mtd: nand: typo in nand_id_has_period() comments
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
40 #include <mach/hardware.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 #define nfc_is_v21()            (cpu_is_mx25() || cpu_is_mx35())
45 #define nfc_is_v1()             (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
46 #define nfc_is_v3_2a()          cpu_is_mx51()
47 #define nfc_is_v3_2b()          cpu_is_mx53()
48
49 /* Addresses for NFC registers */
50 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
51 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
52 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
53 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
54 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
55 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
56 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
57 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
58 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
59 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
60 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
61 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
62 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
63 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
64 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
65 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
66 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
67 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
68 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
69 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
70 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
71 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
72
73 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
74 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
75 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
76 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
77 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
78 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
79 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
80 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
81 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
82 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
83
84 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
85
86 /*
87  * Operation modes for the NFC. Valid for v1, v2 and v3
88  * type controllers.
89  */
90 #define NFC_CMD                         (1 << 0)
91 #define NFC_ADDR                        (1 << 1)
92 #define NFC_INPUT                       (1 << 2)
93 #define NFC_OUTPUT                      (1 << 3)
94 #define NFC_ID                          (1 << 4)
95 #define NFC_STATUS                      (1 << 5)
96
97 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
98 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
99
100 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
101 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
102 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
103
104 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
105
106 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
107
108 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
109 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
110 #define NFC_V3_WRPROT_LOCK              (1 << 1)
111 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
112 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
113
114 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
115
116 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
117 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
118 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
119 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
120 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
121 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
122 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
123 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
124 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
125 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
126 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
127 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
128 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
129 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
130
131 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
132 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
133 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
134 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
135 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
136 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
137 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
138
139 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
140 #define NFC_V3_IPC_CREQ                 (1 << 0)
141 #define NFC_V3_IPC_INT                  (1 << 31)
142
143 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
144
145 struct mxc_nand_host;
146
147 struct mxc_nand_devtype_data {
148         void (*preset)(struct mtd_info *);
149         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
150         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
151         void (*send_page)(struct mtd_info *, unsigned int);
152         void (*send_read_id)(struct mxc_nand_host *);
153         uint16_t (*get_dev_status)(struct mxc_nand_host *);
154         int (*check_int)(struct mxc_nand_host *);
155         void (*irq_control)(struct mxc_nand_host *, int);
156         u32 (*get_ecc_status)(struct mxc_nand_host *);
157         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
158         void (*select_chip)(struct mtd_info *mtd, int chip);
159         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
160                         u_char *read_ecc, u_char *calc_ecc);
161
162         /*
163          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
164          * (CONFIG1:INT_MSK is set). To handle this the driver uses
165          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
166          */
167         int irqpending_quirk;
168         int needs_ip;
169
170         size_t regs_offset;
171         size_t spare0_offset;
172         size_t axi_offset;
173
174         int spare_len;
175         int eccbytes;
176         int eccsize;
177         int ppb_shift;
178 };
179
180 struct mxc_nand_host {
181         struct mtd_info         mtd;
182         struct nand_chip        nand;
183         struct device           *dev;
184
185         void __iomem            *spare0;
186         void __iomem            *main_area0;
187
188         void __iomem            *base;
189         void __iomem            *regs;
190         void __iomem            *regs_axi;
191         void __iomem            *regs_ip;
192         int                     status_request;
193         struct clk              *clk;
194         int                     clk_act;
195         int                     irq;
196         int                     eccsize;
197         int                     active_cs;
198
199         struct completion       op_completion;
200
201         uint8_t                 *data_buf;
202         unsigned int            buf_start;
203
204         const struct mxc_nand_devtype_data *devtype_data;
205         struct mxc_nand_platform_data pdata;
206 };
207
208 /* OOB placement block for use with hardware ecc generation */
209 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
210         .eccbytes = 5,
211         .eccpos = {6, 7, 8, 9, 10},
212         .oobfree = {{0, 5}, {12, 4}, }
213 };
214
215 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
216         .eccbytes = 20,
217         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
218                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
219         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
220 };
221
222 /* OOB description for 512 byte pages with 16 byte OOB */
223 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
224         .eccbytes = 1 * 9,
225         .eccpos = {
226                  7,  8,  9, 10, 11, 12, 13, 14, 15
227         },
228         .oobfree = {
229                 {.offset = 0, .length = 5}
230         }
231 };
232
233 /* OOB description for 2048 byte pages with 64 byte OOB */
234 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
235         .eccbytes = 4 * 9,
236         .eccpos = {
237                  7,  8,  9, 10, 11, 12, 13, 14, 15,
238                 23, 24, 25, 26, 27, 28, 29, 30, 31,
239                 39, 40, 41, 42, 43, 44, 45, 46, 47,
240                 55, 56, 57, 58, 59, 60, 61, 62, 63
241         },
242         .oobfree = {
243                 {.offset = 2, .length = 4},
244                 {.offset = 16, .length = 7},
245                 {.offset = 32, .length = 7},
246                 {.offset = 48, .length = 7}
247         }
248 };
249
250 /* OOB description for 4096 byte pages with 128 byte OOB */
251 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
252         .eccbytes = 8 * 9,
253         .eccpos = {
254                 7,  8,  9, 10, 11, 12, 13, 14, 15,
255                 23, 24, 25, 26, 27, 28, 29, 30, 31,
256                 39, 40, 41, 42, 43, 44, 45, 46, 47,
257                 55, 56, 57, 58, 59, 60, 61, 62, 63,
258                 71, 72, 73, 74, 75, 76, 77, 78, 79,
259                 87, 88, 89, 90, 91, 92, 93, 94, 95,
260                 103, 104, 105, 106, 107, 108, 109, 110, 111,
261                 119, 120, 121, 122, 123, 124, 125, 126, 127,
262         },
263         .oobfree = {
264                 {.offset = 2, .length = 4},
265                 {.offset = 16, .length = 7},
266                 {.offset = 32, .length = 7},
267                 {.offset = 48, .length = 7},
268                 {.offset = 64, .length = 7},
269                 {.offset = 80, .length = 7},
270                 {.offset = 96, .length = 7},
271                 {.offset = 112, .length = 7},
272         }
273 };
274
275 static const char const *part_probes[] = {
276         "cmdlinepart", "RedBoot", "ofpart", NULL };
277
278 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
279 {
280         int i;
281         u32 *t = trg;
282         const __iomem u32 *s = src;
283
284         for (i = 0; i < (size >> 2); i++)
285                 *t++ = __raw_readl(s++);
286 }
287
288 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
289 {
290         int i;
291         u32 __iomem *t = trg;
292         const u32 *s = src;
293
294         for (i = 0; i < (size >> 2); i++)
295                 __raw_writel(*s++, t++);
296 }
297
298 static int check_int_v3(struct mxc_nand_host *host)
299 {
300         uint32_t tmp;
301
302         tmp = readl(NFC_V3_IPC);
303         if (!(tmp & NFC_V3_IPC_INT))
304                 return 0;
305
306         tmp &= ~NFC_V3_IPC_INT;
307         writel(tmp, NFC_V3_IPC);
308
309         return 1;
310 }
311
312 static int check_int_v1_v2(struct mxc_nand_host *host)
313 {
314         uint32_t tmp;
315
316         tmp = readw(NFC_V1_V2_CONFIG2);
317         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
318                 return 0;
319
320         if (!host->devtype_data->irqpending_quirk)
321                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
322
323         return 1;
324 }
325
326 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
327 {
328         uint16_t tmp;
329
330         tmp = readw(NFC_V1_V2_CONFIG1);
331
332         if (activate)
333                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
334         else
335                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
336
337         writew(tmp, NFC_V1_V2_CONFIG1);
338 }
339
340 static void irq_control_v3(struct mxc_nand_host *host, int activate)
341 {
342         uint32_t tmp;
343
344         tmp = readl(NFC_V3_CONFIG2);
345
346         if (activate)
347                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
348         else
349                 tmp |= NFC_V3_CONFIG2_INT_MSK;
350
351         writel(tmp, NFC_V3_CONFIG2);
352 }
353
354 static void irq_control(struct mxc_nand_host *host, int activate)
355 {
356         if (host->devtype_data->irqpending_quirk) {
357                 if (activate)
358                         enable_irq(host->irq);
359                 else
360                         disable_irq_nosync(host->irq);
361         } else {
362                 host->devtype_data->irq_control(host, activate);
363         }
364 }
365
366 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
367 {
368         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
369 }
370
371 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
372 {
373         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
374 }
375
376 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
377 {
378         return readl(NFC_V3_ECC_STATUS_RESULT);
379 }
380
381 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
382 {
383         struct mxc_nand_host *host = dev_id;
384
385         if (!host->devtype_data->check_int(host))
386                 return IRQ_NONE;
387
388         irq_control(host, 0);
389
390         complete(&host->op_completion);
391
392         return IRQ_HANDLED;
393 }
394
395 /* This function polls the NANDFC to wait for the basic operation to
396  * complete by checking the INT bit of config2 register.
397  */
398 static void wait_op_done(struct mxc_nand_host *host, int useirq)
399 {
400         int max_retries = 8000;
401
402         if (useirq) {
403                 if (!host->devtype_data->check_int(host)) {
404                         INIT_COMPLETION(host->op_completion);
405                         irq_control(host, 1);
406                         wait_for_completion(&host->op_completion);
407                 }
408         } else {
409                 while (max_retries-- > 0) {
410                         if (host->devtype_data->check_int(host))
411                                 break;
412
413                         udelay(1);
414                 }
415                 if (max_retries < 0)
416                         pr_debug("%s: INT not set\n", __func__);
417         }
418 }
419
420 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
421 {
422         /* fill command */
423         writel(cmd, NFC_V3_FLASH_CMD);
424
425         /* send out command */
426         writel(NFC_CMD, NFC_V3_LAUNCH);
427
428         /* Wait for operation to complete */
429         wait_op_done(host, useirq);
430 }
431
432 /* This function issues the specified command to the NAND device and
433  * waits for completion. */
434 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
435 {
436         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
437
438         writew(cmd, NFC_V1_V2_FLASH_CMD);
439         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
440
441         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
442                 int max_retries = 100;
443                 /* Reset completion is indicated by NFC_CONFIG2 */
444                 /* being set to 0 */
445                 while (max_retries-- > 0) {
446                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
447                                 break;
448                         }
449                         udelay(1);
450                 }
451                 if (max_retries < 0)
452                         pr_debug("%s: RESET failed\n", __func__);
453         } else {
454                 /* Wait for operation to complete */
455                 wait_op_done(host, useirq);
456         }
457 }
458
459 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
460 {
461         /* fill address */
462         writel(addr, NFC_V3_FLASH_ADDR0);
463
464         /* send out address */
465         writel(NFC_ADDR, NFC_V3_LAUNCH);
466
467         wait_op_done(host, 0);
468 }
469
470 /* This function sends an address (or partial address) to the
471  * NAND device. The address is used to select the source/destination for
472  * a NAND command. */
473 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
474 {
475         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
476
477         writew(addr, NFC_V1_V2_FLASH_ADDR);
478         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
479
480         /* Wait for operation to complete */
481         wait_op_done(host, islast);
482 }
483
484 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
485 {
486         struct nand_chip *nand_chip = mtd->priv;
487         struct mxc_nand_host *host = nand_chip->priv;
488         uint32_t tmp;
489
490         tmp = readl(NFC_V3_CONFIG1);
491         tmp &= ~(7 << 4);
492         writel(tmp, NFC_V3_CONFIG1);
493
494         /* transfer data from NFC ram to nand */
495         writel(ops, NFC_V3_LAUNCH);
496
497         wait_op_done(host, false);
498 }
499
500 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
501 {
502         struct nand_chip *nand_chip = mtd->priv;
503         struct mxc_nand_host *host = nand_chip->priv;
504
505         /* NANDFC buffer 0 is used for page read/write */
506         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
507
508         writew(ops, NFC_V1_V2_CONFIG2);
509
510         /* Wait for operation to complete */
511         wait_op_done(host, true);
512 }
513
514 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
515 {
516         struct nand_chip *nand_chip = mtd->priv;
517         struct mxc_nand_host *host = nand_chip->priv;
518         int bufs, i;
519
520         if (mtd->writesize > 512)
521                 bufs = 4;
522         else
523                 bufs = 1;
524
525         for (i = 0; i < bufs; i++) {
526
527                 /* NANDFC buffer 0 is used for page read/write */
528                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
529
530                 writew(ops, NFC_V1_V2_CONFIG2);
531
532                 /* Wait for operation to complete */
533                 wait_op_done(host, true);
534         }
535 }
536
537 static void send_read_id_v3(struct mxc_nand_host *host)
538 {
539         /* Read ID into main buffer */
540         writel(NFC_ID, NFC_V3_LAUNCH);
541
542         wait_op_done(host, true);
543
544         memcpy32_fromio(host->data_buf, host->main_area0, 16);
545 }
546
547 /* Request the NANDFC to perform a read of the NAND device ID. */
548 static void send_read_id_v1_v2(struct mxc_nand_host *host)
549 {
550         struct nand_chip *this = &host->nand;
551
552         /* NANDFC buffer 0 is used for device ID output */
553         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
554
555         writew(NFC_ID, NFC_V1_V2_CONFIG2);
556
557         /* Wait for operation to complete */
558         wait_op_done(host, true);
559
560         memcpy32_fromio(host->data_buf, host->main_area0, 16);
561
562         if (this->options & NAND_BUSWIDTH_16) {
563                 /* compress the ID info */
564                 host->data_buf[1] = host->data_buf[2];
565                 host->data_buf[2] = host->data_buf[4];
566                 host->data_buf[3] = host->data_buf[6];
567                 host->data_buf[4] = host->data_buf[8];
568                 host->data_buf[5] = host->data_buf[10];
569         }
570 }
571
572 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
573 {
574         writew(NFC_STATUS, NFC_V3_LAUNCH);
575         wait_op_done(host, true);
576
577         return readl(NFC_V3_CONFIG1) >> 16;
578 }
579
580 /* This function requests the NANDFC to perform a read of the
581  * NAND device status and returns the current status. */
582 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
583 {
584         void __iomem *main_buf = host->main_area0;
585         uint32_t store;
586         uint16_t ret;
587
588         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
589
590         /*
591          * The device status is stored in main_area0. To
592          * prevent corruption of the buffer save the value
593          * and restore it afterwards.
594          */
595         store = readl(main_buf);
596
597         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
598         wait_op_done(host, true);
599
600         ret = readw(main_buf);
601
602         writel(store, main_buf);
603
604         return ret;
605 }
606
607 /* This functions is used by upper layer to checks if device is ready */
608 static int mxc_nand_dev_ready(struct mtd_info *mtd)
609 {
610         /*
611          * NFC handles R/B internally. Therefore, this function
612          * always returns status as ready.
613          */
614         return 1;
615 }
616
617 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
618 {
619         /*
620          * If HW ECC is enabled, we turn it on during init. There is
621          * no need to enable again here.
622          */
623 }
624
625 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
626                                  u_char *read_ecc, u_char *calc_ecc)
627 {
628         struct nand_chip *nand_chip = mtd->priv;
629         struct mxc_nand_host *host = nand_chip->priv;
630
631         /*
632          * 1-Bit errors are automatically corrected in HW.  No need for
633          * additional correction.  2-Bit errors cannot be corrected by
634          * HW ECC, so we need to return failure
635          */
636         uint16_t ecc_status = get_ecc_status_v1(host);
637
638         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
639                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
640                 return -1;
641         }
642
643         return 0;
644 }
645
646 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
647                                  u_char *read_ecc, u_char *calc_ecc)
648 {
649         struct nand_chip *nand_chip = mtd->priv;
650         struct mxc_nand_host *host = nand_chip->priv;
651         u32 ecc_stat, err;
652         int no_subpages = 1;
653         int ret = 0;
654         u8 ecc_bit_mask, err_limit;
655
656         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
657         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
658
659         no_subpages = mtd->writesize >> 9;
660
661         ecc_stat = host->devtype_data->get_ecc_status(host);
662
663         do {
664                 err = ecc_stat & ecc_bit_mask;
665                 if (err > err_limit) {
666                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
667                         return -1;
668                 } else {
669                         ret += err;
670                 }
671                 ecc_stat >>= 4;
672         } while (--no_subpages);
673
674         mtd->ecc_stats.corrected += ret;
675         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
676
677         return ret;
678 }
679
680 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
681                                   u_char *ecc_code)
682 {
683         return 0;
684 }
685
686 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
687 {
688         struct nand_chip *nand_chip = mtd->priv;
689         struct mxc_nand_host *host = nand_chip->priv;
690         uint8_t ret;
691
692         /* Check for status request */
693         if (host->status_request)
694                 return host->devtype_data->get_dev_status(host) & 0xFF;
695
696         ret = *(uint8_t *)(host->data_buf + host->buf_start);
697         host->buf_start++;
698
699         return ret;
700 }
701
702 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
703 {
704         struct nand_chip *nand_chip = mtd->priv;
705         struct mxc_nand_host *host = nand_chip->priv;
706         uint16_t ret;
707
708         ret = *(uint16_t *)(host->data_buf + host->buf_start);
709         host->buf_start += 2;
710
711         return ret;
712 }
713
714 /* Write data of length len to buffer buf. The data to be
715  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
716  * Operation by the NFC, the data is written to NAND Flash */
717 static void mxc_nand_write_buf(struct mtd_info *mtd,
718                                 const u_char *buf, int len)
719 {
720         struct nand_chip *nand_chip = mtd->priv;
721         struct mxc_nand_host *host = nand_chip->priv;
722         u16 col = host->buf_start;
723         int n = mtd->oobsize + mtd->writesize - col;
724
725         n = min(n, len);
726
727         memcpy(host->data_buf + col, buf, n);
728
729         host->buf_start += n;
730 }
731
732 /* Read the data buffer from the NAND Flash. To read the data from NAND
733  * Flash first the data output cycle is initiated by the NFC, which copies
734  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
735  */
736 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
737 {
738         struct nand_chip *nand_chip = mtd->priv;
739         struct mxc_nand_host *host = nand_chip->priv;
740         u16 col = host->buf_start;
741         int n = mtd->oobsize + mtd->writesize - col;
742
743         n = min(n, len);
744
745         memcpy(buf, host->data_buf + col, n);
746
747         host->buf_start += n;
748 }
749
750 /* This function is used by upper layer for select and
751  * deselect of the NAND chip */
752 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
753 {
754         struct nand_chip *nand_chip = mtd->priv;
755         struct mxc_nand_host *host = nand_chip->priv;
756
757         if (chip == -1) {
758                 /* Disable the NFC clock */
759                 if (host->clk_act) {
760                         clk_disable_unprepare(host->clk);
761                         host->clk_act = 0;
762                 }
763                 return;
764         }
765
766         if (!host->clk_act) {
767                 /* Enable the NFC clock */
768                 clk_prepare_enable(host->clk);
769                 host->clk_act = 1;
770         }
771 }
772
773 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
774 {
775         struct nand_chip *nand_chip = mtd->priv;
776         struct mxc_nand_host *host = nand_chip->priv;
777
778         if (chip == -1) {
779                 /* Disable the NFC clock */
780                 if (host->clk_act) {
781                         clk_disable_unprepare(host->clk);
782                         host->clk_act = 0;
783                 }
784                 return;
785         }
786
787         if (!host->clk_act) {
788                 /* Enable the NFC clock */
789                 clk_prepare_enable(host->clk);
790                 host->clk_act = 1;
791         }
792
793         host->active_cs = chip;
794         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
795 }
796
797 /*
798  * Function to transfer data to/from spare area.
799  */
800 static void copy_spare(struct mtd_info *mtd, bool bfrom)
801 {
802         struct nand_chip *this = mtd->priv;
803         struct mxc_nand_host *host = this->priv;
804         u16 i, j;
805         u16 n = mtd->writesize >> 9;
806         u8 *d = host->data_buf + mtd->writesize;
807         u8 __iomem *s = host->spare0;
808         u16 t = host->devtype_data->spare_len;
809
810         j = (mtd->oobsize / n >> 1) << 1;
811
812         if (bfrom) {
813                 for (i = 0; i < n - 1; i++)
814                         memcpy32_fromio(d + i * j, s + i * t, j);
815
816                 /* the last section */
817                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
818         } else {
819                 for (i = 0; i < n - 1; i++)
820                         memcpy32_toio(&s[i * t], &d[i * j], j);
821
822                 /* the last section */
823                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
824         }
825 }
826
827 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
828 {
829         struct nand_chip *nand_chip = mtd->priv;
830         struct mxc_nand_host *host = nand_chip->priv;
831
832         /* Write out column address, if necessary */
833         if (column != -1) {
834                 /*
835                  * MXC NANDFC can only perform full page+spare or
836                  * spare-only read/write.  When the upper layers
837                  * perform a read/write buf operation, the saved column
838                   * address is used to index into the full page.
839                  */
840                 host->devtype_data->send_addr(host, 0, page_addr == -1);
841                 if (mtd->writesize > 512)
842                         /* another col addr cycle for 2k page */
843                         host->devtype_data->send_addr(host, 0, false);
844         }
845
846         /* Write out page address, if necessary */
847         if (page_addr != -1) {
848                 /* paddr_0 - p_addr_7 */
849                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
850
851                 if (mtd->writesize > 512) {
852                         if (mtd->size >= 0x10000000) {
853                                 /* paddr_8 - paddr_15 */
854                                 host->devtype_data->send_addr(host,
855                                                 (page_addr >> 8) & 0xff,
856                                                 false);
857                                 host->devtype_data->send_addr(host,
858                                                 (page_addr >> 16) & 0xff,
859                                                 true);
860                         } else
861                                 /* paddr_8 - paddr_15 */
862                                 host->devtype_data->send_addr(host,
863                                                 (page_addr >> 8) & 0xff, true);
864                 } else {
865                         /* One more address cycle for higher density devices */
866                         if (mtd->size >= 0x4000000) {
867                                 /* paddr_8 - paddr_15 */
868                                 host->devtype_data->send_addr(host,
869                                                 (page_addr >> 8) & 0xff,
870                                                 false);
871                                 host->devtype_data->send_addr(host,
872                                                 (page_addr >> 16) & 0xff,
873                                                 true);
874                         } else
875                                 /* paddr_8 - paddr_15 */
876                                 host->devtype_data->send_addr(host,
877                                                 (page_addr >> 8) & 0xff, true);
878                 }
879         }
880 }
881
882 /*
883  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
884  * on how much oob the nand chip has. For 8bit ecc we need at least
885  * 26 bytes of oob data per 512 byte block.
886  */
887 static int get_eccsize(struct mtd_info *mtd)
888 {
889         int oobbytes_per_512 = 0;
890
891         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
892
893         if (oobbytes_per_512 < 26)
894                 return 4;
895         else
896                 return 8;
897 }
898
899 static void preset_v1(struct mtd_info *mtd)
900 {
901         struct nand_chip *nand_chip = mtd->priv;
902         struct mxc_nand_host *host = nand_chip->priv;
903         uint16_t config1 = 0;
904
905         if (nand_chip->ecc.mode == NAND_ECC_HW)
906                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
907
908         if (!host->devtype_data->irqpending_quirk)
909                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
910
911         host->eccsize = 1;
912
913         writew(config1, NFC_V1_V2_CONFIG1);
914         /* preset operation */
915
916         /* Unlock the internal RAM Buffer */
917         writew(0x2, NFC_V1_V2_CONFIG);
918
919         /* Blocks to be unlocked */
920         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
921         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
922
923         /* Unlock Block Command for given address range */
924         writew(0x4, NFC_V1_V2_WRPROT);
925 }
926
927 static void preset_v2(struct mtd_info *mtd)
928 {
929         struct nand_chip *nand_chip = mtd->priv;
930         struct mxc_nand_host *host = nand_chip->priv;
931         uint16_t config1 = 0;
932
933         if (nand_chip->ecc.mode == NAND_ECC_HW)
934                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
935
936         config1 |= NFC_V2_CONFIG1_FP_INT;
937
938         if (!host->devtype_data->irqpending_quirk)
939                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
940
941         if (mtd->writesize) {
942                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
943
944                 host->eccsize = get_eccsize(mtd);
945                 if (host->eccsize == 4)
946                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
947
948                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
949         } else {
950                 host->eccsize = 1;
951         }
952
953         writew(config1, NFC_V1_V2_CONFIG1);
954         /* preset operation */
955
956         /* Unlock the internal RAM Buffer */
957         writew(0x2, NFC_V1_V2_CONFIG);
958
959         /* Blocks to be unlocked */
960         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
961         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
962         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
963         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
964         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
965         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
966         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
967         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
968
969         /* Unlock Block Command for given address range */
970         writew(0x4, NFC_V1_V2_WRPROT);
971 }
972
973 static void preset_v3(struct mtd_info *mtd)
974 {
975         struct nand_chip *chip = mtd->priv;
976         struct mxc_nand_host *host = chip->priv;
977         uint32_t config2, config3;
978         int i, addr_phases;
979
980         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
981         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
982
983         /* Unlock the internal RAM Buffer */
984         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
985                         NFC_V3_WRPROT);
986
987         /* Blocks to be unlocked */
988         for (i = 0; i < NAND_MAX_CHIPS; i++)
989                 writel(0x0 |    (0xffff << 16),
990                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
991
992         writel(0, NFC_V3_IPC);
993
994         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
995                 NFC_V3_CONFIG2_2CMD_PHASES |
996                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
997                 NFC_V3_CONFIG2_ST_CMD(0x70) |
998                 NFC_V3_CONFIG2_INT_MSK |
999                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1000
1001         if (chip->ecc.mode == NAND_ECC_HW)
1002                 config2 |= NFC_V3_CONFIG2_ECC_EN;
1003
1004         addr_phases = fls(chip->pagemask) >> 3;
1005
1006         if (mtd->writesize == 2048) {
1007                 config2 |= NFC_V3_CONFIG2_PS_2048;
1008                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1009         } else if (mtd->writesize == 4096) {
1010                 config2 |= NFC_V3_CONFIG2_PS_4096;
1011                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1012         } else {
1013                 config2 |= NFC_V3_CONFIG2_PS_512;
1014                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1015         }
1016
1017         if (mtd->writesize) {
1018                 config2 |= NFC_V3_CONFIG2_PPB(
1019                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1020                                 host->devtype_data->ppb_shift);
1021                 host->eccsize = get_eccsize(mtd);
1022                 if (host->eccsize == 8)
1023                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1024         }
1025
1026         writel(config2, NFC_V3_CONFIG2);
1027
1028         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1029                         NFC_V3_CONFIG3_NO_SDMA |
1030                         NFC_V3_CONFIG3_RBB_MODE |
1031                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1032                         NFC_V3_CONFIG3_ADD_OP(0);
1033
1034         if (!(chip->options & NAND_BUSWIDTH_16))
1035                 config3 |= NFC_V3_CONFIG3_FW8;
1036
1037         writel(config3, NFC_V3_CONFIG3);
1038
1039         writel(0, NFC_V3_DELAY_LINE);
1040 }
1041
1042 /* Used by the upper layer to write command to NAND Flash for
1043  * different operations to be carried out on NAND Flash */
1044 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1045                                 int column, int page_addr)
1046 {
1047         struct nand_chip *nand_chip = mtd->priv;
1048         struct mxc_nand_host *host = nand_chip->priv;
1049
1050         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1051               command, column, page_addr);
1052
1053         /* Reset command state information */
1054         host->status_request = false;
1055
1056         /* Command pre-processing step */
1057         switch (command) {
1058         case NAND_CMD_RESET:
1059                 host->devtype_data->preset(mtd);
1060                 host->devtype_data->send_cmd(host, command, false);
1061                 break;
1062
1063         case NAND_CMD_STATUS:
1064                 host->buf_start = 0;
1065                 host->status_request = true;
1066
1067                 host->devtype_data->send_cmd(host, command, true);
1068                 mxc_do_addr_cycle(mtd, column, page_addr);
1069                 break;
1070
1071         case NAND_CMD_READ0:
1072         case NAND_CMD_READOOB:
1073                 if (command == NAND_CMD_READ0)
1074                         host->buf_start = column;
1075                 else
1076                         host->buf_start = column + mtd->writesize;
1077
1078                 command = NAND_CMD_READ0; /* only READ0 is valid */
1079
1080                 host->devtype_data->send_cmd(host, command, false);
1081                 mxc_do_addr_cycle(mtd, column, page_addr);
1082
1083                 if (mtd->writesize > 512)
1084                         host->devtype_data->send_cmd(host,
1085                                         NAND_CMD_READSTART, true);
1086
1087                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1088
1089                 memcpy32_fromio(host->data_buf, host->main_area0,
1090                                 mtd->writesize);
1091                 copy_spare(mtd, true);
1092                 break;
1093
1094         case NAND_CMD_SEQIN:
1095                 if (column >= mtd->writesize)
1096                         /* call ourself to read a page */
1097                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1098
1099                 host->buf_start = column;
1100
1101                 host->devtype_data->send_cmd(host, command, false);
1102                 mxc_do_addr_cycle(mtd, column, page_addr);
1103                 break;
1104
1105         case NAND_CMD_PAGEPROG:
1106                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1107                 copy_spare(mtd, false);
1108                 host->devtype_data->send_page(mtd, NFC_INPUT);
1109                 host->devtype_data->send_cmd(host, command, true);
1110                 mxc_do_addr_cycle(mtd, column, page_addr);
1111                 break;
1112
1113         case NAND_CMD_READID:
1114                 host->devtype_data->send_cmd(host, command, true);
1115                 mxc_do_addr_cycle(mtd, column, page_addr);
1116                 host->devtype_data->send_read_id(host);
1117                 host->buf_start = column;
1118                 break;
1119
1120         case NAND_CMD_ERASE1:
1121         case NAND_CMD_ERASE2:
1122                 host->devtype_data->send_cmd(host, command, false);
1123                 mxc_do_addr_cycle(mtd, column, page_addr);
1124
1125                 break;
1126         }
1127 }
1128
1129 /*
1130  * The generic flash bbt decriptors overlap with our ecc
1131  * hardware, so define some i.MX specific ones.
1132  */
1133 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1134 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1135
1136 static struct nand_bbt_descr bbt_main_descr = {
1137         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1138             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1139         .offs = 0,
1140         .len = 4,
1141         .veroffs = 4,
1142         .maxblocks = 4,
1143         .pattern = bbt_pattern,
1144 };
1145
1146 static struct nand_bbt_descr bbt_mirror_descr = {
1147         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1148             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1149         .offs = 0,
1150         .len = 4,
1151         .veroffs = 4,
1152         .maxblocks = 4,
1153         .pattern = mirror_pattern,
1154 };
1155
1156 /* v1 + irqpending_quirk: i.MX21 */
1157 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1158         .preset = preset_v1,
1159         .send_cmd = send_cmd_v1_v2,
1160         .send_addr = send_addr_v1_v2,
1161         .send_page = send_page_v1,
1162         .send_read_id = send_read_id_v1_v2,
1163         .get_dev_status = get_dev_status_v1_v2,
1164         .check_int = check_int_v1_v2,
1165         .irq_control = irq_control_v1_v2,
1166         .get_ecc_status = get_ecc_status_v1,
1167         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1168         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1169         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1170         .select_chip = mxc_nand_select_chip_v1_v3,
1171         .correct_data = mxc_nand_correct_data_v1,
1172         .irqpending_quirk = 1,
1173         .needs_ip = 0,
1174         .regs_offset = 0xe00,
1175         .spare0_offset = 0x800,
1176         .spare_len = 16,
1177         .eccbytes = 3,
1178         .eccsize = 1,
1179 };
1180
1181 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1182 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1183         .preset = preset_v1,
1184         .send_cmd = send_cmd_v1_v2,
1185         .send_addr = send_addr_v1_v2,
1186         .send_page = send_page_v1,
1187         .send_read_id = send_read_id_v1_v2,
1188         .get_dev_status = get_dev_status_v1_v2,
1189         .check_int = check_int_v1_v2,
1190         .irq_control = irq_control_v1_v2,
1191         .get_ecc_status = get_ecc_status_v1,
1192         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1193         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1194         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1195         .select_chip = mxc_nand_select_chip_v1_v3,
1196         .correct_data = mxc_nand_correct_data_v1,
1197         .irqpending_quirk = 0,
1198         .needs_ip = 0,
1199         .regs_offset = 0xe00,
1200         .spare0_offset = 0x800,
1201         .axi_offset = 0,
1202         .spare_len = 16,
1203         .eccbytes = 3,
1204         .eccsize = 1,
1205 };
1206
1207 /* v21: i.MX25, i.MX35 */
1208 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1209         .preset = preset_v2,
1210         .send_cmd = send_cmd_v1_v2,
1211         .send_addr = send_addr_v1_v2,
1212         .send_page = send_page_v2,
1213         .send_read_id = send_read_id_v1_v2,
1214         .get_dev_status = get_dev_status_v1_v2,
1215         .check_int = check_int_v1_v2,
1216         .irq_control = irq_control_v1_v2,
1217         .get_ecc_status = get_ecc_status_v2,
1218         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1219         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1220         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1221         .select_chip = mxc_nand_select_chip_v2,
1222         .correct_data = mxc_nand_correct_data_v2_v3,
1223         .irqpending_quirk = 0,
1224         .needs_ip = 0,
1225         .regs_offset = 0x1e00,
1226         .spare0_offset = 0x1000,
1227         .axi_offset = 0,
1228         .spare_len = 64,
1229         .eccbytes = 9,
1230         .eccsize = 0,
1231 };
1232
1233 /* v3.2a: i.MX51 */
1234 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1235         .preset = preset_v3,
1236         .send_cmd = send_cmd_v3,
1237         .send_addr = send_addr_v3,
1238         .send_page = send_page_v3,
1239         .send_read_id = send_read_id_v3,
1240         .get_dev_status = get_dev_status_v3,
1241         .check_int = check_int_v3,
1242         .irq_control = irq_control_v3,
1243         .get_ecc_status = get_ecc_status_v3,
1244         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1245         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1246         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1247         .select_chip = mxc_nand_select_chip_v1_v3,
1248         .correct_data = mxc_nand_correct_data_v2_v3,
1249         .irqpending_quirk = 0,
1250         .needs_ip = 1,
1251         .regs_offset = 0,
1252         .spare0_offset = 0x1000,
1253         .axi_offset = 0x1e00,
1254         .spare_len = 64,
1255         .eccbytes = 0,
1256         .eccsize = 0,
1257         .ppb_shift = 7,
1258 };
1259
1260 /* v3.2b: i.MX53 */
1261 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1262         .preset = preset_v3,
1263         .send_cmd = send_cmd_v3,
1264         .send_addr = send_addr_v3,
1265         .send_page = send_page_v3,
1266         .send_read_id = send_read_id_v3,
1267         .get_dev_status = get_dev_status_v3,
1268         .check_int = check_int_v3,
1269         .irq_control = irq_control_v3,
1270         .get_ecc_status = get_ecc_status_v3,
1271         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1272         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1273         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1274         .select_chip = mxc_nand_select_chip_v1_v3,
1275         .correct_data = mxc_nand_correct_data_v2_v3,
1276         .irqpending_quirk = 0,
1277         .needs_ip = 1,
1278         .regs_offset = 0,
1279         .spare0_offset = 0x1000,
1280         .axi_offset = 0x1e00,
1281         .spare_len = 64,
1282         .eccbytes = 0,
1283         .eccsize = 0,
1284         .ppb_shift = 8,
1285 };
1286
1287 #ifdef CONFIG_OF_MTD
1288 static const struct of_device_id mxcnd_dt_ids[] = {
1289         {
1290                 .compatible = "fsl,imx21-nand",
1291                 .data = &imx21_nand_devtype_data,
1292         }, {
1293                 .compatible = "fsl,imx27-nand",
1294                 .data = &imx27_nand_devtype_data,
1295         }, {
1296                 .compatible = "fsl,imx25-nand",
1297                 .data = &imx25_nand_devtype_data,
1298         }, {
1299                 .compatible = "fsl,imx51-nand",
1300                 .data = &imx51_nand_devtype_data,
1301         }, {
1302                 .compatible = "fsl,imx53-nand",
1303                 .data = &imx53_nand_devtype_data,
1304         },
1305         { /* sentinel */ }
1306 };
1307
1308 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1309 {
1310         struct device_node *np = host->dev->of_node;
1311         struct mxc_nand_platform_data *pdata = &host->pdata;
1312         const struct of_device_id *of_id =
1313                 of_match_device(mxcnd_dt_ids, host->dev);
1314         int buswidth;
1315
1316         if (!np)
1317                 return 1;
1318
1319         if (of_get_nand_ecc_mode(np) >= 0)
1320                 pdata->hw_ecc = 1;
1321
1322         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1323
1324         buswidth = of_get_nand_bus_width(np);
1325         if (buswidth < 0)
1326                 return buswidth;
1327
1328         pdata->width = buswidth / 8;
1329
1330         host->devtype_data = of_id->data;
1331
1332         return 0;
1333 }
1334 #else
1335 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1336 {
1337         return 1;
1338 }
1339 #endif
1340
1341 static int __init mxcnd_probe_pdata(struct mxc_nand_host *host)
1342 {
1343         struct mxc_nand_platform_data *pdata = host->dev->platform_data;
1344
1345         if (!pdata)
1346                 return -ENODEV;
1347
1348         host->pdata = *pdata;
1349
1350         if (nfc_is_v1()) {
1351                 if (cpu_is_mx21())
1352                         host->devtype_data = &imx21_nand_devtype_data;
1353                 else
1354                         host->devtype_data = &imx27_nand_devtype_data;
1355         } else if (nfc_is_v21()) {
1356                 host->devtype_data = &imx25_nand_devtype_data;
1357         } else if (nfc_is_v3_2a()) {
1358                 host->devtype_data = &imx51_nand_devtype_data;
1359         } else if (nfc_is_v3_2b()) {
1360                 host->devtype_data = &imx53_nand_devtype_data;
1361         } else
1362                 BUG();
1363
1364         return 0;
1365 }
1366
1367 static int mxcnd_probe(struct platform_device *pdev)
1368 {
1369         struct nand_chip *this;
1370         struct mtd_info *mtd;
1371         struct mxc_nand_host *host;
1372         struct resource *res;
1373         int err = 0;
1374
1375         /* Allocate memory for MTD device structure and private data */
1376         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1377                         NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1378         if (!host)
1379                 return -ENOMEM;
1380
1381         host->data_buf = (uint8_t *)(host + 1);
1382
1383         host->dev = &pdev->dev;
1384         /* structures must be linked */
1385         this = &host->nand;
1386         mtd = &host->mtd;
1387         mtd->priv = this;
1388         mtd->owner = THIS_MODULE;
1389         mtd->dev.parent = &pdev->dev;
1390         mtd->name = DRIVER_NAME;
1391
1392         /* 50 us command delay time */
1393         this->chip_delay = 5;
1394
1395         this->priv = host;
1396         this->dev_ready = mxc_nand_dev_ready;
1397         this->cmdfunc = mxc_nand_command;
1398         this->read_byte = mxc_nand_read_byte;
1399         this->read_word = mxc_nand_read_word;
1400         this->write_buf = mxc_nand_write_buf;
1401         this->read_buf = mxc_nand_read_buf;
1402
1403         host->clk = devm_clk_get(&pdev->dev, NULL);
1404         if (IS_ERR(host->clk))
1405                 return PTR_ERR(host->clk);
1406
1407         err = mxcnd_probe_dt(host);
1408         if (err > 0)
1409                 err = mxcnd_probe_pdata(host);
1410         if (err < 0)
1411                 return err;
1412
1413         if (host->devtype_data->needs_ip) {
1414                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1415                 if (!res)
1416                         return -ENODEV;
1417                 host->regs_ip = devm_request_and_ioremap(&pdev->dev, res);
1418                 if (!host->regs_ip)
1419                         return -ENOMEM;
1420
1421                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1422         } else {
1423                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1424         }
1425
1426         if (!res)
1427                 return -ENODEV;
1428
1429         host->base = devm_request_and_ioremap(&pdev->dev, res);
1430         if (!host->base)
1431                 return -ENOMEM;
1432
1433         host->main_area0 = host->base;
1434
1435         if (host->devtype_data->regs_offset)
1436                 host->regs = host->base + host->devtype_data->regs_offset;
1437         host->spare0 = host->base + host->devtype_data->spare0_offset;
1438         if (host->devtype_data->axi_offset)
1439                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1440
1441         this->ecc.bytes = host->devtype_data->eccbytes;
1442         host->eccsize = host->devtype_data->eccsize;
1443
1444         this->select_chip = host->devtype_data->select_chip;
1445         this->ecc.size = 512;
1446         this->ecc.layout = host->devtype_data->ecclayout_512;
1447
1448         if (host->pdata.hw_ecc) {
1449                 this->ecc.calculate = mxc_nand_calculate_ecc;
1450                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1451                 this->ecc.correct = host->devtype_data->correct_data;
1452                 this->ecc.mode = NAND_ECC_HW;
1453         } else {
1454                 this->ecc.mode = NAND_ECC_SOFT;
1455         }
1456
1457         /* NAND bus width determines access functions used by upper layer */
1458         if (host->pdata.width == 2)
1459                 this->options |= NAND_BUSWIDTH_16;
1460
1461         if (host->pdata.flash_bbt) {
1462                 this->bbt_td = &bbt_main_descr;
1463                 this->bbt_md = &bbt_mirror_descr;
1464                 /* update flash based bbt */
1465                 this->bbt_options |= NAND_BBT_USE_FLASH;
1466         }
1467
1468         init_completion(&host->op_completion);
1469
1470         host->irq = platform_get_irq(pdev, 0);
1471
1472         /*
1473          * Use host->devtype_data->irq_control() here instead of irq_control()
1474          * because we must not disable_irq_nosync without having requested the
1475          * irq.
1476          */
1477         host->devtype_data->irq_control(host, 0);
1478
1479         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1480                         IRQF_DISABLED, DRIVER_NAME, host);
1481         if (err)
1482                 return err;
1483
1484         clk_prepare_enable(host->clk);
1485         host->clk_act = 1;
1486
1487         /*
1488          * Now that we "own" the interrupt make sure the interrupt mask bit is
1489          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1490          * on this machine.
1491          */
1492         if (host->devtype_data->irqpending_quirk) {
1493                 disable_irq_nosync(host->irq);
1494                 host->devtype_data->irq_control(host, 1);
1495         }
1496
1497         /* first scan to find the device and get the page size */
1498         if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1499                 err = -ENXIO;
1500                 goto escan;
1501         }
1502
1503         /* Call preset again, with correct writesize this time */
1504         host->devtype_data->preset(mtd);
1505
1506         if (mtd->writesize == 2048)
1507                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1508         else if (mtd->writesize == 4096)
1509                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1510
1511         if (this->ecc.mode == NAND_ECC_HW) {
1512                 if (nfc_is_v1())
1513                         this->ecc.strength = 1;
1514                 else
1515                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1516         }
1517
1518         /* second phase scan */
1519         if (nand_scan_tail(mtd)) {
1520                 err = -ENXIO;
1521                 goto escan;
1522         }
1523
1524         /* Register the partitions */
1525         mtd_device_parse_register(mtd, part_probes,
1526                         &(struct mtd_part_parser_data){
1527                                 .of_node = pdev->dev.of_node,
1528                         },
1529                         host->pdata.parts,
1530                         host->pdata.nr_parts);
1531
1532         platform_set_drvdata(pdev, host);
1533
1534         return 0;
1535
1536 escan:
1537         if (host->clk_act)
1538                 clk_disable_unprepare(host->clk);
1539
1540         return err;
1541 }
1542
1543 static int mxcnd_remove(struct platform_device *pdev)
1544 {
1545         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1546
1547         platform_set_drvdata(pdev, NULL);
1548
1549         nand_release(&host->mtd);
1550
1551         return 0;
1552 }
1553
1554 static struct platform_driver mxcnd_driver = {
1555         .driver = {
1556                    .name = DRIVER_NAME,
1557                    .owner = THIS_MODULE,
1558                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1559         },
1560         .probe = mxcnd_probe,
1561         .remove = mxcnd_remove,
1562 };
1563 module_platform_driver(mxcnd_driver);
1564
1565 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1566 MODULE_DESCRIPTION("MXC NAND MTD driver");
1567 MODULE_LICENSE("GPL");