_pattern);
3398 }
3399
3400 EXPORT_SYMBOL_GPL(nand_lock);
3401 EXPORT_SYMBOL_GPL(nand_unlock);
3402 EXPORT_SYMBOL_GPL(nand_scan);
3403 EXPORT_SYMBOL_GPL(nand_scan_ident);
3404 EXPORT_SYMBOL_GPL(nand_scan_tail);
3405 EXPORT_SYMBOL_GPL(nand_release);
3406
3407 static int __init nand_base_init(void)
3408 {
3409         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3410         return 0;
3411 }
3412
3413 static void __exit nand_base_exit(void)
3414 {
3415         led_trigger_unregister_simple(nand_led_trigger);
3416 }
3417
3418 module_init(nand_base_init);
3419 module_exit(nand_base_exit);
3420
3421 MODULE_LICENSE("GPL");
3422 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3423 MODULE_DESCRIPTION("Generic NAND flash driver code");