mfd: lpc_ich: Use devres API to allocate private data
[firefly-linux-kernel-4.4.55.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h>
35 #include <linux/platform_data/ux500_wdt.h>
36 #include <asm/hardware/gic.h>
37 #include <mach/hardware.h>
38 #include <mach/irqs.h>
39 #include <mach/db8500-regs.h>
40 #include <mach/id.h>
41 #include "dbx500-prcmu-regs.h"
42
43 /* Offset for the firmware version within the TCPM */
44 #define PRCMU_FW_VERSION_OFFSET 0xA4
45
46 /* Index of different voltages to be used when accessing AVSData */
47 #define PRCM_AVS_BASE           0x2FC
48 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
49 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
50 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
51 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
52 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
53 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
54 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
55 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
56 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
57 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
58 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
59 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
60 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
61
62 #define PRCM_AVS_VOLTAGE                0
63 #define PRCM_AVS_VOLTAGE_MASK           0x3f
64 #define PRCM_AVS_ISSLOWSTARTUP          6
65 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
66 #define PRCM_AVS_ISMODEENABLE           7
67 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
68
69 #define PRCM_BOOT_STATUS        0xFFF
70 #define PRCM_ROMCODE_A2P        0xFFE
71 #define PRCM_ROMCODE_P2A        0xFFD
72 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
73
74 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
75
76 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
77 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
78 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
79 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
80 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
81 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
82 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
83 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
84
85 /* Req Mailboxes */
86 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
87 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
88 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
89 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
90 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
91 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
92
93 /* Ack Mailboxes */
94 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
95 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
96 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
97 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
98 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
99 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
100
101 /* Mailbox 0 headers */
102 #define MB0H_POWER_STATE_TRANS          0
103 #define MB0H_CONFIG_WAKEUPS_EXE         1
104 #define MB0H_READ_WAKEUP_ACK            3
105 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
106
107 #define MB0H_WAKEUP_EXE 2
108 #define MB0H_WAKEUP_SLEEP 5
109
110 /* Mailbox 0 REQs */
111 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
112 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
113 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
114 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
115 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
116 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
117
118 /* Mailbox 0 ACKs */
119 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
120 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
121 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
122 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
123 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
124 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
125 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
126
127 /* Mailbox 1 headers */
128 #define MB1H_ARM_APE_OPP 0x0
129 #define MB1H_RESET_MODEM 0x2
130 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
131 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
132 #define MB1H_RELEASE_USB_WAKEUP 0x5
133 #define MB1H_PLL_ON_OFF 0x6
134
135 /* Mailbox 1 Requests */
136 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
137 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
138 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
139 #define PLL_SOC0_OFF    0x1
140 #define PLL_SOC0_ON     0x2
141 #define PLL_SOC1_OFF    0x4
142 #define PLL_SOC1_ON     0x8
143
144 /* Mailbox 1 ACKs */
145 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
146 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
147 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
148 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
149
150 /* Mailbox 2 headers */
151 #define MB2H_DPS        0x0
152 #define MB2H_AUTO_PWR   0x1
153
154 /* Mailbox 2 REQs */
155 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
156 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
157 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
158 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
159 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
160 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
161 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
162 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
163 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
164 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
165
166 /* Mailbox 2 ACKs */
167 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
168 #define HWACC_PWR_ST_OK 0xFE
169
170 /* Mailbox 3 headers */
171 #define MB3H_ANC        0x0
172 #define MB3H_SIDETONE   0x1
173 #define MB3H_SYSCLK     0xE
174
175 /* Mailbox 3 Requests */
176 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
177 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
178 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
179 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
181 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
182 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
183
184 /* Mailbox 4 headers */
185 #define MB4H_DDR_INIT   0x0
186 #define MB4H_MEM_ST     0x1
187 #define MB4H_HOTDOG     0x12
188 #define MB4H_HOTMON     0x13
189 #define MB4H_HOT_PERIOD 0x14
190 #define MB4H_A9WDOG_CONF 0x16
191 #define MB4H_A9WDOG_EN   0x17
192 #define MB4H_A9WDOG_DIS  0x18
193 #define MB4H_A9WDOG_LOAD 0x19
194 #define MB4H_A9WDOG_KICK 0x20
195
196 /* Mailbox 4 Requests */
197 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
200 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
205 #define HOTMON_CONFIG_LOW                       BIT(0)
206 #define HOTMON_CONFIG_HIGH                      BIT(1)
207 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
208 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
209 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
210 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
211 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
212 #define A9WDOG_AUTO_OFF_DIS                     0
213 #define A9WDOG_ID_MASK                          0xf
214
215 /* Mailbox 5 Requests */
216 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
217 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
218 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
219 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
220 #define PRCMU_I2C_WRITE(slave) \
221         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_READ(slave) \
223         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
224 #define PRCMU_I2C_STOP_EN               BIT(3)
225
226 /* Mailbox 5 ACKs */
227 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
228 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
229 #define I2C_WR_OK 0x1
230 #define I2C_RD_OK 0x2
231
232 #define NUM_MB 8
233 #define MBOX_BIT BIT
234 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
235
236 /*
237  * Wakeups/IRQs
238  */
239
240 #define WAKEUP_BIT_RTC BIT(0)
241 #define WAKEUP_BIT_RTT0 BIT(1)
242 #define WAKEUP_BIT_RTT1 BIT(2)
243 #define WAKEUP_BIT_HSI0 BIT(3)
244 #define WAKEUP_BIT_HSI1 BIT(4)
245 #define WAKEUP_BIT_CA_WAKE BIT(5)
246 #define WAKEUP_BIT_USB BIT(6)
247 #define WAKEUP_BIT_ABB BIT(7)
248 #define WAKEUP_BIT_ABB_FIFO BIT(8)
249 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
250 #define WAKEUP_BIT_CA_SLEEP BIT(10)
251 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
252 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
253 #define WAKEUP_BIT_ANC_OK BIT(13)
254 #define WAKEUP_BIT_SW_ERROR BIT(14)
255 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
256 #define WAKEUP_BIT_ARM BIT(17)
257 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
258 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
259 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
260 #define WAKEUP_BIT_GPIO0 BIT(23)
261 #define WAKEUP_BIT_GPIO1 BIT(24)
262 #define WAKEUP_BIT_GPIO2 BIT(25)
263 #define WAKEUP_BIT_GPIO3 BIT(26)
264 #define WAKEUP_BIT_GPIO4 BIT(27)
265 #define WAKEUP_BIT_GPIO5 BIT(28)
266 #define WAKEUP_BIT_GPIO6 BIT(29)
267 #define WAKEUP_BIT_GPIO7 BIT(30)
268 #define WAKEUP_BIT_GPIO8 BIT(31)
269
270 static struct {
271         bool valid;
272         struct prcmu_fw_version version;
273 } fw_info;
274
275 static struct irq_domain *db8500_irq_domain;
276
277 /*
278  * This vector maps irq numbers to the bits in the bit field used in
279  * communication with the PRCMU firmware.
280  *
281  * The reason for having this is to keep the irq numbers contiguous even though
282  * the bits in the bit field are not. (The bits also have a tendency to move
283  * around, to further complicate matters.)
284  */
285 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
286 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
287 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
288         IRQ_ENTRY(RTC),
289         IRQ_ENTRY(RTT0),
290         IRQ_ENTRY(RTT1),
291         IRQ_ENTRY(HSI0),
292         IRQ_ENTRY(HSI1),
293         IRQ_ENTRY(CA_WAKE),
294         IRQ_ENTRY(USB),
295         IRQ_ENTRY(ABB),
296         IRQ_ENTRY(ABB_FIFO),
297         IRQ_ENTRY(CA_SLEEP),
298         IRQ_ENTRY(ARM),
299         IRQ_ENTRY(HOTMON_LOW),
300         IRQ_ENTRY(HOTMON_HIGH),
301         IRQ_ENTRY(MODEM_SW_RESET_REQ),
302         IRQ_ENTRY(GPIO0),
303         IRQ_ENTRY(GPIO1),
304         IRQ_ENTRY(GPIO2),
305         IRQ_ENTRY(GPIO3),
306         IRQ_ENTRY(GPIO4),
307         IRQ_ENTRY(GPIO5),
308         IRQ_ENTRY(GPIO6),
309         IRQ_ENTRY(GPIO7),
310         IRQ_ENTRY(GPIO8)
311 };
312
313 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
314 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
315 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
316         WAKEUP_ENTRY(RTC),
317         WAKEUP_ENTRY(RTT0),
318         WAKEUP_ENTRY(RTT1),
319         WAKEUP_ENTRY(HSI0),
320         WAKEUP_ENTRY(HSI1),
321         WAKEUP_ENTRY(USB),
322         WAKEUP_ENTRY(ABB),
323         WAKEUP_ENTRY(ABB_FIFO),
324         WAKEUP_ENTRY(ARM)
325 };
326
327 /*
328  * mb0_transfer - state needed for mailbox 0 communication.
329  * @lock:               The transaction lock.
330  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
331  *                      the request data.
332  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
333  * @req:                Request data that need to persist between requests.
334  */
335 static struct {
336         spinlock_t lock;
337         spinlock_t dbb_irqs_lock;
338         struct work_struct mask_work;
339         struct mutex ac_wake_lock;
340         struct completion ac_wake_work;
341         struct {
342                 u32 dbb_irqs;
343                 u32 dbb_wakeups;
344                 u32 abb_events;
345         } req;
346 } mb0_transfer;
347
348 /*
349  * mb1_transfer - state needed for mailbox 1 communication.
350  * @lock:       The transaction lock.
351  * @work:       The transaction completion structure.
352  * @ape_opp:    The current APE OPP.
353  * @ack:        Reply ("acknowledge") data.
354  */
355 static struct {
356         struct mutex lock;
357         struct completion work;
358         u8 ape_opp;
359         struct {
360                 u8 header;
361                 u8 arm_opp;
362                 u8 ape_opp;
363                 u8 ape_voltage_status;
364         } ack;
365 } mb1_transfer;
366
367 /*
368  * mb2_transfer - state needed for mailbox 2 communication.
369  * @lock:            The transaction lock.
370  * @work:            The transaction completion structure.
371  * @auto_pm_lock:    The autonomous power management configuration lock.
372  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
373  * @req:             Request data that need to persist between requests.
374  * @ack:             Reply ("acknowledge") data.
375  */
376 static struct {
377         struct mutex lock;
378         struct completion work;
379         spinlock_t auto_pm_lock;
380         bool auto_pm_enabled;
381         struct {
382                 u8 status;
383         } ack;
384 } mb2_transfer;
385
386 /*
387  * mb3_transfer - state needed for mailbox 3 communication.
388  * @lock:               The request lock.
389  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
390  * @sysclk_work:        Work structure used for sysclk requests.
391  */
392 static struct {
393         spinlock_t lock;
394         struct mutex sysclk_lock;
395         struct completion sysclk_work;
396 } mb3_transfer;
397
398 /*
399  * mb4_transfer - state needed for mailbox 4 communication.
400  * @lock:       The transaction lock.
401  * @work:       The transaction completion structure.
402  */
403 static struct {
404         struct mutex lock;
405         struct completion work;
406 } mb4_transfer;
407
408 /*
409  * mb5_transfer - state needed for mailbox 5 communication.
410  * @lock:       The transaction lock.
411  * @work:       The transaction completion structure.
412  * @ack:        Reply ("acknowledge") data.
413  */
414 static struct {
415         struct mutex lock;
416         struct completion work;
417         struct {
418                 u8 status;
419                 u8 value;
420         } ack;
421 } mb5_transfer;
422
423 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
424
425 /* Spinlocks */
426 static DEFINE_SPINLOCK(prcmu_lock);
427 static DEFINE_SPINLOCK(clkout_lock);
428
429 /* Global var to runtime determine TCDM base for v2 or v1 */
430 static __iomem void *tcdm_base;
431
432 struct clk_mgt {
433         void __iomem *reg;
434         u32 pllsw;
435         int branch;
436         bool clk38div;
437 };
438
439 enum {
440         PLL_RAW,
441         PLL_FIX,
442         PLL_DIV
443 };
444
445 static DEFINE_SPINLOCK(clk_mgt_lock);
446
447 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
448         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
449 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
450         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
451         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
452         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
453         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
454         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
455         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
456         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
457         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
458         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
459         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
460         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
461         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
462         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
463         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
464         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
465         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
466         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
467         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
468         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
469         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
470         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
471         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
473         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
474         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
475         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
478         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
479 };
480
481 struct dsiclk {
482         u32 divsel_mask;
483         u32 divsel_shift;
484         u32 divsel;
485 };
486
487 static struct dsiclk dsiclk[2] = {
488         {
489                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
490                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
491                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
492         },
493         {
494                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
495                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
496                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
497         }
498 };
499
500 struct dsiescclk {
501         u32 en;
502         u32 div_mask;
503         u32 div_shift;
504 };
505
506 static struct dsiescclk dsiescclk[3] = {
507         {
508                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
509                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
510                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
511         },
512         {
513                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
514                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
515                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
516         },
517         {
518                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
519                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
520                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
521         }
522 };
523
524
525 /*
526 * Used by MCDE to setup all necessary PRCMU registers
527 */
528 #define PRCMU_RESET_DSIPLL              0x00004000
529 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
530
531 #define PRCMU_CLK_PLL_DIV_SHIFT         0
532 #define PRCMU_CLK_PLL_SW_SHIFT          5
533 #define PRCMU_CLK_38                    (1 << 9)
534 #define PRCMU_CLK_38_SRC                (1 << 10)
535 #define PRCMU_CLK_38_DIV                (1 << 11)
536
537 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
538 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
539
540 /* DPI 50000000 Hz */
541 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
542                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
543 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
544
545 /* D=101, N=1, R=4, SELDIV2=0 */
546 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
547
548 #define PRCMU_ENABLE_PLLDSI             0x00000001
549 #define PRCMU_DISABLE_PLLDSI            0x00000000
550 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
551 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
552 /* ESC clk, div0=1, div1=1, div2=3 */
553 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
554 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
555 #define PRCMU_DSI_RESET_SW              0x00000007
556
557 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
558
559 int db8500_prcmu_enable_dsipll(void)
560 {
561         int i;
562
563         /* Clear DSIPLL_RESETN */
564         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
565         /* Unclamp DSIPLL in/out */
566         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
567
568         /* Set DSI PLL FREQ */
569         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
570         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
571         /* Enable Escape clocks */
572         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
573
574         /* Start DSI PLL */
575         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
576         /* Reset DSI PLL */
577         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
578         for (i = 0; i < 10; i++) {
579                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
580                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
581                         break;
582                 udelay(100);
583         }
584         /* Set DSIPLL_RESETN */
585         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
586         return 0;
587 }
588
589 int db8500_prcmu_disable_dsipll(void)
590 {
591         /* Disable dsi pll */
592         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
593         /* Disable  escapeclock */
594         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
595         return 0;
596 }
597
598 int db8500_prcmu_set_display_clocks(void)
599 {
600         unsigned long flags;
601
602         spin_lock_irqsave(&clk_mgt_lock, flags);
603
604         /* Grab the HW semaphore. */
605         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
606                 cpu_relax();
607
608         writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
609         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
610         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
611
612         /* Release the HW semaphore. */
613         writel(0, PRCM_SEM);
614
615         spin_unlock_irqrestore(&clk_mgt_lock, flags);
616
617         return 0;
618 }
619
620 u32 db8500_prcmu_read(unsigned int reg)
621 {
622         return readl(_PRCMU_BASE + reg);
623 }
624
625 void db8500_prcmu_write(unsigned int reg, u32 value)
626 {
627         unsigned long flags;
628
629         spin_lock_irqsave(&prcmu_lock, flags);
630         writel(value, (_PRCMU_BASE + reg));
631         spin_unlock_irqrestore(&prcmu_lock, flags);
632 }
633
634 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
635 {
636         u32 val;
637         unsigned long flags;
638
639         spin_lock_irqsave(&prcmu_lock, flags);
640         val = readl(_PRCMU_BASE + reg);
641         val = ((val & ~mask) | (value & mask));
642         writel(val, (_PRCMU_BASE + reg));
643         spin_unlock_irqrestore(&prcmu_lock, flags);
644 }
645
646 struct prcmu_fw_version *prcmu_get_fw_version(void)
647 {
648         return fw_info.valid ? &fw_info.version : NULL;
649 }
650
651 bool prcmu_has_arm_maxopp(void)
652 {
653         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
654                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
655 }
656
657 /**
658  * prcmu_get_boot_status - PRCMU boot status checking
659  * Returns: the current PRCMU boot status
660  */
661 int prcmu_get_boot_status(void)
662 {
663         return readb(tcdm_base + PRCM_BOOT_STATUS);
664 }
665
666 /**
667  * prcmu_set_rc_a2p - This function is used to run few power state sequences
668  * @val: Value to be set, i.e. transition requested
669  * Returns: 0 on success, -EINVAL on invalid argument
670  *
671  * This function is used to run the following power state sequences -
672  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
673  */
674 int prcmu_set_rc_a2p(enum romcode_write val)
675 {
676         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
677                 return -EINVAL;
678         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
679         return 0;
680 }
681
682 /**
683  * prcmu_get_rc_p2a - This function is used to get power state sequences
684  * Returns: the power transition that has last happened
685  *
686  * This function can return the following transitions-
687  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
688  */
689 enum romcode_read prcmu_get_rc_p2a(void)
690 {
691         return readb(tcdm_base + PRCM_ROMCODE_P2A);
692 }
693
694 /**
695  * prcmu_get_current_mode - Return the current XP70 power mode
696  * Returns: Returns the current AP(ARM) power mode: init,
697  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
698  */
699 enum ap_pwrst prcmu_get_xp70_current_state(void)
700 {
701         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
702 }
703
704 /**
705  * prcmu_config_clkout - Configure one of the programmable clock outputs.
706  * @clkout:     The CLKOUT number (0 or 1).
707  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
708  * @div:        The divider to be applied.
709  *
710  * Configures one of the programmable clock outputs (CLKOUTs).
711  * @div should be in the range [1,63] to request a configuration, or 0 to
712  * inform that the configuration is no longer requested.
713  */
714 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
715 {
716         static int requests[2];
717         int r = 0;
718         unsigned long flags;
719         u32 val;
720         u32 bits;
721         u32 mask;
722         u32 div_mask;
723
724         BUG_ON(clkout > 1);
725         BUG_ON(div > 63);
726         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
727
728         if (!div && !requests[clkout])
729                 return -EINVAL;
730
731         switch (clkout) {
732         case 0:
733                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
734                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
735                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
736                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
737                 break;
738         case 1:
739                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
740                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
741                         PRCM_CLKOCR_CLK1TYPE);
742                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
743                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
744                 break;
745         }
746         bits &= mask;
747
748         spin_lock_irqsave(&clkout_lock, flags);
749
750         val = readl(PRCM_CLKOCR);
751         if (val & div_mask) {
752                 if (div) {
753                         if ((val & mask) != bits) {
754                                 r = -EBUSY;
755                                 goto unlock_and_return;
756                         }
757                 } else {
758                         if ((val & mask & ~div_mask) != bits) {
759                                 r = -EINVAL;
760                                 goto unlock_and_return;
761                         }
762                 }
763         }
764         writel((bits | (val & ~mask)), PRCM_CLKOCR);
765         requests[clkout] += (div ? 1 : -1);
766
767 unlock_and_return:
768         spin_unlock_irqrestore(&clkout_lock, flags);
769
770         return r;
771 }
772
773 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
774 {
775         unsigned long flags;
776
777         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
778
779         spin_lock_irqsave(&mb0_transfer.lock, flags);
780
781         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
782                 cpu_relax();
783
784         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
785         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
786         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
787         writeb((keep_ulp_clk ? 1 : 0),
788                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
789         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
790         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
791
792         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
793
794         return 0;
795 }
796
797 u8 db8500_prcmu_get_power_state_result(void)
798 {
799         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
800 }
801
802 /* This function decouple the gic from the prcmu */
803 int db8500_prcmu_gic_decouple(void)
804 {
805         u32 val = readl(PRCM_A9_MASK_REQ);
806
807         /* Set bit 0 register value to 1 */
808         writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
809                PRCM_A9_MASK_REQ);
810
811         /* Make sure the register is updated */
812         readl(PRCM_A9_MASK_REQ);
813
814         /* Wait a few cycles for the gic mask completion */
815         udelay(1);
816
817         return 0;
818 }
819
820 /* This function recouple the gic with the prcmu */
821 int db8500_prcmu_gic_recouple(void)
822 {
823         u32 val = readl(PRCM_A9_MASK_REQ);
824
825         /* Set bit 0 register value to 0 */
826         writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
827
828         return 0;
829 }
830
831 #define PRCMU_GIC_NUMBER_REGS 5
832
833 /*
834  * This function checks if there are pending irq on the gic. It only
835  * makes sense if the gic has been decoupled before with the
836  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
837  * disables the forwarding of the interrupt to any CPU interface. It
838  * does not prevent the interrupt from changing state, for example
839  * becoming pending, or active and pending if it is already
840  * active. Hence, we have to check the interrupt is pending *and* is
841  * active.
842  */
843 bool db8500_prcmu_gic_pending_irq(void)
844 {
845         u32 pr; /* Pending register */
846         u32 er; /* Enable register */
847         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
848         int i;
849
850         /* 5 registers. STI & PPI not skipped */
851         for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
852
853                 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
854                 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
855
856                 if (pr & er)
857                         return true; /* There is a pending interrupt */
858         }
859
860         return false;
861 }
862
863 /*
864  * This function checks if there are pending interrupt on the
865  * prcmu which has been delegated to monitor the irqs with the
866  * db8500_prcmu_copy_gic_settings function.
867  */
868 bool db8500_prcmu_pending_irq(void)
869 {
870         u32 it, im;
871         int i;
872
873         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
874                 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
875                 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
876                 if (it & im)
877                         return true; /* There is a pending interrupt */
878         }
879
880         return false;
881 }
882
883 /*
884  * This function checks if the specified cpu is in in WFI. It's usage
885  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
886  * function. Of course passing smp_processor_id() to this function will
887  * always return false...
888  */
889 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
890 {
891         return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
892                      PRCM_ARM_WFI_STANDBY_WFI0;
893 }
894
895 /*
896  * This function copies the gic SPI settings to the prcmu in order to
897  * monitor them and abort/finish the retention/off sequence or state.
898  */
899 int db8500_prcmu_copy_gic_settings(void)
900 {
901         u32 er; /* Enable register */
902         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
903         int i;
904
905         /* We skip the STI and PPI */
906         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
907                 er = readl_relaxed(dist_base +
908                                    GIC_DIST_ENABLE_SET + (i + 1) * 4);
909                 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
910         }
911
912         return 0;
913 }
914
915 /* This function should only be called while mb0_transfer.lock is held. */
916 static void config_wakeups(void)
917 {
918         const u8 header[2] = {
919                 MB0H_CONFIG_WAKEUPS_EXE,
920                 MB0H_CONFIG_WAKEUPS_SLEEP
921         };
922         static u32 last_dbb_events;
923         static u32 last_abb_events;
924         u32 dbb_events;
925         u32 abb_events;
926         unsigned int i;
927
928         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
929         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
930
931         abb_events = mb0_transfer.req.abb_events;
932
933         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
934                 return;
935
936         for (i = 0; i < 2; i++) {
937                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
938                         cpu_relax();
939                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
940                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
941                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
942                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
943         }
944         last_dbb_events = dbb_events;
945         last_abb_events = abb_events;
946 }
947
948 void db8500_prcmu_enable_wakeups(u32 wakeups)
949 {
950         unsigned long flags;
951         u32 bits;
952         int i;
953
954         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
955
956         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
957                 if (wakeups & BIT(i))
958                         bits |= prcmu_wakeup_bit[i];
959         }
960
961         spin_lock_irqsave(&mb0_transfer.lock, flags);
962
963         mb0_transfer.req.dbb_wakeups = bits;
964         config_wakeups();
965
966         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
967 }
968
969 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
970 {
971         unsigned long flags;
972
973         spin_lock_irqsave(&mb0_transfer.lock, flags);
974
975         mb0_transfer.req.abb_events = abb_events;
976         config_wakeups();
977
978         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
979 }
980
981 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
982 {
983         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
984                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
985         else
986                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
987 }
988
989 /**
990  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
991  * @opp: The new ARM operating point to which transition is to be made
992  * Returns: 0 on success, non-zero on failure
993  *
994  * This function sets the the operating point of the ARM.
995  */
996 int db8500_prcmu_set_arm_opp(u8 opp)
997 {
998         int r;
999
1000         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1001                 return -EINVAL;
1002
1003         r = 0;
1004
1005         mutex_lock(&mb1_transfer.lock);
1006
1007         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1008                 cpu_relax();
1009
1010         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1011         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1012         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1013
1014         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1015         wait_for_completion(&mb1_transfer.work);
1016
1017         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1018                 (mb1_transfer.ack.arm_opp != opp))
1019                 r = -EIO;
1020
1021         mutex_unlock(&mb1_transfer.lock);
1022
1023         return r;
1024 }
1025
1026 /**
1027  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1028  *
1029  * Returns: the current ARM OPP
1030  */
1031 int db8500_prcmu_get_arm_opp(void)
1032 {
1033         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1034 }
1035
1036 /**
1037  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1038  *
1039  * Returns: the current DDR OPP
1040  */
1041 int db8500_prcmu_get_ddr_opp(void)
1042 {
1043         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1044 }
1045
1046 /**
1047  * db8500_set_ddr_opp - set the appropriate DDR OPP
1048  * @opp: The new DDR operating point to which transition is to be made
1049  * Returns: 0 on success, non-zero on failure
1050  *
1051  * This function sets the operating point of the DDR.
1052  */
1053 int db8500_prcmu_set_ddr_opp(u8 opp)
1054 {
1055         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1056                 return -EINVAL;
1057         /* Changing the DDR OPP can hang the hardware pre-v21 */
1058         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1059                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1060
1061         return 0;
1062 }
1063
1064 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1065 static void request_even_slower_clocks(bool enable)
1066 {
1067         void __iomem *clock_reg[] = {
1068                 PRCM_ACLK_MGT,
1069                 PRCM_DMACLK_MGT
1070         };
1071         unsigned long flags;
1072         unsigned int i;
1073
1074         spin_lock_irqsave(&clk_mgt_lock, flags);
1075
1076         /* Grab the HW semaphore. */
1077         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1078                 cpu_relax();
1079
1080         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1081                 u32 val;
1082                 u32 div;
1083
1084                 val = readl(clock_reg[i]);
1085                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1086                 if (enable) {
1087                         if ((div <= 1) || (div > 15)) {
1088                                 pr_err("prcmu: Bad clock divider %d in %s\n",
1089                                         div, __func__);
1090                                 goto unlock_and_return;
1091                         }
1092                         div <<= 1;
1093                 } else {
1094                         if (div <= 2)
1095                                 goto unlock_and_return;
1096                         div >>= 1;
1097                 }
1098                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1099                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1100                 writel(val, clock_reg[i]);
1101         }
1102
1103 unlock_and_return:
1104         /* Release the HW semaphore. */
1105         writel(0, PRCM_SEM);
1106
1107         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1108 }
1109
1110 /**
1111  * db8500_set_ape_opp - set the appropriate APE OPP
1112  * @opp: The new APE operating point to which transition is to be made
1113  * Returns: 0 on success, non-zero on failure
1114  *
1115  * This function sets the operating point of the APE.
1116  */
1117 int db8500_prcmu_set_ape_opp(u8 opp)
1118 {
1119         int r = 0;
1120
1121         if (opp == mb1_transfer.ape_opp)
1122                 return 0;
1123
1124         mutex_lock(&mb1_transfer.lock);
1125
1126         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1127                 request_even_slower_clocks(false);
1128
1129         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1130                 goto skip_message;
1131
1132         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1133                 cpu_relax();
1134
1135         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1136         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1137         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1138                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1139
1140         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141         wait_for_completion(&mb1_transfer.work);
1142
1143         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1144                 (mb1_transfer.ack.ape_opp != opp))
1145                 r = -EIO;
1146
1147 skip_message:
1148         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1149                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1150                 request_even_slower_clocks(true);
1151         if (!r)
1152                 mb1_transfer.ape_opp = opp;
1153
1154         mutex_unlock(&mb1_transfer.lock);
1155
1156         return r;
1157 }
1158
1159 /**
1160  * db8500_prcmu_get_ape_opp - get the current APE OPP
1161  *
1162  * Returns: the current APE OPP
1163  */
1164 int db8500_prcmu_get_ape_opp(void)
1165 {
1166         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1167 }
1168
1169 /**
1170  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1171  * @enable: true to request the higher voltage, false to drop a request.
1172  *
1173  * Calls to this function to enable and disable requests must be balanced.
1174  */
1175 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1176 {
1177         int r = 0;
1178         u8 header;
1179         static unsigned int requests;
1180
1181         mutex_lock(&mb1_transfer.lock);
1182
1183         if (enable) {
1184                 if (0 != requests++)
1185                         goto unlock_and_return;
1186                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1187         } else {
1188                 if (requests == 0) {
1189                         r = -EIO;
1190                         goto unlock_and_return;
1191                 } else if (1 != requests--) {
1192                         goto unlock_and_return;
1193                 }
1194                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1195         }
1196
1197         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1198                 cpu_relax();
1199
1200         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1201
1202         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1203         wait_for_completion(&mb1_transfer.work);
1204
1205         if ((mb1_transfer.ack.header != header) ||
1206                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1207                 r = -EIO;
1208
1209 unlock_and_return:
1210         mutex_unlock(&mb1_transfer.lock);
1211
1212         return r;
1213 }
1214
1215 /**
1216  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1217  *
1218  * This function releases the power state requirements of a USB wakeup.
1219  */
1220 int prcmu_release_usb_wakeup_state(void)
1221 {
1222         int r = 0;
1223
1224         mutex_lock(&mb1_transfer.lock);
1225
1226         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1227                 cpu_relax();
1228
1229         writeb(MB1H_RELEASE_USB_WAKEUP,
1230                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1231
1232         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1233         wait_for_completion(&mb1_transfer.work);
1234
1235         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1236                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1237                 r = -EIO;
1238
1239         mutex_unlock(&mb1_transfer.lock);
1240
1241         return r;
1242 }
1243
1244 static int request_pll(u8 clock, bool enable)
1245 {
1246         int r = 0;
1247
1248         if (clock == PRCMU_PLLSOC0)
1249                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1250         else if (clock == PRCMU_PLLSOC1)
1251                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1252         else
1253                 return -EINVAL;
1254
1255         mutex_lock(&mb1_transfer.lock);
1256
1257         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1258                 cpu_relax();
1259
1260         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1261         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1262
1263         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1264         wait_for_completion(&mb1_transfer.work);
1265
1266         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1267                 r = -EIO;
1268
1269         mutex_unlock(&mb1_transfer.lock);
1270
1271         return r;
1272 }
1273
1274 /**
1275  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1276  * @epod_id: The EPOD to set
1277  * @epod_state: The new EPOD state
1278  *
1279  * This function sets the state of a EPOD (power domain). It may not be called
1280  * from interrupt context.
1281  */
1282 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1283 {
1284         int r = 0;
1285         bool ram_retention = false;
1286         int i;
1287
1288         /* check argument */
1289         BUG_ON(epod_id >= NUM_EPOD_ID);
1290
1291         /* set flag if retention is possible */
1292         switch (epod_id) {
1293         case EPOD_ID_SVAMMDSP:
1294         case EPOD_ID_SIAMMDSP:
1295         case EPOD_ID_ESRAM12:
1296         case EPOD_ID_ESRAM34:
1297                 ram_retention = true;
1298                 break;
1299         }
1300
1301         /* check argument */
1302         BUG_ON(epod_state > EPOD_STATE_ON);
1303         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1304
1305         /* get lock */
1306         mutex_lock(&mb2_transfer.lock);
1307
1308         /* wait for mailbox */
1309         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1310                 cpu_relax();
1311
1312         /* fill in mailbox */
1313         for (i = 0; i < NUM_EPOD_ID; i++)
1314                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1315         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1316
1317         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1318
1319         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1320
1321         /*
1322          * The current firmware version does not handle errors correctly,
1323          * and we cannot recover if there is an error.
1324          * This is expected to change when the firmware is updated.
1325          */
1326         if (!wait_for_completion_timeout(&mb2_transfer.work,
1327                         msecs_to_jiffies(20000))) {
1328                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329                         __func__);
1330                 r = -EIO;
1331                 goto unlock_and_return;
1332         }
1333
1334         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1335                 r = -EIO;
1336
1337 unlock_and_return:
1338         mutex_unlock(&mb2_transfer.lock);
1339         return r;
1340 }
1341
1342 /**
1343  * prcmu_configure_auto_pm - Configure autonomous power management.
1344  * @sleep: Configuration for ApSleep.
1345  * @idle:  Configuration for ApIdle.
1346  */
1347 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1348         struct prcmu_auto_pm_config *idle)
1349 {
1350         u32 sleep_cfg;
1351         u32 idle_cfg;
1352         unsigned long flags;
1353
1354         BUG_ON((sleep == NULL) || (idle == NULL));
1355
1356         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1357         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1358         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1359         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1360         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1361         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1362
1363         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1364         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1365         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1366         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1367         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1368         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1369
1370         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1371
1372         /*
1373          * The autonomous power management configuration is done through
1374          * fields in mailbox 2, but these fields are only used as shared
1375          * variables - i.e. there is no need to send a message.
1376          */
1377         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1378         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1379
1380         mb2_transfer.auto_pm_enabled =
1381                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1385
1386         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1387 }
1388 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1389
1390 bool prcmu_is_auto_pm_enabled(void)
1391 {
1392         return mb2_transfer.auto_pm_enabled;
1393 }
1394
1395 static int request_sysclk(bool enable)
1396 {
1397         int r;
1398         unsigned long flags;
1399
1400         r = 0;
1401
1402         mutex_lock(&mb3_transfer.sysclk_lock);
1403
1404         spin_lock_irqsave(&mb3_transfer.lock, flags);
1405
1406         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1407                 cpu_relax();
1408
1409         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1410
1411         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1412         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1413
1414         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1415
1416         /*
1417          * The firmware only sends an ACK if we want to enable the
1418          * SysClk, and it succeeds.
1419          */
1420         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1421                         msecs_to_jiffies(20000))) {
1422                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1423                         __func__);
1424                 r = -EIO;
1425         }
1426
1427         mutex_unlock(&mb3_transfer.sysclk_lock);
1428
1429         return r;
1430 }
1431
1432 static int request_timclk(bool enable)
1433 {
1434         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1435
1436         if (!enable)
1437                 val |= PRCM_TCR_STOP_TIMERS;
1438         writel(val, PRCM_TCR);
1439
1440         return 0;
1441 }
1442
1443 static int request_clock(u8 clock, bool enable)
1444 {
1445         u32 val;
1446         unsigned long flags;
1447
1448         spin_lock_irqsave(&clk_mgt_lock, flags);
1449
1450         /* Grab the HW semaphore. */
1451         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1452                 cpu_relax();
1453
1454         val = readl(clk_mgt[clock].reg);
1455         if (enable) {
1456                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1457         } else {
1458                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1459                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1460         }
1461         writel(val, clk_mgt[clock].reg);
1462
1463         /* Release the HW semaphore. */
1464         writel(0, PRCM_SEM);
1465
1466         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1467
1468         return 0;
1469 }
1470
1471 static int request_sga_clock(u8 clock, bool enable)
1472 {
1473         u32 val;
1474         int ret;
1475
1476         if (enable) {
1477                 val = readl(PRCM_CGATING_BYPASS);
1478                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1479         }
1480
1481         ret = request_clock(clock, enable);
1482
1483         if (!ret && !enable) {
1484                 val = readl(PRCM_CGATING_BYPASS);
1485                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1486         }
1487
1488         return ret;
1489 }
1490
1491 static inline bool plldsi_locked(void)
1492 {
1493         return (readl(PRCM_PLLDSI_LOCKP) &
1494                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1495                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1496                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1498 }
1499
1500 static int request_plldsi(bool enable)
1501 {
1502         int r = 0;
1503         u32 val;
1504
1505         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1506                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1507                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1508
1509         val = readl(PRCM_PLLDSI_ENABLE);
1510         if (enable)
1511                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1512         else
1513                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514         writel(val, PRCM_PLLDSI_ENABLE);
1515
1516         if (enable) {
1517                 unsigned int i;
1518                 bool locked = plldsi_locked();
1519
1520                 for (i = 10; !locked && (i > 0); --i) {
1521                         udelay(100);
1522                         locked = plldsi_locked();
1523                 }
1524                 if (locked) {
1525                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1526                                 PRCM_APE_RESETN_SET);
1527                 } else {
1528                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1529                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1530                                 PRCM_MMIP_LS_CLAMP_SET);
1531                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1532                         writel(val, PRCM_PLLDSI_ENABLE);
1533                         r = -EAGAIN;
1534                 }
1535         } else {
1536                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1537         }
1538         return r;
1539 }
1540
1541 static int request_dsiclk(u8 n, bool enable)
1542 {
1543         u32 val;
1544
1545         val = readl(PRCM_DSI_PLLOUT_SEL);
1546         val &= ~dsiclk[n].divsel_mask;
1547         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1548                 dsiclk[n].divsel_shift);
1549         writel(val, PRCM_DSI_PLLOUT_SEL);
1550         return 0;
1551 }
1552
1553 static int request_dsiescclk(u8 n, bool enable)
1554 {
1555         u32 val;
1556
1557         val = readl(PRCM_DSITVCLK_DIV);
1558         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1559         writel(val, PRCM_DSITVCLK_DIV);
1560         return 0;
1561 }
1562
1563 /**
1564  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1565  * @clock:      The clock for which the request is made.
1566  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1567  *
1568  * This function should only be used by the clock implementation.
1569  * Do not use it from any other place!
1570  */
1571 int db8500_prcmu_request_clock(u8 clock, bool enable)
1572 {
1573         if (clock == PRCMU_SGACLK)
1574                 return request_sga_clock(clock, enable);
1575         else if (clock < PRCMU_NUM_REG_CLOCKS)
1576                 return request_clock(clock, enable);
1577         else if (clock == PRCMU_TIMCLK)
1578                 return request_timclk(enable);
1579         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1580                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1581         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1582                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1583         else if (clock == PRCMU_PLLDSI)
1584                 return request_plldsi(enable);
1585         else if (clock == PRCMU_SYSCLK)
1586                 return request_sysclk(enable);
1587         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1588                 return request_pll(clock, enable);
1589         else
1590                 return -EINVAL;
1591 }
1592
1593 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1594         int branch)
1595 {
1596         u64 rate;
1597         u32 val;
1598         u32 d;
1599         u32 div = 1;
1600
1601         val = readl(reg);
1602
1603         rate = src_rate;
1604         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1605
1606         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1607         if (d > 1)
1608                 div *= d;
1609
1610         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1611         if (d > 1)
1612                 div *= d;
1613
1614         if (val & PRCM_PLL_FREQ_SELDIV2)
1615                 div *= 2;
1616
1617         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1618                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1619                 ((reg == PRCM_PLLSOC0_FREQ) ||
1620                  (reg == PRCM_PLLARM_FREQ) ||
1621                  (reg == PRCM_PLLDDR_FREQ))))
1622                 div *= 2;
1623
1624         (void)do_div(rate, div);
1625
1626         return (unsigned long)rate;
1627 }
1628
1629 #define ROOT_CLOCK_RATE 38400000
1630
1631 static unsigned long clock_rate(u8 clock)
1632 {
1633         u32 val;
1634         u32 pllsw;
1635         unsigned long rate = ROOT_CLOCK_RATE;
1636
1637         val = readl(clk_mgt[clock].reg);
1638
1639         if (val & PRCM_CLK_MGT_CLK38) {
1640                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1641                         rate /= 2;
1642                 return rate;
1643         }
1644
1645         val |= clk_mgt[clock].pllsw;
1646         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1647
1648         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1649                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1650         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1651                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1652         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1653                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1654         else
1655                 return 0;
1656
1657         if ((clock == PRCMU_SGACLK) &&
1658                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1659                 u64 r = (rate * 10);
1660
1661                 (void)do_div(r, 25);
1662                 return (unsigned long)r;
1663         }
1664         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1665         if (val)
1666                 return rate / val;
1667         else
1668                 return 0;
1669 }
1670
1671 static unsigned long armss_rate(void)
1672 {
1673         u32 r;
1674         unsigned long rate;
1675
1676         r = readl(PRCM_ARM_CHGCLKREQ);
1677
1678         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1679                 /* External ARMCLKFIX clock */
1680
1681                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1682
1683                 /* Check PRCM_ARM_CHGCLKREQ divider */
1684                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1685                         rate /= 2;
1686
1687                 /* Check PRCM_ARMCLKFIX_MGT divider */
1688                 r = readl(PRCM_ARMCLKFIX_MGT);
1689                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1690                 rate /= r;
1691
1692         } else {/* ARM PLL */
1693                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1694         }
1695
1696         return rate;
1697 }
1698
1699 static unsigned long dsiclk_rate(u8 n)
1700 {
1701         u32 divsel;
1702         u32 div = 1;
1703
1704         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1705         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1706
1707         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1708                 divsel = dsiclk[n].divsel;
1709
1710         switch (divsel) {
1711         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1712                 div *= 2;
1713         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1714                 div *= 2;
1715         case PRCM_DSI_PLLOUT_SEL_PHI:
1716                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1717                         PLL_RAW) / div;
1718         default:
1719                 return 0;
1720         }
1721 }
1722
1723 static unsigned long dsiescclk_rate(u8 n)
1724 {
1725         u32 div;
1726
1727         div = readl(PRCM_DSITVCLK_DIV);
1728         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1729         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1730 }
1731
1732 unsigned long prcmu_clock_rate(u8 clock)
1733 {
1734         if (clock < PRCMU_NUM_REG_CLOCKS)
1735                 return clock_rate(clock);
1736         else if (clock == PRCMU_TIMCLK)
1737                 return ROOT_CLOCK_RATE / 16;
1738         else if (clock == PRCMU_SYSCLK)
1739                 return ROOT_CLOCK_RATE;
1740         else if (clock == PRCMU_PLLSOC0)
1741                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1742         else if (clock == PRCMU_PLLSOC1)
1743                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1744         else if (clock == PRCMU_ARMSS)
1745                 return armss_rate();
1746         else if (clock == PRCMU_PLLDDR)
1747                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1748         else if (clock == PRCMU_PLLDSI)
1749                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1750                         PLL_RAW);
1751         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1752                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1753         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1754                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1755         else
1756                 return 0;
1757 }
1758
1759 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1760 {
1761         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1762                 return ROOT_CLOCK_RATE;
1763         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1764         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1765                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1766         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1767                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1768         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1769                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1770         else
1771                 return 0;
1772 }
1773
1774 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1775 {
1776         u32 div;
1777
1778         div = (src_rate / rate);
1779         if (div == 0)
1780                 return 1;
1781         if (rate < (src_rate / div))
1782                 div++;
1783         return div;
1784 }
1785
1786 static long round_clock_rate(u8 clock, unsigned long rate)
1787 {
1788         u32 val;
1789         u32 div;
1790         unsigned long src_rate;
1791         long rounded_rate;
1792
1793         val = readl(clk_mgt[clock].reg);
1794         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1795                 clk_mgt[clock].branch);
1796         div = clock_divider(src_rate, rate);
1797         if (val & PRCM_CLK_MGT_CLK38) {
1798                 if (clk_mgt[clock].clk38div) {
1799                         if (div > 2)
1800                                 div = 2;
1801                 } else {
1802                         div = 1;
1803                 }
1804         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1805                 u64 r = (src_rate * 10);
1806
1807                 (void)do_div(r, 25);
1808                 if (r <= rate)
1809                         return (unsigned long)r;
1810         }
1811         rounded_rate = (src_rate / min(div, (u32)31));
1812
1813         return rounded_rate;
1814 }
1815
1816 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1817 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1818         { .frequency = 200000, .index = ARM_EXTCLK,},
1819         { .frequency = 400000, .index = ARM_50_OPP,},
1820         { .frequency = 800000, .index = ARM_100_OPP,},
1821         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1822         { .frequency = CPUFREQ_TABLE_END,},
1823 };
1824
1825 static long round_armss_rate(unsigned long rate)
1826 {
1827         long freq = 0;
1828         int i = 0;
1829
1830         /* cpufreq table frequencies is in KHz. */
1831         rate = rate / 1000;
1832
1833         /* Find the corresponding arm opp from the cpufreq table. */
1834         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1835                 freq = db8500_cpufreq_table[i].frequency;
1836                 if (freq == rate)
1837                         break;
1838                 i++;
1839         }
1840
1841         /* Return the last valid value, even if a match was not found. */
1842         return freq * 1000;
1843 }
1844
1845 #define MIN_PLL_VCO_RATE 600000000ULL
1846 #define MAX_PLL_VCO_RATE 1680640000ULL
1847
1848 static long round_plldsi_rate(unsigned long rate)
1849 {
1850         long rounded_rate = 0;
1851         unsigned long src_rate;
1852         unsigned long rem;
1853         u32 r;
1854
1855         src_rate = clock_rate(PRCMU_HDMICLK);
1856         rem = rate;
1857
1858         for (r = 7; (rem > 0) && (r > 0); r--) {
1859                 u64 d;
1860
1861                 d = (r * rate);
1862                 (void)do_div(d, src_rate);
1863                 if (d < 6)
1864                         d = 6;
1865                 else if (d > 255)
1866                         d = 255;
1867                 d *= src_rate;
1868                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1869                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1870                         continue;
1871                 (void)do_div(d, r);
1872                 if (rate < d) {
1873                         if (rounded_rate == 0)
1874                                 rounded_rate = (long)d;
1875                         break;
1876                 }
1877                 if ((rate - d) < rem) {
1878                         rem = (rate - d);
1879                         rounded_rate = (long)d;
1880                 }
1881         }
1882         return rounded_rate;
1883 }
1884
1885 static long round_dsiclk_rate(unsigned long rate)
1886 {
1887         u32 div;
1888         unsigned long src_rate;
1889         long rounded_rate;
1890
1891         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1892                 PLL_RAW);
1893         div = clock_divider(src_rate, rate);
1894         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1895
1896         return rounded_rate;
1897 }
1898
1899 static long round_dsiescclk_rate(unsigned long rate)
1900 {
1901         u32 div;
1902         unsigned long src_rate;
1903         long rounded_rate;
1904
1905         src_rate = clock_rate(PRCMU_TVCLK);
1906         div = clock_divider(src_rate, rate);
1907         rounded_rate = (src_rate / min(div, (u32)255));
1908
1909         return rounded_rate;
1910 }
1911
1912 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1913 {
1914         if (clock < PRCMU_NUM_REG_CLOCKS)
1915                 return round_clock_rate(clock, rate);
1916         else if (clock == PRCMU_ARMSS)
1917                 return round_armss_rate(rate);
1918         else if (clock == PRCMU_PLLDSI)
1919                 return round_plldsi_rate(rate);
1920         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1921                 return round_dsiclk_rate(rate);
1922         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1923                 return round_dsiescclk_rate(rate);
1924         else
1925                 return (long)prcmu_clock_rate(clock);
1926 }
1927
1928 static void set_clock_rate(u8 clock, unsigned long rate)
1929 {
1930         u32 val;
1931         u32 div;
1932         unsigned long src_rate;
1933         unsigned long flags;
1934
1935         spin_lock_irqsave(&clk_mgt_lock, flags);
1936
1937         /* Grab the HW semaphore. */
1938         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1939                 cpu_relax();
1940
1941         val = readl(clk_mgt[clock].reg);
1942         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1943                 clk_mgt[clock].branch);
1944         div = clock_divider(src_rate, rate);
1945         if (val & PRCM_CLK_MGT_CLK38) {
1946                 if (clk_mgt[clock].clk38div) {
1947                         if (div > 1)
1948                                 val |= PRCM_CLK_MGT_CLK38DIV;
1949                         else
1950                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1951                 }
1952         } else if (clock == PRCMU_SGACLK) {
1953                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1954                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1955                 if (div == 3) {
1956                         u64 r = (src_rate * 10);
1957
1958                         (void)do_div(r, 25);
1959                         if (r <= rate) {
1960                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1961                                 div = 0;
1962                         }
1963                 }
1964                 val |= min(div, (u32)31);
1965         } else {
1966                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1967                 val |= min(div, (u32)31);
1968         }
1969         writel(val, clk_mgt[clock].reg);
1970
1971         /* Release the HW semaphore. */
1972         writel(0, PRCM_SEM);
1973
1974         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1975 }
1976
1977 static int set_armss_rate(unsigned long rate)
1978 {
1979         int i = 0;
1980
1981         /* cpufreq table frequencies is in KHz. */
1982         rate = rate / 1000;
1983
1984         /* Find the corresponding arm opp from the cpufreq table. */
1985         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1986                 if (db8500_cpufreq_table[i].frequency == rate)
1987                         break;
1988                 i++;
1989         }
1990
1991         if (db8500_cpufreq_table[i].frequency != rate)
1992                 return -EINVAL;
1993
1994         /* Set the new arm opp. */
1995         return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1996 }
1997
1998 static int set_plldsi_rate(unsigned long rate)
1999 {
2000         unsigned long src_rate;
2001         unsigned long rem;
2002         u32 pll_freq = 0;
2003         u32 r;
2004
2005         src_rate = clock_rate(PRCMU_HDMICLK);
2006         rem = rate;
2007
2008         for (r = 7; (rem > 0) && (r > 0); r--) {
2009                 u64 d;
2010                 u64 hwrate;
2011
2012                 d = (r * rate);
2013                 (void)do_div(d, src_rate);
2014                 if (d < 6)
2015                         d = 6;
2016                 else if (d > 255)
2017                         d = 255;
2018                 hwrate = (d * src_rate);
2019                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2020                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2021                         continue;
2022                 (void)do_div(hwrate, r);
2023                 if (rate < hwrate) {
2024                         if (pll_freq == 0)
2025                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2026                                         (r << PRCM_PLL_FREQ_R_SHIFT));
2027                         break;
2028                 }
2029                 if ((rate - hwrate) < rem) {
2030                         rem = (rate - hwrate);
2031                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2032                                 (r << PRCM_PLL_FREQ_R_SHIFT));
2033                 }
2034         }
2035         if (pll_freq == 0)
2036                 return -EINVAL;
2037
2038         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2039         writel(pll_freq, PRCM_PLLDSI_FREQ);
2040
2041         return 0;
2042 }
2043
2044 static void set_dsiclk_rate(u8 n, unsigned long rate)
2045 {
2046         u32 val;
2047         u32 div;
2048
2049         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2050                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2051
2052         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2053                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2054                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
2055
2056         val = readl(PRCM_DSI_PLLOUT_SEL);
2057         val &= ~dsiclk[n].divsel_mask;
2058         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2059         writel(val, PRCM_DSI_PLLOUT_SEL);
2060 }
2061
2062 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2063 {
2064         u32 val;
2065         u32 div;
2066
2067         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2068         val = readl(PRCM_DSITVCLK_DIV);
2069         val &= ~dsiescclk[n].div_mask;
2070         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2071         writel(val, PRCM_DSITVCLK_DIV);
2072 }
2073
2074 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2075 {
2076         if (clock < PRCMU_NUM_REG_CLOCKS)
2077                 set_clock_rate(clock, rate);
2078         else if (clock == PRCMU_ARMSS)
2079                 return set_armss_rate(rate);
2080         else if (clock == PRCMU_PLLDSI)
2081                 return set_plldsi_rate(rate);
2082         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2083                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2084         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2085                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2086         return 0;
2087 }
2088
2089 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2090 {
2091         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2092             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2093                 return -EINVAL;
2094
2095         mutex_lock(&mb4_transfer.lock);
2096
2097         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2098                 cpu_relax();
2099
2100         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2101         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2102                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2103         writeb(DDR_PWR_STATE_ON,
2104                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2105         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2106
2107         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2108         wait_for_completion(&mb4_transfer.work);
2109
2110         mutex_unlock(&mb4_transfer.lock);
2111
2112         return 0;
2113 }
2114
2115 int db8500_prcmu_config_hotdog(u8 threshold)
2116 {
2117         mutex_lock(&mb4_transfer.lock);
2118
2119         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2120                 cpu_relax();
2121
2122         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2123         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2124
2125         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2126         wait_for_completion(&mb4_transfer.work);
2127
2128         mutex_unlock(&mb4_transfer.lock);
2129
2130         return 0;
2131 }
2132
2133 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2134 {
2135         mutex_lock(&mb4_transfer.lock);
2136
2137         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2138                 cpu_relax();
2139
2140         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2141         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2142         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2143                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2144         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2145
2146         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2147         wait_for_completion(&mb4_transfer.work);
2148
2149         mutex_unlock(&mb4_transfer.lock);
2150
2151         return 0;
2152 }
2153
2154 static int config_hot_period(u16 val)
2155 {
2156         mutex_lock(&mb4_transfer.lock);
2157
2158         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2159                 cpu_relax();
2160
2161         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2162         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2163
2164         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2165         wait_for_completion(&mb4_transfer.work);
2166
2167         mutex_unlock(&mb4_transfer.lock);
2168
2169         return 0;
2170 }
2171
2172 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2173 {
2174         if (cycles32k == 0xFFFF)
2175                 return -EINVAL;
2176
2177         return config_hot_period(cycles32k);
2178 }
2179
2180 int db8500_prcmu_stop_temp_sense(void)
2181 {
2182         return config_hot_period(0xFFFF);
2183 }
2184
2185 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2186 {
2187
2188         mutex_lock(&mb4_transfer.lock);
2189
2190         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2191                 cpu_relax();
2192
2193         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2194         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2195         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2196         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2197
2198         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2199
2200         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2201         wait_for_completion(&mb4_transfer.work);
2202
2203         mutex_unlock(&mb4_transfer.lock);
2204
2205         return 0;
2206
2207 }
2208
2209 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2210 {
2211         BUG_ON(num == 0 || num > 0xf);
2212         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2213                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2214                             A9WDOG_AUTO_OFF_DIS);
2215 }
2216 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2217
2218 int db8500_prcmu_enable_a9wdog(u8 id)
2219 {
2220         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2221 }
2222 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2223
2224 int db8500_prcmu_disable_a9wdog(u8 id)
2225 {
2226         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2227 }
2228 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2229
2230 int db8500_prcmu_kick_a9wdog(u8 id)
2231 {
2232         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2233 }
2234 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2235
2236 /*
2237  * timeout is 28 bit, in ms.
2238  */
2239 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2240 {
2241         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2242                             (id & A9WDOG_ID_MASK) |
2243                             /*
2244                              * Put the lowest 28 bits of timeout at
2245                              * offset 4. Four first bits are used for id.
2246                              */
2247                             (u8)((timeout << 4) & 0xf0),
2248                             (u8)((timeout >> 4) & 0xff),
2249                             (u8)((timeout >> 12) & 0xff),
2250                             (u8)((timeout >> 20) & 0xff));
2251 }
2252 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2253
2254 /**
2255  * prcmu_abb_read() - Read register value(s) from the ABB.
2256  * @slave:      The I2C slave address.
2257  * @reg:        The (start) register address.
2258  * @value:      The read out value(s).
2259  * @size:       The number of registers to read.
2260  *
2261  * Reads register value(s) from the ABB.
2262  * @size has to be 1 for the current firmware version.
2263  */
2264 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2265 {
2266         int r;
2267
2268         if (size != 1)
2269                 return -EINVAL;
2270
2271         mutex_lock(&mb5_transfer.lock);
2272
2273         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2274                 cpu_relax();
2275
2276         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2277         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2278         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2279         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2280         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2281
2282         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2283
2284         if (!wait_for_completion_timeout(&mb5_transfer.work,
2285                                 msecs_to_jiffies(20000))) {
2286                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2287                         __func__);
2288                 r = -EIO;
2289         } else {
2290                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2291         }
2292
2293         if (!r)
2294                 *value = mb5_transfer.ack.value;
2295
2296         mutex_unlock(&mb5_transfer.lock);
2297
2298         return r;
2299 }
2300
2301 /**
2302  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2303  * @slave:      The I2C slave address.
2304  * @reg:        The (start) register address.
2305  * @value:      The value(s) to write.
2306  * @mask:       The mask(s) to use.
2307  * @size:       The number of registers to write.
2308  *
2309  * Writes masked register value(s) to the ABB.
2310  * For each @value, only the bits set to 1 in the corresponding @mask
2311  * will be written. The other bits are not changed.
2312  * @size has to be 1 for the current firmware version.
2313  */
2314 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2315 {
2316         int r;
2317
2318         if (size != 1)
2319                 return -EINVAL;
2320
2321         mutex_lock(&mb5_transfer.lock);
2322
2323         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2324                 cpu_relax();
2325
2326         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2327         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2328         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2329         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2330         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2331
2332         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2333
2334         if (!wait_for_completion_timeout(&mb5_transfer.work,
2335                                 msecs_to_jiffies(20000))) {
2336                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2337                         __func__);
2338                 r = -EIO;
2339         } else {
2340                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2341         }
2342
2343         mutex_unlock(&mb5_transfer.lock);
2344
2345         return r;
2346 }
2347
2348 /**
2349  * prcmu_abb_write() - Write register value(s) to the ABB.
2350  * @slave:      The I2C slave address.
2351  * @reg:        The (start) register address.
2352  * @value:      The value(s) to write.
2353  * @size:       The number of registers to write.
2354  *
2355  * Writes register value(s) to the ABB.
2356  * @size has to be 1 for the current firmware version.
2357  */
2358 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2359 {
2360         u8 mask = ~0;
2361
2362         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2363 }
2364
2365 /**
2366  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2367  */
2368 int prcmu_ac_wake_req(void)
2369 {
2370         u32 val;
2371         int ret = 0;
2372
2373         mutex_lock(&mb0_transfer.ac_wake_lock);
2374
2375         val = readl(PRCM_HOSTACCESS_REQ);
2376         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2377                 goto unlock_and_return;
2378
2379         atomic_set(&ac_wake_req_state, 1);
2380
2381         /*
2382          * Force Modem Wake-up before hostaccess_req ping-pong.
2383          * It prevents Modem to enter in Sleep while acking the hostaccess
2384          * request. The 31us delay has been calculated by HWI.
2385          */
2386         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2387         writel(val, PRCM_HOSTACCESS_REQ);
2388
2389         udelay(31);
2390
2391         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2392         writel(val, PRCM_HOSTACCESS_REQ);
2393
2394         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2395                         msecs_to_jiffies(5000))) {
2396 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2397                 db8500_prcmu_debug_dump(__func__, true, true);
2398 #endif
2399                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2400                         __func__);
2401                 ret = -EFAULT;
2402         }
2403
2404 unlock_and_return:
2405         mutex_unlock(&mb0_transfer.ac_wake_lock);
2406         return ret;
2407 }
2408
2409 /**
2410  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2411  */
2412 void prcmu_ac_sleep_req()
2413 {
2414         u32 val;
2415
2416         mutex_lock(&mb0_transfer.ac_wake_lock);
2417
2418         val = readl(PRCM_HOSTACCESS_REQ);
2419         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2420                 goto unlock_and_return;
2421
2422         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2423                 PRCM_HOSTACCESS_REQ);
2424
2425         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2426                         msecs_to_jiffies(5000))) {
2427                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2428                         __func__);
2429         }
2430
2431         atomic_set(&ac_wake_req_state, 0);
2432
2433 unlock_and_return:
2434         mutex_unlock(&mb0_transfer.ac_wake_lock);
2435 }
2436
2437 bool db8500_prcmu_is_ac_wake_requested(void)
2438 {
2439         return (atomic_read(&ac_wake_req_state) != 0);
2440 }
2441
2442 /**
2443  * db8500_prcmu_system_reset - System reset
2444  *
2445  * Saves the reset reason code and then sets the APE_SOFTRST register which
2446  * fires interrupt to fw
2447  */
2448 void db8500_prcmu_system_reset(u16 reset_code)
2449 {
2450         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2451         writel(1, PRCM_APE_SOFTRST);
2452 }
2453
2454 /**
2455  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2456  *
2457  * Retrieves the reset reason code stored by prcmu_system_reset() before
2458  * last restart.
2459  */
2460 u16 db8500_prcmu_get_reset_code(void)
2461 {
2462         return readw(tcdm_base + PRCM_SW_RST_REASON);
2463 }
2464
2465 /**
2466  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2467  */
2468 void db8500_prcmu_modem_reset(void)
2469 {
2470         mutex_lock(&mb1_transfer.lock);
2471
2472         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2473                 cpu_relax();
2474
2475         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2476         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2477         wait_for_completion(&mb1_transfer.work);
2478
2479         /*
2480          * No need to check return from PRCMU as modem should go in reset state
2481          * This state is already managed by upper layer
2482          */
2483
2484         mutex_unlock(&mb1_transfer.lock);
2485 }
2486
2487 static void ack_dbb_wakeup(void)
2488 {
2489         unsigned long flags;
2490
2491         spin_lock_irqsave(&mb0_transfer.lock, flags);
2492
2493         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2494                 cpu_relax();
2495
2496         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2497         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2498
2499         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2500 }
2501
2502 static inline void print_unknown_header_warning(u8 n, u8 header)
2503 {
2504         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2505                 header, n);
2506 }
2507
2508 static bool read_mailbox_0(void)
2509 {
2510         bool r;
2511         u32 ev;
2512         unsigned int n;
2513         u8 header;
2514
2515         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2516         switch (header) {
2517         case MB0H_WAKEUP_EXE:
2518         case MB0H_WAKEUP_SLEEP:
2519                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2520                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2521                 else
2522                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2523
2524                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2525                         complete(&mb0_transfer.ac_wake_work);
2526                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2527                         complete(&mb3_transfer.sysclk_work);
2528
2529                 ev &= mb0_transfer.req.dbb_irqs;
2530
2531                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2532                         if (ev & prcmu_irq_bit[n])
2533                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2534                 }
2535                 r = true;
2536                 break;
2537         default:
2538                 print_unknown_header_warning(0, header);
2539                 r = false;
2540                 break;
2541         }
2542         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2543         return r;
2544 }
2545
2546 static bool read_mailbox_1(void)
2547 {
2548         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2549         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2550                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2551         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2552                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2553         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2554                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2555         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2556         complete(&mb1_transfer.work);
2557         return false;
2558 }
2559
2560 static bool read_mailbox_2(void)
2561 {
2562         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2563         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2564         complete(&mb2_transfer.work);
2565         return false;
2566 }
2567
2568 static bool read_mailbox_3(void)
2569 {
2570         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2571         return false;
2572 }
2573
2574 static bool read_mailbox_4(void)
2575 {
2576         u8 header;
2577         bool do_complete = true;
2578
2579         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2580         switch (header) {
2581         case MB4H_MEM_ST:
2582         case MB4H_HOTDOG:
2583         case MB4H_HOTMON:
2584         case MB4H_HOT_PERIOD:
2585         case MB4H_A9WDOG_CONF:
2586         case MB4H_A9WDOG_EN:
2587         case MB4H_A9WDOG_DIS:
2588         case MB4H_A9WDOG_LOAD:
2589         case MB4H_A9WDOG_KICK:
2590                 break;
2591         default:
2592                 print_unknown_header_warning(4, header);
2593                 do_complete = false;
2594                 break;
2595         }
2596
2597         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2598
2599         if (do_complete)
2600                 complete(&mb4_transfer.work);
2601
2602         return false;
2603 }
2604
2605 static bool read_mailbox_5(void)
2606 {
2607         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2608         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2609         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2610         complete(&mb5_transfer.work);
2611         return false;
2612 }
2613
2614 static bool read_mailbox_6(void)
2615 {
2616         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2617         return false;
2618 }
2619
2620 static bool read_mailbox_7(void)
2621 {
2622         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2623         return false;
2624 }
2625
2626 static bool (* const read_mailbox[NUM_MB])(void) = {
2627         read_mailbox_0,
2628         read_mailbox_1,
2629         read_mailbox_2,
2630         read_mailbox_3,
2631         read_mailbox_4,
2632         read_mailbox_5,
2633         read_mailbox_6,
2634         read_mailbox_7
2635 };
2636
2637 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2638 {
2639         u32 bits;
2640         u8 n;
2641         irqreturn_t r;
2642
2643         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2644         if (unlikely(!bits))
2645                 return IRQ_NONE;
2646
2647         r = IRQ_HANDLED;
2648         for (n = 0; bits; n++) {
2649                 if (bits & MBOX_BIT(n)) {
2650                         bits -= MBOX_BIT(n);
2651                         if (read_mailbox[n]())
2652                                 r = IRQ_WAKE_THREAD;
2653                 }
2654         }
2655         return r;
2656 }
2657
2658 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2659 {
2660         ack_dbb_wakeup();
2661         return IRQ_HANDLED;
2662 }
2663
2664 static void prcmu_mask_work(struct work_struct *work)
2665 {
2666         unsigned long flags;
2667
2668         spin_lock_irqsave(&mb0_transfer.lock, flags);
2669
2670         config_wakeups();
2671
2672         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2673 }
2674
2675 static void prcmu_irq_mask(struct irq_data *d)
2676 {
2677         unsigned long flags;
2678
2679         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2680
2681         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2682
2683         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2684
2685         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2686                 schedule_work(&mb0_transfer.mask_work);
2687 }
2688
2689 static void prcmu_irq_unmask(struct irq_data *d)
2690 {
2691         unsigned long flags;
2692
2693         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2694
2695         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2696
2697         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2698
2699         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2700                 schedule_work(&mb0_transfer.mask_work);
2701 }
2702
2703 static void noop(struct irq_data *d)
2704 {
2705 }
2706
2707 static struct irq_chip prcmu_irq_chip = {
2708         .name           = "prcmu",
2709         .irq_disable    = prcmu_irq_mask,
2710         .irq_ack        = noop,
2711         .irq_mask       = prcmu_irq_mask,
2712         .irq_unmask     = prcmu_irq_unmask,
2713 };
2714
2715 static char *fw_project_name(u8 project)
2716 {
2717         switch (project) {
2718         case PRCMU_FW_PROJECT_U8500:
2719                 return "U8500";
2720         case PRCMU_FW_PROJECT_U8500_C2:
2721                 return "U8500 C2";
2722         case PRCMU_FW_PROJECT_U9500:
2723                 return "U9500";
2724         case PRCMU_FW_PROJECT_U9500_C2:
2725                 return "U9500 C2";
2726         case PRCMU_FW_PROJECT_U8520:
2727                 return "U8520";
2728         case PRCMU_FW_PROJECT_U8420:
2729                 return "U8420";
2730         default:
2731                 return "Unknown";
2732         }
2733 }
2734
2735 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2736                                 irq_hw_number_t hwirq)
2737 {
2738         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2739                                 handle_simple_irq);
2740         set_irq_flags(virq, IRQF_VALID);
2741
2742         return 0;
2743 }
2744
2745 static struct irq_domain_ops db8500_irq_ops = {
2746         .map    = db8500_irq_map,
2747         .xlate  = irq_domain_xlate_twocell,
2748 };
2749
2750 static int db8500_irq_init(struct device_node *np)
2751 {
2752         int irq_base = 0;
2753         int i;
2754
2755         /* In the device tree case, just take some IRQs */
2756         if (!np)
2757                 irq_base = IRQ_PRCMU_BASE;
2758
2759         db8500_irq_domain = irq_domain_add_simple(
2760                 np, NUM_PRCMU_WAKEUPS, irq_base,
2761                 &db8500_irq_ops, NULL);
2762
2763         if (!db8500_irq_domain) {
2764                 pr_err("Failed to create irqdomain\n");
2765                 return -ENOSYS;
2766         }
2767
2768         /* All wakeups will be used, so create mappings for all */
2769         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2770                 irq_create_mapping(db8500_irq_domain, i);
2771
2772         return 0;
2773 }
2774
2775 void __init db8500_prcmu_early_init(void)
2776 {
2777         if (cpu_is_u8500v2() || cpu_is_u9540()) {
2778                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2779
2780                 if (tcpm_base != NULL) {
2781                         u32 version;
2782                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2783                         fw_info.version.project = version & 0xFF;
2784                         fw_info.version.api_version = (version >> 8) & 0xFF;
2785                         fw_info.version.func_version = (version >> 16) & 0xFF;
2786                         fw_info.version.errata = (version >> 24) & 0xFF;
2787                         fw_info.valid = true;
2788                         pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2789                                 fw_project_name(fw_info.version.project),
2790                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2791                                 (version >> 24) & 0xFF);
2792                         iounmap(tcpm_base);
2793                 }
2794
2795                 if (cpu_is_u9540())
2796                         tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2797                                                 SZ_4K + SZ_8K) + SZ_8K;
2798                 else
2799                         tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2800         } else {
2801                 pr_err("prcmu: Unsupported chip version\n");
2802                 BUG();
2803         }
2804
2805         spin_lock_init(&mb0_transfer.lock);
2806         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2807         mutex_init(&mb0_transfer.ac_wake_lock);
2808         init_completion(&mb0_transfer.ac_wake_work);
2809         mutex_init(&mb1_transfer.lock);
2810         init_completion(&mb1_transfer.work);
2811         mb1_transfer.ape_opp = APE_NO_CHANGE;
2812         mutex_init(&mb2_transfer.lock);
2813         init_completion(&mb2_transfer.work);
2814         spin_lock_init(&mb2_transfer.auto_pm_lock);
2815         spin_lock_init(&mb3_transfer.lock);
2816         mutex_init(&mb3_transfer.sysclk_lock);
2817         init_completion(&mb3_transfer.sysclk_work);
2818         mutex_init(&mb4_transfer.lock);
2819         init_completion(&mb4_transfer.work);
2820         mutex_init(&mb5_transfer.lock);
2821         init_completion(&mb5_transfer.work);
2822
2823         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2824 }
2825
2826 static void __init init_prcm_registers(void)
2827 {
2828         u32 val;
2829
2830         val = readl(PRCM_A9PL_FORCE_CLKEN);
2831         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2832                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2833         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2834 }
2835
2836 /*
2837  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2838  */
2839 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2840         REGULATOR_SUPPLY("v-ape", NULL),
2841         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2842         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2843         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2844         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2845         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2846         /* "v-mmc" changed to "vcore" in the mainline kernel */
2847         REGULATOR_SUPPLY("vcore", "sdi0"),
2848         REGULATOR_SUPPLY("vcore", "sdi1"),
2849         REGULATOR_SUPPLY("vcore", "sdi2"),
2850         REGULATOR_SUPPLY("vcore", "sdi3"),
2851         REGULATOR_SUPPLY("vcore", "sdi4"),
2852         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2853         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2854         /* "v-uart" changed to "vcore" in the mainline kernel */
2855         REGULATOR_SUPPLY("vcore", "uart0"),
2856         REGULATOR_SUPPLY("vcore", "uart1"),
2857         REGULATOR_SUPPLY("vcore", "uart2"),
2858         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2859         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2860         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2861 };
2862
2863 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2864         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2865         /* AV8100 regulator */
2866         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2867 };
2868
2869 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2870         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2871         REGULATOR_SUPPLY("vsupply", "mcde"),
2872 };
2873
2874 /* SVA MMDSP regulator switch */
2875 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2876         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2877 };
2878
2879 /* SVA pipe regulator switch */
2880 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2881         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2882 };
2883
2884 /* SIA MMDSP regulator switch */
2885 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2886         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2887 };
2888
2889 /* SIA pipe regulator switch */
2890 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2891         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2892 };
2893
2894 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2895         REGULATOR_SUPPLY("v-mali", NULL),
2896 };
2897
2898 /* ESRAM1 and 2 regulator switch */
2899 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2900         REGULATOR_SUPPLY("esram12", "cm_control"),
2901 };
2902
2903 /* ESRAM3 and 4 regulator switch */
2904 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2905         REGULATOR_SUPPLY("v-esram34", "mcde"),
2906         REGULATOR_SUPPLY("esram34", "cm_control"),
2907         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2908 };
2909
2910 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2911         [DB8500_REGULATOR_VAPE] = {
2912                 .constraints = {
2913                         .name = "db8500-vape",
2914                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915                         .always_on = true,
2916                 },
2917                 .consumer_supplies = db8500_vape_consumers,
2918                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2919         },
2920         [DB8500_REGULATOR_VARM] = {
2921                 .constraints = {
2922                         .name = "db8500-varm",
2923                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2924                 },
2925         },
2926         [DB8500_REGULATOR_VMODEM] = {
2927                 .constraints = {
2928                         .name = "db8500-vmodem",
2929                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930                 },
2931         },
2932         [DB8500_REGULATOR_VPLL] = {
2933                 .constraints = {
2934                         .name = "db8500-vpll",
2935                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936                 },
2937         },
2938         [DB8500_REGULATOR_VSMPS1] = {
2939                 .constraints = {
2940                         .name = "db8500-vsmps1",
2941                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942                 },
2943         },
2944         [DB8500_REGULATOR_VSMPS2] = {
2945                 .constraints = {
2946                         .name = "db8500-vsmps2",
2947                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2948                 },
2949                 .consumer_supplies = db8500_vsmps2_consumers,
2950                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2951         },
2952         [DB8500_REGULATOR_VSMPS3] = {
2953                 .constraints = {
2954                         .name = "db8500-vsmps3",
2955                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2956                 },
2957         },
2958         [DB8500_REGULATOR_VRF1] = {
2959                 .constraints = {
2960                         .name = "db8500-vrf1",
2961                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2962                 },
2963         },
2964         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2965                 /* dependency to u8500-vape is handled outside regulator framework */
2966                 .constraints = {
2967                         .name = "db8500-sva-mmdsp",
2968                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969                 },
2970                 .consumer_supplies = db8500_svammdsp_consumers,
2971                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2972         },
2973         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2974                 .constraints = {
2975                         /* "ret" means "retention" */
2976                         .name = "db8500-sva-mmdsp-ret",
2977                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2978                 },
2979         },
2980         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2981                 /* dependency to u8500-vape is handled outside regulator framework */
2982                 .constraints = {
2983                         .name = "db8500-sva-pipe",
2984                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2985                 },
2986                 .consumer_supplies = db8500_svapipe_consumers,
2987                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2988         },
2989         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2990                 /* dependency to u8500-vape is handled outside regulator framework */
2991                 .constraints = {
2992                         .name = "db8500-sia-mmdsp",
2993                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994                 },
2995                 .consumer_supplies = db8500_siammdsp_consumers,
2996                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2997         },
2998         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2999                 .constraints = {
3000                         .name = "db8500-sia-mmdsp-ret",
3001                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3002                 },
3003         },
3004         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
3005                 /* dependency to u8500-vape is handled outside regulator framework */
3006                 .constraints = {
3007                         .name = "db8500-sia-pipe",
3008                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3009                 },
3010                 .consumer_supplies = db8500_siapipe_consumers,
3011                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3012         },
3013         [DB8500_REGULATOR_SWITCH_SGA] = {
3014                 .supply_regulator = "db8500-vape",
3015                 .constraints = {
3016                         .name = "db8500-sga",
3017                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3018                 },
3019                 .consumer_supplies = db8500_sga_consumers,
3020                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3021
3022         },
3023         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3024                 .supply_regulator = "db8500-vape",
3025                 .constraints = {
3026                         .name = "db8500-b2r2-mcde",
3027                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3028                 },
3029                 .consumer_supplies = db8500_b2r2_mcde_consumers,
3030                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3031         },
3032         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3033                 /*
3034                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
3035                  * no need to hold Vape
3036                  */
3037                 .constraints = {
3038                         .name = "db8500-esram12",
3039                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3040                 },
3041                 .consumer_supplies = db8500_esram12_consumers,
3042                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3043         },
3044         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3045                 .constraints = {
3046                         .name = "db8500-esram12-ret",
3047                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3048                 },
3049         },
3050         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3051                 /*
3052                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
3053                  * no need to hold Vape
3054                  */
3055                 .constraints = {
3056                         .name = "db8500-esram34",
3057                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3058                 },
3059                 .consumer_supplies = db8500_esram34_consumers,
3060                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3061         },
3062         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3063                 .constraints = {
3064                         .name = "db8500-esram34-ret",
3065                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3066                 },
3067         },
3068 };
3069
3070 static struct resource ab8500_resources[] = {
3071         [0] = {
3072                 .start  = IRQ_DB8500_AB8500,
3073                 .end    = IRQ_DB8500_AB8500,
3074                 .flags  = IORESOURCE_IRQ
3075         }
3076 };
3077
3078 static struct ux500_wdt_data db8500_wdt_pdata = {
3079         .timeout = 600, /* 10 minutes */
3080         .has_28_bits_resolution = true,
3081 };
3082
3083 static struct mfd_cell db8500_prcmu_devs[] = {
3084         {
3085                 .name = "db8500-prcmu-regulators",
3086                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3087                 .platform_data = &db8500_regulators,
3088                 .pdata_size = sizeof(db8500_regulators),
3089         },
3090         {
3091                 .name = "cpufreq-u8500",
3092                 .of_compatible = "stericsson,cpufreq-u8500",
3093                 .platform_data = &db8500_cpufreq_table,
3094                 .pdata_size = sizeof(db8500_cpufreq_table),
3095         },
3096         {
3097                 .name = "ux500_wdt",
3098                 .platform_data = &db8500_wdt_pdata,
3099                 .pdata_size = sizeof(db8500_wdt_pdata),
3100                 .id = -1,
3101         },
3102         {
3103                 .name = "ab8500-core",
3104                 .of_compatible = "stericsson,ab8500",
3105                 .num_resources = ARRAY_SIZE(ab8500_resources),
3106                 .resources = ab8500_resources,
3107                 .id = AB8500_VERSION_AB8500,
3108         },
3109 };
3110
3111 static void db8500_prcmu_update_cpufreq(void)
3112 {
3113         if (prcmu_has_arm_maxopp()) {
3114                 db8500_cpufreq_table[3].frequency = 1000000;
3115                 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3116         }
3117 }
3118
3119 /**
3120  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3121  *
3122  */
3123 static int db8500_prcmu_probe(struct platform_device *pdev)
3124 {
3125         struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3126         struct device_node *np = pdev->dev.of_node;
3127         int irq = 0, err = 0, i;
3128
3129         if (ux500_is_svp())
3130                 return -ENODEV;
3131
3132         init_prcm_registers();
3133
3134         /* Clean up the mailbox interrupts after pre-kernel code. */
3135         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3136
3137         if (np)
3138                 irq = platform_get_irq(pdev, 0);
3139
3140         if (!np || irq <= 0)
3141                 irq = IRQ_DB8500_PRCMU1;
3142
3143         err = request_threaded_irq(irq, prcmu_irq_handler,
3144                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3145         if (err < 0) {
3146                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3147                 err = -EBUSY;
3148                 goto no_irq_return;
3149         }
3150
3151         db8500_irq_init(np);
3152
3153         for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3154                 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3155                         db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3156                         db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3157                 }
3158         }
3159
3160         if (cpu_is_u8500v20_or_later())
3161                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3162
3163         db8500_prcmu_update_cpufreq();
3164
3165         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3166                               ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3167         if (err) {
3168                 pr_err("prcmu: Failed to add subdevices\n");
3169                 return err;
3170         }
3171
3172         pr_info("DB8500 PRCMU initialized\n");
3173
3174 no_irq_return:
3175         return err;
3176 }
3177 static const struct of_device_id db8500_prcmu_match[] = {
3178         { .compatible = "stericsson,db8500-prcmu"},
3179         { },
3180 };
3181
3182 static struct platform_driver db8500_prcmu_driver = {
3183         .driver = {
3184                 .name = "db8500-prcmu",
3185                 .owner = THIS_MODULE,
3186                 .of_match_table = db8500_prcmu_match,
3187         },
3188         .probe = db8500_prcmu_probe,
3189 };
3190
3191 static int __init db8500_prcmu_init(void)
3192 {
3193         return platform_driver_register(&db8500_prcmu_driver);
3194 }
3195
3196 core_initcall(db8500_prcmu_init);
3197
3198 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3199 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3200 MODULE_LICENSE("GPL v2");