Merge remote-tracking branch 'lsk/v3.10/topic/coresight' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 static bool devices_handle_discard_safely = false;
64 module_param(devices_handle_discard_safely, bool, 0644);
65 MODULE_PARM_DESC(devices_handle_discard_safely,
66                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
67 /*
68  * Stripe cache
69  */
70
71 #define NR_STRIPES              256
72 #define STRIPE_SIZE             PAGE_SIZE
73 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
74 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
75 #define IO_THRESHOLD            1
76 #define BYPASS_THRESHOLD        1
77 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
78 #define HASH_MASK               (NR_HASH - 1)
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83         return &conf->stripe_hashtbl[hash];
84 }
85
86 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
87  * order without overlap.  There may be several bio's per stripe+device, and
88  * a bio could span several devices.
89  * When walking this list for a particular stripe+device, we must never proceed
90  * beyond a bio that extends past this device, as the next bio might no longer
91  * be valid.
92  * This function is used to determine the 'next' bio in the list, given the sector
93  * of the current stripe+device
94  */
95 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
96 {
97         int sectors = bio_sectors(bio);
98         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
99                 return bio->bi_next;
100         else
101                 return NULL;
102 }
103
104 /*
105  * We maintain a biased count of active stripes in the bottom 16 bits of
106  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
107  */
108 static inline int raid5_bi_processed_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return (atomic_read(segments) >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         return atomic_sub_return(1, segments) & 0xffff;
118 }
119
120 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
121 {
122         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
123         atomic_inc(segments);
124 }
125
126 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
127         unsigned int cnt)
128 {
129         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
130         int old, new;
131
132         do {
133                 old = atomic_read(segments);
134                 new = (old & 0xffff) | (cnt << 16);
135         } while (atomic_cmpxchg(segments, old, new) != old);
136 }
137
138 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
139 {
140         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
141         atomic_set(segments, cnt);
142 }
143
144 /* Find first data disk in a raid6 stripe */
145 static inline int raid6_d0(struct stripe_head *sh)
146 {
147         if (sh->ddf_layout)
148                 /* ddf always start from first device */
149                 return 0;
150         /* md starts just after Q block */
151         if (sh->qd_idx == sh->disks - 1)
152                 return 0;
153         else
154                 return sh->qd_idx + 1;
155 }
156 static inline int raid6_next_disk(int disk, int raid_disks)
157 {
158         disk++;
159         return (disk < raid_disks) ? disk : 0;
160 }
161
162 /* When walking through the disks in a raid5, starting at raid6_d0,
163  * We need to map each disk to a 'slot', where the data disks are slot
164  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
165  * is raid_disks-1.  This help does that mapping.
166  */
167 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
168                              int *count, int syndrome_disks)
169 {
170         int slot = *count;
171
172         if (sh->ddf_layout)
173                 (*count)++;
174         if (idx == sh->pd_idx)
175                 return syndrome_disks;
176         if (idx == sh->qd_idx)
177                 return syndrome_disks + 1;
178         if (!sh->ddf_layout)
179                 (*count)++;
180         return slot;
181 }
182
183 static void return_io(struct bio *return_bi)
184 {
185         struct bio *bi = return_bi;
186         while (bi) {
187
188                 return_bi = bi->bi_next;
189                 bi->bi_next = NULL;
190                 bi->bi_size = 0;
191                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
192                                          bi, 0);
193                 bio_endio(bi, 0);
194                 bi = return_bi;
195         }
196 }
197
198 static void print_raid5_conf (struct r5conf *conf);
199
200 static int stripe_operations_active(struct stripe_head *sh)
201 {
202         return sh->check_state || sh->reconstruct_state ||
203                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
204                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
205 }
206
207 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
208 {
209         BUG_ON(!list_empty(&sh->lru));
210         BUG_ON(atomic_read(&conf->active_stripes)==0);
211         if (test_bit(STRIPE_HANDLE, &sh->state)) {
212                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
213                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214                         list_add_tail(&sh->lru, &conf->delayed_list);
215                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
216                            sh->bm_seq - conf->seq_write > 0)
217                         list_add_tail(&sh->lru, &conf->bitmap_list);
218                 else {
219                         clear_bit(STRIPE_DELAYED, &sh->state);
220                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
221                         list_add_tail(&sh->lru, &conf->handle_list);
222                 }
223                 md_wakeup_thread(conf->mddev->thread);
224         } else {
225                 BUG_ON(stripe_operations_active(sh));
226                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
227                         if (atomic_dec_return(&conf->preread_active_stripes)
228                             < IO_THRESHOLD)
229                                 md_wakeup_thread(conf->mddev->thread);
230                 atomic_dec(&conf->active_stripes);
231                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
232                         list_add_tail(&sh->lru, &conf->inactive_list);
233                         wake_up(&conf->wait_for_stripe);
234                         if (conf->retry_read_aligned)
235                                 md_wakeup_thread(conf->mddev->thread);
236                 }
237         }
238 }
239
240 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
241 {
242         if (atomic_dec_and_test(&sh->count))
243                 do_release_stripe(conf, sh);
244 }
245
246 static void release_stripe(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         unsigned long flags;
250
251         local_irq_save(flags);
252         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
253                 do_release_stripe(conf, sh);
254                 spin_unlock(&conf->device_lock);
255         }
256         local_irq_restore(flags);
257 }
258
259 static inline void remove_hash(struct stripe_head *sh)
260 {
261         pr_debug("remove_hash(), stripe %llu\n",
262                 (unsigned long long)sh->sector);
263
264         hlist_del_init(&sh->hash);
265 }
266
267 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
268 {
269         struct hlist_head *hp = stripe_hash(conf, sh->sector);
270
271         pr_debug("insert_hash(), stripe %llu\n",
272                 (unsigned long long)sh->sector);
273
274         hlist_add_head(&sh->hash, hp);
275 }
276
277
278 /* find an idle stripe, make sure it is unhashed, and return it. */
279 static struct stripe_head *get_free_stripe(struct r5conf *conf)
280 {
281         struct stripe_head *sh = NULL;
282         struct list_head *first;
283
284         if (list_empty(&conf->inactive_list))
285                 goto out;
286         first = conf->inactive_list.next;
287         sh = list_entry(first, struct stripe_head, lru);
288         list_del_init(first);
289         remove_hash(sh);
290         atomic_inc(&conf->active_stripes);
291 out:
292         return sh;
293 }
294
295 static void shrink_buffers(struct stripe_head *sh)
296 {
297         struct page *p;
298         int i;
299         int num = sh->raid_conf->pool_size;
300
301         for (i = 0; i < num ; i++) {
302                 p = sh->dev[i].page;
303                 if (!p)
304                         continue;
305                 sh->dev[i].page = NULL;
306                 put_page(p);
307         }
308 }
309
310 static int grow_buffers(struct stripe_head *sh)
311 {
312         int i;
313         int num = sh->raid_conf->pool_size;
314
315         for (i = 0; i < num; i++) {
316                 struct page *page;
317
318                 if (!(page = alloc_page(GFP_KERNEL))) {
319                         return 1;
320                 }
321                 sh->dev[i].page = page;
322         }
323         return 0;
324 }
325
326 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
327 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
328                             struct stripe_head *sh);
329
330 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
331 {
332         struct r5conf *conf = sh->raid_conf;
333         int i;
334
335         BUG_ON(atomic_read(&sh->count) != 0);
336         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
337         BUG_ON(stripe_operations_active(sh));
338
339         pr_debug("init_stripe called, stripe %llu\n",
340                 (unsigned long long)sh->sector);
341
342         remove_hash(sh);
343
344         sh->generation = conf->generation - previous;
345         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
346         sh->sector = sector;
347         stripe_set_idx(sector, conf, previous, sh);
348         sh->state = 0;
349
350
351         for (i = sh->disks; i--; ) {
352                 struct r5dev *dev = &sh->dev[i];
353
354                 if (dev->toread || dev->read || dev->towrite || dev->written ||
355                     test_bit(R5_LOCKED, &dev->flags)) {
356                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
357                                (unsigned long long)sh->sector, i, dev->toread,
358                                dev->read, dev->towrite, dev->written,
359                                test_bit(R5_LOCKED, &dev->flags));
360                         WARN_ON(1);
361                 }
362                 dev->flags = 0;
363                 raid5_build_block(sh, i, previous);
364         }
365         insert_hash(conf, sh);
366 }
367
368 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
369                                          short generation)
370 {
371         struct stripe_head *sh;
372
373         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
374         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
375                 if (sh->sector == sector && sh->generation == generation)
376                         return sh;
377         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
378         return NULL;
379 }
380
381 /*
382  * Need to check if array has failed when deciding whether to:
383  *  - start an array
384  *  - remove non-faulty devices
385  *  - add a spare
386  *  - allow a reshape
387  * This determination is simple when no reshape is happening.
388  * However if there is a reshape, we need to carefully check
389  * both the before and after sections.
390  * This is because some failed devices may only affect one
391  * of the two sections, and some non-in_sync devices may
392  * be insync in the section most affected by failed devices.
393  */
394 static int calc_degraded(struct r5conf *conf)
395 {
396         int degraded, degraded2;
397         int i;
398
399         rcu_read_lock();
400         degraded = 0;
401         for (i = 0; i < conf->previous_raid_disks; i++) {
402                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
403                 if (rdev && test_bit(Faulty, &rdev->flags))
404                         rdev = rcu_dereference(conf->disks[i].replacement);
405                 if (!rdev || test_bit(Faulty, &rdev->flags))
406                         degraded++;
407                 else if (test_bit(In_sync, &rdev->flags))
408                         ;
409                 else
410                         /* not in-sync or faulty.
411                          * If the reshape increases the number of devices,
412                          * this is being recovered by the reshape, so
413                          * this 'previous' section is not in_sync.
414                          * If the number of devices is being reduced however,
415                          * the device can only be part of the array if
416                          * we are reverting a reshape, so this section will
417                          * be in-sync.
418                          */
419                         if (conf->raid_disks >= conf->previous_raid_disks)
420                                 degraded++;
421         }
422         rcu_read_unlock();
423         if (conf->raid_disks == conf->previous_raid_disks)
424                 return degraded;
425         rcu_read_lock();
426         degraded2 = 0;
427         for (i = 0; i < conf->raid_disks; i++) {
428                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
429                 if (rdev && test_bit(Faulty, &rdev->flags))
430                         rdev = rcu_dereference(conf->disks[i].replacement);
431                 if (!rdev || test_bit(Faulty, &rdev->flags))
432                         degraded2++;
433                 else if (test_bit(In_sync, &rdev->flags))
434                         ;
435                 else
436                         /* not in-sync or faulty.
437                          * If reshape increases the number of devices, this
438                          * section has already been recovered, else it
439                          * almost certainly hasn't.
440                          */
441                         if (conf->raid_disks <= conf->previous_raid_disks)
442                                 degraded2++;
443         }
444         rcu_read_unlock();
445         if (degraded2 > degraded)
446                 return degraded2;
447         return degraded;
448 }
449
450 static int has_failed(struct r5conf *conf)
451 {
452         int degraded;
453
454         if (conf->mddev->reshape_position == MaxSector)
455                 return conf->mddev->degraded > conf->max_degraded;
456
457         degraded = calc_degraded(conf);
458         if (degraded > conf->max_degraded)
459                 return 1;
460         return 0;
461 }
462
463 static struct stripe_head *
464 get_active_stripe(struct r5conf *conf, sector_t sector,
465                   int previous, int noblock, int noquiesce)
466 {
467         struct stripe_head *sh;
468
469         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
470
471         spin_lock_irq(&conf->device_lock);
472
473         do {
474                 wait_event_lock_irq(conf->wait_for_stripe,
475                                     conf->quiesce == 0 || noquiesce,
476                                     conf->device_lock);
477                 sh = __find_stripe(conf, sector, conf->generation - previous);
478                 if (!sh) {
479                         if (!conf->inactive_blocked)
480                                 sh = get_free_stripe(conf);
481                         if (noblock && sh == NULL)
482                                 break;
483                         if (!sh) {
484                                 conf->inactive_blocked = 1;
485                                 wait_event_lock_irq(conf->wait_for_stripe,
486                                                     !list_empty(&conf->inactive_list) &&
487                                                     (atomic_read(&conf->active_stripes)
488                                                      < (conf->max_nr_stripes *3/4)
489                                                      || !conf->inactive_blocked),
490                                                     conf->device_lock);
491                                 conf->inactive_blocked = 0;
492                         } else
493                                 init_stripe(sh, sector, previous);
494                 } else {
495                         if (atomic_read(&sh->count)) {
496                                 BUG_ON(!list_empty(&sh->lru)
497                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
498                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
499                         } else {
500                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
501                                         atomic_inc(&conf->active_stripes);
502                                 if (list_empty(&sh->lru) &&
503                                     !test_bit(STRIPE_EXPANDING, &sh->state))
504                                         BUG();
505                                 list_del_init(&sh->lru);
506                         }
507                 }
508         } while (sh == NULL);
509
510         if (sh)
511                 atomic_inc(&sh->count);
512
513         spin_unlock_irq(&conf->device_lock);
514         return sh;
515 }
516
517 /* Determine if 'data_offset' or 'new_data_offset' should be used
518  * in this stripe_head.
519  */
520 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
521 {
522         sector_t progress = conf->reshape_progress;
523         /* Need a memory barrier to make sure we see the value
524          * of conf->generation, or ->data_offset that was set before
525          * reshape_progress was updated.
526          */
527         smp_rmb();
528         if (progress == MaxSector)
529                 return 0;
530         if (sh->generation == conf->generation - 1)
531                 return 0;
532         /* We are in a reshape, and this is a new-generation stripe,
533          * so use new_data_offset.
534          */
535         return 1;
536 }
537
538 static void
539 raid5_end_read_request(struct bio *bi, int error);
540 static void
541 raid5_end_write_request(struct bio *bi, int error);
542
543 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
544 {
545         struct r5conf *conf = sh->raid_conf;
546         int i, disks = sh->disks;
547
548         might_sleep();
549
550         for (i = disks; i--; ) {
551                 int rw;
552                 int replace_only = 0;
553                 struct bio *bi, *rbi;
554                 struct md_rdev *rdev, *rrdev = NULL;
555                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
556                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
557                                 rw = WRITE_FUA;
558                         else
559                                 rw = WRITE;
560                         if (test_bit(R5_Discard, &sh->dev[i].flags))
561                                 rw |= REQ_DISCARD;
562                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
563                         rw = READ;
564                 else if (test_and_clear_bit(R5_WantReplace,
565                                             &sh->dev[i].flags)) {
566                         rw = WRITE;
567                         replace_only = 1;
568                 } else
569                         continue;
570                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
571                         rw |= REQ_SYNC;
572
573                 bi = &sh->dev[i].req;
574                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
575
576                 rcu_read_lock();
577                 rrdev = rcu_dereference(conf->disks[i].replacement);
578                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
579                 rdev = rcu_dereference(conf->disks[i].rdev);
580                 if (!rdev) {
581                         rdev = rrdev;
582                         rrdev = NULL;
583                 }
584                 if (rw & WRITE) {
585                         if (replace_only)
586                                 rdev = NULL;
587                         if (rdev == rrdev)
588                                 /* We raced and saw duplicates */
589                                 rrdev = NULL;
590                 } else {
591                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
592                                 rdev = rrdev;
593                         rrdev = NULL;
594                 }
595
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = NULL;
598                 if (rdev)
599                         atomic_inc(&rdev->nr_pending);
600                 if (rrdev && test_bit(Faulty, &rrdev->flags))
601                         rrdev = NULL;
602                 if (rrdev)
603                         atomic_inc(&rrdev->nr_pending);
604                 rcu_read_unlock();
605
606                 /* We have already checked bad blocks for reads.  Now
607                  * need to check for writes.  We never accept write errors
608                  * on the replacement, so we don't to check rrdev.
609                  */
610                 while ((rw & WRITE) && rdev &&
611                        test_bit(WriteErrorSeen, &rdev->flags)) {
612                         sector_t first_bad;
613                         int bad_sectors;
614                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
615                                               &first_bad, &bad_sectors);
616                         if (!bad)
617                                 break;
618
619                         if (bad < 0) {
620                                 set_bit(BlockedBadBlocks, &rdev->flags);
621                                 if (!conf->mddev->external &&
622                                     conf->mddev->flags) {
623                                         /* It is very unlikely, but we might
624                                          * still need to write out the
625                                          * bad block log - better give it
626                                          * a chance*/
627                                         md_check_recovery(conf->mddev);
628                                 }
629                                 /*
630                                  * Because md_wait_for_blocked_rdev
631                                  * will dec nr_pending, we must
632                                  * increment it first.
633                                  */
634                                 atomic_inc(&rdev->nr_pending);
635                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
636                         } else {
637                                 /* Acknowledged bad block - skip the write */
638                                 rdev_dec_pending(rdev, conf->mddev);
639                                 rdev = NULL;
640                         }
641                 }
642
643                 if (rdev) {
644                         if (s->syncing || s->expanding || s->expanded
645                             || s->replacing)
646                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
647
648                         set_bit(STRIPE_IO_STARTED, &sh->state);
649
650                         bio_reset(bi);
651                         bi->bi_bdev = rdev->bdev;
652                         bi->bi_rw = rw;
653                         bi->bi_end_io = (rw & WRITE)
654                                 ? raid5_end_write_request
655                                 : raid5_end_read_request;
656                         bi->bi_private = sh;
657
658                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
659                                 __func__, (unsigned long long)sh->sector,
660                                 bi->bi_rw, i);
661                         atomic_inc(&sh->count);
662                         if (use_new_offset(conf, sh))
663                                 bi->bi_sector = (sh->sector
664                                                  + rdev->new_data_offset);
665                         else
666                                 bi->bi_sector = (sh->sector
667                                                  + rdev->data_offset);
668                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
669                                 bi->bi_rw |= REQ_FLUSH;
670
671                         bi->bi_vcnt = 1;
672                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
673                         bi->bi_io_vec[0].bv_offset = 0;
674                         bi->bi_size = STRIPE_SIZE;
675                         /*
676                          * If this is discard request, set bi_vcnt 0. We don't
677                          * want to confuse SCSI because SCSI will replace payload
678                          */
679                         if (rw & REQ_DISCARD)
680                                 bi->bi_vcnt = 0;
681                         if (rrdev)
682                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
683
684                         if (conf->mddev->gendisk)
685                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
686                                                       bi, disk_devt(conf->mddev->gendisk),
687                                                       sh->dev[i].sector);
688                         generic_make_request(bi);
689                 }
690                 if (rrdev) {
691                         if (s->syncing || s->expanding || s->expanded
692                             || s->replacing)
693                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
694
695                         set_bit(STRIPE_IO_STARTED, &sh->state);
696
697                         bio_reset(rbi);
698                         rbi->bi_bdev = rrdev->bdev;
699                         rbi->bi_rw = rw;
700                         BUG_ON(!(rw & WRITE));
701                         rbi->bi_end_io = raid5_end_write_request;
702                         rbi->bi_private = sh;
703
704                         pr_debug("%s: for %llu schedule op %ld on "
705                                  "replacement disc %d\n",
706                                 __func__, (unsigned long long)sh->sector,
707                                 rbi->bi_rw, i);
708                         atomic_inc(&sh->count);
709                         if (use_new_offset(conf, sh))
710                                 rbi->bi_sector = (sh->sector
711                                                   + rrdev->new_data_offset);
712                         else
713                                 rbi->bi_sector = (sh->sector
714                                                   + rrdev->data_offset);
715                         rbi->bi_vcnt = 1;
716                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
717                         rbi->bi_io_vec[0].bv_offset = 0;
718                         rbi->bi_size = STRIPE_SIZE;
719                         /*
720                          * If this is discard request, set bi_vcnt 0. We don't
721                          * want to confuse SCSI because SCSI will replace payload
722                          */
723                         if (rw & REQ_DISCARD)
724                                 rbi->bi_vcnt = 0;
725                         if (conf->mddev->gendisk)
726                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
727                                                       rbi, disk_devt(conf->mddev->gendisk),
728                                                       sh->dev[i].sector);
729                         generic_make_request(rbi);
730                 }
731                 if (!rdev && !rrdev) {
732                         if (rw & WRITE)
733                                 set_bit(STRIPE_DEGRADED, &sh->state);
734                         pr_debug("skip op %ld on disc %d for sector %llu\n",
735                                 bi->bi_rw, i, (unsigned long long)sh->sector);
736                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
737                         set_bit(STRIPE_HANDLE, &sh->state);
738                 }
739         }
740 }
741
742 static struct dma_async_tx_descriptor *
743 async_copy_data(int frombio, struct bio *bio, struct page *page,
744         sector_t sector, struct dma_async_tx_descriptor *tx)
745 {
746         struct bio_vec *bvl;
747         struct page *bio_page;
748         int i;
749         int page_offset;
750         struct async_submit_ctl submit;
751         enum async_tx_flags flags = 0;
752
753         if (bio->bi_sector >= sector)
754                 page_offset = (signed)(bio->bi_sector - sector) * 512;
755         else
756                 page_offset = (signed)(sector - bio->bi_sector) * -512;
757
758         if (frombio)
759                 flags |= ASYNC_TX_FENCE;
760         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
761
762         bio_for_each_segment(bvl, bio, i) {
763                 int len = bvl->bv_len;
764                 int clen;
765                 int b_offset = 0;
766
767                 if (page_offset < 0) {
768                         b_offset = -page_offset;
769                         page_offset += b_offset;
770                         len -= b_offset;
771                 }
772
773                 if (len > 0 && page_offset + len > STRIPE_SIZE)
774                         clen = STRIPE_SIZE - page_offset;
775                 else
776                         clen = len;
777
778                 if (clen > 0) {
779                         b_offset += bvl->bv_offset;
780                         bio_page = bvl->bv_page;
781                         if (frombio)
782                                 tx = async_memcpy(page, bio_page, page_offset,
783                                                   b_offset, clen, &submit);
784                         else
785                                 tx = async_memcpy(bio_page, page, b_offset,
786                                                   page_offset, clen, &submit);
787                 }
788                 /* chain the operations */
789                 submit.depend_tx = tx;
790
791                 if (clen < len) /* hit end of page */
792                         break;
793                 page_offset +=  len;
794         }
795
796         return tx;
797 }
798
799 static void ops_complete_biofill(void *stripe_head_ref)
800 {
801         struct stripe_head *sh = stripe_head_ref;
802         struct bio *return_bi = NULL;
803         int i;
804
805         pr_debug("%s: stripe %llu\n", __func__,
806                 (unsigned long long)sh->sector);
807
808         /* clear completed biofills */
809         for (i = sh->disks; i--; ) {
810                 struct r5dev *dev = &sh->dev[i];
811
812                 /* acknowledge completion of a biofill operation */
813                 /* and check if we need to reply to a read request,
814                  * new R5_Wantfill requests are held off until
815                  * !STRIPE_BIOFILL_RUN
816                  */
817                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
818                         struct bio *rbi, *rbi2;
819
820                         BUG_ON(!dev->read);
821                         rbi = dev->read;
822                         dev->read = NULL;
823                         while (rbi && rbi->bi_sector <
824                                 dev->sector + STRIPE_SECTORS) {
825                                 rbi2 = r5_next_bio(rbi, dev->sector);
826                                 if (!raid5_dec_bi_active_stripes(rbi)) {
827                                         rbi->bi_next = return_bi;
828                                         return_bi = rbi;
829                                 }
830                                 rbi = rbi2;
831                         }
832                 }
833         }
834         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
835
836         return_io(return_bi);
837
838         set_bit(STRIPE_HANDLE, &sh->state);
839         release_stripe(sh);
840 }
841
842 static void ops_run_biofill(struct stripe_head *sh)
843 {
844         struct dma_async_tx_descriptor *tx = NULL;
845         struct async_submit_ctl submit;
846         int i;
847
848         pr_debug("%s: stripe %llu\n", __func__,
849                 (unsigned long long)sh->sector);
850
851         for (i = sh->disks; i--; ) {
852                 struct r5dev *dev = &sh->dev[i];
853                 if (test_bit(R5_Wantfill, &dev->flags)) {
854                         struct bio *rbi;
855                         spin_lock_irq(&sh->stripe_lock);
856                         dev->read = rbi = dev->toread;
857                         dev->toread = NULL;
858                         spin_unlock_irq(&sh->stripe_lock);
859                         while (rbi && rbi->bi_sector <
860                                 dev->sector + STRIPE_SECTORS) {
861                                 tx = async_copy_data(0, rbi, dev->page,
862                                         dev->sector, tx);
863                                 rbi = r5_next_bio(rbi, dev->sector);
864                         }
865                 }
866         }
867
868         atomic_inc(&sh->count);
869         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
870         async_trigger_callback(&submit);
871 }
872
873 static void mark_target_uptodate(struct stripe_head *sh, int target)
874 {
875         struct r5dev *tgt;
876
877         if (target < 0)
878                 return;
879
880         tgt = &sh->dev[target];
881         set_bit(R5_UPTODATE, &tgt->flags);
882         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883         clear_bit(R5_Wantcompute, &tgt->flags);
884 }
885
886 static void ops_complete_compute(void *stripe_head_ref)
887 {
888         struct stripe_head *sh = stripe_head_ref;
889
890         pr_debug("%s: stripe %llu\n", __func__,
891                 (unsigned long long)sh->sector);
892
893         /* mark the computed target(s) as uptodate */
894         mark_target_uptodate(sh, sh->ops.target);
895         mark_target_uptodate(sh, sh->ops.target2);
896
897         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
898         if (sh->check_state == check_state_compute_run)
899                 sh->check_state = check_state_compute_result;
900         set_bit(STRIPE_HANDLE, &sh->state);
901         release_stripe(sh);
902 }
903
904 /* return a pointer to the address conversion region of the scribble buffer */
905 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
906                                  struct raid5_percpu *percpu)
907 {
908         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
909 }
910
911 static struct dma_async_tx_descriptor *
912 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
913 {
914         int disks = sh->disks;
915         struct page **xor_srcs = percpu->scribble;
916         int target = sh->ops.target;
917         struct r5dev *tgt = &sh->dev[target];
918         struct page *xor_dest = tgt->page;
919         int count = 0;
920         struct dma_async_tx_descriptor *tx;
921         struct async_submit_ctl submit;
922         int i;
923
924         pr_debug("%s: stripe %llu block: %d\n",
925                 __func__, (unsigned long long)sh->sector, target);
926         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
927
928         for (i = disks; i--; )
929                 if (i != target)
930                         xor_srcs[count++] = sh->dev[i].page;
931
932         atomic_inc(&sh->count);
933
934         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
935                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
936         if (unlikely(count == 1))
937                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
938         else
939                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
940
941         return tx;
942 }
943
944 /* set_syndrome_sources - populate source buffers for gen_syndrome
945  * @srcs - (struct page *) array of size sh->disks
946  * @sh - stripe_head to parse
947  *
948  * Populates srcs in proper layout order for the stripe and returns the
949  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
950  * destination buffer is recorded in srcs[count] and the Q destination
951  * is recorded in srcs[count+1]].
952  */
953 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
954 {
955         int disks = sh->disks;
956         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
957         int d0_idx = raid6_d0(sh);
958         int count;
959         int i;
960
961         for (i = 0; i < disks; i++)
962                 srcs[i] = NULL;
963
964         count = 0;
965         i = d0_idx;
966         do {
967                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
968
969                 srcs[slot] = sh->dev[i].page;
970                 i = raid6_next_disk(i, disks);
971         } while (i != d0_idx);
972
973         return syndrome_disks;
974 }
975
976 static struct dma_async_tx_descriptor *
977 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
978 {
979         int disks = sh->disks;
980         struct page **blocks = percpu->scribble;
981         int target;
982         int qd_idx = sh->qd_idx;
983         struct dma_async_tx_descriptor *tx;
984         struct async_submit_ctl submit;
985         struct r5dev *tgt;
986         struct page *dest;
987         int i;
988         int count;
989
990         if (sh->ops.target < 0)
991                 target = sh->ops.target2;
992         else if (sh->ops.target2 < 0)
993                 target = sh->ops.target;
994         else
995                 /* we should only have one valid target */
996                 BUG();
997         BUG_ON(target < 0);
998         pr_debug("%s: stripe %llu block: %d\n",
999                 __func__, (unsigned long long)sh->sector, target);
1000
1001         tgt = &sh->dev[target];
1002         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1003         dest = tgt->page;
1004
1005         atomic_inc(&sh->count);
1006
1007         if (target == qd_idx) {
1008                 count = set_syndrome_sources(blocks, sh);
1009                 blocks[count] = NULL; /* regenerating p is not necessary */
1010                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1011                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1012                                   ops_complete_compute, sh,
1013                                   to_addr_conv(sh, percpu));
1014                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1015         } else {
1016                 /* Compute any data- or p-drive using XOR */
1017                 count = 0;
1018                 for (i = disks; i-- ; ) {
1019                         if (i == target || i == qd_idx)
1020                                 continue;
1021                         blocks[count++] = sh->dev[i].page;
1022                 }
1023
1024                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1025                                   NULL, ops_complete_compute, sh,
1026                                   to_addr_conv(sh, percpu));
1027                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1028         }
1029
1030         return tx;
1031 }
1032
1033 static struct dma_async_tx_descriptor *
1034 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1035 {
1036         int i, count, disks = sh->disks;
1037         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1038         int d0_idx = raid6_d0(sh);
1039         int faila = -1, failb = -1;
1040         int target = sh->ops.target;
1041         int target2 = sh->ops.target2;
1042         struct r5dev *tgt = &sh->dev[target];
1043         struct r5dev *tgt2 = &sh->dev[target2];
1044         struct dma_async_tx_descriptor *tx;
1045         struct page **blocks = percpu->scribble;
1046         struct async_submit_ctl submit;
1047
1048         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1049                  __func__, (unsigned long long)sh->sector, target, target2);
1050         BUG_ON(target < 0 || target2 < 0);
1051         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1052         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1053
1054         /* we need to open-code set_syndrome_sources to handle the
1055          * slot number conversion for 'faila' and 'failb'
1056          */
1057         for (i = 0; i < disks ; i++)
1058                 blocks[i] = NULL;
1059         count = 0;
1060         i = d0_idx;
1061         do {
1062                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1063
1064                 blocks[slot] = sh->dev[i].page;
1065
1066                 if (i == target)
1067                         faila = slot;
1068                 if (i == target2)
1069                         failb = slot;
1070                 i = raid6_next_disk(i, disks);
1071         } while (i != d0_idx);
1072
1073         BUG_ON(faila == failb);
1074         if (failb < faila)
1075                 swap(faila, failb);
1076         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1077                  __func__, (unsigned long long)sh->sector, faila, failb);
1078
1079         atomic_inc(&sh->count);
1080
1081         if (failb == syndrome_disks+1) {
1082                 /* Q disk is one of the missing disks */
1083                 if (faila == syndrome_disks) {
1084                         /* Missing P+Q, just recompute */
1085                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1086                                           ops_complete_compute, sh,
1087                                           to_addr_conv(sh, percpu));
1088                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1089                                                   STRIPE_SIZE, &submit);
1090                 } else {
1091                         struct page *dest;
1092                         int data_target;
1093                         int qd_idx = sh->qd_idx;
1094
1095                         /* Missing D+Q: recompute D from P, then recompute Q */
1096                         if (target == qd_idx)
1097                                 data_target = target2;
1098                         else
1099                                 data_target = target;
1100
1101                         count = 0;
1102                         for (i = disks; i-- ; ) {
1103                                 if (i == data_target || i == qd_idx)
1104                                         continue;
1105                                 blocks[count++] = sh->dev[i].page;
1106                         }
1107                         dest = sh->dev[data_target].page;
1108                         init_async_submit(&submit,
1109                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1110                                           NULL, NULL, NULL,
1111                                           to_addr_conv(sh, percpu));
1112                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1113                                        &submit);
1114
1115                         count = set_syndrome_sources(blocks, sh);
1116                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1117                                           ops_complete_compute, sh,
1118                                           to_addr_conv(sh, percpu));
1119                         return async_gen_syndrome(blocks, 0, count+2,
1120                                                   STRIPE_SIZE, &submit);
1121                 }
1122         } else {
1123                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1124                                   ops_complete_compute, sh,
1125                                   to_addr_conv(sh, percpu));
1126                 if (failb == syndrome_disks) {
1127                         /* We're missing D+P. */
1128                         return async_raid6_datap_recov(syndrome_disks+2,
1129                                                        STRIPE_SIZE, faila,
1130                                                        blocks, &submit);
1131                 } else {
1132                         /* We're missing D+D. */
1133                         return async_raid6_2data_recov(syndrome_disks+2,
1134                                                        STRIPE_SIZE, faila, failb,
1135                                                        blocks, &submit);
1136                 }
1137         }
1138 }
1139
1140
1141 static void ops_complete_prexor(void *stripe_head_ref)
1142 {
1143         struct stripe_head *sh = stripe_head_ref;
1144
1145         pr_debug("%s: stripe %llu\n", __func__,
1146                 (unsigned long long)sh->sector);
1147 }
1148
1149 static struct dma_async_tx_descriptor *
1150 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1151                struct dma_async_tx_descriptor *tx)
1152 {
1153         int disks = sh->disks;
1154         struct page **xor_srcs = percpu->scribble;
1155         int count = 0, pd_idx = sh->pd_idx, i;
1156         struct async_submit_ctl submit;
1157
1158         /* existing parity data subtracted */
1159         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1160
1161         pr_debug("%s: stripe %llu\n", __func__,
1162                 (unsigned long long)sh->sector);
1163
1164         for (i = disks; i--; ) {
1165                 struct r5dev *dev = &sh->dev[i];
1166                 /* Only process blocks that are known to be uptodate */
1167                 if (test_bit(R5_Wantdrain, &dev->flags))
1168                         xor_srcs[count++] = dev->page;
1169         }
1170
1171         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1172                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1173         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1174
1175         return tx;
1176 }
1177
1178 static struct dma_async_tx_descriptor *
1179 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1180 {
1181         int disks = sh->disks;
1182         int i;
1183
1184         pr_debug("%s: stripe %llu\n", __func__,
1185                 (unsigned long long)sh->sector);
1186
1187         for (i = disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189                 struct bio *chosen;
1190
1191                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1192                         struct bio *wbi;
1193
1194                         spin_lock_irq(&sh->stripe_lock);
1195                         chosen = dev->towrite;
1196                         dev->towrite = NULL;
1197                         BUG_ON(dev->written);
1198                         wbi = dev->written = chosen;
1199                         spin_unlock_irq(&sh->stripe_lock);
1200
1201                         while (wbi && wbi->bi_sector <
1202                                 dev->sector + STRIPE_SECTORS) {
1203                                 if (wbi->bi_rw & REQ_FUA)
1204                                         set_bit(R5_WantFUA, &dev->flags);
1205                                 if (wbi->bi_rw & REQ_SYNC)
1206                                         set_bit(R5_SyncIO, &dev->flags);
1207                                 if (wbi->bi_rw & REQ_DISCARD)
1208                                         set_bit(R5_Discard, &dev->flags);
1209                                 else
1210                                         tx = async_copy_data(1, wbi, dev->page,
1211                                                 dev->sector, tx);
1212                                 wbi = r5_next_bio(wbi, dev->sector);
1213                         }
1214                 }
1215         }
1216
1217         return tx;
1218 }
1219
1220 static void ops_complete_reconstruct(void *stripe_head_ref)
1221 {
1222         struct stripe_head *sh = stripe_head_ref;
1223         int disks = sh->disks;
1224         int pd_idx = sh->pd_idx;
1225         int qd_idx = sh->qd_idx;
1226         int i;
1227         bool fua = false, sync = false, discard = false;
1228
1229         pr_debug("%s: stripe %llu\n", __func__,
1230                 (unsigned long long)sh->sector);
1231
1232         for (i = disks; i--; ) {
1233                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1234                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1235                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1236         }
1237
1238         for (i = disks; i--; ) {
1239                 struct r5dev *dev = &sh->dev[i];
1240
1241                 if (dev->written || i == pd_idx || i == qd_idx) {
1242                         if (!discard)
1243                                 set_bit(R5_UPTODATE, &dev->flags);
1244                         if (fua)
1245                                 set_bit(R5_WantFUA, &dev->flags);
1246                         if (sync)
1247                                 set_bit(R5_SyncIO, &dev->flags);
1248                 }
1249         }
1250
1251         if (sh->reconstruct_state == reconstruct_state_drain_run)
1252                 sh->reconstruct_state = reconstruct_state_drain_result;
1253         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1254                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1255         else {
1256                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1257                 sh->reconstruct_state = reconstruct_state_result;
1258         }
1259
1260         set_bit(STRIPE_HANDLE, &sh->state);
1261         release_stripe(sh);
1262 }
1263
1264 static void
1265 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1266                      struct dma_async_tx_descriptor *tx)
1267 {
1268         int disks = sh->disks;
1269         struct page **xor_srcs = percpu->scribble;
1270         struct async_submit_ctl submit;
1271         int count = 0, pd_idx = sh->pd_idx, i;
1272         struct page *xor_dest;
1273         int prexor = 0;
1274         unsigned long flags;
1275
1276         pr_debug("%s: stripe %llu\n", __func__,
1277                 (unsigned long long)sh->sector);
1278
1279         for (i = 0; i < sh->disks; i++) {
1280                 if (pd_idx == i)
1281                         continue;
1282                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1283                         break;
1284         }
1285         if (i >= sh->disks) {
1286                 atomic_inc(&sh->count);
1287                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1288                 ops_complete_reconstruct(sh);
1289                 return;
1290         }
1291         /* check if prexor is active which means only process blocks
1292          * that are part of a read-modify-write (written)
1293          */
1294         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1295                 prexor = 1;
1296                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1297                 for (i = disks; i--; ) {
1298                         struct r5dev *dev = &sh->dev[i];
1299                         if (dev->written)
1300                                 xor_srcs[count++] = dev->page;
1301                 }
1302         } else {
1303                 xor_dest = sh->dev[pd_idx].page;
1304                 for (i = disks; i--; ) {
1305                         struct r5dev *dev = &sh->dev[i];
1306                         if (i != pd_idx)
1307                                 xor_srcs[count++] = dev->page;
1308                 }
1309         }
1310
1311         /* 1/ if we prexor'd then the dest is reused as a source
1312          * 2/ if we did not prexor then we are redoing the parity
1313          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1314          * for the synchronous xor case
1315          */
1316         flags = ASYNC_TX_ACK |
1317                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1322                           to_addr_conv(sh, percpu));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327 }
1328
1329 static void
1330 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1331                      struct dma_async_tx_descriptor *tx)
1332 {
1333         struct async_submit_ctl submit;
1334         struct page **blocks = percpu->scribble;
1335         int count, i;
1336
1337         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1338
1339         for (i = 0; i < sh->disks; i++) {
1340                 if (sh->pd_idx == i || sh->qd_idx == i)
1341                         continue;
1342                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1343                         break;
1344         }
1345         if (i >= sh->disks) {
1346                 atomic_inc(&sh->count);
1347                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1348                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1349                 ops_complete_reconstruct(sh);
1350                 return;
1351         }
1352
1353         count = set_syndrome_sources(blocks, sh);
1354
1355         atomic_inc(&sh->count);
1356
1357         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1358                           sh, to_addr_conv(sh, percpu));
1359         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1360 }
1361
1362 static void ops_complete_check(void *stripe_head_ref)
1363 {
1364         struct stripe_head *sh = stripe_head_ref;
1365
1366         pr_debug("%s: stripe %llu\n", __func__,
1367                 (unsigned long long)sh->sector);
1368
1369         sh->check_state = check_state_check_result;
1370         set_bit(STRIPE_HANDLE, &sh->state);
1371         release_stripe(sh);
1372 }
1373
1374 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1375 {
1376         int disks = sh->disks;
1377         int pd_idx = sh->pd_idx;
1378         int qd_idx = sh->qd_idx;
1379         struct page *xor_dest;
1380         struct page **xor_srcs = percpu->scribble;
1381         struct dma_async_tx_descriptor *tx;
1382         struct async_submit_ctl submit;
1383         int count;
1384         int i;
1385
1386         pr_debug("%s: stripe %llu\n", __func__,
1387                 (unsigned long long)sh->sector);
1388
1389         count = 0;
1390         xor_dest = sh->dev[pd_idx].page;
1391         xor_srcs[count++] = xor_dest;
1392         for (i = disks; i--; ) {
1393                 if (i == pd_idx || i == qd_idx)
1394                         continue;
1395                 xor_srcs[count++] = sh->dev[i].page;
1396         }
1397
1398         init_async_submit(&submit, 0, NULL, NULL, NULL,
1399                           to_addr_conv(sh, percpu));
1400         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1401                            &sh->ops.zero_sum_result, &submit);
1402
1403         atomic_inc(&sh->count);
1404         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1405         tx = async_trigger_callback(&submit);
1406 }
1407
1408 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1409 {
1410         struct page **srcs = percpu->scribble;
1411         struct async_submit_ctl submit;
1412         int count;
1413
1414         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1415                 (unsigned long long)sh->sector, checkp);
1416
1417         count = set_syndrome_sources(srcs, sh);
1418         if (!checkp)
1419                 srcs[count] = NULL;
1420
1421         atomic_inc(&sh->count);
1422         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1423                           sh, to_addr_conv(sh, percpu));
1424         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1425                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1426 }
1427
1428 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1429 {
1430         int overlap_clear = 0, i, disks = sh->disks;
1431         struct dma_async_tx_descriptor *tx = NULL;
1432         struct r5conf *conf = sh->raid_conf;
1433         int level = conf->level;
1434         struct raid5_percpu *percpu;
1435         unsigned long cpu;
1436
1437         cpu = get_cpu();
1438         percpu = per_cpu_ptr(conf->percpu, cpu);
1439         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1440                 ops_run_biofill(sh);
1441                 overlap_clear++;
1442         }
1443
1444         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1445                 if (level < 6)
1446                         tx = ops_run_compute5(sh, percpu);
1447                 else {
1448                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1449                                 tx = ops_run_compute6_1(sh, percpu);
1450                         else
1451                                 tx = ops_run_compute6_2(sh, percpu);
1452                 }
1453                 /* terminate the chain if reconstruct is not set to be run */
1454                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1455                         async_tx_ack(tx);
1456         }
1457
1458         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1459                 tx = ops_run_prexor(sh, percpu, tx);
1460
1461         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1462                 tx = ops_run_biodrain(sh, tx);
1463                 overlap_clear++;
1464         }
1465
1466         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1467                 if (level < 6)
1468                         ops_run_reconstruct5(sh, percpu, tx);
1469                 else
1470                         ops_run_reconstruct6(sh, percpu, tx);
1471         }
1472
1473         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1474                 if (sh->check_state == check_state_run)
1475                         ops_run_check_p(sh, percpu);
1476                 else if (sh->check_state == check_state_run_q)
1477                         ops_run_check_pq(sh, percpu, 0);
1478                 else if (sh->check_state == check_state_run_pq)
1479                         ops_run_check_pq(sh, percpu, 1);
1480                 else
1481                         BUG();
1482         }
1483
1484         if (overlap_clear)
1485                 for (i = disks; i--; ) {
1486                         struct r5dev *dev = &sh->dev[i];
1487                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1488                                 wake_up(&sh->raid_conf->wait_for_overlap);
1489                 }
1490         put_cpu();
1491 }
1492
1493 static int grow_one_stripe(struct r5conf *conf)
1494 {
1495         struct stripe_head *sh;
1496         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1497         if (!sh)
1498                 return 0;
1499
1500         sh->raid_conf = conf;
1501
1502         spin_lock_init(&sh->stripe_lock);
1503
1504         if (grow_buffers(sh)) {
1505                 shrink_buffers(sh);
1506                 kmem_cache_free(conf->slab_cache, sh);
1507                 return 0;
1508         }
1509         /* we just created an active stripe so... */
1510         atomic_set(&sh->count, 1);
1511         atomic_inc(&conf->active_stripes);
1512         INIT_LIST_HEAD(&sh->lru);
1513         release_stripe(sh);
1514         return 1;
1515 }
1516
1517 static int grow_stripes(struct r5conf *conf, int num)
1518 {
1519         struct kmem_cache *sc;
1520         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1521
1522         if (conf->mddev->gendisk)
1523                 sprintf(conf->cache_name[0],
1524                         "raid%d-%s", conf->level, mdname(conf->mddev));
1525         else
1526                 sprintf(conf->cache_name[0],
1527                         "raid%d-%p", conf->level, conf->mddev);
1528         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1529
1530         conf->active_name = 0;
1531         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1532                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1533                                0, 0, NULL);
1534         if (!sc)
1535                 return 1;
1536         conf->slab_cache = sc;
1537         conf->pool_size = devs;
1538         while (num--)
1539                 if (!grow_one_stripe(conf))
1540                         return 1;
1541         return 0;
1542 }
1543
1544 /**
1545  * scribble_len - return the required size of the scribble region
1546  * @num - total number of disks in the array
1547  *
1548  * The size must be enough to contain:
1549  * 1/ a struct page pointer for each device in the array +2
1550  * 2/ room to convert each entry in (1) to its corresponding dma
1551  *    (dma_map_page()) or page (page_address()) address.
1552  *
1553  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1554  * calculate over all devices (not just the data blocks), using zeros in place
1555  * of the P and Q blocks.
1556  */
1557 static size_t scribble_len(int num)
1558 {
1559         size_t len;
1560
1561         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1562
1563         return len;
1564 }
1565
1566 static int resize_stripes(struct r5conf *conf, int newsize)
1567 {
1568         /* Make all the stripes able to hold 'newsize' devices.
1569          * New slots in each stripe get 'page' set to a new page.
1570          *
1571          * This happens in stages:
1572          * 1/ create a new kmem_cache and allocate the required number of
1573          *    stripe_heads.
1574          * 2/ gather all the old stripe_heads and transfer the pages across
1575          *    to the new stripe_heads.  This will have the side effect of
1576          *    freezing the array as once all stripe_heads have been collected,
1577          *    no IO will be possible.  Old stripe heads are freed once their
1578          *    pages have been transferred over, and the old kmem_cache is
1579          *    freed when all stripes are done.
1580          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1581          *    we simple return a failre status - no need to clean anything up.
1582          * 4/ allocate new pages for the new slots in the new stripe_heads.
1583          *    If this fails, we don't bother trying the shrink the
1584          *    stripe_heads down again, we just leave them as they are.
1585          *    As each stripe_head is processed the new one is released into
1586          *    active service.
1587          *
1588          * Once step2 is started, we cannot afford to wait for a write,
1589          * so we use GFP_NOIO allocations.
1590          */
1591         struct stripe_head *osh, *nsh;
1592         LIST_HEAD(newstripes);
1593         struct disk_info *ndisks;
1594         unsigned long cpu;
1595         int err;
1596         struct kmem_cache *sc;
1597         int i;
1598
1599         if (newsize <= conf->pool_size)
1600                 return 0; /* never bother to shrink */
1601
1602         err = md_allow_write(conf->mddev);
1603         if (err)
1604                 return err;
1605
1606         /* Step 1 */
1607         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1608                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1609                                0, 0, NULL);
1610         if (!sc)
1611                 return -ENOMEM;
1612
1613         for (i = conf->max_nr_stripes; i; i--) {
1614                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1615                 if (!nsh)
1616                         break;
1617
1618                 nsh->raid_conf = conf;
1619                 spin_lock_init(&nsh->stripe_lock);
1620
1621                 list_add(&nsh->lru, &newstripes);
1622         }
1623         if (i) {
1624                 /* didn't get enough, give up */
1625                 while (!list_empty(&newstripes)) {
1626                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1627                         list_del(&nsh->lru);
1628                         kmem_cache_free(sc, nsh);
1629                 }
1630                 kmem_cache_destroy(sc);
1631                 return -ENOMEM;
1632         }
1633         /* Step 2 - Must use GFP_NOIO now.
1634          * OK, we have enough stripes, start collecting inactive
1635          * stripes and copying them over
1636          */
1637         list_for_each_entry(nsh, &newstripes, lru) {
1638                 spin_lock_irq(&conf->device_lock);
1639                 wait_event_lock_irq(conf->wait_for_stripe,
1640                                     !list_empty(&conf->inactive_list),
1641                                     conf->device_lock);
1642                 osh = get_free_stripe(conf);
1643                 spin_unlock_irq(&conf->device_lock);
1644                 atomic_set(&nsh->count, 1);
1645                 for(i=0; i<conf->pool_size; i++)
1646                         nsh->dev[i].page = osh->dev[i].page;
1647                 for( ; i<newsize; i++)
1648                         nsh->dev[i].page = NULL;
1649                 kmem_cache_free(conf->slab_cache, osh);
1650         }
1651         kmem_cache_destroy(conf->slab_cache);
1652
1653         /* Step 3.
1654          * At this point, we are holding all the stripes so the array
1655          * is completely stalled, so now is a good time to resize
1656          * conf->disks and the scribble region
1657          */
1658         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1659         if (ndisks) {
1660                 for (i=0; i<conf->raid_disks; i++)
1661                         ndisks[i] = conf->disks[i];
1662                 kfree(conf->disks);
1663                 conf->disks = ndisks;
1664         } else
1665                 err = -ENOMEM;
1666
1667         get_online_cpus();
1668         conf->scribble_len = scribble_len(newsize);
1669         for_each_present_cpu(cpu) {
1670                 struct raid5_percpu *percpu;
1671                 void *scribble;
1672
1673                 percpu = per_cpu_ptr(conf->percpu, cpu);
1674                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1675
1676                 if (scribble) {
1677                         kfree(percpu->scribble);
1678                         percpu->scribble = scribble;
1679                 } else {
1680                         err = -ENOMEM;
1681                         break;
1682                 }
1683         }
1684         put_online_cpus();
1685
1686         /* Step 4, return new stripes to service */
1687         while(!list_empty(&newstripes)) {
1688                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1689                 list_del_init(&nsh->lru);
1690
1691                 for (i=conf->raid_disks; i < newsize; i++)
1692                         if (nsh->dev[i].page == NULL) {
1693                                 struct page *p = alloc_page(GFP_NOIO);
1694                                 nsh->dev[i].page = p;
1695                                 if (!p)
1696                                         err = -ENOMEM;
1697                         }
1698                 release_stripe(nsh);
1699         }
1700         /* critical section pass, GFP_NOIO no longer needed */
1701
1702         conf->slab_cache = sc;
1703         conf->active_name = 1-conf->active_name;
1704         conf->pool_size = newsize;
1705         return err;
1706 }
1707
1708 static int drop_one_stripe(struct r5conf *conf)
1709 {
1710         struct stripe_head *sh;
1711
1712         spin_lock_irq(&conf->device_lock);
1713         sh = get_free_stripe(conf);
1714         spin_unlock_irq(&conf->device_lock);
1715         if (!sh)
1716                 return 0;
1717         BUG_ON(atomic_read(&sh->count));
1718         shrink_buffers(sh);
1719         kmem_cache_free(conf->slab_cache, sh);
1720         atomic_dec(&conf->active_stripes);
1721         return 1;
1722 }
1723
1724 static void shrink_stripes(struct r5conf *conf)
1725 {
1726         while (drop_one_stripe(conf))
1727                 ;
1728
1729         if (conf->slab_cache)
1730                 kmem_cache_destroy(conf->slab_cache);
1731         conf->slab_cache = NULL;
1732 }
1733
1734 static void raid5_end_read_request(struct bio * bi, int error)
1735 {
1736         struct stripe_head *sh = bi->bi_private;
1737         struct r5conf *conf = sh->raid_conf;
1738         int disks = sh->disks, i;
1739         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1740         char b[BDEVNAME_SIZE];
1741         struct md_rdev *rdev = NULL;
1742         sector_t s;
1743
1744         for (i=0 ; i<disks; i++)
1745                 if (bi == &sh->dev[i].req)
1746                         break;
1747
1748         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1749                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1750                 uptodate);
1751         if (i == disks) {
1752                 BUG();
1753                 return;
1754         }
1755         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1756                 /* If replacement finished while this request was outstanding,
1757                  * 'replacement' might be NULL already.
1758                  * In that case it moved down to 'rdev'.
1759                  * rdev is not removed until all requests are finished.
1760                  */
1761                 rdev = conf->disks[i].replacement;
1762         if (!rdev)
1763                 rdev = conf->disks[i].rdev;
1764
1765         if (use_new_offset(conf, sh))
1766                 s = sh->sector + rdev->new_data_offset;
1767         else
1768                 s = sh->sector + rdev->data_offset;
1769         if (uptodate) {
1770                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1771                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1772                         /* Note that this cannot happen on a
1773                          * replacement device.  We just fail those on
1774                          * any error
1775                          */
1776                         printk_ratelimited(
1777                                 KERN_INFO
1778                                 "md/raid:%s: read error corrected"
1779                                 " (%lu sectors at %llu on %s)\n",
1780                                 mdname(conf->mddev), STRIPE_SECTORS,
1781                                 (unsigned long long)s,
1782                                 bdevname(rdev->bdev, b));
1783                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1784                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1785                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1786                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1787                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1788
1789                 if (atomic_read(&rdev->read_errors))
1790                         atomic_set(&rdev->read_errors, 0);
1791         } else {
1792                 const char *bdn = bdevname(rdev->bdev, b);
1793                 int retry = 0;
1794                 int set_bad = 0;
1795
1796                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1797                 atomic_inc(&rdev->read_errors);
1798                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1799                         printk_ratelimited(
1800                                 KERN_WARNING
1801                                 "md/raid:%s: read error on replacement device "
1802                                 "(sector %llu on %s).\n",
1803                                 mdname(conf->mddev),
1804                                 (unsigned long long)s,
1805                                 bdn);
1806                 else if (conf->mddev->degraded >= conf->max_degraded) {
1807                         set_bad = 1;
1808                         printk_ratelimited(
1809                                 KERN_WARNING
1810                                 "md/raid:%s: read error not correctable "
1811                                 "(sector %llu on %s).\n",
1812                                 mdname(conf->mddev),
1813                                 (unsigned long long)s,
1814                                 bdn);
1815                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1816                         /* Oh, no!!! */
1817                         set_bad = 1;
1818                         printk_ratelimited(
1819                                 KERN_WARNING
1820                                 "md/raid:%s: read error NOT corrected!! "
1821                                 "(sector %llu on %s).\n",
1822                                 mdname(conf->mddev),
1823                                 (unsigned long long)s,
1824                                 bdn);
1825                 } else if (atomic_read(&rdev->read_errors)
1826                          > conf->max_nr_stripes)
1827                         printk(KERN_WARNING
1828                                "md/raid:%s: Too many read errors, failing device %s.\n",
1829                                mdname(conf->mddev), bdn);
1830                 else
1831                         retry = 1;
1832                 if (retry)
1833                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1834                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1835                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1836                         } else
1837                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1838                 else {
1839                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1840                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1841                         if (!(set_bad
1842                               && test_bit(In_sync, &rdev->flags)
1843                               && rdev_set_badblocks(
1844                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1845                                 md_error(conf->mddev, rdev);
1846                 }
1847         }
1848         rdev_dec_pending(rdev, conf->mddev);
1849         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1850         set_bit(STRIPE_HANDLE, &sh->state);
1851         release_stripe(sh);
1852 }
1853
1854 static void raid5_end_write_request(struct bio *bi, int error)
1855 {
1856         struct stripe_head *sh = bi->bi_private;
1857         struct r5conf *conf = sh->raid_conf;
1858         int disks = sh->disks, i;
1859         struct md_rdev *uninitialized_var(rdev);
1860         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1861         sector_t first_bad;
1862         int bad_sectors;
1863         int replacement = 0;
1864
1865         for (i = 0 ; i < disks; i++) {
1866                 if (bi == &sh->dev[i].req) {
1867                         rdev = conf->disks[i].rdev;
1868                         break;
1869                 }
1870                 if (bi == &sh->dev[i].rreq) {
1871                         rdev = conf->disks[i].replacement;
1872                         if (rdev)
1873                                 replacement = 1;
1874                         else
1875                                 /* rdev was removed and 'replacement'
1876                                  * replaced it.  rdev is not removed
1877                                  * until all requests are finished.
1878                                  */
1879                                 rdev = conf->disks[i].rdev;
1880                         break;
1881                 }
1882         }
1883         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1884                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1885                 uptodate);
1886         if (i == disks) {
1887                 BUG();
1888                 return;
1889         }
1890
1891         if (replacement) {
1892                 if (!uptodate)
1893                         md_error(conf->mddev, rdev);
1894                 else if (is_badblock(rdev, sh->sector,
1895                                      STRIPE_SECTORS,
1896                                      &first_bad, &bad_sectors))
1897                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1898         } else {
1899                 if (!uptodate) {
1900                         set_bit(STRIPE_DEGRADED, &sh->state);
1901                         set_bit(WriteErrorSeen, &rdev->flags);
1902                         set_bit(R5_WriteError, &sh->dev[i].flags);
1903                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1904                                 set_bit(MD_RECOVERY_NEEDED,
1905                                         &rdev->mddev->recovery);
1906                 } else if (is_badblock(rdev, sh->sector,
1907                                        STRIPE_SECTORS,
1908                                        &first_bad, &bad_sectors)) {
1909                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1910                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
1911                                 /* That was a successful write so make
1912                                  * sure it looks like we already did
1913                                  * a re-write.
1914                                  */
1915                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
1916                 }
1917         }
1918         rdev_dec_pending(rdev, conf->mddev);
1919
1920         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1921                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1922         set_bit(STRIPE_HANDLE, &sh->state);
1923         release_stripe(sh);
1924 }
1925
1926 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1927         
1928 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1929 {
1930         struct r5dev *dev = &sh->dev[i];
1931
1932         bio_init(&dev->req);
1933         dev->req.bi_io_vec = &dev->vec;
1934         dev->req.bi_vcnt++;
1935         dev->req.bi_max_vecs++;
1936         dev->req.bi_private = sh;
1937         dev->vec.bv_page = dev->page;
1938
1939         bio_init(&dev->rreq);
1940         dev->rreq.bi_io_vec = &dev->rvec;
1941         dev->rreq.bi_vcnt++;
1942         dev->rreq.bi_max_vecs++;
1943         dev->rreq.bi_private = sh;
1944         dev->rvec.bv_page = dev->page;
1945
1946         dev->flags = 0;
1947         dev->sector = compute_blocknr(sh, i, previous);
1948 }
1949
1950 static void error(struct mddev *mddev, struct md_rdev *rdev)
1951 {
1952         char b[BDEVNAME_SIZE];
1953         struct r5conf *conf = mddev->private;
1954         unsigned long flags;
1955         pr_debug("raid456: error called\n");
1956
1957         spin_lock_irqsave(&conf->device_lock, flags);
1958         clear_bit(In_sync, &rdev->flags);
1959         mddev->degraded = calc_degraded(conf);
1960         spin_unlock_irqrestore(&conf->device_lock, flags);
1961         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1962
1963         set_bit(Blocked, &rdev->flags);
1964         set_bit(Faulty, &rdev->flags);
1965         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1966         printk(KERN_ALERT
1967                "md/raid:%s: Disk failure on %s, disabling device.\n"
1968                "md/raid:%s: Operation continuing on %d devices.\n",
1969                mdname(mddev),
1970                bdevname(rdev->bdev, b),
1971                mdname(mddev),
1972                conf->raid_disks - mddev->degraded);
1973 }
1974
1975 /*
1976  * Input: a 'big' sector number,
1977  * Output: index of the data and parity disk, and the sector # in them.
1978  */
1979 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1980                                      int previous, int *dd_idx,
1981                                      struct stripe_head *sh)
1982 {
1983         sector_t stripe, stripe2;
1984         sector_t chunk_number;
1985         unsigned int chunk_offset;
1986         int pd_idx, qd_idx;
1987         int ddf_layout = 0;
1988         sector_t new_sector;
1989         int algorithm = previous ? conf->prev_algo
1990                                  : conf->algorithm;
1991         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1992                                          : conf->chunk_sectors;
1993         int raid_disks = previous ? conf->previous_raid_disks
1994                                   : conf->raid_disks;
1995         int data_disks = raid_disks - conf->max_degraded;
1996
1997         /* First compute the information on this sector */
1998
1999         /*
2000          * Compute the chunk number and the sector offset inside the chunk
2001          */
2002         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2003         chunk_number = r_sector;
2004
2005         /*
2006          * Compute the stripe number
2007          */
2008         stripe = chunk_number;
2009         *dd_idx = sector_div(stripe, data_disks);
2010         stripe2 = stripe;
2011         /*
2012          * Select the parity disk based on the user selected algorithm.
2013          */
2014         pd_idx = qd_idx = -1;
2015         switch(conf->level) {
2016         case 4:
2017                 pd_idx = data_disks;
2018                 break;
2019         case 5:
2020                 switch (algorithm) {
2021                 case ALGORITHM_LEFT_ASYMMETRIC:
2022                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2023                         if (*dd_idx >= pd_idx)
2024                                 (*dd_idx)++;
2025                         break;
2026                 case ALGORITHM_RIGHT_ASYMMETRIC:
2027                         pd_idx = sector_div(stripe2, raid_disks);
2028                         if (*dd_idx >= pd_idx)
2029                                 (*dd_idx)++;
2030                         break;
2031                 case ALGORITHM_LEFT_SYMMETRIC:
2032                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2033                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2034                         break;
2035                 case ALGORITHM_RIGHT_SYMMETRIC:
2036                         pd_idx = sector_div(stripe2, raid_disks);
2037                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2038                         break;
2039                 case ALGORITHM_PARITY_0:
2040                         pd_idx = 0;
2041                         (*dd_idx)++;
2042                         break;
2043                 case ALGORITHM_PARITY_N:
2044                         pd_idx = data_disks;
2045                         break;
2046                 default:
2047                         BUG();
2048                 }
2049                 break;
2050         case 6:
2051
2052                 switch (algorithm) {
2053                 case ALGORITHM_LEFT_ASYMMETRIC:
2054                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055                         qd_idx = pd_idx + 1;
2056                         if (pd_idx == raid_disks-1) {
2057                                 (*dd_idx)++;    /* Q D D D P */
2058                                 qd_idx = 0;
2059                         } else if (*dd_idx >= pd_idx)
2060                                 (*dd_idx) += 2; /* D D P Q D */
2061                         break;
2062                 case ALGORITHM_RIGHT_ASYMMETRIC:
2063                         pd_idx = sector_div(stripe2, raid_disks);
2064                         qd_idx = pd_idx + 1;
2065                         if (pd_idx == raid_disks-1) {
2066                                 (*dd_idx)++;    /* Q D D D P */
2067                                 qd_idx = 0;
2068                         } else if (*dd_idx >= pd_idx)
2069                                 (*dd_idx) += 2; /* D D P Q D */
2070                         break;
2071                 case ALGORITHM_LEFT_SYMMETRIC:
2072                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2073                         qd_idx = (pd_idx + 1) % raid_disks;
2074                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2075                         break;
2076                 case ALGORITHM_RIGHT_SYMMETRIC:
2077                         pd_idx = sector_div(stripe2, raid_disks);
2078                         qd_idx = (pd_idx + 1) % raid_disks;
2079                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2080                         break;
2081
2082                 case ALGORITHM_PARITY_0:
2083                         pd_idx = 0;
2084                         qd_idx = 1;
2085                         (*dd_idx) += 2;
2086                         break;
2087                 case ALGORITHM_PARITY_N:
2088                         pd_idx = data_disks;
2089                         qd_idx = data_disks + 1;
2090                         break;
2091
2092                 case ALGORITHM_ROTATING_ZERO_RESTART:
2093                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2094                          * of blocks for computing Q is different.
2095                          */
2096                         pd_idx = sector_div(stripe2, raid_disks);
2097                         qd_idx = pd_idx + 1;
2098                         if (pd_idx == raid_disks-1) {
2099                                 (*dd_idx)++;    /* Q D D D P */
2100                                 qd_idx = 0;
2101                         } else if (*dd_idx >= pd_idx)
2102                                 (*dd_idx) += 2; /* D D P Q D */
2103                         ddf_layout = 1;
2104                         break;
2105
2106                 case ALGORITHM_ROTATING_N_RESTART:
2107                         /* Same a left_asymmetric, by first stripe is
2108                          * D D D P Q  rather than
2109                          * Q D D D P
2110                          */
2111                         stripe2 += 1;
2112                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2113                         qd_idx = pd_idx + 1;
2114                         if (pd_idx == raid_disks-1) {
2115                                 (*dd_idx)++;    /* Q D D D P */
2116                                 qd_idx = 0;
2117                         } else if (*dd_idx >= pd_idx)
2118                                 (*dd_idx) += 2; /* D D P Q D */
2119                         ddf_layout = 1;
2120                         break;
2121
2122                 case ALGORITHM_ROTATING_N_CONTINUE:
2123                         /* Same as left_symmetric but Q is before P */
2124                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2125                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2126                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2127                         ddf_layout = 1;
2128                         break;
2129
2130                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2131                         /* RAID5 left_asymmetric, with Q on last device */
2132                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2133                         if (*dd_idx >= pd_idx)
2134                                 (*dd_idx)++;
2135                         qd_idx = raid_disks - 1;
2136                         break;
2137
2138                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2139                         pd_idx = sector_div(stripe2, raid_disks-1);
2140                         if (*dd_idx >= pd_idx)
2141                                 (*dd_idx)++;
2142                         qd_idx = raid_disks - 1;
2143                         break;
2144
2145                 case ALGORITHM_LEFT_SYMMETRIC_6:
2146                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2147                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2148                         qd_idx = raid_disks - 1;
2149                         break;
2150
2151                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2152                         pd_idx = sector_div(stripe2, raid_disks-1);
2153                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2154                         qd_idx = raid_disks - 1;
2155                         break;
2156
2157                 case ALGORITHM_PARITY_0_6:
2158                         pd_idx = 0;
2159                         (*dd_idx)++;
2160                         qd_idx = raid_disks - 1;
2161                         break;
2162
2163                 default:
2164                         BUG();
2165                 }
2166                 break;
2167         }
2168
2169         if (sh) {
2170                 sh->pd_idx = pd_idx;
2171                 sh->qd_idx = qd_idx;
2172                 sh->ddf_layout = ddf_layout;
2173         }
2174         /*
2175          * Finally, compute the new sector number
2176          */
2177         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2178         return new_sector;
2179 }
2180
2181
2182 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2183 {
2184         struct r5conf *conf = sh->raid_conf;
2185         int raid_disks = sh->disks;
2186         int data_disks = raid_disks - conf->max_degraded;
2187         sector_t new_sector = sh->sector, check;
2188         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2189                                          : conf->chunk_sectors;
2190         int algorithm = previous ? conf->prev_algo
2191                                  : conf->algorithm;
2192         sector_t stripe;
2193         int chunk_offset;
2194         sector_t chunk_number;
2195         int dummy1, dd_idx = i;
2196         sector_t r_sector;
2197         struct stripe_head sh2;
2198
2199
2200         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2201         stripe = new_sector;
2202
2203         if (i == sh->pd_idx)
2204                 return 0;
2205         switch(conf->level) {
2206         case 4: break;
2207         case 5:
2208                 switch (algorithm) {
2209                 case ALGORITHM_LEFT_ASYMMETRIC:
2210                 case ALGORITHM_RIGHT_ASYMMETRIC:
2211                         if (i > sh->pd_idx)
2212                                 i--;
2213                         break;
2214                 case ALGORITHM_LEFT_SYMMETRIC:
2215                 case ALGORITHM_RIGHT_SYMMETRIC:
2216                         if (i < sh->pd_idx)
2217                                 i += raid_disks;
2218                         i -= (sh->pd_idx + 1);
2219                         break;
2220                 case ALGORITHM_PARITY_0:
2221                         i -= 1;
2222                         break;
2223                 case ALGORITHM_PARITY_N:
2224                         break;
2225                 default:
2226                         BUG();
2227                 }
2228                 break;
2229         case 6:
2230                 if (i == sh->qd_idx)
2231                         return 0; /* It is the Q disk */
2232                 switch (algorithm) {
2233                 case ALGORITHM_LEFT_ASYMMETRIC:
2234                 case ALGORITHM_RIGHT_ASYMMETRIC:
2235                 case ALGORITHM_ROTATING_ZERO_RESTART:
2236                 case ALGORITHM_ROTATING_N_RESTART:
2237                         if (sh->pd_idx == raid_disks-1)
2238                                 i--;    /* Q D D D P */
2239                         else if (i > sh->pd_idx)
2240                                 i -= 2; /* D D P Q D */
2241                         break;
2242                 case ALGORITHM_LEFT_SYMMETRIC:
2243                 case ALGORITHM_RIGHT_SYMMETRIC:
2244                         if (sh->pd_idx == raid_disks-1)
2245                                 i--; /* Q D D D P */
2246                         else {
2247                                 /* D D P Q D */
2248                                 if (i < sh->pd_idx)
2249                                         i += raid_disks;
2250                                 i -= (sh->pd_idx + 2);
2251                         }
2252                         break;
2253                 case ALGORITHM_PARITY_0:
2254                         i -= 2;
2255                         break;
2256                 case ALGORITHM_PARITY_N:
2257                         break;
2258                 case ALGORITHM_ROTATING_N_CONTINUE:
2259                         /* Like left_symmetric, but P is before Q */
2260                         if (sh->pd_idx == 0)
2261                                 i--;    /* P D D D Q */
2262                         else {
2263                                 /* D D Q P D */
2264                                 if (i < sh->pd_idx)
2265                                         i += raid_disks;
2266                                 i -= (sh->pd_idx + 1);
2267                         }
2268                         break;
2269                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2270                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2271                         if (i > sh->pd_idx)
2272                                 i--;
2273                         break;
2274                 case ALGORITHM_LEFT_SYMMETRIC_6:
2275                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2276                         if (i < sh->pd_idx)
2277                                 i += data_disks + 1;
2278                         i -= (sh->pd_idx + 1);
2279                         break;
2280                 case ALGORITHM_PARITY_0_6:
2281                         i -= 1;
2282                         break;
2283                 default:
2284                         BUG();
2285                 }
2286                 break;
2287         }
2288
2289         chunk_number = stripe * data_disks + i;
2290         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2291
2292         check = raid5_compute_sector(conf, r_sector,
2293                                      previous, &dummy1, &sh2);
2294         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2295                 || sh2.qd_idx != sh->qd_idx) {
2296                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2297                        mdname(conf->mddev));
2298                 return 0;
2299         }
2300         return r_sector;
2301 }
2302
2303
2304 static void
2305 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2306                          int rcw, int expand)
2307 {
2308         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2309         struct r5conf *conf = sh->raid_conf;
2310         int level = conf->level;
2311
2312         if (rcw) {
2313
2314                 for (i = disks; i--; ) {
2315                         struct r5dev *dev = &sh->dev[i];
2316
2317                         if (dev->towrite) {
2318                                 set_bit(R5_LOCKED, &dev->flags);
2319                                 set_bit(R5_Wantdrain, &dev->flags);
2320                                 if (!expand)
2321                                         clear_bit(R5_UPTODATE, &dev->flags);
2322                                 s->locked++;
2323                         }
2324                 }
2325                 /* if we are not expanding this is a proper write request, and
2326                  * there will be bios with new data to be drained into the
2327                  * stripe cache
2328                  */
2329                 if (!expand) {
2330                         if (!s->locked)
2331                                 /* False alarm, nothing to do */
2332                                 return;
2333                         sh->reconstruct_state = reconstruct_state_drain_run;
2334                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2335                 } else
2336                         sh->reconstruct_state = reconstruct_state_run;
2337
2338                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2339
2340                 if (s->locked + conf->max_degraded == disks)
2341                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2342                                 atomic_inc(&conf->pending_full_writes);
2343         } else {
2344                 BUG_ON(level == 6);
2345                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2346                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2347
2348                 for (i = disks; i--; ) {
2349                         struct r5dev *dev = &sh->dev[i];
2350                         if (i == pd_idx)
2351                                 continue;
2352
2353                         if (dev->towrite &&
2354                             (test_bit(R5_UPTODATE, &dev->flags) ||
2355                              test_bit(R5_Wantcompute, &dev->flags))) {
2356                                 set_bit(R5_Wantdrain, &dev->flags);
2357                                 set_bit(R5_LOCKED, &dev->flags);
2358                                 clear_bit(R5_UPTODATE, &dev->flags);
2359                                 s->locked++;
2360                         }
2361                 }
2362                 if (!s->locked)
2363                         /* False alarm - nothing to do */
2364                         return;
2365                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2366                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2367                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2368                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2369         }
2370
2371         /* keep the parity disk(s) locked while asynchronous operations
2372          * are in flight
2373          */
2374         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2375         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2376         s->locked++;
2377
2378         if (level == 6) {
2379                 int qd_idx = sh->qd_idx;
2380                 struct r5dev *dev = &sh->dev[qd_idx];
2381
2382                 set_bit(R5_LOCKED, &dev->flags);
2383                 clear_bit(R5_UPTODATE, &dev->flags);
2384                 s->locked++;
2385         }
2386
2387         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2388                 __func__, (unsigned long long)sh->sector,
2389                 s->locked, s->ops_request);
2390 }
2391
2392 /*
2393  * Each stripe/dev can have one or more bion attached.
2394  * toread/towrite point to the first in a chain.
2395  * The bi_next chain must be in order.
2396  */
2397 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2398 {
2399         struct bio **bip;
2400         struct r5conf *conf = sh->raid_conf;
2401         int firstwrite=0;
2402
2403         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2404                 (unsigned long long)bi->bi_sector,
2405                 (unsigned long long)sh->sector);
2406
2407         /*
2408          * If several bio share a stripe. The bio bi_phys_segments acts as a
2409          * reference count to avoid race. The reference count should already be
2410          * increased before this function is called (for example, in
2411          * make_request()), so other bio sharing this stripe will not free the
2412          * stripe. If a stripe is owned by one stripe, the stripe lock will
2413          * protect it.
2414          */
2415         spin_lock_irq(&sh->stripe_lock);
2416         if (forwrite) {
2417                 bip = &sh->dev[dd_idx].towrite;
2418                 if (*bip == NULL)
2419                         firstwrite = 1;
2420         } else
2421                 bip = &sh->dev[dd_idx].toread;
2422         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2423                 if (bio_end_sector(*bip) > bi->bi_sector)
2424                         goto overlap;
2425                 bip = & (*bip)->bi_next;
2426         }
2427         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2428                 goto overlap;
2429
2430         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2431         if (*bip)
2432                 bi->bi_next = *bip;
2433         *bip = bi;
2434         raid5_inc_bi_active_stripes(bi);
2435
2436         if (forwrite) {
2437                 /* check if page is covered */
2438                 sector_t sector = sh->dev[dd_idx].sector;
2439                 for (bi=sh->dev[dd_idx].towrite;
2440                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2441                              bi && bi->bi_sector <= sector;
2442                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2443                         if (bio_end_sector(bi) >= sector)
2444                                 sector = bio_end_sector(bi);
2445                 }
2446                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2447                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2448         }
2449
2450         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2451                 (unsigned long long)(*bip)->bi_sector,
2452                 (unsigned long long)sh->sector, dd_idx);
2453         spin_unlock_irq(&sh->stripe_lock);
2454
2455         if (conf->mddev->bitmap && firstwrite) {
2456                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2457                                   STRIPE_SECTORS, 0);
2458                 sh->bm_seq = conf->seq_flush+1;
2459                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2460         }
2461         return 1;
2462
2463  overlap:
2464         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2465         spin_unlock_irq(&sh->stripe_lock);
2466         return 0;
2467 }
2468
2469 static void end_reshape(struct r5conf *conf);
2470
2471 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2472                             struct stripe_head *sh)
2473 {
2474         int sectors_per_chunk =
2475                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2476         int dd_idx;
2477         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2478         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2479
2480         raid5_compute_sector(conf,
2481                              stripe * (disks - conf->max_degraded)
2482                              *sectors_per_chunk + chunk_offset,
2483                              previous,
2484                              &dd_idx, sh);
2485 }
2486
2487 static void
2488 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2489                                 struct stripe_head_state *s, int disks,
2490                                 struct bio **return_bi)
2491 {
2492         int i;
2493         for (i = disks; i--; ) {
2494                 struct bio *bi;
2495                 int bitmap_end = 0;
2496
2497                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2498                         struct md_rdev *rdev;
2499                         rcu_read_lock();
2500                         rdev = rcu_dereference(conf->disks[i].rdev);
2501                         if (rdev && test_bit(In_sync, &rdev->flags))
2502                                 atomic_inc(&rdev->nr_pending);
2503                         else
2504                                 rdev = NULL;
2505                         rcu_read_unlock();
2506                         if (rdev) {
2507                                 if (!rdev_set_badblocks(
2508                                             rdev,
2509                                             sh->sector,
2510                                             STRIPE_SECTORS, 0))
2511                                         md_error(conf->mddev, rdev);
2512                                 rdev_dec_pending(rdev, conf->mddev);
2513                         }
2514                 }
2515                 spin_lock_irq(&sh->stripe_lock);
2516                 /* fail all writes first */
2517                 bi = sh->dev[i].towrite;
2518                 sh->dev[i].towrite = NULL;
2519                 spin_unlock_irq(&sh->stripe_lock);
2520                 if (bi)
2521                         bitmap_end = 1;
2522
2523                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2524                         wake_up(&conf->wait_for_overlap);
2525
2526                 while (bi && bi->bi_sector <
2527                         sh->dev[i].sector + STRIPE_SECTORS) {
2528                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2529                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2530                         if (!raid5_dec_bi_active_stripes(bi)) {
2531                                 md_write_end(conf->mddev);
2532                                 bi->bi_next = *return_bi;
2533                                 *return_bi = bi;
2534                         }
2535                         bi = nextbi;
2536                 }
2537                 if (bitmap_end)
2538                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2539                                 STRIPE_SECTORS, 0, 0);
2540                 bitmap_end = 0;
2541                 /* and fail all 'written' */
2542                 bi = sh->dev[i].written;
2543                 sh->dev[i].written = NULL;
2544                 if (bi) bitmap_end = 1;
2545                 while (bi && bi->bi_sector <
2546                        sh->dev[i].sector + STRIPE_SECTORS) {
2547                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2548                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2549                         if (!raid5_dec_bi_active_stripes(bi)) {
2550                                 md_write_end(conf->mddev);
2551                                 bi->bi_next = *return_bi;
2552                                 *return_bi = bi;
2553                         }
2554                         bi = bi2;
2555                 }
2556
2557                 /* fail any reads if this device is non-operational and
2558                  * the data has not reached the cache yet.
2559                  */
2560                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2561                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2562                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2563                         spin_lock_irq(&sh->stripe_lock);
2564                         bi = sh->dev[i].toread;
2565                         sh->dev[i].toread = NULL;
2566                         spin_unlock_irq(&sh->stripe_lock);
2567                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2568                                 wake_up(&conf->wait_for_overlap);
2569                         while (bi && bi->bi_sector <
2570                                sh->dev[i].sector + STRIPE_SECTORS) {
2571                                 struct bio *nextbi =
2572                                         r5_next_bio(bi, sh->dev[i].sector);
2573                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2574                                 if (!raid5_dec_bi_active_stripes(bi)) {
2575                                         bi->bi_next = *return_bi;
2576                                         *return_bi = bi;
2577                                 }
2578                                 bi = nextbi;
2579                         }
2580                 }
2581                 if (bitmap_end)
2582                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2583                                         STRIPE_SECTORS, 0, 0);
2584                 /* If we were in the middle of a write the parity block might
2585                  * still be locked - so just clear all R5_LOCKED flags
2586                  */
2587                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2588         }
2589
2590         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2591                 if (atomic_dec_and_test(&conf->pending_full_writes))
2592                         md_wakeup_thread(conf->mddev->thread);
2593 }
2594
2595 static void
2596 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2597                    struct stripe_head_state *s)
2598 {
2599         int abort = 0;
2600         int i;
2601
2602         clear_bit(STRIPE_SYNCING, &sh->state);
2603         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2604                 wake_up(&conf->wait_for_overlap);
2605         s->syncing = 0;
2606         s->replacing = 0;
2607         /* There is nothing more to do for sync/check/repair.
2608          * Don't even need to abort as that is handled elsewhere
2609          * if needed, and not always wanted e.g. if there is a known
2610          * bad block here.
2611          * For recover/replace we need to record a bad block on all
2612          * non-sync devices, or abort the recovery
2613          */
2614         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2615                 /* During recovery devices cannot be removed, so
2616                  * locking and refcounting of rdevs is not needed
2617                  */
2618                 for (i = 0; i < conf->raid_disks; i++) {
2619                         struct md_rdev *rdev = conf->disks[i].rdev;
2620                         if (rdev
2621                             && !test_bit(Faulty, &rdev->flags)
2622                             && !test_bit(In_sync, &rdev->flags)
2623                             && !rdev_set_badblocks(rdev, sh->sector,
2624                                                    STRIPE_SECTORS, 0))
2625                                 abort = 1;
2626                         rdev = conf->disks[i].replacement;
2627                         if (rdev
2628                             && !test_bit(Faulty, &rdev->flags)
2629                             && !test_bit(In_sync, &rdev->flags)
2630                             && !rdev_set_badblocks(rdev, sh->sector,
2631                                                    STRIPE_SECTORS, 0))
2632                                 abort = 1;
2633                 }
2634                 if (abort)
2635                         conf->recovery_disabled =
2636                                 conf->mddev->recovery_disabled;
2637         }
2638         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2639 }
2640
2641 static int want_replace(struct stripe_head *sh, int disk_idx)
2642 {
2643         struct md_rdev *rdev;
2644         int rv = 0;
2645         /* Doing recovery so rcu locking not required */
2646         rdev = sh->raid_conf->disks[disk_idx].replacement;
2647         if (rdev
2648             && !test_bit(Faulty, &rdev->flags)
2649             && !test_bit(In_sync, &rdev->flags)
2650             && (rdev->recovery_offset <= sh->sector
2651                 || rdev->mddev->recovery_cp <= sh->sector))
2652                 rv = 1;
2653
2654         return rv;
2655 }
2656
2657 /* fetch_block - checks the given member device to see if its data needs
2658  * to be read or computed to satisfy a request.
2659  *
2660  * Returns 1 when no more member devices need to be checked, otherwise returns
2661  * 0 to tell the loop in handle_stripe_fill to continue
2662  */
2663 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2664                        int disk_idx, int disks)
2665 {
2666         struct r5dev *dev = &sh->dev[disk_idx];
2667         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2668                                   &sh->dev[s->failed_num[1]] };
2669
2670         /* is the data in this block needed, and can we get it? */
2671         if (!test_bit(R5_LOCKED, &dev->flags) &&
2672             !test_bit(R5_UPTODATE, &dev->flags) &&
2673             (dev->toread ||
2674              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2675              s->syncing || s->expanding ||
2676              (s->replacing && want_replace(sh, disk_idx)) ||
2677              (s->failed >= 1 && fdev[0]->toread) ||
2678              (s->failed >= 2 && fdev[1]->toread) ||
2679              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2680               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2681              ((sh->raid_conf->level == 6 || sh->sector >= sh->raid_conf->mddev->recovery_cp)
2682               && s->failed && s->to_write))) {
2683                 /* we would like to get this block, possibly by computing it,
2684                  * otherwise read it if the backing disk is insync
2685                  */
2686                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2687                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2688                 if ((s->uptodate == disks - 1) &&
2689                     (s->failed && (disk_idx == s->failed_num[0] ||
2690                                    disk_idx == s->failed_num[1]))) {
2691                         /* have disk failed, and we're requested to fetch it;
2692                          * do compute it
2693                          */
2694                         pr_debug("Computing stripe %llu block %d\n",
2695                                (unsigned long long)sh->sector, disk_idx);
2696                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2697                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2698                         set_bit(R5_Wantcompute, &dev->flags);
2699                         sh->ops.target = disk_idx;
2700                         sh->ops.target2 = -1; /* no 2nd target */
2701                         s->req_compute = 1;
2702                         /* Careful: from this point on 'uptodate' is in the eye
2703                          * of raid_run_ops which services 'compute' operations
2704                          * before writes. R5_Wantcompute flags a block that will
2705                          * be R5_UPTODATE by the time it is needed for a
2706                          * subsequent operation.
2707                          */
2708                         s->uptodate++;
2709                         return 1;
2710                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2711                         /* Computing 2-failure is *very* expensive; only
2712                          * do it if failed >= 2
2713                          */
2714                         int other;
2715                         for (other = disks; other--; ) {
2716                                 if (other == disk_idx)
2717                                         continue;
2718                                 if (!test_bit(R5_UPTODATE,
2719                                       &sh->dev[other].flags))
2720                                         break;
2721                         }
2722                         BUG_ON(other < 0);
2723                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2724                                (unsigned long long)sh->sector,
2725                                disk_idx, other);
2726                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2727                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2728                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2729                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2730                         sh->ops.target = disk_idx;
2731                         sh->ops.target2 = other;
2732                         s->uptodate += 2;
2733                         s->req_compute = 1;
2734                         return 1;
2735                 } else if (test_bit(R5_Insync, &dev->flags)) {
2736                         set_bit(R5_LOCKED, &dev->flags);
2737                         set_bit(R5_Wantread, &dev->flags);
2738                         s->locked++;
2739                         pr_debug("Reading block %d (sync=%d)\n",
2740                                 disk_idx, s->syncing);
2741                 }
2742         }
2743
2744         return 0;
2745 }
2746
2747 /**
2748  * handle_stripe_fill - read or compute data to satisfy pending requests.
2749  */
2750 static void handle_stripe_fill(struct stripe_head *sh,
2751                                struct stripe_head_state *s,
2752                                int disks)
2753 {
2754         int i;
2755
2756         /* look for blocks to read/compute, skip this if a compute
2757          * is already in flight, or if the stripe contents are in the
2758          * midst of changing due to a write
2759          */
2760         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2761             !sh->reconstruct_state)
2762                 for (i = disks; i--; )
2763                         if (fetch_block(sh, s, i, disks))
2764                                 break;
2765         set_bit(STRIPE_HANDLE, &sh->state);
2766 }
2767
2768
2769 /* handle_stripe_clean_event
2770  * any written block on an uptodate or failed drive can be returned.
2771  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2772  * never LOCKED, so we don't need to test 'failed' directly.
2773  */
2774 static void handle_stripe_clean_event(struct r5conf *conf,
2775         struct stripe_head *sh, int disks, struct bio **return_bi)
2776 {
2777         int i;
2778         struct r5dev *dev;
2779         int discard_pending = 0;
2780
2781         for (i = disks; i--; )
2782                 if (sh->dev[i].written) {
2783                         dev = &sh->dev[i];
2784                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2785                             (test_bit(R5_UPTODATE, &dev->flags) ||
2786                              test_bit(R5_Discard, &dev->flags))) {
2787                                 /* We can return any write requests */
2788                                 struct bio *wbi, *wbi2;
2789                                 pr_debug("Return write for disc %d\n", i);
2790                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2791                                         clear_bit(R5_UPTODATE, &dev->flags);
2792                                 wbi = dev->written;
2793                                 dev->written = NULL;
2794                                 while (wbi && wbi->bi_sector <
2795                                         dev->sector + STRIPE_SECTORS) {
2796                                         wbi2 = r5_next_bio(wbi, dev->sector);
2797                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2798                                                 md_write_end(conf->mddev);
2799                                                 wbi->bi_next = *return_bi;
2800                                                 *return_bi = wbi;
2801                                         }
2802                                         wbi = wbi2;
2803                                 }
2804                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2805                                                 STRIPE_SECTORS,
2806                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2807                                                 0);
2808                         } else if (test_bit(R5_Discard, &dev->flags))
2809                                 discard_pending = 1;
2810                 }
2811         if (!discard_pending &&
2812             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2813                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2814                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2815                 if (sh->qd_idx >= 0) {
2816                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2817                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2818                 }
2819                 /* now that discard is done we can proceed with any sync */
2820                 clear_bit(STRIPE_DISCARD, &sh->state);
2821                 /*
2822                  * SCSI discard will change some bio fields and the stripe has
2823                  * no updated data, so remove it from hash list and the stripe
2824                  * will be reinitialized
2825                  */
2826                 spin_lock_irq(&conf->device_lock);
2827                 remove_hash(sh);
2828                 spin_unlock_irq(&conf->device_lock);
2829                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2830                         set_bit(STRIPE_HANDLE, &sh->state);
2831
2832         }
2833
2834         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2835                 if (atomic_dec_and_test(&conf->pending_full_writes))
2836                         md_wakeup_thread(conf->mddev->thread);
2837 }
2838
2839 static void handle_stripe_dirtying(struct r5conf *conf,
2840                                    struct stripe_head *sh,
2841                                    struct stripe_head_state *s,
2842                                    int disks)
2843 {
2844         int rmw = 0, rcw = 0, i;
2845         sector_t recovery_cp = conf->mddev->recovery_cp;
2846
2847         /* RAID6 requires 'rcw' in current implementation.
2848          * Otherwise, check whether resync is now happening or should start.
2849          * If yes, then the array is dirty (after unclean shutdown or
2850          * initial creation), so parity in some stripes might be inconsistent.
2851          * In this case, we need to always do reconstruct-write, to ensure
2852          * that in case of drive failure or read-error correction, we
2853          * generate correct data from the parity.
2854          */
2855         if (conf->max_degraded == 2 ||
2856             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2857                 /* Calculate the real rcw later - for now make it
2858                  * look like rcw is cheaper
2859                  */
2860                 rcw = 1; rmw = 2;
2861                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2862                          conf->max_degraded, (unsigned long long)recovery_cp,
2863                          (unsigned long long)sh->sector);
2864         } else for (i = disks; i--; ) {
2865                 /* would I have to read this buffer for read_modify_write */
2866                 struct r5dev *dev = &sh->dev[i];
2867                 if ((dev->towrite || i == sh->pd_idx) &&
2868                     !test_bit(R5_LOCKED, &dev->flags) &&
2869                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2870                       test_bit(R5_Wantcompute, &dev->flags))) {
2871                         if (test_bit(R5_Insync, &dev->flags))
2872                                 rmw++;
2873                         else
2874                                 rmw += 2*disks;  /* cannot read it */
2875                 }
2876                 /* Would I have to read this buffer for reconstruct_write */
2877                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2878                     !test_bit(R5_LOCKED, &dev->flags) &&
2879                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2880                     test_bit(R5_Wantcompute, &dev->flags))) {
2881                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2882                         else
2883                                 rcw += 2*disks;
2884                 }
2885         }
2886         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2887                 (unsigned long long)sh->sector, rmw, rcw);
2888         set_bit(STRIPE_HANDLE, &sh->state);
2889         if (rmw < rcw && rmw > 0) {
2890                 /* prefer read-modify-write, but need to get some data */
2891                 if (conf->mddev->queue)
2892                         blk_add_trace_msg(conf->mddev->queue,
2893                                           "raid5 rmw %llu %d",
2894                                           (unsigned long long)sh->sector, rmw);
2895                 for (i = disks; i--; ) {
2896                         struct r5dev *dev = &sh->dev[i];
2897                         if ((dev->towrite || i == sh->pd_idx) &&
2898                             !test_bit(R5_LOCKED, &dev->flags) &&
2899                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2900                             test_bit(R5_Wantcompute, &dev->flags)) &&
2901                             test_bit(R5_Insync, &dev->flags)) {
2902                                 if (
2903                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2904                                         pr_debug("Read_old block "
2905                                                  "%d for r-m-w\n", i);
2906                                         set_bit(R5_LOCKED, &dev->flags);
2907                                         set_bit(R5_Wantread, &dev->flags);
2908                                         s->locked++;
2909                                 } else {
2910                                         set_bit(STRIPE_DELAYED, &sh->state);
2911                                         set_bit(STRIPE_HANDLE, &sh->state);
2912                                 }
2913                         }
2914                 }
2915         }
2916         if (rcw <= rmw && rcw > 0) {
2917                 /* want reconstruct write, but need to get some data */
2918                 int qread =0;
2919                 rcw = 0;
2920                 for (i = disks; i--; ) {
2921                         struct r5dev *dev = &sh->dev[i];
2922                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2923                             i != sh->pd_idx && i != sh->qd_idx &&
2924                             !test_bit(R5_LOCKED, &dev->flags) &&
2925                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2926                               test_bit(R5_Wantcompute, &dev->flags))) {
2927                                 rcw++;
2928                                 if (!test_bit(R5_Insync, &dev->flags))
2929                                         continue; /* it's a failed drive */
2930                                 if (
2931                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2932                                         pr_debug("Read_old block "
2933                                                 "%d for Reconstruct\n", i);
2934                                         set_bit(R5_LOCKED, &dev->flags);
2935                                         set_bit(R5_Wantread, &dev->flags);
2936                                         s->locked++;
2937                                         qread++;
2938                                 } else {
2939                                         set_bit(STRIPE_DELAYED, &sh->state);
2940                                         set_bit(STRIPE_HANDLE, &sh->state);
2941                                 }
2942                         }
2943                 }
2944                 if (rcw && conf->mddev->queue)
2945                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2946                                           (unsigned long long)sh->sector,
2947                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2948         }
2949         /* now if nothing is locked, and if we have enough data,
2950          * we can start a write request
2951          */
2952         /* since handle_stripe can be called at any time we need to handle the
2953          * case where a compute block operation has been submitted and then a
2954          * subsequent call wants to start a write request.  raid_run_ops only
2955          * handles the case where compute block and reconstruct are requested
2956          * simultaneously.  If this is not the case then new writes need to be
2957          * held off until the compute completes.
2958          */
2959         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2960             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2961             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2962                 schedule_reconstruction(sh, s, rcw == 0, 0);
2963 }
2964
2965 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2966                                 struct stripe_head_state *s, int disks)
2967 {
2968         struct r5dev *dev = NULL;
2969
2970         set_bit(STRIPE_HANDLE, &sh->state);
2971
2972         switch (sh->check_state) {
2973         case check_state_idle:
2974                 /* start a new check operation if there are no failures */
2975                 if (s->failed == 0) {
2976                         BUG_ON(s->uptodate != disks);
2977                         sh->check_state = check_state_run;
2978                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2979                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2980                         s->uptodate--;
2981                         break;
2982                 }
2983                 dev = &sh->dev[s->failed_num[0]];
2984                 /* fall through */
2985         case check_state_compute_result:
2986                 sh->check_state = check_state_idle;
2987                 if (!dev)
2988                         dev = &sh->dev[sh->pd_idx];
2989
2990                 /* check that a write has not made the stripe insync */
2991                 if (test_bit(STRIPE_INSYNC, &sh->state))
2992                         break;
2993
2994                 /* either failed parity check, or recovery is happening */
2995                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2996                 BUG_ON(s->uptodate != disks);
2997
2998                 set_bit(R5_LOCKED, &dev->flags);
2999                 s->locked++;
3000                 set_bit(R5_Wantwrite, &dev->flags);
3001
3002                 clear_bit(STRIPE_DEGRADED, &sh->state);
3003                 set_bit(STRIPE_INSYNC, &sh->state);
3004                 break;
3005         case check_state_run:
3006                 break; /* we will be called again upon completion */
3007         case check_state_check_result:
3008                 sh->check_state = check_state_idle;
3009
3010                 /* if a failure occurred during the check operation, leave
3011                  * STRIPE_INSYNC not set and let the stripe be handled again
3012                  */
3013                 if (s->failed)
3014                         break;
3015
3016                 /* handle a successful check operation, if parity is correct
3017                  * we are done.  Otherwise update the mismatch count and repair
3018                  * parity if !MD_RECOVERY_CHECK
3019                  */
3020                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3021                         /* parity is correct (on disc,
3022                          * not in buffer any more)
3023                          */
3024                         set_bit(STRIPE_INSYNC, &sh->state);
3025                 else {
3026                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3027                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3028                                 /* don't try to repair!! */
3029                                 set_bit(STRIPE_INSYNC, &sh->state);
3030                         else {
3031                                 sh->check_state = check_state_compute_run;
3032                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3033                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3034                                 set_bit(R5_Wantcompute,
3035                                         &sh->dev[sh->pd_idx].flags);
3036                                 sh->ops.target = sh->pd_idx;
3037                                 sh->ops.target2 = -1;
3038                                 s->uptodate++;
3039                         }
3040                 }
3041                 break;
3042         case check_state_compute_run:
3043                 break;
3044         default:
3045                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3046                        __func__, sh->check_state,
3047                        (unsigned long long) sh->sector);
3048                 BUG();
3049         }
3050 }
3051
3052
3053 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3054                                   struct stripe_head_state *s,
3055                                   int disks)
3056 {
3057         int pd_idx = sh->pd_idx;
3058         int qd_idx = sh->qd_idx;
3059         struct r5dev *dev;
3060
3061         set_bit(STRIPE_HANDLE, &sh->state);
3062
3063         BUG_ON(s->failed > 2);
3064
3065         /* Want to check and possibly repair P and Q.
3066          * However there could be one 'failed' device, in which
3067          * case we can only check one of them, possibly using the
3068          * other to generate missing data
3069          */
3070
3071         switch (sh->check_state) {
3072         case check_state_idle:
3073                 /* start a new check operation if there are < 2 failures */
3074                 if (s->failed == s->q_failed) {
3075                         /* The only possible failed device holds Q, so it
3076                          * makes sense to check P (If anything else were failed,
3077                          * we would have used P to recreate it).
3078                          */
3079                         sh->check_state = check_state_run;
3080                 }
3081                 if (!s->q_failed && s->failed < 2) {
3082                         /* Q is not failed, and we didn't use it to generate
3083                          * anything, so it makes sense to check it
3084                          */
3085                         if (sh->check_state == check_state_run)
3086                                 sh->check_state = check_state_run_pq;
3087                         else
3088                                 sh->check_state = check_state_run_q;
3089                 }
3090
3091                 /* discard potentially stale zero_sum_result */
3092                 sh->ops.zero_sum_result = 0;
3093
3094                 if (sh->check_state == check_state_run) {
3095                         /* async_xor_zero_sum destroys the contents of P */
3096                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3097                         s->uptodate--;
3098                 }
3099                 if (sh->check_state >= check_state_run &&
3100                     sh->check_state <= check_state_run_pq) {
3101                         /* async_syndrome_zero_sum preserves P and Q, so
3102                          * no need to mark them !uptodate here
3103                          */
3104                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3105                         break;
3106                 }
3107
3108                 /* we have 2-disk failure */
3109                 BUG_ON(s->failed != 2);
3110                 /* fall through */
3111         case check_state_compute_result:
3112                 sh->check_state = check_state_idle;
3113
3114                 /* check that a write has not made the stripe insync */
3115                 if (test_bit(STRIPE_INSYNC, &sh->state))
3116                         break;
3117
3118                 /* now write out any block on a failed drive,
3119                  * or P or Q if they were recomputed
3120                  */
3121                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3122                 if (s->failed == 2) {
3123                         dev = &sh->dev[s->failed_num[1]];
3124                         s->locked++;
3125                         set_bit(R5_LOCKED, &dev->flags);
3126                         set_bit(R5_Wantwrite, &dev->flags);
3127                 }
3128                 if (s->failed >= 1) {
3129                         dev = &sh->dev[s->failed_num[0]];
3130                         s->locked++;
3131                         set_bit(R5_LOCKED, &dev->flags);
3132                         set_bit(R5_Wantwrite, &dev->flags);
3133                 }
3134                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3135                         dev = &sh->dev[pd_idx];
3136                         s->locked++;
3137                         set_bit(R5_LOCKED, &dev->flags);
3138                         set_bit(R5_Wantwrite, &dev->flags);
3139                 }
3140                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3141                         dev = &sh->dev[qd_idx];
3142                         s->locked++;
3143                         set_bit(R5_LOCKED, &dev->flags);
3144                         set_bit(R5_Wantwrite, &dev->flags);
3145                 }
3146                 clear_bit(STRIPE_DEGRADED, &sh->state);
3147
3148                 set_bit(STRIPE_INSYNC, &sh->state);
3149                 break;
3150         case check_state_run:
3151         case check_state_run_q:
3152         case check_state_run_pq:
3153                 break; /* we will be called again upon completion */
3154         case check_state_check_result:
3155                 sh->check_state = check_state_idle;
3156
3157                 /* handle a successful check operation, if parity is correct
3158                  * we are done.  Otherwise update the mismatch count and repair
3159                  * parity if !MD_RECOVERY_CHECK
3160                  */
3161                 if (sh->ops.zero_sum_result == 0) {
3162                         /* both parities are correct */
3163                         if (!s->failed)
3164                                 set_bit(STRIPE_INSYNC, &sh->state);
3165                         else {
3166                                 /* in contrast to the raid5 case we can validate
3167                                  * parity, but still have a failure to write
3168                                  * back
3169                                  */
3170                                 sh->check_state = check_state_compute_result;
3171                                 /* Returning at this point means that we may go
3172                                  * off and bring p and/or q uptodate again so
3173                                  * we make sure to check zero_sum_result again
3174                                  * to verify if p or q need writeback
3175                                  */
3176                         }
3177                 } else {
3178                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3179                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3180                                 /* don't try to repair!! */
3181                                 set_bit(STRIPE_INSYNC, &sh->state);
3182                         else {
3183                                 int *target = &sh->ops.target;
3184
3185                                 sh->ops.target = -1;
3186                                 sh->ops.target2 = -1;
3187                                 sh->check_state = check_state_compute_run;
3188                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3189                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3190                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3191                                         set_bit(R5_Wantcompute,
3192                                                 &sh->dev[pd_idx].flags);
3193                                         *target = pd_idx;
3194                                         target = &sh->ops.target2;
3195                                         s->uptodate++;
3196                                 }
3197                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3198                                         set_bit(R5_Wantcompute,
3199                                                 &sh->dev[qd_idx].flags);
3200                                         *target = qd_idx;
3201                                         s->uptodate++;
3202                                 }
3203                         }
3204                 }
3205                 break;
3206         case check_state_compute_run:
3207                 break;
3208         default:
3209                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3210                        __func__, sh->check_state,
3211                        (unsigned long long) sh->sector);
3212                 BUG();
3213         }
3214 }
3215
3216 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3217 {
3218         int i;
3219
3220         /* We have read all the blocks in this stripe and now we need to
3221          * copy some of them into a target stripe for expand.
3222          */
3223         struct dma_async_tx_descriptor *tx = NULL;
3224         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3225         for (i = 0; i < sh->disks; i++)
3226                 if (i != sh->pd_idx && i != sh->qd_idx) {
3227                         int dd_idx, j;
3228                         struct stripe_head *sh2;
3229                         struct async_submit_ctl submit;
3230
3231                         sector_t bn = compute_blocknr(sh, i, 1);
3232                         sector_t s = raid5_compute_sector(conf, bn, 0,
3233                                                           &dd_idx, NULL);
3234                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3235                         if (sh2 == NULL)
3236                                 /* so far only the early blocks of this stripe
3237                                  * have been requested.  When later blocks
3238                                  * get requested, we will try again
3239                                  */
3240                                 continue;
3241                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3242                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3243                                 /* must have already done this block */
3244                                 release_stripe(sh2);
3245                                 continue;
3246                         }
3247
3248                         /* place all the copies on one channel */
3249                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3250                         tx = async_memcpy(sh2->dev[dd_idx].page,
3251                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3252                                           &submit);
3253
3254                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3255                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3256                         for (j = 0; j < conf->raid_disks; j++)
3257                                 if (j != sh2->pd_idx &&
3258                                     j != sh2->qd_idx &&
3259                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3260                                         break;
3261                         if (j == conf->raid_disks) {
3262                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3263                                 set_bit(STRIPE_HANDLE, &sh2->state);
3264                         }
3265                         release_stripe(sh2);
3266
3267                 }
3268         /* done submitting copies, wait for them to complete */
3269         async_tx_quiesce(&tx);
3270 }
3271
3272 /*
3273  * handle_stripe - do things to a stripe.
3274  *
3275  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3276  * state of various bits to see what needs to be done.
3277  * Possible results:
3278  *    return some read requests which now have data
3279  *    return some write requests which are safely on storage
3280  *    schedule a read on some buffers
3281  *    schedule a write of some buffers
3282  *    return confirmation of parity correctness
3283  *
3284  */
3285
3286 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3287 {
3288         struct r5conf *conf = sh->raid_conf;
3289         int disks = sh->disks;
3290         struct r5dev *dev;
3291         int i;
3292         int do_recovery = 0;
3293
3294         memset(s, 0, sizeof(*s));
3295
3296         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3297         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3298         s->failed_num[0] = -1;
3299         s->failed_num[1] = -1;
3300
3301         /* Now to look around and see what can be done */
3302         rcu_read_lock();
3303         for (i=disks; i--; ) {
3304                 struct md_rdev *rdev;
3305                 sector_t first_bad;
3306                 int bad_sectors;
3307                 int is_bad = 0;
3308
3309                 dev = &sh->dev[i];
3310
3311                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3312                          i, dev->flags,
3313                          dev->toread, dev->towrite, dev->written);
3314                 /* maybe we can reply to a read
3315                  *
3316                  * new wantfill requests are only permitted while
3317                  * ops_complete_biofill is guaranteed to be inactive
3318                  */
3319                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3320                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3321                         set_bit(R5_Wantfill, &dev->flags);
3322
3323                 /* now count some things */
3324                 if (test_bit(R5_LOCKED, &dev->flags))
3325                         s->locked++;
3326                 if (test_bit(R5_UPTODATE, &dev->flags))
3327                         s->uptodate++;
3328                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3329                         s->compute++;
3330                         BUG_ON(s->compute > 2);
3331                 }
3332
3333                 if (test_bit(R5_Wantfill, &dev->flags))
3334                         s->to_fill++;
3335                 else if (dev->toread)
3336                         s->to_read++;
3337                 if (dev->towrite) {
3338                         s->to_write++;
3339                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3340                                 s->non_overwrite++;
3341                 }
3342                 if (dev->written)
3343                         s->written++;
3344                 /* Prefer to use the replacement for reads, but only
3345                  * if it is recovered enough and has no bad blocks.
3346                  */
3347                 rdev = rcu_dereference(conf->disks[i].replacement);
3348                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3349                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3350                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3351                                  &first_bad, &bad_sectors))
3352                         set_bit(R5_ReadRepl, &dev->flags);
3353                 else {
3354                         if (rdev)
3355                                 set_bit(R5_NeedReplace, &dev->flags);
3356                         rdev = rcu_dereference(conf->disks[i].rdev);
3357                         clear_bit(R5_ReadRepl, &dev->flags);
3358                 }
3359                 if (rdev && test_bit(Faulty, &rdev->flags))
3360                         rdev = NULL;
3361                 if (rdev) {
3362                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3363                                              &first_bad, &bad_sectors);
3364                         if (s->blocked_rdev == NULL
3365                             && (test_bit(Blocked, &rdev->flags)
3366                                 || is_bad < 0)) {
3367                                 if (is_bad < 0)
3368                                         set_bit(BlockedBadBlocks,
3369                                                 &rdev->flags);
3370                                 s->blocked_rdev = rdev;
3371                                 atomic_inc(&rdev->nr_pending);
3372                         }
3373                 }
3374                 clear_bit(R5_Insync, &dev->flags);
3375                 if (!rdev)
3376                         /* Not in-sync */;
3377                 else if (is_bad) {
3378                         /* also not in-sync */
3379                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3380                             test_bit(R5_UPTODATE, &dev->flags)) {
3381                                 /* treat as in-sync, but with a read error
3382                                  * which we can now try to correct
3383                                  */
3384                                 set_bit(R5_Insync, &dev->flags);
3385                                 set_bit(R5_ReadError, &dev->flags);
3386                         }
3387                 } else if (test_bit(In_sync, &rdev->flags))
3388                         set_bit(R5_Insync, &dev->flags);
3389                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3390                         /* in sync if before recovery_offset */
3391                         set_bit(R5_Insync, &dev->flags);
3392                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3393                          test_bit(R5_Expanded, &dev->flags))
3394                         /* If we've reshaped into here, we assume it is Insync.
3395                          * We will shortly update recovery_offset to make
3396                          * it official.
3397                          */
3398                         set_bit(R5_Insync, &dev->flags);
3399
3400                 if (test_bit(R5_WriteError, &dev->flags)) {
3401                         /* This flag does not apply to '.replacement'
3402                          * only to .rdev, so make sure to check that*/
3403                         struct md_rdev *rdev2 = rcu_dereference(
3404                                 conf->disks[i].rdev);
3405                         if (rdev2 == rdev)
3406                                 clear_bit(R5_Insync, &dev->flags);
3407                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3408                                 s->handle_bad_blocks = 1;
3409                                 atomic_inc(&rdev2->nr_pending);
3410                         } else
3411                                 clear_bit(R5_WriteError, &dev->flags);
3412                 }
3413                 if (test_bit(R5_MadeGood, &dev->flags)) {
3414                         /* This flag does not apply to '.replacement'
3415                          * only to .rdev, so make sure to check that*/
3416                         struct md_rdev *rdev2 = rcu_dereference(
3417                                 conf->disks[i].rdev);
3418                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3419                                 s->handle_bad_blocks = 1;
3420                                 atomic_inc(&rdev2->nr_pending);
3421                         } else
3422                                 clear_bit(R5_MadeGood, &dev->flags);
3423                 }
3424                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3425                         struct md_rdev *rdev2 = rcu_dereference(
3426                                 conf->disks[i].replacement);
3427                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3428                                 s->handle_bad_blocks = 1;
3429                                 atomic_inc(&rdev2->nr_pending);
3430                         } else
3431                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3432                 }
3433                 if (!test_bit(R5_Insync, &dev->flags)) {
3434                         /* The ReadError flag will just be confusing now */
3435                         clear_bit(R5_ReadError, &dev->flags);
3436                         clear_bit(R5_ReWrite, &dev->flags);
3437                 }
3438                 if (test_bit(R5_ReadError, &dev->flags))
3439                         clear_bit(R5_Insync, &dev->flags);
3440                 if (!test_bit(R5_Insync, &dev->flags)) {
3441                         if (s->failed < 2)
3442                                 s->failed_num[s->failed] = i;
3443                         s->failed++;
3444                         if (rdev && !test_bit(Faulty, &rdev->flags))
3445                                 do_recovery = 1;
3446                 }
3447         }
3448         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3449                 /* If there is a failed device being replaced,
3450                  *     we must be recovering.
3451                  * else if we are after recovery_cp, we must be syncing
3452                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3453                  * else we can only be replacing
3454                  * sync and recovery both need to read all devices, and so
3455                  * use the same flag.
3456                  */
3457                 if (do_recovery ||
3458                     sh->sector >= conf->mddev->recovery_cp ||
3459                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3460                         s->syncing = 1;
3461                 else
3462                         s->replacing = 1;
3463         }
3464         rcu_read_unlock();
3465 }
3466
3467 static void handle_stripe(struct stripe_head *sh)
3468 {
3469         struct stripe_head_state s;
3470         struct r5conf *conf = sh->raid_conf;
3471         int i;
3472         int prexor;
3473         int disks = sh->disks;
3474         struct r5dev *pdev, *qdev;
3475
3476         clear_bit(STRIPE_HANDLE, &sh->state);
3477         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3478                 /* already being handled, ensure it gets handled
3479                  * again when current action finishes */
3480                 set_bit(STRIPE_HANDLE, &sh->state);
3481                 return;
3482         }
3483
3484         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3485                 spin_lock(&sh->stripe_lock);
3486                 /* Cannot process 'sync' concurrently with 'discard' */
3487                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3488                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3489                         set_bit(STRIPE_SYNCING, &sh->state);
3490                         clear_bit(STRIPE_INSYNC, &sh->state);
3491                         clear_bit(STRIPE_REPLACED, &sh->state);
3492                 }
3493                 spin_unlock(&sh->stripe_lock);
3494         }
3495         clear_bit(STRIPE_DELAYED, &sh->state);
3496
3497         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3498                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3499                (unsigned long long)sh->sector, sh->state,
3500                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3501                sh->check_state, sh->reconstruct_state);
3502
3503         analyse_stripe(sh, &s);
3504
3505         if (s.handle_bad_blocks) {
3506                 set_bit(STRIPE_HANDLE, &sh->state);
3507                 goto finish;
3508         }
3509
3510         if (unlikely(s.blocked_rdev)) {
3511                 if (s.syncing || s.expanding || s.expanded ||
3512                     s.replacing || s.to_write || s.written) {
3513                         set_bit(STRIPE_HANDLE, &sh->state);
3514                         goto finish;
3515                 }
3516                 /* There is nothing for the blocked_rdev to block */
3517                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3518                 s.blocked_rdev = NULL;
3519         }
3520
3521         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3522                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3523                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3524         }
3525
3526         pr_debug("locked=%d uptodate=%d to_read=%d"
3527                " to_write=%d failed=%d failed_num=%d,%d\n",
3528                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3529                s.failed_num[0], s.failed_num[1]);
3530         /* check if the array has lost more than max_degraded devices and,
3531          * if so, some requests might need to be failed.
3532          */
3533         if (s.failed > conf->max_degraded) {
3534                 sh->check_state = 0;
3535                 sh->reconstruct_state = 0;
3536                 if (s.to_read+s.to_write+s.written)
3537                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3538                 if (s.syncing + s.replacing)
3539                         handle_failed_sync(conf, sh, &s);
3540         }
3541
3542         /* Now we check to see if any write operations have recently
3543          * completed
3544          */
3545         prexor = 0;
3546         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3547                 prexor = 1;
3548         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3549             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3550                 sh->reconstruct_state = reconstruct_state_idle;
3551
3552                 /* All the 'written' buffers and the parity block are ready to
3553                  * be written back to disk
3554                  */
3555                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3556                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3557                 BUG_ON(sh->qd_idx >= 0 &&
3558                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3559                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3560                 for (i = disks; i--; ) {
3561                         struct r5dev *dev = &sh->dev[i];
3562                         if (test_bit(R5_LOCKED, &dev->flags) &&
3563                                 (i == sh->pd_idx || i == sh->qd_idx ||
3564                                  dev->written)) {
3565                                 pr_debug("Writing block %d\n", i);
3566                                 set_bit(R5_Wantwrite, &dev->flags);
3567                                 if (prexor)
3568                                         continue;
3569                                 if (s.failed > 1)
3570                                         continue;
3571                                 if (!test_bit(R5_Insync, &dev->flags) ||
3572                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3573                                      s.failed == 0))
3574                                         set_bit(STRIPE_INSYNC, &sh->state);
3575                         }
3576                 }
3577                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3578                         s.dec_preread_active = 1;
3579         }
3580
3581         /*
3582          * might be able to return some write requests if the parity blocks
3583          * are safe, or on a failed drive
3584          */
3585         pdev = &sh->dev[sh->pd_idx];
3586         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3587                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3588         qdev = &sh->dev[sh->qd_idx];
3589         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3590                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3591                 || conf->level < 6;
3592
3593         if (s.written &&
3594             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3595                              && !test_bit(R5_LOCKED, &pdev->flags)
3596                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3597                                  test_bit(R5_Discard, &pdev->flags))))) &&
3598             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3599                              && !test_bit(R5_LOCKED, &qdev->flags)
3600                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3601                                  test_bit(R5_Discard, &qdev->flags))))))
3602                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3603
3604         /* Now we might consider reading some blocks, either to check/generate
3605          * parity, or to satisfy requests
3606          * or to load a block that is being partially written.
3607          */
3608         if (s.to_read || s.non_overwrite
3609             || (conf->level == 6 && s.to_write && s.failed)
3610             || (s.syncing && (s.uptodate + s.compute < disks))
3611             || s.replacing
3612             || s.expanding)
3613                 handle_stripe_fill(sh, &s, disks);
3614
3615         /* Now to consider new write requests and what else, if anything
3616          * should be read.  We do not handle new writes when:
3617          * 1/ A 'write' operation (copy+xor) is already in flight.
3618          * 2/ A 'check' operation is in flight, as it may clobber the parity
3619          *    block.
3620          */
3621         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3622                 handle_stripe_dirtying(conf, sh, &s, disks);
3623
3624         /* maybe we need to check and possibly fix the parity for this stripe
3625          * Any reads will already have been scheduled, so we just see if enough
3626          * data is available.  The parity check is held off while parity
3627          * dependent operations are in flight.
3628          */
3629         if (sh->check_state ||
3630             (s.syncing && s.locked == 0 &&
3631              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3632              !test_bit(STRIPE_INSYNC, &sh->state))) {
3633                 if (conf->level == 6)
3634                         handle_parity_checks6(conf, sh, &s, disks);
3635                 else
3636                         handle_parity_checks5(conf, sh, &s, disks);
3637         }
3638
3639         if ((s.replacing || s.syncing) && s.locked == 0
3640             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3641             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3642                 /* Write out to replacement devices where possible */
3643                 for (i = 0; i < conf->raid_disks; i++)
3644                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3645                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3646                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3647                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3648                                 s.locked++;
3649                         }
3650                 if (s.replacing)
3651                         set_bit(STRIPE_INSYNC, &sh->state);
3652                 set_bit(STRIPE_REPLACED, &sh->state);
3653         }
3654         if ((s.syncing || s.replacing) && s.locked == 0 &&
3655             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3656             test_bit(STRIPE_INSYNC, &sh->state)) {
3657                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3658                 clear_bit(STRIPE_SYNCING, &sh->state);
3659                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3660                         wake_up(&conf->wait_for_overlap);
3661         }
3662
3663         /* If the failed drives are just a ReadError, then we might need
3664          * to progress the repair/check process
3665          */
3666         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3667                 for (i = 0; i < s.failed; i++) {
3668                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3669                         if (test_bit(R5_ReadError, &dev->flags)
3670                             && !test_bit(R5_LOCKED, &dev->flags)
3671                             && test_bit(R5_UPTODATE, &dev->flags)
3672                                 ) {
3673                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3674                                         set_bit(R5_Wantwrite, &dev->flags);
3675                                         set_bit(R5_ReWrite, &dev->flags);
3676                                         set_bit(R5_LOCKED, &dev->flags);
3677                                         s.locked++;
3678                                 } else {
3679                                         /* let's read it back */
3680                                         set_bit(R5_Wantread, &dev->flags);
3681                                         set_bit(R5_LOCKED, &dev->flags);
3682                                         s.locked++;
3683                                 }
3684                         }
3685                 }
3686
3687
3688         /* Finish reconstruct operations initiated by the expansion process */
3689         if (sh->reconstruct_state == reconstruct_state_result) {
3690                 struct stripe_head *sh_src
3691                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3692                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3693                         /* sh cannot be written until sh_src has been read.
3694                          * so arrange for sh to be delayed a little
3695                          */
3696                         set_bit(STRIPE_DELAYED, &sh->state);
3697                         set_bit(STRIPE_HANDLE, &sh->state);
3698                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3699                                               &sh_src->state))
3700                                 atomic_inc(&conf->preread_active_stripes);
3701                         release_stripe(sh_src);
3702                         goto finish;
3703                 }
3704                 if (sh_src)
3705                         release_stripe(sh_src);
3706
3707                 sh->reconstruct_state = reconstruct_state_idle;
3708                 clear_bit(STRIPE_EXPANDING, &sh->state);
3709                 for (i = conf->raid_disks; i--; ) {
3710                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3711                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3712                         s.locked++;
3713                 }
3714         }
3715
3716         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3717             !sh->reconstruct_state) {
3718                 /* Need to write out all blocks after computing parity */
3719                 sh->disks = conf->raid_disks;
3720                 stripe_set_idx(sh->sector, conf, 0, sh);
3721                 schedule_reconstruction(sh, &s, 1, 1);
3722         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3723                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3724                 atomic_dec(&conf->reshape_stripes);
3725                 wake_up(&conf->wait_for_overlap);
3726                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3727         }
3728
3729         if (s.expanding && s.locked == 0 &&
3730             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3731                 handle_stripe_expansion(conf, sh);
3732
3733 finish:
3734         /* wait for this device to become unblocked */
3735         if (unlikely(s.blocked_rdev)) {
3736                 if (conf->mddev->external)
3737                         md_wait_for_blocked_rdev(s.blocked_rdev,
3738                                                  conf->mddev);
3739                 else
3740                         /* Internal metadata will immediately
3741                          * be written by raid5d, so we don't
3742                          * need to wait here.
3743                          */
3744                         rdev_dec_pending(s.blocked_rdev,
3745                                          conf->mddev);
3746         }
3747
3748         if (s.handle_bad_blocks)
3749                 for (i = disks; i--; ) {
3750                         struct md_rdev *rdev;
3751                         struct r5dev *dev = &sh->dev[i];
3752                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3753                                 /* We own a safe reference to the rdev */
3754                                 rdev = conf->disks[i].rdev;
3755                                 if (!rdev_set_badblocks(rdev, sh->sector,
3756                                                         STRIPE_SECTORS, 0))
3757                                         md_error(conf->mddev, rdev);
3758                                 rdev_dec_pending(rdev, conf->mddev);
3759                         }
3760                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3761                                 rdev = conf->disks[i].rdev;
3762                                 rdev_clear_badblocks(rdev, sh->sector,
3763                                                      STRIPE_SECTORS, 0);
3764                                 rdev_dec_pending(rdev, conf->mddev);
3765                         }
3766                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3767                                 rdev = conf->disks[i].replacement;
3768                                 if (!rdev)
3769                                         /* rdev have been moved down */
3770                                         rdev = conf->disks[i].rdev;
3771                                 rdev_clear_badblocks(rdev, sh->sector,
3772                                                      STRIPE_SECTORS, 0);
3773                                 rdev_dec_pending(rdev, conf->mddev);
3774                         }
3775                 }
3776
3777         if (s.ops_request)
3778                 raid_run_ops(sh, s.ops_request);
3779
3780         ops_run_io(sh, &s);
3781
3782         if (s.dec_preread_active) {
3783                 /* We delay this until after ops_run_io so that if make_request
3784                  * is waiting on a flush, it won't continue until the writes
3785                  * have actually been submitted.
3786                  */
3787                 atomic_dec(&conf->preread_active_stripes);
3788                 if (atomic_read(&conf->preread_active_stripes) <
3789                     IO_THRESHOLD)
3790                         md_wakeup_thread(conf->mddev->thread);
3791         }
3792
3793         return_io(s.return_bi);
3794
3795         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3796 }
3797
3798 static void raid5_activate_delayed(struct r5conf *conf)
3799 {
3800         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3801                 while (!list_empty(&conf->delayed_list)) {
3802                         struct list_head *l = conf->delayed_list.next;
3803                         struct stripe_head *sh;
3804                         sh = list_entry(l, struct stripe_head, lru);
3805                         list_del_init(l);
3806                         clear_bit(STRIPE_DELAYED, &sh->state);
3807                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3808                                 atomic_inc(&conf->preread_active_stripes);
3809                         list_add_tail(&sh->lru, &conf->hold_list);
3810                 }
3811         }
3812 }
3813
3814 static void activate_bit_delay(struct r5conf *conf)
3815 {
3816         /* device_lock is held */
3817         struct list_head head;
3818         list_add(&head, &conf->bitmap_list);
3819         list_del_init(&conf->bitmap_list);
3820         while (!list_empty(&head)) {
3821                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3822                 list_del_init(&sh->lru);
3823                 atomic_inc(&sh->count);
3824                 __release_stripe(conf, sh);
3825         }
3826 }
3827
3828 int md_raid5_congested(struct mddev *mddev, int bits)
3829 {
3830         struct r5conf *conf = mddev->private;
3831
3832         /* No difference between reads and writes.  Just check
3833          * how busy the stripe_cache is
3834          */
3835
3836         if (conf->inactive_blocked)
3837                 return 1;
3838         if (conf->quiesce)
3839                 return 1;
3840         if (list_empty_careful(&conf->inactive_list))
3841                 return 1;
3842
3843         return 0;
3844 }
3845 EXPORT_SYMBOL_GPL(md_raid5_congested);
3846
3847 static int raid5_congested(void *data, int bits)
3848 {
3849         struct mddev *mddev = data;
3850
3851         return mddev_congested(mddev, bits) ||
3852                 md_raid5_congested(mddev, bits);
3853 }
3854
3855 /* We want read requests to align with chunks where possible,
3856  * but write requests don't need to.
3857  */
3858 static int raid5_mergeable_bvec(struct request_queue *q,
3859                                 struct bvec_merge_data *bvm,
3860                                 struct bio_vec *biovec)
3861 {
3862         struct mddev *mddev = q->queuedata;
3863         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3864         int max;
3865         unsigned int chunk_sectors = mddev->chunk_sectors;
3866         unsigned int bio_sectors = bvm->bi_size >> 9;
3867
3868         if ((bvm->bi_rw & 1) == WRITE)
3869                 return biovec->bv_len; /* always allow writes to be mergeable */
3870
3871         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3872                 chunk_sectors = mddev->new_chunk_sectors;
3873         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3874         if (max < 0) max = 0;
3875         if (max <= biovec->bv_len && bio_sectors == 0)
3876                 return biovec->bv_len;
3877         else
3878                 return max;
3879 }
3880
3881
3882 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3883 {
3884         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3885         unsigned int chunk_sectors = mddev->chunk_sectors;
3886         unsigned int bio_sectors = bio_sectors(bio);
3887
3888         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3889                 chunk_sectors = mddev->new_chunk_sectors;
3890         return  chunk_sectors >=
3891                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3892 }
3893
3894 /*
3895  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3896  *  later sampled by raid5d.
3897  */
3898 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3899 {
3900         unsigned long flags;
3901
3902         spin_lock_irqsave(&conf->device_lock, flags);
3903
3904         bi->bi_next = conf->retry_read_aligned_list;
3905         conf->retry_read_aligned_list = bi;
3906
3907         spin_unlock_irqrestore(&conf->device_lock, flags);
3908         md_wakeup_thread(conf->mddev->thread);
3909 }
3910
3911
3912 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3913 {
3914         struct bio *bi;
3915
3916         bi = conf->retry_read_aligned;
3917         if (bi) {
3918                 conf->retry_read_aligned = NULL;
3919                 return bi;
3920         }
3921         bi = conf->retry_read_aligned_list;
3922         if(bi) {
3923                 conf->retry_read_aligned_list = bi->bi_next;
3924                 bi->bi_next = NULL;
3925                 /*
3926                  * this sets the active strip count to 1 and the processed
3927                  * strip count to zero (upper 8 bits)
3928                  */
3929                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3930         }
3931
3932         return bi;
3933 }
3934
3935
3936 /*
3937  *  The "raid5_align_endio" should check if the read succeeded and if it
3938  *  did, call bio_endio on the original bio (having bio_put the new bio
3939  *  first).
3940  *  If the read failed..
3941  */
3942 static void raid5_align_endio(struct bio *bi, int error)
3943 {
3944         struct bio* raid_bi  = bi->bi_private;
3945         struct mddev *mddev;
3946         struct r5conf *conf;
3947         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3948         struct md_rdev *rdev;
3949
3950         bio_put(bi);
3951
3952         rdev = (void*)raid_bi->bi_next;
3953         raid_bi->bi_next = NULL;
3954         mddev = rdev->mddev;
3955         conf = mddev->private;
3956
3957         rdev_dec_pending(rdev, conf->mddev);
3958
3959         if (!error && uptodate) {
3960                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3961                                          raid_bi, 0);
3962                 bio_endio(raid_bi, 0);
3963                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3964                         wake_up(&conf->wait_for_stripe);
3965                 return;
3966         }
3967
3968
3969         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3970
3971         add_bio_to_retry(raid_bi, conf);
3972 }
3973
3974 static int bio_fits_rdev(struct bio *bi)
3975 {
3976         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3977
3978         if (bio_sectors(bi) > queue_max_sectors(q))
3979                 return 0;
3980         blk_recount_segments(q, bi);
3981         if (bi->bi_phys_segments > queue_max_segments(q))
3982                 return 0;
3983
3984         if (q->merge_bvec_fn)
3985                 /* it's too hard to apply the merge_bvec_fn at this stage,
3986                  * just just give up
3987                  */
3988                 return 0;
3989
3990         return 1;
3991 }
3992
3993
3994 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3995 {
3996         struct r5conf *conf = mddev->private;
3997         int dd_idx;
3998         struct bio* align_bi;
3999         struct md_rdev *rdev;
4000         sector_t end_sector;
4001
4002         if (!in_chunk_boundary(mddev, raid_bio)) {
4003                 pr_debug("chunk_aligned_read : non aligned\n");
4004                 return 0;
4005         }
4006         /*
4007          * use bio_clone_mddev to make a copy of the bio
4008          */
4009         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4010         if (!align_bi)
4011                 return 0;
4012         /*
4013          *   set bi_end_io to a new function, and set bi_private to the
4014          *     original bio.
4015          */
4016         align_bi->bi_end_io  = raid5_align_endio;
4017         align_bi->bi_private = raid_bio;
4018         /*
4019          *      compute position
4020          */
4021         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4022                                                     0,
4023                                                     &dd_idx, NULL);
4024
4025         end_sector = bio_end_sector(align_bi);
4026         rcu_read_lock();
4027         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4028         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4029             rdev->recovery_offset < end_sector) {
4030                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4031                 if (rdev &&
4032                     (test_bit(Faulty, &rdev->flags) ||
4033                     !(test_bit(In_sync, &rdev->flags) ||
4034                       rdev->recovery_offset >= end_sector)))
4035                         rdev = NULL;
4036         }
4037         if (rdev) {
4038                 sector_t first_bad;
4039                 int bad_sectors;
4040
4041                 atomic_inc(&rdev->nr_pending);
4042                 rcu_read_unlock();
4043                 raid_bio->bi_next = (void*)rdev;
4044                 align_bi->bi_bdev =  rdev->bdev;
4045                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4046
4047                 if (!bio_fits_rdev(align_bi) ||
4048                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4049                                 &first_bad, &bad_sectors)) {
4050                         /* too big in some way, or has a known bad block */
4051                         bio_put(align_bi);
4052                         rdev_dec_pending(rdev, mddev);
4053                         return 0;
4054                 }
4055
4056                 /* No reshape active, so we can trust rdev->data_offset */
4057                 align_bi->bi_sector += rdev->data_offset;
4058
4059                 spin_lock_irq(&conf->device_lock);
4060                 wait_event_lock_irq(conf->wait_for_stripe,
4061                                     conf->quiesce == 0,
4062                                     conf->device_lock);
4063                 atomic_inc(&conf->active_aligned_reads);
4064                 spin_unlock_irq(&conf->device_lock);
4065
4066                 if (mddev->gendisk)
4067                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4068                                               align_bi, disk_devt(mddev->gendisk),
4069                                               raid_bio->bi_sector);
4070                 generic_make_request(align_bi);
4071                 return 1;
4072         } else {
4073                 rcu_read_unlock();
4074                 bio_put(align_bi);
4075                 return 0;
4076         }
4077 }
4078
4079 /* __get_priority_stripe - get the next stripe to process
4080  *
4081  * Full stripe writes are allowed to pass preread active stripes up until
4082  * the bypass_threshold is exceeded.  In general the bypass_count
4083  * increments when the handle_list is handled before the hold_list; however, it
4084  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4085  * stripe with in flight i/o.  The bypass_count will be reset when the
4086  * head of the hold_list has changed, i.e. the head was promoted to the
4087  * handle_list.
4088  */
4089 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4090 {
4091         struct stripe_head *sh;
4092
4093         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4094                   __func__,
4095                   list_empty(&conf->handle_list) ? "empty" : "busy",
4096                   list_empty(&conf->hold_list) ? "empty" : "busy",
4097                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4098
4099         if (!list_empty(&conf->handle_list)) {
4100                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4101
4102                 if (list_empty(&conf->hold_list))
4103                         conf->bypass_count = 0;
4104                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4105                         if (conf->hold_list.next == conf->last_hold)
4106                                 conf->bypass_count++;
4107                         else {
4108                                 conf->last_hold = conf->hold_list.next;
4109                                 conf->bypass_count -= conf->bypass_threshold;
4110                                 if (conf->bypass_count < 0)
4111                                         conf->bypass_count = 0;
4112                         }
4113                 }
4114         } else if (!list_empty(&conf->hold_list) &&
4115                    ((conf->bypass_threshold &&
4116                      conf->bypass_count > conf->bypass_threshold) ||
4117                     atomic_read(&conf->pending_full_writes) == 0)) {
4118                 sh = list_entry(conf->hold_list.next,
4119                                 typeof(*sh), lru);
4120                 conf->bypass_count -= conf->bypass_threshold;
4121                 if (conf->bypass_count < 0)
4122                         conf->bypass_count = 0;
4123         } else
4124                 return NULL;
4125
4126         list_del_init(&sh->lru);
4127         atomic_inc(&sh->count);
4128         BUG_ON(atomic_read(&sh->count) != 1);
4129         return sh;
4130 }
4131
4132 struct raid5_plug_cb {
4133         struct blk_plug_cb      cb;
4134         struct list_head        list;
4135 };
4136
4137 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4138 {
4139         struct raid5_plug_cb *cb = container_of(
4140                 blk_cb, struct raid5_plug_cb, cb);
4141         struct stripe_head *sh;
4142         struct mddev *mddev = cb->cb.data;
4143         struct r5conf *conf = mddev->private;
4144         int cnt = 0;
4145
4146         if (cb->list.next && !list_empty(&cb->list)) {
4147                 spin_lock_irq(&conf->device_lock);
4148                 while (!list_empty(&cb->list)) {
4149                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4150                         list_del_init(&sh->lru);
4151                         /*
4152                          * avoid race release_stripe_plug() sees
4153                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4154                          * is still in our list
4155                          */
4156                         smp_mb__before_clear_bit();
4157                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4158                         __release_stripe(conf, sh);
4159                         cnt++;
4160                 }
4161                 spin_unlock_irq(&conf->device_lock);
4162         }
4163         if (mddev->queue)
4164                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4165         kfree(cb);
4166 }
4167
4168 static void release_stripe_plug(struct mddev *mddev,
4169                                 struct stripe_head *sh)
4170 {
4171         struct blk_plug_cb *blk_cb = blk_check_plugged(
4172                 raid5_unplug, mddev,
4173                 sizeof(struct raid5_plug_cb));
4174         struct raid5_plug_cb *cb;
4175
4176         if (!blk_cb) {
4177                 release_stripe(sh);
4178                 return;
4179         }
4180
4181         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4182
4183         if (cb->list.next == NULL)
4184                 INIT_LIST_HEAD(&cb->list);
4185
4186         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4187                 list_add_tail(&sh->lru, &cb->list);
4188         else
4189                 release_stripe(sh);
4190 }
4191
4192 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4193 {
4194         struct r5conf *conf = mddev->private;
4195         sector_t logical_sector, last_sector;
4196         struct stripe_head *sh;
4197         int remaining;
4198         int stripe_sectors;
4199
4200         if (mddev->reshape_position != MaxSector)
4201                 /* Skip discard while reshape is happening */
4202                 return;
4203
4204         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4205         last_sector = bi->bi_sector + (bi->bi_size>>9);
4206
4207         bi->bi_next = NULL;
4208         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4209
4210         stripe_sectors = conf->chunk_sectors *
4211                 (conf->raid_disks - conf->max_degraded);
4212         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4213                                                stripe_sectors);
4214         sector_div(last_sector, stripe_sectors);
4215
4216         logical_sector *= conf->chunk_sectors;
4217         last_sector *= conf->chunk_sectors;
4218
4219         for (; logical_sector < last_sector;
4220              logical_sector += STRIPE_SECTORS) {
4221                 DEFINE_WAIT(w);
4222                 int d;
4223         again:
4224                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4225                 prepare_to_wait(&conf->wait_for_overlap, &w,
4226                                 TASK_UNINTERRUPTIBLE);
4227                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4228                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4229                         release_stripe(sh);
4230                         schedule();
4231                         goto again;
4232                 }
4233                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4234                 spin_lock_irq(&sh->stripe_lock);
4235                 for (d = 0; d < conf->raid_disks; d++) {
4236                         if (d == sh->pd_idx || d == sh->qd_idx)
4237                                 continue;
4238                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4239                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4240                                 spin_unlock_irq(&sh->stripe_lock);
4241                                 release_stripe(sh);
4242                                 schedule();
4243                                 goto again;
4244                         }
4245                 }
4246                 set_bit(STRIPE_DISCARD, &sh->state);
4247                 finish_wait(&conf->wait_for_overlap, &w);
4248                 for (d = 0; d < conf->raid_disks; d++) {
4249                         if (d == sh->pd_idx || d == sh->qd_idx)
4250                                 continue;
4251                         sh->dev[d].towrite = bi;
4252                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4253                         raid5_inc_bi_active_stripes(bi);
4254                 }
4255                 spin_unlock_irq(&sh->stripe_lock);
4256                 if (conf->mddev->bitmap) {
4257                         for (d = 0;
4258                              d < conf->raid_disks - conf->max_degraded;
4259                              d++)
4260                                 bitmap_startwrite(mddev->bitmap,
4261                                                   sh->sector,
4262                                                   STRIPE_SECTORS,
4263                                                   0);
4264                         sh->bm_seq = conf->seq_flush + 1;
4265                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4266                 }
4267
4268                 set_bit(STRIPE_HANDLE, &sh->state);
4269                 clear_bit(STRIPE_DELAYED, &sh->state);
4270                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4271                         atomic_inc(&conf->preread_active_stripes);
4272                 release_stripe_plug(mddev, sh);
4273         }
4274
4275         remaining = raid5_dec_bi_active_stripes(bi);
4276         if (remaining == 0) {
4277                 md_write_end(mddev);
4278                 bio_endio(bi, 0);
4279         }
4280 }
4281
4282 static void make_request(struct mddev *mddev, struct bio * bi)
4283 {
4284         struct r5conf *conf = mddev->private;
4285         int dd_idx;
4286         sector_t new_sector;
4287         sector_t logical_sector, last_sector;
4288         struct stripe_head *sh;
4289         const int rw = bio_data_dir(bi);
4290         int remaining;
4291
4292         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4293                 md_flush_request(mddev, bi);
4294                 return;
4295         }
4296
4297         md_write_start(mddev, bi);
4298
4299         if (rw == READ &&
4300              mddev->reshape_position == MaxSector &&
4301              chunk_aligned_read(mddev,bi))
4302                 return;
4303
4304         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4305                 make_discard_request(mddev, bi);
4306                 return;
4307         }
4308
4309         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4310         last_sector = bio_end_sector(bi);
4311         bi->bi_next = NULL;
4312         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4313
4314         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4315                 DEFINE_WAIT(w);
4316                 int previous;
4317
4318         retry:
4319                 previous = 0;
4320                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4321                 if (unlikely(conf->reshape_progress != MaxSector)) {
4322                         /* spinlock is needed as reshape_progress may be
4323                          * 64bit on a 32bit platform, and so it might be
4324                          * possible to see a half-updated value
4325                          * Of course reshape_progress could change after
4326                          * the lock is dropped, so once we get a reference
4327                          * to the stripe that we think it is, we will have
4328                          * to check again.
4329                          */
4330                         spin_lock_irq(&conf->device_lock);
4331                         if (mddev->reshape_backwards
4332                             ? logical_sector < conf->reshape_progress
4333                             : logical_sector >= conf->reshape_progress) {
4334                                 previous = 1;
4335                         } else {
4336                                 if (mddev->reshape_backwards
4337                                     ? logical_sector < conf->reshape_safe
4338                                     : logical_sector >= conf->reshape_safe) {
4339                                         spin_unlock_irq(&conf->device_lock);
4340                                         schedule();
4341                                         goto retry;
4342                                 }
4343                         }
4344                         spin_unlock_irq(&conf->device_lock);
4345                 }
4346
4347                 new_sector = raid5_compute_sector(conf, logical_sector,
4348                                                   previous,
4349                                                   &dd_idx, NULL);
4350                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4351                         (unsigned long long)new_sector, 
4352                         (unsigned long long)logical_sector);
4353
4354                 sh = get_active_stripe(conf, new_sector, previous,
4355                                        (bi->bi_rw&RWA_MASK), 0);
4356                 if (sh) {
4357                         if (unlikely(previous)) {
4358                                 /* expansion might have moved on while waiting for a
4359                                  * stripe, so we must do the range check again.
4360                                  * Expansion could still move past after this
4361                                  * test, but as we are holding a reference to
4362                                  * 'sh', we know that if that happens,
4363                                  *  STRIPE_EXPANDING will get set and the expansion
4364                                  * won't proceed until we finish with the stripe.
4365                                  */
4366                                 int must_retry = 0;
4367                                 spin_lock_irq(&conf->device_lock);
4368                                 if (mddev->reshape_backwards
4369                                     ? logical_sector >= conf->reshape_progress
4370                                     : logical_sector < conf->reshape_progress)
4371                                         /* mismatch, need to try again */
4372                                         must_retry = 1;
4373                                 spin_unlock_irq(&conf->device_lock);
4374                                 if (must_retry) {
4375                                         release_stripe(sh);
4376                                         schedule();
4377                                         goto retry;
4378                                 }
4379                         }
4380
4381                         if (rw == WRITE &&
4382                             logical_sector >= mddev->suspend_lo &&
4383                             logical_sector < mddev->suspend_hi) {
4384                                 release_stripe(sh);
4385                                 /* As the suspend_* range is controlled by
4386                                  * userspace, we want an interruptible
4387                                  * wait.
4388                                  */
4389                                 flush_signals(current);
4390                                 prepare_to_wait(&conf->wait_for_overlap,
4391                                                 &w, TASK_INTERRUPTIBLE);
4392                                 if (logical_sector >= mddev->suspend_lo &&
4393                                     logical_sector < mddev->suspend_hi)
4394                                         schedule();
4395                                 goto retry;
4396                         }
4397
4398                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4399                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4400                                 /* Stripe is busy expanding or
4401                                  * add failed due to overlap.  Flush everything
4402                                  * and wait a while
4403                                  */
4404                                 md_wakeup_thread(mddev->thread);
4405                                 release_stripe(sh);
4406                                 schedule();
4407                                 goto retry;
4408                         }
4409                         finish_wait(&conf->wait_for_overlap, &w);
4410                         set_bit(STRIPE_HANDLE, &sh->state);
4411                         clear_bit(STRIPE_DELAYED, &sh->state);
4412                         if ((bi->bi_rw & REQ_SYNC) &&
4413                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4414                                 atomic_inc(&conf->preread_active_stripes);
4415                         release_stripe_plug(mddev, sh);
4416                 } else {
4417                         /* cannot get stripe for read-ahead, just give-up */
4418                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4419                         finish_wait(&conf->wait_for_overlap, &w);
4420                         break;
4421                 }
4422         }
4423
4424         remaining = raid5_dec_bi_active_stripes(bi);
4425         if (remaining == 0) {
4426
4427                 if ( rw == WRITE )
4428                         md_write_end(mddev);
4429
4430                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4431                                          bi, 0);
4432                 bio_endio(bi, 0);
4433         }
4434 }
4435
4436 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4437
4438 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4439 {
4440         /* reshaping is quite different to recovery/resync so it is
4441          * handled quite separately ... here.
4442          *
4443          * On each call to sync_request, we gather one chunk worth of
4444          * destination stripes and flag them as expanding.
4445          * Then we find all the source stripes and request reads.
4446          * As the reads complete, handle_stripe will copy the data
4447          * into the destination stripe and release that stripe.
4448          */
4449         struct r5conf *conf = mddev->private;
4450         struct stripe_head *sh;
4451         sector_t first_sector, last_sector;
4452         int raid_disks = conf->previous_raid_disks;
4453         int data_disks = raid_disks - conf->max_degraded;
4454         int new_data_disks = conf->raid_disks - conf->max_degraded;
4455         int i;
4456         int dd_idx;
4457         sector_t writepos, readpos, safepos;
4458         sector_t stripe_addr;
4459         int reshape_sectors;
4460         struct list_head stripes;
4461
4462         if (sector_nr == 0) {
4463                 /* If restarting in the middle, skip the initial sectors */
4464                 if (mddev->reshape_backwards &&
4465                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4466                         sector_nr = raid5_size(mddev, 0, 0)
4467                                 - conf->reshape_progress;
4468                 } else if (!mddev->reshape_backwards &&
4469                            conf->reshape_progress > 0)
4470                         sector_nr = conf->reshape_progress;
4471                 sector_div(sector_nr, new_data_disks);
4472                 if (sector_nr) {
4473                         mddev->curr_resync_completed = sector_nr;
4474                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4475                         *skipped = 1;
4476                         return sector_nr;
4477                 }
4478         }
4479
4480         /* We need to process a full chunk at a time.
4481          * If old and new chunk sizes differ, we need to process the
4482          * largest of these
4483          */
4484         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4485                 reshape_sectors = mddev->new_chunk_sectors;
4486         else
4487                 reshape_sectors = mddev->chunk_sectors;
4488
4489         /* We update the metadata at least every 10 seconds, or when
4490          * the data about to be copied would over-write the source of
4491          * the data at the front of the range.  i.e. one new_stripe
4492          * along from reshape_progress new_maps to after where
4493          * reshape_safe old_maps to
4494          */
4495         writepos = conf->reshape_progress;
4496         sector_div(writepos, new_data_disks);
4497         readpos = conf->reshape_progress;
4498         sector_div(readpos, data_disks);
4499         safepos = conf->reshape_safe;
4500         sector_div(safepos, data_disks);
4501         if (mddev->reshape_backwards) {
4502                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4503                 readpos += reshape_sectors;
4504                 safepos += reshape_sectors;
4505         } else {
4506                 writepos += reshape_sectors;
4507                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4508                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4509         }
4510
4511         /* Having calculated the 'writepos' possibly use it
4512          * to set 'stripe_addr' which is where we will write to.
4513          */
4514         if (mddev->reshape_backwards) {
4515                 BUG_ON(conf->reshape_progress == 0);
4516                 stripe_addr = writepos;
4517                 BUG_ON((mddev->dev_sectors &
4518                         ~((sector_t)reshape_sectors - 1))
4519                        - reshape_sectors - stripe_addr
4520                        != sector_nr);
4521         } else {
4522                 BUG_ON(writepos != sector_nr + reshape_sectors);
4523                 stripe_addr = sector_nr;
4524         }
4525
4526         /* 'writepos' is the most advanced device address we might write.
4527          * 'readpos' is the least advanced device address we might read.
4528          * 'safepos' is the least address recorded in the metadata as having
4529          *     been reshaped.
4530          * If there is a min_offset_diff, these are adjusted either by
4531          * increasing the safepos/readpos if diff is negative, or
4532          * increasing writepos if diff is positive.
4533          * If 'readpos' is then behind 'writepos', there is no way that we can
4534          * ensure safety in the face of a crash - that must be done by userspace
4535          * making a backup of the data.  So in that case there is no particular
4536          * rush to update metadata.
4537          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4538          * update the metadata to advance 'safepos' to match 'readpos' so that
4539          * we can be safe in the event of a crash.
4540          * So we insist on updating metadata if safepos is behind writepos and
4541          * readpos is beyond writepos.
4542          * In any case, update the metadata every 10 seconds.
4543          * Maybe that number should be configurable, but I'm not sure it is
4544          * worth it.... maybe it could be a multiple of safemode_delay???
4545          */
4546         if (conf->min_offset_diff < 0) {
4547                 safepos += -conf->min_offset_diff;
4548                 readpos += -conf->min_offset_diff;
4549         } else
4550                 writepos += conf->min_offset_diff;
4551
4552         if ((mddev->reshape_backwards
4553              ? (safepos > writepos && readpos < writepos)
4554              : (safepos < writepos && readpos > writepos)) ||
4555             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4556                 /* Cannot proceed until we've updated the superblock... */
4557                 wait_event(conf->wait_for_overlap,
4558                            atomic_read(&conf->reshape_stripes)==0);
4559                 mddev->reshape_position = conf->reshape_progress;
4560                 mddev->curr_resync_completed = sector_nr;
4561                 conf->reshape_checkpoint = jiffies;
4562                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4563                 md_wakeup_thread(mddev->thread);
4564                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4565                            kthread_should_stop());
4566                 spin_lock_irq(&conf->device_lock);
4567                 conf->reshape_safe = mddev->reshape_position;
4568                 spin_unlock_irq(&conf->device_lock);
4569                 wake_up(&conf->wait_for_overlap);
4570                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4571         }
4572
4573         INIT_LIST_HEAD(&stripes);
4574         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4575                 int j;
4576                 int skipped_disk = 0;
4577                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4578                 set_bit(STRIPE_EXPANDING, &sh->state);
4579                 atomic_inc(&conf->reshape_stripes);
4580                 /* If any of this stripe is beyond the end of the old
4581                  * array, then we need to zero those blocks
4582                  */
4583                 for (j=sh->disks; j--;) {
4584                         sector_t s;
4585                         if (j == sh->pd_idx)
4586                                 continue;
4587                         if (conf->level == 6 &&
4588                             j == sh->qd_idx)
4589                                 continue;
4590                         s = compute_blocknr(sh, j, 0);
4591                         if (s < raid5_size(mddev, 0, 0)) {
4592                                 skipped_disk = 1;
4593                                 continue;
4594                         }
4595                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4596                         set_bit(R5_Expanded, &sh->dev[j].flags);
4597                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4598                 }
4599                 if (!skipped_disk) {
4600                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4601                         set_bit(STRIPE_HANDLE, &sh->state);
4602                 }
4603                 list_add(&sh->lru, &stripes);
4604         }
4605         spin_lock_irq(&conf->device_lock);
4606         if (mddev->reshape_backwards)
4607                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4608         else
4609                 conf->reshape_progress += reshape_sectors * new_data_disks;
4610         spin_unlock_irq(&conf->device_lock);
4611         /* Ok, those stripe are ready. We can start scheduling
4612          * reads on the source stripes.
4613          * The source stripes are determined by mapping the first and last
4614          * block on the destination stripes.
4615          */
4616         first_sector =
4617                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4618                                      1, &dd_idx, NULL);
4619         last_sector =
4620                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4621                                             * new_data_disks - 1),
4622                                      1, &dd_idx, NULL);
4623         if (last_sector >= mddev->dev_sectors)
4624                 last_sector = mddev->dev_sectors - 1;
4625         while (first_sector <= last_sector) {
4626                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4627                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4628                 set_bit(STRIPE_HANDLE, &sh->state);
4629                 release_stripe(sh);
4630                 first_sector += STRIPE_SECTORS;
4631         }
4632         /* Now that the sources are clearly marked, we can release
4633          * the destination stripes
4634          */
4635         while (!list_empty(&stripes)) {
4636                 sh = list_entry(stripes.next, struct stripe_head, lru);
4637                 list_del_init(&sh->lru);
4638                 release_stripe(sh);
4639         }
4640         /* If this takes us to the resync_max point where we have to pause,
4641          * then we need to write out the superblock.
4642          */
4643         sector_nr += reshape_sectors;
4644         if ((sector_nr - mddev->curr_resync_completed) * 2
4645             >= mddev->resync_max - mddev->curr_resync_completed) {
4646                 /* Cannot proceed until we've updated the superblock... */
4647                 wait_event(conf->wait_for_overlap,
4648                            atomic_read(&conf->reshape_stripes) == 0);
4649                 mddev->reshape_position = conf->reshape_progress;
4650                 mddev->curr_resync_completed = sector_nr;
4651                 conf->reshape_checkpoint = jiffies;
4652                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4653                 md_wakeup_thread(mddev->thread);
4654                 wait_event(mddev->sb_wait,
4655                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4656                            || kthread_should_stop());
4657                 spin_lock_irq(&conf->device_lock);
4658                 conf->reshape_safe = mddev->reshape_position;
4659                 spin_unlock_irq(&conf->device_lock);
4660                 wake_up(&conf->wait_for_overlap);
4661                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4662         }
4663         return reshape_sectors;
4664 }
4665
4666 /* FIXME go_faster isn't used */
4667 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4668 {
4669         struct r5conf *conf = mddev->private;
4670         struct stripe_head *sh;
4671         sector_t max_sector = mddev->dev_sectors;
4672         sector_t sync_blocks;
4673         int still_degraded = 0;
4674         int i;
4675
4676         if (sector_nr >= max_sector) {
4677                 /* just being told to finish up .. nothing much to do */
4678
4679                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4680                         end_reshape(conf);
4681                         return 0;
4682                 }
4683
4684                 if (mddev->curr_resync < max_sector) /* aborted */
4685                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4686                                         &sync_blocks, 1);
4687                 else /* completed sync */
4688                         conf->fullsync = 0;
4689                 bitmap_close_sync(mddev->bitmap);
4690
4691                 return 0;
4692         }
4693
4694         /* Allow raid5_quiesce to complete */
4695         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4696
4697         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4698                 return reshape_request(mddev, sector_nr, skipped);
4699
4700         /* No need to check resync_max as we never do more than one
4701          * stripe, and as resync_max will always be on a chunk boundary,
4702          * if the check in md_do_sync didn't fire, there is no chance
4703          * of overstepping resync_max here
4704          */
4705
4706         /* if there is too many failed drives and we are trying
4707          * to resync, then assert that we are finished, because there is
4708          * nothing we can do.
4709          */
4710         if (mddev->degraded >= conf->max_degraded &&
4711             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4712                 sector_t rv = mddev->dev_sectors - sector_nr;
4713                 *skipped = 1;
4714                 return rv;
4715         }
4716         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4717             !conf->fullsync &&
4718             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4719             sync_blocks >= STRIPE_SECTORS) {
4720                 /* we can skip this block, and probably more */
4721                 sync_blocks /= STRIPE_SECTORS;
4722                 *skipped = 1;
4723                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4724         }
4725
4726         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4727
4728         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4729         if (sh == NULL) {
4730                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4731                 /* make sure we don't swamp the stripe cache if someone else
4732                  * is trying to get access
4733                  */
4734                 schedule_timeout_uninterruptible(1);
4735         }
4736         /* Need to check if array will still be degraded after recovery/resync
4737          * We don't need to check the 'failed' flag as when that gets set,
4738          * recovery aborts.
4739          */
4740         for (i = 0; i < conf->raid_disks; i++)
4741                 if (conf->disks[i].rdev == NULL)
4742                         still_degraded = 1;
4743
4744         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4745
4746         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4747
4748         handle_stripe(sh);
4749         release_stripe(sh);
4750
4751         return STRIPE_SECTORS;
4752 }
4753
4754 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4755 {
4756         /* We may not be able to submit a whole bio at once as there
4757          * may not be enough stripe_heads available.
4758          * We cannot pre-allocate enough stripe_heads as we may need
4759          * more than exist in the cache (if we allow ever large chunks).
4760          * So we do one stripe head at a time and record in
4761          * ->bi_hw_segments how many have been done.
4762          *
4763          * We *know* that this entire raid_bio is in one chunk, so
4764          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4765          */
4766         struct stripe_head *sh;
4767         int dd_idx;
4768         sector_t sector, logical_sector, last_sector;
4769         int scnt = 0;
4770         int remaining;
4771         int handled = 0;
4772
4773         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4774         sector = raid5_compute_sector(conf, logical_sector,
4775                                       0, &dd_idx, NULL);
4776         last_sector = bio_end_sector(raid_bio);
4777
4778         for (; logical_sector < last_sector;
4779              logical_sector += STRIPE_SECTORS,
4780                      sector += STRIPE_SECTORS,
4781                      scnt++) {
4782
4783                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4784                         /* already done this stripe */
4785                         continue;
4786
4787                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4788
4789                 if (!sh) {
4790                         /* failed to get a stripe - must wait */
4791                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4792                         conf->retry_read_aligned = raid_bio;
4793                         return handled;
4794                 }
4795
4796                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4797                         release_stripe(sh);
4798                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4799                         conf->retry_read_aligned = raid_bio;
4800                         return handled;
4801                 }
4802
4803                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4804                 handle_stripe(sh);
4805                 release_stripe(sh);
4806                 handled++;
4807         }
4808         remaining = raid5_dec_bi_active_stripes(raid_bio);
4809         if (remaining == 0) {
4810                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4811                                          raid_bio, 0);
4812                 bio_endio(raid_bio, 0);
4813         }
4814         if (atomic_dec_and_test(&conf->active_aligned_reads))
4815                 wake_up(&conf->wait_for_stripe);
4816         return handled;
4817 }
4818
4819 #define MAX_STRIPE_BATCH 8
4820 static int handle_active_stripes(struct r5conf *conf)
4821 {
4822         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4823         int i, batch_size = 0;
4824
4825         while (batch_size < MAX_STRIPE_BATCH &&
4826                         (sh = __get_priority_stripe(conf)) != NULL)
4827                 batch[batch_size++] = sh;
4828
4829         if (batch_size == 0)
4830                 return batch_size;
4831         spin_unlock_irq(&conf->device_lock);
4832
4833         for (i = 0; i < batch_size; i++)
4834                 handle_stripe(batch[i]);
4835
4836         cond_resched();
4837
4838         spin_lock_irq(&conf->device_lock);
4839         for (i = 0; i < batch_size; i++)
4840                 __release_stripe(conf, batch[i]);
4841         return batch_size;
4842 }
4843
4844 /*
4845  * This is our raid5 kernel thread.
4846  *
4847  * We scan the hash table for stripes which can be handled now.
4848  * During the scan, completed stripes are saved for us by the interrupt
4849  * handler, so that they will not have to wait for our next wakeup.
4850  */
4851 static void raid5d(struct md_thread *thread)
4852 {
4853         struct mddev *mddev = thread->mddev;
4854         struct r5conf *conf = mddev->private;
4855         int handled;
4856         struct blk_plug plug;
4857
4858         pr_debug("+++ raid5d active\n");
4859
4860         md_check_recovery(mddev);
4861
4862         blk_start_plug(&plug);
4863         handled = 0;
4864         spin_lock_irq(&conf->device_lock);
4865         while (1) {
4866                 struct bio *bio;
4867                 int batch_size;
4868
4869                 if (
4870                     !list_empty(&conf->bitmap_list)) {
4871                         /* Now is a good time to flush some bitmap updates */
4872                         conf->seq_flush++;
4873                         spin_unlock_irq(&conf->device_lock);
4874                         bitmap_unplug(mddev->bitmap);
4875                         spin_lock_irq(&conf->device_lock);
4876                         conf->seq_write = conf->seq_flush;
4877                         activate_bit_delay(conf);
4878                 }
4879                 raid5_activate_delayed(conf);
4880
4881                 while ((bio = remove_bio_from_retry(conf))) {
4882                         int ok;
4883                         spin_unlock_irq(&conf->device_lock);
4884                         ok = retry_aligned_read(conf, bio);
4885                         spin_lock_irq(&conf->device_lock);
4886                         if (!ok)
4887                                 break;
4888                         handled++;
4889                 }
4890
4891                 batch_size = handle_active_stripes(conf);
4892                 if (!batch_size)
4893                         break;
4894                 handled += batch_size;
4895
4896                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4897                         spin_unlock_irq(&conf->device_lock);
4898                         md_check_recovery(mddev);
4899                         spin_lock_irq(&conf->device_lock);
4900                 }
4901         }
4902         pr_debug("%d stripes handled\n", handled);
4903
4904         spin_unlock_irq(&conf->device_lock);
4905
4906         async_tx_issue_pending_all();
4907         blk_finish_plug(&plug);
4908
4909         pr_debug("--- raid5d inactive\n");
4910 }
4911
4912 static ssize_t
4913 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4914 {
4915         struct r5conf *conf = mddev->private;
4916         if (conf)
4917                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4918         else
4919                 return 0;
4920 }
4921
4922 int
4923 raid5_set_cache_size(struct mddev *mddev, int size)
4924 {
4925         struct r5conf *conf = mddev->private;
4926         int err;
4927
4928         if (size <= 16 || size > 32768)
4929                 return -EINVAL;
4930         while (size < conf->max_nr_stripes) {
4931                 if (drop_one_stripe(conf))
4932                         conf->max_nr_stripes--;
4933                 else
4934                         break;
4935         }
4936         err = md_allow_write(mddev);
4937         if (err)
4938                 return err;
4939         while (size > conf->max_nr_stripes) {
4940                 if (grow_one_stripe(conf))
4941                         conf->max_nr_stripes++;
4942                 else break;
4943         }
4944         return 0;
4945 }
4946 EXPORT_SYMBOL(raid5_set_cache_size);
4947
4948 static ssize_t
4949 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4950 {
4951         struct r5conf *conf = mddev->private;
4952         unsigned long new;
4953         int err;
4954
4955         if (len >= PAGE_SIZE)
4956                 return -EINVAL;
4957         if (!conf)
4958                 return -ENODEV;
4959
4960         if (strict_strtoul(page, 10, &new))
4961                 return -EINVAL;
4962         err = raid5_set_cache_size(mddev, new);
4963         if (err)
4964                 return err;
4965         return len;
4966 }
4967
4968 static struct md_sysfs_entry
4969 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4970                                 raid5_show_stripe_cache_size,
4971                                 raid5_store_stripe_cache_size);
4972
4973 static ssize_t
4974 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4975 {
4976         struct r5conf *conf = mddev->private;
4977         if (conf)
4978                 return sprintf(page, "%d\n", conf->bypass_threshold);
4979         else
4980                 return 0;
4981 }
4982
4983 static ssize_t
4984 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4985 {
4986         struct r5conf *conf = mddev->private;
4987         unsigned long new;
4988         if (len >= PAGE_SIZE)
4989                 return -EINVAL;
4990         if (!conf)
4991                 return -ENODEV;
4992
4993         if (strict_strtoul(page, 10, &new))
4994                 return -EINVAL;
4995         if (new > conf->max_nr_stripes)
4996                 return -EINVAL;
4997         conf->bypass_threshold = new;
4998         return len;
4999 }
5000
5001 static struct md_sysfs_entry
5002 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5003                                         S_IRUGO | S_IWUSR,
5004                                         raid5_show_preread_threshold,
5005                                         raid5_store_preread_threshold);
5006
5007 static ssize_t
5008 stripe_cache_active_show(struct mddev *mddev, char *page)
5009 {
5010         struct r5conf *conf = mddev->private;
5011         if (conf)
5012                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5013         else
5014                 return 0;
5015 }
5016
5017 static struct md_sysfs_entry
5018 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5019
5020 static struct attribute *raid5_attrs[] =  {
5021         &raid5_stripecache_size.attr,
5022         &raid5_stripecache_active.attr,
5023         &raid5_preread_bypass_threshold.attr,
5024         NULL,
5025 };
5026 static struct attribute_group raid5_attrs_group = {
5027         .name = NULL,
5028         .attrs = raid5_attrs,
5029 };
5030
5031 static sector_t
5032 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5033 {
5034         struct r5conf *conf = mddev->private;
5035
5036         if (!sectors)
5037                 sectors = mddev->dev_sectors;
5038         if (!raid_disks)
5039                 /* size is defined by the smallest of previous and new size */
5040                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5041
5042         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5043         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5044         return sectors * (raid_disks - conf->max_degraded);
5045 }
5046
5047 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5048 {
5049         safe_put_page(percpu->spare_page);
5050         kfree(percpu->scribble);
5051         percpu->spare_page = NULL;
5052         percpu->scribble = NULL;
5053 }
5054
5055 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5056 {
5057         if (conf->level == 6 && !percpu->spare_page)
5058                 percpu->spare_page = alloc_page(GFP_KERNEL);
5059         if (!percpu->scribble)
5060                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5061
5062         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5063                 free_scratch_buffer(conf, percpu);
5064                 return -ENOMEM;
5065         }
5066
5067         return 0;
5068 }
5069
5070 static void raid5_free_percpu(struct r5conf *conf)
5071 {
5072         unsigned long cpu;
5073
5074         if (!conf->percpu)
5075                 return;
5076
5077 #ifdef CONFIG_HOTPLUG_CPU
5078         unregister_cpu_notifier(&conf->cpu_notify);
5079 #endif
5080
5081         get_online_cpus();
5082         for_each_possible_cpu(cpu)
5083                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5084         put_online_cpus();
5085
5086         free_percpu(conf->percpu);
5087 }
5088
5089 static void free_conf(struct r5conf *conf)
5090 {
5091         shrink_stripes(conf);
5092         raid5_free_percpu(conf);
5093         kfree(conf->disks);
5094         kfree(conf->stripe_hashtbl);
5095         kfree(conf);
5096 }
5097
5098 #ifdef CONFIG_HOTPLUG_CPU
5099 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5100                               void *hcpu)
5101 {
5102         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5103         long cpu = (long)hcpu;
5104         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5105
5106         switch (action) {
5107         case CPU_UP_PREPARE:
5108         case CPU_UP_PREPARE_FROZEN:
5109                 if (alloc_scratch_buffer(conf, percpu)) {
5110                         pr_err("%s: failed memory allocation for cpu%ld\n",
5111                                __func__, cpu);
5112                         return notifier_from_errno(-ENOMEM);
5113                 }
5114                 break;
5115         case CPU_DEAD:
5116         case CPU_DEAD_FROZEN:
5117                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5118                 break;
5119         default:
5120                 break;
5121         }
5122         return NOTIFY_OK;
5123 }
5124 #endif
5125
5126 static int raid5_alloc_percpu(struct r5conf *conf)
5127 {
5128         unsigned long cpu;
5129         int err = 0;
5130
5131         conf->percpu = alloc_percpu(struct raid5_percpu);
5132         if (!conf->percpu)
5133                 return -ENOMEM;
5134
5135 #ifdef CONFIG_HOTPLUG_CPU
5136         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5137         conf->cpu_notify.priority = 0;
5138         err = register_cpu_notifier(&conf->cpu_notify);
5139         if (err)
5140                 return err;
5141 #endif
5142
5143         get_online_cpus();
5144         for_each_present_cpu(cpu) {
5145                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5146                 if (err) {
5147                         pr_err("%s: failed memory allocation for cpu%ld\n",
5148                                __func__, cpu);
5149                         break;
5150                 }
5151         }
5152         put_online_cpus();
5153
5154         return err;
5155 }
5156
5157 static struct r5conf *setup_conf(struct mddev *mddev)
5158 {
5159         struct r5conf *conf;
5160         int raid_disk, memory, max_disks;
5161         struct md_rdev *rdev;
5162         struct disk_info *disk;
5163         char pers_name[6];
5164
5165         if (mddev->new_level != 5
5166             && mddev->new_level != 4
5167             && mddev->new_level != 6) {
5168                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5169                        mdname(mddev), mddev->new_level);
5170                 return ERR_PTR(-EIO);
5171         }
5172         if ((mddev->new_level == 5
5173              && !algorithm_valid_raid5(mddev->new_layout)) ||
5174             (mddev->new_level == 6
5175              && !algorithm_valid_raid6(mddev->new_layout))) {
5176                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5177                        mdname(mddev), mddev->new_layout);
5178                 return ERR_PTR(-EIO);
5179         }
5180         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5181                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5182                        mdname(mddev), mddev->raid_disks);
5183                 return ERR_PTR(-EINVAL);
5184         }
5185
5186         if (!mddev->new_chunk_sectors ||
5187             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5188             !is_power_of_2(mddev->new_chunk_sectors)) {
5189                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5190                        mdname(mddev), mddev->new_chunk_sectors << 9);
5191                 return ERR_PTR(-EINVAL);
5192         }
5193
5194         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5195         if (conf == NULL)
5196                 goto abort;
5197         spin_lock_init(&conf->device_lock);
5198         init_waitqueue_head(&conf->wait_for_stripe);
5199         init_waitqueue_head(&conf->wait_for_overlap);
5200         INIT_LIST_HEAD(&conf->handle_list);
5201         INIT_LIST_HEAD(&conf->hold_list);
5202         INIT_LIST_HEAD(&conf->delayed_list);
5203         INIT_LIST_HEAD(&conf->bitmap_list);
5204         INIT_LIST_HEAD(&conf->inactive_list);
5205         atomic_set(&conf->active_stripes, 0);
5206         atomic_set(&conf->preread_active_stripes, 0);
5207         atomic_set(&conf->active_aligned_reads, 0);
5208         conf->bypass_threshold = BYPASS_THRESHOLD;
5209         conf->recovery_disabled = mddev->recovery_disabled - 1;
5210
5211         conf->raid_disks = mddev->raid_disks;
5212         if (mddev->reshape_position == MaxSector)
5213                 conf->previous_raid_disks = mddev->raid_disks;
5214         else
5215                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5216         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5217         conf->scribble_len = scribble_len(max_disks);
5218
5219         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5220                               GFP_KERNEL);
5221         if (!conf->disks)
5222                 goto abort;
5223
5224         conf->mddev = mddev;
5225
5226         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5227                 goto abort;
5228
5229         conf->level = mddev->new_level;
5230         if (raid5_alloc_percpu(conf) != 0)
5231                 goto abort;
5232
5233         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5234
5235         rdev_for_each(rdev, mddev) {
5236                 raid_disk = rdev->raid_disk;
5237                 if (raid_disk >= max_disks
5238                     || raid_disk < 0)
5239                         continue;
5240                 disk = conf->disks + raid_disk;
5241
5242                 if (test_bit(Replacement, &rdev->flags)) {
5243                         if (disk->replacement)
5244                                 goto abort;
5245                         disk->replacement = rdev;
5246                 } else {
5247                         if (disk->rdev)
5248                                 goto abort;
5249                         disk->rdev = rdev;
5250                 }
5251
5252                 if (test_bit(In_sync, &rdev->flags)) {
5253                         char b[BDEVNAME_SIZE];
5254                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5255                                " disk %d\n",
5256                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5257                 } else if (rdev->saved_raid_disk != raid_disk)
5258                         /* Cannot rely on bitmap to complete recovery */
5259                         conf->fullsync = 1;
5260         }
5261
5262         conf->chunk_sectors = mddev->new_chunk_sectors;
5263         conf->level = mddev->new_level;
5264         if (conf->level == 6)
5265                 conf->max_degraded = 2;
5266         else
5267                 conf->max_degraded = 1;
5268         conf->algorithm = mddev->new_layout;
5269         conf->max_nr_stripes = NR_STRIPES;
5270         conf->reshape_progress = mddev->reshape_position;
5271         if (conf->reshape_progress != MaxSector) {
5272                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5273                 conf->prev_algo = mddev->layout;
5274         }
5275
5276         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5277                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5278         if (grow_stripes(conf, conf->max_nr_stripes)) {
5279                 printk(KERN_ERR
5280                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5281                        mdname(mddev), memory);
5282                 goto abort;
5283         } else
5284                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5285                        mdname(mddev), memory);
5286
5287         sprintf(pers_name, "raid%d", mddev->new_level);
5288         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5289         if (!conf->thread) {
5290                 printk(KERN_ERR
5291                        "md/raid:%s: couldn't allocate thread.\n",
5292                        mdname(mddev));
5293                 goto abort;
5294         }
5295
5296         return conf;
5297
5298  abort:
5299         if (conf) {
5300                 free_conf(conf);
5301                 return ERR_PTR(-EIO);
5302         } else
5303                 return ERR_PTR(-ENOMEM);
5304 }
5305
5306
5307 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5308 {
5309         switch (algo) {
5310         case ALGORITHM_PARITY_0:
5311                 if (raid_disk < max_degraded)
5312                         return 1;
5313                 break;
5314         case ALGORITHM_PARITY_N:
5315                 if (raid_disk >= raid_disks - max_degraded)
5316                         return 1;
5317                 break;
5318         case ALGORITHM_PARITY_0_6:
5319                 if (raid_disk == 0 || 
5320                     raid_disk == raid_disks - 1)
5321                         return 1;
5322                 break;
5323         case ALGORITHM_LEFT_ASYMMETRIC_6:
5324         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5325         case ALGORITHM_LEFT_SYMMETRIC_6:
5326         case ALGORITHM_RIGHT_SYMMETRIC_6:
5327                 if (raid_disk == raid_disks - 1)
5328                         return 1;
5329         }
5330         return 0;
5331 }
5332
5333 static int run(struct mddev *mddev)
5334 {
5335         struct r5conf *conf;
5336         int working_disks = 0;
5337         int dirty_parity_disks = 0;
5338         struct md_rdev *rdev;
5339         sector_t reshape_offset = 0;
5340         int i;
5341         long long min_offset_diff = 0;
5342         int first = 1;
5343
5344         if (mddev->recovery_cp != MaxSector)
5345                 printk(KERN_NOTICE "md/raid:%s: not clean"
5346                        " -- starting background reconstruction\n",
5347                        mdname(mddev));
5348
5349         rdev_for_each(rdev, mddev) {
5350                 long long diff;
5351                 if (rdev->raid_disk < 0)
5352                         continue;
5353                 diff = (rdev->new_data_offset - rdev->data_offset);
5354                 if (first) {
5355                         min_offset_diff = diff;
5356                         first = 0;
5357                 } else if (mddev->reshape_backwards &&
5358                          diff < min_offset_diff)
5359                         min_offset_diff = diff;
5360                 else if (!mddev->reshape_backwards &&
5361                          diff > min_offset_diff)
5362                         min_offset_diff = diff;
5363         }
5364
5365         if (mddev->reshape_position != MaxSector) {
5366                 /* Check that we can continue the reshape.
5367                  * Difficulties arise if the stripe we would write to
5368                  * next is at or after the stripe we would read from next.
5369                  * For a reshape that changes the number of devices, this
5370                  * is only possible for a very short time, and mdadm makes
5371                  * sure that time appears to have past before assembling
5372                  * the array.  So we fail if that time hasn't passed.
5373                  * For a reshape that keeps the number of devices the same
5374                  * mdadm must be monitoring the reshape can keeping the
5375                  * critical areas read-only and backed up.  It will start
5376                  * the array in read-only mode, so we check for that.
5377                  */
5378                 sector_t here_new, here_old;
5379                 int old_disks;
5380                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5381
5382                 if (mddev->new_level != mddev->level) {
5383                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5384                                "required - aborting.\n",
5385                                mdname(mddev));
5386                         return -EINVAL;
5387                 }
5388                 old_disks = mddev->raid_disks - mddev->delta_disks;
5389                 /* reshape_position must be on a new-stripe boundary, and one
5390                  * further up in new geometry must map after here in old
5391                  * geometry.
5392                  */
5393                 here_new = mddev->reshape_position;
5394                 if (sector_div(here_new, mddev->new_chunk_sectors *
5395                                (mddev->raid_disks - max_degraded))) {
5396                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5397                                "on a stripe boundary\n", mdname(mddev));
5398                         return -EINVAL;
5399                 }
5400                 reshape_offset = here_new * mddev->new_chunk_sectors;
5401                 /* here_new is the stripe we will write to */
5402                 here_old = mddev->reshape_position;
5403                 sector_div(here_old, mddev->chunk_sectors *
5404                            (old_disks-max_degraded));
5405                 /* here_old is the first stripe that we might need to read
5406                  * from */
5407                 if (mddev->delta_disks == 0) {
5408                         if ((here_new * mddev->new_chunk_sectors !=
5409                              here_old * mddev->chunk_sectors)) {
5410                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5411                                        " confused - aborting\n", mdname(mddev));
5412                                 return -EINVAL;
5413                         }
5414                         /* We cannot be sure it is safe to start an in-place
5415                          * reshape.  It is only safe if user-space is monitoring
5416                          * and taking constant backups.
5417                          * mdadm always starts a situation like this in
5418                          * readonly mode so it can take control before
5419                          * allowing any writes.  So just check for that.
5420                          */
5421                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5422                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5423                                 /* not really in-place - so OK */;
5424                         else if (mddev->ro == 0) {
5425                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5426                                        "must be started in read-only mode "
5427                                        "- aborting\n",
5428                                        mdname(mddev));
5429                                 return -EINVAL;
5430                         }
5431                 } else if (mddev->reshape_backwards
5432                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5433                        here_old * mddev->chunk_sectors)
5434                     : (here_new * mddev->new_chunk_sectors >=
5435                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5436                         /* Reading from the same stripe as writing to - bad */
5437                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5438                                "auto-recovery - aborting.\n",
5439                                mdname(mddev));
5440                         return -EINVAL;
5441                 }
5442                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5443                        mdname(mddev));
5444                 /* OK, we should be able to continue; */
5445         } else {
5446                 BUG_ON(mddev->level != mddev->new_level);
5447                 BUG_ON(mddev->layout != mddev->new_layout);
5448                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5449                 BUG_ON(mddev->delta_disks != 0);
5450         }
5451
5452         if (mddev->private == NULL)
5453                 conf = setup_conf(mddev);
5454         else
5455                 conf = mddev->private;
5456
5457         if (IS_ERR(conf))
5458                 return PTR_ERR(conf);
5459
5460         conf->min_offset_diff = min_offset_diff;
5461         mddev->thread = conf->thread;
5462         conf->thread = NULL;
5463         mddev->private = conf;
5464
5465         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5466              i++) {
5467                 rdev = conf->disks[i].rdev;
5468                 if (!rdev && conf->disks[i].replacement) {
5469                         /* The replacement is all we have yet */
5470                         rdev = conf->disks[i].replacement;
5471                         conf->disks[i].replacement = NULL;
5472                         clear_bit(Replacement, &rdev->flags);
5473                         conf->disks[i].rdev = rdev;
5474                 }
5475                 if (!rdev)
5476                         continue;
5477                 if (conf->disks[i].replacement &&
5478                     conf->reshape_progress != MaxSector) {
5479                         /* replacements and reshape simply do not mix. */
5480                         printk(KERN_ERR "md: cannot handle concurrent "
5481                                "replacement and reshape.\n");
5482                         goto abort;
5483                 }
5484                 if (test_bit(In_sync, &rdev->flags)) {
5485                         working_disks++;
5486                         continue;
5487                 }
5488                 /* This disc is not fully in-sync.  However if it
5489                  * just stored parity (beyond the recovery_offset),
5490                  * when we don't need to be concerned about the
5491                  * array being dirty.
5492                  * When reshape goes 'backwards', we never have
5493                  * partially completed devices, so we only need
5494                  * to worry about reshape going forwards.
5495                  */
5496                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5497                 if (mddev->major_version == 0 &&
5498                     mddev->minor_version > 90)
5499                         rdev->recovery_offset = reshape_offset;
5500
5501                 if (rdev->recovery_offset < reshape_offset) {
5502                         /* We need to check old and new layout */
5503                         if (!only_parity(rdev->raid_disk,
5504                                          conf->algorithm,
5505                                          conf->raid_disks,
5506                                          conf->max_degraded))
5507                                 continue;
5508                 }
5509                 if (!only_parity(rdev->raid_disk,
5510                                  conf->prev_algo,
5511                                  conf->previous_raid_disks,
5512                                  conf->max_degraded))
5513                         continue;
5514                 dirty_parity_disks++;
5515         }
5516
5517         /*
5518          * 0 for a fully functional array, 1 or 2 for a degraded array.
5519          */
5520         mddev->degraded = calc_degraded(conf);
5521
5522         if (has_failed(conf)) {
5523                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5524                         " (%d/%d failed)\n",
5525                         mdname(mddev), mddev->degraded, conf->raid_disks);
5526                 goto abort;
5527         }
5528
5529         /* device size must be a multiple of chunk size */
5530         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5531         mddev->resync_max_sectors = mddev->dev_sectors;
5532
5533         if (mddev->degraded > dirty_parity_disks &&
5534             mddev->recovery_cp != MaxSector) {
5535                 if (mddev->ok_start_degraded)
5536                         printk(KERN_WARNING
5537                                "md/raid:%s: starting dirty degraded array"
5538                                " - data corruption possible.\n",
5539                                mdname(mddev));
5540                 else {
5541                         printk(KERN_ERR
5542                                "md/raid:%s: cannot start dirty degraded array.\n",
5543                                mdname(mddev));
5544                         goto abort;
5545                 }
5546         }
5547
5548         if (mddev->degraded == 0)
5549                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5550                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5551                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5552                        mddev->new_layout);
5553         else
5554                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5555                        " out of %d devices, algorithm %d\n",
5556                        mdname(mddev), conf->level,
5557                        mddev->raid_disks - mddev->degraded,
5558                        mddev->raid_disks, mddev->new_layout);
5559
5560         print_raid5_conf(conf);
5561
5562         if (conf->reshape_progress != MaxSector) {
5563                 conf->reshape_safe = conf->reshape_progress;
5564                 atomic_set(&conf->reshape_stripes, 0);
5565                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5566                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5567                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5568                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5569                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5570                                                         "reshape");
5571         }
5572
5573
5574         /* Ok, everything is just fine now */
5575         if (mddev->to_remove == &raid5_attrs_group)
5576                 mddev->to_remove = NULL;
5577         else if (mddev->kobj.sd &&
5578             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5579                 printk(KERN_WARNING
5580                        "raid5: failed to create sysfs attributes for %s\n",
5581                        mdname(mddev));
5582         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5583
5584         if (mddev->queue) {
5585                 int chunk_size;
5586                 bool discard_supported = true;
5587                 /* read-ahead size must cover two whole stripes, which
5588                  * is 2 * (datadisks) * chunksize where 'n' is the
5589                  * number of raid devices
5590                  */
5591                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5592                 int stripe = data_disks *
5593                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5594                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5595                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5596
5597                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5598
5599                 mddev->queue->backing_dev_info.congested_data = mddev;
5600                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5601
5602                 chunk_size = mddev->chunk_sectors << 9;
5603                 blk_queue_io_min(mddev->queue, chunk_size);
5604                 blk_queue_io_opt(mddev->queue, chunk_size *
5605                                  (conf->raid_disks - conf->max_degraded));
5606                 /*
5607                  * We can only discard a whole stripe. It doesn't make sense to
5608                  * discard data disk but write parity disk
5609                  */
5610                 stripe = stripe * PAGE_SIZE;
5611                 /* Round up to power of 2, as discard handling
5612                  * currently assumes that */
5613                 while ((stripe-1) & stripe)
5614                         stripe = (stripe | (stripe-1)) + 1;
5615                 mddev->queue->limits.discard_alignment = stripe;
5616                 mddev->queue->limits.discard_granularity = stripe;
5617                 /*
5618                  * unaligned part of discard request will be ignored, so can't
5619                  * guarantee discard_zeroes_data
5620                  */
5621                 mddev->queue->limits.discard_zeroes_data = 0;
5622
5623                 blk_queue_max_write_same_sectors(mddev->queue, 0);
5624
5625                 rdev_for_each(rdev, mddev) {
5626                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5627                                           rdev->data_offset << 9);
5628                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5629                                           rdev->new_data_offset << 9);
5630                         /*
5631                          * discard_zeroes_data is required, otherwise data
5632                          * could be lost. Consider a scenario: discard a stripe
5633                          * (the stripe could be inconsistent if
5634                          * discard_zeroes_data is 0); write one disk of the
5635                          * stripe (the stripe could be inconsistent again
5636                          * depending on which disks are used to calculate
5637                          * parity); the disk is broken; The stripe data of this
5638                          * disk is lost.
5639                          */
5640                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5641                             !bdev_get_queue(rdev->bdev)->
5642                                                 limits.discard_zeroes_data)
5643                                 discard_supported = false;
5644                         /* Unfortunately, discard_zeroes_data is not currently
5645                          * a guarantee - just a hint.  So we only allow DISCARD
5646                          * if the sysadmin has confirmed that only safe devices
5647                          * are in use by setting a module parameter.
5648                          */
5649                         if (!devices_handle_discard_safely) {
5650                                 if (discard_supported) {
5651                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
5652                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
5653                                 }
5654                                 discard_supported = false;
5655                         }
5656                 }
5657
5658                 if (discard_supported &&
5659                    mddev->queue->limits.max_discard_sectors >= stripe &&
5660                    mddev->queue->limits.discard_granularity >= stripe)
5661                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5662                                                 mddev->queue);
5663                 else
5664                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5665                                                 mddev->queue);
5666         }
5667
5668         return 0;
5669 abort:
5670         md_unregister_thread(&mddev->thread);
5671         print_raid5_conf(conf);
5672         free_conf(conf);
5673         mddev->private = NULL;
5674         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5675         return -EIO;
5676 }
5677
5678 static int stop(struct mddev *mddev)
5679 {
5680         struct r5conf *conf = mddev->private;
5681
5682         md_unregister_thread(&mddev->thread);
5683         if (mddev->queue)
5684                 mddev->queue->backing_dev_info.congested_fn = NULL;
5685         free_conf(conf);
5686         mddev->private = NULL;
5687         mddev->to_remove = &raid5_attrs_group;
5688         return 0;
5689 }
5690
5691 static void status(struct seq_file *seq, struct mddev *mddev)
5692 {
5693         struct r5conf *conf = mddev->private;
5694         int i;
5695
5696         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5697                 mddev->chunk_sectors / 2, mddev->layout);
5698         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5699         for (i = 0; i < conf->raid_disks; i++)
5700                 seq_printf (seq, "%s",
5701                                conf->disks[i].rdev &&
5702                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5703         seq_printf (seq, "]");
5704 }
5705
5706 static void print_raid5_conf (struct r5conf *conf)
5707 {
5708         int i;
5709         struct disk_info *tmp;
5710
5711         printk(KERN_DEBUG "RAID conf printout:\n");
5712         if (!conf) {
5713                 printk("(conf==NULL)\n");
5714                 return;
5715         }
5716         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5717                conf->raid_disks,
5718                conf->raid_disks - conf->mddev->degraded);
5719
5720         for (i = 0; i < conf->raid_disks; i++) {
5721                 char b[BDEVNAME_SIZE];
5722                 tmp = conf->disks + i;
5723                 if (tmp->rdev)
5724                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5725                                i, !test_bit(Faulty, &tmp->rdev->flags),
5726                                bdevname(tmp->rdev->bdev, b));
5727         }
5728 }
5729
5730 static int raid5_spare_active(struct mddev *mddev)
5731 {
5732         int i;
5733         struct r5conf *conf = mddev->private;
5734         struct disk_info *tmp;
5735         int count = 0;
5736         unsigned long flags;
5737
5738         for (i = 0; i < conf->raid_disks; i++) {
5739                 tmp = conf->disks + i;
5740                 if (tmp->replacement
5741                     && tmp->replacement->recovery_offset == MaxSector
5742                     && !test_bit(Faulty, &tmp->replacement->flags)
5743                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5744                         /* Replacement has just become active. */
5745                         if (!tmp->rdev
5746                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5747                                 count++;
5748                         if (tmp->rdev) {
5749                                 /* Replaced device not technically faulty,
5750                                  * but we need to be sure it gets removed
5751                                  * and never re-added.
5752                                  */
5753                                 set_bit(Faulty, &tmp->rdev->flags);
5754                                 sysfs_notify_dirent_safe(
5755                                         tmp->rdev->sysfs_state);
5756                         }
5757                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5758                 } else if (tmp->rdev
5759                     && tmp->rdev->recovery_offset == MaxSector
5760                     && !test_bit(Faulty, &tmp->rdev->flags)
5761                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5762                         count++;
5763                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5764                 }
5765         }
5766         spin_lock_irqsave(&conf->device_lock, flags);
5767         mddev->degraded = calc_degraded(conf);
5768         spin_unlock_irqrestore(&conf->device_lock, flags);
5769         print_raid5_conf(conf);
5770         return count;
5771 }
5772
5773 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5774 {
5775         struct r5conf *conf = mddev->private;
5776         int err = 0;
5777         int number = rdev->raid_disk;
5778         struct md_rdev **rdevp;
5779         struct disk_info *p = conf->disks + number;
5780
5781         print_raid5_conf(conf);
5782         if (rdev == p->rdev)
5783                 rdevp = &p->rdev;
5784         else if (rdev == p->replacement)
5785                 rdevp = &p->replacement;
5786         else
5787                 return 0;
5788
5789         if (number >= conf->raid_disks &&
5790             conf->reshape_progress == MaxSector)
5791                 clear_bit(In_sync, &rdev->flags);
5792
5793         if (test_bit(In_sync, &rdev->flags) ||
5794             atomic_read(&rdev->nr_pending)) {
5795                 err = -EBUSY;
5796                 goto abort;
5797         }
5798         /* Only remove non-faulty devices if recovery
5799          * isn't possible.
5800          */
5801         if (!test_bit(Faulty, &rdev->flags) &&
5802             mddev->recovery_disabled != conf->recovery_disabled &&
5803             !has_failed(conf) &&
5804             (!p->replacement || p->replacement == rdev) &&
5805             number < conf->raid_disks) {
5806                 err = -EBUSY;
5807                 goto abort;
5808         }
5809         *rdevp = NULL;
5810         synchronize_rcu();
5811         if (atomic_read(&rdev->nr_pending)) {
5812                 /* lost the race, try later */
5813                 err = -EBUSY;
5814                 *rdevp = rdev;
5815         } else if (p->replacement) {
5816                 /* We must have just cleared 'rdev' */
5817                 p->rdev = p->replacement;
5818                 clear_bit(Replacement, &p->replacement->flags);
5819                 smp_mb(); /* Make sure other CPUs may see both as identical
5820                            * but will never see neither - if they are careful
5821                            */
5822                 p->replacement = NULL;
5823                 clear_bit(WantReplacement, &rdev->flags);
5824         } else
5825                 /* We might have just removed the Replacement as faulty-
5826                  * clear the bit just in case
5827                  */
5828                 clear_bit(WantReplacement, &rdev->flags);
5829 abort:
5830
5831         print_raid5_conf(conf);
5832         return err;
5833 }
5834
5835 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5836 {
5837         struct r5conf *conf = mddev->private;
5838         int err = -EEXIST;
5839         int disk;
5840         struct disk_info *p;
5841         int first = 0;
5842         int last = conf->raid_disks - 1;
5843
5844         if (mddev->recovery_disabled == conf->recovery_disabled)
5845                 return -EBUSY;
5846
5847         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5848                 /* no point adding a device */
5849                 return -EINVAL;
5850
5851         if (rdev->raid_disk >= 0)
5852                 first = last = rdev->raid_disk;
5853
5854         /*
5855          * find the disk ... but prefer rdev->saved_raid_disk
5856          * if possible.
5857          */
5858         if (rdev->saved_raid_disk >= 0 &&
5859             rdev->saved_raid_disk >= first &&
5860             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5861                 first = rdev->saved_raid_disk;
5862
5863         for (disk = first; disk <= last; disk++) {
5864                 p = conf->disks + disk;
5865                 if (p->rdev == NULL) {
5866                         clear_bit(In_sync, &rdev->flags);
5867                         rdev->raid_disk = disk;
5868                         err = 0;
5869                         if (rdev->saved_raid_disk != disk)
5870                                 conf->fullsync = 1;
5871                         rcu_assign_pointer(p->rdev, rdev);
5872                         goto out;
5873                 }
5874         }
5875         for (disk = first; disk <= last; disk++) {
5876                 p = conf->disks + disk;
5877                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5878                     p->replacement == NULL) {
5879                         clear_bit(In_sync, &rdev->flags);
5880                         set_bit(Replacement, &rdev->flags);
5881                         rdev->raid_disk = disk;
5882                         err = 0;
5883                         conf->fullsync = 1;
5884                         rcu_assign_pointer(p->replacement, rdev);
5885                         break;
5886                 }
5887         }
5888 out:
5889         print_raid5_conf(conf);
5890         return err;
5891 }
5892
5893 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5894 {
5895         /* no resync is happening, and there is enough space
5896          * on all devices, so we can resize.
5897          * We need to make sure resync covers any new space.
5898          * If the array is shrinking we should possibly wait until
5899          * any io in the removed space completes, but it hardly seems
5900          * worth it.
5901          */
5902         sector_t newsize;
5903         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5904         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5905         if (mddev->external_size &&
5906             mddev->array_sectors > newsize)
5907                 return -EINVAL;
5908         if (mddev->bitmap) {
5909                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5910                 if (ret)
5911                         return ret;
5912         }
5913         md_set_array_sectors(mddev, newsize);
5914         set_capacity(mddev->gendisk, mddev->array_sectors);
5915         revalidate_disk(mddev->gendisk);
5916         if (sectors > mddev->dev_sectors &&
5917             mddev->recovery_cp > mddev->dev_sectors) {
5918                 mddev->recovery_cp = mddev->dev_sectors;
5919                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5920         }
5921         mddev->dev_sectors = sectors;
5922         mddev->resync_max_sectors = sectors;
5923         return 0;
5924 }
5925
5926 static int check_stripe_cache(struct mddev *mddev)
5927 {
5928         /* Can only proceed if there are plenty of stripe_heads.
5929          * We need a minimum of one full stripe,, and for sensible progress
5930          * it is best to have about 4 times that.
5931          * If we require 4 times, then the default 256 4K stripe_heads will
5932          * allow for chunk sizes up to 256K, which is probably OK.
5933          * If the chunk size is greater, user-space should request more
5934          * stripe_heads first.
5935          */
5936         struct r5conf *conf = mddev->private;
5937         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5938             > conf->max_nr_stripes ||
5939             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5940             > conf->max_nr_stripes) {
5941                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5942                        mdname(mddev),
5943                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5944                         / STRIPE_SIZE)*4);
5945                 return 0;
5946         }
5947         return 1;
5948 }
5949
5950 static int check_reshape(struct mddev *mddev)
5951 {
5952         struct r5conf *conf = mddev->private;
5953
5954         if (mddev->delta_disks == 0 &&
5955             mddev->new_layout == mddev->layout &&
5956             mddev->new_chunk_sectors == mddev->chunk_sectors)
5957                 return 0; /* nothing to do */
5958         if (has_failed(conf))
5959                 return -EINVAL;
5960         if (mddev->delta_disks < 0) {
5961                 /* We might be able to shrink, but the devices must
5962                  * be made bigger first.
5963                  * For raid6, 4 is the minimum size.
5964                  * Otherwise 2 is the minimum
5965                  */
5966                 int min = 2;
5967                 if (mddev->level == 6)
5968                         min = 4;
5969                 if (mddev->raid_disks + mddev->delta_disks < min)
5970                         return -EINVAL;
5971         }
5972
5973         if (!check_stripe_cache(mddev))
5974                 return -ENOSPC;
5975
5976         return resize_stripes(conf, (conf->previous_raid_disks
5977                                      + mddev->delta_disks));
5978 }
5979
5980 static int raid5_start_reshape(struct mddev *mddev)
5981 {
5982         struct r5conf *conf = mddev->private;
5983         struct md_rdev *rdev;
5984         int spares = 0;
5985         unsigned long flags;
5986
5987         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5988                 return -EBUSY;
5989
5990         if (!check_stripe_cache(mddev))
5991                 return -ENOSPC;
5992
5993         if (has_failed(conf))
5994                 return -EINVAL;
5995
5996         rdev_for_each(rdev, mddev) {
5997                 if (!test_bit(In_sync, &rdev->flags)
5998                     && !test_bit(Faulty, &rdev->flags))
5999                         spares++;
6000         }
6001
6002         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6003                 /* Not enough devices even to make a degraded array
6004                  * of that size
6005                  */
6006                 return -EINVAL;
6007
6008         /* Refuse to reduce size of the array.  Any reductions in
6009          * array size must be through explicit setting of array_size
6010          * attribute.
6011          */
6012         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6013             < mddev->array_sectors) {
6014                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6015                        "before number of disks\n", mdname(mddev));
6016                 return -EINVAL;
6017         }
6018
6019         atomic_set(&conf->reshape_stripes, 0);
6020         spin_lock_irq(&conf->device_lock);
6021         conf->previous_raid_disks = conf->raid_disks;
6022         conf->raid_disks += mddev->delta_disks;
6023         conf->prev_chunk_sectors = conf->chunk_sectors;
6024         conf->chunk_sectors = mddev->new_chunk_sectors;
6025         conf->prev_algo = conf->algorithm;
6026         conf->algorithm = mddev->new_layout;
6027         conf->generation++;
6028         /* Code that selects data_offset needs to see the generation update
6029          * if reshape_progress has been set - so a memory barrier needed.
6030          */
6031         smp_mb();
6032         if (mddev->reshape_backwards)
6033                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6034         else
6035                 conf->reshape_progress = 0;
6036         conf->reshape_safe = conf->reshape_progress;
6037         spin_unlock_irq(&conf->device_lock);
6038
6039         /* Add some new drives, as many as will fit.
6040          * We know there are enough to make the newly sized array work.
6041          * Don't add devices if we are reducing the number of
6042          * devices in the array.  This is because it is not possible
6043          * to correctly record the "partially reconstructed" state of
6044          * such devices during the reshape and confusion could result.
6045          */
6046         if (mddev->delta_disks >= 0) {
6047                 rdev_for_each(rdev, mddev)
6048                         if (rdev->raid_disk < 0 &&
6049                             !test_bit(Faulty, &rdev->flags)) {
6050                                 if (raid5_add_disk(mddev, rdev) == 0) {
6051                                         if (rdev->raid_disk
6052                                             >= conf->previous_raid_disks)
6053                                                 set_bit(In_sync, &rdev->flags);
6054                                         else
6055                                                 rdev->recovery_offset = 0;
6056
6057                                         if (sysfs_link_rdev(mddev, rdev))
6058                                                 /* Failure here is OK */;
6059                                 }
6060                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6061                                    && !test_bit(Faulty, &rdev->flags)) {
6062                                 /* This is a spare that was manually added */
6063                                 set_bit(In_sync, &rdev->flags);
6064                         }
6065
6066                 /* When a reshape changes the number of devices,
6067                  * ->degraded is measured against the larger of the
6068                  * pre and post number of devices.
6069                  */
6070                 spin_lock_irqsave(&conf->device_lock, flags);
6071                 mddev->degraded = calc_degraded(conf);
6072                 spin_unlock_irqrestore(&conf->device_lock, flags);
6073         }
6074         mddev->raid_disks = conf->raid_disks;
6075         mddev->reshape_position = conf->reshape_progress;
6076         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6077
6078         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6079         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6080         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6081         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6082         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6083                                                 "reshape");
6084         if (!mddev->sync_thread) {
6085                 mddev->recovery = 0;
6086                 spin_lock_irq(&conf->device_lock);
6087                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6088                 rdev_for_each(rdev, mddev)
6089                         rdev->new_data_offset = rdev->data_offset;
6090                 smp_wmb();
6091                 conf->reshape_progress = MaxSector;
6092                 mddev->reshape_position = MaxSector;
6093                 spin_unlock_irq(&conf->device_lock);
6094                 return -EAGAIN;
6095         }
6096         conf->reshape_checkpoint = jiffies;
6097         md_wakeup_thread(mddev->sync_thread);
6098         md_new_event(mddev);
6099         return 0;
6100 }
6101
6102 /* This is called from the reshape thread and should make any
6103  * changes needed in 'conf'
6104  */
6105 static void end_reshape(struct r5conf *conf)
6106 {
6107
6108         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6109                 struct md_rdev *rdev;
6110
6111                 spin_lock_irq(&conf->device_lock);
6112                 conf->previous_raid_disks = conf->raid_disks;
6113                 rdev_for_each(rdev, conf->mddev)
6114                         rdev->data_offset = rdev->new_data_offset;
6115                 smp_wmb();
6116                 conf->reshape_progress = MaxSector;
6117                 spin_unlock_irq(&conf->device_lock);
6118                 wake_up(&conf->wait_for_overlap);
6119
6120                 /* read-ahead size must cover two whole stripes, which is
6121                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6122                  */
6123                 if (conf->mddev->queue) {
6124                         int data_disks = conf->raid_disks - conf->max_degraded;
6125                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6126                                                    / PAGE_SIZE);
6127                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6128                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6129                 }
6130         }
6131 }
6132
6133 /* This is called from the raid5d thread with mddev_lock held.
6134  * It makes config changes to the device.
6135  */
6136 static void raid5_finish_reshape(struct mddev *mddev)
6137 {
6138         struct r5conf *conf = mddev->private;
6139
6140         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6141
6142                 if (mddev->delta_disks > 0) {
6143                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6144                         set_capacity(mddev->gendisk, mddev->array_sectors);
6145                         revalidate_disk(mddev->gendisk);
6146                 } else {
6147                         int d;
6148                         spin_lock_irq(&conf->device_lock);
6149                         mddev->degraded = calc_degraded(conf);
6150                         spin_unlock_irq(&conf->device_lock);
6151                         for (d = conf->raid_disks ;
6152                              d < conf->raid_disks - mddev->delta_disks;
6153                              d++) {
6154                                 struct md_rdev *rdev = conf->disks[d].rdev;
6155                                 if (rdev)
6156                                         clear_bit(In_sync, &rdev->flags);
6157                                 rdev = conf->disks[d].replacement;
6158                                 if (rdev)
6159                                         clear_bit(In_sync, &rdev->flags);
6160                         }
6161                 }
6162                 mddev->layout = conf->algorithm;
6163                 mddev->chunk_sectors = conf->chunk_sectors;
6164                 mddev->reshape_position = MaxSector;
6165                 mddev->delta_disks = 0;
6166                 mddev->reshape_backwards = 0;
6167         }
6168 }
6169
6170 static void raid5_quiesce(struct mddev *mddev, int state)
6171 {
6172         struct r5conf *conf = mddev->private;
6173
6174         switch(state) {
6175         case 2: /* resume for a suspend */
6176                 wake_up(&conf->wait_for_overlap);
6177                 break;
6178
6179         case 1: /* stop all writes */
6180                 spin_lock_irq(&conf->device_lock);
6181                 /* '2' tells resync/reshape to pause so that all
6182                  * active stripes can drain
6183                  */
6184                 conf->quiesce = 2;
6185                 wait_event_lock_irq(conf->wait_for_stripe,
6186                                     atomic_read(&conf->active_stripes) == 0 &&
6187                                     atomic_read(&conf->active_aligned_reads) == 0,
6188                                     conf->device_lock);
6189                 conf->quiesce = 1;
6190                 spin_unlock_irq(&conf->device_lock);
6191                 /* allow reshape to continue */
6192                 wake_up(&conf->wait_for_overlap);
6193                 break;
6194
6195         case 0: /* re-enable writes */
6196                 spin_lock_irq(&conf->device_lock);
6197                 conf->quiesce = 0;
6198                 wake_up(&conf->wait_for_stripe);
6199                 wake_up(&conf->wait_for_overlap);
6200                 spin_unlock_irq(&conf->device_lock);
6201                 break;
6202         }
6203 }
6204
6205
6206 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6207 {
6208         struct r0conf *raid0_conf = mddev->private;
6209         sector_t sectors;
6210
6211         /* for raid0 takeover only one zone is supported */
6212         if (raid0_conf->nr_strip_zones > 1) {
6213                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6214                        mdname(mddev));
6215                 return ERR_PTR(-EINVAL);
6216         }
6217
6218         sectors = raid0_conf->strip_zone[0].zone_end;
6219         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6220         mddev->dev_sectors = sectors;
6221         mddev->new_level = level;
6222         mddev->new_layout = ALGORITHM_PARITY_N;
6223         mddev->new_chunk_sectors = mddev->chunk_sectors;
6224         mddev->raid_disks += 1;
6225         mddev->delta_disks = 1;
6226         /* make sure it will be not marked as dirty */
6227         mddev->recovery_cp = MaxSector;
6228
6229         return setup_conf(mddev);
6230 }
6231
6232
6233 static void *raid5_takeover_raid1(struct mddev *mddev)
6234 {
6235         int chunksect;
6236
6237         if (mddev->raid_disks != 2 ||
6238             mddev->degraded > 1)
6239                 return ERR_PTR(-EINVAL);
6240
6241         /* Should check if there are write-behind devices? */
6242
6243         chunksect = 64*2; /* 64K by default */
6244
6245         /* The array must be an exact multiple of chunksize */
6246         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6247                 chunksect >>= 1;
6248
6249         if ((chunksect<<9) < STRIPE_SIZE)
6250                 /* array size does not allow a suitable chunk size */
6251                 return ERR_PTR(-EINVAL);
6252
6253         mddev->new_level = 5;
6254         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6255         mddev->new_chunk_sectors = chunksect;
6256
6257         return setup_conf(mddev);
6258 }
6259
6260 static void *raid5_takeover_raid6(struct mddev *mddev)
6261 {
6262         int new_layout;
6263
6264         switch (mddev->layout) {
6265         case ALGORITHM_LEFT_ASYMMETRIC_6:
6266                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6267                 break;
6268         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6269                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6270                 break;
6271         case ALGORITHM_LEFT_SYMMETRIC_6:
6272                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6273                 break;
6274         case ALGORITHM_RIGHT_SYMMETRIC_6:
6275                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6276                 break;
6277         case ALGORITHM_PARITY_0_6:
6278                 new_layout = ALGORITHM_PARITY_0;
6279                 break;
6280         case ALGORITHM_PARITY_N:
6281                 new_layout = ALGORITHM_PARITY_N;
6282                 break;
6283         default:
6284                 return ERR_PTR(-EINVAL);
6285         }
6286         mddev->new_level = 5;
6287         mddev->new_layout = new_layout;
6288         mddev->delta_disks = -1;
6289         mddev->raid_disks -= 1;
6290         return setup_conf(mddev);
6291 }
6292
6293
6294 static int raid5_check_reshape(struct mddev *mddev)
6295 {
6296         /* For a 2-drive array, the layout and chunk size can be changed
6297          * immediately as not restriping is needed.
6298          * For larger arrays we record the new value - after validation
6299          * to be used by a reshape pass.
6300          */
6301         struct r5conf *conf = mddev->private;
6302         int new_chunk = mddev->new_chunk_sectors;
6303
6304         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6305                 return -EINVAL;
6306         if (new_chunk > 0) {
6307                 if (!is_power_of_2(new_chunk))
6308                         return -EINVAL;
6309                 if (new_chunk < (PAGE_SIZE>>9))
6310                         return -EINVAL;
6311                 if (mddev->array_sectors & (new_chunk-1))
6312                         /* not factor of array size */
6313                         return -EINVAL;
6314         }
6315
6316         /* They look valid */
6317
6318         if (mddev->raid_disks == 2) {
6319                 /* can make the change immediately */
6320                 if (mddev->new_layout >= 0) {
6321                         conf->algorithm = mddev->new_layout;
6322                         mddev->layout = mddev->new_layout;
6323                 }
6324                 if (new_chunk > 0) {
6325                         conf->chunk_sectors = new_chunk ;
6326                         mddev->chunk_sectors = new_chunk;
6327                 }
6328                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6329                 md_wakeup_thread(mddev->thread);
6330         }
6331         return check_reshape(mddev);
6332 }
6333
6334 static int raid6_check_reshape(struct mddev *mddev)
6335 {
6336         int new_chunk = mddev->new_chunk_sectors;
6337
6338         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6339                 return -EINVAL;
6340         if (new_chunk > 0) {
6341                 if (!is_power_of_2(new_chunk))
6342                         return -EINVAL;
6343                 if (new_chunk < (PAGE_SIZE >> 9))
6344                         return -EINVAL;
6345                 if (mddev->array_sectors & (new_chunk-1))
6346                         /* not factor of array size */
6347                         return -EINVAL;
6348         }
6349
6350         /* They look valid */
6351         return check_reshape(mddev);
6352 }
6353
6354 static void *raid5_takeover(struct mddev *mddev)
6355 {
6356         /* raid5 can take over:
6357          *  raid0 - if there is only one strip zone - make it a raid4 layout
6358          *  raid1 - if there are two drives.  We need to know the chunk size
6359          *  raid4 - trivial - just use a raid4 layout.
6360          *  raid6 - Providing it is a *_6 layout
6361          */
6362         if (mddev->level == 0)
6363                 return raid45_takeover_raid0(mddev, 5);
6364         if (mddev->level == 1)
6365                 return raid5_takeover_raid1(mddev);
6366         if (mddev->level == 4) {
6367                 mddev->new_layout = ALGORITHM_PARITY_N;
6368                 mddev->new_level = 5;
6369                 return setup_conf(mddev);
6370         }
6371         if (mddev->level == 6)
6372                 return raid5_takeover_raid6(mddev);
6373
6374         return ERR_PTR(-EINVAL);
6375 }
6376
6377 static void *raid4_takeover(struct mddev *mddev)
6378 {
6379         /* raid4 can take over:
6380          *  raid0 - if there is only one strip zone
6381          *  raid5 - if layout is right
6382          */
6383         if (mddev->level == 0)
6384                 return raid45_takeover_raid0(mddev, 4);
6385         if (mddev->level == 5 &&
6386             mddev->layout == ALGORITHM_PARITY_N) {
6387                 mddev->new_layout = 0;
6388                 mddev->new_level = 4;
6389                 return setup_conf(mddev);
6390         }
6391         return ERR_PTR(-EINVAL);
6392 }
6393
6394 static struct md_personality raid5_personality;
6395
6396 static void *raid6_takeover(struct mddev *mddev)
6397 {
6398         /* Currently can only take over a raid5.  We map the
6399          * personality to an equivalent raid6 personality
6400          * with the Q block at the end.
6401          */
6402         int new_layout;
6403
6404         if (mddev->pers != &raid5_personality)
6405                 return ERR_PTR(-EINVAL);
6406         if (mddev->degraded > 1)
6407                 return ERR_PTR(-EINVAL);
6408         if (mddev->raid_disks > 253)
6409                 return ERR_PTR(-EINVAL);
6410         if (mddev->raid_disks < 3)
6411                 return ERR_PTR(-EINVAL);
6412
6413         switch (mddev->layout) {
6414         case ALGORITHM_LEFT_ASYMMETRIC:
6415                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6416                 break;
6417         case ALGORITHM_RIGHT_ASYMMETRIC:
6418                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6419                 break;
6420         case ALGORITHM_LEFT_SYMMETRIC:
6421                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6422                 break;
6423         case ALGORITHM_RIGHT_SYMMETRIC:
6424                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6425                 break;
6426         case ALGORITHM_PARITY_0:
6427                 new_layout = ALGORITHM_PARITY_0_6;
6428                 break;
6429         case ALGORITHM_PARITY_N:
6430                 new_layout = ALGORITHM_PARITY_N;
6431                 break;
6432         default:
6433                 return ERR_PTR(-EINVAL);
6434         }
6435         mddev->new_level = 6;
6436         mddev->new_layout = new_layout;
6437         mddev->delta_disks = 1;
6438         mddev->raid_disks += 1;
6439         return setup_conf(mddev);
6440 }
6441
6442
6443 static struct md_personality raid6_personality =
6444 {
6445         .name           = "raid6",
6446         .level          = 6,
6447         .owner          = THIS_MODULE,
6448         .make_request   = make_request,
6449         .run            = run,
6450         .stop           = stop,
6451         .status         = status,
6452         .error_handler  = error,
6453         .hot_add_disk   = raid5_add_disk,
6454         .hot_remove_disk= raid5_remove_disk,
6455         .spare_active   = raid5_spare_active,
6456         .sync_request   = sync_request,
6457         .resize         = raid5_resize,
6458         .size           = raid5_size,
6459         .check_reshape  = raid6_check_reshape,
6460         .start_reshape  = raid5_start_reshape,
6461         .finish_reshape = raid5_finish_reshape,
6462         .quiesce        = raid5_quiesce,
6463         .takeover       = raid6_takeover,
6464 };
6465 static struct md_personality raid5_personality =
6466 {
6467         .name           = "raid5",
6468         .level          = 5,
6469         .owner          = THIS_MODULE,
6470         .make_request   = make_request,
6471         .run            = run,
6472         .stop           = stop,
6473         .status         = status,
6474         .error_handler  = error,
6475         .hot_add_disk   = raid5_add_disk,
6476         .hot_remove_disk= raid5_remove_disk,
6477         .spare_active   = raid5_spare_active,
6478         .sync_request   = sync_request,
6479         .resize         = raid5_resize,
6480         .size           = raid5_size,
6481         .check_reshape  = raid5_check_reshape,
6482         .start_reshape  = raid5_start_reshape,
6483         .finish_reshape = raid5_finish_reshape,
6484         .quiesce        = raid5_quiesce,
6485         .takeover       = raid5_takeover,
6486 };
6487
6488 static struct md_personality raid4_personality =
6489 {
6490         .name           = "raid4",
6491         .level          = 4,
6492         .owner          = THIS_MODULE,
6493         .make_request   = make_request,
6494         .run            = run,
6495         .stop           = stop,
6496         .status         = status,
6497         .error_handler  = error,
6498         .hot_add_disk   = raid5_add_disk,
6499         .hot_remove_disk= raid5_remove_disk,
6500         .spare_active   = raid5_spare_active,
6501         .sync_request   = sync_request,
6502         .resize         = raid5_resize,
6503         .size           = raid5_size,
6504         .check_reshape  = raid5_check_reshape,
6505         .start_reshape  = raid5_start_reshape,
6506         .finish_reshape = raid5_finish_reshape,
6507         .quiesce        = raid5_quiesce,
6508         .takeover       = raid4_takeover,
6509 };
6510
6511 static int __init raid5_init(void)
6512 {
6513         register_md_personality(&raid6_personality);
6514         register_md_personality(&raid5_personality);
6515         register_md_personality(&raid4_personality);
6516         return 0;
6517 }
6518
6519 static void raid5_exit(void)
6520 {
6521         unregister_md_personality(&raid6_personality);
6522         unregister_md_personality(&raid5_personality);
6523         unregister_md_personality(&raid4_personality);
6524 }
6525
6526 module_init(raid5_init);
6527 module_exit(raid5_exit);
6528 MODULE_LICENSE("GPL");
6529 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6530 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6531 MODULE_ALIAS("md-raid5");
6532 MODULE_ALIAS("md-raid4");
6533 MODULE_ALIAS("md-level-5");
6534 MODULE_ALIAS("md-level-4");
6535 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6536 MODULE_ALIAS("md-raid6");
6537 MODULE_ALIAS("md-level-6");
6538
6539 /* This used to be two separate modules, they were: */
6540 MODULE_ALIAS("raid5");
6541 MODULE_ALIAS("raid6");