i2c: rockchip: fix power off issue for rk818
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 static bool devices_handle_discard_safely = false;
64 module_param(devices_handle_discard_safely, bool, 0644);
65 MODULE_PARM_DESC(devices_handle_discard_safely,
66                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
67 /*
68  * Stripe cache
69  */
70
71 #define NR_STRIPES              256
72 #define STRIPE_SIZE             PAGE_SIZE
73 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
74 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
75 #define IO_THRESHOLD            1
76 #define BYPASS_THRESHOLD        1
77 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
78 #define HASH_MASK               (NR_HASH - 1)
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83         return &conf->stripe_hashtbl[hash];
84 }
85
86 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
87  * order without overlap.  There may be several bio's per stripe+device, and
88  * a bio could span several devices.
89  * When walking this list for a particular stripe+device, we must never proceed
90  * beyond a bio that extends past this device, as the next bio might no longer
91  * be valid.
92  * This function is used to determine the 'next' bio in the list, given the sector
93  * of the current stripe+device
94  */
95 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
96 {
97         int sectors = bio_sectors(bio);
98         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
99                 return bio->bi_next;
100         else
101                 return NULL;
102 }
103
104 /*
105  * We maintain a biased count of active stripes in the bottom 16 bits of
106  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
107  */
108 static inline int raid5_bi_processed_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return (atomic_read(segments) >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         return atomic_sub_return(1, segments) & 0xffff;
118 }
119
120 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
121 {
122         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
123         atomic_inc(segments);
124 }
125
126 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
127         unsigned int cnt)
128 {
129         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
130         int old, new;
131
132         do {
133                 old = atomic_read(segments);
134                 new = (old & 0xffff) | (cnt << 16);
135         } while (atomic_cmpxchg(segments, old, new) != old);
136 }
137
138 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
139 {
140         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
141         atomic_set(segments, cnt);
142 }
143
144 /* Find first data disk in a raid6 stripe */
145 static inline int raid6_d0(struct stripe_head *sh)
146 {
147         if (sh->ddf_layout)
148                 /* ddf always start from first device */
149                 return 0;
150         /* md starts just after Q block */
151         if (sh->qd_idx == sh->disks - 1)
152                 return 0;
153         else
154                 return sh->qd_idx + 1;
155 }
156 static inline int raid6_next_disk(int disk, int raid_disks)
157 {
158         disk++;
159         return (disk < raid_disks) ? disk : 0;
160 }
161
162 /* When walking through the disks in a raid5, starting at raid6_d0,
163  * We need to map each disk to a 'slot', where the data disks are slot
164  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
165  * is raid_disks-1.  This help does that mapping.
166  */
167 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
168                              int *count, int syndrome_disks)
169 {
170         int slot = *count;
171
172         if (sh->ddf_layout)
173                 (*count)++;
174         if (idx == sh->pd_idx)
175                 return syndrome_disks;
176         if (idx == sh->qd_idx)
177                 return syndrome_disks + 1;
178         if (!sh->ddf_layout)
179                 (*count)++;
180         return slot;
181 }
182
183 static void return_io(struct bio *return_bi)
184 {
185         struct bio *bi = return_bi;
186         while (bi) {
187
188                 return_bi = bi->bi_next;
189                 bi->bi_next = NULL;
190                 bi->bi_size = 0;
191                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
192                                          bi, 0);
193                 bio_endio(bi, 0);
194                 bi = return_bi;
195         }
196 }
197
198 static void print_raid5_conf (struct r5conf *conf);
199
200 static int stripe_operations_active(struct stripe_head *sh)
201 {
202         return sh->check_state || sh->reconstruct_state ||
203                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
204                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
205 }
206
207 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
208 {
209         BUG_ON(!list_empty(&sh->lru));
210         BUG_ON(atomic_read(&conf->active_stripes)==0);
211         if (test_bit(STRIPE_HANDLE, &sh->state)) {
212                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
213                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214                         list_add_tail(&sh->lru, &conf->delayed_list);
215                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
216                            sh->bm_seq - conf->seq_write > 0)
217                         list_add_tail(&sh->lru, &conf->bitmap_list);
218                 else {
219                         clear_bit(STRIPE_DELAYED, &sh->state);
220                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
221                         list_add_tail(&sh->lru, &conf->handle_list);
222                 }
223                 md_wakeup_thread(conf->mddev->thread);
224         } else {
225                 BUG_ON(stripe_operations_active(sh));
226                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
227                         if (atomic_dec_return(&conf->preread_active_stripes)
228                             < IO_THRESHOLD)
229                                 md_wakeup_thread(conf->mddev->thread);
230                 atomic_dec(&conf->active_stripes);
231                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
232                         list_add_tail(&sh->lru, &conf->inactive_list);
233                         wake_up(&conf->wait_for_stripe);
234                         if (conf->retry_read_aligned)
235                                 md_wakeup_thread(conf->mddev->thread);
236                 }
237         }
238 }
239
240 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
241 {
242         if (atomic_dec_and_test(&sh->count))
243                 do_release_stripe(conf, sh);
244 }
245
246 static void release_stripe(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         unsigned long flags;
250
251         local_irq_save(flags);
252         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
253                 do_release_stripe(conf, sh);
254                 spin_unlock(&conf->device_lock);
255         }
256         local_irq_restore(flags);
257 }
258
259 static inline void remove_hash(struct stripe_head *sh)
260 {
261         pr_debug("remove_hash(), stripe %llu\n",
262                 (unsigned long long)sh->sector);
263
264         hlist_del_init(&sh->hash);
265 }
266
267 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
268 {
269         struct hlist_head *hp = stripe_hash(conf, sh->sector);
270
271         pr_debug("insert_hash(), stripe %llu\n",
272                 (unsigned long long)sh->sector);
273
274         hlist_add_head(&sh->hash, hp);
275 }
276
277
278 /* find an idle stripe, make sure it is unhashed, and return it. */
279 static struct stripe_head *get_free_stripe(struct r5conf *conf)
280 {
281         struct stripe_head *sh = NULL;
282         struct list_head *first;
283
284         if (list_empty(&conf->inactive_list))
285                 goto out;
286         first = conf->inactive_list.next;
287         sh = list_entry(first, struct stripe_head, lru);
288         list_del_init(first);
289         remove_hash(sh);
290         atomic_inc(&conf->active_stripes);
291 out:
292         return sh;
293 }
294
295 static void shrink_buffers(struct stripe_head *sh)
296 {
297         struct page *p;
298         int i;
299         int num = sh->raid_conf->pool_size;
300
301         for (i = 0; i < num ; i++) {
302                 p = sh->dev[i].page;
303                 if (!p)
304                         continue;
305                 sh->dev[i].page = NULL;
306                 put_page(p);
307         }
308 }
309
310 static int grow_buffers(struct stripe_head *sh)
311 {
312         int i;
313         int num = sh->raid_conf->pool_size;
314
315         for (i = 0; i < num; i++) {
316                 struct page *page;
317
318                 if (!(page = alloc_page(GFP_KERNEL))) {
319                         return 1;
320                 }
321                 sh->dev[i].page = page;
322         }
323         return 0;
324 }
325
326 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
327 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
328                             struct stripe_head *sh);
329
330 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
331 {
332         struct r5conf *conf = sh->raid_conf;
333         int i;
334
335         BUG_ON(atomic_read(&sh->count) != 0);
336         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
337         BUG_ON(stripe_operations_active(sh));
338
339         pr_debug("init_stripe called, stripe %llu\n",
340                 (unsigned long long)sh->sector);
341
342         remove_hash(sh);
343
344         sh->generation = conf->generation - previous;
345         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
346         sh->sector = sector;
347         stripe_set_idx(sector, conf, previous, sh);
348         sh->state = 0;
349
350
351         for (i = sh->disks; i--; ) {
352                 struct r5dev *dev = &sh->dev[i];
353
354                 if (dev->toread || dev->read || dev->towrite || dev->written ||
355                     test_bit(R5_LOCKED, &dev->flags)) {
356                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
357                                (unsigned long long)sh->sector, i, dev->toread,
358                                dev->read, dev->towrite, dev->written,
359                                test_bit(R5_LOCKED, &dev->flags));
360                         WARN_ON(1);
361                 }
362                 dev->flags = 0;
363                 raid5_build_block(sh, i, previous);
364         }
365         insert_hash(conf, sh);
366 }
367
368 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
369                                          short generation)
370 {
371         struct stripe_head *sh;
372
373         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
374         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
375                 if (sh->sector == sector && sh->generation == generation)
376                         return sh;
377         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
378         return NULL;
379 }
380
381 /*
382  * Need to check if array has failed when deciding whether to:
383  *  - start an array
384  *  - remove non-faulty devices
385  *  - add a spare
386  *  - allow a reshape
387  * This determination is simple when no reshape is happening.
388  * However if there is a reshape, we need to carefully check
389  * both the before and after sections.
390  * This is because some failed devices may only affect one
391  * of the two sections, and some non-in_sync devices may
392  * be insync in the section most affected by failed devices.
393  */
394 static int calc_degraded(struct r5conf *conf)
395 {
396         int degraded, degraded2;
397         int i;
398
399         rcu_read_lock();
400         degraded = 0;
401         for (i = 0; i < conf->previous_raid_disks; i++) {
402                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
403                 if (rdev && test_bit(Faulty, &rdev->flags))
404                         rdev = rcu_dereference(conf->disks[i].replacement);
405                 if (!rdev || test_bit(Faulty, &rdev->flags))
406                         degraded++;
407                 else if (test_bit(In_sync, &rdev->flags))
408                         ;
409                 else
410                         /* not in-sync or faulty.
411                          * If the reshape increases the number of devices,
412                          * this is being recovered by the reshape, so
413                          * this 'previous' section is not in_sync.
414                          * If the number of devices is being reduced however,
415                          * the device can only be part of the array if
416                          * we are reverting a reshape, so this section will
417                          * be in-sync.
418                          */
419                         if (conf->raid_disks >= conf->previous_raid_disks)
420                                 degraded++;
421         }
422         rcu_read_unlock();
423         if (conf->raid_disks == conf->previous_raid_disks)
424                 return degraded;
425         rcu_read_lock();
426         degraded2 = 0;
427         for (i = 0; i < conf->raid_disks; i++) {
428                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
429                 if (rdev && test_bit(Faulty, &rdev->flags))
430                         rdev = rcu_dereference(conf->disks[i].replacement);
431                 if (!rdev || test_bit(Faulty, &rdev->flags))
432                         degraded2++;
433                 else if (test_bit(In_sync, &rdev->flags))
434                         ;
435                 else
436                         /* not in-sync or faulty.
437                          * If reshape increases the number of devices, this
438                          * section has already been recovered, else it
439                          * almost certainly hasn't.
440                          */
441                         if (conf->raid_disks <= conf->previous_raid_disks)
442                                 degraded2++;
443         }
444         rcu_read_unlock();
445         if (degraded2 > degraded)
446                 return degraded2;
447         return degraded;
448 }
449
450 static int has_failed(struct r5conf *conf)
451 {
452         int degraded;
453
454         if (conf->mddev->reshape_position == MaxSector)
455                 return conf->mddev->degraded > conf->max_degraded;
456
457         degraded = calc_degraded(conf);
458         if (degraded > conf->max_degraded)
459                 return 1;
460         return 0;
461 }
462
463 static struct stripe_head *
464 get_active_stripe(struct r5conf *conf, sector_t sector,
465                   int previous, int noblock, int noquiesce)
466 {
467         struct stripe_head *sh;
468
469         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
470
471         spin_lock_irq(&conf->device_lock);
472
473         do {
474                 wait_event_lock_irq(conf->wait_for_stripe,
475                                     conf->quiesce == 0 || noquiesce,
476                                     conf->device_lock);
477                 sh = __find_stripe(conf, sector, conf->generation - previous);
478                 if (!sh) {
479                         if (!conf->inactive_blocked)
480                                 sh = get_free_stripe(conf);
481                         if (noblock && sh == NULL)
482                                 break;
483                         if (!sh) {
484                                 conf->inactive_blocked = 1;
485                                 wait_event_lock_irq(conf->wait_for_stripe,
486                                                     !list_empty(&conf->inactive_list) &&
487                                                     (atomic_read(&conf->active_stripes)
488                                                      < (conf->max_nr_stripes *3/4)
489                                                      || !conf->inactive_blocked),
490                                                     conf->device_lock);
491                                 conf->inactive_blocked = 0;
492                         } else
493                                 init_stripe(sh, sector, previous);
494                 } else {
495                         if (atomic_read(&sh->count)) {
496                                 BUG_ON(!list_empty(&sh->lru)
497                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
498                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
499                         } else {
500                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
501                                         atomic_inc(&conf->active_stripes);
502                                 if (list_empty(&sh->lru) &&
503                                     !test_bit(STRIPE_EXPANDING, &sh->state))
504                                         BUG();
505                                 list_del_init(&sh->lru);
506                         }
507                 }
508         } while (sh == NULL);
509
510         if (sh)
511                 atomic_inc(&sh->count);
512
513         spin_unlock_irq(&conf->device_lock);
514         return sh;
515 }
516
517 /* Determine if 'data_offset' or 'new_data_offset' should be used
518  * in this stripe_head.
519  */
520 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
521 {
522         sector_t progress = conf->reshape_progress;
523         /* Need a memory barrier to make sure we see the value
524          * of conf->generation, or ->data_offset that was set before
525          * reshape_progress was updated.
526          */
527         smp_rmb();
528         if (progress == MaxSector)
529                 return 0;
530         if (sh->generation == conf->generation - 1)
531                 return 0;
532         /* We are in a reshape, and this is a new-generation stripe,
533          * so use new_data_offset.
534          */
535         return 1;
536 }
537
538 static void
539 raid5_end_read_request(struct bio *bi, int error);
540 static void
541 raid5_end_write_request(struct bio *bi, int error);
542
543 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
544 {
545         struct r5conf *conf = sh->raid_conf;
546         int i, disks = sh->disks;
547
548         might_sleep();
549
550         for (i = disks; i--; ) {
551                 int rw;
552                 int replace_only = 0;
553                 struct bio *bi, *rbi;
554                 struct md_rdev *rdev, *rrdev = NULL;
555                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
556                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
557                                 rw = WRITE_FUA;
558                         else
559                                 rw = WRITE;
560                         if (test_bit(R5_Discard, &sh->dev[i].flags))
561                                 rw |= REQ_DISCARD;
562                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
563                         rw = READ;
564                 else if (test_and_clear_bit(R5_WantReplace,
565                                             &sh->dev[i].flags)) {
566                         rw = WRITE;
567                         replace_only = 1;
568                 } else
569                         continue;
570                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
571                         rw |= REQ_SYNC;
572
573                 bi = &sh->dev[i].req;
574                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
575
576                 rcu_read_lock();
577                 rrdev = rcu_dereference(conf->disks[i].replacement);
578                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
579                 rdev = rcu_dereference(conf->disks[i].rdev);
580                 if (!rdev) {
581                         rdev = rrdev;
582                         rrdev = NULL;
583                 }
584                 if (rw & WRITE) {
585                         if (replace_only)
586                                 rdev = NULL;
587                         if (rdev == rrdev)
588                                 /* We raced and saw duplicates */
589                                 rrdev = NULL;
590                 } else {
591                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
592                                 rdev = rrdev;
593                         rrdev = NULL;
594                 }
595
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = NULL;
598                 if (rdev)
599                         atomic_inc(&rdev->nr_pending);
600                 if (rrdev && test_bit(Faulty, &rrdev->flags))
601                         rrdev = NULL;
602                 if (rrdev)
603                         atomic_inc(&rrdev->nr_pending);
604                 rcu_read_unlock();
605
606                 /* We have already checked bad blocks for reads.  Now
607                  * need to check for writes.  We never accept write errors
608                  * on the replacement, so we don't to check rrdev.
609                  */
610                 while ((rw & WRITE) && rdev &&
611                        test_bit(WriteErrorSeen, &rdev->flags)) {
612                         sector_t first_bad;
613                         int bad_sectors;
614                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
615                                               &first_bad, &bad_sectors);
616                         if (!bad)
617                                 break;
618
619                         if (bad < 0) {
620                                 set_bit(BlockedBadBlocks, &rdev->flags);
621                                 if (!conf->mddev->external &&
622                                     conf->mddev->flags) {
623                                         /* It is very unlikely, but we might
624                                          * still need to write out the
625                                          * bad block log - better give it
626                                          * a chance*/
627                                         md_check_recovery(conf->mddev);
628                                 }
629                                 /*
630                                  * Because md_wait_for_blocked_rdev
631                                  * will dec nr_pending, we must
632                                  * increment it first.
633                                  */
634                                 atomic_inc(&rdev->nr_pending);
635                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
636                         } else {
637                                 /* Acknowledged bad block - skip the write */
638                                 rdev_dec_pending(rdev, conf->mddev);
639                                 rdev = NULL;
640                         }
641                 }
642
643                 if (rdev) {
644                         if (s->syncing || s->expanding || s->expanded
645                             || s->replacing)
646                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
647
648                         set_bit(STRIPE_IO_STARTED, &sh->state);
649
650                         bio_reset(bi);
651                         bi->bi_bdev = rdev->bdev;
652                         bi->bi_rw = rw;
653                         bi->bi_end_io = (rw & WRITE)
654                                 ? raid5_end_write_request
655                                 : raid5_end_read_request;
656                         bi->bi_private = sh;
657
658                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
659                                 __func__, (unsigned long long)sh->sector,
660                                 bi->bi_rw, i);
661                         atomic_inc(&sh->count);
662                         if (use_new_offset(conf, sh))
663                                 bi->bi_sector = (sh->sector
664                                                  + rdev->new_data_offset);
665                         else
666                                 bi->bi_sector = (sh->sector
667                                                  + rdev->data_offset);
668                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
669                                 bi->bi_rw |= REQ_FLUSH;
670
671                         bi->bi_vcnt = 1;
672                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
673                         bi->bi_io_vec[0].bv_offset = 0;
674                         bi->bi_size = STRIPE_SIZE;
675                         /*
676                          * If this is discard request, set bi_vcnt 0. We don't
677                          * want to confuse SCSI because SCSI will replace payload
678                          */
679                         if (rw & REQ_DISCARD)
680                                 bi->bi_vcnt = 0;
681                         if (rrdev)
682                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
683
684                         if (conf->mddev->gendisk)
685                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
686                                                       bi, disk_devt(conf->mddev->gendisk),
687                                                       sh->dev[i].sector);
688                         generic_make_request(bi);
689                 }
690                 if (rrdev) {
691                         if (s->syncing || s->expanding || s->expanded
692                             || s->replacing)
693                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
694
695                         set_bit(STRIPE_IO_STARTED, &sh->state);
696
697                         bio_reset(rbi);
698                         rbi->bi_bdev = rrdev->bdev;
699                         rbi->bi_rw = rw;
700                         BUG_ON(!(rw & WRITE));
701                         rbi->bi_end_io = raid5_end_write_request;
702                         rbi->bi_private = sh;
703
704                         pr_debug("%s: for %llu schedule op %ld on "
705                                  "replacement disc %d\n",
706                                 __func__, (unsigned long long)sh->sector,
707                                 rbi->bi_rw, i);
708                         atomic_inc(&sh->count);
709                         if (use_new_offset(conf, sh))
710                                 rbi->bi_sector = (sh->sector
711                                                   + rrdev->new_data_offset);
712                         else
713                                 rbi->bi_sector = (sh->sector
714                                                   + rrdev->data_offset);
715                         rbi->bi_vcnt = 1;
716                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
717                         rbi->bi_io_vec[0].bv_offset = 0;
718                         rbi->bi_size = STRIPE_SIZE;
719                         /*
720                          * If this is discard request, set bi_vcnt 0. We don't
721                          * want to confuse SCSI because SCSI will replace payload
722                          */
723                         if (rw & REQ_DISCARD)
724                                 rbi->bi_vcnt = 0;
725                         if (conf->mddev->gendisk)
726                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
727                                                       rbi, disk_devt(conf->mddev->gendisk),
728                                                       sh->dev[i].sector);
729                         generic_make_request(rbi);
730                 }
731                 if (!rdev && !rrdev) {
732                         if (rw & WRITE)
733                                 set_bit(STRIPE_DEGRADED, &sh->state);
734                         pr_debug("skip op %ld on disc %d for sector %llu\n",
735                                 bi->bi_rw, i, (unsigned long long)sh->sector);
736                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
737                         set_bit(STRIPE_HANDLE, &sh->state);
738                 }
739         }
740 }
741
742 static struct dma_async_tx_descriptor *
743 async_copy_data(int frombio, struct bio *bio, struct page *page,
744         sector_t sector, struct dma_async_tx_descriptor *tx)
745 {
746         struct bio_vec *bvl;
747         struct page *bio_page;
748         int i;
749         int page_offset;
750         struct async_submit_ctl submit;
751         enum async_tx_flags flags = 0;
752
753         if (bio->bi_sector >= sector)
754                 page_offset = (signed)(bio->bi_sector - sector) * 512;
755         else
756                 page_offset = (signed)(sector - bio->bi_sector) * -512;
757
758         if (frombio)
759                 flags |= ASYNC_TX_FENCE;
760         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
761
762         bio_for_each_segment(bvl, bio, i) {
763                 int len = bvl->bv_len;
764                 int clen;
765                 int b_offset = 0;
766
767                 if (page_offset < 0) {
768                         b_offset = -page_offset;
769                         page_offset += b_offset;
770                         len -= b_offset;
771                 }
772
773                 if (len > 0 && page_offset + len > STRIPE_SIZE)
774                         clen = STRIPE_SIZE - page_offset;
775                 else
776                         clen = len;
777
778                 if (clen > 0) {
779                         b_offset += bvl->bv_offset;
780                         bio_page = bvl->bv_page;
781                         if (frombio)
782                                 tx = async_memcpy(page, bio_page, page_offset,
783                                                   b_offset, clen, &submit);
784                         else
785                                 tx = async_memcpy(bio_page, page, b_offset,
786                                                   page_offset, clen, &submit);
787                 }
788                 /* chain the operations */
789                 submit.depend_tx = tx;
790
791                 if (clen < len) /* hit end of page */
792                         break;
793                 page_offset +=  len;
794         }
795
796         return tx;
797 }
798
799 static void ops_complete_biofill(void *stripe_head_ref)
800 {
801         struct stripe_head *sh = stripe_head_ref;
802         struct bio *return_bi = NULL;
803         int i;
804
805         pr_debug("%s: stripe %llu\n", __func__,
806                 (unsigned long long)sh->sector);
807
808         /* clear completed biofills */
809         for (i = sh->disks; i--; ) {
810                 struct r5dev *dev = &sh->dev[i];
811
812                 /* acknowledge completion of a biofill operation */
813                 /* and check if we need to reply to a read request,
814                  * new R5_Wantfill requests are held off until
815                  * !STRIPE_BIOFILL_RUN
816                  */
817                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
818                         struct bio *rbi, *rbi2;
819
820                         BUG_ON(!dev->read);
821                         rbi = dev->read;
822                         dev->read = NULL;
823                         while (rbi && rbi->bi_sector <
824                                 dev->sector + STRIPE_SECTORS) {
825                                 rbi2 = r5_next_bio(rbi, dev->sector);
826                                 if (!raid5_dec_bi_active_stripes(rbi)) {
827                                         rbi->bi_next = return_bi;
828                                         return_bi = rbi;
829                                 }
830                                 rbi = rbi2;
831                         }
832                 }
833         }
834         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
835
836         return_io(return_bi);
837
838         set_bit(STRIPE_HANDLE, &sh->state);
839         release_stripe(sh);
840 }
841
842 static void ops_run_biofill(struct stripe_head *sh)
843 {
844         struct dma_async_tx_descriptor *tx = NULL;
845         struct async_submit_ctl submit;
846         int i;
847
848         pr_debug("%s: stripe %llu\n", __func__,
849                 (unsigned long long)sh->sector);
850
851         for (i = sh->disks; i--; ) {
852                 struct r5dev *dev = &sh->dev[i];
853                 if (test_bit(R5_Wantfill, &dev->flags)) {
854                         struct bio *rbi;
855                         spin_lock_irq(&sh->stripe_lock);
856                         dev->read = rbi = dev->toread;
857                         dev->toread = NULL;
858                         spin_unlock_irq(&sh->stripe_lock);
859                         while (rbi && rbi->bi_sector <
860                                 dev->sector + STRIPE_SECTORS) {
861                                 tx = async_copy_data(0, rbi, dev->page,
862                                         dev->sector, tx);
863                                 rbi = r5_next_bio(rbi, dev->sector);
864                         }
865                 }
866         }
867
868         atomic_inc(&sh->count);
869         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
870         async_trigger_callback(&submit);
871 }
872
873 static void mark_target_uptodate(struct stripe_head *sh, int target)
874 {
875         struct r5dev *tgt;
876
877         if (target < 0)
878                 return;
879
880         tgt = &sh->dev[target];
881         set_bit(R5_UPTODATE, &tgt->flags);
882         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883         clear_bit(R5_Wantcompute, &tgt->flags);
884 }
885
886 static void ops_complete_compute(void *stripe_head_ref)
887 {
888         struct stripe_head *sh = stripe_head_ref;
889
890         pr_debug("%s: stripe %llu\n", __func__,
891                 (unsigned long long)sh->sector);
892
893         /* mark the computed target(s) as uptodate */
894         mark_target_uptodate(sh, sh->ops.target);
895         mark_target_uptodate(sh, sh->ops.target2);
896
897         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
898         if (sh->check_state == check_state_compute_run)
899                 sh->check_state = check_state_compute_result;
900         set_bit(STRIPE_HANDLE, &sh->state);
901         release_stripe(sh);
902 }
903
904 /* return a pointer to the address conversion region of the scribble buffer */
905 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
906                                  struct raid5_percpu *percpu)
907 {
908         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
909 }
910
911 static struct dma_async_tx_descriptor *
912 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
913 {
914         int disks = sh->disks;
915         struct page **xor_srcs = percpu->scribble;
916         int target = sh->ops.target;
917         struct r5dev *tgt = &sh->dev[target];
918         struct page *xor_dest = tgt->page;
919         int count = 0;
920         struct dma_async_tx_descriptor *tx;
921         struct async_submit_ctl submit;
922         int i;
923
924         pr_debug("%s: stripe %llu block: %d\n",
925                 __func__, (unsigned long long)sh->sector, target);
926         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
927
928         for (i = disks; i--; )
929                 if (i != target)
930                         xor_srcs[count++] = sh->dev[i].page;
931
932         atomic_inc(&sh->count);
933
934         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
935                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
936         if (unlikely(count == 1))
937                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
938         else
939                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
940
941         return tx;
942 }
943
944 /* set_syndrome_sources - populate source buffers for gen_syndrome
945  * @srcs - (struct page *) array of size sh->disks
946  * @sh - stripe_head to parse
947  *
948  * Populates srcs in proper layout order for the stripe and returns the
949  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
950  * destination buffer is recorded in srcs[count] and the Q destination
951  * is recorded in srcs[count+1]].
952  */
953 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
954 {
955         int disks = sh->disks;
956         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
957         int d0_idx = raid6_d0(sh);
958         int count;
959         int i;
960
961         for (i = 0; i < disks; i++)
962                 srcs[i] = NULL;
963
964         count = 0;
965         i = d0_idx;
966         do {
967                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
968
969                 srcs[slot] = sh->dev[i].page;
970                 i = raid6_next_disk(i, disks);
971         } while (i != d0_idx);
972
973         return syndrome_disks;
974 }
975
976 static struct dma_async_tx_descriptor *
977 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
978 {
979         int disks = sh->disks;
980         struct page **blocks = percpu->scribble;
981         int target;
982         int qd_idx = sh->qd_idx;
983         struct dma_async_tx_descriptor *tx;
984         struct async_submit_ctl submit;
985         struct r5dev *tgt;
986         struct page *dest;
987         int i;
988         int count;
989
990         if (sh->ops.target < 0)
991                 target = sh->ops.target2;
992         else if (sh->ops.target2 < 0)
993                 target = sh->ops.target;
994         else
995                 /* we should only have one valid target */
996                 BUG();
997         BUG_ON(target < 0);
998         pr_debug("%s: stripe %llu block: %d\n",
999                 __func__, (unsigned long long)sh->sector, target);
1000
1001         tgt = &sh->dev[target];
1002         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1003         dest = tgt->page;
1004
1005         atomic_inc(&sh->count);
1006
1007         if (target == qd_idx) {
1008                 count = set_syndrome_sources(blocks, sh);
1009                 blocks[count] = NULL; /* regenerating p is not necessary */
1010                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1011                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1012                                   ops_complete_compute, sh,
1013                                   to_addr_conv(sh, percpu));
1014                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1015         } else {
1016                 /* Compute any data- or p-drive using XOR */
1017                 count = 0;
1018                 for (i = disks; i-- ; ) {
1019                         if (i == target || i == qd_idx)
1020                                 continue;
1021                         blocks[count++] = sh->dev[i].page;
1022                 }
1023
1024                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1025                                   NULL, ops_complete_compute, sh,
1026                                   to_addr_conv(sh, percpu));
1027                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1028         }
1029
1030         return tx;
1031 }
1032
1033 static struct dma_async_tx_descriptor *
1034 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1035 {
1036         int i, count, disks = sh->disks;
1037         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1038         int d0_idx = raid6_d0(sh);
1039         int faila = -1, failb = -1;
1040         int target = sh->ops.target;
1041         int target2 = sh->ops.target2;
1042         struct r5dev *tgt = &sh->dev[target];
1043         struct r5dev *tgt2 = &sh->dev[target2];
1044         struct dma_async_tx_descriptor *tx;
1045         struct page **blocks = percpu->scribble;
1046         struct async_submit_ctl submit;
1047
1048         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1049                  __func__, (unsigned long long)sh->sector, target, target2);
1050         BUG_ON(target < 0 || target2 < 0);
1051         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1052         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1053
1054         /* we need to open-code set_syndrome_sources to handle the
1055          * slot number conversion for 'faila' and 'failb'
1056          */
1057         for (i = 0; i < disks ; i++)
1058                 blocks[i] = NULL;
1059         count = 0;
1060         i = d0_idx;
1061         do {
1062                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1063
1064                 blocks[slot] = sh->dev[i].page;
1065
1066                 if (i == target)
1067                         faila = slot;
1068                 if (i == target2)
1069                         failb = slot;
1070                 i = raid6_next_disk(i, disks);
1071         } while (i != d0_idx);
1072
1073         BUG_ON(faila == failb);
1074         if (failb < faila)
1075                 swap(faila, failb);
1076         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1077                  __func__, (unsigned long long)sh->sector, faila, failb);
1078
1079         atomic_inc(&sh->count);
1080
1081         if (failb == syndrome_disks+1) {
1082                 /* Q disk is one of the missing disks */
1083                 if (faila == syndrome_disks) {
1084                         /* Missing P+Q, just recompute */
1085                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1086                                           ops_complete_compute, sh,
1087                                           to_addr_conv(sh, percpu));
1088                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1089                                                   STRIPE_SIZE, &submit);
1090                 } else {
1091                         struct page *dest;
1092                         int data_target;
1093                         int qd_idx = sh->qd_idx;
1094
1095                         /* Missing D+Q: recompute D from P, then recompute Q */
1096                         if (target == qd_idx)
1097                                 data_target = target2;
1098                         else
1099                                 data_target = target;
1100
1101                         count = 0;
1102                         for (i = disks; i-- ; ) {
1103                                 if (i == data_target || i == qd_idx)
1104                                         continue;
1105                                 blocks[count++] = sh->dev[i].page;
1106                         }
1107                         dest = sh->dev[data_target].page;
1108                         init_async_submit(&submit,
1109                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1110                                           NULL, NULL, NULL,
1111                                           to_addr_conv(sh, percpu));
1112                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1113                                        &submit);
1114
1115                         count = set_syndrome_sources(blocks, sh);
1116                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1117                                           ops_complete_compute, sh,
1118                                           to_addr_conv(sh, percpu));
1119                         return async_gen_syndrome(blocks, 0, count+2,
1120                                                   STRIPE_SIZE, &submit);
1121                 }
1122         } else {
1123                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1124                                   ops_complete_compute, sh,
1125                                   to_addr_conv(sh, percpu));
1126                 if (failb == syndrome_disks) {
1127                         /* We're missing D+P. */
1128                         return async_raid6_datap_recov(syndrome_disks+2,
1129                                                        STRIPE_SIZE, faila,
1130                                                        blocks, &submit);
1131                 } else {
1132                         /* We're missing D+D. */
1133                         return async_raid6_2data_recov(syndrome_disks+2,
1134                                                        STRIPE_SIZE, faila, failb,
1135                                                        blocks, &submit);
1136                 }
1137         }
1138 }
1139
1140
1141 static void ops_complete_prexor(void *stripe_head_ref)
1142 {
1143         struct stripe_head *sh = stripe_head_ref;
1144
1145         pr_debug("%s: stripe %llu\n", __func__,
1146                 (unsigned long long)sh->sector);
1147 }
1148
1149 static struct dma_async_tx_descriptor *
1150 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1151                struct dma_async_tx_descriptor *tx)
1152 {
1153         int disks = sh->disks;
1154         struct page **xor_srcs = percpu->scribble;
1155         int count = 0, pd_idx = sh->pd_idx, i;
1156         struct async_submit_ctl submit;
1157
1158         /* existing parity data subtracted */
1159         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1160
1161         pr_debug("%s: stripe %llu\n", __func__,
1162                 (unsigned long long)sh->sector);
1163
1164         for (i = disks; i--; ) {
1165                 struct r5dev *dev = &sh->dev[i];
1166                 /* Only process blocks that are known to be uptodate */
1167                 if (test_bit(R5_Wantdrain, &dev->flags))
1168                         xor_srcs[count++] = dev->page;
1169         }
1170
1171         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1172                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1173         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1174
1175         return tx;
1176 }
1177
1178 static struct dma_async_tx_descriptor *
1179 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1180 {
1181         int disks = sh->disks;
1182         int i;
1183
1184         pr_debug("%s: stripe %llu\n", __func__,
1185                 (unsigned long long)sh->sector);
1186
1187         for (i = disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189                 struct bio *chosen;
1190
1191                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1192                         struct bio *wbi;
1193
1194                         spin_lock_irq(&sh->stripe_lock);
1195                         chosen = dev->towrite;
1196                         dev->towrite = NULL;
1197                         BUG_ON(dev->written);
1198                         wbi = dev->written = chosen;
1199                         spin_unlock_irq(&sh->stripe_lock);
1200
1201                         while (wbi && wbi->bi_sector <
1202                                 dev->sector + STRIPE_SECTORS) {
1203                                 if (wbi->bi_rw & REQ_FUA)
1204                                         set_bit(R5_WantFUA, &dev->flags);
1205                                 if (wbi->bi_rw & REQ_SYNC)
1206                                         set_bit(R5_SyncIO, &dev->flags);
1207                                 if (wbi->bi_rw & REQ_DISCARD)
1208                                         set_bit(R5_Discard, &dev->flags);
1209                                 else
1210                                         tx = async_copy_data(1, wbi, dev->page,
1211                                                 dev->sector, tx);
1212                                 wbi = r5_next_bio(wbi, dev->sector);
1213                         }
1214                 }
1215         }
1216
1217         return tx;
1218 }
1219
1220 static void ops_complete_reconstruct(void *stripe_head_ref)
1221 {
1222         struct stripe_head *sh = stripe_head_ref;
1223         int disks = sh->disks;
1224         int pd_idx = sh->pd_idx;
1225         int qd_idx = sh->qd_idx;
1226         int i;
1227         bool fua = false, sync = false, discard = false;
1228
1229         pr_debug("%s: stripe %llu\n", __func__,
1230                 (unsigned long long)sh->sector);
1231
1232         for (i = disks; i--; ) {
1233                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1234                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1235                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1236         }
1237
1238         for (i = disks; i--; ) {
1239                 struct r5dev *dev = &sh->dev[i];
1240
1241                 if (dev->written || i == pd_idx || i == qd_idx) {
1242                         if (!discard)
1243                                 set_bit(R5_UPTODATE, &dev->flags);
1244                         if (fua)
1245                                 set_bit(R5_WantFUA, &dev->flags);
1246                         if (sync)
1247                                 set_bit(R5_SyncIO, &dev->flags);
1248                 }
1249         }
1250
1251         if (sh->reconstruct_state == reconstruct_state_drain_run)
1252                 sh->reconstruct_state = reconstruct_state_drain_result;
1253         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1254                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1255         else {
1256                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1257                 sh->reconstruct_state = reconstruct_state_result;
1258         }
1259
1260         set_bit(STRIPE_HANDLE, &sh->state);
1261         release_stripe(sh);
1262 }
1263
1264 static void
1265 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1266                      struct dma_async_tx_descriptor *tx)
1267 {
1268         int disks = sh->disks;
1269         struct page **xor_srcs = percpu->scribble;
1270         struct async_submit_ctl submit;
1271         int count = 0, pd_idx = sh->pd_idx, i;
1272         struct page *xor_dest;
1273         int prexor = 0;
1274         unsigned long flags;
1275
1276         pr_debug("%s: stripe %llu\n", __func__,
1277                 (unsigned long long)sh->sector);
1278
1279         for (i = 0; i < sh->disks; i++) {
1280                 if (pd_idx == i)
1281                         continue;
1282                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1283                         break;
1284         }
1285         if (i >= sh->disks) {
1286                 atomic_inc(&sh->count);
1287                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1288                 ops_complete_reconstruct(sh);
1289                 return;
1290         }
1291         /* check if prexor is active which means only process blocks
1292          * that are part of a read-modify-write (written)
1293          */
1294         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1295                 prexor = 1;
1296                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1297                 for (i = disks; i--; ) {
1298                         struct r5dev *dev = &sh->dev[i];
1299                         if (dev->written)
1300                                 xor_srcs[count++] = dev->page;
1301                 }
1302         } else {
1303                 xor_dest = sh->dev[pd_idx].page;
1304                 for (i = disks; i--; ) {
1305                         struct r5dev *dev = &sh->dev[i];
1306                         if (i != pd_idx)
1307                                 xor_srcs[count++] = dev->page;
1308                 }
1309         }
1310
1311         /* 1/ if we prexor'd then the dest is reused as a source
1312          * 2/ if we did not prexor then we are redoing the parity
1313          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1314          * for the synchronous xor case
1315          */
1316         flags = ASYNC_TX_ACK |
1317                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1322                           to_addr_conv(sh, percpu));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327 }
1328
1329 static void
1330 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1331                      struct dma_async_tx_descriptor *tx)
1332 {
1333         struct async_submit_ctl submit;
1334         struct page **blocks = percpu->scribble;
1335         int count, i;
1336
1337         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1338
1339         for (i = 0; i < sh->disks; i++) {
1340                 if (sh->pd_idx == i || sh->qd_idx == i)
1341                         continue;
1342                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1343                         break;
1344         }
1345         if (i >= sh->disks) {
1346                 atomic_inc(&sh->count);
1347                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1348                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1349                 ops_complete_reconstruct(sh);
1350                 return;
1351         }
1352
1353         count = set_syndrome_sources(blocks, sh);
1354
1355         atomic_inc(&sh->count);
1356
1357         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1358                           sh, to_addr_conv(sh, percpu));
1359         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1360 }
1361
1362 static void ops_complete_check(void *stripe_head_ref)
1363 {
1364         struct stripe_head *sh = stripe_head_ref;
1365
1366         pr_debug("%s: stripe %llu\n", __func__,
1367                 (unsigned long long)sh->sector);
1368
1369         sh->check_state = check_state_check_result;
1370         set_bit(STRIPE_HANDLE, &sh->state);
1371         release_stripe(sh);
1372 }
1373
1374 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1375 {
1376         int disks = sh->disks;
1377         int pd_idx = sh->pd_idx;
1378         int qd_idx = sh->qd_idx;
1379         struct page *xor_dest;
1380         struct page **xor_srcs = percpu->scribble;
1381         struct dma_async_tx_descriptor *tx;
1382         struct async_submit_ctl submit;
1383         int count;
1384         int i;
1385
1386         pr_debug("%s: stripe %llu\n", __func__,
1387                 (unsigned long long)sh->sector);
1388
1389         count = 0;
1390         xor_dest = sh->dev[pd_idx].page;
1391         xor_srcs[count++] = xor_dest;
1392         for (i = disks; i--; ) {
1393                 if (i == pd_idx || i == qd_idx)
1394                         continue;
1395                 xor_srcs[count++] = sh->dev[i].page;
1396         }
1397
1398         init_async_submit(&submit, 0, NULL, NULL, NULL,
1399                           to_addr_conv(sh, percpu));
1400         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1401                            &sh->ops.zero_sum_result, &submit);
1402
1403         atomic_inc(&sh->count);
1404         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1405         tx = async_trigger_callback(&submit);
1406 }
1407
1408 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1409 {
1410         struct page **srcs = percpu->scribble;
1411         struct async_submit_ctl submit;
1412         int count;
1413
1414         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1415                 (unsigned long long)sh->sector, checkp);
1416
1417         count = set_syndrome_sources(srcs, sh);
1418         if (!checkp)
1419                 srcs[count] = NULL;
1420
1421         atomic_inc(&sh->count);
1422         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1423                           sh, to_addr_conv(sh, percpu));
1424         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1425                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1426 }
1427
1428 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1429 {
1430         int overlap_clear = 0, i, disks = sh->disks;
1431         struct dma_async_tx_descriptor *tx = NULL;
1432         struct r5conf *conf = sh->raid_conf;
1433         int level = conf->level;
1434         struct raid5_percpu *percpu;
1435         unsigned long cpu;
1436
1437         cpu = get_cpu();
1438         percpu = per_cpu_ptr(conf->percpu, cpu);
1439         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1440                 ops_run_biofill(sh);
1441                 overlap_clear++;
1442         }
1443
1444         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1445                 if (level < 6)
1446                         tx = ops_run_compute5(sh, percpu);
1447                 else {
1448                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1449                                 tx = ops_run_compute6_1(sh, percpu);
1450                         else
1451                                 tx = ops_run_compute6_2(sh, percpu);
1452                 }
1453                 /* terminate the chain if reconstruct is not set to be run */
1454                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1455                         async_tx_ack(tx);
1456         }
1457
1458         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1459                 tx = ops_run_prexor(sh, percpu, tx);
1460
1461         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1462                 tx = ops_run_biodrain(sh, tx);
1463                 overlap_clear++;
1464         }
1465
1466         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1467                 if (level < 6)
1468                         ops_run_reconstruct5(sh, percpu, tx);
1469                 else
1470                         ops_run_reconstruct6(sh, percpu, tx);
1471         }
1472
1473         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1474                 if (sh->check_state == check_state_run)
1475                         ops_run_check_p(sh, percpu);
1476                 else if (sh->check_state == check_state_run_q)
1477                         ops_run_check_pq(sh, percpu, 0);
1478                 else if (sh->check_state == check_state_run_pq)
1479                         ops_run_check_pq(sh, percpu, 1);
1480                 else
1481                         BUG();
1482         }
1483
1484         if (overlap_clear)
1485                 for (i = disks; i--; ) {
1486                         struct r5dev *dev = &sh->dev[i];
1487                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1488                                 wake_up(&sh->raid_conf->wait_for_overlap);
1489                 }
1490         put_cpu();
1491 }
1492
1493 static int grow_one_stripe(struct r5conf *conf)
1494 {
1495         struct stripe_head *sh;
1496         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1497         if (!sh)
1498                 return 0;
1499
1500         sh->raid_conf = conf;
1501
1502         spin_lock_init(&sh->stripe_lock);
1503
1504         if (grow_buffers(sh)) {
1505                 shrink_buffers(sh);
1506                 kmem_cache_free(conf->slab_cache, sh);
1507                 return 0;
1508         }
1509         /* we just created an active stripe so... */
1510         atomic_set(&sh->count, 1);
1511         atomic_inc(&conf->active_stripes);
1512         INIT_LIST_HEAD(&sh->lru);
1513         release_stripe(sh);
1514         return 1;
1515 }
1516
1517 static int grow_stripes(struct r5conf *conf, int num)
1518 {
1519         struct kmem_cache *sc;
1520         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1521
1522         if (conf->mddev->gendisk)
1523                 sprintf(conf->cache_name[0],
1524                         "raid%d-%s", conf->level, mdname(conf->mddev));
1525         else
1526                 sprintf(conf->cache_name[0],
1527                         "raid%d-%p", conf->level, conf->mddev);
1528         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1529
1530         conf->active_name = 0;
1531         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1532                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1533                                0, 0, NULL);
1534         if (!sc)
1535                 return 1;
1536         conf->slab_cache = sc;
1537         conf->pool_size = devs;
1538         while (num--)
1539                 if (!grow_one_stripe(conf))
1540                         return 1;
1541         return 0;
1542 }
1543
1544 /**
1545  * scribble_len - return the required size of the scribble region
1546  * @num - total number of disks in the array
1547  *
1548  * The size must be enough to contain:
1549  * 1/ a struct page pointer for each device in the array +2
1550  * 2/ room to convert each entry in (1) to its corresponding dma
1551  *    (dma_map_page()) or page (page_address()) address.
1552  *
1553  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1554  * calculate over all devices (not just the data blocks), using zeros in place
1555  * of the P and Q blocks.
1556  */
1557 static size_t scribble_len(int num)
1558 {
1559         size_t len;
1560
1561         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1562
1563         return len;
1564 }
1565
1566 static int resize_stripes(struct r5conf *conf, int newsize)
1567 {
1568         /* Make all the stripes able to hold 'newsize' devices.
1569          * New slots in each stripe get 'page' set to a new page.
1570          *
1571          * This happens in stages:
1572          * 1/ create a new kmem_cache and allocate the required number of
1573          *    stripe_heads.
1574          * 2/ gather all the old stripe_heads and transfer the pages across
1575          *    to the new stripe_heads.  This will have the side effect of
1576          *    freezing the array as once all stripe_heads have been collected,
1577          *    no IO will be possible.  Old stripe heads are freed once their
1578          *    pages have been transferred over, and the old kmem_cache is
1579          *    freed when all stripes are done.
1580          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1581          *    we simple return a failre status - no need to clean anything up.
1582          * 4/ allocate new pages for the new slots in the new stripe_heads.
1583          *    If this fails, we don't bother trying the shrink the
1584          *    stripe_heads down again, we just leave them as they are.
1585          *    As each stripe_head is processed the new one is released into
1586          *    active service.
1587          *
1588          * Once step2 is started, we cannot afford to wait for a write,
1589          * so we use GFP_NOIO allocations.
1590          */
1591         struct stripe_head *osh, *nsh;
1592         LIST_HEAD(newstripes);
1593         struct disk_info *ndisks;
1594         unsigned long cpu;
1595         int err;
1596         struct kmem_cache *sc;
1597         int i;
1598
1599         if (newsize <= conf->pool_size)
1600                 return 0; /* never bother to shrink */
1601
1602         err = md_allow_write(conf->mddev);
1603         if (err)
1604                 return err;
1605
1606         /* Step 1 */
1607         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1608                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1609                                0, 0, NULL);
1610         if (!sc)
1611                 return -ENOMEM;
1612
1613         for (i = conf->max_nr_stripes; i; i--) {
1614                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1615                 if (!nsh)
1616                         break;
1617
1618                 nsh->raid_conf = conf;
1619                 spin_lock_init(&nsh->stripe_lock);
1620
1621                 list_add(&nsh->lru, &newstripes);
1622         }
1623         if (i) {
1624                 /* didn't get enough, give up */
1625                 while (!list_empty(&newstripes)) {
1626                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1627                         list_del(&nsh->lru);
1628                         kmem_cache_free(sc, nsh);
1629                 }
1630                 kmem_cache_destroy(sc);
1631                 return -ENOMEM;
1632         }
1633         /* Step 2 - Must use GFP_NOIO now.
1634          * OK, we have enough stripes, start collecting inactive
1635          * stripes and copying them over
1636          */
1637         list_for_each_entry(nsh, &newstripes, lru) {
1638                 spin_lock_irq(&conf->device_lock);
1639                 wait_event_lock_irq(conf->wait_for_stripe,
1640                                     !list_empty(&conf->inactive_list),
1641                                     conf->device_lock);
1642                 osh = get_free_stripe(conf);
1643                 spin_unlock_irq(&conf->device_lock);
1644                 atomic_set(&nsh->count, 1);
1645                 for(i=0; i<conf->pool_size; i++)
1646                         nsh->dev[i].page = osh->dev[i].page;
1647                 for( ; i<newsize; i++)
1648                         nsh->dev[i].page = NULL;
1649                 kmem_cache_free(conf->slab_cache, osh);
1650         }
1651         kmem_cache_destroy(conf->slab_cache);
1652
1653         /* Step 3.
1654          * At this point, we are holding all the stripes so the array
1655          * is completely stalled, so now is a good time to resize
1656          * conf->disks and the scribble region
1657          */
1658         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1659         if (ndisks) {
1660                 for (i=0; i<conf->raid_disks; i++)
1661                         ndisks[i] = conf->disks[i];
1662                 kfree(conf->disks);
1663                 conf->disks = ndisks;
1664         } else
1665                 err = -ENOMEM;
1666
1667         get_online_cpus();
1668         conf->scribble_len = scribble_len(newsize);
1669         for_each_present_cpu(cpu) {
1670                 struct raid5_percpu *percpu;
1671                 void *scribble;
1672
1673                 percpu = per_cpu_ptr(conf->percpu, cpu);
1674                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1675
1676                 if (scribble) {
1677                         kfree(percpu->scribble);
1678                         percpu->scribble = scribble;
1679                 } else {
1680                         err = -ENOMEM;
1681                         break;
1682                 }
1683         }
1684         put_online_cpus();
1685
1686         /* Step 4, return new stripes to service */
1687         while(!list_empty(&newstripes)) {
1688                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1689                 list_del_init(&nsh->lru);
1690
1691                 for (i=conf->raid_disks; i < newsize; i++)
1692                         if (nsh->dev[i].page == NULL) {
1693                                 struct page *p = alloc_page(GFP_NOIO);
1694                                 nsh->dev[i].page = p;
1695                                 if (!p)
1696                                         err = -ENOMEM;
1697                         }
1698                 release_stripe(nsh);
1699         }
1700         /* critical section pass, GFP_NOIO no longer needed */
1701
1702         conf->slab_cache = sc;
1703         conf->active_name = 1-conf->active_name;
1704         if (!err)
1705                 conf->pool_size = newsize;
1706         return err;
1707 }
1708
1709 static int drop_one_stripe(struct r5conf *conf)
1710 {
1711         struct stripe_head *sh;
1712
1713         spin_lock_irq(&conf->device_lock);
1714         sh = get_free_stripe(conf);
1715         spin_unlock_irq(&conf->device_lock);
1716         if (!sh)
1717                 return 0;
1718         BUG_ON(atomic_read(&sh->count));
1719         shrink_buffers(sh);
1720         kmem_cache_free(conf->slab_cache, sh);
1721         atomic_dec(&conf->active_stripes);
1722         return 1;
1723 }
1724
1725 static void shrink_stripes(struct r5conf *conf)
1726 {
1727         while (drop_one_stripe(conf))
1728                 ;
1729
1730         if (conf->slab_cache)
1731                 kmem_cache_destroy(conf->slab_cache);
1732         conf->slab_cache = NULL;
1733 }
1734
1735 static void raid5_end_read_request(struct bio * bi, int error)
1736 {
1737         struct stripe_head *sh = bi->bi_private;
1738         struct r5conf *conf = sh->raid_conf;
1739         int disks = sh->disks, i;
1740         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1741         char b[BDEVNAME_SIZE];
1742         struct md_rdev *rdev = NULL;
1743         sector_t s;
1744
1745         for (i=0 ; i<disks; i++)
1746                 if (bi == &sh->dev[i].req)
1747                         break;
1748
1749         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1750                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1751                 uptodate);
1752         if (i == disks) {
1753                 BUG();
1754                 return;
1755         }
1756         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1757                 /* If replacement finished while this request was outstanding,
1758                  * 'replacement' might be NULL already.
1759                  * In that case it moved down to 'rdev'.
1760                  * rdev is not removed until all requests are finished.
1761                  */
1762                 rdev = conf->disks[i].replacement;
1763         if (!rdev)
1764                 rdev = conf->disks[i].rdev;
1765
1766         if (use_new_offset(conf, sh))
1767                 s = sh->sector + rdev->new_data_offset;
1768         else
1769                 s = sh->sector + rdev->data_offset;
1770         if (uptodate) {
1771                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1772                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1773                         /* Note that this cannot happen on a
1774                          * replacement device.  We just fail those on
1775                          * any error
1776                          */
1777                         printk_ratelimited(
1778                                 KERN_INFO
1779                                 "md/raid:%s: read error corrected"
1780                                 " (%lu sectors at %llu on %s)\n",
1781                                 mdname(conf->mddev), STRIPE_SECTORS,
1782                                 (unsigned long long)s,
1783                                 bdevname(rdev->bdev, b));
1784                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1785                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1786                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1787                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1788                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1789
1790                 if (atomic_read(&rdev->read_errors))
1791                         atomic_set(&rdev->read_errors, 0);
1792         } else {
1793                 const char *bdn = bdevname(rdev->bdev, b);
1794                 int retry = 0;
1795                 int set_bad = 0;
1796
1797                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1798                 atomic_inc(&rdev->read_errors);
1799                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1800                         printk_ratelimited(
1801                                 KERN_WARNING
1802                                 "md/raid:%s: read error on replacement device "
1803                                 "(sector %llu on %s).\n",
1804                                 mdname(conf->mddev),
1805                                 (unsigned long long)s,
1806                                 bdn);
1807                 else if (conf->mddev->degraded >= conf->max_degraded) {
1808                         set_bad = 1;
1809                         printk_ratelimited(
1810                                 KERN_WARNING
1811                                 "md/raid:%s: read error not correctable "
1812                                 "(sector %llu on %s).\n",
1813                                 mdname(conf->mddev),
1814                                 (unsigned long long)s,
1815                                 bdn);
1816                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1817                         /* Oh, no!!! */
1818                         set_bad = 1;
1819                         printk_ratelimited(
1820                                 KERN_WARNING
1821                                 "md/raid:%s: read error NOT corrected!! "
1822                                 "(sector %llu on %s).\n",
1823                                 mdname(conf->mddev),
1824                                 (unsigned long long)s,
1825                                 bdn);
1826                 } else if (atomic_read(&rdev->read_errors)
1827                          > conf->max_nr_stripes)
1828                         printk(KERN_WARNING
1829                                "md/raid:%s: Too many read errors, failing device %s.\n",
1830                                mdname(conf->mddev), bdn);
1831                 else
1832                         retry = 1;
1833                 if (retry)
1834                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1835                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1836                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1837                         } else
1838                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1839                 else {
1840                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1841                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1842                         if (!(set_bad
1843                               && test_bit(In_sync, &rdev->flags)
1844                               && rdev_set_badblocks(
1845                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1846                                 md_error(conf->mddev, rdev);
1847                 }
1848         }
1849         rdev_dec_pending(rdev, conf->mddev);
1850         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1851         set_bit(STRIPE_HANDLE, &sh->state);
1852         release_stripe(sh);
1853 }
1854
1855 static void raid5_end_write_request(struct bio *bi, int error)
1856 {
1857         struct stripe_head *sh = bi->bi_private;
1858         struct r5conf *conf = sh->raid_conf;
1859         int disks = sh->disks, i;
1860         struct md_rdev *uninitialized_var(rdev);
1861         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1862         sector_t first_bad;
1863         int bad_sectors;
1864         int replacement = 0;
1865
1866         for (i = 0 ; i < disks; i++) {
1867                 if (bi == &sh->dev[i].req) {
1868                         rdev = conf->disks[i].rdev;
1869                         break;
1870                 }
1871                 if (bi == &sh->dev[i].rreq) {
1872                         rdev = conf->disks[i].replacement;
1873                         if (rdev)
1874                                 replacement = 1;
1875                         else
1876                                 /* rdev was removed and 'replacement'
1877                                  * replaced it.  rdev is not removed
1878                                  * until all requests are finished.
1879                                  */
1880                                 rdev = conf->disks[i].rdev;
1881                         break;
1882                 }
1883         }
1884         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1885                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1886                 uptodate);
1887         if (i == disks) {
1888                 BUG();
1889                 return;
1890         }
1891
1892         if (replacement) {
1893                 if (!uptodate)
1894                         md_error(conf->mddev, rdev);
1895                 else if (is_badblock(rdev, sh->sector,
1896                                      STRIPE_SECTORS,
1897                                      &first_bad, &bad_sectors))
1898                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1899         } else {
1900                 if (!uptodate) {
1901                         set_bit(STRIPE_DEGRADED, &sh->state);
1902                         set_bit(WriteErrorSeen, &rdev->flags);
1903                         set_bit(R5_WriteError, &sh->dev[i].flags);
1904                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1905                                 set_bit(MD_RECOVERY_NEEDED,
1906                                         &rdev->mddev->recovery);
1907                 } else if (is_badblock(rdev, sh->sector,
1908                                        STRIPE_SECTORS,
1909                                        &first_bad, &bad_sectors)) {
1910                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1911                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
1912                                 /* That was a successful write so make
1913                                  * sure it looks like we already did
1914                                  * a re-write.
1915                                  */
1916                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
1917                 }
1918         }
1919         rdev_dec_pending(rdev, conf->mddev);
1920
1921         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923         set_bit(STRIPE_HANDLE, &sh->state);
1924         release_stripe(sh);
1925 }
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1928         
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1930 {
1931         struct r5dev *dev = &sh->dev[i];
1932
1933         bio_init(&dev->req);
1934         dev->req.bi_io_vec = &dev->vec;
1935         dev->req.bi_vcnt++;
1936         dev->req.bi_max_vecs++;
1937         dev->req.bi_private = sh;
1938         dev->vec.bv_page = dev->page;
1939
1940         bio_init(&dev->rreq);
1941         dev->rreq.bi_io_vec = &dev->rvec;
1942         dev->rreq.bi_vcnt++;
1943         dev->rreq.bi_max_vecs++;
1944         dev->rreq.bi_private = sh;
1945         dev->rvec.bv_page = dev->page;
1946
1947         dev->flags = 0;
1948         dev->sector = compute_blocknr(sh, i, previous);
1949 }
1950
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953         char b[BDEVNAME_SIZE];
1954         struct r5conf *conf = mddev->private;
1955         unsigned long flags;
1956         pr_debug("raid456: error called\n");
1957
1958         spin_lock_irqsave(&conf->device_lock, flags);
1959         clear_bit(In_sync, &rdev->flags);
1960         mddev->degraded = calc_degraded(conf);
1961         spin_unlock_irqrestore(&conf->device_lock, flags);
1962         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963
1964         set_bit(Blocked, &rdev->flags);
1965         set_bit(Faulty, &rdev->flags);
1966         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1967         printk(KERN_ALERT
1968                "md/raid:%s: Disk failure on %s, disabling device.\n"
1969                "md/raid:%s: Operation continuing on %d devices.\n",
1970                mdname(mddev),
1971                bdevname(rdev->bdev, b),
1972                mdname(mddev),
1973                conf->raid_disks - mddev->degraded);
1974 }
1975
1976 /*
1977  * Input: a 'big' sector number,
1978  * Output: index of the data and parity disk, and the sector # in them.
1979  */
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981                                      int previous, int *dd_idx,
1982                                      struct stripe_head *sh)
1983 {
1984         sector_t stripe, stripe2;
1985         sector_t chunk_number;
1986         unsigned int chunk_offset;
1987         int pd_idx, qd_idx;
1988         int ddf_layout = 0;
1989         sector_t new_sector;
1990         int algorithm = previous ? conf->prev_algo
1991                                  : conf->algorithm;
1992         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993                                          : conf->chunk_sectors;
1994         int raid_disks = previous ? conf->previous_raid_disks
1995                                   : conf->raid_disks;
1996         int data_disks = raid_disks - conf->max_degraded;
1997
1998         /* First compute the information on this sector */
1999
2000         /*
2001          * Compute the chunk number and the sector offset inside the chunk
2002          */
2003         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004         chunk_number = r_sector;
2005
2006         /*
2007          * Compute the stripe number
2008          */
2009         stripe = chunk_number;
2010         *dd_idx = sector_div(stripe, data_disks);
2011         stripe2 = stripe;
2012         /*
2013          * Select the parity disk based on the user selected algorithm.
2014          */
2015         pd_idx = qd_idx = -1;
2016         switch(conf->level) {
2017         case 4:
2018                 pd_idx = data_disks;
2019                 break;
2020         case 5:
2021                 switch (algorithm) {
2022                 case ALGORITHM_LEFT_ASYMMETRIC:
2023                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024                         if (*dd_idx >= pd_idx)
2025                                 (*dd_idx)++;
2026                         break;
2027                 case ALGORITHM_RIGHT_ASYMMETRIC:
2028                         pd_idx = sector_div(stripe2, raid_disks);
2029                         if (*dd_idx >= pd_idx)
2030                                 (*dd_idx)++;
2031                         break;
2032                 case ALGORITHM_LEFT_SYMMETRIC:
2033                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035                         break;
2036                 case ALGORITHM_RIGHT_SYMMETRIC:
2037                         pd_idx = sector_div(stripe2, raid_disks);
2038                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039                         break;
2040                 case ALGORITHM_PARITY_0:
2041                         pd_idx = 0;
2042                         (*dd_idx)++;
2043                         break;
2044                 case ALGORITHM_PARITY_N:
2045                         pd_idx = data_disks;
2046                         break;
2047                 default:
2048                         BUG();
2049                 }
2050                 break;
2051         case 6:
2052
2053                 switch (algorithm) {
2054                 case ALGORITHM_LEFT_ASYMMETRIC:
2055                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056                         qd_idx = pd_idx + 1;
2057                         if (pd_idx == raid_disks-1) {
2058                                 (*dd_idx)++;    /* Q D D D P */
2059                                 qd_idx = 0;
2060                         } else if (*dd_idx >= pd_idx)
2061                                 (*dd_idx) += 2; /* D D P Q D */
2062                         break;
2063                 case ALGORITHM_RIGHT_ASYMMETRIC:
2064                         pd_idx = sector_div(stripe2, raid_disks);
2065                         qd_idx = pd_idx + 1;
2066                         if (pd_idx == raid_disks-1) {
2067                                 (*dd_idx)++;    /* Q D D D P */
2068                                 qd_idx = 0;
2069                         } else if (*dd_idx >= pd_idx)
2070                                 (*dd_idx) += 2; /* D D P Q D */
2071                         break;
2072                 case ALGORITHM_LEFT_SYMMETRIC:
2073                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074                         qd_idx = (pd_idx + 1) % raid_disks;
2075                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076                         break;
2077                 case ALGORITHM_RIGHT_SYMMETRIC:
2078                         pd_idx = sector_div(stripe2, raid_disks);
2079                         qd_idx = (pd_idx + 1) % raid_disks;
2080                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081                         break;
2082
2083                 case ALGORITHM_PARITY_0:
2084                         pd_idx = 0;
2085                         qd_idx = 1;
2086                         (*dd_idx) += 2;
2087                         break;
2088                 case ALGORITHM_PARITY_N:
2089                         pd_idx = data_disks;
2090                         qd_idx = data_disks + 1;
2091                         break;
2092
2093                 case ALGORITHM_ROTATING_ZERO_RESTART:
2094                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2095                          * of blocks for computing Q is different.
2096                          */
2097                         pd_idx = sector_div(stripe2, raid_disks);
2098                         qd_idx = pd_idx + 1;
2099                         if (pd_idx == raid_disks-1) {
2100                                 (*dd_idx)++;    /* Q D D D P */
2101                                 qd_idx = 0;
2102                         } else if (*dd_idx >= pd_idx)
2103                                 (*dd_idx) += 2; /* D D P Q D */
2104                         ddf_layout = 1;
2105                         break;
2106
2107                 case ALGORITHM_ROTATING_N_RESTART:
2108                         /* Same a left_asymmetric, by first stripe is
2109                          * D D D P Q  rather than
2110                          * Q D D D P
2111                          */
2112                         stripe2 += 1;
2113                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114                         qd_idx = pd_idx + 1;
2115                         if (pd_idx == raid_disks-1) {
2116                                 (*dd_idx)++;    /* Q D D D P */
2117                                 qd_idx = 0;
2118                         } else if (*dd_idx >= pd_idx)
2119                                 (*dd_idx) += 2; /* D D P Q D */
2120                         ddf_layout = 1;
2121                         break;
2122
2123                 case ALGORITHM_ROTATING_N_CONTINUE:
2124                         /* Same as left_symmetric but Q is before P */
2125                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128                         ddf_layout = 1;
2129                         break;
2130
2131                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2132                         /* RAID5 left_asymmetric, with Q on last device */
2133                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134                         if (*dd_idx >= pd_idx)
2135                                 (*dd_idx)++;
2136                         qd_idx = raid_disks - 1;
2137                         break;
2138
2139                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2140                         pd_idx = sector_div(stripe2, raid_disks-1);
2141                         if (*dd_idx >= pd_idx)
2142                                 (*dd_idx)++;
2143                         qd_idx = raid_disks - 1;
2144                         break;
2145
2146                 case ALGORITHM_LEFT_SYMMETRIC_6:
2147                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149                         qd_idx = raid_disks - 1;
2150                         break;
2151
2152                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2153                         pd_idx = sector_div(stripe2, raid_disks-1);
2154                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155                         qd_idx = raid_disks - 1;
2156                         break;
2157
2158                 case ALGORITHM_PARITY_0_6:
2159                         pd_idx = 0;
2160                         (*dd_idx)++;
2161                         qd_idx = raid_disks - 1;
2162                         break;
2163
2164                 default:
2165                         BUG();
2166                 }
2167                 break;
2168         }
2169
2170         if (sh) {
2171                 sh->pd_idx = pd_idx;
2172                 sh->qd_idx = qd_idx;
2173                 sh->ddf_layout = ddf_layout;
2174         }
2175         /*
2176          * Finally, compute the new sector number
2177          */
2178         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179         return new_sector;
2180 }
2181
2182
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2184 {
2185         struct r5conf *conf = sh->raid_conf;
2186         int raid_disks = sh->disks;
2187         int data_disks = raid_disks - conf->max_degraded;
2188         sector_t new_sector = sh->sector, check;
2189         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190                                          : conf->chunk_sectors;
2191         int algorithm = previous ? conf->prev_algo
2192                                  : conf->algorithm;
2193         sector_t stripe;
2194         int chunk_offset;
2195         sector_t chunk_number;
2196         int dummy1, dd_idx = i;
2197         sector_t r_sector;
2198         struct stripe_head sh2;
2199
2200
2201         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202         stripe = new_sector;
2203
2204         if (i == sh->pd_idx)
2205                 return 0;
2206         switch(conf->level) {
2207         case 4: break;
2208         case 5:
2209                 switch (algorithm) {
2210                 case ALGORITHM_LEFT_ASYMMETRIC:
2211                 case ALGORITHM_RIGHT_ASYMMETRIC:
2212                         if (i > sh->pd_idx)
2213                                 i--;
2214                         break;
2215                 case ALGORITHM_LEFT_SYMMETRIC:
2216                 case ALGORITHM_RIGHT_SYMMETRIC:
2217                         if (i < sh->pd_idx)
2218                                 i += raid_disks;
2219                         i -= (sh->pd_idx + 1);
2220                         break;
2221                 case ALGORITHM_PARITY_0:
2222                         i -= 1;
2223                         break;
2224                 case ALGORITHM_PARITY_N:
2225                         break;
2226                 default:
2227                         BUG();
2228                 }
2229                 break;
2230         case 6:
2231                 if (i == sh->qd_idx)
2232                         return 0; /* It is the Q disk */
2233                 switch (algorithm) {
2234                 case ALGORITHM_LEFT_ASYMMETRIC:
2235                 case ALGORITHM_RIGHT_ASYMMETRIC:
2236                 case ALGORITHM_ROTATING_ZERO_RESTART:
2237                 case ALGORITHM_ROTATING_N_RESTART:
2238                         if (sh->pd_idx == raid_disks-1)
2239                                 i--;    /* Q D D D P */
2240                         else if (i > sh->pd_idx)
2241                                 i -= 2; /* D D P Q D */
2242                         break;
2243                 case ALGORITHM_LEFT_SYMMETRIC:
2244                 case ALGORITHM_RIGHT_SYMMETRIC:
2245                         if (sh->pd_idx == raid_disks-1)
2246                                 i--; /* Q D D D P */
2247                         else {
2248                                 /* D D P Q D */
2249                                 if (i < sh->pd_idx)
2250                                         i += raid_disks;
2251                                 i -= (sh->pd_idx + 2);
2252                         }
2253                         break;
2254                 case ALGORITHM_PARITY_0:
2255                         i -= 2;
2256                         break;
2257                 case ALGORITHM_PARITY_N:
2258                         break;
2259                 case ALGORITHM_ROTATING_N_CONTINUE:
2260                         /* Like left_symmetric, but P is before Q */
2261                         if (sh->pd_idx == 0)
2262                                 i--;    /* P D D D Q */
2263                         else {
2264                                 /* D D Q P D */
2265                                 if (i < sh->pd_idx)
2266                                         i += raid_disks;
2267                                 i -= (sh->pd_idx + 1);
2268                         }
2269                         break;
2270                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2271                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2272                         if (i > sh->pd_idx)
2273                                 i--;
2274                         break;
2275                 case ALGORITHM_LEFT_SYMMETRIC_6:
2276                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2277                         if (i < sh->pd_idx)
2278                                 i += data_disks + 1;
2279                         i -= (sh->pd_idx + 1);
2280                         break;
2281                 case ALGORITHM_PARITY_0_6:
2282                         i -= 1;
2283                         break;
2284                 default:
2285                         BUG();
2286                 }
2287                 break;
2288         }
2289
2290         chunk_number = stripe * data_disks + i;
2291         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2292
2293         check = raid5_compute_sector(conf, r_sector,
2294                                      previous, &dummy1, &sh2);
2295         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296                 || sh2.qd_idx != sh->qd_idx) {
2297                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298                        mdname(conf->mddev));
2299                 return 0;
2300         }
2301         return r_sector;
2302 }
2303
2304
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307                          int rcw, int expand)
2308 {
2309         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310         struct r5conf *conf = sh->raid_conf;
2311         int level = conf->level;
2312
2313         if (rcw) {
2314
2315                 for (i = disks; i--; ) {
2316                         struct r5dev *dev = &sh->dev[i];
2317
2318                         if (dev->towrite) {
2319                                 set_bit(R5_LOCKED, &dev->flags);
2320                                 set_bit(R5_Wantdrain, &dev->flags);
2321                                 if (!expand)
2322                                         clear_bit(R5_UPTODATE, &dev->flags);
2323                                 s->locked++;
2324                         }
2325                 }
2326                 /* if we are not expanding this is a proper write request, and
2327                  * there will be bios with new data to be drained into the
2328                  * stripe cache
2329                  */
2330                 if (!expand) {
2331                         if (!s->locked)
2332                                 /* False alarm, nothing to do */
2333                                 return;
2334                         sh->reconstruct_state = reconstruct_state_drain_run;
2335                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2336                 } else
2337                         sh->reconstruct_state = reconstruct_state_run;
2338
2339                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2340
2341                 if (s->locked + conf->max_degraded == disks)
2342                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2343                                 atomic_inc(&conf->pending_full_writes);
2344         } else {
2345                 BUG_ON(level == 6);
2346                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2347                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2348
2349                 for (i = disks; i--; ) {
2350                         struct r5dev *dev = &sh->dev[i];
2351                         if (i == pd_idx)
2352                                 continue;
2353
2354                         if (dev->towrite &&
2355                             (test_bit(R5_UPTODATE, &dev->flags) ||
2356                              test_bit(R5_Wantcompute, &dev->flags))) {
2357                                 set_bit(R5_Wantdrain, &dev->flags);
2358                                 set_bit(R5_LOCKED, &dev->flags);
2359                                 clear_bit(R5_UPTODATE, &dev->flags);
2360                                 s->locked++;
2361                         }
2362                 }
2363                 if (!s->locked)
2364                         /* False alarm - nothing to do */
2365                         return;
2366                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2367                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2368                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2369                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2370         }
2371
2372         /* keep the parity disk(s) locked while asynchronous operations
2373          * are in flight
2374          */
2375         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2376         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2377         s->locked++;
2378
2379         if (level == 6) {
2380                 int qd_idx = sh->qd_idx;
2381                 struct r5dev *dev = &sh->dev[qd_idx];
2382
2383                 set_bit(R5_LOCKED, &dev->flags);
2384                 clear_bit(R5_UPTODATE, &dev->flags);
2385                 s->locked++;
2386         }
2387
2388         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2389                 __func__, (unsigned long long)sh->sector,
2390                 s->locked, s->ops_request);
2391 }
2392
2393 /*
2394  * Each stripe/dev can have one or more bion attached.
2395  * toread/towrite point to the first in a chain.
2396  * The bi_next chain must be in order.
2397  */
2398 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2399 {
2400         struct bio **bip;
2401         struct r5conf *conf = sh->raid_conf;
2402         int firstwrite=0;
2403
2404         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2405                 (unsigned long long)bi->bi_sector,
2406                 (unsigned long long)sh->sector);
2407
2408         /*
2409          * If several bio share a stripe. The bio bi_phys_segments acts as a
2410          * reference count to avoid race. The reference count should already be
2411          * increased before this function is called (for example, in
2412          * make_request()), so other bio sharing this stripe will not free the
2413          * stripe. If a stripe is owned by one stripe, the stripe lock will
2414          * protect it.
2415          */
2416         spin_lock_irq(&sh->stripe_lock);
2417         if (forwrite) {
2418                 bip = &sh->dev[dd_idx].towrite;
2419                 if (*bip == NULL)
2420                         firstwrite = 1;
2421         } else
2422                 bip = &sh->dev[dd_idx].toread;
2423         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2424                 if (bio_end_sector(*bip) > bi->bi_sector)
2425                         goto overlap;
2426                 bip = & (*bip)->bi_next;
2427         }
2428         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2429                 goto overlap;
2430
2431         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2432         if (*bip)
2433                 bi->bi_next = *bip;
2434         *bip = bi;
2435         raid5_inc_bi_active_stripes(bi);
2436
2437         if (forwrite) {
2438                 /* check if page is covered */
2439                 sector_t sector = sh->dev[dd_idx].sector;
2440                 for (bi=sh->dev[dd_idx].towrite;
2441                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2442                              bi && bi->bi_sector <= sector;
2443                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2444                         if (bio_end_sector(bi) >= sector)
2445                                 sector = bio_end_sector(bi);
2446                 }
2447                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2448                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2449         }
2450
2451         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2452                 (unsigned long long)(*bip)->bi_sector,
2453                 (unsigned long long)sh->sector, dd_idx);
2454         spin_unlock_irq(&sh->stripe_lock);
2455
2456         if (conf->mddev->bitmap && firstwrite) {
2457                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2458                                   STRIPE_SECTORS, 0);
2459                 sh->bm_seq = conf->seq_flush+1;
2460                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2461         }
2462         return 1;
2463
2464  overlap:
2465         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2466         spin_unlock_irq(&sh->stripe_lock);
2467         return 0;
2468 }
2469
2470 static void end_reshape(struct r5conf *conf);
2471
2472 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2473                             struct stripe_head *sh)
2474 {
2475         int sectors_per_chunk =
2476                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2477         int dd_idx;
2478         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2479         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2480
2481         raid5_compute_sector(conf,
2482                              stripe * (disks - conf->max_degraded)
2483                              *sectors_per_chunk + chunk_offset,
2484                              previous,
2485                              &dd_idx, sh);
2486 }
2487
2488 static void
2489 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2490                                 struct stripe_head_state *s, int disks,
2491                                 struct bio **return_bi)
2492 {
2493         int i;
2494         for (i = disks; i--; ) {
2495                 struct bio *bi;
2496                 int bitmap_end = 0;
2497
2498                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2499                         struct md_rdev *rdev;
2500                         rcu_read_lock();
2501                         rdev = rcu_dereference(conf->disks[i].rdev);
2502                         if (rdev && test_bit(In_sync, &rdev->flags))
2503                                 atomic_inc(&rdev->nr_pending);
2504                         else
2505                                 rdev = NULL;
2506                         rcu_read_unlock();
2507                         if (rdev) {
2508                                 if (!rdev_set_badblocks(
2509                                             rdev,
2510                                             sh->sector,
2511                                             STRIPE_SECTORS, 0))
2512                                         md_error(conf->mddev, rdev);
2513                                 rdev_dec_pending(rdev, conf->mddev);
2514                         }
2515                 }
2516                 spin_lock_irq(&sh->stripe_lock);
2517                 /* fail all writes first */
2518                 bi = sh->dev[i].towrite;
2519                 sh->dev[i].towrite = NULL;
2520                 spin_unlock_irq(&sh->stripe_lock);
2521                 if (bi)
2522                         bitmap_end = 1;
2523
2524                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2525                         wake_up(&conf->wait_for_overlap);
2526
2527                 while (bi && bi->bi_sector <
2528                         sh->dev[i].sector + STRIPE_SECTORS) {
2529                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2530                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2531                         if (!raid5_dec_bi_active_stripes(bi)) {
2532                                 md_write_end(conf->mddev);
2533                                 bi->bi_next = *return_bi;
2534                                 *return_bi = bi;
2535                         }
2536                         bi = nextbi;
2537                 }
2538                 if (bitmap_end)
2539                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2540                                 STRIPE_SECTORS, 0, 0);
2541                 bitmap_end = 0;
2542                 /* and fail all 'written' */
2543                 bi = sh->dev[i].written;
2544                 sh->dev[i].written = NULL;
2545                 if (bi) bitmap_end = 1;
2546                 while (bi && bi->bi_sector <
2547                        sh->dev[i].sector + STRIPE_SECTORS) {
2548                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2549                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2550                         if (!raid5_dec_bi_active_stripes(bi)) {
2551                                 md_write_end(conf->mddev);
2552                                 bi->bi_next = *return_bi;
2553                                 *return_bi = bi;
2554                         }
2555                         bi = bi2;
2556                 }
2557
2558                 /* fail any reads if this device is non-operational and
2559                  * the data has not reached the cache yet.
2560                  */
2561                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2562                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2563                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2564                         spin_lock_irq(&sh->stripe_lock);
2565                         bi = sh->dev[i].toread;
2566                         sh->dev[i].toread = NULL;
2567                         spin_unlock_irq(&sh->stripe_lock);
2568                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2569                                 wake_up(&conf->wait_for_overlap);
2570                         while (bi && bi->bi_sector <
2571                                sh->dev[i].sector + STRIPE_SECTORS) {
2572                                 struct bio *nextbi =
2573                                         r5_next_bio(bi, sh->dev[i].sector);
2574                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2575                                 if (!raid5_dec_bi_active_stripes(bi)) {
2576                                         bi->bi_next = *return_bi;
2577                                         *return_bi = bi;
2578                                 }
2579                                 bi = nextbi;
2580                         }
2581                 }
2582                 if (bitmap_end)
2583                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2584                                         STRIPE_SECTORS, 0, 0);
2585                 /* If we were in the middle of a write the parity block might
2586                  * still be locked - so just clear all R5_LOCKED flags
2587                  */
2588                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2589         }
2590
2591         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2592                 if (atomic_dec_and_test(&conf->pending_full_writes))
2593                         md_wakeup_thread(conf->mddev->thread);
2594 }
2595
2596 static void
2597 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2598                    struct stripe_head_state *s)
2599 {
2600         int abort = 0;
2601         int i;
2602
2603         clear_bit(STRIPE_SYNCING, &sh->state);
2604         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2605                 wake_up(&conf->wait_for_overlap);
2606         s->syncing = 0;
2607         s->replacing = 0;
2608         /* There is nothing more to do for sync/check/repair.
2609          * Don't even need to abort as that is handled elsewhere
2610          * if needed, and not always wanted e.g. if there is a known
2611          * bad block here.
2612          * For recover/replace we need to record a bad block on all
2613          * non-sync devices, or abort the recovery
2614          */
2615         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2616                 /* During recovery devices cannot be removed, so
2617                  * locking and refcounting of rdevs is not needed
2618                  */
2619                 for (i = 0; i < conf->raid_disks; i++) {
2620                         struct md_rdev *rdev = conf->disks[i].rdev;
2621                         if (rdev
2622                             && !test_bit(Faulty, &rdev->flags)
2623                             && !test_bit(In_sync, &rdev->flags)
2624                             && !rdev_set_badblocks(rdev, sh->sector,
2625                                                    STRIPE_SECTORS, 0))
2626                                 abort = 1;
2627                         rdev = conf->disks[i].replacement;
2628                         if (rdev
2629                             && !test_bit(Faulty, &rdev->flags)
2630                             && !test_bit(In_sync, &rdev->flags)
2631                             && !rdev_set_badblocks(rdev, sh->sector,
2632                                                    STRIPE_SECTORS, 0))
2633                                 abort = 1;
2634                 }
2635                 if (abort)
2636                         conf->recovery_disabled =
2637                                 conf->mddev->recovery_disabled;
2638         }
2639         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2640 }
2641
2642 static int want_replace(struct stripe_head *sh, int disk_idx)
2643 {
2644         struct md_rdev *rdev;
2645         int rv = 0;
2646         /* Doing recovery so rcu locking not required */
2647         rdev = sh->raid_conf->disks[disk_idx].replacement;
2648         if (rdev
2649             && !test_bit(Faulty, &rdev->flags)
2650             && !test_bit(In_sync, &rdev->flags)
2651             && (rdev->recovery_offset <= sh->sector
2652                 || rdev->mddev->recovery_cp <= sh->sector))
2653                 rv = 1;
2654
2655         return rv;
2656 }
2657
2658 /* fetch_block - checks the given member device to see if its data needs
2659  * to be read or computed to satisfy a request.
2660  *
2661  * Returns 1 when no more member devices need to be checked, otherwise returns
2662  * 0 to tell the loop in handle_stripe_fill to continue
2663  */
2664 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2665                        int disk_idx, int disks)
2666 {
2667         struct r5dev *dev = &sh->dev[disk_idx];
2668         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2669                                   &sh->dev[s->failed_num[1]] };
2670
2671         /* is the data in this block needed, and can we get it? */
2672         if (!test_bit(R5_LOCKED, &dev->flags) &&
2673             !test_bit(R5_UPTODATE, &dev->flags) &&
2674             (dev->toread ||
2675              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2676              s->syncing || s->expanding ||
2677              (s->replacing && want_replace(sh, disk_idx)) ||
2678              (s->failed >= 1 && fdev[0]->toread) ||
2679              (s->failed >= 2 && fdev[1]->toread) ||
2680              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2681               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2682              ((sh->raid_conf->level == 6 || sh->sector >= sh->raid_conf->mddev->recovery_cp)
2683               && s->failed && s->to_write))) {
2684                 /* we would like to get this block, possibly by computing it,
2685                  * otherwise read it if the backing disk is insync
2686                  */
2687                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2688                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2689                 if ((s->uptodate == disks - 1) &&
2690                     (s->failed && (disk_idx == s->failed_num[0] ||
2691                                    disk_idx == s->failed_num[1]))) {
2692                         /* have disk failed, and we're requested to fetch it;
2693                          * do compute it
2694                          */
2695                         pr_debug("Computing stripe %llu block %d\n",
2696                                (unsigned long long)sh->sector, disk_idx);
2697                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2698                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2699                         set_bit(R5_Wantcompute, &dev->flags);
2700                         sh->ops.target = disk_idx;
2701                         sh->ops.target2 = -1; /* no 2nd target */
2702                         s->req_compute = 1;
2703                         /* Careful: from this point on 'uptodate' is in the eye
2704                          * of raid_run_ops which services 'compute' operations
2705                          * before writes. R5_Wantcompute flags a block that will
2706                          * be R5_UPTODATE by the time it is needed for a
2707                          * subsequent operation.
2708                          */
2709                         s->uptodate++;
2710                         return 1;
2711                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2712                         /* Computing 2-failure is *very* expensive; only
2713                          * do it if failed >= 2
2714                          */
2715                         int other;
2716                         for (other = disks; other--; ) {
2717                                 if (other == disk_idx)
2718                                         continue;
2719                                 if (!test_bit(R5_UPTODATE,
2720                                       &sh->dev[other].flags))
2721                                         break;
2722                         }
2723                         BUG_ON(other < 0);
2724                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2725                                (unsigned long long)sh->sector,
2726                                disk_idx, other);
2727                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2728                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2729                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2730                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2731                         sh->ops.target = disk_idx;
2732                         sh->ops.target2 = other;
2733                         s->uptodate += 2;
2734                         s->req_compute = 1;
2735                         return 1;
2736                 } else if (test_bit(R5_Insync, &dev->flags)) {
2737                         set_bit(R5_LOCKED, &dev->flags);
2738                         set_bit(R5_Wantread, &dev->flags);
2739                         s->locked++;
2740                         pr_debug("Reading block %d (sync=%d)\n",
2741                                 disk_idx, s->syncing);
2742                 }
2743         }
2744
2745         return 0;
2746 }
2747
2748 /**
2749  * handle_stripe_fill - read or compute data to satisfy pending requests.
2750  */
2751 static void handle_stripe_fill(struct stripe_head *sh,
2752                                struct stripe_head_state *s,
2753                                int disks)
2754 {
2755         int i;
2756
2757         /* look for blocks to read/compute, skip this if a compute
2758          * is already in flight, or if the stripe contents are in the
2759          * midst of changing due to a write
2760          */
2761         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2762             !sh->reconstruct_state)
2763                 for (i = disks; i--; )
2764                         if (fetch_block(sh, s, i, disks))
2765                                 break;
2766         set_bit(STRIPE_HANDLE, &sh->state);
2767 }
2768
2769
2770 /* handle_stripe_clean_event
2771  * any written block on an uptodate or failed drive can be returned.
2772  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2773  * never LOCKED, so we don't need to test 'failed' directly.
2774  */
2775 static void handle_stripe_clean_event(struct r5conf *conf,
2776         struct stripe_head *sh, int disks, struct bio **return_bi)
2777 {
2778         int i;
2779         struct r5dev *dev;
2780         int discard_pending = 0;
2781
2782         for (i = disks; i--; )
2783                 if (sh->dev[i].written) {
2784                         dev = &sh->dev[i];
2785                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2786                             (test_bit(R5_UPTODATE, &dev->flags) ||
2787                              test_bit(R5_Discard, &dev->flags))) {
2788                                 /* We can return any write requests */
2789                                 struct bio *wbi, *wbi2;
2790                                 pr_debug("Return write for disc %d\n", i);
2791                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2792                                         clear_bit(R5_UPTODATE, &dev->flags);
2793                                 wbi = dev->written;
2794                                 dev->written = NULL;
2795                                 while (wbi && wbi->bi_sector <
2796                                         dev->sector + STRIPE_SECTORS) {
2797                                         wbi2 = r5_next_bio(wbi, dev->sector);
2798                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2799                                                 md_write_end(conf->mddev);
2800                                                 wbi->bi_next = *return_bi;
2801                                                 *return_bi = wbi;
2802                                         }
2803                                         wbi = wbi2;
2804                                 }
2805                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2806                                                 STRIPE_SECTORS,
2807                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2808                                                 0);
2809                         } else if (test_bit(R5_Discard, &dev->flags))
2810                                 discard_pending = 1;
2811                 }
2812         if (!discard_pending &&
2813             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2814                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2815                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2816                 if (sh->qd_idx >= 0) {
2817                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2818                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2819                 }
2820                 /* now that discard is done we can proceed with any sync */
2821                 clear_bit(STRIPE_DISCARD, &sh->state);
2822                 /*
2823                  * SCSI discard will change some bio fields and the stripe has
2824                  * no updated data, so remove it from hash list and the stripe
2825                  * will be reinitialized
2826                  */
2827                 spin_lock_irq(&conf->device_lock);
2828                 remove_hash(sh);
2829                 spin_unlock_irq(&conf->device_lock);
2830                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2831                         set_bit(STRIPE_HANDLE, &sh->state);
2832
2833         }
2834
2835         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2836                 if (atomic_dec_and_test(&conf->pending_full_writes))
2837                         md_wakeup_thread(conf->mddev->thread);
2838 }
2839
2840 static void handle_stripe_dirtying(struct r5conf *conf,
2841                                    struct stripe_head *sh,
2842                                    struct stripe_head_state *s,
2843                                    int disks)
2844 {
2845         int rmw = 0, rcw = 0, i;
2846         sector_t recovery_cp = conf->mddev->recovery_cp;
2847
2848         /* RAID6 requires 'rcw' in current implementation.
2849          * Otherwise, check whether resync is now happening or should start.
2850          * If yes, then the array is dirty (after unclean shutdown or
2851          * initial creation), so parity in some stripes might be inconsistent.
2852          * In this case, we need to always do reconstruct-write, to ensure
2853          * that in case of drive failure or read-error correction, we
2854          * generate correct data from the parity.
2855          */
2856         if (conf->max_degraded == 2 ||
2857             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
2858              s->failed == 0)) {
2859                 /* Calculate the real rcw later - for now make it
2860                  * look like rcw is cheaper
2861                  */
2862                 rcw = 1; rmw = 2;
2863                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2864                          conf->max_degraded, (unsigned long long)recovery_cp,
2865                          (unsigned long long)sh->sector);
2866         } else for (i = disks; i--; ) {
2867                 /* would I have to read this buffer for read_modify_write */
2868                 struct r5dev *dev = &sh->dev[i];
2869                 if ((dev->towrite || i == sh->pd_idx) &&
2870                     !test_bit(R5_LOCKED, &dev->flags) &&
2871                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2872                       test_bit(R5_Wantcompute, &dev->flags))) {
2873                         if (test_bit(R5_Insync, &dev->flags))
2874                                 rmw++;
2875                         else
2876                                 rmw += 2*disks;  /* cannot read it */
2877                 }
2878                 /* Would I have to read this buffer for reconstruct_write */
2879                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2880                     !test_bit(R5_LOCKED, &dev->flags) &&
2881                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2882                     test_bit(R5_Wantcompute, &dev->flags))) {
2883                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2884                         else
2885                                 rcw += 2*disks;
2886                 }
2887         }
2888         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2889                 (unsigned long long)sh->sector, rmw, rcw);
2890         set_bit(STRIPE_HANDLE, &sh->state);
2891         if (rmw < rcw && rmw > 0) {
2892                 /* prefer read-modify-write, but need to get some data */
2893                 if (conf->mddev->queue)
2894                         blk_add_trace_msg(conf->mddev->queue,
2895                                           "raid5 rmw %llu %d",
2896                                           (unsigned long long)sh->sector, rmw);
2897                 for (i = disks; i--; ) {
2898                         struct r5dev *dev = &sh->dev[i];
2899                         if ((dev->towrite || i == sh->pd_idx) &&
2900                             !test_bit(R5_LOCKED, &dev->flags) &&
2901                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2902                             test_bit(R5_Wantcompute, &dev->flags)) &&
2903                             test_bit(R5_Insync, &dev->flags)) {
2904                                 if (
2905                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2906                                         pr_debug("Read_old block "
2907                                                  "%d for r-m-w\n", i);
2908                                         set_bit(R5_LOCKED, &dev->flags);
2909                                         set_bit(R5_Wantread, &dev->flags);
2910                                         s->locked++;
2911                                 } else {
2912                                         set_bit(STRIPE_DELAYED, &sh->state);
2913                                         set_bit(STRIPE_HANDLE, &sh->state);
2914                                 }
2915                         }
2916                 }
2917         }
2918         if (rcw <= rmw && rcw > 0) {
2919                 /* want reconstruct write, but need to get some data */
2920                 int qread =0;
2921                 rcw = 0;
2922                 for (i = disks; i--; ) {
2923                         struct r5dev *dev = &sh->dev[i];
2924                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2925                             i != sh->pd_idx && i != sh->qd_idx &&
2926                             !test_bit(R5_LOCKED, &dev->flags) &&
2927                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2928                               test_bit(R5_Wantcompute, &dev->flags))) {
2929                                 rcw++;
2930                                 if (!test_bit(R5_Insync, &dev->flags))
2931                                         continue; /* it's a failed drive */
2932                                 if (
2933                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2934                                         pr_debug("Read_old block "
2935                                                 "%d for Reconstruct\n", i);
2936                                         set_bit(R5_LOCKED, &dev->flags);
2937                                         set_bit(R5_Wantread, &dev->flags);
2938                                         s->locked++;
2939                                         qread++;
2940                                 } else {
2941                                         set_bit(STRIPE_DELAYED, &sh->state);
2942                                         set_bit(STRIPE_HANDLE, &sh->state);
2943                                 }
2944                         }
2945                 }
2946                 if (rcw && conf->mddev->queue)
2947                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2948                                           (unsigned long long)sh->sector,
2949                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2950         }
2951         /* now if nothing is locked, and if we have enough data,
2952          * we can start a write request
2953          */
2954         /* since handle_stripe can be called at any time we need to handle the
2955          * case where a compute block operation has been submitted and then a
2956          * subsequent call wants to start a write request.  raid_run_ops only
2957          * handles the case where compute block and reconstruct are requested
2958          * simultaneously.  If this is not the case then new writes need to be
2959          * held off until the compute completes.
2960          */
2961         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2962             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2963             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2964                 schedule_reconstruction(sh, s, rcw == 0, 0);
2965 }
2966
2967 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2968                                 struct stripe_head_state *s, int disks)
2969 {
2970         struct r5dev *dev = NULL;
2971
2972         set_bit(STRIPE_HANDLE, &sh->state);
2973
2974         switch (sh->check_state) {
2975         case check_state_idle:
2976                 /* start a new check operation if there are no failures */
2977                 if (s->failed == 0) {
2978                         BUG_ON(s->uptodate != disks);
2979                         sh->check_state = check_state_run;
2980                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2981                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2982                         s->uptodate--;
2983                         break;
2984                 }
2985                 dev = &sh->dev[s->failed_num[0]];
2986                 /* fall through */
2987         case check_state_compute_result:
2988                 sh->check_state = check_state_idle;
2989                 if (!dev)
2990                         dev = &sh->dev[sh->pd_idx];
2991
2992                 /* check that a write has not made the stripe insync */
2993                 if (test_bit(STRIPE_INSYNC, &sh->state))
2994                         break;
2995
2996                 /* either failed parity check, or recovery is happening */
2997                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2998                 BUG_ON(s->uptodate != disks);
2999
3000                 set_bit(R5_LOCKED, &dev->flags);
3001                 s->locked++;
3002                 set_bit(R5_Wantwrite, &dev->flags);
3003
3004                 clear_bit(STRIPE_DEGRADED, &sh->state);
3005                 set_bit(STRIPE_INSYNC, &sh->state);
3006                 break;
3007         case check_state_run:
3008                 break; /* we will be called again upon completion */
3009         case check_state_check_result:
3010                 sh->check_state = check_state_idle;
3011
3012                 /* if a failure occurred during the check operation, leave
3013                  * STRIPE_INSYNC not set and let the stripe be handled again
3014                  */
3015                 if (s->failed)
3016                         break;
3017
3018                 /* handle a successful check operation, if parity is correct
3019                  * we are done.  Otherwise update the mismatch count and repair
3020                  * parity if !MD_RECOVERY_CHECK
3021                  */
3022                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3023                         /* parity is correct (on disc,
3024                          * not in buffer any more)
3025                          */
3026                         set_bit(STRIPE_INSYNC, &sh->state);
3027                 else {
3028                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3029                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3030                                 /* don't try to repair!! */
3031                                 set_bit(STRIPE_INSYNC, &sh->state);
3032                         else {
3033                                 sh->check_state = check_state_compute_run;
3034                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3035                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3036                                 set_bit(R5_Wantcompute,
3037                                         &sh->dev[sh->pd_idx].flags);
3038                                 sh->ops.target = sh->pd_idx;
3039                                 sh->ops.target2 = -1;
3040                                 s->uptodate++;
3041                         }
3042                 }
3043                 break;
3044         case check_state_compute_run:
3045                 break;
3046         default:
3047                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3048                        __func__, sh->check_state,
3049                        (unsigned long long) sh->sector);
3050                 BUG();
3051         }
3052 }
3053
3054
3055 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3056                                   struct stripe_head_state *s,
3057                                   int disks)
3058 {
3059         int pd_idx = sh->pd_idx;
3060         int qd_idx = sh->qd_idx;
3061         struct r5dev *dev;
3062
3063         set_bit(STRIPE_HANDLE, &sh->state);
3064
3065         BUG_ON(s->failed > 2);
3066
3067         /* Want to check and possibly repair P and Q.
3068          * However there could be one 'failed' device, in which
3069          * case we can only check one of them, possibly using the
3070          * other to generate missing data
3071          */
3072
3073         switch (sh->check_state) {
3074         case check_state_idle:
3075                 /* start a new check operation if there are < 2 failures */
3076                 if (s->failed == s->q_failed) {
3077                         /* The only possible failed device holds Q, so it
3078                          * makes sense to check P (If anything else were failed,
3079                          * we would have used P to recreate it).
3080                          */
3081                         sh->check_state = check_state_run;
3082                 }
3083                 if (!s->q_failed && s->failed < 2) {
3084                         /* Q is not failed, and we didn't use it to generate
3085                          * anything, so it makes sense to check it
3086                          */
3087                         if (sh->check_state == check_state_run)
3088                                 sh->check_state = check_state_run_pq;
3089                         else
3090                                 sh->check_state = check_state_run_q;
3091                 }
3092
3093                 /* discard potentially stale zero_sum_result */
3094                 sh->ops.zero_sum_result = 0;
3095
3096                 if (sh->check_state == check_state_run) {
3097                         /* async_xor_zero_sum destroys the contents of P */
3098                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3099                         s->uptodate--;
3100                 }
3101                 if (sh->check_state >= check_state_run &&
3102                     sh->check_state <= check_state_run_pq) {
3103                         /* async_syndrome_zero_sum preserves P and Q, so
3104                          * no need to mark them !uptodate here
3105                          */
3106                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3107                         break;
3108                 }
3109
3110                 /* we have 2-disk failure */
3111                 BUG_ON(s->failed != 2);
3112                 /* fall through */
3113         case check_state_compute_result:
3114                 sh->check_state = check_state_idle;
3115
3116                 /* check that a write has not made the stripe insync */
3117                 if (test_bit(STRIPE_INSYNC, &sh->state))
3118                         break;
3119
3120                 /* now write out any block on a failed drive,
3121                  * or P or Q if they were recomputed
3122                  */
3123                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3124                 if (s->failed == 2) {
3125                         dev = &sh->dev[s->failed_num[1]];
3126                         s->locked++;
3127                         set_bit(R5_LOCKED, &dev->flags);
3128                         set_bit(R5_Wantwrite, &dev->flags);
3129                 }
3130                 if (s->failed >= 1) {
3131                         dev = &sh->dev[s->failed_num[0]];
3132                         s->locked++;
3133                         set_bit(R5_LOCKED, &dev->flags);
3134                         set_bit(R5_Wantwrite, &dev->flags);
3135                 }
3136                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3137                         dev = &sh->dev[pd_idx];
3138                         s->locked++;
3139                         set_bit(R5_LOCKED, &dev->flags);
3140                         set_bit(R5_Wantwrite, &dev->flags);
3141                 }
3142                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3143                         dev = &sh->dev[qd_idx];
3144                         s->locked++;
3145                         set_bit(R5_LOCKED, &dev->flags);
3146                         set_bit(R5_Wantwrite, &dev->flags);
3147                 }
3148                 clear_bit(STRIPE_DEGRADED, &sh->state);
3149
3150                 set_bit(STRIPE_INSYNC, &sh->state);
3151                 break;
3152         case check_state_run:
3153         case check_state_run_q:
3154         case check_state_run_pq:
3155                 break; /* we will be called again upon completion */
3156         case check_state_check_result:
3157                 sh->check_state = check_state_idle;
3158
3159                 /* handle a successful check operation, if parity is correct
3160                  * we are done.  Otherwise update the mismatch count and repair
3161                  * parity if !MD_RECOVERY_CHECK
3162                  */
3163                 if (sh->ops.zero_sum_result == 0) {
3164                         /* both parities are correct */
3165                         if (!s->failed)
3166                                 set_bit(STRIPE_INSYNC, &sh->state);
3167                         else {
3168                                 /* in contrast to the raid5 case we can validate
3169                                  * parity, but still have a failure to write
3170                                  * back
3171                                  */
3172                                 sh->check_state = check_state_compute_result;
3173                                 /* Returning at this point means that we may go
3174                                  * off and bring p and/or q uptodate again so
3175                                  * we make sure to check zero_sum_result again
3176                                  * to verify if p or q need writeback
3177                                  */
3178                         }
3179                 } else {
3180                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3181                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3182                                 /* don't try to repair!! */
3183                                 set_bit(STRIPE_INSYNC, &sh->state);
3184                         else {
3185                                 int *target = &sh->ops.target;
3186
3187                                 sh->ops.target = -1;
3188                                 sh->ops.target2 = -1;
3189                                 sh->check_state = check_state_compute_run;
3190                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3191                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3192                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3193                                         set_bit(R5_Wantcompute,
3194                                                 &sh->dev[pd_idx].flags);
3195                                         *target = pd_idx;
3196                                         target = &sh->ops.target2;
3197                                         s->uptodate++;
3198                                 }
3199                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3200                                         set_bit(R5_Wantcompute,
3201                                                 &sh->dev[qd_idx].flags);
3202                                         *target = qd_idx;
3203                                         s->uptodate++;
3204                                 }
3205                         }
3206                 }
3207                 break;
3208         case check_state_compute_run:
3209                 break;
3210         default:
3211                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3212                        __func__, sh->check_state,
3213                        (unsigned long long) sh->sector);
3214                 BUG();
3215         }
3216 }
3217
3218 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3219 {
3220         int i;
3221
3222         /* We have read all the blocks in this stripe and now we need to
3223          * copy some of them into a target stripe for expand.
3224          */
3225         struct dma_async_tx_descriptor *tx = NULL;
3226         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3227         for (i = 0; i < sh->disks; i++)
3228                 if (i != sh->pd_idx && i != sh->qd_idx) {
3229                         int dd_idx, j;
3230                         struct stripe_head *sh2;
3231                         struct async_submit_ctl submit;
3232
3233                         sector_t bn = compute_blocknr(sh, i, 1);
3234                         sector_t s = raid5_compute_sector(conf, bn, 0,
3235                                                           &dd_idx, NULL);
3236                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3237                         if (sh2 == NULL)
3238                                 /* so far only the early blocks of this stripe
3239                                  * have been requested.  When later blocks
3240                                  * get requested, we will try again
3241                                  */
3242                                 continue;
3243                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3244                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3245                                 /* must have already done this block */
3246                                 release_stripe(sh2);
3247                                 continue;
3248                         }
3249
3250                         /* place all the copies on one channel */
3251                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3252                         tx = async_memcpy(sh2->dev[dd_idx].page,
3253                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3254                                           &submit);
3255
3256                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3257                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3258                         for (j = 0; j < conf->raid_disks; j++)
3259                                 if (j != sh2->pd_idx &&
3260                                     j != sh2->qd_idx &&
3261                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3262                                         break;
3263                         if (j == conf->raid_disks) {
3264                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3265                                 set_bit(STRIPE_HANDLE, &sh2->state);
3266                         }
3267                         release_stripe(sh2);
3268
3269                 }
3270         /* done submitting copies, wait for them to complete */
3271         async_tx_quiesce(&tx);
3272 }
3273
3274 /*
3275  * handle_stripe - do things to a stripe.
3276  *
3277  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3278  * state of various bits to see what needs to be done.
3279  * Possible results:
3280  *    return some read requests which now have data
3281  *    return some write requests which are safely on storage
3282  *    schedule a read on some buffers
3283  *    schedule a write of some buffers
3284  *    return confirmation of parity correctness
3285  *
3286  */
3287
3288 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3289 {
3290         struct r5conf *conf = sh->raid_conf;
3291         int disks = sh->disks;
3292         struct r5dev *dev;
3293         int i;
3294         int do_recovery = 0;
3295
3296         memset(s, 0, sizeof(*s));
3297
3298         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3299         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3300         s->failed_num[0] = -1;
3301         s->failed_num[1] = -1;
3302
3303         /* Now to look around and see what can be done */
3304         rcu_read_lock();
3305         for (i=disks; i--; ) {
3306                 struct md_rdev *rdev;
3307                 sector_t first_bad;
3308                 int bad_sectors;
3309                 int is_bad = 0;
3310
3311                 dev = &sh->dev[i];
3312
3313                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3314                          i, dev->flags,
3315                          dev->toread, dev->towrite, dev->written);
3316                 /* maybe we can reply to a read
3317                  *
3318                  * new wantfill requests are only permitted while
3319                  * ops_complete_biofill is guaranteed to be inactive
3320                  */
3321                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3322                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3323                         set_bit(R5_Wantfill, &dev->flags);
3324
3325                 /* now count some things */
3326                 if (test_bit(R5_LOCKED, &dev->flags))
3327                         s->locked++;
3328                 if (test_bit(R5_UPTODATE, &dev->flags))
3329                         s->uptodate++;
3330                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3331                         s->compute++;
3332                         BUG_ON(s->compute > 2);
3333                 }
3334
3335                 if (test_bit(R5_Wantfill, &dev->flags))
3336                         s->to_fill++;
3337                 else if (dev->toread)
3338                         s->to_read++;
3339                 if (dev->towrite) {
3340                         s->to_write++;
3341                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3342                                 s->non_overwrite++;
3343                 }
3344                 if (dev->written)
3345                         s->written++;
3346                 /* Prefer to use the replacement for reads, but only
3347                  * if it is recovered enough and has no bad blocks.
3348                  */
3349                 rdev = rcu_dereference(conf->disks[i].replacement);
3350                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3351                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3352                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3353                                  &first_bad, &bad_sectors))
3354                         set_bit(R5_ReadRepl, &dev->flags);
3355                 else {
3356                         if (rdev)
3357                                 set_bit(R5_NeedReplace, &dev->flags);
3358                         rdev = rcu_dereference(conf->disks[i].rdev);
3359                         clear_bit(R5_ReadRepl, &dev->flags);
3360                 }
3361                 if (rdev && test_bit(Faulty, &rdev->flags))
3362                         rdev = NULL;
3363                 if (rdev) {
3364                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3365                                              &first_bad, &bad_sectors);
3366                         if (s->blocked_rdev == NULL
3367                             && (test_bit(Blocked, &rdev->flags)
3368                                 || is_bad < 0)) {
3369                                 if (is_bad < 0)
3370                                         set_bit(BlockedBadBlocks,
3371                                                 &rdev->flags);
3372                                 s->blocked_rdev = rdev;
3373                                 atomic_inc(&rdev->nr_pending);
3374                         }
3375                 }
3376                 clear_bit(R5_Insync, &dev->flags);
3377                 if (!rdev)
3378                         /* Not in-sync */;
3379                 else if (is_bad) {
3380                         /* also not in-sync */
3381                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3382                             test_bit(R5_UPTODATE, &dev->flags)) {
3383                                 /* treat as in-sync, but with a read error
3384                                  * which we can now try to correct
3385                                  */
3386                                 set_bit(R5_Insync, &dev->flags);
3387                                 set_bit(R5_ReadError, &dev->flags);
3388                         }
3389                 } else if (test_bit(In_sync, &rdev->flags))
3390                         set_bit(R5_Insync, &dev->flags);
3391                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3392                         /* in sync if before recovery_offset */
3393                         set_bit(R5_Insync, &dev->flags);
3394                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3395                          test_bit(R5_Expanded, &dev->flags))
3396                         /* If we've reshaped into here, we assume it is Insync.
3397                          * We will shortly update recovery_offset to make
3398                          * it official.
3399                          */
3400                         set_bit(R5_Insync, &dev->flags);
3401
3402                 if (test_bit(R5_WriteError, &dev->flags)) {
3403                         /* This flag does not apply to '.replacement'
3404                          * only to .rdev, so make sure to check that*/
3405                         struct md_rdev *rdev2 = rcu_dereference(
3406                                 conf->disks[i].rdev);
3407                         if (rdev2 == rdev)
3408                                 clear_bit(R5_Insync, &dev->flags);
3409                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3410                                 s->handle_bad_blocks = 1;
3411                                 atomic_inc(&rdev2->nr_pending);
3412                         } else
3413                                 clear_bit(R5_WriteError, &dev->flags);
3414                 }
3415                 if (test_bit(R5_MadeGood, &dev->flags)) {
3416                         /* This flag does not apply to '.replacement'
3417                          * only to .rdev, so make sure to check that*/
3418                         struct md_rdev *rdev2 = rcu_dereference(
3419                                 conf->disks[i].rdev);
3420                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3421                                 s->handle_bad_blocks = 1;
3422                                 atomic_inc(&rdev2->nr_pending);
3423                         } else
3424                                 clear_bit(R5_MadeGood, &dev->flags);
3425                 }
3426                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3427                         struct md_rdev *rdev2 = rcu_dereference(
3428                                 conf->disks[i].replacement);
3429                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3430                                 s->handle_bad_blocks = 1;
3431                                 atomic_inc(&rdev2->nr_pending);
3432                         } else
3433                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3434                 }
3435                 if (!test_bit(R5_Insync, &dev->flags)) {
3436                         /* The ReadError flag will just be confusing now */
3437                         clear_bit(R5_ReadError, &dev->flags);
3438                         clear_bit(R5_ReWrite, &dev->flags);
3439                 }
3440                 if (test_bit(R5_ReadError, &dev->flags))
3441                         clear_bit(R5_Insync, &dev->flags);
3442                 if (!test_bit(R5_Insync, &dev->flags)) {
3443                         if (s->failed < 2)
3444                                 s->failed_num[s->failed] = i;
3445                         s->failed++;
3446                         if (rdev && !test_bit(Faulty, &rdev->flags))
3447                                 do_recovery = 1;
3448                 }
3449         }
3450         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3451                 /* If there is a failed device being replaced,
3452                  *     we must be recovering.
3453                  * else if we are after recovery_cp, we must be syncing
3454                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3455                  * else we can only be replacing
3456                  * sync and recovery both need to read all devices, and so
3457                  * use the same flag.
3458                  */
3459                 if (do_recovery ||
3460                     sh->sector >= conf->mddev->recovery_cp ||
3461                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3462                         s->syncing = 1;
3463                 else
3464                         s->replacing = 1;
3465         }
3466         rcu_read_unlock();
3467 }
3468
3469 static void handle_stripe(struct stripe_head *sh)
3470 {
3471         struct stripe_head_state s;
3472         struct r5conf *conf = sh->raid_conf;
3473         int i;
3474         int prexor;
3475         int disks = sh->disks;
3476         struct r5dev *pdev, *qdev;
3477
3478         clear_bit(STRIPE_HANDLE, &sh->state);
3479         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3480                 /* already being handled, ensure it gets handled
3481                  * again when current action finishes */
3482                 set_bit(STRIPE_HANDLE, &sh->state);
3483                 return;
3484         }
3485
3486         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3487                 spin_lock(&sh->stripe_lock);
3488                 /* Cannot process 'sync' concurrently with 'discard' */
3489                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3490                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3491                         set_bit(STRIPE_SYNCING, &sh->state);
3492                         clear_bit(STRIPE_INSYNC, &sh->state);
3493                         clear_bit(STRIPE_REPLACED, &sh->state);
3494                 }
3495                 spin_unlock(&sh->stripe_lock);
3496         }
3497         clear_bit(STRIPE_DELAYED, &sh->state);
3498
3499         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3500                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3501                (unsigned long long)sh->sector, sh->state,
3502                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3503                sh->check_state, sh->reconstruct_state);
3504
3505         analyse_stripe(sh, &s);
3506
3507         if (s.handle_bad_blocks) {
3508                 set_bit(STRIPE_HANDLE, &sh->state);
3509                 goto finish;
3510         }
3511
3512         if (unlikely(s.blocked_rdev)) {
3513                 if (s.syncing || s.expanding || s.expanded ||
3514                     s.replacing || s.to_write || s.written) {
3515                         set_bit(STRIPE_HANDLE, &sh->state);
3516                         goto finish;
3517                 }
3518                 /* There is nothing for the blocked_rdev to block */
3519                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3520                 s.blocked_rdev = NULL;
3521         }
3522
3523         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3524                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3525                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3526         }
3527
3528         pr_debug("locked=%d uptodate=%d to_read=%d"
3529                " to_write=%d failed=%d failed_num=%d,%d\n",
3530                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3531                s.failed_num[0], s.failed_num[1]);
3532         /* check if the array has lost more than max_degraded devices and,
3533          * if so, some requests might need to be failed.
3534          */
3535         if (s.failed > conf->max_degraded) {
3536                 sh->check_state = 0;
3537                 sh->reconstruct_state = 0;
3538                 if (s.to_read+s.to_write+s.written)
3539                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3540                 if (s.syncing + s.replacing)
3541                         handle_failed_sync(conf, sh, &s);
3542         }
3543
3544         /* Now we check to see if any write operations have recently
3545          * completed
3546          */
3547         prexor = 0;
3548         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3549                 prexor = 1;
3550         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3551             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3552                 sh->reconstruct_state = reconstruct_state_idle;
3553
3554                 /* All the 'written' buffers and the parity block are ready to
3555                  * be written back to disk
3556                  */
3557                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3558                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3559                 BUG_ON(sh->qd_idx >= 0 &&
3560                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3561                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3562                 for (i = disks; i--; ) {
3563                         struct r5dev *dev = &sh->dev[i];
3564                         if (test_bit(R5_LOCKED, &dev->flags) &&
3565                                 (i == sh->pd_idx || i == sh->qd_idx ||
3566                                  dev->written)) {
3567                                 pr_debug("Writing block %d\n", i);
3568                                 set_bit(R5_Wantwrite, &dev->flags);
3569                                 if (prexor)
3570                                         continue;
3571                                 if (s.failed > 1)
3572                                         continue;
3573                                 if (!test_bit(R5_Insync, &dev->flags) ||
3574                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3575                                      s.failed == 0))
3576                                         set_bit(STRIPE_INSYNC, &sh->state);
3577                         }
3578                 }
3579                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3580                         s.dec_preread_active = 1;
3581         }
3582
3583         /*
3584          * might be able to return some write requests if the parity blocks
3585          * are safe, or on a failed drive
3586          */
3587         pdev = &sh->dev[sh->pd_idx];
3588         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3589                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3590         qdev = &sh->dev[sh->qd_idx];
3591         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3592                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3593                 || conf->level < 6;
3594
3595         if (s.written &&
3596             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3597                              && !test_bit(R5_LOCKED, &pdev->flags)
3598                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3599                                  test_bit(R5_Discard, &pdev->flags))))) &&
3600             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3601                              && !test_bit(R5_LOCKED, &qdev->flags)
3602                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3603                                  test_bit(R5_Discard, &qdev->flags))))))
3604                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3605
3606         /* Now we might consider reading some blocks, either to check/generate
3607          * parity, or to satisfy requests
3608          * or to load a block that is being partially written.
3609          */
3610         if (s.to_read || s.non_overwrite
3611             || (conf->level == 6 && s.to_write && s.failed)
3612             || (s.syncing && (s.uptodate + s.compute < disks))
3613             || s.replacing
3614             || s.expanding)
3615                 handle_stripe_fill(sh, &s, disks);
3616
3617         /* Now to consider new write requests and what else, if anything
3618          * should be read.  We do not handle new writes when:
3619          * 1/ A 'write' operation (copy+xor) is already in flight.
3620          * 2/ A 'check' operation is in flight, as it may clobber the parity
3621          *    block.
3622          */
3623         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3624                 handle_stripe_dirtying(conf, sh, &s, disks);
3625
3626         /* maybe we need to check and possibly fix the parity for this stripe
3627          * Any reads will already have been scheduled, so we just see if enough
3628          * data is available.  The parity check is held off while parity
3629          * dependent operations are in flight.
3630          */
3631         if (sh->check_state ||
3632             (s.syncing && s.locked == 0 &&
3633              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3634              !test_bit(STRIPE_INSYNC, &sh->state))) {
3635                 if (conf->level == 6)
3636                         handle_parity_checks6(conf, sh, &s, disks);
3637                 else
3638                         handle_parity_checks5(conf, sh, &s, disks);
3639         }
3640
3641         if ((s.replacing || s.syncing) && s.locked == 0
3642             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3643             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3644                 /* Write out to replacement devices where possible */
3645                 for (i = 0; i < conf->raid_disks; i++)
3646                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3647                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3648                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3649                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3650                                 s.locked++;
3651                         }
3652                 if (s.replacing)
3653                         set_bit(STRIPE_INSYNC, &sh->state);
3654                 set_bit(STRIPE_REPLACED, &sh->state);
3655         }
3656         if ((s.syncing || s.replacing) && s.locked == 0 &&
3657             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3658             test_bit(STRIPE_INSYNC, &sh->state)) {
3659                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3660                 clear_bit(STRIPE_SYNCING, &sh->state);
3661                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3662                         wake_up(&conf->wait_for_overlap);
3663         }
3664
3665         /* If the failed drives are just a ReadError, then we might need
3666          * to progress the repair/check process
3667          */
3668         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3669                 for (i = 0; i < s.failed; i++) {
3670                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3671                         if (test_bit(R5_ReadError, &dev->flags)
3672                             && !test_bit(R5_LOCKED, &dev->flags)
3673                             && test_bit(R5_UPTODATE, &dev->flags)
3674                                 ) {
3675                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3676                                         set_bit(R5_Wantwrite, &dev->flags);
3677                                         set_bit(R5_ReWrite, &dev->flags);
3678                                         set_bit(R5_LOCKED, &dev->flags);
3679                                         s.locked++;
3680                                 } else {
3681                                         /* let's read it back */
3682                                         set_bit(R5_Wantread, &dev->flags);
3683                                         set_bit(R5_LOCKED, &dev->flags);
3684                                         s.locked++;
3685                                 }
3686                         }
3687                 }
3688
3689
3690         /* Finish reconstruct operations initiated by the expansion process */
3691         if (sh->reconstruct_state == reconstruct_state_result) {
3692                 struct stripe_head *sh_src
3693                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3694                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3695                         /* sh cannot be written until sh_src has been read.
3696                          * so arrange for sh to be delayed a little
3697                          */
3698                         set_bit(STRIPE_DELAYED, &sh->state);
3699                         set_bit(STRIPE_HANDLE, &sh->state);
3700                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3701                                               &sh_src->state))
3702                                 atomic_inc(&conf->preread_active_stripes);
3703                         release_stripe(sh_src);
3704                         goto finish;
3705                 }
3706                 if (sh_src)
3707                         release_stripe(sh_src);
3708
3709                 sh->reconstruct_state = reconstruct_state_idle;
3710                 clear_bit(STRIPE_EXPANDING, &sh->state);
3711                 for (i = conf->raid_disks; i--; ) {
3712                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3713                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3714                         s.locked++;
3715                 }
3716         }
3717
3718         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3719             !sh->reconstruct_state) {
3720                 /* Need to write out all blocks after computing parity */
3721                 sh->disks = conf->raid_disks;
3722                 stripe_set_idx(sh->sector, conf, 0, sh);
3723                 schedule_reconstruction(sh, &s, 1, 1);
3724         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3725                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3726                 atomic_dec(&conf->reshape_stripes);
3727                 wake_up(&conf->wait_for_overlap);
3728                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3729         }
3730
3731         if (s.expanding && s.locked == 0 &&
3732             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3733                 handle_stripe_expansion(conf, sh);
3734
3735 finish:
3736         /* wait for this device to become unblocked */
3737         if (unlikely(s.blocked_rdev)) {
3738                 if (conf->mddev->external)
3739                         md_wait_for_blocked_rdev(s.blocked_rdev,
3740                                                  conf->mddev);
3741                 else
3742                         /* Internal metadata will immediately
3743                          * be written by raid5d, so we don't
3744                          * need to wait here.
3745                          */
3746                         rdev_dec_pending(s.blocked_rdev,
3747                                          conf->mddev);
3748         }
3749
3750         if (s.handle_bad_blocks)
3751                 for (i = disks; i--; ) {
3752                         struct md_rdev *rdev;
3753                         struct r5dev *dev = &sh->dev[i];
3754                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3755                                 /* We own a safe reference to the rdev */
3756                                 rdev = conf->disks[i].rdev;
3757                                 if (!rdev_set_badblocks(rdev, sh->sector,
3758                                                         STRIPE_SECTORS, 0))
3759                                         md_error(conf->mddev, rdev);
3760                                 rdev_dec_pending(rdev, conf->mddev);
3761                         }
3762                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3763                                 rdev = conf->disks[i].rdev;
3764                                 rdev_clear_badblocks(rdev, sh->sector,
3765                                                      STRIPE_SECTORS, 0);
3766                                 rdev_dec_pending(rdev, conf->mddev);
3767                         }
3768                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3769                                 rdev = conf->disks[i].replacement;
3770                                 if (!rdev)
3771                                         /* rdev have been moved down */
3772                                         rdev = conf->disks[i].rdev;
3773                                 rdev_clear_badblocks(rdev, sh->sector,
3774                                                      STRIPE_SECTORS, 0);
3775                                 rdev_dec_pending(rdev, conf->mddev);
3776                         }
3777                 }
3778
3779         if (s.ops_request)
3780                 raid_run_ops(sh, s.ops_request);
3781
3782         ops_run_io(sh, &s);
3783
3784         if (s.dec_preread_active) {
3785                 /* We delay this until after ops_run_io so that if make_request
3786                  * is waiting on a flush, it won't continue until the writes
3787                  * have actually been submitted.
3788                  */
3789                 atomic_dec(&conf->preread_active_stripes);
3790                 if (atomic_read(&conf->preread_active_stripes) <
3791                     IO_THRESHOLD)
3792                         md_wakeup_thread(conf->mddev->thread);
3793         }
3794
3795         return_io(s.return_bi);
3796
3797         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3798 }
3799
3800 static void raid5_activate_delayed(struct r5conf *conf)
3801 {
3802         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3803                 while (!list_empty(&conf->delayed_list)) {
3804                         struct list_head *l = conf->delayed_list.next;
3805                         struct stripe_head *sh;
3806                         sh = list_entry(l, struct stripe_head, lru);
3807                         list_del_init(l);
3808                         clear_bit(STRIPE_DELAYED, &sh->state);
3809                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3810                                 atomic_inc(&conf->preread_active_stripes);
3811                         list_add_tail(&sh->lru, &conf->hold_list);
3812                 }
3813         }
3814 }
3815
3816 static void activate_bit_delay(struct r5conf *conf)
3817 {
3818         /* device_lock is held */
3819         struct list_head head;
3820         list_add(&head, &conf->bitmap_list);
3821         list_del_init(&conf->bitmap_list);
3822         while (!list_empty(&head)) {
3823                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3824                 list_del_init(&sh->lru);
3825                 atomic_inc(&sh->count);
3826                 __release_stripe(conf, sh);
3827         }
3828 }
3829
3830 int md_raid5_congested(struct mddev *mddev, int bits)
3831 {
3832         struct r5conf *conf = mddev->private;
3833
3834         /* No difference between reads and writes.  Just check
3835          * how busy the stripe_cache is
3836          */
3837
3838         if (conf->inactive_blocked)
3839                 return 1;
3840         if (conf->quiesce)
3841                 return 1;
3842         if (list_empty_careful(&conf->inactive_list))
3843                 return 1;
3844
3845         return 0;
3846 }
3847 EXPORT_SYMBOL_GPL(md_raid5_congested);
3848
3849 static int raid5_congested(void *data, int bits)
3850 {
3851         struct mddev *mddev = data;
3852
3853         return mddev_congested(mddev, bits) ||
3854                 md_raid5_congested(mddev, bits);
3855 }
3856
3857 /* We want read requests to align with chunks where possible,
3858  * but write requests don't need to.
3859  */
3860 static int raid5_mergeable_bvec(struct request_queue *q,
3861                                 struct bvec_merge_data *bvm,
3862                                 struct bio_vec *biovec)
3863 {
3864         struct mddev *mddev = q->queuedata;
3865         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3866         int max;
3867         unsigned int chunk_sectors = mddev->chunk_sectors;
3868         unsigned int bio_sectors = bvm->bi_size >> 9;
3869
3870         if ((bvm->bi_rw & 1) == WRITE)
3871                 return biovec->bv_len; /* always allow writes to be mergeable */
3872
3873         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3874                 chunk_sectors = mddev->new_chunk_sectors;
3875         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3876         if (max < 0) max = 0;
3877         if (max <= biovec->bv_len && bio_sectors == 0)
3878                 return biovec->bv_len;
3879         else
3880                 return max;
3881 }
3882
3883
3884 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3885 {
3886         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3887         unsigned int chunk_sectors = mddev->chunk_sectors;
3888         unsigned int bio_sectors = bio_sectors(bio);
3889
3890         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3891                 chunk_sectors = mddev->new_chunk_sectors;
3892         return  chunk_sectors >=
3893                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3894 }
3895
3896 /*
3897  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3898  *  later sampled by raid5d.
3899  */
3900 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3901 {
3902         unsigned long flags;
3903
3904         spin_lock_irqsave(&conf->device_lock, flags);
3905
3906         bi->bi_next = conf->retry_read_aligned_list;
3907         conf->retry_read_aligned_list = bi;
3908
3909         spin_unlock_irqrestore(&conf->device_lock, flags);
3910         md_wakeup_thread(conf->mddev->thread);
3911 }
3912
3913
3914 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3915 {
3916         struct bio *bi;
3917
3918         bi = conf->retry_read_aligned;
3919         if (bi) {
3920                 conf->retry_read_aligned = NULL;
3921                 return bi;
3922         }
3923         bi = conf->retry_read_aligned_list;
3924         if(bi) {
3925                 conf->retry_read_aligned_list = bi->bi_next;
3926                 bi->bi_next = NULL;
3927                 /*
3928                  * this sets the active strip count to 1 and the processed
3929                  * strip count to zero (upper 8 bits)
3930                  */
3931                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3932         }
3933
3934         return bi;
3935 }
3936
3937
3938 /*
3939  *  The "raid5_align_endio" should check if the read succeeded and if it
3940  *  did, call bio_endio on the original bio (having bio_put the new bio
3941  *  first).
3942  *  If the read failed..
3943  */
3944 static void raid5_align_endio(struct bio *bi, int error)
3945 {
3946         struct bio* raid_bi  = bi->bi_private;
3947         struct mddev *mddev;
3948         struct r5conf *conf;
3949         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3950         struct md_rdev *rdev;
3951
3952         bio_put(bi);
3953
3954         rdev = (void*)raid_bi->bi_next;
3955         raid_bi->bi_next = NULL;
3956         mddev = rdev->mddev;
3957         conf = mddev->private;
3958
3959         rdev_dec_pending(rdev, conf->mddev);
3960
3961         if (!error && uptodate) {
3962                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3963                                          raid_bi, 0);
3964                 bio_endio(raid_bi, 0);
3965                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3966                         wake_up(&conf->wait_for_stripe);
3967                 return;
3968         }
3969
3970
3971         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3972
3973         add_bio_to_retry(raid_bi, conf);
3974 }
3975
3976 static int bio_fits_rdev(struct bio *bi)
3977 {
3978         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3979
3980         if (bio_sectors(bi) > queue_max_sectors(q))
3981                 return 0;
3982         blk_recount_segments(q, bi);
3983         if (bi->bi_phys_segments > queue_max_segments(q))
3984                 return 0;
3985
3986         if (q->merge_bvec_fn)
3987                 /* it's too hard to apply the merge_bvec_fn at this stage,
3988                  * just just give up
3989                  */
3990                 return 0;
3991
3992         return 1;
3993 }
3994
3995
3996 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3997 {
3998         struct r5conf *conf = mddev->private;
3999         int dd_idx;
4000         struct bio* align_bi;
4001         struct md_rdev *rdev;
4002         sector_t end_sector;
4003
4004         if (!in_chunk_boundary(mddev, raid_bio)) {
4005                 pr_debug("chunk_aligned_read : non aligned\n");
4006                 return 0;
4007         }
4008         /*
4009          * use bio_clone_mddev to make a copy of the bio
4010          */
4011         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4012         if (!align_bi)
4013                 return 0;
4014         /*
4015          *   set bi_end_io to a new function, and set bi_private to the
4016          *     original bio.
4017          */
4018         align_bi->bi_end_io  = raid5_align_endio;
4019         align_bi->bi_private = raid_bio;
4020         /*
4021          *      compute position
4022          */
4023         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4024                                                     0,
4025                                                     &dd_idx, NULL);
4026
4027         end_sector = bio_end_sector(align_bi);
4028         rcu_read_lock();
4029         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4030         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4031             rdev->recovery_offset < end_sector) {
4032                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4033                 if (rdev &&
4034                     (test_bit(Faulty, &rdev->flags) ||
4035                     !(test_bit(In_sync, &rdev->flags) ||
4036                       rdev->recovery_offset >= end_sector)))
4037                         rdev = NULL;
4038         }
4039         if (rdev) {
4040                 sector_t first_bad;
4041                 int bad_sectors;
4042
4043                 atomic_inc(&rdev->nr_pending);
4044                 rcu_read_unlock();
4045                 raid_bio->bi_next = (void*)rdev;
4046                 align_bi->bi_bdev =  rdev->bdev;
4047                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4048
4049                 if (!bio_fits_rdev(align_bi) ||
4050                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4051                                 &first_bad, &bad_sectors)) {
4052                         /* too big in some way, or has a known bad block */
4053                         bio_put(align_bi);
4054                         rdev_dec_pending(rdev, mddev);
4055                         return 0;
4056                 }
4057
4058                 /* No reshape active, so we can trust rdev->data_offset */
4059                 align_bi->bi_sector += rdev->data_offset;
4060
4061                 spin_lock_irq(&conf->device_lock);
4062                 wait_event_lock_irq(conf->wait_for_stripe,
4063                                     conf->quiesce == 0,
4064                                     conf->device_lock);
4065                 atomic_inc(&conf->active_aligned_reads);
4066                 spin_unlock_irq(&conf->device_lock);
4067
4068                 if (mddev->gendisk)
4069                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4070                                               align_bi, disk_devt(mddev->gendisk),
4071                                               raid_bio->bi_sector);
4072                 generic_make_request(align_bi);
4073                 return 1;
4074         } else {
4075                 rcu_read_unlock();
4076                 bio_put(align_bi);
4077                 return 0;
4078         }
4079 }
4080
4081 /* __get_priority_stripe - get the next stripe to process
4082  *
4083  * Full stripe writes are allowed to pass preread active stripes up until
4084  * the bypass_threshold is exceeded.  In general the bypass_count
4085  * increments when the handle_list is handled before the hold_list; however, it
4086  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4087  * stripe with in flight i/o.  The bypass_count will be reset when the
4088  * head of the hold_list has changed, i.e. the head was promoted to the
4089  * handle_list.
4090  */
4091 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4092 {
4093         struct stripe_head *sh;
4094
4095         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4096                   __func__,
4097                   list_empty(&conf->handle_list) ? "empty" : "busy",
4098                   list_empty(&conf->hold_list) ? "empty" : "busy",
4099                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4100
4101         if (!list_empty(&conf->handle_list)) {
4102                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4103
4104                 if (list_empty(&conf->hold_list))
4105                         conf->bypass_count = 0;
4106                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4107                         if (conf->hold_list.next == conf->last_hold)
4108                                 conf->bypass_count++;
4109                         else {
4110                                 conf->last_hold = conf->hold_list.next;
4111                                 conf->bypass_count -= conf->bypass_threshold;
4112                                 if (conf->bypass_count < 0)
4113                                         conf->bypass_count = 0;
4114                         }
4115                 }
4116         } else if (!list_empty(&conf->hold_list) &&
4117                    ((conf->bypass_threshold &&
4118                      conf->bypass_count > conf->bypass_threshold) ||
4119                     atomic_read(&conf->pending_full_writes) == 0)) {
4120                 sh = list_entry(conf->hold_list.next,
4121                                 typeof(*sh), lru);
4122                 conf->bypass_count -= conf->bypass_threshold;
4123                 if (conf->bypass_count < 0)
4124                         conf->bypass_count = 0;
4125         } else
4126                 return NULL;
4127
4128         list_del_init(&sh->lru);
4129         atomic_inc(&sh->count);
4130         BUG_ON(atomic_read(&sh->count) != 1);
4131         return sh;
4132 }
4133
4134 struct raid5_plug_cb {
4135         struct blk_plug_cb      cb;
4136         struct list_head        list;
4137 };
4138
4139 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4140 {
4141         struct raid5_plug_cb *cb = container_of(
4142                 blk_cb, struct raid5_plug_cb, cb);
4143         struct stripe_head *sh;
4144         struct mddev *mddev = cb->cb.data;
4145         struct r5conf *conf = mddev->private;
4146         int cnt = 0;
4147
4148         if (cb->list.next && !list_empty(&cb->list)) {
4149                 spin_lock_irq(&conf->device_lock);
4150                 while (!list_empty(&cb->list)) {
4151                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4152                         list_del_init(&sh->lru);
4153                         /*
4154                          * avoid race release_stripe_plug() sees
4155                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4156                          * is still in our list
4157                          */
4158                         smp_mb__before_clear_bit();
4159                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4160                         __release_stripe(conf, sh);
4161                         cnt++;
4162                 }
4163                 spin_unlock_irq(&conf->device_lock);
4164         }
4165         if (mddev->queue)
4166                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4167         kfree(cb);
4168 }
4169
4170 static void release_stripe_plug(struct mddev *mddev,
4171                                 struct stripe_head *sh)
4172 {
4173         struct blk_plug_cb *blk_cb = blk_check_plugged(
4174                 raid5_unplug, mddev,
4175                 sizeof(struct raid5_plug_cb));
4176         struct raid5_plug_cb *cb;
4177
4178         if (!blk_cb) {
4179                 release_stripe(sh);
4180                 return;
4181         }
4182
4183         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4184
4185         if (cb->list.next == NULL)
4186                 INIT_LIST_HEAD(&cb->list);
4187
4188         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4189                 list_add_tail(&sh->lru, &cb->list);
4190         else
4191                 release_stripe(sh);
4192 }
4193
4194 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4195 {
4196         struct r5conf *conf = mddev->private;
4197         sector_t logical_sector, last_sector;
4198         struct stripe_head *sh;
4199         int remaining;
4200         int stripe_sectors;
4201
4202         if (mddev->reshape_position != MaxSector)
4203                 /* Skip discard while reshape is happening */
4204                 return;
4205
4206         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4207         last_sector = bi->bi_sector + (bi->bi_size>>9);
4208
4209         bi->bi_next = NULL;
4210         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4211
4212         stripe_sectors = conf->chunk_sectors *
4213                 (conf->raid_disks - conf->max_degraded);
4214         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4215                                                stripe_sectors);
4216         sector_div(last_sector, stripe_sectors);
4217
4218         logical_sector *= conf->chunk_sectors;
4219         last_sector *= conf->chunk_sectors;
4220
4221         for (; logical_sector < last_sector;
4222              logical_sector += STRIPE_SECTORS) {
4223                 DEFINE_WAIT(w);
4224                 int d;
4225         again:
4226                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4227                 prepare_to_wait(&conf->wait_for_overlap, &w,
4228                                 TASK_UNINTERRUPTIBLE);
4229                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4230                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4231                         release_stripe(sh);
4232                         schedule();
4233                         goto again;
4234                 }
4235                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4236                 spin_lock_irq(&sh->stripe_lock);
4237                 for (d = 0; d < conf->raid_disks; d++) {
4238                         if (d == sh->pd_idx || d == sh->qd_idx)
4239                                 continue;
4240                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4241                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4242                                 spin_unlock_irq(&sh->stripe_lock);
4243                                 release_stripe(sh);
4244                                 schedule();
4245                                 goto again;
4246                         }
4247                 }
4248                 set_bit(STRIPE_DISCARD, &sh->state);
4249                 finish_wait(&conf->wait_for_overlap, &w);
4250                 for (d = 0; d < conf->raid_disks; d++) {
4251                         if (d == sh->pd_idx || d == sh->qd_idx)
4252                                 continue;
4253                         sh->dev[d].towrite = bi;
4254                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4255                         raid5_inc_bi_active_stripes(bi);
4256                 }
4257                 spin_unlock_irq(&sh->stripe_lock);
4258                 if (conf->mddev->bitmap) {
4259                         for (d = 0;
4260                              d < conf->raid_disks - conf->max_degraded;
4261                              d++)
4262                                 bitmap_startwrite(mddev->bitmap,
4263                                                   sh->sector,
4264                                                   STRIPE_SECTORS,
4265                                                   0);
4266                         sh->bm_seq = conf->seq_flush + 1;
4267                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4268                 }
4269
4270                 set_bit(STRIPE_HANDLE, &sh->state);
4271                 clear_bit(STRIPE_DELAYED, &sh->state);
4272                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4273                         atomic_inc(&conf->preread_active_stripes);
4274                 release_stripe_plug(mddev, sh);
4275         }
4276
4277         remaining = raid5_dec_bi_active_stripes(bi);
4278         if (remaining == 0) {
4279                 md_write_end(mddev);
4280                 bio_endio(bi, 0);
4281         }
4282 }
4283
4284 static void make_request(struct mddev *mddev, struct bio * bi)
4285 {
4286         struct r5conf *conf = mddev->private;
4287         int dd_idx;
4288         sector_t new_sector;
4289         sector_t logical_sector, last_sector;
4290         struct stripe_head *sh;
4291         const int rw = bio_data_dir(bi);
4292         int remaining;
4293
4294         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4295                 md_flush_request(mddev, bi);
4296                 return;
4297         }
4298
4299         md_write_start(mddev, bi);
4300
4301         if (rw == READ &&
4302              mddev->reshape_position == MaxSector &&
4303              chunk_aligned_read(mddev,bi))
4304                 return;
4305
4306         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4307                 make_discard_request(mddev, bi);
4308                 return;
4309         }
4310
4311         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4312         last_sector = bio_end_sector(bi);
4313         bi->bi_next = NULL;
4314         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4315
4316         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4317                 DEFINE_WAIT(w);
4318                 int previous;
4319
4320         retry:
4321                 previous = 0;
4322                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4323                 if (unlikely(conf->reshape_progress != MaxSector)) {
4324                         /* spinlock is needed as reshape_progress may be
4325                          * 64bit on a 32bit platform, and so it might be
4326                          * possible to see a half-updated value
4327                          * Of course reshape_progress could change after
4328                          * the lock is dropped, so once we get a reference
4329                          * to the stripe that we think it is, we will have
4330                          * to check again.
4331                          */
4332                         spin_lock_irq(&conf->device_lock);
4333                         if (mddev->reshape_backwards
4334                             ? logical_sector < conf->reshape_progress
4335                             : logical_sector >= conf->reshape_progress) {
4336                                 previous = 1;
4337                         } else {
4338                                 if (mddev->reshape_backwards
4339                                     ? logical_sector < conf->reshape_safe
4340                                     : logical_sector >= conf->reshape_safe) {
4341                                         spin_unlock_irq(&conf->device_lock);
4342                                         schedule();
4343                                         goto retry;
4344                                 }
4345                         }
4346                         spin_unlock_irq(&conf->device_lock);
4347                 }
4348
4349                 new_sector = raid5_compute_sector(conf, logical_sector,
4350                                                   previous,
4351                                                   &dd_idx, NULL);
4352                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4353                         (unsigned long long)new_sector, 
4354                         (unsigned long long)logical_sector);
4355
4356                 sh = get_active_stripe(conf, new_sector, previous,
4357                                        (bi->bi_rw&RWA_MASK), 0);
4358                 if (sh) {
4359                         if (unlikely(previous)) {
4360                                 /* expansion might have moved on while waiting for a
4361                                  * stripe, so we must do the range check again.
4362                                  * Expansion could still move past after this
4363                                  * test, but as we are holding a reference to
4364                                  * 'sh', we know that if that happens,
4365                                  *  STRIPE_EXPANDING will get set and the expansion
4366                                  * won't proceed until we finish with the stripe.
4367                                  */
4368                                 int must_retry = 0;
4369                                 spin_lock_irq(&conf->device_lock);
4370                                 if (mddev->reshape_backwards
4371                                     ? logical_sector >= conf->reshape_progress
4372                                     : logical_sector < conf->reshape_progress)
4373                                         /* mismatch, need to try again */
4374                                         must_retry = 1;
4375                                 spin_unlock_irq(&conf->device_lock);
4376                                 if (must_retry) {
4377                                         release_stripe(sh);
4378                                         schedule();
4379                                         goto retry;
4380                                 }
4381                         }
4382
4383                         if (rw == WRITE &&
4384                             logical_sector >= mddev->suspend_lo &&
4385                             logical_sector < mddev->suspend_hi) {
4386                                 release_stripe(sh);
4387                                 /* As the suspend_* range is controlled by
4388                                  * userspace, we want an interruptible
4389                                  * wait.
4390                                  */
4391                                 flush_signals(current);
4392                                 prepare_to_wait(&conf->wait_for_overlap,
4393                                                 &w, TASK_INTERRUPTIBLE);
4394                                 if (logical_sector >= mddev->suspend_lo &&
4395                                     logical_sector < mddev->suspend_hi)
4396                                         schedule();
4397                                 goto retry;
4398                         }
4399
4400                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4401                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4402                                 /* Stripe is busy expanding or
4403                                  * add failed due to overlap.  Flush everything
4404                                  * and wait a while
4405                                  */
4406                                 md_wakeup_thread(mddev->thread);
4407                                 release_stripe(sh);
4408                                 schedule();
4409                                 goto retry;
4410                         }
4411                         finish_wait(&conf->wait_for_overlap, &w);
4412                         set_bit(STRIPE_HANDLE, &sh->state);
4413                         clear_bit(STRIPE_DELAYED, &sh->state);
4414                         if ((bi->bi_rw & REQ_SYNC) &&
4415                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4416                                 atomic_inc(&conf->preread_active_stripes);
4417                         release_stripe_plug(mddev, sh);
4418                 } else {
4419                         /* cannot get stripe for read-ahead, just give-up */
4420                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4421                         finish_wait(&conf->wait_for_overlap, &w);
4422                         break;
4423                 }
4424         }
4425
4426         remaining = raid5_dec_bi_active_stripes(bi);
4427         if (remaining == 0) {
4428
4429                 if ( rw == WRITE )
4430                         md_write_end(mddev);
4431
4432                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4433                                          bi, 0);
4434                 bio_endio(bi, 0);
4435         }
4436 }
4437
4438 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4439
4440 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4441 {
4442         /* reshaping is quite different to recovery/resync so it is
4443          * handled quite separately ... here.
4444          *
4445          * On each call to sync_request, we gather one chunk worth of
4446          * destination stripes and flag them as expanding.
4447          * Then we find all the source stripes and request reads.
4448          * As the reads complete, handle_stripe will copy the data
4449          * into the destination stripe and release that stripe.
4450          */
4451         struct r5conf *conf = mddev->private;
4452         struct stripe_head *sh;
4453         sector_t first_sector, last_sector;
4454         int raid_disks = conf->previous_raid_disks;
4455         int data_disks = raid_disks - conf->max_degraded;
4456         int new_data_disks = conf->raid_disks - conf->max_degraded;
4457         int i;
4458         int dd_idx;
4459         sector_t writepos, readpos, safepos;
4460         sector_t stripe_addr;
4461         int reshape_sectors;
4462         struct list_head stripes;
4463
4464         if (sector_nr == 0) {
4465                 /* If restarting in the middle, skip the initial sectors */
4466                 if (mddev->reshape_backwards &&
4467                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4468                         sector_nr = raid5_size(mddev, 0, 0)
4469                                 - conf->reshape_progress;
4470                 } else if (!mddev->reshape_backwards &&
4471                            conf->reshape_progress > 0)
4472                         sector_nr = conf->reshape_progress;
4473                 sector_div(sector_nr, new_data_disks);
4474                 if (sector_nr) {
4475                         mddev->curr_resync_completed = sector_nr;
4476                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4477                         *skipped = 1;
4478                         return sector_nr;
4479                 }
4480         }
4481
4482         /* We need to process a full chunk at a time.
4483          * If old and new chunk sizes differ, we need to process the
4484          * largest of these
4485          */
4486         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4487                 reshape_sectors = mddev->new_chunk_sectors;
4488         else
4489                 reshape_sectors = mddev->chunk_sectors;
4490
4491         /* We update the metadata at least every 10 seconds, or when
4492          * the data about to be copied would over-write the source of
4493          * the data at the front of the range.  i.e. one new_stripe
4494          * along from reshape_progress new_maps to after where
4495          * reshape_safe old_maps to
4496          */
4497         writepos = conf->reshape_progress;
4498         sector_div(writepos, new_data_disks);
4499         readpos = conf->reshape_progress;
4500         sector_div(readpos, data_disks);
4501         safepos = conf->reshape_safe;
4502         sector_div(safepos, data_disks);
4503         if (mddev->reshape_backwards) {
4504                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4505                 readpos += reshape_sectors;
4506                 safepos += reshape_sectors;
4507         } else {
4508                 writepos += reshape_sectors;
4509                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4510                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4511         }
4512
4513         /* Having calculated the 'writepos' possibly use it
4514          * to set 'stripe_addr' which is where we will write to.
4515          */
4516         if (mddev->reshape_backwards) {
4517                 BUG_ON(conf->reshape_progress == 0);
4518                 stripe_addr = writepos;
4519                 BUG_ON((mddev->dev_sectors &
4520                         ~((sector_t)reshape_sectors - 1))
4521                        - reshape_sectors - stripe_addr
4522                        != sector_nr);
4523         } else {
4524                 BUG_ON(writepos != sector_nr + reshape_sectors);
4525                 stripe_addr = sector_nr;
4526         }
4527
4528         /* 'writepos' is the most advanced device address we might write.
4529          * 'readpos' is the least advanced device address we might read.
4530          * 'safepos' is the least address recorded in the metadata as having
4531          *     been reshaped.
4532          * If there is a min_offset_diff, these are adjusted either by
4533          * increasing the safepos/readpos if diff is negative, or
4534          * increasing writepos if diff is positive.
4535          * If 'readpos' is then behind 'writepos', there is no way that we can
4536          * ensure safety in the face of a crash - that must be done by userspace
4537          * making a backup of the data.  So in that case there is no particular
4538          * rush to update metadata.
4539          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4540          * update the metadata to advance 'safepos' to match 'readpos' so that
4541          * we can be safe in the event of a crash.
4542          * So we insist on updating metadata if safepos is behind writepos and
4543          * readpos is beyond writepos.
4544          * In any case, update the metadata every 10 seconds.
4545          * Maybe that number should be configurable, but I'm not sure it is
4546          * worth it.... maybe it could be a multiple of safemode_delay???
4547          */
4548         if (conf->min_offset_diff < 0) {
4549                 safepos += -conf->min_offset_diff;
4550                 readpos += -conf->min_offset_diff;
4551         } else
4552                 writepos += conf->min_offset_diff;
4553
4554         if ((mddev->reshape_backwards
4555              ? (safepos > writepos && readpos < writepos)
4556              : (safepos < writepos && readpos > writepos)) ||
4557             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4558                 /* Cannot proceed until we've updated the superblock... */
4559                 wait_event(conf->wait_for_overlap,
4560                            atomic_read(&conf->reshape_stripes)==0);
4561                 mddev->reshape_position = conf->reshape_progress;
4562                 mddev->curr_resync_completed = sector_nr;
4563                 conf->reshape_checkpoint = jiffies;
4564                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4565                 md_wakeup_thread(mddev->thread);
4566                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4567                            kthread_should_stop());
4568                 spin_lock_irq(&conf->device_lock);
4569                 conf->reshape_safe = mddev->reshape_position;
4570                 spin_unlock_irq(&conf->device_lock);
4571                 wake_up(&conf->wait_for_overlap);
4572                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4573         }
4574
4575         INIT_LIST_HEAD(&stripes);
4576         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4577                 int j;
4578                 int skipped_disk = 0;
4579                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4580                 set_bit(STRIPE_EXPANDING, &sh->state);
4581                 atomic_inc(&conf->reshape_stripes);
4582                 /* If any of this stripe is beyond the end of the old
4583                  * array, then we need to zero those blocks
4584                  */
4585                 for (j=sh->disks; j--;) {
4586                         sector_t s;
4587                         if (j == sh->pd_idx)
4588                                 continue;
4589                         if (conf->level == 6 &&
4590                             j == sh->qd_idx)
4591                                 continue;
4592                         s = compute_blocknr(sh, j, 0);
4593                         if (s < raid5_size(mddev, 0, 0)) {
4594                                 skipped_disk = 1;
4595                                 continue;
4596                         }
4597                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4598                         set_bit(R5_Expanded, &sh->dev[j].flags);
4599                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4600                 }
4601                 if (!skipped_disk) {
4602                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4603                         set_bit(STRIPE_HANDLE, &sh->state);
4604                 }
4605                 list_add(&sh->lru, &stripes);
4606         }
4607         spin_lock_irq(&conf->device_lock);
4608         if (mddev->reshape_backwards)
4609                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4610         else
4611                 conf->reshape_progress += reshape_sectors * new_data_disks;
4612         spin_unlock_irq(&conf->device_lock);
4613         /* Ok, those stripe are ready. We can start scheduling
4614          * reads on the source stripes.
4615          * The source stripes are determined by mapping the first and last
4616          * block on the destination stripes.
4617          */
4618         first_sector =
4619                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4620                                      1, &dd_idx, NULL);
4621         last_sector =
4622                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4623                                             * new_data_disks - 1),
4624                                      1, &dd_idx, NULL);
4625         if (last_sector >= mddev->dev_sectors)
4626                 last_sector = mddev->dev_sectors - 1;
4627         while (first_sector <= last_sector) {
4628                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4629                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4630                 set_bit(STRIPE_HANDLE, &sh->state);
4631                 release_stripe(sh);
4632                 first_sector += STRIPE_SECTORS;
4633         }
4634         /* Now that the sources are clearly marked, we can release
4635          * the destination stripes
4636          */
4637         while (!list_empty(&stripes)) {
4638                 sh = list_entry(stripes.next, struct stripe_head, lru);
4639                 list_del_init(&sh->lru);
4640                 release_stripe(sh);
4641         }
4642         /* If this takes us to the resync_max point where we have to pause,
4643          * then we need to write out the superblock.
4644          */
4645         sector_nr += reshape_sectors;
4646         if ((sector_nr - mddev->curr_resync_completed) * 2
4647             >= mddev->resync_max - mddev->curr_resync_completed) {
4648                 /* Cannot proceed until we've updated the superblock... */
4649                 wait_event(conf->wait_for_overlap,
4650                            atomic_read(&conf->reshape_stripes) == 0);
4651                 mddev->reshape_position = conf->reshape_progress;
4652                 mddev->curr_resync_completed = sector_nr;
4653                 conf->reshape_checkpoint = jiffies;
4654                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4655                 md_wakeup_thread(mddev->thread);
4656                 wait_event(mddev->sb_wait,
4657                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4658                            || kthread_should_stop());
4659                 spin_lock_irq(&conf->device_lock);
4660                 conf->reshape_safe = mddev->reshape_position;
4661                 spin_unlock_irq(&conf->device_lock);
4662                 wake_up(&conf->wait_for_overlap);
4663                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4664         }
4665         return reshape_sectors;
4666 }
4667
4668 /* FIXME go_faster isn't used */
4669 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4670 {
4671         struct r5conf *conf = mddev->private;
4672         struct stripe_head *sh;
4673         sector_t max_sector = mddev->dev_sectors;
4674         sector_t sync_blocks;
4675         int still_degraded = 0;
4676         int i;
4677
4678         if (sector_nr >= max_sector) {
4679                 /* just being told to finish up .. nothing much to do */
4680
4681                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4682                         end_reshape(conf);
4683                         return 0;
4684                 }
4685
4686                 if (mddev->curr_resync < max_sector) /* aborted */
4687                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4688                                         &sync_blocks, 1);
4689                 else /* completed sync */
4690                         conf->fullsync = 0;
4691                 bitmap_close_sync(mddev->bitmap);
4692
4693                 return 0;
4694         }
4695
4696         /* Allow raid5_quiesce to complete */
4697         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4698
4699         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4700                 return reshape_request(mddev, sector_nr, skipped);
4701
4702         /* No need to check resync_max as we never do more than one
4703          * stripe, and as resync_max will always be on a chunk boundary,
4704          * if the check in md_do_sync didn't fire, there is no chance
4705          * of overstepping resync_max here
4706          */
4707
4708         /* if there is too many failed drives and we are trying
4709          * to resync, then assert that we are finished, because there is
4710          * nothing we can do.
4711          */
4712         if (mddev->degraded >= conf->max_degraded &&
4713             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4714                 sector_t rv = mddev->dev_sectors - sector_nr;
4715                 *skipped = 1;
4716                 return rv;
4717         }
4718         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4719             !conf->fullsync &&
4720             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4721             sync_blocks >= STRIPE_SECTORS) {
4722                 /* we can skip this block, and probably more */
4723                 sync_blocks /= STRIPE_SECTORS;
4724                 *skipped = 1;
4725                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4726         }
4727
4728         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4729
4730         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4731         if (sh == NULL) {
4732                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4733                 /* make sure we don't swamp the stripe cache if someone else
4734                  * is trying to get access
4735                  */
4736                 schedule_timeout_uninterruptible(1);
4737         }
4738         /* Need to check if array will still be degraded after recovery/resync
4739          * We don't need to check the 'failed' flag as when that gets set,
4740          * recovery aborts.
4741          */
4742         for (i = 0; i < conf->raid_disks; i++)
4743                 if (conf->disks[i].rdev == NULL)
4744                         still_degraded = 1;
4745
4746         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4747
4748         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4749
4750         handle_stripe(sh);
4751         release_stripe(sh);
4752
4753         return STRIPE_SECTORS;
4754 }
4755
4756 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4757 {
4758         /* We may not be able to submit a whole bio at once as there
4759          * may not be enough stripe_heads available.
4760          * We cannot pre-allocate enough stripe_heads as we may need
4761          * more than exist in the cache (if we allow ever large chunks).
4762          * So we do one stripe head at a time and record in
4763          * ->bi_hw_segments how many have been done.
4764          *
4765          * We *know* that this entire raid_bio is in one chunk, so
4766          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4767          */
4768         struct stripe_head *sh;
4769         int dd_idx;
4770         sector_t sector, logical_sector, last_sector;
4771         int scnt = 0;
4772         int remaining;
4773         int handled = 0;
4774
4775         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4776         sector = raid5_compute_sector(conf, logical_sector,
4777                                       0, &dd_idx, NULL);
4778         last_sector = bio_end_sector(raid_bio);
4779
4780         for (; logical_sector < last_sector;
4781              logical_sector += STRIPE_SECTORS,
4782                      sector += STRIPE_SECTORS,
4783                      scnt++) {
4784
4785                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4786                         /* already done this stripe */
4787                         continue;
4788
4789                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4790
4791                 if (!sh) {
4792                         /* failed to get a stripe - must wait */
4793                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4794                         conf->retry_read_aligned = raid_bio;
4795                         return handled;
4796                 }
4797
4798                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4799                         release_stripe(sh);
4800                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4801                         conf->retry_read_aligned = raid_bio;
4802                         return handled;
4803                 }
4804
4805                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4806                 handle_stripe(sh);
4807                 release_stripe(sh);
4808                 handled++;
4809         }
4810         remaining = raid5_dec_bi_active_stripes(raid_bio);
4811         if (remaining == 0) {
4812                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4813                                          raid_bio, 0);
4814                 bio_endio(raid_bio, 0);
4815         }
4816         if (atomic_dec_and_test(&conf->active_aligned_reads))
4817                 wake_up(&conf->wait_for_stripe);
4818         return handled;
4819 }
4820
4821 #define MAX_STRIPE_BATCH 8
4822 static int handle_active_stripes(struct r5conf *conf)
4823 {
4824         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4825         int i, batch_size = 0;
4826
4827         while (batch_size < MAX_STRIPE_BATCH &&
4828                         (sh = __get_priority_stripe(conf)) != NULL)
4829                 batch[batch_size++] = sh;
4830
4831         if (batch_size == 0)
4832                 return batch_size;
4833         spin_unlock_irq(&conf->device_lock);
4834
4835         for (i = 0; i < batch_size; i++)
4836                 handle_stripe(batch[i]);
4837
4838         cond_resched();
4839
4840         spin_lock_irq(&conf->device_lock);
4841         for (i = 0; i < batch_size; i++)
4842                 __release_stripe(conf, batch[i]);
4843         return batch_size;
4844 }
4845
4846 /*
4847  * This is our raid5 kernel thread.
4848  *
4849  * We scan the hash table for stripes which can be handled now.
4850  * During the scan, completed stripes are saved for us by the interrupt
4851  * handler, so that they will not have to wait for our next wakeup.
4852  */
4853 static void raid5d(struct md_thread *thread)
4854 {
4855         struct mddev *mddev = thread->mddev;
4856         struct r5conf *conf = mddev->private;
4857         int handled;
4858         struct blk_plug plug;
4859
4860         pr_debug("+++ raid5d active\n");
4861
4862         md_check_recovery(mddev);
4863
4864         blk_start_plug(&plug);
4865         handled = 0;
4866         spin_lock_irq(&conf->device_lock);
4867         while (1) {
4868                 struct bio *bio;
4869                 int batch_size;
4870
4871                 if (
4872                     !list_empty(&conf->bitmap_list)) {
4873                         /* Now is a good time to flush some bitmap updates */
4874                         conf->seq_flush++;
4875                         spin_unlock_irq(&conf->device_lock);
4876                         bitmap_unplug(mddev->bitmap);
4877                         spin_lock_irq(&conf->device_lock);
4878                         conf->seq_write = conf->seq_flush;
4879                         activate_bit_delay(conf);
4880                 }
4881                 raid5_activate_delayed(conf);
4882
4883                 while ((bio = remove_bio_from_retry(conf))) {
4884                         int ok;
4885                         spin_unlock_irq(&conf->device_lock);
4886                         ok = retry_aligned_read(conf, bio);
4887                         spin_lock_irq(&conf->device_lock);
4888                         if (!ok)
4889                                 break;
4890                         handled++;
4891                 }
4892
4893                 batch_size = handle_active_stripes(conf);
4894                 if (!batch_size)
4895                         break;
4896                 handled += batch_size;
4897
4898                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4899                         spin_unlock_irq(&conf->device_lock);
4900                         md_check_recovery(mddev);
4901                         spin_lock_irq(&conf->device_lock);
4902                 }
4903         }
4904         pr_debug("%d stripes handled\n", handled);
4905
4906         spin_unlock_irq(&conf->device_lock);
4907
4908         async_tx_issue_pending_all();
4909         blk_finish_plug(&plug);
4910
4911         pr_debug("--- raid5d inactive\n");
4912 }
4913
4914 static ssize_t
4915 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4916 {
4917         struct r5conf *conf = mddev->private;
4918         if (conf)
4919                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4920         else
4921                 return 0;
4922 }
4923
4924 int
4925 raid5_set_cache_size(struct mddev *mddev, int size)
4926 {
4927         struct r5conf *conf = mddev->private;
4928         int err;
4929
4930         if (size <= 16 || size > 32768)
4931                 return -EINVAL;
4932         while (size < conf->max_nr_stripes) {
4933                 if (drop_one_stripe(conf))
4934                         conf->max_nr_stripes--;
4935                 else
4936                         break;
4937         }
4938         err = md_allow_write(mddev);
4939         if (err)
4940                 return err;
4941         while (size > conf->max_nr_stripes) {
4942                 if (grow_one_stripe(conf))
4943                         conf->max_nr_stripes++;
4944                 else break;
4945         }
4946         return 0;
4947 }
4948 EXPORT_SYMBOL(raid5_set_cache_size);
4949
4950 static ssize_t
4951 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4952 {
4953         struct r5conf *conf = mddev->private;
4954         unsigned long new;
4955         int err;
4956
4957         if (len >= PAGE_SIZE)
4958                 return -EINVAL;
4959         if (!conf)
4960                 return -ENODEV;
4961
4962         if (strict_strtoul(page, 10, &new))
4963                 return -EINVAL;
4964         err = raid5_set_cache_size(mddev, new);
4965         if (err)
4966                 return err;
4967         return len;
4968 }
4969
4970 static struct md_sysfs_entry
4971 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4972                                 raid5_show_stripe_cache_size,
4973                                 raid5_store_stripe_cache_size);
4974
4975 static ssize_t
4976 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4977 {
4978         struct r5conf *conf = mddev->private;
4979         if (conf)
4980                 return sprintf(page, "%d\n", conf->bypass_threshold);
4981         else
4982                 return 0;
4983 }
4984
4985 static ssize_t
4986 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4987 {
4988         struct r5conf *conf = mddev->private;
4989         unsigned long new;
4990         if (len >= PAGE_SIZE)
4991                 return -EINVAL;
4992         if (!conf)
4993                 return -ENODEV;
4994
4995         if (strict_strtoul(page, 10, &new))
4996                 return -EINVAL;
4997         if (new > conf->max_nr_stripes)
4998                 return -EINVAL;
4999         conf->bypass_threshold = new;
5000         return len;
5001 }
5002
5003 static struct md_sysfs_entry
5004 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5005                                         S_IRUGO | S_IWUSR,
5006                                         raid5_show_preread_threshold,
5007                                         raid5_store_preread_threshold);
5008
5009 static ssize_t
5010 stripe_cache_active_show(struct mddev *mddev, char *page)
5011 {
5012         struct r5conf *conf = mddev->private;
5013         if (conf)
5014                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5015         else
5016                 return 0;
5017 }
5018
5019 static struct md_sysfs_entry
5020 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5021
5022 static struct attribute *raid5_attrs[] =  {
5023         &raid5_stripecache_size.attr,
5024         &raid5_stripecache_active.attr,
5025         &raid5_preread_bypass_threshold.attr,
5026         NULL,
5027 };
5028 static struct attribute_group raid5_attrs_group = {
5029         .name = NULL,
5030         .attrs = raid5_attrs,
5031 };
5032
5033 static sector_t
5034 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5035 {
5036         struct r5conf *conf = mddev->private;
5037
5038         if (!sectors)
5039                 sectors = mddev->dev_sectors;
5040         if (!raid_disks)
5041                 /* size is defined by the smallest of previous and new size */
5042                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5043
5044         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5045         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5046         return sectors * (raid_disks - conf->max_degraded);
5047 }
5048
5049 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5050 {
5051         safe_put_page(percpu->spare_page);
5052         kfree(percpu->scribble);
5053         percpu->spare_page = NULL;
5054         percpu->scribble = NULL;
5055 }
5056
5057 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5058 {
5059         if (conf->level == 6 && !percpu->spare_page)
5060                 percpu->spare_page = alloc_page(GFP_KERNEL);
5061         if (!percpu->scribble)
5062                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5063
5064         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5065                 free_scratch_buffer(conf, percpu);
5066                 return -ENOMEM;
5067         }
5068
5069         return 0;
5070 }
5071
5072 static void raid5_free_percpu(struct r5conf *conf)
5073 {
5074         unsigned long cpu;
5075
5076         if (!conf->percpu)
5077                 return;
5078
5079 #ifdef CONFIG_HOTPLUG_CPU
5080         unregister_cpu_notifier(&conf->cpu_notify);
5081 #endif
5082
5083         get_online_cpus();
5084         for_each_possible_cpu(cpu)
5085                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5086         put_online_cpus();
5087
5088         free_percpu(conf->percpu);
5089 }
5090
5091 static void free_conf(struct r5conf *conf)
5092 {
5093         shrink_stripes(conf);
5094         raid5_free_percpu(conf);
5095         kfree(conf->disks);
5096         kfree(conf->stripe_hashtbl);
5097         kfree(conf);
5098 }
5099
5100 #ifdef CONFIG_HOTPLUG_CPU
5101 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5102                               void *hcpu)
5103 {
5104         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5105         long cpu = (long)hcpu;
5106         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5107
5108         switch (action) {
5109         case CPU_UP_PREPARE:
5110         case CPU_UP_PREPARE_FROZEN:
5111                 if (alloc_scratch_buffer(conf, percpu)) {
5112                         pr_err("%s: failed memory allocation for cpu%ld\n",
5113                                __func__, cpu);
5114                         return notifier_from_errno(-ENOMEM);
5115                 }
5116                 break;
5117         case CPU_DEAD:
5118         case CPU_DEAD_FROZEN:
5119                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5120                 break;
5121         default:
5122                 break;
5123         }
5124         return NOTIFY_OK;
5125 }
5126 #endif
5127
5128 static int raid5_alloc_percpu(struct r5conf *conf)
5129 {
5130         unsigned long cpu;
5131         int err = 0;
5132
5133         conf->percpu = alloc_percpu(struct raid5_percpu);
5134         if (!conf->percpu)
5135                 return -ENOMEM;
5136
5137 #ifdef CONFIG_HOTPLUG_CPU
5138         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5139         conf->cpu_notify.priority = 0;
5140         err = register_cpu_notifier(&conf->cpu_notify);
5141         if (err)
5142                 return err;
5143 #endif
5144
5145         get_online_cpus();
5146         for_each_present_cpu(cpu) {
5147                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5148                 if (err) {
5149                         pr_err("%s: failed memory allocation for cpu%ld\n",
5150                                __func__, cpu);
5151                         break;
5152                 }
5153         }
5154         put_online_cpus();
5155
5156         return err;
5157 }
5158
5159 static struct r5conf *setup_conf(struct mddev *mddev)
5160 {
5161         struct r5conf *conf;
5162         int raid_disk, memory, max_disks;
5163         struct md_rdev *rdev;
5164         struct disk_info *disk;
5165         char pers_name[6];
5166
5167         if (mddev->new_level != 5
5168             && mddev->new_level != 4
5169             && mddev->new_level != 6) {
5170                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5171                        mdname(mddev), mddev->new_level);
5172                 return ERR_PTR(-EIO);
5173         }
5174         if ((mddev->new_level == 5
5175              && !algorithm_valid_raid5(mddev->new_layout)) ||
5176             (mddev->new_level == 6
5177              && !algorithm_valid_raid6(mddev->new_layout))) {
5178                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5179                        mdname(mddev), mddev->new_layout);
5180                 return ERR_PTR(-EIO);
5181         }
5182         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5183                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5184                        mdname(mddev), mddev->raid_disks);
5185                 return ERR_PTR(-EINVAL);
5186         }
5187
5188         if (!mddev->new_chunk_sectors ||
5189             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5190             !is_power_of_2(mddev->new_chunk_sectors)) {
5191                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5192                        mdname(mddev), mddev->new_chunk_sectors << 9);
5193                 return ERR_PTR(-EINVAL);
5194         }
5195
5196         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5197         if (conf == NULL)
5198                 goto abort;
5199         spin_lock_init(&conf->device_lock);
5200         init_waitqueue_head(&conf->wait_for_stripe);
5201         init_waitqueue_head(&conf->wait_for_overlap);
5202         INIT_LIST_HEAD(&conf->handle_list);
5203         INIT_LIST_HEAD(&conf->hold_list);
5204         INIT_LIST_HEAD(&conf->delayed_list);
5205         INIT_LIST_HEAD(&conf->bitmap_list);
5206         INIT_LIST_HEAD(&conf->inactive_list);
5207         atomic_set(&conf->active_stripes, 0);
5208         atomic_set(&conf->preread_active_stripes, 0);
5209         atomic_set(&conf->active_aligned_reads, 0);
5210         conf->bypass_threshold = BYPASS_THRESHOLD;
5211         conf->recovery_disabled = mddev->recovery_disabled - 1;
5212
5213         conf->raid_disks = mddev->raid_disks;
5214         if (mddev->reshape_position == MaxSector)
5215                 conf->previous_raid_disks = mddev->raid_disks;
5216         else
5217                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5218         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5219         conf->scribble_len = scribble_len(max_disks);
5220
5221         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5222                               GFP_KERNEL);
5223         if (!conf->disks)
5224                 goto abort;
5225
5226         conf->mddev = mddev;
5227
5228         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5229                 goto abort;
5230
5231         conf->level = mddev->new_level;
5232         if (raid5_alloc_percpu(conf) != 0)
5233                 goto abort;
5234
5235         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5236
5237         rdev_for_each(rdev, mddev) {
5238                 raid_disk = rdev->raid_disk;
5239                 if (raid_disk >= max_disks
5240                     || raid_disk < 0)
5241                         continue;
5242                 disk = conf->disks + raid_disk;
5243
5244                 if (test_bit(Replacement, &rdev->flags)) {
5245                         if (disk->replacement)
5246                                 goto abort;
5247                         disk->replacement = rdev;
5248                 } else {
5249                         if (disk->rdev)
5250                                 goto abort;
5251                         disk->rdev = rdev;
5252                 }
5253
5254                 if (test_bit(In_sync, &rdev->flags)) {
5255                         char b[BDEVNAME_SIZE];
5256                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5257                                " disk %d\n",
5258                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5259                 } else if (rdev->saved_raid_disk != raid_disk)
5260                         /* Cannot rely on bitmap to complete recovery */
5261                         conf->fullsync = 1;
5262         }
5263
5264         conf->chunk_sectors = mddev->new_chunk_sectors;
5265         conf->level = mddev->new_level;
5266         if (conf->level == 6)
5267                 conf->max_degraded = 2;
5268         else
5269                 conf->max_degraded = 1;
5270         conf->algorithm = mddev->new_layout;
5271         conf->max_nr_stripes = NR_STRIPES;
5272         conf->reshape_progress = mddev->reshape_position;
5273         if (conf->reshape_progress != MaxSector) {
5274                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5275                 conf->prev_algo = mddev->layout;
5276         }
5277
5278         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5279                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5280         if (grow_stripes(conf, conf->max_nr_stripes)) {
5281                 printk(KERN_ERR
5282                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5283                        mdname(mddev), memory);
5284                 goto abort;
5285         } else
5286                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5287                        mdname(mddev), memory);
5288
5289         sprintf(pers_name, "raid%d", mddev->new_level);
5290         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5291         if (!conf->thread) {
5292                 printk(KERN_ERR
5293                        "md/raid:%s: couldn't allocate thread.\n",
5294                        mdname(mddev));
5295                 goto abort;
5296         }
5297
5298         return conf;
5299
5300  abort:
5301         if (conf) {
5302                 free_conf(conf);
5303                 return ERR_PTR(-EIO);
5304         } else
5305                 return ERR_PTR(-ENOMEM);
5306 }
5307
5308
5309 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5310 {
5311         switch (algo) {
5312         case ALGORITHM_PARITY_0:
5313                 if (raid_disk < max_degraded)
5314                         return 1;
5315                 break;
5316         case ALGORITHM_PARITY_N:
5317                 if (raid_disk >= raid_disks - max_degraded)
5318                         return 1;
5319                 break;
5320         case ALGORITHM_PARITY_0_6:
5321                 if (raid_disk == 0 || 
5322                     raid_disk == raid_disks - 1)
5323                         return 1;
5324                 break;
5325         case ALGORITHM_LEFT_ASYMMETRIC_6:
5326         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5327         case ALGORITHM_LEFT_SYMMETRIC_6:
5328         case ALGORITHM_RIGHT_SYMMETRIC_6:
5329                 if (raid_disk == raid_disks - 1)
5330                         return 1;
5331         }
5332         return 0;
5333 }
5334
5335 static int run(struct mddev *mddev)
5336 {
5337         struct r5conf *conf;
5338         int working_disks = 0;
5339         int dirty_parity_disks = 0;
5340         struct md_rdev *rdev;
5341         sector_t reshape_offset = 0;
5342         int i;
5343         long long min_offset_diff = 0;
5344         int first = 1;
5345
5346         if (mddev->recovery_cp != MaxSector)
5347                 printk(KERN_NOTICE "md/raid:%s: not clean"
5348                        " -- starting background reconstruction\n",
5349                        mdname(mddev));
5350
5351         rdev_for_each(rdev, mddev) {
5352                 long long diff;
5353                 if (rdev->raid_disk < 0)
5354                         continue;
5355                 diff = (rdev->new_data_offset - rdev->data_offset);
5356                 if (first) {
5357                         min_offset_diff = diff;
5358                         first = 0;
5359                 } else if (mddev->reshape_backwards &&
5360                          diff < min_offset_diff)
5361                         min_offset_diff = diff;
5362                 else if (!mddev->reshape_backwards &&
5363                          diff > min_offset_diff)
5364                         min_offset_diff = diff;
5365         }
5366
5367         if (mddev->reshape_position != MaxSector) {
5368                 /* Check that we can continue the reshape.
5369                  * Difficulties arise if the stripe we would write to
5370                  * next is at or after the stripe we would read from next.
5371                  * For a reshape that changes the number of devices, this
5372                  * is only possible for a very short time, and mdadm makes
5373                  * sure that time appears to have past before assembling
5374                  * the array.  So we fail if that time hasn't passed.
5375                  * For a reshape that keeps the number of devices the same
5376                  * mdadm must be monitoring the reshape can keeping the
5377                  * critical areas read-only and backed up.  It will start
5378                  * the array in read-only mode, so we check for that.
5379                  */
5380                 sector_t here_new, here_old;
5381                 int old_disks;
5382                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5383
5384                 if (mddev->new_level != mddev->level) {
5385                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5386                                "required - aborting.\n",
5387                                mdname(mddev));
5388                         return -EINVAL;
5389                 }
5390                 old_disks = mddev->raid_disks - mddev->delta_disks;
5391                 /* reshape_position must be on a new-stripe boundary, and one
5392                  * further up in new geometry must map after here in old
5393                  * geometry.
5394                  */
5395                 here_new = mddev->reshape_position;
5396                 if (sector_div(here_new, mddev->new_chunk_sectors *
5397                                (mddev->raid_disks - max_degraded))) {
5398                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5399                                "on a stripe boundary\n", mdname(mddev));
5400                         return -EINVAL;
5401                 }
5402                 reshape_offset = here_new * mddev->new_chunk_sectors;
5403                 /* here_new is the stripe we will write to */
5404                 here_old = mddev->reshape_position;
5405                 sector_div(here_old, mddev->chunk_sectors *
5406                            (old_disks-max_degraded));
5407                 /* here_old is the first stripe that we might need to read
5408                  * from */
5409                 if (mddev->delta_disks == 0) {
5410                         if ((here_new * mddev->new_chunk_sectors !=
5411                              here_old * mddev->chunk_sectors)) {
5412                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5413                                        " confused - aborting\n", mdname(mddev));
5414                                 return -EINVAL;
5415                         }
5416                         /* We cannot be sure it is safe to start an in-place
5417                          * reshape.  It is only safe if user-space is monitoring
5418                          * and taking constant backups.
5419                          * mdadm always starts a situation like this in
5420                          * readonly mode so it can take control before
5421                          * allowing any writes.  So just check for that.
5422                          */
5423                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5424                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5425                                 /* not really in-place - so OK */;
5426                         else if (mddev->ro == 0) {
5427                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5428                                        "must be started in read-only mode "
5429                                        "- aborting\n",
5430                                        mdname(mddev));
5431                                 return -EINVAL;
5432                         }
5433                 } else if (mddev->reshape_backwards
5434                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5435                        here_old * mddev->chunk_sectors)
5436                     : (here_new * mddev->new_chunk_sectors >=
5437                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5438                         /* Reading from the same stripe as writing to - bad */
5439                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5440                                "auto-recovery - aborting.\n",
5441                                mdname(mddev));
5442                         return -EINVAL;
5443                 }
5444                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5445                        mdname(mddev));
5446                 /* OK, we should be able to continue; */
5447         } else {
5448                 BUG_ON(mddev->level != mddev->new_level);
5449                 BUG_ON(mddev->layout != mddev->new_layout);
5450                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5451                 BUG_ON(mddev->delta_disks != 0);
5452         }
5453
5454         if (mddev->private == NULL)
5455                 conf = setup_conf(mddev);
5456         else
5457                 conf = mddev->private;
5458
5459         if (IS_ERR(conf))
5460                 return PTR_ERR(conf);
5461
5462         conf->min_offset_diff = min_offset_diff;
5463         mddev->thread = conf->thread;
5464         conf->thread = NULL;
5465         mddev->private = conf;
5466
5467         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5468              i++) {
5469                 rdev = conf->disks[i].rdev;
5470                 if (!rdev && conf->disks[i].replacement) {
5471                         /* The replacement is all we have yet */
5472                         rdev = conf->disks[i].replacement;
5473                         conf->disks[i].replacement = NULL;
5474                         clear_bit(Replacement, &rdev->flags);
5475                         conf->disks[i].rdev = rdev;
5476                 }
5477                 if (!rdev)
5478                         continue;
5479                 if (conf->disks[i].replacement &&
5480                     conf->reshape_progress != MaxSector) {
5481                         /* replacements and reshape simply do not mix. */
5482                         printk(KERN_ERR "md: cannot handle concurrent "
5483                                "replacement and reshape.\n");
5484                         goto abort;
5485                 }
5486                 if (test_bit(In_sync, &rdev->flags)) {
5487                         working_disks++;
5488                         continue;
5489                 }
5490                 /* This disc is not fully in-sync.  However if it
5491                  * just stored parity (beyond the recovery_offset),
5492                  * when we don't need to be concerned about the
5493                  * array being dirty.
5494                  * When reshape goes 'backwards', we never have
5495                  * partially completed devices, so we only need
5496                  * to worry about reshape going forwards.
5497                  */
5498                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5499                 if (mddev->major_version == 0 &&
5500                     mddev->minor_version > 90)
5501                         rdev->recovery_offset = reshape_offset;
5502
5503                 if (rdev->recovery_offset < reshape_offset) {
5504                         /* We need to check old and new layout */
5505                         if (!only_parity(rdev->raid_disk,
5506                                          conf->algorithm,
5507                                          conf->raid_disks,
5508                                          conf->max_degraded))
5509                                 continue;
5510                 }
5511                 if (!only_parity(rdev->raid_disk,
5512                                  conf->prev_algo,
5513                                  conf->previous_raid_disks,
5514                                  conf->max_degraded))
5515                         continue;
5516                 dirty_parity_disks++;
5517         }
5518
5519         /*
5520          * 0 for a fully functional array, 1 or 2 for a degraded array.
5521          */
5522         mddev->degraded = calc_degraded(conf);
5523
5524         if (has_failed(conf)) {
5525                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5526                         " (%d/%d failed)\n",
5527                         mdname(mddev), mddev->degraded, conf->raid_disks);
5528                 goto abort;
5529         }
5530
5531         /* device size must be a multiple of chunk size */
5532         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5533         mddev->resync_max_sectors = mddev->dev_sectors;
5534
5535         if (mddev->degraded > dirty_parity_disks &&
5536             mddev->recovery_cp != MaxSector) {
5537                 if (mddev->ok_start_degraded)
5538                         printk(KERN_WARNING
5539                                "md/raid:%s: starting dirty degraded array"
5540                                " - data corruption possible.\n",
5541                                mdname(mddev));
5542                 else {
5543                         printk(KERN_ERR
5544                                "md/raid:%s: cannot start dirty degraded array.\n",
5545                                mdname(mddev));
5546                         goto abort;
5547                 }
5548         }
5549
5550         if (mddev->degraded == 0)
5551                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5552                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5553                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5554                        mddev->new_layout);
5555         else
5556                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5557                        " out of %d devices, algorithm %d\n",
5558                        mdname(mddev), conf->level,
5559                        mddev->raid_disks - mddev->degraded,
5560                        mddev->raid_disks, mddev->new_layout);
5561
5562         print_raid5_conf(conf);
5563
5564         if (conf->reshape_progress != MaxSector) {
5565                 conf->reshape_safe = conf->reshape_progress;
5566                 atomic_set(&conf->reshape_stripes, 0);
5567                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5568                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5569                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5570                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5571                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5572                                                         "reshape");
5573         }
5574
5575
5576         /* Ok, everything is just fine now */
5577         if (mddev->to_remove == &raid5_attrs_group)
5578                 mddev->to_remove = NULL;
5579         else if (mddev->kobj.sd &&
5580             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5581                 printk(KERN_WARNING
5582                        "raid5: failed to create sysfs attributes for %s\n",
5583                        mdname(mddev));
5584         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5585
5586         if (mddev->queue) {
5587                 int chunk_size;
5588                 bool discard_supported = true;
5589                 /* read-ahead size must cover two whole stripes, which
5590                  * is 2 * (datadisks) * chunksize where 'n' is the
5591                  * number of raid devices
5592                  */
5593                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5594                 int stripe = data_disks *
5595                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5596                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5597                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5598
5599                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5600
5601                 mddev->queue->backing_dev_info.congested_data = mddev;
5602                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5603
5604                 chunk_size = mddev->chunk_sectors << 9;
5605                 blk_queue_io_min(mddev->queue, chunk_size);
5606                 blk_queue_io_opt(mddev->queue, chunk_size *
5607                                  (conf->raid_disks - conf->max_degraded));
5608                 /*
5609                  * We can only discard a whole stripe. It doesn't make sense to
5610                  * discard data disk but write parity disk
5611                  */
5612                 stripe = stripe * PAGE_SIZE;
5613                 /* Round up to power of 2, as discard handling
5614                  * currently assumes that */
5615                 while ((stripe-1) & stripe)
5616                         stripe = (stripe | (stripe-1)) + 1;
5617                 mddev->queue->limits.discard_alignment = stripe;
5618                 mddev->queue->limits.discard_granularity = stripe;
5619                 /*
5620                  * unaligned part of discard request will be ignored, so can't
5621                  * guarantee discard_zeroes_data
5622                  */
5623                 mddev->queue->limits.discard_zeroes_data = 0;
5624
5625                 blk_queue_max_write_same_sectors(mddev->queue, 0);
5626
5627                 rdev_for_each(rdev, mddev) {
5628                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5629                                           rdev->data_offset << 9);
5630                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5631                                           rdev->new_data_offset << 9);
5632                         /*
5633                          * discard_zeroes_data is required, otherwise data
5634                          * could be lost. Consider a scenario: discard a stripe
5635                          * (the stripe could be inconsistent if
5636                          * discard_zeroes_data is 0); write one disk of the
5637                          * stripe (the stripe could be inconsistent again
5638                          * depending on which disks are used to calculate
5639                          * parity); the disk is broken; The stripe data of this
5640                          * disk is lost.
5641                          */
5642                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5643                             !bdev_get_queue(rdev->bdev)->
5644                                                 limits.discard_zeroes_data)
5645                                 discard_supported = false;
5646                         /* Unfortunately, discard_zeroes_data is not currently
5647                          * a guarantee - just a hint.  So we only allow DISCARD
5648                          * if the sysadmin has confirmed that only safe devices
5649                          * are in use by setting a module parameter.
5650                          */
5651                         if (!devices_handle_discard_safely) {
5652                                 if (discard_supported) {
5653                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
5654                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
5655                                 }
5656                                 discard_supported = false;
5657                         }
5658                 }
5659
5660                 if (discard_supported &&
5661                    mddev->queue->limits.max_discard_sectors >= stripe &&
5662                    mddev->queue->limits.discard_granularity >= stripe)
5663                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5664                                                 mddev->queue);
5665                 else
5666                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5667                                                 mddev->queue);
5668         }
5669
5670         return 0;
5671 abort:
5672         md_unregister_thread(&mddev->thread);
5673         print_raid5_conf(conf);
5674         free_conf(conf);
5675         mddev->private = NULL;
5676         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5677         return -EIO;
5678 }
5679
5680 static int stop(struct mddev *mddev)
5681 {
5682         struct r5conf *conf = mddev->private;
5683
5684         md_unregister_thread(&mddev->thread);
5685         if (mddev->queue)
5686                 mddev->queue->backing_dev_info.congested_fn = NULL;
5687         free_conf(conf);
5688         mddev->private = NULL;
5689         mddev->to_remove = &raid5_attrs_group;
5690         return 0;
5691 }
5692
5693 static void status(struct seq_file *seq, struct mddev *mddev)
5694 {
5695         struct r5conf *conf = mddev->private;
5696         int i;
5697
5698         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5699                 mddev->chunk_sectors / 2, mddev->layout);
5700         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5701         for (i = 0; i < conf->raid_disks; i++)
5702                 seq_printf (seq, "%s",
5703                                conf->disks[i].rdev &&
5704                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5705         seq_printf (seq, "]");
5706 }
5707
5708 static void print_raid5_conf (struct r5conf *conf)
5709 {
5710         int i;
5711         struct disk_info *tmp;
5712
5713         printk(KERN_DEBUG "RAID conf printout:\n");
5714         if (!conf) {
5715                 printk("(conf==NULL)\n");
5716                 return;
5717         }
5718         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5719                conf->raid_disks,
5720                conf->raid_disks - conf->mddev->degraded);
5721
5722         for (i = 0; i < conf->raid_disks; i++) {
5723                 char b[BDEVNAME_SIZE];
5724                 tmp = conf->disks + i;
5725                 if (tmp->rdev)
5726                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5727                                i, !test_bit(Faulty, &tmp->rdev->flags),
5728                                bdevname(tmp->rdev->bdev, b));
5729         }
5730 }
5731
5732 static int raid5_spare_active(struct mddev *mddev)
5733 {
5734         int i;
5735         struct r5conf *conf = mddev->private;
5736         struct disk_info *tmp;
5737         int count = 0;
5738         unsigned long flags;
5739
5740         for (i = 0; i < conf->raid_disks; i++) {
5741                 tmp = conf->disks + i;
5742                 if (tmp->replacement
5743                     && tmp->replacement->recovery_offset == MaxSector
5744                     && !test_bit(Faulty, &tmp->replacement->flags)
5745                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5746                         /* Replacement has just become active. */
5747                         if (!tmp->rdev
5748                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5749                                 count++;
5750                         if (tmp->rdev) {
5751                                 /* Replaced device not technically faulty,
5752                                  * but we need to be sure it gets removed
5753                                  * and never re-added.
5754                                  */
5755                                 set_bit(Faulty, &tmp->rdev->flags);
5756                                 sysfs_notify_dirent_safe(
5757                                         tmp->rdev->sysfs_state);
5758                         }
5759                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5760                 } else if (tmp->rdev
5761                     && tmp->rdev->recovery_offset == MaxSector
5762                     && !test_bit(Faulty, &tmp->rdev->flags)
5763                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5764                         count++;
5765                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5766                 }
5767         }
5768         spin_lock_irqsave(&conf->device_lock, flags);
5769         mddev->degraded = calc_degraded(conf);
5770         spin_unlock_irqrestore(&conf->device_lock, flags);
5771         print_raid5_conf(conf);
5772         return count;
5773 }
5774
5775 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5776 {
5777         struct r5conf *conf = mddev->private;
5778         int err = 0;
5779         int number = rdev->raid_disk;
5780         struct md_rdev **rdevp;
5781         struct disk_info *p = conf->disks + number;
5782
5783         print_raid5_conf(conf);
5784         if (rdev == p->rdev)
5785                 rdevp = &p->rdev;
5786         else if (rdev == p->replacement)
5787                 rdevp = &p->replacement;
5788         else
5789                 return 0;
5790
5791         if (number >= conf->raid_disks &&
5792             conf->reshape_progress == MaxSector)
5793                 clear_bit(In_sync, &rdev->flags);
5794
5795         if (test_bit(In_sync, &rdev->flags) ||
5796             atomic_read(&rdev->nr_pending)) {
5797                 err = -EBUSY;
5798                 goto abort;
5799         }
5800         /* Only remove non-faulty devices if recovery
5801          * isn't possible.
5802          */
5803         if (!test_bit(Faulty, &rdev->flags) &&
5804             mddev->recovery_disabled != conf->recovery_disabled &&
5805             !has_failed(conf) &&
5806             (!p->replacement || p->replacement == rdev) &&
5807             number < conf->raid_disks) {
5808                 err = -EBUSY;
5809                 goto abort;
5810         }
5811         *rdevp = NULL;
5812         synchronize_rcu();
5813         if (atomic_read(&rdev->nr_pending)) {
5814                 /* lost the race, try later */
5815                 err = -EBUSY;
5816                 *rdevp = rdev;
5817         } else if (p->replacement) {
5818                 /* We must have just cleared 'rdev' */
5819                 p->rdev = p->replacement;
5820                 clear_bit(Replacement, &p->replacement->flags);
5821                 smp_mb(); /* Make sure other CPUs may see both as identical
5822                            * but will never see neither - if they are careful
5823                            */
5824                 p->replacement = NULL;
5825                 clear_bit(WantReplacement, &rdev->flags);
5826         } else
5827                 /* We might have just removed the Replacement as faulty-
5828                  * clear the bit just in case
5829                  */
5830                 clear_bit(WantReplacement, &rdev->flags);
5831 abort:
5832
5833         print_raid5_conf(conf);
5834         return err;
5835 }
5836
5837 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5838 {
5839         struct r5conf *conf = mddev->private;
5840         int err = -EEXIST;
5841         int disk;
5842         struct disk_info *p;
5843         int first = 0;
5844         int last = conf->raid_disks - 1;
5845
5846         if (mddev->recovery_disabled == conf->recovery_disabled)
5847                 return -EBUSY;
5848
5849         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5850                 /* no point adding a device */
5851                 return -EINVAL;
5852
5853         if (rdev->raid_disk >= 0)
5854                 first = last = rdev->raid_disk;
5855
5856         /*
5857          * find the disk ... but prefer rdev->saved_raid_disk
5858          * if possible.
5859          */
5860         if (rdev->saved_raid_disk >= 0 &&
5861             rdev->saved_raid_disk >= first &&
5862             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5863                 first = rdev->saved_raid_disk;
5864
5865         for (disk = first; disk <= last; disk++) {
5866                 p = conf->disks + disk;
5867                 if (p->rdev == NULL) {
5868                         clear_bit(In_sync, &rdev->flags);
5869                         rdev->raid_disk = disk;
5870                         err = 0;
5871                         if (rdev->saved_raid_disk != disk)
5872                                 conf->fullsync = 1;
5873                         rcu_assign_pointer(p->rdev, rdev);
5874                         goto out;
5875                 }
5876         }
5877         for (disk = first; disk <= last; disk++) {
5878                 p = conf->disks + disk;
5879                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5880                     p->replacement == NULL) {
5881                         clear_bit(In_sync, &rdev->flags);
5882                         set_bit(Replacement, &rdev->flags);
5883                         rdev->raid_disk = disk;
5884                         err = 0;
5885                         conf->fullsync = 1;
5886                         rcu_assign_pointer(p->replacement, rdev);
5887                         break;
5888                 }
5889         }
5890 out:
5891         print_raid5_conf(conf);
5892         return err;
5893 }
5894
5895 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5896 {
5897         /* no resync is happening, and there is enough space
5898          * on all devices, so we can resize.
5899          * We need to make sure resync covers any new space.
5900          * If the array is shrinking we should possibly wait until
5901          * any io in the removed space completes, but it hardly seems
5902          * worth it.
5903          */
5904         sector_t newsize;
5905         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5906         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5907         if (mddev->external_size &&
5908             mddev->array_sectors > newsize)
5909                 return -EINVAL;
5910         if (mddev->bitmap) {
5911                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5912                 if (ret)
5913                         return ret;
5914         }
5915         md_set_array_sectors(mddev, newsize);
5916         set_capacity(mddev->gendisk, mddev->array_sectors);
5917         revalidate_disk(mddev->gendisk);
5918         if (sectors > mddev->dev_sectors &&
5919             mddev->recovery_cp > mddev->dev_sectors) {
5920                 mddev->recovery_cp = mddev->dev_sectors;
5921                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5922         }
5923         mddev->dev_sectors = sectors;
5924         mddev->resync_max_sectors = sectors;
5925         return 0;
5926 }
5927
5928 static int check_stripe_cache(struct mddev *mddev)
5929 {
5930         /* Can only proceed if there are plenty of stripe_heads.
5931          * We need a minimum of one full stripe,, and for sensible progress
5932          * it is best to have about 4 times that.
5933          * If we require 4 times, then the default 256 4K stripe_heads will
5934          * allow for chunk sizes up to 256K, which is probably OK.
5935          * If the chunk size is greater, user-space should request more
5936          * stripe_heads first.
5937          */
5938         struct r5conf *conf = mddev->private;
5939         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5940             > conf->max_nr_stripes ||
5941             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5942             > conf->max_nr_stripes) {
5943                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5944                        mdname(mddev),
5945                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5946                         / STRIPE_SIZE)*4);
5947                 return 0;
5948         }
5949         return 1;
5950 }
5951
5952 static int check_reshape(struct mddev *mddev)
5953 {
5954         struct r5conf *conf = mddev->private;
5955
5956         if (mddev->delta_disks == 0 &&
5957             mddev->new_layout == mddev->layout &&
5958             mddev->new_chunk_sectors == mddev->chunk_sectors)
5959                 return 0; /* nothing to do */
5960         if (has_failed(conf))
5961                 return -EINVAL;
5962         if (mddev->delta_disks < 0) {
5963                 /* We might be able to shrink, but the devices must
5964                  * be made bigger first.
5965                  * For raid6, 4 is the minimum size.
5966                  * Otherwise 2 is the minimum
5967                  */
5968                 int min = 2;
5969                 if (mddev->level == 6)
5970                         min = 4;
5971                 if (mddev->raid_disks + mddev->delta_disks < min)
5972                         return -EINVAL;
5973         }
5974
5975         if (!check_stripe_cache(mddev))
5976                 return -ENOSPC;
5977
5978         return resize_stripes(conf, (conf->previous_raid_disks
5979                                      + mddev->delta_disks));
5980 }
5981
5982 static int raid5_start_reshape(struct mddev *mddev)
5983 {
5984         struct r5conf *conf = mddev->private;
5985         struct md_rdev *rdev;
5986         int spares = 0;
5987         unsigned long flags;
5988
5989         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5990                 return -EBUSY;
5991
5992         if (!check_stripe_cache(mddev))
5993                 return -ENOSPC;
5994
5995         if (has_failed(conf))
5996                 return -EINVAL;
5997
5998         rdev_for_each(rdev, mddev) {
5999                 if (!test_bit(In_sync, &rdev->flags)
6000                     && !test_bit(Faulty, &rdev->flags))
6001                         spares++;
6002         }
6003
6004         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6005                 /* Not enough devices even to make a degraded array
6006                  * of that size
6007                  */
6008                 return -EINVAL;
6009
6010         /* Refuse to reduce size of the array.  Any reductions in
6011          * array size must be through explicit setting of array_size
6012          * attribute.
6013          */
6014         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6015             < mddev->array_sectors) {
6016                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6017                        "before number of disks\n", mdname(mddev));
6018                 return -EINVAL;
6019         }
6020
6021         atomic_set(&conf->reshape_stripes, 0);
6022         spin_lock_irq(&conf->device_lock);
6023         conf->previous_raid_disks = conf->raid_disks;
6024         conf->raid_disks += mddev->delta_disks;
6025         conf->prev_chunk_sectors = conf->chunk_sectors;
6026         conf->chunk_sectors = mddev->new_chunk_sectors;
6027         conf->prev_algo = conf->algorithm;
6028         conf->algorithm = mddev->new_layout;
6029         conf->generation++;
6030         /* Code that selects data_offset needs to see the generation update
6031          * if reshape_progress has been set - so a memory barrier needed.
6032          */
6033         smp_mb();
6034         if (mddev->reshape_backwards)
6035                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6036         else
6037                 conf->reshape_progress = 0;
6038         conf->reshape_safe = conf->reshape_progress;
6039         spin_unlock_irq(&conf->device_lock);
6040
6041         /* Add some new drives, as many as will fit.
6042          * We know there are enough to make the newly sized array work.
6043          * Don't add devices if we are reducing the number of
6044          * devices in the array.  This is because it is not possible
6045          * to correctly record the "partially reconstructed" state of
6046          * such devices during the reshape and confusion could result.
6047          */
6048         if (mddev->delta_disks >= 0) {
6049                 rdev_for_each(rdev, mddev)
6050                         if (rdev->raid_disk < 0 &&
6051                             !test_bit(Faulty, &rdev->flags)) {
6052                                 if (raid5_add_disk(mddev, rdev) == 0) {
6053                                         if (rdev->raid_disk
6054                                             >= conf->previous_raid_disks)
6055                                                 set_bit(In_sync, &rdev->flags);
6056                                         else
6057                                                 rdev->recovery_offset = 0;
6058
6059                                         if (sysfs_link_rdev(mddev, rdev))
6060                                                 /* Failure here is OK */;
6061                                 }
6062                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6063                                    && !test_bit(Faulty, &rdev->flags)) {
6064                                 /* This is a spare that was manually added */
6065                                 set_bit(In_sync, &rdev->flags);
6066                         }
6067
6068                 /* When a reshape changes the number of devices,
6069                  * ->degraded is measured against the larger of the
6070                  * pre and post number of devices.
6071                  */
6072                 spin_lock_irqsave(&conf->device_lock, flags);
6073                 mddev->degraded = calc_degraded(conf);
6074                 spin_unlock_irqrestore(&conf->device_lock, flags);
6075         }
6076         mddev->raid_disks = conf->raid_disks;
6077         mddev->reshape_position = conf->reshape_progress;
6078         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6079
6080         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6081         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6082         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6083         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6084         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6085                                                 "reshape");
6086         if (!mddev->sync_thread) {
6087                 mddev->recovery = 0;
6088                 spin_lock_irq(&conf->device_lock);
6089                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6090                 rdev_for_each(rdev, mddev)
6091                         rdev->new_data_offset = rdev->data_offset;
6092                 smp_wmb();
6093                 conf->reshape_progress = MaxSector;
6094                 mddev->reshape_position = MaxSector;
6095                 spin_unlock_irq(&conf->device_lock);
6096                 return -EAGAIN;
6097         }
6098         conf->reshape_checkpoint = jiffies;
6099         md_wakeup_thread(mddev->sync_thread);
6100         md_new_event(mddev);
6101         return 0;
6102 }
6103
6104 /* This is called from the reshape thread and should make any
6105  * changes needed in 'conf'
6106  */
6107 static void end_reshape(struct r5conf *conf)
6108 {
6109
6110         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6111                 struct md_rdev *rdev;
6112
6113                 spin_lock_irq(&conf->device_lock);
6114                 conf->previous_raid_disks = conf->raid_disks;
6115                 rdev_for_each(rdev, conf->mddev)
6116                         rdev->data_offset = rdev->new_data_offset;
6117                 smp_wmb();
6118                 conf->reshape_progress = MaxSector;
6119                 spin_unlock_irq(&conf->device_lock);
6120                 wake_up(&conf->wait_for_overlap);
6121
6122                 /* read-ahead size must cover two whole stripes, which is
6123                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6124                  */
6125                 if (conf->mddev->queue) {
6126                         int data_disks = conf->raid_disks - conf->max_degraded;
6127                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6128                                                    / PAGE_SIZE);
6129                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6130                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6131                 }
6132         }
6133 }
6134
6135 /* This is called from the raid5d thread with mddev_lock held.
6136  * It makes config changes to the device.
6137  */
6138 static void raid5_finish_reshape(struct mddev *mddev)
6139 {
6140         struct r5conf *conf = mddev->private;
6141
6142         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6143
6144                 if (mddev->delta_disks > 0) {
6145                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6146                         set_capacity(mddev->gendisk, mddev->array_sectors);
6147                         revalidate_disk(mddev->gendisk);
6148                 } else {
6149                         int d;
6150                         spin_lock_irq(&conf->device_lock);
6151                         mddev->degraded = calc_degraded(conf);
6152                         spin_unlock_irq(&conf->device_lock);
6153                         for (d = conf->raid_disks ;
6154                              d < conf->raid_disks - mddev->delta_disks;
6155                              d++) {
6156                                 struct md_rdev *rdev = conf->disks[d].rdev;
6157                                 if (rdev)
6158                                         clear_bit(In_sync, &rdev->flags);
6159                                 rdev = conf->disks[d].replacement;
6160                                 if (rdev)
6161                                         clear_bit(In_sync, &rdev->flags);
6162                         }
6163                 }
6164                 mddev->layout = conf->algorithm;
6165                 mddev->chunk_sectors = conf->chunk_sectors;
6166                 mddev->reshape_position = MaxSector;
6167                 mddev->delta_disks = 0;
6168                 mddev->reshape_backwards = 0;
6169         }
6170 }
6171
6172 static void raid5_quiesce(struct mddev *mddev, int state)
6173 {
6174         struct r5conf *conf = mddev->private;
6175
6176         switch(state) {
6177         case 2: /* resume for a suspend */
6178                 wake_up(&conf->wait_for_overlap);
6179                 break;
6180
6181         case 1: /* stop all writes */
6182                 spin_lock_irq(&conf->device_lock);
6183                 /* '2' tells resync/reshape to pause so that all
6184                  * active stripes can drain
6185                  */
6186                 conf->quiesce = 2;
6187                 wait_event_lock_irq(conf->wait_for_stripe,
6188                                     atomic_read(&conf->active_stripes) == 0 &&
6189                                     atomic_read(&conf->active_aligned_reads) == 0,
6190                                     conf->device_lock);
6191                 conf->quiesce = 1;
6192                 spin_unlock_irq(&conf->device_lock);
6193                 /* allow reshape to continue */
6194                 wake_up(&conf->wait_for_overlap);
6195                 break;
6196
6197         case 0: /* re-enable writes */
6198                 spin_lock_irq(&conf->device_lock);
6199                 conf->quiesce = 0;
6200                 wake_up(&conf->wait_for_stripe);
6201                 wake_up(&conf->wait_for_overlap);
6202                 spin_unlock_irq(&conf->device_lock);
6203                 break;
6204         }
6205 }
6206
6207
6208 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6209 {
6210         struct r0conf *raid0_conf = mddev->private;
6211         sector_t sectors;
6212
6213         /* for raid0 takeover only one zone is supported */
6214         if (raid0_conf->nr_strip_zones > 1) {
6215                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6216                        mdname(mddev));
6217                 return ERR_PTR(-EINVAL);
6218         }
6219
6220         sectors = raid0_conf->strip_zone[0].zone_end;
6221         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6222         mddev->dev_sectors = sectors;
6223         mddev->new_level = level;
6224         mddev->new_layout = ALGORITHM_PARITY_N;
6225         mddev->new_chunk_sectors = mddev->chunk_sectors;
6226         mddev->raid_disks += 1;
6227         mddev->delta_disks = 1;
6228         /* make sure it will be not marked as dirty */
6229         mddev->recovery_cp = MaxSector;
6230
6231         return setup_conf(mddev);
6232 }
6233
6234
6235 static void *raid5_takeover_raid1(struct mddev *mddev)
6236 {
6237         int chunksect;
6238
6239         if (mddev->raid_disks != 2 ||
6240             mddev->degraded > 1)
6241                 return ERR_PTR(-EINVAL);
6242
6243         /* Should check if there are write-behind devices? */
6244
6245         chunksect = 64*2; /* 64K by default */
6246
6247         /* The array must be an exact multiple of chunksize */
6248         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6249                 chunksect >>= 1;
6250
6251         if ((chunksect<<9) < STRIPE_SIZE)
6252                 /* array size does not allow a suitable chunk size */
6253                 return ERR_PTR(-EINVAL);
6254
6255         mddev->new_level = 5;
6256         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6257         mddev->new_chunk_sectors = chunksect;
6258
6259         return setup_conf(mddev);
6260 }
6261
6262 static void *raid5_takeover_raid6(struct mddev *mddev)
6263 {
6264         int new_layout;
6265
6266         switch (mddev->layout) {
6267         case ALGORITHM_LEFT_ASYMMETRIC_6:
6268                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6269                 break;
6270         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6271                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6272                 break;
6273         case ALGORITHM_LEFT_SYMMETRIC_6:
6274                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6275                 break;
6276         case ALGORITHM_RIGHT_SYMMETRIC_6:
6277                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6278                 break;
6279         case ALGORITHM_PARITY_0_6:
6280                 new_layout = ALGORITHM_PARITY_0;
6281                 break;
6282         case ALGORITHM_PARITY_N:
6283                 new_layout = ALGORITHM_PARITY_N;
6284                 break;
6285         default:
6286                 return ERR_PTR(-EINVAL);
6287         }
6288         mddev->new_level = 5;
6289         mddev->new_layout = new_layout;
6290         mddev->delta_disks = -1;
6291         mddev->raid_disks -= 1;
6292         return setup_conf(mddev);
6293 }
6294
6295
6296 static int raid5_check_reshape(struct mddev *mddev)
6297 {
6298         /* For a 2-drive array, the layout and chunk size can be changed
6299          * immediately as not restriping is needed.
6300          * For larger arrays we record the new value - after validation
6301          * to be used by a reshape pass.
6302          */
6303         struct r5conf *conf = mddev->private;
6304         int new_chunk = mddev->new_chunk_sectors;
6305
6306         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6307                 return -EINVAL;
6308         if (new_chunk > 0) {
6309                 if (!is_power_of_2(new_chunk))
6310                         return -EINVAL;
6311                 if (new_chunk < (PAGE_SIZE>>9))
6312                         return -EINVAL;
6313                 if (mddev->array_sectors & (new_chunk-1))
6314                         /* not factor of array size */
6315                         return -EINVAL;
6316         }
6317
6318         /* They look valid */
6319
6320         if (mddev->raid_disks == 2) {
6321                 /* can make the change immediately */
6322                 if (mddev->new_layout >= 0) {
6323                         conf->algorithm = mddev->new_layout;
6324                         mddev->layout = mddev->new_layout;
6325                 }
6326                 if (new_chunk > 0) {
6327                         conf->chunk_sectors = new_chunk ;
6328                         mddev->chunk_sectors = new_chunk;
6329                 }
6330                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6331                 md_wakeup_thread(mddev->thread);
6332         }
6333         return check_reshape(mddev);
6334 }
6335
6336 static int raid6_check_reshape(struct mddev *mddev)
6337 {
6338         int new_chunk = mddev->new_chunk_sectors;
6339
6340         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6341                 return -EINVAL;
6342         if (new_chunk > 0) {
6343                 if (!is_power_of_2(new_chunk))
6344                         return -EINVAL;
6345                 if (new_chunk < (PAGE_SIZE >> 9))
6346                         return -EINVAL;
6347                 if (mddev->array_sectors & (new_chunk-1))
6348                         /* not factor of array size */
6349                         return -EINVAL;
6350         }
6351
6352         /* They look valid */
6353         return check_reshape(mddev);
6354 }
6355
6356 static void *raid5_takeover(struct mddev *mddev)
6357 {
6358         /* raid5 can take over:
6359          *  raid0 - if there is only one strip zone - make it a raid4 layout
6360          *  raid1 - if there are two drives.  We need to know the chunk size
6361          *  raid4 - trivial - just use a raid4 layout.
6362          *  raid6 - Providing it is a *_6 layout
6363          */
6364         if (mddev->level == 0)
6365                 return raid45_takeover_raid0(mddev, 5);
6366         if (mddev->level == 1)
6367                 return raid5_takeover_raid1(mddev);
6368         if (mddev->level == 4) {
6369                 mddev->new_layout = ALGORITHM_PARITY_N;
6370                 mddev->new_level = 5;
6371                 return setup_conf(mddev);
6372         }
6373         if (mddev->level == 6)
6374                 return raid5_takeover_raid6(mddev);
6375
6376         return ERR_PTR(-EINVAL);
6377 }
6378
6379 static void *raid4_takeover(struct mddev *mddev)
6380 {
6381         /* raid4 can take over:
6382          *  raid0 - if there is only one strip zone
6383          *  raid5 - if layout is right
6384          */
6385         if (mddev->level == 0)
6386                 return raid45_takeover_raid0(mddev, 4);
6387         if (mddev->level == 5 &&
6388             mddev->layout == ALGORITHM_PARITY_N) {
6389                 mddev->new_layout = 0;
6390                 mddev->new_level = 4;
6391                 return setup_conf(mddev);
6392         }
6393         return ERR_PTR(-EINVAL);
6394 }
6395
6396 static struct md_personality raid5_personality;
6397
6398 static void *raid6_takeover(struct mddev *mddev)
6399 {
6400         /* Currently can only take over a raid5.  We map the
6401          * personality to an equivalent raid6 personality
6402          * with the Q block at the end.
6403          */
6404         int new_layout;
6405
6406         if (mddev->pers != &raid5_personality)
6407                 return ERR_PTR(-EINVAL);
6408         if (mddev->degraded > 1)
6409                 return ERR_PTR(-EINVAL);
6410         if (mddev->raid_disks > 253)
6411                 return ERR_PTR(-EINVAL);
6412         if (mddev->raid_disks < 3)
6413                 return ERR_PTR(-EINVAL);
6414
6415         switch (mddev->layout) {
6416         case ALGORITHM_LEFT_ASYMMETRIC:
6417                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6418                 break;
6419         case ALGORITHM_RIGHT_ASYMMETRIC:
6420                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6421                 break;
6422         case ALGORITHM_LEFT_SYMMETRIC:
6423                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6424                 break;
6425         case ALGORITHM_RIGHT_SYMMETRIC:
6426                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6427                 break;
6428         case ALGORITHM_PARITY_0:
6429                 new_layout = ALGORITHM_PARITY_0_6;
6430                 break;
6431         case ALGORITHM_PARITY_N:
6432                 new_layout = ALGORITHM_PARITY_N;
6433                 break;
6434         default:
6435                 return ERR_PTR(-EINVAL);
6436         }
6437         mddev->new_level = 6;
6438         mddev->new_layout = new_layout;
6439         mddev->delta_disks = 1;
6440         mddev->raid_disks += 1;
6441         return setup_conf(mddev);
6442 }
6443
6444
6445 static struct md_personality raid6_personality =
6446 {
6447         .name           = "raid6",
6448         .level          = 6,
6449         .owner          = THIS_MODULE,
6450         .make_request   = make_request,
6451         .run            = run,
6452         .stop           = stop,
6453         .status         = status,
6454         .error_handler  = error,
6455         .hot_add_disk   = raid5_add_disk,
6456         .hot_remove_disk= raid5_remove_disk,
6457         .spare_active   = raid5_spare_active,
6458         .sync_request   = sync_request,
6459         .resize         = raid5_resize,
6460         .size           = raid5_size,
6461         .check_reshape  = raid6_check_reshape,
6462         .start_reshape  = raid5_start_reshape,
6463         .finish_reshape = raid5_finish_reshape,
6464         .quiesce        = raid5_quiesce,
6465         .takeover       = raid6_takeover,
6466 };
6467 static struct md_personality raid5_personality =
6468 {
6469         .name           = "raid5",
6470         .level          = 5,
6471         .owner          = THIS_MODULE,
6472         .make_request   = make_request,
6473         .run            = run,
6474         .stop           = stop,
6475         .status         = status,
6476         .error_handler  = error,
6477         .hot_add_disk   = raid5_add_disk,
6478         .hot_remove_disk= raid5_remove_disk,
6479         .spare_active   = raid5_spare_active,
6480         .sync_request   = sync_request,
6481         .resize         = raid5_resize,
6482         .size           = raid5_size,
6483         .check_reshape  = raid5_check_reshape,
6484         .start_reshape  = raid5_start_reshape,
6485         .finish_reshape = raid5_finish_reshape,
6486         .quiesce        = raid5_quiesce,
6487         .takeover       = raid5_takeover,
6488 };
6489
6490 static struct md_personality raid4_personality =
6491 {
6492         .name           = "raid4",
6493         .level          = 4,
6494         .owner          = THIS_MODULE,
6495         .make_request   = make_request,
6496         .run            = run,
6497         .stop           = stop,
6498         .status         = status,
6499         .error_handler  = error,
6500         .hot_add_disk   = raid5_add_disk,
6501         .hot_remove_disk= raid5_remove_disk,
6502         .spare_active   = raid5_spare_active,
6503         .sync_request   = sync_request,
6504         .resize         = raid5_resize,
6505         .size           = raid5_size,
6506         .check_reshape  = raid5_check_reshape,
6507         .start_reshape  = raid5_start_reshape,
6508         .finish_reshape = raid5_finish_reshape,
6509         .quiesce        = raid5_quiesce,
6510         .takeover       = raid4_takeover,
6511 };
6512
6513 static int __init raid5_init(void)
6514 {
6515         register_md_personality(&raid6_personality);
6516         register_md_personality(&raid5_personality);
6517         register_md_personality(&raid4_personality);
6518         return 0;
6519 }
6520
6521 static void raid5_exit(void)
6522 {
6523         unregister_md_personality(&raid6_personality);
6524         unregister_md_personality(&raid5_personality);
6525         unregister_md_personality(&raid4_personality);
6526 }
6527
6528 module_init(raid5_init);
6529 module_exit(raid5_exit);
6530 MODULE_LICENSE("GPL");
6531 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6532 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6533 MODULE_ALIAS("md-raid5");
6534 MODULE_ALIAS("md-raid4");
6535 MODULE_ALIAS("md-level-5");
6536 MODULE_ALIAS("md-level-4");
6537 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6538 MODULE_ALIAS("md-raid6");
6539 MODULE_ALIAS("md-level-6");
6540
6541 /* This used to be two separate modules, they were: */
6542 MODULE_ALIAS("raid5");
6543 MODULE_ALIAS("raid6");