Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/mm.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99                              struct mtd_oob_ops *ops);
100
101 /*
102  * For devices which display every fart in the system on a separate LED. Is
103  * compiled away when LED support is disabled.
104  */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
107 static int check_offs_len(struct mtd_info *mtd,
108                                         loff_t ofs, uint64_t len)
109 {
110         struct nand_chip *chip = mtd->priv;
111         int ret = 0;
112
113         /* Start address must align on block boundary */
114         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115                 pr_debug("%s: unaligned address\n", __func__);
116                 ret = -EINVAL;
117         }
118
119         /* Length must align on block boundary */
120         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121                 pr_debug("%s: length not block aligned\n", __func__);
122                 ret = -EINVAL;
123         }
124
125         return ret;
126 }
127
128 /**
129  * nand_release_device - [GENERIC] release chip
130  * @mtd: MTD device structure
131  *
132  * Release chip lock and wake up anyone waiting on the device.
133  */
134 static void nand_release_device(struct mtd_info *mtd)
135 {
136         struct nand_chip *chip = mtd->priv;
137
138         /* Release the controller and the chip */
139         spin_lock(&chip->controller->lock);
140         chip->controller->active = NULL;
141         chip->state = FL_READY;
142         wake_up(&chip->controller->wq);
143         spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147  * nand_read_byte - [DEFAULT] read one byte from the chip
148  * @mtd: MTD device structure
149  *
150  * Default read function for 8bit buswidth
151  */
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154         struct nand_chip *chip = mtd->priv;
155         return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161  * @mtd: MTD device structure
162  *
163  * Default read function for 16bit buswidth with endianness conversion.
164  *
165  */
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 }
171
172 /**
173  * nand_read_word - [DEFAULT] read one word from the chip
174  * @mtd: MTD device structure
175  *
176  * Default read function for 16bit buswidth without endianness conversion.
177  */
178 static u16 nand_read_word(struct mtd_info *mtd)
179 {
180         struct nand_chip *chip = mtd->priv;
181         return readw(chip->IO_ADDR_R);
182 }
183
184 /**
185  * nand_select_chip - [DEFAULT] control CE line
186  * @mtd: MTD device structure
187  * @chipnr: chipnumber to select, -1 for deselect
188  *
189  * Default select function for 1 chip devices.
190  */
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
192 {
193         struct nand_chip *chip = mtd->priv;
194
195         switch (chipnr) {
196         case -1:
197                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198                 break;
199         case 0:
200                 break;
201
202         default:
203                 BUG();
204         }
205 }
206
207 /**
208  * nand_write_byte - [DEFAULT] write single byte to chip
209  * @mtd: MTD device structure
210  * @byte: value to write
211  *
212  * Default function to write a byte to I/O[7:0]
213  */
214 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
215 {
216         struct nand_chip *chip = mtd->priv;
217
218         chip->write_buf(mtd, &byte, 1);
219 }
220
221 /**
222  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223  * @mtd: MTD device structure
224  * @byte: value to write
225  *
226  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
227  */
228 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
229 {
230         struct nand_chip *chip = mtd->priv;
231         uint16_t word = byte;
232
233         /*
234          * It's not entirely clear what should happen to I/O[15:8] when writing
235          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
236          *
237          *    When the host supports a 16-bit bus width, only data is
238          *    transferred at the 16-bit width. All address and command line
239          *    transfers shall use only the lower 8-bits of the data bus. During
240          *    command transfers, the host may place any value on the upper
241          *    8-bits of the data bus. During address transfers, the host shall
242          *    set the upper 8-bits of the data bus to 00h.
243          *
244          * One user of the write_byte callback is nand_onfi_set_features. The
245          * four parameters are specified to be written to I/O[7:0], but this is
246          * neither an address nor a command transfer. Let's assume a 0 on the
247          * upper I/O lines is OK.
248          */
249         chip->write_buf(mtd, (uint8_t *)&word, 2);
250 }
251
252 /**
253  * nand_write_buf - [DEFAULT] write buffer to chip
254  * @mtd: MTD device structure
255  * @buf: data buffer
256  * @len: number of bytes to write
257  *
258  * Default write function for 8bit buswidth.
259  */
260 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
261 {
262         struct nand_chip *chip = mtd->priv;
263
264         iowrite8_rep(chip->IO_ADDR_W, buf, len);
265 }
266
267 /**
268  * nand_read_buf - [DEFAULT] read chip data into buffer
269  * @mtd: MTD device structure
270  * @buf: buffer to store date
271  * @len: number of bytes to read
272  *
273  * Default read function for 8bit buswidth.
274  */
275 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
276 {
277         struct nand_chip *chip = mtd->priv;
278
279         ioread8_rep(chip->IO_ADDR_R, buf, len);
280 }
281
282 /**
283  * nand_write_buf16 - [DEFAULT] write buffer to chip
284  * @mtd: MTD device structure
285  * @buf: data buffer
286  * @len: number of bytes to write
287  *
288  * Default write function for 16bit buswidth.
289  */
290 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
291 {
292         struct nand_chip *chip = mtd->priv;
293         u16 *p = (u16 *) buf;
294
295         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
296 }
297
298 /**
299  * nand_read_buf16 - [DEFAULT] read chip data into buffer
300  * @mtd: MTD device structure
301  * @buf: buffer to store date
302  * @len: number of bytes to read
303  *
304  * Default read function for 16bit buswidth.
305  */
306 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
307 {
308         struct nand_chip *chip = mtd->priv;
309         u16 *p = (u16 *) buf;
310
311         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
312 }
313
314 /**
315  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
316  * @mtd: MTD device structure
317  * @ofs: offset from device start
318  * @getchip: 0, if the chip is already selected
319  *
320  * Check, if the block is bad.
321  */
322 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
323 {
324         int page, chipnr, res = 0, i = 0;
325         struct nand_chip *chip = mtd->priv;
326         u16 bad;
327
328         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
329                 ofs += mtd->erasesize - mtd->writesize;
330
331         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
332
333         if (getchip) {
334                 chipnr = (int)(ofs >> chip->chip_shift);
335
336                 nand_get_device(mtd, FL_READING);
337
338                 /* Select the NAND device */
339                 chip->select_chip(mtd, chipnr);
340         }
341
342         do {
343                 if (chip->options & NAND_BUSWIDTH_16) {
344                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
345                                         chip->badblockpos & 0xFE, page);
346                         bad = cpu_to_le16(chip->read_word(mtd));
347                         if (chip->badblockpos & 0x1)
348                                 bad >>= 8;
349                         else
350                                 bad &= 0xFF;
351                 } else {
352                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
353                                         page);
354                         bad = chip->read_byte(mtd);
355                 }
356
357                 if (likely(chip->badblockbits == 8))
358                         res = bad != 0xFF;
359                 else
360                         res = hweight8(bad) < chip->badblockbits;
361                 ofs += mtd->writesize;
362                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
363                 i++;
364         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
365
366         if (getchip) {
367                 chip->select_chip(mtd, -1);
368                 nand_release_device(mtd);
369         }
370
371         return res;
372 }
373
374 /**
375  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
376  * @mtd: MTD device structure
377  * @ofs: offset from device start
378  *
379  * This is the default implementation, which can be overridden by a hardware
380  * specific driver. It provides the details for writing a bad block marker to a
381  * block.
382  */
383 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
384 {
385         struct nand_chip *chip = mtd->priv;
386         struct mtd_oob_ops ops;
387         uint8_t buf[2] = { 0, 0 };
388         int ret = 0, res, i = 0;
389
390         ops.datbuf = NULL;
391         ops.oobbuf = buf;
392         ops.ooboffs = chip->badblockpos;
393         if (chip->options & NAND_BUSWIDTH_16) {
394                 ops.ooboffs &= ~0x01;
395                 ops.len = ops.ooblen = 2;
396         } else {
397                 ops.len = ops.ooblen = 1;
398         }
399         ops.mode = MTD_OPS_PLACE_OOB;
400
401         /* Write to first/last page(s) if necessary */
402         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
403                 ofs += mtd->erasesize - mtd->writesize;
404         do {
405                 res = nand_do_write_oob(mtd, ofs, &ops);
406                 if (!ret)
407                         ret = res;
408
409                 i++;
410                 ofs += mtd->writesize;
411         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
412
413         return ret;
414 }
415
416 /**
417  * nand_block_markbad_lowlevel - mark a block bad
418  * @mtd: MTD device structure
419  * @ofs: offset from device start
420  *
421  * This function performs the generic NAND bad block marking steps (i.e., bad
422  * block table(s) and/or marker(s)). We only allow the hardware driver to
423  * specify how to write bad block markers to OOB (chip->block_markbad).
424  *
425  * We try operations in the following order:
426  *  (1) erase the affected block, to allow OOB marker to be written cleanly
427  *  (2) write bad block marker to OOB area of affected block (unless flag
428  *      NAND_BBT_NO_OOB_BBM is present)
429  *  (3) update the BBT
430  * Note that we retain the first error encountered in (2) or (3), finish the
431  * procedures, and dump the error in the end.
432 */
433 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
434 {
435         struct nand_chip *chip = mtd->priv;
436         int res, ret = 0;
437
438         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
439                 struct erase_info einfo;
440
441                 /* Attempt erase before marking OOB */
442                 memset(&einfo, 0, sizeof(einfo));
443                 einfo.mtd = mtd;
444                 einfo.addr = ofs;
445                 einfo.len = 1ULL << chip->phys_erase_shift;
446                 nand_erase_nand(mtd, &einfo, 0);
447
448                 /* Write bad block marker to OOB */
449                 nand_get_device(mtd, FL_WRITING);
450                 ret = chip->block_markbad(mtd, ofs);
451                 nand_release_device(mtd);
452         }
453
454         /* Mark block bad in BBT */
455         if (chip->bbt) {
456                 res = nand_markbad_bbt(mtd, ofs);
457                 if (!ret)
458                         ret = res;
459         }
460
461         if (!ret)
462                 mtd->ecc_stats.badblocks++;
463
464         return ret;
465 }
466
467 /**
468  * nand_check_wp - [GENERIC] check if the chip is write protected
469  * @mtd: MTD device structure
470  *
471  * Check, if the device is write protected. The function expects, that the
472  * device is already selected.
473  */
474 static int nand_check_wp(struct mtd_info *mtd)
475 {
476         struct nand_chip *chip = mtd->priv;
477
478         /* Broken xD cards report WP despite being writable */
479         if (chip->options & NAND_BROKEN_XD)
480                 return 0;
481
482         /* Check the WP bit */
483         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
484         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
485 }
486
487 /**
488  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
489  * @mtd: MTD device structure
490  * @ofs: offset from device start
491  *
492  * Check if the block is marked as reserved.
493  */
494 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
495 {
496         struct nand_chip *chip = mtd->priv;
497
498         if (!chip->bbt)
499                 return 0;
500         /* Return info from the table */
501         return nand_isreserved_bbt(mtd, ofs);
502 }
503
504 /**
505  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
506  * @mtd: MTD device structure
507  * @ofs: offset from device start
508  * @getchip: 0, if the chip is already selected
509  * @allowbbt: 1, if its allowed to access the bbt area
510  *
511  * Check, if the block is bad. Either by reading the bad block table or
512  * calling of the scan function.
513  */
514 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
515                                int allowbbt)
516 {
517         struct nand_chip *chip = mtd->priv;
518
519         if (!chip->bbt)
520                 return chip->block_bad(mtd, ofs, getchip);
521
522         /* Return info from the table */
523         return nand_isbad_bbt(mtd, ofs, allowbbt);
524 }
525
526 /**
527  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
528  * @mtd: MTD device structure
529  * @timeo: Timeout
530  *
531  * Helper function for nand_wait_ready used when needing to wait in interrupt
532  * context.
533  */
534 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
535 {
536         struct nand_chip *chip = mtd->priv;
537         int i;
538
539         /* Wait for the device to get ready */
540         for (i = 0; i < timeo; i++) {
541                 if (chip->dev_ready(mtd))
542                         break;
543                 touch_softlockup_watchdog();
544                 mdelay(1);
545         }
546 }
547
548 /* Wait for the ready pin, after a command. The timeout is caught later. */
549 void nand_wait_ready(struct mtd_info *mtd)
550 {
551         struct nand_chip *chip = mtd->priv;
552         unsigned long timeo = jiffies + msecs_to_jiffies(20);
553
554         /* 400ms timeout */
555         if (in_interrupt() || oops_in_progress)
556                 return panic_nand_wait_ready(mtd, 400);
557
558         led_trigger_event(nand_led_trigger, LED_FULL);
559         /* Wait until command is processed or timeout occurs */
560         do {
561                 if (chip->dev_ready(mtd))
562                         break;
563                 touch_softlockup_watchdog();
564         } while (time_before(jiffies, timeo));
565         led_trigger_event(nand_led_trigger, LED_OFF);
566 }
567 EXPORT_SYMBOL_GPL(nand_wait_ready);
568
569 /**
570  * nand_command - [DEFAULT] Send command to NAND device
571  * @mtd: MTD device structure
572  * @command: the command to be sent
573  * @column: the column address for this command, -1 if none
574  * @page_addr: the page address for this command, -1 if none
575  *
576  * Send command to NAND device. This function is used for small page devices
577  * (512 Bytes per page).
578  */
579 static void nand_command(struct mtd_info *mtd, unsigned int command,
580                          int column, int page_addr)
581 {
582         register struct nand_chip *chip = mtd->priv;
583         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
584
585         /* Write out the command to the device */
586         if (command == NAND_CMD_SEQIN) {
587                 int readcmd;
588
589                 if (column >= mtd->writesize) {
590                         /* OOB area */
591                         column -= mtd->writesize;
592                         readcmd = NAND_CMD_READOOB;
593                 } else if (column < 256) {
594                         /* First 256 bytes --> READ0 */
595                         readcmd = NAND_CMD_READ0;
596                 } else {
597                         column -= 256;
598                         readcmd = NAND_CMD_READ1;
599                 }
600                 chip->cmd_ctrl(mtd, readcmd, ctrl);
601                 ctrl &= ~NAND_CTRL_CHANGE;
602         }
603         chip->cmd_ctrl(mtd, command, ctrl);
604
605         /* Address cycle, when necessary */
606         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
607         /* Serially input address */
608         if (column != -1) {
609                 /* Adjust columns for 16 bit buswidth */
610                 if (chip->options & NAND_BUSWIDTH_16 &&
611                                 !nand_opcode_8bits(command))
612                         column >>= 1;
613                 chip->cmd_ctrl(mtd, column, ctrl);
614                 ctrl &= ~NAND_CTRL_CHANGE;
615         }
616         if (page_addr != -1) {
617                 chip->cmd_ctrl(mtd, page_addr, ctrl);
618                 ctrl &= ~NAND_CTRL_CHANGE;
619                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
620                 /* One more address cycle for devices > 32MiB */
621                 if (chip->chipsize > (32 << 20))
622                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
623         }
624         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
625
626         /*
627          * Program and erase have their own busy handlers status and sequential
628          * in needs no delay
629          */
630         switch (command) {
631
632         case NAND_CMD_PAGEPROG:
633         case NAND_CMD_ERASE1:
634         case NAND_CMD_ERASE2:
635         case NAND_CMD_SEQIN:
636         case NAND_CMD_STATUS:
637                 return;
638
639         case NAND_CMD_RESET:
640                 if (chip->dev_ready)
641                         break;
642                 udelay(chip->chip_delay);
643                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
644                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
645                 chip->cmd_ctrl(mtd,
646                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
647                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
648                                 ;
649                 return;
650
651                 /* This applies to read commands */
652         default:
653                 /*
654                  * If we don't have access to the busy pin, we apply the given
655                  * command delay
656                  */
657                 if (!chip->dev_ready) {
658                         udelay(chip->chip_delay);
659                         return;
660                 }
661         }
662         /*
663          * Apply this short delay always to ensure that we do wait tWB in
664          * any case on any machine.
665          */
666         ndelay(100);
667
668         nand_wait_ready(mtd);
669 }
670
671 /**
672  * nand_command_lp - [DEFAULT] Send command to NAND large page device
673  * @mtd: MTD device structure
674  * @command: the command to be sent
675  * @column: the column address for this command, -1 if none
676  * @page_addr: the page address for this command, -1 if none
677  *
678  * Send command to NAND device. This is the version for the new large page
679  * devices. We don't have the separate regions as we have in the small page
680  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
681  */
682 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
683                             int column, int page_addr)
684 {
685         register struct nand_chip *chip = mtd->priv;
686
687         /* Emulate NAND_CMD_READOOB */
688         if (command == NAND_CMD_READOOB) {
689                 column += mtd->writesize;
690                 command = NAND_CMD_READ0;
691         }
692
693         /* Command latch cycle */
694         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
695
696         if (column != -1 || page_addr != -1) {
697                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
698
699                 /* Serially input address */
700                 if (column != -1) {
701                         /* Adjust columns for 16 bit buswidth */
702                         if (chip->options & NAND_BUSWIDTH_16 &&
703                                         !nand_opcode_8bits(command))
704                                 column >>= 1;
705                         chip->cmd_ctrl(mtd, column, ctrl);
706                         ctrl &= ~NAND_CTRL_CHANGE;
707                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
708                 }
709                 if (page_addr != -1) {
710                         chip->cmd_ctrl(mtd, page_addr, ctrl);
711                         chip->cmd_ctrl(mtd, page_addr >> 8,
712                                        NAND_NCE | NAND_ALE);
713                         /* One more address cycle for devices > 128MiB */
714                         if (chip->chipsize > (128 << 20))
715                                 chip->cmd_ctrl(mtd, page_addr >> 16,
716                                                NAND_NCE | NAND_ALE);
717                 }
718         }
719         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
720
721         /*
722          * Program and erase have their own busy handlers status, sequential
723          * in and status need no delay.
724          */
725         switch (command) {
726
727         case NAND_CMD_CACHEDPROG:
728         case NAND_CMD_PAGEPROG:
729         case NAND_CMD_ERASE1:
730         case NAND_CMD_ERASE2:
731         case NAND_CMD_SEQIN:
732         case NAND_CMD_RNDIN:
733         case NAND_CMD_STATUS:
734                 return;
735
736         case NAND_CMD_RESET:
737                 if (chip->dev_ready)
738                         break;
739                 udelay(chip->chip_delay);
740                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
741                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
742                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
743                                NAND_NCE | NAND_CTRL_CHANGE);
744                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
745                                 ;
746                 return;
747
748         case NAND_CMD_RNDOUT:
749                 /* No ready / busy check necessary */
750                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
751                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753                                NAND_NCE | NAND_CTRL_CHANGE);
754                 return;
755
756         case NAND_CMD_READ0:
757                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
758                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760                                NAND_NCE | NAND_CTRL_CHANGE);
761
762                 /* This applies to read commands */
763         default:
764                 /*
765                  * If we don't have access to the busy pin, we apply the given
766                  * command delay.
767                  */
768                 if (!chip->dev_ready) {
769                         udelay(chip->chip_delay);
770                         return;
771                 }
772         }
773
774         /*
775          * Apply this short delay always to ensure that we do wait tWB in
776          * any case on any machine.
777          */
778         ndelay(100);
779
780         nand_wait_ready(mtd);
781 }
782
783 /**
784  * panic_nand_get_device - [GENERIC] Get chip for selected access
785  * @chip: the nand chip descriptor
786  * @mtd: MTD device structure
787  * @new_state: the state which is requested
788  *
789  * Used when in panic, no locks are taken.
790  */
791 static void panic_nand_get_device(struct nand_chip *chip,
792                       struct mtd_info *mtd, int new_state)
793 {
794         /* Hardware controller shared among independent devices */
795         chip->controller->active = chip;
796         chip->state = new_state;
797 }
798
799 /**
800  * nand_get_device - [GENERIC] Get chip for selected access
801  * @mtd: MTD device structure
802  * @new_state: the state which is requested
803  *
804  * Get the device and lock it for exclusive access
805  */
806 static int
807 nand_get_device(struct mtd_info *mtd, int new_state)
808 {
809         struct nand_chip *chip = mtd->priv;
810         spinlock_t *lock = &chip->controller->lock;
811         wait_queue_head_t *wq = &chip->controller->wq;
812         DECLARE_WAITQUEUE(wait, current);
813 retry:
814         spin_lock(lock);
815
816         /* Hardware controller shared among independent devices */
817         if (!chip->controller->active)
818                 chip->controller->active = chip;
819
820         if (chip->controller->active == chip && chip->state == FL_READY) {
821                 chip->state = new_state;
822                 spin_unlock(lock);
823                 return 0;
824         }
825         if (new_state == FL_PM_SUSPENDED) {
826                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
827                         chip->state = FL_PM_SUSPENDED;
828                         spin_unlock(lock);
829                         return 0;
830                 }
831         }
832         set_current_state(TASK_UNINTERRUPTIBLE);
833         add_wait_queue(wq, &wait);
834         spin_unlock(lock);
835         schedule();
836         remove_wait_queue(wq, &wait);
837         goto retry;
838 }
839
840 /**
841  * panic_nand_wait - [GENERIC] wait until the command is done
842  * @mtd: MTD device structure
843  * @chip: NAND chip structure
844  * @timeo: timeout
845  *
846  * Wait for command done. This is a helper function for nand_wait used when
847  * we are in interrupt context. May happen when in panic and trying to write
848  * an oops through mtdoops.
849  */
850 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
851                             unsigned long timeo)
852 {
853         int i;
854         for (i = 0; i < timeo; i++) {
855                 if (chip->dev_ready) {
856                         if (chip->dev_ready(mtd))
857                                 break;
858                 } else {
859                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
860                                 break;
861                 }
862                 mdelay(1);
863         }
864 }
865
866 /**
867  * nand_wait - [DEFAULT] wait until the command is done
868  * @mtd: MTD device structure
869  * @chip: NAND chip structure
870  *
871  * Wait for command done. This applies to erase and program only. Erase can
872  * take up to 400ms and program up to 20ms according to general NAND and
873  * SmartMedia specs.
874  */
875 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
876 {
877
878         int status, state = chip->state;
879         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
880
881         led_trigger_event(nand_led_trigger, LED_FULL);
882
883         /*
884          * Apply this short delay always to ensure that we do wait tWB in any
885          * case on any machine.
886          */
887         ndelay(100);
888
889         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
890
891         if (in_interrupt() || oops_in_progress)
892                 panic_nand_wait(mtd, chip, timeo);
893         else {
894                 timeo = jiffies + msecs_to_jiffies(timeo);
895                 while (time_before(jiffies, timeo)) {
896                         if (chip->dev_ready) {
897                                 if (chip->dev_ready(mtd))
898                                         break;
899                         } else {
900                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
901                                         break;
902                         }
903                         cond_resched();
904                 }
905         }
906         led_trigger_event(nand_led_trigger, LED_OFF);
907
908         status = (int)chip->read_byte(mtd);
909         /* This can happen if in case of timeout or buggy dev_ready */
910         WARN_ON(!(status & NAND_STATUS_READY));
911         return status;
912 }
913
914 /**
915  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
916  * @mtd: mtd info
917  * @ofs: offset to start unlock from
918  * @len: length to unlock
919  * @invert: when = 0, unlock the range of blocks within the lower and
920  *                    upper boundary address
921  *          when = 1, unlock the range of blocks outside the boundaries
922  *                    of the lower and upper boundary address
923  *
924  * Returs unlock status.
925  */
926 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
927                                         uint64_t len, int invert)
928 {
929         int ret = 0;
930         int status, page;
931         struct nand_chip *chip = mtd->priv;
932
933         /* Submit address of first page to unlock */
934         page = ofs >> chip->page_shift;
935         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
936
937         /* Submit address of last page to unlock */
938         page = (ofs + len) >> chip->page_shift;
939         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
940                                 (page | invert) & chip->pagemask);
941
942         /* Call wait ready function */
943         status = chip->waitfunc(mtd, chip);
944         /* See if device thinks it succeeded */
945         if (status & NAND_STATUS_FAIL) {
946                 pr_debug("%s: error status = 0x%08x\n",
947                                         __func__, status);
948                 ret = -EIO;
949         }
950
951         return ret;
952 }
953
954 /**
955  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
956  * @mtd: mtd info
957  * @ofs: offset to start unlock from
958  * @len: length to unlock
959  *
960  * Returns unlock status.
961  */
962 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
963 {
964         int ret = 0;
965         int chipnr;
966         struct nand_chip *chip = mtd->priv;
967
968         pr_debug("%s: start = 0x%012llx, len = %llu\n",
969                         __func__, (unsigned long long)ofs, len);
970
971         if (check_offs_len(mtd, ofs, len))
972                 ret = -EINVAL;
973
974         /* Align to last block address if size addresses end of the device */
975         if (ofs + len == mtd->size)
976                 len -= mtd->erasesize;
977
978         nand_get_device(mtd, FL_UNLOCKING);
979
980         /* Shift to get chip number */
981         chipnr = ofs >> chip->chip_shift;
982
983         chip->select_chip(mtd, chipnr);
984
985         /*
986          * Reset the chip.
987          * If we want to check the WP through READ STATUS and check the bit 7
988          * we must reset the chip
989          * some operation can also clear the bit 7 of status register
990          * eg. erase/program a locked block
991          */
992         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
993
994         /* Check, if it is write protected */
995         if (nand_check_wp(mtd)) {
996                 pr_debug("%s: device is write protected!\n",
997                                         __func__);
998                 ret = -EIO;
999                 goto out;
1000         }
1001
1002         ret = __nand_unlock(mtd, ofs, len, 0);
1003
1004 out:
1005         chip->select_chip(mtd, -1);
1006         nand_release_device(mtd);
1007
1008         return ret;
1009 }
1010 EXPORT_SYMBOL(nand_unlock);
1011
1012 /**
1013  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1014  * @mtd: mtd info
1015  * @ofs: offset to start unlock from
1016  * @len: length to unlock
1017  *
1018  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1019  * have this feature, but it allows only to lock all blocks, not for specified
1020  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1021  * now.
1022  *
1023  * Returns lock status.
1024  */
1025 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1026 {
1027         int ret = 0;
1028         int chipnr, status, page;
1029         struct nand_chip *chip = mtd->priv;
1030
1031         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1032                         __func__, (unsigned long long)ofs, len);
1033
1034         if (check_offs_len(mtd, ofs, len))
1035                 ret = -EINVAL;
1036
1037         nand_get_device(mtd, FL_LOCKING);
1038
1039         /* Shift to get chip number */
1040         chipnr = ofs >> chip->chip_shift;
1041
1042         chip->select_chip(mtd, chipnr);
1043
1044         /*
1045          * Reset the chip.
1046          * If we want to check the WP through READ STATUS and check the bit 7
1047          * we must reset the chip
1048          * some operation can also clear the bit 7 of status register
1049          * eg. erase/program a locked block
1050          */
1051         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1052
1053         /* Check, if it is write protected */
1054         if (nand_check_wp(mtd)) {
1055                 pr_debug("%s: device is write protected!\n",
1056                                         __func__);
1057                 status = MTD_ERASE_FAILED;
1058                 ret = -EIO;
1059                 goto out;
1060         }
1061
1062         /* Submit address of first page to lock */
1063         page = ofs >> chip->page_shift;
1064         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1065
1066         /* Call wait ready function */
1067         status = chip->waitfunc(mtd, chip);
1068         /* See if device thinks it succeeded */
1069         if (status & NAND_STATUS_FAIL) {
1070                 pr_debug("%s: error status = 0x%08x\n",
1071                                         __func__, status);
1072                 ret = -EIO;
1073                 goto out;
1074         }
1075
1076         ret = __nand_unlock(mtd, ofs, len, 0x1);
1077
1078 out:
1079         chip->select_chip(mtd, -1);
1080         nand_release_device(mtd);
1081
1082         return ret;
1083 }
1084 EXPORT_SYMBOL(nand_lock);
1085
1086 /**
1087  * nand_read_page_raw - [INTERN] read raw page data without ecc
1088  * @mtd: mtd info structure
1089  * @chip: nand chip info structure
1090  * @buf: buffer to store read data
1091  * @oob_required: caller requires OOB data read to chip->oob_poi
1092  * @page: page number to read
1093  *
1094  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1095  */
1096 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1097                               uint8_t *buf, int oob_required, int page)
1098 {
1099         chip->read_buf(mtd, buf, mtd->writesize);
1100         if (oob_required)
1101                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1102         return 0;
1103 }
1104
1105 /**
1106  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1107  * @mtd: mtd info structure
1108  * @chip: nand chip info structure
1109  * @buf: buffer to store read data
1110  * @oob_required: caller requires OOB data read to chip->oob_poi
1111  * @page: page number to read
1112  *
1113  * We need a special oob layout and handling even when OOB isn't used.
1114  */
1115 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1116                                        struct nand_chip *chip, uint8_t *buf,
1117                                        int oob_required, int page)
1118 {
1119         int eccsize = chip->ecc.size;
1120         int eccbytes = chip->ecc.bytes;
1121         uint8_t *oob = chip->oob_poi;
1122         int steps, size;
1123
1124         for (steps = chip->ecc.steps; steps > 0; steps--) {
1125                 chip->read_buf(mtd, buf, eccsize);
1126                 buf += eccsize;
1127
1128                 if (chip->ecc.prepad) {
1129                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1130                         oob += chip->ecc.prepad;
1131                 }
1132
1133                 chip->read_buf(mtd, oob, eccbytes);
1134                 oob += eccbytes;
1135
1136                 if (chip->ecc.postpad) {
1137                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1138                         oob += chip->ecc.postpad;
1139                 }
1140         }
1141
1142         size = mtd->oobsize - (oob - chip->oob_poi);
1143         if (size)
1144                 chip->read_buf(mtd, oob, size);
1145
1146         return 0;
1147 }
1148
1149 /**
1150  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1151  * @mtd: mtd info structure
1152  * @chip: nand chip info structure
1153  * @buf: buffer to store read data
1154  * @oob_required: caller requires OOB data read to chip->oob_poi
1155  * @page: page number to read
1156  */
1157 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1158                                 uint8_t *buf, int oob_required, int page)
1159 {
1160         int i, eccsize = chip->ecc.size;
1161         int eccbytes = chip->ecc.bytes;
1162         int eccsteps = chip->ecc.steps;
1163         uint8_t *p = buf;
1164         uint8_t *ecc_calc = chip->buffers->ecccalc;
1165         uint8_t *ecc_code = chip->buffers->ecccode;
1166         uint32_t *eccpos = chip->ecc.layout->eccpos;
1167         unsigned int max_bitflips = 0;
1168
1169         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1170
1171         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1172                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1173
1174         for (i = 0; i < chip->ecc.total; i++)
1175                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1176
1177         eccsteps = chip->ecc.steps;
1178         p = buf;
1179
1180         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1181                 int stat;
1182
1183                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1184                 if (stat < 0) {
1185                         mtd->ecc_stats.failed++;
1186                 } else {
1187                         mtd->ecc_stats.corrected += stat;
1188                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1189                 }
1190         }
1191         return max_bitflips;
1192 }
1193
1194 /**
1195  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1196  * @mtd: mtd info structure
1197  * @chip: nand chip info structure
1198  * @data_offs: offset of requested data within the page
1199  * @readlen: data length
1200  * @bufpoi: buffer to store read data
1201  * @page: page number to read
1202  */
1203 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1204                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1205                         int page)
1206 {
1207         int start_step, end_step, num_steps;
1208         uint32_t *eccpos = chip->ecc.layout->eccpos;
1209         uint8_t *p;
1210         int data_col_addr, i, gaps = 0;
1211         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1212         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1213         int index;
1214         unsigned int max_bitflips = 0;
1215
1216         /* Column address within the page aligned to ECC size (256bytes) */
1217         start_step = data_offs / chip->ecc.size;
1218         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1219         num_steps = end_step - start_step + 1;
1220         index = start_step * chip->ecc.bytes;
1221
1222         /* Data size aligned to ECC ecc.size */
1223         datafrag_len = num_steps * chip->ecc.size;
1224         eccfrag_len = num_steps * chip->ecc.bytes;
1225
1226         data_col_addr = start_step * chip->ecc.size;
1227         /* If we read not a page aligned data */
1228         if (data_col_addr != 0)
1229                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1230
1231         p = bufpoi + data_col_addr;
1232         chip->read_buf(mtd, p, datafrag_len);
1233
1234         /* Calculate ECC */
1235         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1236                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1237
1238         /*
1239          * The performance is faster if we position offsets according to
1240          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1241          */
1242         for (i = 0; i < eccfrag_len - 1; i++) {
1243                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1244                         gaps = 1;
1245                         break;
1246                 }
1247         }
1248         if (gaps) {
1249                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1250                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1251         } else {
1252                 /*
1253                  * Send the command to read the particular ECC bytes take care
1254                  * about buswidth alignment in read_buf.
1255                  */
1256                 aligned_pos = eccpos[index] & ~(busw - 1);
1257                 aligned_len = eccfrag_len;
1258                 if (eccpos[index] & (busw - 1))
1259                         aligned_len++;
1260                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1261                         aligned_len++;
1262
1263                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1264                                         mtd->writesize + aligned_pos, -1);
1265                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1266         }
1267
1268         for (i = 0; i < eccfrag_len; i++)
1269                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1270
1271         p = bufpoi + data_col_addr;
1272         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1273                 int stat;
1274
1275                 stat = chip->ecc.correct(mtd, p,
1276                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1277                 if (stat < 0) {
1278                         mtd->ecc_stats.failed++;
1279                 } else {
1280                         mtd->ecc_stats.corrected += stat;
1281                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1282                 }
1283         }
1284         return max_bitflips;
1285 }
1286
1287 /**
1288  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1289  * @mtd: mtd info structure
1290  * @chip: nand chip info structure
1291  * @buf: buffer to store read data
1292  * @oob_required: caller requires OOB data read to chip->oob_poi
1293  * @page: page number to read
1294  *
1295  * Not for syndrome calculating ECC controllers which need a special oob layout.
1296  */
1297 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1298                                 uint8_t *buf, int oob_required, int page)
1299 {
1300         int i, eccsize = chip->ecc.size;
1301         int eccbytes = chip->ecc.bytes;
1302         int eccsteps = chip->ecc.steps;
1303         uint8_t *p = buf;
1304         uint8_t *ecc_calc = chip->buffers->ecccalc;
1305         uint8_t *ecc_code = chip->buffers->ecccode;
1306         uint32_t *eccpos = chip->ecc.layout->eccpos;
1307         unsigned int max_bitflips = 0;
1308
1309         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1310                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1311                 chip->read_buf(mtd, p, eccsize);
1312                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1313         }
1314         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1315
1316         for (i = 0; i < chip->ecc.total; i++)
1317                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1318
1319         eccsteps = chip->ecc.steps;
1320         p = buf;
1321
1322         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1323                 int stat;
1324
1325                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1326                 if (stat < 0) {
1327                         mtd->ecc_stats.failed++;
1328                 } else {
1329                         mtd->ecc_stats.corrected += stat;
1330                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1331                 }
1332         }
1333         return max_bitflips;
1334 }
1335
1336 /**
1337  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1338  * @mtd: mtd info structure
1339  * @chip: nand chip info structure
1340  * @buf: buffer to store read data
1341  * @oob_required: caller requires OOB data read to chip->oob_poi
1342  * @page: page number to read
1343  *
1344  * Hardware ECC for large page chips, require OOB to be read first. For this
1345  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1346  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1347  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1348  * the data area, by overwriting the NAND manufacturer bad block markings.
1349  */
1350 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1351         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1352 {
1353         int i, eccsize = chip->ecc.size;
1354         int eccbytes = chip->ecc.bytes;
1355         int eccsteps = chip->ecc.steps;
1356         uint8_t *p = buf;
1357         uint8_t *ecc_code = chip->buffers->ecccode;
1358         uint32_t *eccpos = chip->ecc.layout->eccpos;
1359         uint8_t *ecc_calc = chip->buffers->ecccalc;
1360         unsigned int max_bitflips = 0;
1361
1362         /* Read the OOB area first */
1363         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1364         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1365         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1366
1367         for (i = 0; i < chip->ecc.total; i++)
1368                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1369
1370         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1371                 int stat;
1372
1373                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1374                 chip->read_buf(mtd, p, eccsize);
1375                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1376
1377                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1378                 if (stat < 0) {
1379                         mtd->ecc_stats.failed++;
1380                 } else {
1381                         mtd->ecc_stats.corrected += stat;
1382                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1383                 }
1384         }
1385         return max_bitflips;
1386 }
1387
1388 /**
1389  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1390  * @mtd: mtd info structure
1391  * @chip: nand chip info structure
1392  * @buf: buffer to store read data
1393  * @oob_required: caller requires OOB data read to chip->oob_poi
1394  * @page: page number to read
1395  *
1396  * The hw generator calculates the error syndrome automatically. Therefore we
1397  * need a special oob layout and handling.
1398  */
1399 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1400                                    uint8_t *buf, int oob_required, int page)
1401 {
1402         int i, eccsize = chip->ecc.size;
1403         int eccbytes = chip->ecc.bytes;
1404         int eccsteps = chip->ecc.steps;
1405         uint8_t *p = buf;
1406         uint8_t *oob = chip->oob_poi;
1407         unsigned int max_bitflips = 0;
1408
1409         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1410                 int stat;
1411
1412                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1413                 chip->read_buf(mtd, p, eccsize);
1414
1415                 if (chip->ecc.prepad) {
1416                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1417                         oob += chip->ecc.prepad;
1418                 }
1419
1420                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1421                 chip->read_buf(mtd, oob, eccbytes);
1422                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1423
1424                 if (stat < 0) {
1425                         mtd->ecc_stats.failed++;
1426                 } else {
1427                         mtd->ecc_stats.corrected += stat;
1428                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1429                 }
1430
1431                 oob += eccbytes;
1432
1433                 if (chip->ecc.postpad) {
1434                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1435                         oob += chip->ecc.postpad;
1436                 }
1437         }
1438
1439         /* Calculate remaining oob bytes */
1440         i = mtd->oobsize - (oob - chip->oob_poi);
1441         if (i)
1442                 chip->read_buf(mtd, oob, i);
1443
1444         return max_bitflips;
1445 }
1446
1447 /**
1448  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1449  * @chip: nand chip structure
1450  * @oob: oob destination address
1451  * @ops: oob ops structure
1452  * @len: size of oob to transfer
1453  */
1454 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1455                                   struct mtd_oob_ops *ops, size_t len)
1456 {
1457         switch (ops->mode) {
1458
1459         case MTD_OPS_PLACE_OOB:
1460         case MTD_OPS_RAW:
1461                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1462                 return oob + len;
1463
1464         case MTD_OPS_AUTO_OOB: {
1465                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1466                 uint32_t boffs = 0, roffs = ops->ooboffs;
1467                 size_t bytes = 0;
1468
1469                 for (; free->length && len; free++, len -= bytes) {
1470                         /* Read request not from offset 0? */
1471                         if (unlikely(roffs)) {
1472                                 if (roffs >= free->length) {
1473                                         roffs -= free->length;
1474                                         continue;
1475                                 }
1476                                 boffs = free->offset + roffs;
1477                                 bytes = min_t(size_t, len,
1478                                               (free->length - roffs));
1479                                 roffs = 0;
1480                         } else {
1481                                 bytes = min_t(size_t, len, free->length);
1482                                 boffs = free->offset;
1483                         }
1484                         memcpy(oob, chip->oob_poi + boffs, bytes);
1485                         oob += bytes;
1486                 }
1487                 return oob;
1488         }
1489         default:
1490                 BUG();
1491         }
1492         return NULL;
1493 }
1494
1495 /**
1496  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1497  * @mtd: MTD device structure
1498  * @retry_mode: the retry mode to use
1499  *
1500  * Some vendors supply a special command to shift the Vt threshold, to be used
1501  * when there are too many bitflips in a page (i.e., ECC error). After setting
1502  * a new threshold, the host should retry reading the page.
1503  */
1504 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1505 {
1506         struct nand_chip *chip = mtd->priv;
1507
1508         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1509
1510         if (retry_mode >= chip->read_retries)
1511                 return -EINVAL;
1512
1513         if (!chip->setup_read_retry)
1514                 return -EOPNOTSUPP;
1515
1516         return chip->setup_read_retry(mtd, retry_mode);
1517 }
1518
1519 /**
1520  * nand_do_read_ops - [INTERN] Read data with ECC
1521  * @mtd: MTD device structure
1522  * @from: offset to read from
1523  * @ops: oob ops structure
1524  *
1525  * Internal function. Called with chip held.
1526  */
1527 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1528                             struct mtd_oob_ops *ops)
1529 {
1530         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1531         struct nand_chip *chip = mtd->priv;
1532         int ret = 0;
1533         uint32_t readlen = ops->len;
1534         uint32_t oobreadlen = ops->ooblen;
1535         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1536                 mtd->oobavail : mtd->oobsize;
1537
1538         uint8_t *bufpoi, *oob, *buf;
1539         int use_bufpoi;
1540         unsigned int max_bitflips = 0;
1541         int retry_mode = 0;
1542         bool ecc_fail = false;
1543
1544         chipnr = (int)(from >> chip->chip_shift);
1545         chip->select_chip(mtd, chipnr);
1546
1547         realpage = (int)(from >> chip->page_shift);
1548         page = realpage & chip->pagemask;
1549
1550         col = (int)(from & (mtd->writesize - 1));
1551
1552         buf = ops->datbuf;
1553         oob = ops->oobbuf;
1554         oob_required = oob ? 1 : 0;
1555
1556         while (1) {
1557                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1558
1559                 bytes = min(mtd->writesize - col, readlen);
1560                 aligned = (bytes == mtd->writesize);
1561
1562                 if (!aligned)
1563                         use_bufpoi = 1;
1564                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1565                         use_bufpoi = !virt_addr_valid(buf);
1566                 else
1567                         use_bufpoi = 0;
1568
1569                 /* Is the current page in the buffer? */
1570                 if (realpage != chip->pagebuf || oob) {
1571                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1572
1573                         if (use_bufpoi && aligned)
1574                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1575                                                  __func__, buf);
1576
1577 read_retry:
1578                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1579
1580                         /*
1581                          * Now read the page into the buffer.  Absent an error,
1582                          * the read methods return max bitflips per ecc step.
1583                          */
1584                         if (unlikely(ops->mode == MTD_OPS_RAW))
1585                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1586                                                               oob_required,
1587                                                               page);
1588                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1589                                  !oob)
1590                                 ret = chip->ecc.read_subpage(mtd, chip,
1591                                                         col, bytes, bufpoi,
1592                                                         page);
1593                         else
1594                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1595                                                           oob_required, page);
1596                         if (ret < 0) {
1597                                 if (use_bufpoi)
1598                                         /* Invalidate page cache */
1599                                         chip->pagebuf = -1;
1600                                 break;
1601                         }
1602
1603                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1604
1605                         /* Transfer not aligned data */
1606                         if (use_bufpoi) {
1607                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1608                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1609                                     (ops->mode != MTD_OPS_RAW)) {
1610                                         chip->pagebuf = realpage;
1611                                         chip->pagebuf_bitflips = ret;
1612                                 } else {
1613                                         /* Invalidate page cache */
1614                                         chip->pagebuf = -1;
1615                                 }
1616                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1617                         }
1618
1619                         if (unlikely(oob)) {
1620                                 int toread = min(oobreadlen, max_oobsize);
1621
1622                                 if (toread) {
1623                                         oob = nand_transfer_oob(chip,
1624                                                 oob, ops, toread);
1625                                         oobreadlen -= toread;
1626                                 }
1627                         }
1628
1629                         if (chip->options & NAND_NEED_READRDY) {
1630                                 /* Apply delay or wait for ready/busy pin */
1631                                 if (!chip->dev_ready)
1632                                         udelay(chip->chip_delay);
1633                                 else
1634                                         nand_wait_ready(mtd);
1635                         }
1636
1637                         if (mtd->ecc_stats.failed - ecc_failures) {
1638                                 if (retry_mode + 1 < chip->read_retries) {
1639                                         retry_mode++;
1640                                         ret = nand_setup_read_retry(mtd,
1641                                                         retry_mode);
1642                                         if (ret < 0)
1643                                                 break;
1644
1645                                         /* Reset failures; retry */
1646                                         mtd->ecc_stats.failed = ecc_failures;
1647                                         goto read_retry;
1648                                 } else {
1649                                         /* No more retry modes; real failure */
1650                                         ecc_fail = true;
1651                                 }
1652                         }
1653
1654                         buf += bytes;
1655                 } else {
1656                         memcpy(buf, chip->buffers->databuf + col, bytes);
1657                         buf += bytes;
1658                         max_bitflips = max_t(unsigned int, max_bitflips,
1659                                              chip->pagebuf_bitflips);
1660                 }
1661
1662                 readlen -= bytes;
1663
1664                 /* Reset to retry mode 0 */
1665                 if (retry_mode) {
1666                         ret = nand_setup_read_retry(mtd, 0);
1667                         if (ret < 0)
1668                                 break;
1669                         retry_mode = 0;
1670                 }
1671
1672                 if (!readlen)
1673                         break;
1674
1675                 /* For subsequent reads align to page boundary */
1676                 col = 0;
1677                 /* Increment page address */
1678                 realpage++;
1679
1680                 page = realpage & chip->pagemask;
1681                 /* Check, if we cross a chip boundary */
1682                 if (!page) {
1683                         chipnr++;
1684                         chip->select_chip(mtd, -1);
1685                         chip->select_chip(mtd, chipnr);
1686                 }
1687         }
1688         chip->select_chip(mtd, -1);
1689
1690         ops->retlen = ops->len - (size_t) readlen;
1691         if (oob)
1692                 ops->oobretlen = ops->ooblen - oobreadlen;
1693
1694         if (ret < 0)
1695                 return ret;
1696
1697         if (ecc_fail)
1698                 return -EBADMSG;
1699
1700         return max_bitflips;
1701 }
1702
1703 /**
1704  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1705  * @mtd: MTD device structure
1706  * @from: offset to read from
1707  * @len: number of bytes to read
1708  * @retlen: pointer to variable to store the number of read bytes
1709  * @buf: the databuffer to put data
1710  *
1711  * Get hold of the chip and call nand_do_read.
1712  */
1713 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1714                      size_t *retlen, uint8_t *buf)
1715 {
1716         struct mtd_oob_ops ops;
1717         int ret;
1718
1719         nand_get_device(mtd, FL_READING);
1720         ops.len = len;
1721         ops.datbuf = buf;
1722         ops.oobbuf = NULL;
1723         ops.mode = MTD_OPS_PLACE_OOB;
1724         ret = nand_do_read_ops(mtd, from, &ops);
1725         *retlen = ops.retlen;
1726         nand_release_device(mtd);
1727         return ret;
1728 }
1729
1730 /**
1731  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1732  * @mtd: mtd info structure
1733  * @chip: nand chip info structure
1734  * @page: page number to read
1735  */
1736 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1737                              int page)
1738 {
1739         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1740         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1741         return 0;
1742 }
1743
1744 /**
1745  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1746  *                          with syndromes
1747  * @mtd: mtd info structure
1748  * @chip: nand chip info structure
1749  * @page: page number to read
1750  */
1751 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1752                                   int page)
1753 {
1754         uint8_t *buf = chip->oob_poi;
1755         int length = mtd->oobsize;
1756         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1757         int eccsize = chip->ecc.size;
1758         uint8_t *bufpoi = buf;
1759         int i, toread, sndrnd = 0, pos;
1760
1761         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1762         for (i = 0; i < chip->ecc.steps; i++) {
1763                 if (sndrnd) {
1764                         pos = eccsize + i * (eccsize + chunk);
1765                         if (mtd->writesize > 512)
1766                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1767                         else
1768                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1769                 } else
1770                         sndrnd = 1;
1771                 toread = min_t(int, length, chunk);
1772                 chip->read_buf(mtd, bufpoi, toread);
1773                 bufpoi += toread;
1774                 length -= toread;
1775         }
1776         if (length > 0)
1777                 chip->read_buf(mtd, bufpoi, length);
1778
1779         return 0;
1780 }
1781
1782 /**
1783  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1784  * @mtd: mtd info structure
1785  * @chip: nand chip info structure
1786  * @page: page number to write
1787  */
1788 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1789                               int page)
1790 {
1791         int status = 0;
1792         const uint8_t *buf = chip->oob_poi;
1793         int length = mtd->oobsize;
1794
1795         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1796         chip->write_buf(mtd, buf, length);
1797         /* Send command to program the OOB data */
1798         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1799
1800         status = chip->waitfunc(mtd, chip);
1801
1802         return status & NAND_STATUS_FAIL ? -EIO : 0;
1803 }
1804
1805 /**
1806  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1807  *                           with syndrome - only for large page flash
1808  * @mtd: mtd info structure
1809  * @chip: nand chip info structure
1810  * @page: page number to write
1811  */
1812 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1813                                    struct nand_chip *chip, int page)
1814 {
1815         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1816         int eccsize = chip->ecc.size, length = mtd->oobsize;
1817         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1818         const uint8_t *bufpoi = chip->oob_poi;
1819
1820         /*
1821          * data-ecc-data-ecc ... ecc-oob
1822          * or
1823          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1824          */
1825         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1826                 pos = steps * (eccsize + chunk);
1827                 steps = 0;
1828         } else
1829                 pos = eccsize;
1830
1831         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1832         for (i = 0; i < steps; i++) {
1833                 if (sndcmd) {
1834                         if (mtd->writesize <= 512) {
1835                                 uint32_t fill = 0xFFFFFFFF;
1836
1837                                 len = eccsize;
1838                                 while (len > 0) {
1839                                         int num = min_t(int, len, 4);
1840                                         chip->write_buf(mtd, (uint8_t *)&fill,
1841                                                         num);
1842                                         len -= num;
1843                                 }
1844                         } else {
1845                                 pos = eccsize + i * (eccsize + chunk);
1846                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1847                         }
1848                 } else
1849                         sndcmd = 1;
1850                 len = min_t(int, length, chunk);
1851                 chip->write_buf(mtd, bufpoi, len);
1852                 bufpoi += len;
1853                 length -= len;
1854         }
1855         if (length > 0)
1856                 chip->write_buf(mtd, bufpoi, length);
1857
1858         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1859         status = chip->waitfunc(mtd, chip);
1860
1861         return status & NAND_STATUS_FAIL ? -EIO : 0;
1862 }
1863
1864 /**
1865  * nand_do_read_oob - [INTERN] NAND read out-of-band
1866  * @mtd: MTD device structure
1867  * @from: offset to read from
1868  * @ops: oob operations description structure
1869  *
1870  * NAND read out-of-band data from the spare area.
1871  */
1872 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1873                             struct mtd_oob_ops *ops)
1874 {
1875         int page, realpage, chipnr;
1876         struct nand_chip *chip = mtd->priv;
1877         struct mtd_ecc_stats stats;
1878         int readlen = ops->ooblen;
1879         int len;
1880         uint8_t *buf = ops->oobbuf;
1881         int ret = 0;
1882
1883         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1884                         __func__, (unsigned long long)from, readlen);
1885
1886         stats = mtd->ecc_stats;
1887
1888         if (ops->mode == MTD_OPS_AUTO_OOB)
1889                 len = chip->ecc.layout->oobavail;
1890         else
1891                 len = mtd->oobsize;
1892
1893         if (unlikely(ops->ooboffs >= len)) {
1894                 pr_debug("%s: attempt to start read outside oob\n",
1895                                 __func__);
1896                 return -EINVAL;
1897         }
1898
1899         /* Do not allow reads past end of device */
1900         if (unlikely(from >= mtd->size ||
1901                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1902                                         (from >> chip->page_shift)) * len)) {
1903                 pr_debug("%s: attempt to read beyond end of device\n",
1904                                 __func__);
1905                 return -EINVAL;
1906         }
1907
1908         chipnr = (int)(from >> chip->chip_shift);
1909         chip->select_chip(mtd, chipnr);
1910
1911         /* Shift to get page */
1912         realpage = (int)(from >> chip->page_shift);
1913         page = realpage & chip->pagemask;
1914
1915         while (1) {
1916                 if (ops->mode == MTD_OPS_RAW)
1917                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1918                 else
1919                         ret = chip->ecc.read_oob(mtd, chip, page);
1920
1921                 if (ret < 0)
1922                         break;
1923
1924                 len = min(len, readlen);
1925                 buf = nand_transfer_oob(chip, buf, ops, len);
1926
1927                 if (chip->options & NAND_NEED_READRDY) {
1928                         /* Apply delay or wait for ready/busy pin */
1929                         if (!chip->dev_ready)
1930                                 udelay(chip->chip_delay);
1931                         else
1932                                 nand_wait_ready(mtd);
1933                 }
1934
1935                 readlen -= len;
1936                 if (!readlen)
1937                         break;
1938
1939                 /* Increment page address */
1940                 realpage++;
1941
1942                 page = realpage & chip->pagemask;
1943                 /* Check, if we cross a chip boundary */
1944                 if (!page) {
1945                         chipnr++;
1946                         chip->select_chip(mtd, -1);
1947                         chip->select_chip(mtd, chipnr);
1948                 }
1949         }
1950         chip->select_chip(mtd, -1);
1951
1952         ops->oobretlen = ops->ooblen - readlen;
1953
1954         if (ret < 0)
1955                 return ret;
1956
1957         if (mtd->ecc_stats.failed - stats.failed)
1958                 return -EBADMSG;
1959
1960         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1961 }
1962
1963 /**
1964  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1965  * @mtd: MTD device structure
1966  * @from: offset to read from
1967  * @ops: oob operation description structure
1968  *
1969  * NAND read data and/or out-of-band data.
1970  */
1971 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1972                          struct mtd_oob_ops *ops)
1973 {
1974         int ret = -ENOTSUPP;
1975
1976         ops->retlen = 0;
1977
1978         /* Do not allow reads past end of device */
1979         if (ops->datbuf && (from + ops->len) > mtd->size) {
1980                 pr_debug("%s: attempt to read beyond end of device\n",
1981                                 __func__);
1982                 return -EINVAL;
1983         }
1984
1985         nand_get_device(mtd, FL_READING);
1986
1987         switch (ops->mode) {
1988         case MTD_OPS_PLACE_OOB:
1989         case MTD_OPS_AUTO_OOB:
1990         case MTD_OPS_RAW:
1991                 break;
1992
1993         default:
1994                 goto out;
1995         }
1996
1997         if (!ops->datbuf)
1998                 ret = nand_do_read_oob(mtd, from, ops);
1999         else
2000                 ret = nand_do_read_ops(mtd, from, ops);
2001
2002 out:
2003         nand_release_device(mtd);
2004         return ret;
2005 }
2006
2007
2008 /**
2009  * nand_write_page_raw - [INTERN] raw page write function
2010  * @mtd: mtd info structure
2011  * @chip: nand chip info structure
2012  * @buf: data buffer
2013  * @oob_required: must write chip->oob_poi to OOB
2014  *
2015  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2016  */
2017 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2018                                 const uint8_t *buf, int oob_required)
2019 {
2020         chip->write_buf(mtd, buf, mtd->writesize);
2021         if (oob_required)
2022                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2023
2024         return 0;
2025 }
2026
2027 /**
2028  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2029  * @mtd: mtd info structure
2030  * @chip: nand chip info structure
2031  * @buf: data buffer
2032  * @oob_required: must write chip->oob_poi to OOB
2033  *
2034  * We need a special oob layout and handling even when ECC isn't checked.
2035  */
2036 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2037                                         struct nand_chip *chip,
2038                                         const uint8_t *buf, int oob_required)
2039 {
2040         int eccsize = chip->ecc.size;
2041         int eccbytes = chip->ecc.bytes;
2042         uint8_t *oob = chip->oob_poi;
2043         int steps, size;
2044
2045         for (steps = chip->ecc.steps; steps > 0; steps--) {
2046                 chip->write_buf(mtd, buf, eccsize);
2047                 buf += eccsize;
2048
2049                 if (chip->ecc.prepad) {
2050                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2051                         oob += chip->ecc.prepad;
2052                 }
2053
2054                 chip->write_buf(mtd, oob, eccbytes);
2055                 oob += eccbytes;
2056
2057                 if (chip->ecc.postpad) {
2058                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2059                         oob += chip->ecc.postpad;
2060                 }
2061         }
2062
2063         size = mtd->oobsize - (oob - chip->oob_poi);
2064         if (size)
2065                 chip->write_buf(mtd, oob, size);
2066
2067         return 0;
2068 }
2069 /**
2070  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2071  * @mtd: mtd info structure
2072  * @chip: nand chip info structure
2073  * @buf: data buffer
2074  * @oob_required: must write chip->oob_poi to OOB
2075  */
2076 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2077                                   const uint8_t *buf, int oob_required)
2078 {
2079         int i, eccsize = chip->ecc.size;
2080         int eccbytes = chip->ecc.bytes;
2081         int eccsteps = chip->ecc.steps;
2082         uint8_t *ecc_calc = chip->buffers->ecccalc;
2083         const uint8_t *p = buf;
2084         uint32_t *eccpos = chip->ecc.layout->eccpos;
2085
2086         /* Software ECC calculation */
2087         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2088                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2089
2090         for (i = 0; i < chip->ecc.total; i++)
2091                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2092
2093         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2094 }
2095
2096 /**
2097  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2098  * @mtd: mtd info structure
2099  * @chip: nand chip info structure
2100  * @buf: data buffer
2101  * @oob_required: must write chip->oob_poi to OOB
2102  */
2103 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2104                                   const uint8_t *buf, int oob_required)
2105 {
2106         int i, eccsize = chip->ecc.size;
2107         int eccbytes = chip->ecc.bytes;
2108         int eccsteps = chip->ecc.steps;
2109         uint8_t *ecc_calc = chip->buffers->ecccalc;
2110         const uint8_t *p = buf;
2111         uint32_t *eccpos = chip->ecc.layout->eccpos;
2112
2113         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2114                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2115                 chip->write_buf(mtd, p, eccsize);
2116                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2117         }
2118
2119         for (i = 0; i < chip->ecc.total; i++)
2120                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2121
2122         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2123
2124         return 0;
2125 }
2126
2127
2128 /**
2129  * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2130  * @mtd:        mtd info structure
2131  * @chip:       nand chip info structure
2132  * @offset:     column address of subpage within the page
2133  * @data_len:   data length
2134  * @buf:        data buffer
2135  * @oob_required: must write chip->oob_poi to OOB
2136  */
2137 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2138                                 struct nand_chip *chip, uint32_t offset,
2139                                 uint32_t data_len, const uint8_t *buf,
2140                                 int oob_required)
2141 {
2142         uint8_t *oob_buf  = chip->oob_poi;
2143         uint8_t *ecc_calc = chip->buffers->ecccalc;
2144         int ecc_size      = chip->ecc.size;
2145         int ecc_bytes     = chip->ecc.bytes;
2146         int ecc_steps     = chip->ecc.steps;
2147         uint32_t *eccpos  = chip->ecc.layout->eccpos;
2148         uint32_t start_step = offset / ecc_size;
2149         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2150         int oob_bytes       = mtd->oobsize / ecc_steps;
2151         int step, i;
2152
2153         for (step = 0; step < ecc_steps; step++) {
2154                 /* configure controller for WRITE access */
2155                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2156
2157                 /* write data (untouched subpages already masked by 0xFF) */
2158                 chip->write_buf(mtd, buf, ecc_size);
2159
2160                 /* mask ECC of un-touched subpages by padding 0xFF */
2161                 if ((step < start_step) || (step > end_step))
2162                         memset(ecc_calc, 0xff, ecc_bytes);
2163                 else
2164                         chip->ecc.calculate(mtd, buf, ecc_calc);
2165
2166                 /* mask OOB of un-touched subpages by padding 0xFF */
2167                 /* if oob_required, preserve OOB metadata of written subpage */
2168                 if (!oob_required || (step < start_step) || (step > end_step))
2169                         memset(oob_buf, 0xff, oob_bytes);
2170
2171                 buf += ecc_size;
2172                 ecc_calc += ecc_bytes;
2173                 oob_buf  += oob_bytes;
2174         }
2175
2176         /* copy calculated ECC for whole page to chip->buffer->oob */
2177         /* this include masked-value(0xFF) for unwritten subpages */
2178         ecc_calc = chip->buffers->ecccalc;
2179         for (i = 0; i < chip->ecc.total; i++)
2180                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2181
2182         /* write OOB buffer to NAND device */
2183         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2184
2185         return 0;
2186 }
2187
2188
2189 /**
2190  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2191  * @mtd: mtd info structure
2192  * @chip: nand chip info structure
2193  * @buf: data buffer
2194  * @oob_required: must write chip->oob_poi to OOB
2195  *
2196  * The hw generator calculates the error syndrome automatically. Therefore we
2197  * need a special oob layout and handling.
2198  */
2199 static int nand_write_page_syndrome(struct mtd_info *mtd,
2200                                     struct nand_chip *chip,
2201                                     const uint8_t *buf, int oob_required)
2202 {
2203         int i, eccsize = chip->ecc.size;
2204         int eccbytes = chip->ecc.bytes;
2205         int eccsteps = chip->ecc.steps;
2206         const uint8_t *p = buf;
2207         uint8_t *oob = chip->oob_poi;
2208
2209         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2210
2211                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2212                 chip->write_buf(mtd, p, eccsize);
2213
2214                 if (chip->ecc.prepad) {
2215                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2216                         oob += chip->ecc.prepad;
2217                 }
2218
2219                 chip->ecc.calculate(mtd, p, oob);
2220                 chip->write_buf(mtd, oob, eccbytes);
2221                 oob += eccbytes;
2222
2223                 if (chip->ecc.postpad) {
2224                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2225                         oob += chip->ecc.postpad;
2226                 }
2227         }
2228
2229         /* Calculate remaining oob bytes */
2230         i = mtd->oobsize - (oob - chip->oob_poi);
2231         if (i)
2232                 chip->write_buf(mtd, oob, i);
2233
2234         return 0;
2235 }
2236
2237 /**
2238  * nand_write_page - [REPLACEABLE] write one page
2239  * @mtd: MTD device structure
2240  * @chip: NAND chip descriptor
2241  * @offset: address offset within the page
2242  * @data_len: length of actual data to be written
2243  * @buf: the data to write
2244  * @oob_required: must write chip->oob_poi to OOB
2245  * @page: page number to write
2246  * @cached: cached programming
2247  * @raw: use _raw version of write_page
2248  */
2249 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2250                 uint32_t offset, int data_len, const uint8_t *buf,
2251                 int oob_required, int page, int cached, int raw)
2252 {
2253         int status, subpage;
2254
2255         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2256                 chip->ecc.write_subpage)
2257                 subpage = offset || (data_len < mtd->writesize);
2258         else
2259                 subpage = 0;
2260
2261         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2262
2263         if (unlikely(raw))
2264                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2265                                                         oob_required);
2266         else if (subpage)
2267                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2268                                                          buf, oob_required);
2269         else
2270                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2271
2272         if (status < 0)
2273                 return status;
2274
2275         /*
2276          * Cached progamming disabled for now. Not sure if it's worth the
2277          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2278          */
2279         cached = 0;
2280
2281         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2282
2283                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2284                 status = chip->waitfunc(mtd, chip);
2285                 /*
2286                  * See if operation failed and additional status checks are
2287                  * available.
2288                  */
2289                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2290                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2291                                                page);
2292
2293                 if (status & NAND_STATUS_FAIL)
2294                         return -EIO;
2295         } else {
2296                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2297                 status = chip->waitfunc(mtd, chip);
2298         }
2299
2300         return 0;
2301 }
2302
2303 /**
2304  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2305  * @mtd: MTD device structure
2306  * @oob: oob data buffer
2307  * @len: oob data write length
2308  * @ops: oob ops structure
2309  */
2310 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2311                               struct mtd_oob_ops *ops)
2312 {
2313         struct nand_chip *chip = mtd->priv;
2314
2315         /*
2316          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2317          * data from a previous OOB read.
2318          */
2319         memset(chip->oob_poi, 0xff, mtd->oobsize);
2320
2321         switch (ops->mode) {
2322
2323         case MTD_OPS_PLACE_OOB:
2324         case MTD_OPS_RAW:
2325                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2326                 return oob + len;
2327
2328         case MTD_OPS_AUTO_OOB: {
2329                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2330                 uint32_t boffs = 0, woffs = ops->ooboffs;
2331                 size_t bytes = 0;
2332
2333                 for (; free->length && len; free++, len -= bytes) {
2334                         /* Write request not from offset 0? */
2335                         if (unlikely(woffs)) {
2336                                 if (woffs >= free->length) {
2337                                         woffs -= free->length;
2338                                         continue;
2339                                 }
2340                                 boffs = free->offset + woffs;
2341                                 bytes = min_t(size_t, len,
2342                                               (free->length - woffs));
2343                                 woffs = 0;
2344                         } else {
2345                                 bytes = min_t(size_t, len, free->length);
2346                                 boffs = free->offset;
2347                         }
2348                         memcpy(chip->oob_poi + boffs, oob, bytes);
2349                         oob += bytes;
2350                 }
2351                 return oob;
2352         }
2353         default:
2354                 BUG();
2355         }
2356         return NULL;
2357 }
2358
2359 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2360
2361 /**
2362  * nand_do_write_ops - [INTERN] NAND write with ECC
2363  * @mtd: MTD device structure
2364  * @to: offset to write to
2365  * @ops: oob operations description structure
2366  *
2367  * NAND write with ECC.
2368  */
2369 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2370                              struct mtd_oob_ops *ops)
2371 {
2372         int chipnr, realpage, page, blockmask, column;
2373         struct nand_chip *chip = mtd->priv;
2374         uint32_t writelen = ops->len;
2375
2376         uint32_t oobwritelen = ops->ooblen;
2377         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2378                                 mtd->oobavail : mtd->oobsize;
2379
2380         uint8_t *oob = ops->oobbuf;
2381         uint8_t *buf = ops->datbuf;
2382         int ret;
2383         int oob_required = oob ? 1 : 0;
2384
2385         ops->retlen = 0;
2386         if (!writelen)
2387                 return 0;
2388
2389         /* Reject writes, which are not page aligned */
2390         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2391                 pr_notice("%s: attempt to write non page aligned data\n",
2392                            __func__);
2393                 return -EINVAL;
2394         }
2395
2396         column = to & (mtd->writesize - 1);
2397
2398         chipnr = (int)(to >> chip->chip_shift);
2399         chip->select_chip(mtd, chipnr);
2400
2401         /* Check, if it is write protected */
2402         if (nand_check_wp(mtd)) {
2403                 ret = -EIO;
2404                 goto err_out;
2405         }
2406
2407         realpage = (int)(to >> chip->page_shift);
2408         page = realpage & chip->pagemask;
2409         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2410
2411         /* Invalidate the page cache, when we write to the cached page */
2412         if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2413             ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2414                 chip->pagebuf = -1;
2415
2416         /* Don't allow multipage oob writes with offset */
2417         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2418                 ret = -EINVAL;
2419                 goto err_out;
2420         }
2421
2422         while (1) {
2423                 int bytes = mtd->writesize;
2424                 int cached = writelen > bytes && page != blockmask;
2425                 uint8_t *wbuf = buf;
2426                 int use_bufpoi;
2427                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2428
2429                 if (part_pagewr)
2430                         use_bufpoi = 1;
2431                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2432                         use_bufpoi = !virt_addr_valid(buf);
2433                 else
2434                         use_bufpoi = 0;
2435
2436                 /* Partial page write?, or need to use bounce buffer */
2437                 if (use_bufpoi) {
2438                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2439                                          __func__, buf);
2440                         cached = 0;
2441                         if (part_pagewr)
2442                                 bytes = min_t(int, bytes - column, writelen);
2443                         chip->pagebuf = -1;
2444                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2445                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2446                         wbuf = chip->buffers->databuf;
2447                 }
2448
2449                 if (unlikely(oob)) {
2450                         size_t len = min(oobwritelen, oobmaxlen);
2451                         oob = nand_fill_oob(mtd, oob, len, ops);
2452                         oobwritelen -= len;
2453                 } else {
2454                         /* We still need to erase leftover OOB data */
2455                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2456                 }
2457                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2458                                         oob_required, page, cached,
2459                                         (ops->mode == MTD_OPS_RAW));
2460                 if (ret)
2461                         break;
2462
2463                 writelen -= bytes;
2464                 if (!writelen)
2465                         break;
2466
2467                 column = 0;
2468                 buf += bytes;
2469                 realpage++;
2470
2471                 page = realpage & chip->pagemask;
2472                 /* Check, if we cross a chip boundary */
2473                 if (!page) {
2474                         chipnr++;
2475                         chip->select_chip(mtd, -1);
2476                         chip->select_chip(mtd, chipnr);
2477                 }
2478         }
2479
2480         ops->retlen = ops->len - writelen;
2481         if (unlikely(oob))
2482                 ops->oobretlen = ops->ooblen;
2483
2484 err_out:
2485         chip->select_chip(mtd, -1);
2486         return ret;
2487 }
2488
2489 /**
2490  * panic_nand_write - [MTD Interface] NAND write with ECC
2491  * @mtd: MTD device structure
2492  * @to: offset to write to
2493  * @len: number of bytes to write
2494  * @retlen: pointer to variable to store the number of written bytes
2495  * @buf: the data to write
2496  *
2497  * NAND write with ECC. Used when performing writes in interrupt context, this
2498  * may for example be called by mtdoops when writing an oops while in panic.
2499  */
2500 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2501                             size_t *retlen, const uint8_t *buf)
2502 {
2503         struct nand_chip *chip = mtd->priv;
2504         struct mtd_oob_ops ops;
2505         int ret;
2506
2507         /* Wait for the device to get ready */
2508         panic_nand_wait(mtd, chip, 400);
2509
2510         /* Grab the device */
2511         panic_nand_get_device(chip, mtd, FL_WRITING);
2512
2513         ops.len = len;
2514         ops.datbuf = (uint8_t *)buf;
2515         ops.oobbuf = NULL;
2516         ops.mode = MTD_OPS_PLACE_OOB;
2517
2518         ret = nand_do_write_ops(mtd, to, &ops);
2519
2520         *retlen = ops.retlen;
2521         return ret;
2522 }
2523
2524 /**
2525  * nand_write - [MTD Interface] NAND write with ECC
2526  * @mtd: MTD device structure
2527  * @to: offset to write to
2528  * @len: number of bytes to write
2529  * @retlen: pointer to variable to store the number of written bytes
2530  * @buf: the data to write
2531  *
2532  * NAND write with ECC.
2533  */
2534 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2535                           size_t *retlen, const uint8_t *buf)
2536 {
2537         struct mtd_oob_ops ops;
2538         int ret;
2539
2540         nand_get_device(mtd, FL_WRITING);
2541         ops.len = len;
2542         ops.datbuf = (uint8_t *)buf;
2543         ops.oobbuf = NULL;
2544         ops.mode = MTD_OPS_PLACE_OOB;
2545         ret = nand_do_write_ops(mtd, to, &ops);
2546         *retlen = ops.retlen;
2547         nand_release_device(mtd);
2548         return ret;
2549 }
2550
2551 /**
2552  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2553  * @mtd: MTD device structure
2554  * @to: offset to write to
2555  * @ops: oob operation description structure
2556  *
2557  * NAND write out-of-band.
2558  */
2559 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2560                              struct mtd_oob_ops *ops)
2561 {
2562         int chipnr, page, status, len;
2563         struct nand_chip *chip = mtd->priv;
2564
2565         pr_debug("%s: to = 0x%08x, len = %i\n",
2566                          __func__, (unsigned int)to, (int)ops->ooblen);
2567
2568         if (ops->mode == MTD_OPS_AUTO_OOB)
2569                 len = chip->ecc.layout->oobavail;
2570         else
2571                 len = mtd->oobsize;
2572
2573         /* Do not allow write past end of page */
2574         if ((ops->ooboffs + ops->ooblen) > len) {
2575                 pr_debug("%s: attempt to write past end of page\n",
2576                                 __func__);
2577                 return -EINVAL;
2578         }
2579
2580         if (unlikely(ops->ooboffs >= len)) {
2581                 pr_debug("%s: attempt to start write outside oob\n",
2582                                 __func__);
2583                 return -EINVAL;
2584         }
2585
2586         /* Do not allow write past end of device */
2587         if (unlikely(to >= mtd->size ||
2588                      ops->ooboffs + ops->ooblen >
2589                         ((mtd->size >> chip->page_shift) -
2590                          (to >> chip->page_shift)) * len)) {
2591                 pr_debug("%s: attempt to write beyond end of device\n",
2592                                 __func__);
2593                 return -EINVAL;
2594         }
2595
2596         chipnr = (int)(to >> chip->chip_shift);
2597         chip->select_chip(mtd, chipnr);
2598
2599         /* Shift to get page */
2600         page = (int)(to >> chip->page_shift);
2601
2602         /*
2603          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2604          * of my DiskOnChip 2000 test units) will clear the whole data page too
2605          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2606          * it in the doc2000 driver in August 1999.  dwmw2.
2607          */
2608         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2609
2610         /* Check, if it is write protected */
2611         if (nand_check_wp(mtd)) {
2612                 chip->select_chip(mtd, -1);
2613                 return -EROFS;
2614         }
2615
2616         /* Invalidate the page cache, if we write to the cached page */
2617         if (page == chip->pagebuf)
2618                 chip->pagebuf = -1;
2619
2620         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2621
2622         if (ops->mode == MTD_OPS_RAW)
2623                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2624         else
2625                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2626
2627         chip->select_chip(mtd, -1);
2628
2629         if (status)
2630                 return status;
2631
2632         ops->oobretlen = ops->ooblen;
2633
2634         return 0;
2635 }
2636
2637 /**
2638  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2639  * @mtd: MTD device structure
2640  * @to: offset to write to
2641  * @ops: oob operation description structure
2642  */
2643 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2644                           struct mtd_oob_ops *ops)
2645 {
2646         int ret = -ENOTSUPP;
2647
2648         ops->retlen = 0;
2649
2650         /* Do not allow writes past end of device */
2651         if (ops->datbuf && (to + ops->len) > mtd->size) {
2652                 pr_debug("%s: attempt to write beyond end of device\n",
2653                                 __func__);
2654                 return -EINVAL;
2655         }
2656
2657         nand_get_device(mtd, FL_WRITING);
2658
2659         switch (ops->mode) {
2660         case MTD_OPS_PLACE_OOB:
2661         case MTD_OPS_AUTO_OOB:
2662         case MTD_OPS_RAW:
2663                 break;
2664
2665         default:
2666                 goto out;
2667         }
2668
2669         if (!ops->datbuf)
2670                 ret = nand_do_write_oob(mtd, to, ops);
2671         else
2672                 ret = nand_do_write_ops(mtd, to, ops);
2673
2674 out:
2675         nand_release_device(mtd);
2676         return ret;
2677 }
2678
2679 /**
2680  * single_erase - [GENERIC] NAND standard block erase command function
2681  * @mtd: MTD device structure
2682  * @page: the page address of the block which will be erased
2683  *
2684  * Standard erase command for NAND chips. Returns NAND status.
2685  */
2686 static int single_erase(struct mtd_info *mtd, int page)
2687 {
2688         struct nand_chip *chip = mtd->priv;
2689         /* Send commands to erase a block */
2690         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2691         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2692
2693         return chip->waitfunc(mtd, chip);
2694 }
2695
2696 /**
2697  * nand_erase - [MTD Interface] erase block(s)
2698  * @mtd: MTD device structure
2699  * @instr: erase instruction
2700  *
2701  * Erase one ore more blocks.
2702  */
2703 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2704 {
2705         return nand_erase_nand(mtd, instr, 0);
2706 }
2707
2708 /**
2709  * nand_erase_nand - [INTERN] erase block(s)
2710  * @mtd: MTD device structure
2711  * @instr: erase instruction
2712  * @allowbbt: allow erasing the bbt area
2713  *
2714  * Erase one ore more blocks.
2715  */
2716 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2717                     int allowbbt)
2718 {
2719         int page, status, pages_per_block, ret, chipnr;
2720         struct nand_chip *chip = mtd->priv;
2721         loff_t len;
2722
2723         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2724                         __func__, (unsigned long long)instr->addr,
2725                         (unsigned long long)instr->len);
2726
2727         if (check_offs_len(mtd, instr->addr, instr->len))
2728                 return -EINVAL;
2729
2730         /* Grab the lock and see if the device is available */
2731         nand_get_device(mtd, FL_ERASING);
2732
2733         /* Shift to get first page */
2734         page = (int)(instr->addr >> chip->page_shift);
2735         chipnr = (int)(instr->addr >> chip->chip_shift);
2736
2737         /* Calculate pages in each block */
2738         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2739
2740         /* Select the NAND device */
2741         chip->select_chip(mtd, chipnr);
2742
2743         /* Check, if it is write protected */
2744         if (nand_check_wp(mtd)) {
2745                 pr_debug("%s: device is write protected!\n",
2746                                 __func__);
2747                 instr->state = MTD_ERASE_FAILED;
2748                 goto erase_exit;
2749         }
2750
2751         /* Loop through the pages */
2752         len = instr->len;
2753
2754         instr->state = MTD_ERASING;
2755
2756         while (len) {
2757                 /* Check if we have a bad block, we do not erase bad blocks! */
2758                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2759                                         chip->page_shift, 0, allowbbt)) {
2760                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2761                                     __func__, page);
2762                         instr->state = MTD_ERASE_FAILED;
2763                         goto erase_exit;
2764                 }
2765
2766                 /*
2767                  * Invalidate the page cache, if we erase the block which
2768                  * contains the current cached page.
2769                  */
2770                 if (page <= chip->pagebuf && chip->pagebuf <
2771                     (page + pages_per_block))
2772                         chip->pagebuf = -1;
2773
2774                 status = chip->erase(mtd, page & chip->pagemask);
2775
2776                 /*
2777                  * See if operation failed and additional status checks are
2778                  * available
2779                  */
2780                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2781                         status = chip->errstat(mtd, chip, FL_ERASING,
2782                                                status, page);
2783
2784                 /* See if block erase succeeded */
2785                 if (status & NAND_STATUS_FAIL) {
2786                         pr_debug("%s: failed erase, page 0x%08x\n",
2787                                         __func__, page);
2788                         instr->state = MTD_ERASE_FAILED;
2789                         instr->fail_addr =
2790                                 ((loff_t)page << chip->page_shift);
2791                         goto erase_exit;
2792                 }
2793
2794                 /* Increment page address and decrement length */
2795                 len -= (1ULL << chip->phys_erase_shift);
2796                 page += pages_per_block;
2797
2798                 /* Check, if we cross a chip boundary */
2799                 if (len && !(page & chip->pagemask)) {
2800                         chipnr++;
2801                         chip->select_chip(mtd, -1);
2802                         chip->select_chip(mtd, chipnr);
2803                 }
2804         }
2805         instr->state = MTD_ERASE_DONE;
2806
2807 erase_exit:
2808
2809         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2810
2811         /* Deselect and wake up anyone waiting on the device */
2812         chip->select_chip(mtd, -1);
2813         nand_release_device(mtd);
2814
2815         /* Do call back function */
2816         if (!ret)
2817                 mtd_erase_callback(instr);
2818
2819         /* Return more or less happy */
2820         return ret;
2821 }
2822
2823 /**
2824  * nand_sync - [MTD Interface] sync
2825  * @mtd: MTD device structure
2826  *
2827  * Sync is actually a wait for chip ready function.
2828  */
2829 static void nand_sync(struct mtd_info *mtd)
2830 {
2831         pr_debug("%s: called\n", __func__);
2832
2833         /* Grab the lock and see if the device is available */
2834         nand_get_device(mtd, FL_SYNCING);
2835         /* Release it and go back */
2836         nand_release_device(mtd);
2837 }
2838
2839 /**
2840  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2841  * @mtd: MTD device structure
2842  * @offs: offset relative to mtd start
2843  */
2844 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2845 {
2846         return nand_block_checkbad(mtd, offs, 1, 0);
2847 }
2848
2849 /**
2850  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2851  * @mtd: MTD device structure
2852  * @ofs: offset relative to mtd start
2853  */
2854 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2855 {
2856         int ret;
2857
2858         ret = nand_block_isbad(mtd, ofs);
2859         if (ret) {
2860                 /* If it was bad already, return success and do nothing */
2861                 if (ret > 0)
2862                         return 0;
2863                 return ret;
2864         }
2865
2866         return nand_block_markbad_lowlevel(mtd, ofs);
2867 }
2868
2869 /**
2870  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2871  * @mtd: MTD device structure
2872  * @chip: nand chip info structure
2873  * @addr: feature address.
2874  * @subfeature_param: the subfeature parameters, a four bytes array.
2875  */
2876 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2877                         int addr, uint8_t *subfeature_param)
2878 {
2879         int status;
2880         int i;
2881
2882         if (!chip->onfi_version ||
2883             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2884               & ONFI_OPT_CMD_SET_GET_FEATURES))
2885                 return -EINVAL;
2886
2887         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2888         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2889                 chip->write_byte(mtd, subfeature_param[i]);
2890
2891         status = chip->waitfunc(mtd, chip);
2892         if (status & NAND_STATUS_FAIL)
2893                 return -EIO;
2894         return 0;
2895 }
2896
2897 /**
2898  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2899  * @mtd: MTD device structure
2900  * @chip: nand chip info structure
2901  * @addr: feature address.
2902  * @subfeature_param: the subfeature parameters, a four bytes array.
2903  */
2904 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2905                         int addr, uint8_t *subfeature_param)
2906 {
2907         int i;
2908
2909         if (!chip->onfi_version ||
2910             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2911               & ONFI_OPT_CMD_SET_GET_FEATURES))
2912                 return -EINVAL;
2913
2914         /* clear the sub feature parameters */
2915         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2916
2917         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2918         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2919                 *subfeature_param++ = chip->read_byte(mtd);
2920         return 0;
2921 }
2922
2923 /**
2924  * nand_suspend - [MTD Interface] Suspend the NAND flash
2925  * @mtd: MTD device structure
2926  */
2927 static int nand_suspend(struct mtd_info *mtd)
2928 {
2929         return nand_get_device(mtd, FL_PM_SUSPENDED);
2930 }
2931
2932 /**
2933  * nand_resume - [MTD Interface] Resume the NAND flash
2934  * @mtd: MTD device structure
2935  */
2936 static void nand_resume(struct mtd_info *mtd)
2937 {
2938         struct nand_chip *chip = mtd->priv;
2939
2940         if (chip->state == FL_PM_SUSPENDED)
2941                 nand_release_device(mtd);
2942         else
2943                 pr_err("%s called for a chip which is not in suspended state\n",
2944                         __func__);
2945 }
2946
2947 /* Set default functions */
2948 static void nand_set_defaults(struct nand_chip *chip, int busw)
2949 {
2950         /* check for proper chip_delay setup, set 20us if not */
2951         if (!chip->chip_delay)
2952                 chip->chip_delay = 20;
2953
2954         /* check, if a user supplied command function given */
2955         if (chip->cmdfunc == NULL)
2956                 chip->cmdfunc = nand_command;
2957
2958         /* check, if a user supplied wait function given */
2959         if (chip->waitfunc == NULL)
2960                 chip->waitfunc = nand_wait;
2961
2962         if (!chip->select_chip)
2963                 chip->select_chip = nand_select_chip;
2964
2965         /* set for ONFI nand */
2966         if (!chip->onfi_set_features)
2967                 chip->onfi_set_features = nand_onfi_set_features;
2968         if (!chip->onfi_get_features)
2969                 chip->onfi_get_features = nand_onfi_get_features;
2970
2971         /* If called twice, pointers that depend on busw may need to be reset */
2972         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2973                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2974         if (!chip->read_word)
2975                 chip->read_word = nand_read_word;
2976         if (!chip->block_bad)
2977                 chip->block_bad = nand_block_bad;
2978         if (!chip->block_markbad)
2979                 chip->block_markbad = nand_default_block_markbad;
2980         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2981                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2982         if (!chip->write_byte || chip->write_byte == nand_write_byte)
2983                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2984         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2985                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2986         if (!chip->scan_bbt)
2987                 chip->scan_bbt = nand_default_bbt;
2988
2989         if (!chip->controller) {
2990                 chip->controller = &chip->hwcontrol;
2991                 spin_lock_init(&chip->controller->lock);
2992                 init_waitqueue_head(&chip->controller->wq);
2993         }
2994
2995 }
2996
2997 /* Sanitize ONFI strings so we can safely print them */
2998 static void sanitize_string(uint8_t *s, size_t len)
2999 {
3000         ssize_t i;
3001
3002         /* Null terminate */
3003         s[len - 1] = 0;
3004
3005         /* Remove non printable chars */
3006         for (i = 0; i < len - 1; i++) {
3007                 if (s[i] < ' ' || s[i] > 127)
3008                         s[i] = '?';
3009         }
3010
3011         /* Remove trailing spaces */
3012         strim(s);
3013 }
3014
3015 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3016 {
3017         int i;
3018         while (len--) {
3019                 crc ^= *p++ << 8;
3020                 for (i = 0; i < 8; i++)
3021                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3022         }
3023
3024         return crc;
3025 }
3026
3027 /* Parse the Extended Parameter Page. */
3028 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3029                 struct nand_chip *chip, struct nand_onfi_params *p)
3030 {
3031         struct onfi_ext_param_page *ep;
3032         struct onfi_ext_section *s;
3033         struct onfi_ext_ecc_info *ecc;
3034         uint8_t *cursor;
3035         int ret = -EINVAL;
3036         int len;
3037         int i;
3038
3039         len = le16_to_cpu(p->ext_param_page_length) * 16;
3040         ep = kmalloc(len, GFP_KERNEL);
3041         if (!ep)
3042                 return -ENOMEM;
3043
3044         /* Send our own NAND_CMD_PARAM. */
3045         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3046
3047         /* Use the Change Read Column command to skip the ONFI param pages. */
3048         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3049                         sizeof(*p) * p->num_of_param_pages , -1);
3050
3051         /* Read out the Extended Parameter Page. */
3052         chip->read_buf(mtd, (uint8_t *)ep, len);
3053         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3054                 != le16_to_cpu(ep->crc))) {
3055                 pr_debug("fail in the CRC.\n");
3056                 goto ext_out;
3057         }
3058
3059         /*
3060          * Check the signature.
3061          * Do not strictly follow the ONFI spec, maybe changed in future.
3062          */
3063         if (strncmp(ep->sig, "EPPS", 4)) {
3064                 pr_debug("The signature is invalid.\n");
3065                 goto ext_out;
3066         }
3067
3068         /* find the ECC section. */
3069         cursor = (uint8_t *)(ep + 1);
3070         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3071                 s = ep->sections + i;
3072                 if (s->type == ONFI_SECTION_TYPE_2)
3073                         break;
3074                 cursor += s->length * 16;
3075         }
3076         if (i == ONFI_EXT_SECTION_MAX) {
3077                 pr_debug("We can not find the ECC section.\n");
3078                 goto ext_out;
3079         }
3080
3081         /* get the info we want. */
3082         ecc = (struct onfi_ext_ecc_info *)cursor;
3083
3084         if (!ecc->codeword_size) {
3085                 pr_debug("Invalid codeword size\n");
3086                 goto ext_out;
3087         }
3088
3089         chip->ecc_strength_ds = ecc->ecc_bits;
3090         chip->ecc_step_ds = 1 << ecc->codeword_size;
3091         ret = 0;
3092
3093 ext_out:
3094         kfree(ep);
3095         return ret;
3096 }
3097
3098 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3099 {
3100         struct nand_chip *chip = mtd->priv;
3101         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3102
3103         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3104                         feature);
3105 }
3106
3107 /*
3108  * Configure chip properties from Micron vendor-specific ONFI table
3109  */
3110 static void nand_onfi_detect_micron(struct nand_chip *chip,
3111                 struct nand_onfi_params *p)
3112 {
3113         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3114
3115         if (le16_to_cpu(p->vendor_revision) < 1)
3116                 return;
3117
3118         chip->read_retries = micron->read_retry_options;
3119         chip->setup_read_retry = nand_setup_read_retry_micron;
3120 }
3121
3122 /*
3123  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3124  */
3125 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3126                                         int *busw)
3127 {
3128         struct nand_onfi_params *p = &chip->onfi_params;
3129         int i, j;
3130         int val;
3131
3132         /* Try ONFI for unknown chip or LP */
3133         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3134         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3135                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3136                 return 0;
3137
3138         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3139         for (i = 0; i < 3; i++) {
3140                 for (j = 0; j < sizeof(*p); j++)
3141                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3142                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3143                                 le16_to_cpu(p->crc)) {
3144                         break;
3145                 }
3146         }
3147
3148         if (i == 3) {
3149                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3150                 return 0;
3151         }
3152
3153         /* Check version */
3154         val = le16_to_cpu(p->revision);
3155         if (val & (1 << 5))
3156                 chip->onfi_version = 23;
3157         else if (val & (1 << 4))
3158                 chip->onfi_version = 22;
3159         else if (val & (1 << 3))
3160                 chip->onfi_version = 21;
3161         else if (val & (1 << 2))
3162                 chip->onfi_version = 20;
3163         else if (val & (1 << 1))
3164                 chip->onfi_version = 10;
3165
3166         if (!chip->onfi_version) {
3167                 pr_info("unsupported ONFI version: %d\n", val);
3168                 return 0;
3169         }
3170
3171         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3172         sanitize_string(p->model, sizeof(p->model));
3173         if (!mtd->name)
3174                 mtd->name = p->model;
3175
3176         mtd->writesize = le32_to_cpu(p->byte_per_page);
3177
3178         /*
3179          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3180          * (don't ask me who thought of this...). MTD assumes that these
3181          * dimensions will be power-of-2, so just truncate the remaining area.
3182          */
3183         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3184         mtd->erasesize *= mtd->writesize;
3185
3186         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3187
3188         /* See erasesize comment */
3189         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3190         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3191         chip->bits_per_cell = p->bits_per_cell;
3192
3193         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3194                 *busw = NAND_BUSWIDTH_16;
3195         else
3196                 *busw = 0;
3197
3198         if (p->ecc_bits != 0xff) {
3199                 chip->ecc_strength_ds = p->ecc_bits;
3200                 chip->ecc_step_ds = 512;
3201         } else if (chip->onfi_version >= 21 &&
3202                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3203
3204                 /*
3205                  * The nand_flash_detect_ext_param_page() uses the
3206                  * Change Read Column command which maybe not supported
3207                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3208                  * now. We do not replace user supplied command function.
3209                  */
3210                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3211                         chip->cmdfunc = nand_command_lp;
3212
3213                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3214                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3215                         pr_warn("Failed to detect ONFI extended param page\n");
3216         } else {
3217                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3218         }
3219
3220         if (p->jedec_id == NAND_MFR_MICRON)
3221                 nand_onfi_detect_micron(chip, p);
3222
3223         return 1;
3224 }
3225
3226 /*
3227  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3228  */
3229 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3230                                         int *busw)
3231 {
3232         struct nand_jedec_params *p = &chip->jedec_params;
3233         struct jedec_ecc_info *ecc;
3234         int val;
3235         int i, j;
3236
3237         /* Try JEDEC for unknown chip or LP */
3238         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3239         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3240                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3241                 chip->read_byte(mtd) != 'C')
3242                 return 0;
3243
3244         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3245         for (i = 0; i < 3; i++) {
3246                 for (j = 0; j < sizeof(*p); j++)
3247                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3248
3249                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3250                                 le16_to_cpu(p->crc))
3251                         break;
3252         }
3253
3254         if (i == 3) {
3255                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3256                 return 0;
3257         }
3258
3259         /* Check version */
3260         val = le16_to_cpu(p->revision);
3261         if (val & (1 << 2))
3262                 chip->jedec_version = 10;
3263         else if (val & (1 << 1))
3264                 chip->jedec_version = 1; /* vendor specific version */
3265
3266         if (!chip->jedec_version) {
3267                 pr_info("unsupported JEDEC version: %d\n", val);
3268                 return 0;
3269         }
3270
3271         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3272         sanitize_string(p->model, sizeof(p->model));
3273         if (!mtd->name)
3274                 mtd->name = p->model;
3275
3276         mtd->writesize = le32_to_cpu(p->byte_per_page);
3277
3278         /* Please reference to the comment for nand_flash_detect_onfi. */
3279         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3280         mtd->erasesize *= mtd->writesize;
3281
3282         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3283
3284         /* Please reference to the comment for nand_flash_detect_onfi. */
3285         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3286         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3287         chip->bits_per_cell = p->bits_per_cell;
3288
3289         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3290                 *busw = NAND_BUSWIDTH_16;
3291         else
3292                 *busw = 0;
3293
3294         /* ECC info */
3295         ecc = &p->ecc_info[0];
3296
3297         if (ecc->codeword_size >= 9) {
3298                 chip->ecc_strength_ds = ecc->ecc_bits;
3299                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3300         } else {
3301                 pr_warn("Invalid codeword size\n");
3302         }
3303
3304         return 1;
3305 }
3306
3307 /*
3308  * nand_id_has_period - Check if an ID string has a given wraparound period
3309  * @id_data: the ID string
3310  * @arrlen: the length of the @id_data array
3311  * @period: the period of repitition
3312  *
3313  * Check if an ID string is repeated within a given sequence of bytes at
3314  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3315  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3316  * if the repetition has a period of @period; otherwise, returns zero.
3317  */
3318 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3319 {
3320         int i, j;
3321         for (i = 0; i < period; i++)
3322                 for (j = i + period; j < arrlen; j += period)
3323                         if (id_data[i] != id_data[j])
3324                                 return 0;
3325         return 1;
3326 }
3327
3328 /*
3329  * nand_id_len - Get the length of an ID string returned by CMD_READID
3330  * @id_data: the ID string
3331  * @arrlen: the length of the @id_data array
3332
3333  * Returns the length of the ID string, according to known wraparound/trailing
3334  * zero patterns. If no pattern exists, returns the length of the array.
3335  */
3336 static int nand_id_len(u8 *id_data, int arrlen)
3337 {
3338         int last_nonzero, period;
3339
3340         /* Find last non-zero byte */
3341         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3342                 if (id_data[last_nonzero])
3343                         break;
3344
3345         /* All zeros */
3346         if (last_nonzero < 0)
3347                 return 0;
3348
3349         /* Calculate wraparound period */
3350         for (period = 1; period < arrlen; period++)
3351                 if (nand_id_has_period(id_data, arrlen, period))
3352                         break;
3353
3354         /* There's a repeated pattern */
3355         if (period < arrlen)
3356                 return period;
3357
3358         /* There are trailing zeros */
3359         if (last_nonzero < arrlen - 1)
3360                 return last_nonzero + 1;
3361
3362         /* No pattern detected */
3363         return arrlen;
3364 }
3365
3366 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3367 static int nand_get_bits_per_cell(u8 cellinfo)
3368 {
3369         int bits;
3370
3371         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3372         bits >>= NAND_CI_CELLTYPE_SHIFT;
3373         return bits + 1;
3374 }
3375
3376 /*
3377  * Many new NAND share similar device ID codes, which represent the size of the
3378  * chip. The rest of the parameters must be decoded according to generic or
3379  * manufacturer-specific "extended ID" decoding patterns.
3380  */
3381 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3382                                 u8 id_data[8], int *busw)
3383 {
3384         int extid, id_len;
3385         /* The 3rd id byte holds MLC / multichip data */
3386         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3387         /* The 4th id byte is the important one */
3388         extid = id_data[3];
3389
3390         id_len = nand_id_len(id_data, 8);
3391
3392         /*
3393          * Field definitions are in the following datasheets:
3394          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3395          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3396          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3397          *
3398          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3399          * ID to decide what to do.
3400          */
3401         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3402                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3403                 /* Calc pagesize */
3404                 mtd->writesize = 2048 << (extid & 0x03);
3405                 extid >>= 2;
3406                 /* Calc oobsize */
3407                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3408                 case 1:
3409                         mtd->oobsize = 128;
3410                         break;
3411                 case 2:
3412                         mtd->oobsize = 218;
3413                         break;
3414                 case 3:
3415                         mtd->oobsize = 400;
3416                         break;
3417                 case 4:
3418                         mtd->oobsize = 436;
3419                         break;
3420                 case 5:
3421                         mtd->oobsize = 512;
3422                         break;
3423                 case 6:
3424                         mtd->oobsize = 640;
3425                         break;
3426                 case 7:
3427                 default: /* Other cases are "reserved" (unknown) */
3428                         mtd->oobsize = 1024;
3429                         break;
3430                 }
3431                 extid >>= 2;
3432                 /* Calc blocksize */
3433                 mtd->erasesize = (128 * 1024) <<
3434                         (((extid >> 1) & 0x04) | (extid & 0x03));
3435                 *busw = 0;
3436         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3437                         !nand_is_slc(chip)) {
3438                 unsigned int tmp;
3439
3440                 /* Calc pagesize */
3441                 mtd->writesize = 2048 << (extid & 0x03);
3442                 extid >>= 2;
3443                 /* Calc oobsize */
3444                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3445                 case 0:
3446                         mtd->oobsize = 128;
3447                         break;
3448                 case 1:
3449                         mtd->oobsize = 224;
3450                         break;
3451                 case 2:
3452                         mtd->oobsize = 448;
3453                         break;
3454                 case 3:
3455                         mtd->oobsize = 64;
3456                         break;
3457                 case 4:
3458                         mtd->oobsize = 32;
3459                         break;
3460                 case 5:
3461                         mtd->oobsize = 16;
3462                         break;
3463                 default:
3464                         mtd->oobsize = 640;
3465                         break;
3466                 }
3467                 extid >>= 2;
3468                 /* Calc blocksize */
3469                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3470                 if (tmp < 0x03)
3471                         mtd->erasesize = (128 * 1024) << tmp;
3472                 else if (tmp == 0x03)
3473                         mtd->erasesize = 768 * 1024;
3474                 else
3475                         mtd->erasesize = (64 * 1024) << tmp;
3476                 *busw = 0;
3477         } else {
3478                 /* Calc pagesize */
3479                 mtd->writesize = 1024 << (extid & 0x03);
3480                 extid >>= 2;
3481                 /* Calc oobsize */
3482                 mtd->oobsize = (8 << (extid & 0x01)) *
3483                         (mtd->writesize >> 9);
3484                 extid >>= 2;
3485                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3486                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3487                 extid >>= 2;
3488                 /* Get buswidth information */
3489                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3490
3491                 /*
3492                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3493                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3494                  * follows:
3495                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3496                  *                         110b -> 24nm
3497                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3498                  */
3499                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3500                                 nand_is_slc(chip) &&
3501                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3502                                 !(id_data[4] & 0x80) /* !BENAND */) {
3503                         mtd->oobsize = 32 * mtd->writesize >> 9;
3504                 }
3505
3506         }
3507 }
3508
3509 /*
3510  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3511  * decodes a matching ID table entry and assigns the MTD size parameters for
3512  * the chip.
3513  */
3514 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3515                                 struct nand_flash_dev *type, u8 id_data[8],
3516                                 int *busw)
3517 {
3518         int maf_id = id_data[0];
3519
3520         mtd->erasesize = type->erasesize;
3521         mtd->writesize = type->pagesize;
3522         mtd->oobsize = mtd->writesize / 32;
3523         *busw = type->options & NAND_BUSWIDTH_16;
3524
3525         /* All legacy ID NAND are small-page, SLC */
3526         chip->bits_per_cell = 1;
3527
3528         /*
3529          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3530          * some Spansion chips have erasesize that conflicts with size
3531          * listed in nand_ids table.
3532          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3533          */
3534         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3535                         && id_data[6] == 0x00 && id_data[7] == 0x00
3536                         && mtd->writesize == 512) {
3537                 mtd->erasesize = 128 * 1024;
3538                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3539         }
3540 }
3541
3542 /*
3543  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3544  * heuristic patterns using various detected parameters (e.g., manufacturer,
3545  * page size, cell-type information).
3546  */
3547 static void nand_decode_bbm_options(struct mtd_info *mtd,
3548                                     struct nand_chip *chip, u8 id_data[8])
3549 {
3550         int maf_id = id_data[0];
3551
3552         /* Set the bad block position */
3553         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3554                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3555         else
3556                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3557
3558         /*
3559          * Bad block marker is stored in the last page of each block on Samsung
3560          * and Hynix MLC devices; stored in first two pages of each block on
3561          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3562          * AMD/Spansion, and Macronix.  All others scan only the first page.
3563          */
3564         if (!nand_is_slc(chip) &&
3565                         (maf_id == NAND_MFR_SAMSUNG ||
3566                          maf_id == NAND_MFR_HYNIX))
3567                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3568         else if ((nand_is_slc(chip) &&
3569                                 (maf_id == NAND_MFR_SAMSUNG ||
3570                                  maf_id == NAND_MFR_HYNIX ||
3571                                  maf_id == NAND_MFR_TOSHIBA ||
3572                                  maf_id == NAND_MFR_AMD ||
3573                                  maf_id == NAND_MFR_MACRONIX)) ||
3574                         (mtd->writesize == 2048 &&
3575                          maf_id == NAND_MFR_MICRON))
3576                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3577 }
3578
3579 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3580 {
3581         return type->id_len;
3582 }
3583
3584 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3585                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3586 {
3587         if (!strncmp(type->id, id_data, type->id_len)) {
3588                 mtd->writesize = type->pagesize;
3589                 mtd->erasesize = type->erasesize;
3590                 mtd->oobsize = type->oobsize;
3591
3592                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3593                 chip->chipsize = (uint64_t)type->chipsize << 20;
3594                 chip->options |= type->options;
3595                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3596                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3597                 chip->onfi_timing_mode_default =
3598                                         type->onfi_timing_mode_default;
3599
3600                 *busw = type->options & NAND_BUSWIDTH_16;
3601
3602                 if (!mtd->name)
3603                         mtd->name = type->name;
3604
3605                 return true;
3606         }
3607         return false;
3608 }
3609
3610 /*
3611  * Get the flash and manufacturer id and lookup if the type is supported.
3612  */
3613 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3614                                                   struct nand_chip *chip,
3615                                                   int *maf_id, int *dev_id,
3616                                                   struct nand_flash_dev *type)
3617 {
3618         int busw;
3619         int i, maf_idx;
3620         u8 id_data[8];
3621
3622         /* Select the device */
3623         chip->select_chip(mtd, 0);
3624
3625         /*
3626          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3627          * after power-up.
3628          */
3629         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3630
3631         /* Send the command for reading device ID */
3632         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3633
3634         /* Read manufacturer and device IDs */
3635         *maf_id = chip->read_byte(mtd);
3636         *dev_id = chip->read_byte(mtd);
3637
3638         /*
3639          * Try again to make sure, as some systems the bus-hold or other
3640          * interface concerns can cause random data which looks like a
3641          * possibly credible NAND flash to appear. If the two results do
3642          * not match, ignore the device completely.
3643          */
3644
3645         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3646
3647         /* Read entire ID string */
3648         for (i = 0; i < 8; i++)
3649                 id_data[i] = chip->read_byte(mtd);
3650
3651         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3652                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3653                         *maf_id, *dev_id, id_data[0], id_data[1]);
3654                 return ERR_PTR(-ENODEV);
3655         }
3656
3657         if (!type)
3658                 type = nand_flash_ids;
3659
3660         for (; type->name != NULL; type++) {
3661                 if (is_full_id_nand(type)) {
3662                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3663                                 goto ident_done;
3664                 } else if (*dev_id == type->dev_id) {
3665                                 break;
3666                 }
3667         }
3668
3669         chip->onfi_version = 0;
3670         if (!type->name || !type->pagesize) {
3671                 /* Check if the chip is ONFI compliant */
3672                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3673                         goto ident_done;
3674
3675                 /* Check if the chip is JEDEC compliant */
3676                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3677                         goto ident_done;
3678         }
3679
3680         if (!type->name)
3681                 return ERR_PTR(-ENODEV);
3682
3683         if (!mtd->name)
3684                 mtd->name = type->name;
3685
3686         chip->chipsize = (uint64_t)type->chipsize << 20;
3687
3688         if (!type->pagesize && chip->init_size) {
3689                 /* Set the pagesize, oobsize, erasesize by the driver */
3690                 busw = chip->init_size(mtd, chip, id_data);
3691         } else if (!type->pagesize) {
3692                 /* Decode parameters from extended ID */
3693                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3694         } else {
3695                 nand_decode_id(mtd, chip, type, id_data, &busw);
3696         }
3697         /* Get chip options */
3698         chip->options |= type->options;
3699
3700         /*
3701          * Check if chip is not a Samsung device. Do not clear the
3702          * options for chips which do not have an extended id.
3703          */
3704         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3705                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3706 ident_done:
3707
3708         /* Try to identify manufacturer */
3709         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3710                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3711                         break;
3712         }
3713
3714         if (chip->options & NAND_BUSWIDTH_AUTO) {
3715                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3716                 chip->options |= busw;
3717                 nand_set_defaults(chip, busw);
3718         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3719                 /*
3720                  * Check, if buswidth is correct. Hardware drivers should set
3721                  * chip correct!
3722                  */
3723                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3724                         *maf_id, *dev_id);
3725                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3726                 pr_warn("bus width %d instead %d bit\n",
3727                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3728                            busw ? 16 : 8);
3729                 return ERR_PTR(-EINVAL);
3730         }
3731
3732         nand_decode_bbm_options(mtd, chip, id_data);
3733
3734         /* Calculate the address shift from the page size */
3735         chip->page_shift = ffs(mtd->writesize) - 1;
3736         /* Convert chipsize to number of pages per chip -1 */
3737         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3738
3739         chip->bbt_erase_shift = chip->phys_erase_shift =
3740                 ffs(mtd->erasesize) - 1;
3741         if (chip->chipsize & 0xffffffff)
3742                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3743         else {
3744                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3745                 chip->chip_shift += 32 - 1;
3746         }
3747
3748         chip->badblockbits = 8;
3749         chip->erase = single_erase;
3750
3751         /* Do not replace user supplied command function! */
3752         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3753                 chip->cmdfunc = nand_command_lp;
3754
3755         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3756                 *maf_id, *dev_id);
3757
3758         if (chip->onfi_version)
3759                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3760                                 chip->onfi_params.model);
3761         else if (chip->jedec_version)
3762                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3763                                 chip->jedec_params.model);
3764         else
3765                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3766                                 type->name);
3767
3768         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3769                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3770                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3771         return type;
3772 }
3773
3774 /**
3775  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3776  * @mtd: MTD device structure
3777  * @maxchips: number of chips to scan for
3778  * @table: alternative NAND ID table
3779  *
3780  * This is the first phase of the normal nand_scan() function. It reads the
3781  * flash ID and sets up MTD fields accordingly.
3782  *
3783  * The mtd->owner field must be set to the module of the caller.
3784  */
3785 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3786                     struct nand_flash_dev *table)
3787 {
3788         int i, nand_maf_id, nand_dev_id;
3789         struct nand_chip *chip = mtd->priv;
3790         struct nand_flash_dev *type;
3791
3792         /* Set the default functions */
3793         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3794
3795         /* Read the flash type */
3796         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3797                                    &nand_dev_id, table);
3798
3799         if (IS_ERR(type)) {
3800                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3801                         pr_warn("No NAND device found\n");
3802                 chip->select_chip(mtd, -1);
3803                 return PTR_ERR(type);
3804         }
3805
3806         chip->select_chip(mtd, -1);
3807
3808         /* Check for a chip array */
3809         for (i = 1; i < maxchips; i++) {
3810                 chip->select_chip(mtd, i);
3811                 /* See comment in nand_get_flash_type for reset */
3812                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3813                 /* Send the command for reading device ID */
3814                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3815                 /* Read manufacturer and device IDs */
3816                 if (nand_maf_id != chip->read_byte(mtd) ||
3817                     nand_dev_id != chip->read_byte(mtd)) {
3818                         chip->select_chip(mtd, -1);
3819                         break;
3820                 }
3821                 chip->select_chip(mtd, -1);
3822         }
3823         if (i > 1)
3824                 pr_info("%d chips detected\n", i);
3825
3826         /* Store the number of chips and calc total size for mtd */
3827         chip->numchips = i;
3828         mtd->size = i * chip->chipsize;
3829
3830         return 0;
3831 }
3832 EXPORT_SYMBOL(nand_scan_ident);
3833
3834 /*
3835  * Check if the chip configuration meet the datasheet requirements.
3836
3837  * If our configuration corrects A bits per B bytes and the minimum
3838  * required correction level is X bits per Y bytes, then we must ensure
3839  * both of the following are true:
3840  *
3841  * (1) A / B >= X / Y
3842  * (2) A >= X
3843  *
3844  * Requirement (1) ensures we can correct for the required bitflip density.
3845  * Requirement (2) ensures we can correct even when all bitflips are clumped
3846  * in the same sector.
3847  */
3848 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3849 {
3850         struct nand_chip *chip = mtd->priv;
3851         struct nand_ecc_ctrl *ecc = &chip->ecc;
3852         int corr, ds_corr;
3853
3854         if (ecc->size == 0 || chip->ecc_step_ds == 0)
3855                 /* Not enough information */
3856                 return true;
3857
3858         /*
3859          * We get the number of corrected bits per page to compare
3860          * the correction density.
3861          */
3862         corr = (mtd->writesize * ecc->strength) / ecc->size;
3863         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3864
3865         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3866 }
3867
3868 /**
3869  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3870  * @mtd: MTD device structure
3871  *
3872  * This is the second phase of the normal nand_scan() function. It fills out
3873  * all the uninitialized function pointers with the defaults and scans for a
3874  * bad block table if appropriate.
3875  */
3876 int nand_scan_tail(struct mtd_info *mtd)
3877 {
3878         int i;
3879         struct nand_chip *chip = mtd->priv;
3880         struct nand_ecc_ctrl *ecc = &chip->ecc;
3881         struct nand_buffers *nbuf;
3882
3883         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3884         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3885                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3886
3887         if (!(chip->options & NAND_OWN_BUFFERS)) {
3888                 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3889                                 + mtd->oobsize * 3, GFP_KERNEL);
3890                 if (!nbuf)
3891                         return -ENOMEM;
3892                 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3893                 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3894                 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3895
3896                 chip->buffers = nbuf;
3897         } else {
3898                 if (!chip->buffers)
3899                         return -ENOMEM;
3900         }
3901
3902         /* Set the internal oob buffer location, just after the page data */
3903         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3904
3905         /*
3906          * If no default placement scheme is given, select an appropriate one.
3907          */
3908         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3909                 switch (mtd->oobsize) {
3910                 case 8:
3911                         ecc->layout = &nand_oob_8;
3912                         break;
3913                 case 16:
3914                         ecc->layout = &nand_oob_16;
3915                         break;
3916                 case 64:
3917                         ecc->layout = &nand_oob_64;
3918                         break;
3919                 case 128:
3920                         ecc->layout = &nand_oob_128;
3921                         break;
3922                 default:
3923                         pr_warn("No oob scheme defined for oobsize %d\n",
3924                                    mtd->oobsize);
3925                         BUG();
3926                 }
3927         }
3928
3929         if (!chip->write_page)
3930                 chip->write_page = nand_write_page;
3931
3932         /*
3933          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3934          * selected and we have 256 byte pagesize fallback to software ECC
3935          */
3936
3937         switch (ecc->mode) {
3938         case NAND_ECC_HW_OOB_FIRST:
3939                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3940                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3941                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3942                         BUG();
3943                 }
3944                 if (!ecc->read_page)
3945                         ecc->read_page = nand_read_page_hwecc_oob_first;
3946
3947         case NAND_ECC_HW:
3948                 /* Use standard hwecc read page function? */
3949                 if (!ecc->read_page)
3950                         ecc->read_page = nand_read_page_hwecc;
3951                 if (!ecc->write_page)
3952                         ecc->write_page = nand_write_page_hwecc;
3953                 if (!ecc->read_page_raw)
3954                         ecc->read_page_raw = nand_read_page_raw;
3955                 if (!ecc->write_page_raw)
3956                         ecc->write_page_raw = nand_write_page_raw;
3957                 if (!ecc->read_oob)
3958                         ecc->read_oob = nand_read_oob_std;
3959                 if (!ecc->write_oob)
3960                         ecc->write_oob = nand_write_oob_std;
3961                 if (!ecc->read_subpage)
3962                         ecc->read_subpage = nand_read_subpage;
3963                 if (!ecc->write_subpage)
3964                         ecc->write_subpage = nand_write_subpage_hwecc;
3965
3966         case NAND_ECC_HW_SYNDROME:
3967                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3968                     (!ecc->read_page ||
3969                      ecc->read_page == nand_read_page_hwecc ||
3970                      !ecc->write_page ||
3971                      ecc->write_page == nand_write_page_hwecc)) {
3972                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3973                         BUG();
3974                 }
3975                 /* Use standard syndrome read/write page function? */
3976                 if (!ecc->read_page)
3977                         ecc->read_page = nand_read_page_syndrome;
3978                 if (!ecc->write_page)
3979                         ecc->write_page = nand_write_page_syndrome;
3980                 if (!ecc->read_page_raw)
3981                         ecc->read_page_raw = nand_read_page_raw_syndrome;
3982                 if (!ecc->write_page_raw)
3983                         ecc->write_page_raw = nand_write_page_raw_syndrome;
3984                 if (!ecc->read_oob)
3985                         ecc->read_oob = nand_read_oob_syndrome;
3986                 if (!ecc->write_oob)
3987                         ecc->write_oob = nand_write_oob_syndrome;
3988
3989                 if (mtd->writesize >= ecc->size) {
3990                         if (!ecc->strength) {
3991                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3992                                 BUG();
3993                         }
3994                         break;
3995                 }
3996                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
3997                         ecc->size, mtd->writesize);
3998                 ecc->mode = NAND_ECC_SOFT;
3999
4000         case NAND_ECC_SOFT:
4001                 ecc->calculate = nand_calculate_ecc;
4002                 ecc->correct = nand_correct_data;
4003                 ecc->read_page = nand_read_page_swecc;
4004                 ecc->read_subpage = nand_read_subpage;
4005                 ecc->write_page = nand_write_page_swecc;
4006                 ecc->read_page_raw = nand_read_page_raw;
4007                 ecc->write_page_raw = nand_write_page_raw;
4008                 ecc->read_oob = nand_read_oob_std;
4009                 ecc->write_oob = nand_write_oob_std;
4010                 if (!ecc->size)
4011                         ecc->size = 256;
4012                 ecc->bytes = 3;
4013                 ecc->strength = 1;
4014                 break;
4015
4016         case NAND_ECC_SOFT_BCH:
4017                 if (!mtd_nand_has_bch()) {
4018                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4019                         BUG();
4020                 }
4021                 ecc->calculate = nand_bch_calculate_ecc;
4022                 ecc->correct = nand_bch_correct_data;
4023                 ecc->read_page = nand_read_page_swecc;
4024                 ecc->read_subpage = nand_read_subpage;
4025                 ecc->write_page = nand_write_page_swecc;
4026                 ecc->read_page_raw = nand_read_page_raw;
4027                 ecc->write_page_raw = nand_write_page_raw;
4028                 ecc->read_oob = nand_read_oob_std;
4029                 ecc->write_oob = nand_write_oob_std;
4030                 /*
4031                  * Board driver should supply ecc.size and ecc.bytes values to
4032                  * select how many bits are correctable; see nand_bch_init()
4033                  * for details. Otherwise, default to 4 bits for large page
4034                  * devices.
4035                  */
4036                 if (!ecc->size && (mtd->oobsize >= 64)) {
4037                         ecc->size = 512;
4038                         ecc->bytes = DIV_ROUND_UP(13 * ecc->strength, 8);
4039                 }
4040                 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4041                                                &ecc->layout);
4042                 if (!ecc->priv) {
4043                         pr_warn("BCH ECC initialization failed!\n");
4044                         BUG();
4045                 }
4046                 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
4047                 break;
4048
4049         case NAND_ECC_NONE:
4050                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4051                 ecc->read_page = nand_read_page_raw;
4052                 ecc->write_page = nand_write_page_raw;
4053                 ecc->read_oob = nand_read_oob_std;
4054                 ecc->read_page_raw = nand_read_page_raw;
4055                 ecc->write_page_raw = nand_write_page_raw;
4056                 ecc->write_oob = nand_write_oob_std;
4057                 ecc->size = mtd->writesize;
4058                 ecc->bytes = 0;
4059                 ecc->strength = 0;
4060                 break;
4061
4062         default:
4063                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4064                 BUG();
4065         }
4066
4067         /* For many systems, the standard OOB write also works for raw */
4068         if (!ecc->read_oob_raw)
4069                 ecc->read_oob_raw = ecc->read_oob;
4070         if (!ecc->write_oob_raw)
4071                 ecc->write_oob_raw = ecc->write_oob;
4072
4073         /*
4074          * The number of bytes available for a client to place data into
4075          * the out of band area.
4076          */
4077         ecc->layout->oobavail = 0;
4078         for (i = 0; ecc->layout->oobfree[i].length
4079                         && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4080                 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4081         mtd->oobavail = ecc->layout->oobavail;
4082
4083         /* ECC sanity check: warn if it's too weak */
4084         if (!nand_ecc_strength_good(mtd))
4085                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4086                         mtd->name);
4087
4088         /*
4089          * Set the number of read / write steps for one page depending on ECC
4090          * mode.
4091          */
4092         ecc->steps = mtd->writesize / ecc->size;
4093         if (ecc->steps * ecc->size != mtd->writesize) {
4094                 pr_warn("Invalid ECC parameters\n");
4095                 BUG();
4096         }
4097         ecc->total = ecc->steps * ecc->bytes;
4098
4099         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4100         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4101                 switch (ecc->steps) {
4102                 case 2:
4103                         mtd->subpage_sft = 1;
4104                         break;
4105                 case 4:
4106                 case 8:
4107                 case 16:
4108                         mtd->subpage_sft = 2;
4109                         break;
4110                 }
4111         }
4112         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4113
4114         /* Initialize state */
4115         chip->state = FL_READY;
4116
4117         /* Invalidate the pagebuffer reference */
4118         chip->pagebuf = -1;
4119
4120         /* Large page NAND with SOFT_ECC should support subpage reads */
4121         switch (ecc->mode) {
4122         case NAND_ECC_SOFT:
4123         case NAND_ECC_SOFT_BCH:
4124                 if (chip->page_shift > 9)
4125                         chip->options |= NAND_SUBPAGE_READ;
4126                 break;
4127
4128         default:
4129                 break;
4130         }
4131
4132         /* Fill in remaining MTD driver data */
4133         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4134         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4135                                                 MTD_CAP_NANDFLASH;
4136         mtd->_erase = nand_erase;
4137         mtd->_point = NULL;
4138         mtd->_unpoint = NULL;
4139         mtd->_read = nand_read;
4140         mtd->_write = nand_write;
4141         mtd->_panic_write = panic_nand_write;
4142         mtd->_read_oob = nand_read_oob;
4143         mtd->_write_oob = nand_write_oob;
4144         mtd->_sync = nand_sync;
4145         mtd->_lock = NULL;
4146         mtd->_unlock = NULL;
4147         mtd->_suspend = nand_suspend;
4148         mtd->_resume = nand_resume;
4149         mtd->_block_isreserved = nand_block_isreserved;
4150         mtd->_block_isbad = nand_block_isbad;
4151         mtd->_block_markbad = nand_block_markbad;
4152         mtd->writebufsize = mtd->writesize;
4153
4154         /* propagate ecc info to mtd_info */
4155         mtd->ecclayout = ecc->layout;
4156         mtd->ecc_strength = ecc->strength;
4157         mtd->ecc_step_size = ecc->size;
4158         /*
4159          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4160          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4161          * properly set.
4162          */
4163         if (!mtd->bitflip_threshold)
4164                 mtd->bitflip_threshold = mtd->ecc_strength;
4165
4166         /* Check, if we should skip the bad block table scan */
4167         if (chip->options & NAND_SKIP_BBTSCAN)
4168                 return 0;
4169
4170         /* Build bad block table */
4171         return chip->scan_bbt(mtd);
4172 }
4173 EXPORT_SYMBOL(nand_scan_tail);
4174
4175 /*
4176  * is_module_text_address() isn't exported, and it's mostly a pointless
4177  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4178  * to call us from in-kernel code if the core NAND support is modular.
4179  */
4180 #ifdef MODULE
4181 #define caller_is_module() (1)
4182 #else
4183 #define caller_is_module() \
4184         is_module_text_address((unsigned long)__builtin_return_address(0))
4185 #endif
4186
4187 /**
4188  * nand_scan - [NAND Interface] Scan for the NAND device
4189  * @mtd: MTD device structure
4190  * @maxchips: number of chips to scan for
4191  *
4192  * This fills out all the uninitialized function pointers with the defaults.
4193  * The flash ID is read and the mtd/chip structures are filled with the
4194  * appropriate values. The mtd->owner field must be set to the module of the
4195  * caller.
4196  */
4197 int nand_scan(struct mtd_info *mtd, int maxchips)
4198 {
4199         int ret;
4200
4201         /* Many callers got this wrong, so check for it for a while... */
4202         if (!mtd->owner && caller_is_module()) {
4203                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4204                 BUG();
4205         }
4206
4207         ret = nand_scan_ident(mtd, maxchips, NULL);
4208         if (!ret)
4209                 ret = nand_scan_tail(mtd);
4210         return ret;
4211 }
4212 EXPORT_SYMBOL(nand_scan);
4213
4214 /**
4215  * nand_release - [NAND Interface] Free resources held by the NAND device
4216  * @mtd: MTD device structure
4217  */
4218 void nand_release(struct mtd_info *mtd)
4219 {
4220         struct nand_chip *chip = mtd->priv;
4221
4222         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4223                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4224
4225         mtd_device_unregister(mtd);
4226
4227         /* Free bad block table memory */
4228         kfree(chip->bbt);
4229         if (!(chip->options & NAND_OWN_BUFFERS))
4230                 kfree(chip->buffers);
4231
4232         /* Free bad block descriptor memory */
4233         if (chip->badblock_pattern && chip->badblock_pattern->options
4234                         & NAND_BBT_DYNAMICSTRUCT)
4235                 kfree(chip->badblock_pattern);
4236 }
4237 EXPORT_SYMBOL_GPL(nand_release);
4238
4239 static int __init nand_base_init(void)
4240 {
4241         led_trigger_register_simple("nand-disk", &nand_led_trigger);
4242         return 0;
4243 }
4244
4245 static void __exit nand_base_exit(void)
4246 {
4247         led_trigger_unregister_simple(nand_led_trigger);
4248 }
4249
4250 module_init(nand_base_init);
4251 module_exit(nand_base_exit);
4252
4253 MODULE_LICENSE("GPL");
4254 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4255 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4256 MODULE_DESCRIPTION("Generic NAND flash driver code");